WorldWideScience

Sample records for anterior temporal cortex

  1. Temporal and spatial dynamics of thalamus-evoked activity in the anterior cingulate cortex.

    Science.gov (United States)

    Chang, Wei-Chih; Lee, Chia-Ming; Shyu, Bai-Chuang

    2012-10-11

    In the present study, multielectrode array (MEA) recording was used to illustrate the spatial-temporal progression of anterior cingulate cortex (ACC) activity following stimulation of the thalamus in a thalamocingulate pathway-preserved slice. The MEA was placed under the slice that contained the ACC, and 60 channels of extracellular local field potentials evoked by bipolar electrical stimulation within the thalamus were analyzed. Several distinct thalamic-evoked responses were identified. The early negative component (N1; amplitude, -35.7 ± 5.9 μV) emerged in layer VI near the cingulum 8.4 ± 0.5 ms after stimulation. N1 progressed upward to layers V and II/III in a lateral-to-medial direction. Subsequently, a positive component (P; amplitude, 27.0 ± 3.2 μV) appeared 12.0 ± 0.6 ms after stimulation in layer VI. At 26.8 ± 1.1 ms, a second negative component (N2; amplitude, -20.9 ± 2.7 μV) became apparent in layers II/III and V, followed by a more ventrolateral component (N3; amplitude, -18.9 ± 2.9 μV) at 42.8 ± 2.6 ms. These two late components spread downward to layer VI in a medial-to-lateral direction. The trajectory paths of the evoked components were consistently represented with varied medial thalamic stimulation intensities and sites. Both AMPA/kainate and N-methyl-D-aspartate-type glutamate receptors involved in monosynaptic and polysynaptic transmission participated in this thalamocortical pathway. Morphine mainly diminished the two negative synaptic components, and this suppressive effect was reversed by naloxone. The present study confirmed that functional thalamocingulate activity was preserved in the brain-slice preparation. The thalamus-evoked responses were activated and progressed along a deep surface-deep trajectory loop across the ACC layers. Glutamatergic neurotransmitters were crucially involved in information processing. Opioid interneurons may play a modulatory role in regulating the signal flows in the cingulate cortex.

  2. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  3. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  4. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  5. The anterior temporal cortex is a primary semantic source of top-down influences on object recognition.

    Science.gov (United States)

    Chiou, Rocco; Lambon Ralph, Matthew A

    2016-06-01

    Perception emerges from a dynamic interplay between feed-forward sensory input and feedback modulation along the cascade of neural processing. Prior knowledge, a major form of top-down modulatory signal, benefits perception by enabling efficacious inference and resolving ambiguity, particularly under circumstances of degraded visual input. Despite semantic information being a potentially critical source of this top-down influence, to date, the core neural substrate of semantic knowledge (the anterolateral temporal lobe - ATL) has not been considered as a key component of the feedback system. Here we provide direct evidence of its significance for visual cognition - the ATL underpins the semantic aspect of object recognition, amalgamating sensory-based (amount of accumulated sensory input) and semantic-based (representational proximity between exemplars and typicality of appearance) influences. Using transcranial theta-burst stimulation combined with a novel visual identification paradigm, we demonstrate that the left ATL contributes to discrimination between visual objects. Crucially, its contribution is especially vital under situations where semantic knowledge is most needed for supplementing deficiency of input (brief visual exposure), discerning analogously-coded exemplars (close representational distance), and resolving discordance (target appearance violating the statistical typicality of its category). Our findings characterise functional properties of the ATL in object recognition: this neural structure is summoned to augment the visual system when the latter is overtaxed by challenging conditions (insufficient input, overlapped neural coding, and conflict between incoming signal and expected configuration). This suggests a need to revisit current theories of object recognition, incorporating the ATL that interfaces high-level vision with semantic knowledge.

  6. The Anterior Cingulate Cortex and Pain Processing

    Directory of Open Access Journals (Sweden)

    Perry Neil Fuchs

    2014-05-01

    Full Text Available The neural network that contributes to the suffering which accompanies persistent pain states involves a number of brain regions. Of primary interest is the contribution of the cingulate cortex in processing the affective component of pain. The purpose of this review is to summarize recent data obtained using novel behavioral paradigms in animals based on measuring escape and/or avoidance of a noxious stimulus. These paradigms have successfully been used to study the nature of the neuroanatomical and neurochemical contributions of the anterior cingulate cortex to higher order pain processing in rodents.

  7. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    OpenAIRE

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2011-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, an...

  8. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects Ativação do córtex frontopolar e temporal anterior em uma tarefa de julgamento moral: resultados preliminares de ressonância magnética funcional em indivíduos normais

    Directory of Open Access Journals (Sweden)

    Jorge Moll

    2001-09-01

    Full Text Available OBJECTIVE: To study the brain areas which are activated when normal subjects make moral judgments. METHOD: Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI during the auditory presentation of sentences that they were instructed to silently judge as either "right" or "wrong". Half of the sentences had an explicit moral content ("We break the law when necessary", the other half comprised factual statements devoid of moral connotation ("Stones are made of water". After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemodynamically modeled for event-related fMRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. RESULTS: Regions activated during moral judgment included the frontopolar cortex (FPC, medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (BA 10/46 and 9 were largely independent of emotional experience and represented the largest areas of activation. CONCLUSIONS: These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct.OBJETIVO: Estudar, com ressonância magnética funcional (RMf, as áreas cerebrais normalmente ativadas por julgamentos morais em tarefa de verificação de sentenças. MÉTODO: Dez adultos normais foram estudados com RMf-BOLD durante a apresentação auditiva de sentenças cujo conteúdo foram instruídos a julgar como "certo" ou "errado". Metade das sentenças possuía um conteúdo moral explícito ("Transgredimos a lei se necess

  9. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis

    Directory of Open Access Journals (Sweden)

    Jue Wang

    2015-10-01

    Full Text Available We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6–16 years, 42 boys. We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right in its superior part, rightward (left < right in its inferior part. Intrinsic connectivity analysis of these regions further revealed region-specific asymmetric connectivity profiles in dACC as well as their sex and age differences. Specifically, the superior dACC connectivity with frontoparietal network and the inferior dACC connectivity with visual network are rightward. The superior dACC connectivity with the default network (lateral temporal cortex was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure–function relationships during the development.

  10. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis.

    Science.gov (United States)

    Wang, Jue; Yang, Ning; Liao, Wei; Zhang, Han; Yan, Chao-Gan; Zang, Yu-Feng; Zuo, Xi-Nian

    2015-10-01

    We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6-16 years, 42 boys). We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right) in its superior part, rightward (left lateral temporal cortex) was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex) was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure-function relationships during the development.

  11. Action initiation in the human dorsal anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Lakshminarayan Srinivasan

    Full Text Available The dorsal anterior cingulate cortex (dACC has previously been implicated in processes that influence action initiation. In humans however, there has been little direct evidence connecting dACC to the temporal onset of actions. We studied reactive behavior in patients undergoing therapeutic bilateral cingulotomy to determine the immediate effects of dACC ablation on action initiation. In a simple reaction task, three patients were instructed to respond to a specific visual cue with the movement of a joystick. Within minutes of dACC ablation, the frequency of false starts increased, where movements occurred prior to presentation of the visual cue. In a decision making task with three separate patients, the ablation effect on action initiation persisted even when action selection was intact. These findings suggest that human dACC influences action initiation, apart from its role in action selection.

  12. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.

    Science.gov (United States)

    Grossman, M; Crino, P; Reivich, M; Stern, M B; Hurtig, H I

    1992-01-01

    Parkinson's disease (PD) is a complex neurodegenerative condition involving a motor disorder that is related to reduced dopaminergic input to the striatum. Intellectual deficits are also seen in PD, but the pathophysiology of these difficulties is poorly understood. Regional cerebral blood flow (rCBF) was studied in neurologically intact subjects during the performance of attention-demanding, sentence processing tasks using positron emission tomography (PET). The results demonstrated significantly increased rCBF in a distributed set of cerebral regions during the detection of an adjective or a particular agent in a sentence, including anterior cingulate cortex, left inferior and middle frontal cortex, left inferior temporo-occipital cortex, posterolateral temporal cortex, left caudate, and left thalamus. We identified defects in this cerebral network by studying PD patients with two PET techniques. Resting PET studies revealed a significant correlation between regional cerebral glucose metabolism in anterior cingulate cortex and deficits in attending to subtle grammatical aspects of sentences. Studies of PD patients with the PET activation technique revealed little change in anterior cingulate and left frontal CBF during performance of the adjective detection or agent detection tasks. These data suggest that a defect in anterior cingulate cortex contributes to the cognitive impairments observed in PD.

  13. Working memory network plasticity after anterior temporal lobe resection: a longitudinal functional magnetic resonance imaging study

    OpenAIRE

    Stretton, Jason; Sidhu, Meneka K; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W; Symms, Mark R.; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S.

    2014-01-01

    Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investiga...

  14. Perirhinal cortex and temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Giuseppe eBiagini

    2013-08-01

    Full Text Available The perirhinal cortex – which is interconnected with several limbic structures and is intimately involved in learning and memory - plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus.

  15. Role of fusiform and anterior temporal cortical areas in facial recognition.

    Science.gov (United States)

    Nasr, Shahin; Tootell, Roger B H

    2012-11-15

    Recent fMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus ('AT'; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex.

  16. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  17. Anterior cingulate cortex involvement in subclinical social anxiety.

    Science.gov (United States)

    Duval, Elizabeth R; Hale, Lisa R; Liberzon, Israel; Lepping, Rebecca; N Powell, Joshua; Filion, Diane L; Savage, Cary R

    2013-12-30

    We demonstrated differential activation in the anterior cingulate cortex (ACC) between subjects with high and low social anxiety in response to angry versus neutral faces. Activation in the ACC distinguished between facial expressions in the low, but not the high, anxious group. The ACC's role in threat processing is discussed.

  18. Value, search, persistence and model updating in anterior cingulate cortex

    NARCIS (Netherlands)

    Kolling, N.; Wittmann, M.K.; Behrens, T.E.J.; Boorman, E.D.; Mars, R.B.; Rushworth, M.F.S.

    2016-01-01

    Dorsal anterior cingulate cortex (dACC) carries a wealth of value-related information necessary for regulating behavioral flexibility and persistence. It signals error and reward events informing decisions about switching or staying with current behavior. During decision-making, it encodes the avera

  19. The anterior insular cortex represents breaches of taste identity expectation.

    Science.gov (United States)

    Veldhuizen, Maria G; Douglas, Danielle; Aschenbrenner, Katja; Gitelman, Darren R; Small, Dana M

    2011-10-12

    Despite the importance of breaches of taste identity expectation for survival, its neural correlate is unknown. We used fMRI in 16 women to examine brain response to expected and unexpected receipt of sweet taste and tasteless/odorless solutions. During expected trials (70%), subjects heard "sweet" or "tasteless" and received the liquid indicated by the cue. During unexpected trials (30%), subjects heard sweet but received tasteless or they heard tasteless but received sweet. After delivery, subjects indicated stimulus identity by pressing a button. Reaction time was faster and more accurate after valid cuing, indicating that the cues altered expectancy as intended. Tasting unexpected versus expected stimuli resulted in greater deactivation in fusiform gyri, possibly reflecting greater suppression of visual object regions when orienting to, and identifying, an unexpected taste. Significantly greater activation to unexpected versus expected stimuli occurred in areas related to taste (thalamus, anterior insula), reward [ventral striatum (VS), orbitofrontal cortex], and attention [anterior cingulate cortex, inferior frontal gyrus, intraparietal sulcus (IPS)]. We also observed an interaction between stimulus and expectation in the anterior insula (primary taste cortex). Here response was greater for unexpected versus expected sweet compared with unexpected versus expected tasteless, indicating that this region is preferentially sensitive to breaches of taste expectation. Connectivity analyses confirmed that expectation enhanced network interactions, with IPS and VS influencing insular responses. We conclude that unexpected oral stimulation results in suppression of visual cortex and upregulation of sensory, attention, and reward regions to support orientation, identification, and learning about salient stimuli.

  20. Combinatorial semantics strengthens angular-anterior temporal coupling.

    Science.gov (United States)

    Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel

    2015-04-01

    The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning.

  1. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  2. Functional connectivity of parietal cortex during temporal selective attention.

    Science.gov (United States)

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients.

  3. Motivation of extended behaviors by anterior cingulate cortex.

    Science.gov (United States)

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences.

  4. Bilingualism tunes the anterior cingulate cortex for conflict monitoring.

    Science.gov (United States)

    Abutalebi, Jubin; Della Rosa, Pasquale Anthony; Green, David W; Hernandez, Mireia; Scifo, Paola; Keim, Roland; Cappa, Stefano F; Costa, Albert

    2012-09-01

    Monitoring and controlling 2 language systems is fundamental to language use in bilinguals. Here, we reveal in a combined functional (event-related functional magnetic resonance imaging) and structural neuroimaging (voxel-based morphometry) study that dorsal anterior cingulate cortex (ACC), a structure tightly bound to domain-general executive control functions, is a common locus for language control and resolving nonverbal conflict. We also show an experience-dependent effect in the same region: Bilinguals use this structure more efficiently than monolinguals to monitor nonlinguistic cognitive conflicts. They adapted better to conflicting situations showing less ACC activity while outperforming monolinguals. Importantly, for bilinguals, brain activity in the ACC, as well as behavioral measures, also correlated positively with local gray matter volume. These results suggest that early learning and lifelong practice of 2 languages exert a strong impact upon human neocortical development. The bilingual brain adapts better to resolve cognitive conflicts in domain-general cognitive tasks.

  5. Bilateral lesions of the central but not anterior or posterior parts of the piriform cortex retard amygdala kindling in rats.

    Science.gov (United States)

    Schwabe, K; Ebert, U; Löscher, W

    2000-01-01

    The piriform cortex is thought to be involved in temporal lobe seizure propagation, such as that occurring during kindling of the amygdala or hippocampus. A number of observations suggested that the circuits of the piriform cortex might act as a critical pathway for limbic seizure discharges to assess motor systems, but direct evidence for this suggestion is scarce. Furthermore, the piriform cortex is not a homogeneous structure, which complicates studies on its role in limbic epileptogenesis. We have previously reported data indicating that the central part of the piriform cortex might be particularly involved during amygdala kindling. In order to further evaluate the role of different parts of the piriform cortex during kindling development, we bilaterally destroyed either the central, anterior or posterior piriform cortex by microinjections of ibotenate two weeks before onset of amygdala kindling. Lesions of the anterior piriform cortex hardly affected kindling acquisition, except that fewer animals exhibited stage 3 (unilateral forelimb) seizures compared to sham controls. Lesions of the central piriform cortex significantly retarded kindling, which was due to a decreased progression from stage 3 to stage 4/5 seizures, i.e. the lesioned rats needed significantly longer for the acquisition of generalized clonic seizures in the late stages of kindling development. Lesions of the posterior piriform cortex did not significantly affect kindling development. The data demonstrate that different parts of the piriform cortex mediate qualitatively different effects on amygdala kindling. The central piriform cortex seems to be a neural substrate involved in the continuous development of kindling from stage 3 to stages 4/5, indicating that this part of the piriform cortex may have preferred access, either directly or indirectly, to structures capable of supporting generalized kindled seizure expression.

  6. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

    Science.gov (United States)

    Caruana, Fausto; Avanzini, Pietro; Gozzo, Francesca; Francione, Stefano; Cardinale, Francesco; Rizzolatti, Giacomo

    2015-10-01

    Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions.

  7. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    Science.gov (United States)

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  8. Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex.

    Science.gov (United States)

    Wallis, Jonathan D; Kennerley, Steven W

    2011-12-01

    Damage to the orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) impairs decision making, but the underlying value computations that cause such impairments remain unclear. Both the OFC and ACC encode a wide variety of signals correlated with decision making. The current challenge is to determine how these two different areas support decision-making processes. Here, we review a series of experiments that have helped define these roles. A special population of neurons in the ACC, but not the OFC, multiplex value information across decision parameters using a unified encoding scheme, and encode reward prediction errors. In contrast, neurons in the OFC, but not the ACC, encode the value of a choice relative to the recent history of choice values. Together, these results suggest complementary valuation processes: OFC neurons dynamically evaluate current choices relative to the value contexts recently experienced, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters.

  9. Differential involvement of the anterior temporal lobes in famous people semantics

    Directory of Open Access Journals (Sweden)

    Georges Chedid

    2016-08-01

    Full Text Available The ability to recognize a famous person occurs through semantic memory. Previous neuroimaging studies have shown that the anterior temporal lobes (ATLs are involved in the recognition of famous people. However, it is still a matter of debate whether the semantic processing of names or pictures of famous people has an impact on the activation of ATLs. The aim of this study was to explore the pattern of activation associated with a semantic processing of famous people based on face and written name stimuli. Fifteen healthy young individuals participated in our fMRI study, in which they were asked to perform a semantic categorization judgement task, based on profession, of visually presented pictures and names of famous people. Neuroimaging findings showed a common pattern of activation for faces and names mainly involving the inferior frontal regions, the posterior temporal lobe, the visual cortex and the anterior temporal lobes. We found that the comparison names vs. pictures lead to significant activation in the anterior superior temporal gyrus. On the other hand, faces vs. names seemed associated with increased activation in the medial ATL. Moreover, our results demonstrated that the functional connectivity network anchored to the medial ATL, compared to the anterior STG, is more connected to the bilateral occipital lobe and fusiform gyrus that are regions implicated in the visual system and visual processing of faces. This study provides critical evidence of the differential involvement of ATL regions in semantics of famous people.

  10. Pleasant human touch is represented in pregenual anterior cingulate cortex.

    Science.gov (United States)

    Lindgren, Lenita; Westling, Göran; Brulin, Christine; Lehtipalo, Stefan; Andersson, Micael; Nyberg, Lars

    2012-02-15

    Touch massage (TM) is a form of pleasant touch stimulation used as treatment in clinical settings and found to improve well-being and decrease anxiety, stress, and pain. Emotional responses reported during and after TM have been studied, but the underlying mechanisms are still largely unexplored. In this study, we used functional magnetic resonance (fMRI) to test the hypothesis that the combination of human touch (i.e. skin-to-skin contact) with movement is eliciting a specific response in brain areas coding for pleasant sensations. The design included four different touch conditions; human touch with or without movement and rubber glove with or without movement. Force (2.5 N) and velocity (1.5 cm/s) were held constant across conditions. The pleasantness of the four different touch stimulations was rated on a visual analog scale (VAS-scale) and human touch was rated as most pleasant, particularly in combination with movement. The fMRI results revealed that TM stimulation most strongly activated the pregenual anterior cingulate cortex (pgACC). These results are consistent with findings showing pgACC activation during various rewarding pleasant stimulations. This area is also known to be activated by both opioid analgesia and placebo. Together with these prior results, our finding furthers the understanding of the basis for positive TM treatment effects.

  11. Dorsal anterior cingulate cortex and the value of control.

    Science.gov (United States)

    Shenhav, Amitai; Cohen, Jonathan D; Botvinick, Matthew M

    2016-09-27

    Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the region's association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACC's involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACC's sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACC's particular involvement in decisions regarding foraging or otherwise altering one's behavior.

  12. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response.

  13. Preserved hippocampal novelty responses following anterior temporal-lobe resection that impairs familiarity but spares recollection.

    Science.gov (United States)

    Bowles, Ben; O'Neil, Edward B; Mirsattari, Seyed M; Poppenk, Jordan; Köhler, Stefan

    2011-08-01

    Although it is well established that the integrity of the medial temporal lobe (MTL) is critical for declarative memory, the functional organization of the MTL remains a matter of intense debate. One issue that has received little consideration so far is whether the hippocampus can function normally in the presence of a lesion to perirhinal cortex that produces noticeable memory impairments. This question is intriguing as the MTL forms a hierarchical system, in which perirhinal cortex represents one of the critical nodes in the reciprocal projections between neocortical association areas and the hippocampus. Here, we used functional magnetic resonance imaging to examine whether NB, an individual who underwent surgical resection of the left anterior temporal lobe that included large aspects of perirhinal and entorhinal cortex but spared the hippocampus, exhibits intact hippocampal novelty responses to auditory sentences. Our results revealed such evidence in NB's left and right hippocampus. They complement previous behavioral work in NB, indicating that recollective processes considered to rely on hippocampal integrity are also preserved. Further analyses revealed intact novelty responses in structures that provide neuroanatomical input to the hippocampus, including remaining perirhinal cortex and surgically spared parahippocampal cortex. These findings point to viable neuroanatomical mechanisms as to how functional integrity in the hippocampus may be maintained in the face of widespread, but incomplete removal of its input structures.

  14. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  15. Temporal Cortex Morphology in Mesial Temporal Lobe Epilepsy Patients and Their Asymptomatic Siblings.

    Science.gov (United States)

    Alhusaini, Saud; Whelan, Christopher D; Doherty, Colin P; Delanty, Norman; Fitzsimons, Mary; Cavalleri, Gianpiero L

    2016-03-01

    Temporal cortex abnormalities are common in patients with mesial temporal lobe epilepsy due to hippocampal sclerosis (MTLE+HS) and believed to be relevant to the underlying mechanisms. In the present study, we set out to determine the familiarity of temporal cortex morphologic alterations in a cohort of MTLE+HS patients and their asymptomatic siblings. A surface-based morphometry (SBM) method was applied to process MRI data acquired from 140 individuals (50 patients with unilateral MTLE+HS, 50 asymptomatic siblings of patients, and 40 healthy controls). Using a region-of-interest approach, alterations in temporal cortex morphology were determined in patients and their asymptomatic siblings by comparing with the controls. Alterations in temporal cortex morphology were identified in MTLE+HS patients ipsilaterally within the anterio-medial regions, including the entorhinal cortex, parahippocampal gyrus, and temporal pole. Subtle but similar pattern of morphology changes with a medium effect size were also noted in the asymptomatic siblings. These localized alterations were related to volume loss that appeared driven by shared contractions in cerebral cortex surface area. These findings indicate that temporal cortex morphologic alterations are common to patients and their asymptomatic siblings and suggest that such localized traits are possibly heritable.

  16. Differential Involvement of the Anterior Temporal Lobes in Famous People Semantics

    Science.gov (United States)

    Chedid, Georges; Wilson, Maximiliano A.; Provost, Jean-Sebastien; Joubert, Sven; Rouleau, Isabelle; Brambati, Simona M.

    2016-01-01

    The ability to recognize a famous person occurs through semantic memory. Previous neuroimaging studies have shown that the anterior temporal lobes (ATLs) are involved in the recognition of famous people. However, it is still a matter of debate whether the semantic processing of names or pictures of famous people has an impact on the activation of ATLs. The aim of this study was to explore the pattern of activation associated with a semantic processing of famous people based on face and written name stimuli. Fifteen healthy young individuals participated in our fMRI study, in which they were asked to perform a semantic categorization judgment task, based on profession, of visually presented pictures, and names of famous people. Neuroimaging findings showed a common pattern of activation for faces and names mainly involving the inferior frontal regions, the posterior temporal lobe, the visual cortex, and the ATLs. We found that the comparison names vs. pictures lead to significant activation in the anterior superior temporal gyrus. On the other hand, faces vs. names seemed associated with increased activation in the medial ATL. Moreover, our results demonstrated that the functional connectivity network anchored to the medial ATL, compared to the anterior STG, is more connected to the bilateral occipital lobe and fusiform gyrus that are regions implicated in the visual system and visual processing of faces. This study provides critical evidence of the differential involvement of ATL regions in semantics of famous people. PMID:27625630

  17. Resting-state functional connectivity in anterior cingulate cortex in normal aging

    Directory of Open Access Journals (Sweden)

    Weifang eCao

    2014-10-01

    Full Text Available Growing evidence suggests that normal aging is associated with cognitive decline and well-maintained emotional well-being. The anterior cingulate cortex (ACC is an important brain region involved in emotional and cognitive processing. We investigated resting-state functional connectivity (FC of two ACC subregions in 30 healthy older adults versus 33 healthy younger adults, by parcellating into rostral (rACC and dorsal (dACC ACC based on clustering of FC profiles. Compared with younger adults, older adults demonstrated greater connection between rACC and anterior insula, suggesting that older adults recruit more proximal dACC brain regions connected with insula to maintain a salient response. Older adults also demonstrated increased FC between rACC and superior temporal gyrus and inferior frontal gyrus, decreased integration between rACC and default mode, and decreased dACC-hippocampal and dACC-thalamic connectivity. These altered FCs reflected rACC and dACC reorganization, and might be related to well emotion regulation and cognitive decline in older adults. Our findings provide further insight into potential functional substrates of emotional and cognitive alterations in the aging brain.

  18. Anterior Cingulate Cortex and Cognitive Control: Neuropsychological and Electrophysiological Findings in Two Patients with Lesions to Dorsomedial Prefrontal Cortex

    Science.gov (United States)

    Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.

    2012-01-01

    Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…

  19. Right anterior temporal lobe dysfunction underlies theory of mind impairments in semantic dementia.

    Science.gov (United States)

    Irish, Muireann; Hodges, John R; Piguet, Olivier

    2014-04-01

    Semantic dementia is a progressive neurodegenerative disorder characterized by the amodal and profound loss of semantic knowledge attributable to the degeneration of the left anterior temporal lobe. Although traditionally conceptualized as a language disorder, patients with semantic dementia display significant alterations in behaviour and socioemotional functioning. Recent evidence points to an impaired capacity for theory of mind in predominantly left-lateralized cases of semantic dementia; however, it remains unclear to what extent semantic impairments contribute to these deficits. Further the neuroanatomical signature of such disturbance remains unknown. Here, we sought to determine the neural correlates of theory of mind performance in patients with left predominant semantic dementia (n=11), in contrast with disease-matched cases with behavioural-variant frontotemporal dementia (n=10) and Alzheimer's disease (n=10), and healthy older individuals (n=14) as control participants. Participants completed a simple cartoons task, in which they were required to describe physical and theory of mind scenarios. Irrespective of subscale, patients with semantic dementia exhibited marked impairments relative to control subjects; however, only theory of mind deficits persisted when we covaried for semantic comprehension. Voxel-based morphometry analyses revealed that atrophy in right anterior temporal lobe structures, including the right temporal fusiform cortex, right inferior temporal gyrus, bilateral temporal poles and amygdalae, correlated significantly with theory of mind impairments in the semantic dementia group. Our results point to the marked disruption of cognitive functions beyond the language domain in semantic dementia, not exclusively attributable to semantic processing impairments. The significant involvement of right anterior temporal structures suggests that with disease evolution, the encroachment of pathology into the contralateral hemisphere heralds the

  20. Functional magnetic resonance imaging evaluation of visual cortex activation in patients with anterior visual pathway lesions

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Song; Guohua Wang; Tong Zhang; Lei Feng; Peng An; Yueli Zhu

    2012-01-01

    The aim of this study was to examine the secondary visual cortex functional disorder in patients with glaucoma and large pituitary adenoma by functional magnetic resonance imaging, and to determine the correlation between visual field defect and primary visual cortex activation. Results showed that single eye stimulation resulted in bilateral visual cortex activation in patients with glaucoma or large pituitary adenoma. Compared with the normal control group, the extent and intensity of visual cortex activation was decreased after left and right eye stimulation, and functional magnetic resonance imaging revealed a correlation between visual field defects and visual cortex activation in patients with glaucoma and large pituitary adenoma. These functional magnetic resonance imaging data suggest that anterior optic pathway lesions can cause secondary functional disorder of the visual cortex, and that visual defects are correlated with visual cortex activation.

  1. Functional Connectivity of the Caudal Anterior Cingulate Cortex Is Decreased in Autism.

    Science.gov (United States)

    Zhou, Yuanyue; Shi, Lijuan; Cui, Xilong; Wang, Suhong; Luo, Xuerong

    2016-01-01

    The anterior cingulate cortex (ACC) is frequently reported to have functionally distinct sub-regions that play key roles in different intrinsic networks. However, the contribution of the ACC, which is connected to several cortical areas and the limbic system, to autism is not clearly understood, although it may be involved in dysfunctions across several distinct but related functional domains. By comparing resting-state fMRI data from persons with autism and healthy controls, we sought to identify the abnormalities in the functional connectivity (FC) of ACC sub-regions in autism. The analyses found autism-related reductions in FC between the left caudal ACC and the right rolandic operculum, insula, postcentral gyrus, superior temporal gyrus, and the middle temporal gyrus. The FC (z-scores) between the left caudal ACC and the right insula was negatively correlated with the Stereotyped Behaviors and Restricted Interests scores of the autism group. These findings suggest that the caudal ACC is recruited selectively in the pathomechanism of autism.

  2. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  3. Non-verbal auditory cognition in patients with temporal epilepsy before and after anterior temporal lobectomy

    Directory of Open Access Journals (Sweden)

    Aurélie Bidet-Caulet

    2009-11-01

    Full Text Available For patients with pharmaco-resistant temporal epilepsy, unilateral anterior temporal lobectomy (ATL - i.e. the surgical resection of the hippocampus, the amygdala, the temporal pole and the most anterior part of the temporal gyri - is an efficient treatment. There is growing evidence that anterior regions of the temporal lobe are involved in the integration and short-term memorization of object-related sound properties. However, non-verbal auditory processing in patients with temporal lobe epilepsy (TLE has raised little attention. To assess non-verbal auditory cognition in patients with temporal epilepsy both before and after unilateral ATL, we developed a set of non-verbal auditory tests, including environmental sounds. We could evaluate auditory semantic identification, acoustic and object-related short-term memory, and sound extraction from a sound mixture. The performances of 26 TLE patients before and/or after ATL were compared to those of 18 healthy subjects. Patients before and after ATL were found to present with similar deficits in pitch retention, and in identification and short-term memorisation of environmental sounds, whereas not being impaired in basic acoustic processing compared to healthy subjects. It is most likely that the deficits observed before and after ATL are related to epileptic neuropathological processes. Therefore, in patients with drug-resistant TLE, ATL seems to significantly improve seizure control without producing additional auditory deficits.

  4. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches.

  5. Feelings of warmth correlate with neural activity in right anterior insular cortex.

    Science.gov (United States)

    Olausson, H; Charron, J; Marchand, S; Villemure, C; Strigo, I A; Bushnell, M C

    2005-11-25

    The neural coding of perception can differ from that for the physical attributes of a stimulus. Recent studies suggest that activity in right anterior insular cortex may underlie thermal perception, particularly that of cold. We now examine whether this region is also important for the perception of warmth. We applied cutaneous warm stimuli on the left leg (warmth) in normal subjects (n = 7) during functional magnetic resonance imaging (fMRI). After each stimulus, subjects rated their subjective intensity of the stimulus using a visual analogue scale (VAS), and correlations were determined between the fMRI signal and the VAS ratings. We found that intensity ratings of warmth correlated with the fMRI signal in the right (contralateral to stimulation) anterior insular cortex. These results, in conjunction with previous reports, suggest that the right anterior insular cortex is important for different types of thermal perception.

  6. Preference for Audiovisual Speech Congruency in Superior Temporal Cortex.

    Science.gov (United States)

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Auditory speech perception can be altered by concurrent visual information. The superior temporal cortex is an important combining site for this integration process. This area was previously found to be sensitive to audiovisual congruency. However, the direction of this congruency effect (i.e., stronger or weaker activity for congruent compared to incongruent stimulation) has been more equivocal. Here, we used fMRI to look at the neural responses of human participants during the McGurk illusion--in which auditory /aba/ and visual /aga/ inputs are fused to perceived /ada/--in a large homogenous sample of participants who consistently experienced this illusion. This enabled us to compare the neuronal responses during congruent audiovisual stimulation with incongruent audiovisual stimulation leading to the McGurk illusion while avoiding the possible confounding factor of sensory surprise that can occur when McGurk stimuli are only occasionally perceived. We found larger activity for congruent audiovisual stimuli than for incongruent (McGurk) stimuli in bilateral superior temporal cortex, extending into the primary auditory cortex. This finding suggests that superior temporal cortex prefers when auditory and visual input support the same representation.

  7. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  8. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mark R. Winter

    2015-10-01

    Full Text Available Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.

  9. Superficial temporal artery to proximal posterior cerebral artery bypass through the anterior temporal approach

    Directory of Open Access Journals (Sweden)

    Satoru Takeuchi

    2015-01-01

    Full Text Available Background: The superficial temporal artery (STA to proximal posterior cerebral artery (PCA (P2 segment bypass is one of the most difficult procedures to perform because the proximal PCA is located deep and high within the ambient cistern. STA to proximal PCA bypass is usually performed through a subtemporal approach or posterior transpetrosal approach, and rarely through a transsylvian approach. The aim of this study was to describe the operative technique of STA to proximal PCA bypass through a modified transsylvian approach (anterior temporal approach. Methods: STA to proximal PCA bypass was performed through an anterior temporal approach in three patients with intracranial aneurysm. We describe the details of the surgical technique. Results: The STA was successfully anastomosed to the proximal PCA in all cases. One patient suffered hemiparesis and aphasia due to infarction in the anterior thalamoperforating artery territory. Conclusions: STA to proximal PCA bypass can be performed through an anterior temporal approach in selected patients. We recommend that every precaution, including complete hemostasis, placement of cellulose sponges beneath the recipient artery to elevate the site of the anastomosis, and placement of a continuous drainage tube at the bottom of the operative field to avoid blood contamination during the anastomosis, should be taken to shorten the temporary occlusion time.

  10. Practice explains abolished behavioural adaptation after human dorsal anterior cingulate cortex lesions

    OpenAIRE

    van Steenbergen, H.; E. Haasnoot; Bocanegra, B.R.; Berretty, E.W.; Hommel, B.

    2015-01-01

    The role of mid-cingulate cortex (MCC), also referred to as dorsal anterior cingulate cortex, in regulating cognitive control is a topic of primary importance in cognitive neuroscience. Although many studies have shown that MCC responds to cognitive demands, lesion studies in humans are inconclusive concerning the causal role of the MCC in the adaptation to these demands. By elegantly combining single-cell recordings with behavioural methods, Sheth et al. [Sheth, S. et al. Human dorsal anteri...

  11. Reduced event-related current density in the anterior cingulate cortex in schizophrenia.

    Science.gov (United States)

    Mulert, C; Gallinat, J; Pascual-Marqui, R; Dorn, H; Frick, K; Schlattmann, P; Mientus, S; Herrmann, W M; Winterer, G

    2001-04-01

    There is good evidence from neuroanatomic postmortem and functional imaging studies that dysfunction of the anterior cingulate cortex plays a prominent role in the pathophysiology of schizophrenia. So far, no electrophysiological localization study has been performed to investigate this deficit. We investigated 18 drug-free schizophrenic patients and 25 normal subjects with an auditory choice reaction task and measured event-related activity with 19 electrodes. Estimation of the current source density distribution in Talairach space was performed with low-resolution electromagnetic tomography (LORETA). In normals, we could differentiate between an early event-related potential peak of the N1 (90-100 ms) and a later N1 peak (120-130 ms). Subsequent current-density LORETA analysis in Talairach space showed increased activity in the auditory cortex area during the first N1 peak and increased activity in the anterior cingulate gyrus during the second N1 peak. No activation difference was observed in the auditory cortex between normals and patients with schizophrenia. However, schizophrenics showed significantly less anterior cingulate gyrus activation and slowed reaction times. Our results confirm previous findings of an electrical source in the anterior cingulate and an anterior cingulate dysfunction in schizophrenics. Our data also suggest that anterior cingulate function in schizophrenics is disturbed at a relatively early time point in the information-processing stream (100-140 ms poststimulus).

  12. Bilingualism protects anterior temporal lobe integrity in aging.

    Science.gov (United States)

    Abutalebi, Jubin; Canini, Matteo; Della Rosa, Pasquale A; Sheung, Lo Ping; Green, David W; Weekes, Brendan S

    2014-09-01

    Cerebral gray-matter volume (GMV) decreases in normal aging but the extent of the decrease may be experience-dependent. Bilingualism may be one protective factor and in this article we examine its potential protective effect on GMV in a region that shows strong age-related decreases-the left anterior temporal pole. This region is held to function as a conceptual hub and might be expected to be a target of plastic changes in bilingual speakers because of the requirement for these speakers to store and differentiate lexical concepts in 2 languages to guide speech production and comprehension processes. In a whole brain comparison of bilingual speakers (n = 23) and monolingual speakers (n = 23), regressing out confounding factors, we find more extensive age-related decreases in GMV in the monolingual brain and significantly increased GMV in left temporal pole for bilingual speakers. Consistent with a specific neuroprotective effect of bilingualism, region of interest analyses showed a significant positive correlation between naming performance in the second language and GMV in this region. The effect appears to be bilateral though because there was a nonsignificantly different effect of naming performance on GMV in the right temporal pole. Our data emphasize the vulnerability of the temporal pole to normal aging and the value of bilingualism as both a general and specific protective factor to GMV decreases in healthy aging.

  13. Spectral features control temporal plasticity in auditory cortex.

    Science.gov (United States)

    Kilgard, M P; Pandya, P K; Vazquez, J L; Rathbun, D L; Engineer, N D; Moucha, R

    2001-01-01

    Cortical responses are adjusted and optimized throughout life to meet changing behavioral demands and to compensate for peripheral damage. The cholinergic nucleus basalis (NB) gates cortical plasticity and focuses learning on behaviorally meaningful stimuli. By systematically varying the acoustic parameters of the sound paired with NB activation, we have previously shown that tone frequency and amplitude modulation rate alter the topography and selectivity of frequency tuning in primary auditory cortex. This result suggests that network-level rules operate in the cortex to guide reorganization based on specific features of the sensory input associated with NB activity. This report summarizes recent evidence that temporal response properties of cortical neurons are influenced by the spectral characteristics of sounds associated with cholinergic modulation. For example, repeated pairing of a spectrally complex (ripple) stimulus decreased the minimum response latency for the ripple, but lengthened the minimum latency for tones. Pairing a rapid train of tones with NB activation only increased the maximum following rate of cortical neurons when the carrier frequency of each train was randomly varied. These results suggest that spectral and temporal parameters of acoustic experiences interact to shape spectrotemporal selectivity in the cortex. Additional experiments with more complex stimuli are needed to clarify how the cortex learns natural sounds such as speech.

  14. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep.

    Science.gov (United States)

    Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku

    2017-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition.

  15. The Anterior Prefrontal Cortex and the Hippocampus Are Negatively Correlated during False Memories

    Directory of Open Access Journals (Sweden)

    Brittany M. Jeye

    2017-01-01

    Full Text Available False memories commonly activate the anterior/dorsolateral prefrontal cortex (A/DLPFC and the hippocampus. These regions are assumed to work in concert during false memories, which would predict a positive correlation between the magnitudes of activity in these regions across participants. However, the A/DLPFC may also inhibit the hippocampus, which would predict a negative correlation between the magnitudes of activity in these regions. In the present functional magnetic resonance imaging (fMRI study, during encoding, participants viewed abstract shapes in the left or right visual field. During retrieval, participants classified each old shape as previously in the “left” or “right” visual field followed by an “unsure”–“sure”–“very sure” confidence rating. The contrast of left-hits and left-misses produced two activations in the hippocampus and three activations in the left A/DLPFC. For each participant, activity associated with false memories (right–“left”–“very sure” responses from the two hippocampal regions was plotted as a function of activity in each A/DLPFC region. Across participants, for one region in the left anterior prefrontal cortex, there was a negative correlation between the magnitudes of activity in this region and the hippocampus. This suggests that the anterior prefrontal cortex might inhibit the hippocampus during false memories and that participants engage either the anterior prefrontal cortex or the hippocampus during false memories.

  16. Communication Apprehension and Resting Alpha Range Asymmetry in the Anterior Cortex

    Science.gov (United States)

    Beatty, Michael J.; Heisel, Alan D.; Lewis, Robert J.; Pence, Michelle E.; Reinhart, Amber; Tian, Yan

    2011-01-01

    In this study, we examined the relationship between trait-like communication apprehension (CA) and resting alpha range asymmetry in the anterior cortex (AC). Although theory and research in cognitive neuroscience suggest that asymmetry in the AC constitutes a relatively stable, inborn, substrate of emotion, some studies indicate that asymmetry can…

  17. Errors without Conflict: Implications for Performance Monitoring Theories of Anterior Cingulate Cortex

    Science.gov (United States)

    van Veen, V.; Holroyd, C.B.; Cohen, J.D.; Stenger, V.A.; Carter, C.S.

    2004-01-01

    Recent theories of the neural basis of performance monitoring have emphasized a central role for the anterior cingulate cortex (ACC). Replicating an earlier event-related potential (ERP) study, which showed an error feedback negativity that was modeled as having an ACC generator, we used event-related fMRI to investigate whether the ACC would…

  18. Non-invasive examinations successfully select patients with medial temporal lobe epilepsy for anterior temporal lobectomy

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Takato; Nishio, Shunji; Kawamura, Tadao; Fukui, Kimiko; Sasaki, Masayuki; Fukui, Masashi [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2001-06-01

    We retrospectively analyzed 8 patients with intractable medial temporal lobe epilepsy (MTLE) who underwent the anterior temporal lobectomy with hippocampectomy (ATL) without invasive examinations such as chronic subdural electrode recording. Five patients had a history of febrile convulsion. While all 8 patients had oral automatism, automatism of ipsilateral limbs with dystonic posture of contralateral limbs was demonstrated in 2 patients. Bilateral temporal paroxysmal activities on interictal EEG was observed in 4 patients and all patients had clear ictal onset zone on unilateral anterior temporal region. MRI demonstrated unilateral hippocampal sclerosis in 5 cases. Interictal FDG-PET depicted hypometabolism of the unilateral temporal lobe in all cases, however, ECD-SPECT failed to reveal the hypoperfusion of the unilateral temporal lobe in a case. Postoperatively, 7 cases became seizure free, and one had rare seizure. Non-invasive examinations, especially ictal EEG and concordant FDG-PET findings, in patients with oral automatism in seizure semiology, successfully select patients with MTLE for ATL. (author)

  19. Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus.

    Science.gov (United States)

    Bowles, Ben; Crupi, Carina; Mirsattari, Seyed M; Pigott, Susan E; Parrent, Andrew G; Pruessner, Jens C; Yonelinas, Andrew P; Köhler, Stefan

    2007-10-09

    It is well established that the medial-temporal lobe (MTL) is critical for recognition memory. The MTL is known to be composed of distinct structures that are organized in a hierarchical manner. At present, it remains controversial whether lower structures in this hierarchy, such as perirhinal cortex, support memory functions that are distinct from those of higher structures, in particular the hippocampus. Perirhinal cortex has been proposed to play a specific role in the assessment of familiarity during recognition, which can be distinguished from the selective contributions of the hippocampus to the recollection of episodic detail. Some researchers have argued, however, that the distinction between familiarity and recollection cannot capture functional specialization within the MTL and have proposed single-process accounts. Evidence supporting the dual-process view comes from demonstrations that selective hippocampal damage can produce isolated recollection impairments. It is unclear, however, whether temporal-lobe lesions that spare the hippocampus can produce selective familiarity impairments. Without this demonstration, single-process accounts cannot be ruled out. We examined recognition memory in NB, an individual who underwent surgical resection of left anterior temporal-lobe structures for treatment of intractable epilepsy. Her resection included a large portion of perirhinal cortex but spared the hippocampus. The results of four experiments based on three different experimental procedures (remember-know paradigm, receiver operating characteristics, and response-deadline procedure) indicate that NB exhibits impaired familiarity with preserved recollection. The present findings thus provide a crucial missing piece of support for functional specialization in the MTL.

  20. More Than Meets the Eye: The Merging of Perceptual and Conceptual Knowledge in the Anterior Temporal Face Area.

    Directory of Open Access Journals (Sweden)

    Jessica A. Collins

    2016-05-01

    Full Text Available An emerging body of research has supported the existence of a small face sensitive region in the ventral anterior temporal lobe (ATL, referred to here as the anterior temporal face area. The contribution of this region in the greater face-processing network remains poorly understood. The goal of the present study was to test the relative sensitivity of this region to perceptual as well as conceptual information about people and objects. We contrasted the sensitivity of this region to that of two highly-studied face-sensitive regions, the fusiform face area and the occipital face area, as well as a control region in early visual cortex. Our findings revealed that multivoxel activity patterns in the anterior temporal face area contain information about facial identity, as well as conceptual attributes such as one’s occupation. The sensitivity of this region to the conceptual attributes of people was greater than that of posterior face processing regions. In addition, the anterior temporal face area overlaps with voxels that contain information about the conceptual attributes of concrete objects, supporting a generalized role of the ventral ATLs in the identification and conceptual processing of multiple stimulus classes.1IntroductionOver a decade of neuroimaging work has characterized the neural basis of face perception and identified several nodes that preferentially respond to faces relative to other objects (Haxby, Hoffman, & Gobbini, 2000; Nancy Kanwisher & Yovel, 2006. Most of this work has focused on the fusiform face area (FFA and the occipital face area (OFA (Kanwisher, McDermott, & Chun, 1997; Kanwisher & Yovel, 2006; Pitcher, Walsh, Yovel, & Duchaine, 2007, however an emerging literature has implicated an anterior temporal face area, on the ventral surface of the right anterior temporal lobes (vATLs in or near perirhinal cortex, in facial processing (Avidan et al., 2013; Pinsk et al., 2009; Rajimehr, Young, & Tootell, 2009; Tsao

  1. More Than Meets the Eye: The Merging of Perceptual and Conceptual Knowledge in the Anterior Temporal Face Area

    Science.gov (United States)

    Collins, Jessica A.; Koski, Jessica E.; Olson, Ingrid R.

    2016-01-01

    An emerging body of research has supported the existence of a small face sensitive region in the ventral anterior temporal lobe (ATL), referred to here as the “anterior temporal face area”. The contribution of this region in the greater face-processing network remains poorly understood. The goal of the present study was to test the relative sensitivity of this region to perceptual as well as conceptual information about people and objects. We contrasted the sensitivity of this region to that of two highly-studied face-sensitive regions, the fusiform face area (FFA) and the occipital face area (OFA), as well as a control region in early visual cortex (EVC). Our findings revealed that multivoxel activity patterns in the anterior temporal face area contain information about facial identity, as well as conceptual attributes such as one’s occupation. The sensitivity of this region to the conceptual attributes of people was greater than that of posterior face processing regions. In addition, the anterior temporal face area overlaps with voxels that contain information about the conceptual attributes of concrete objects, supporting a generalized role of the ventral ATLs in the identification and conceptual processing of multiple stimulus classes. PMID:27199711

  2. Coherent concepts are computed in the anterior temporal lobes.

    Science.gov (United States)

    Lambon Ralph, Matthew A; Sage, Karen; Jones, Roy W; Mayberry, Emily J

    2010-02-09

    In his Philosophical Investigations, Wittgenstein famously noted that the formation of semantic representations requires more than a simple combination of verbal and nonverbal features to generate conceptually based similarities and differences. Classical and contemporary neuroscience has tended to focus upon how different neocortical regions contribute to conceptualization through the summation of modality-specific information. The additional yet critical step of computing coherent concepts has received little attention. Some computational models of semantic memory are able to generate such concepts by the addition of modality-invariant information coded in a multidimensional semantic space. By studying patients with semantic dementia, we demonstrate that this aspect of semantic memory becomes compromised following atrophy of the anterior temporal lobes and, as a result, the patients become increasingly influenced by superficial rather than conceptual similarities.

  3. Polymodal information processing via temporal cortex Area 37 modeling

    Science.gov (United States)

    Peterson, James K.

    2004-04-01

    A model of biological information processing is presented that consists of auditory and visual subsystems linked to temporal cortex and limbic processing. An biologically based algorithm is presented for the fusing of information sources of fundamentally different modalities. Proof of this concept is outlined by a system which combines auditory input (musical sequences) and visual input (illustrations such as paintings) via a model of cortex processing for Area 37 of the temporal cortex. The training data can be used to construct a connectionist model whose biological relevance is suspect yet is still useful and a biologically based model which achieves the same input to output map through biologically relevant means. The constructed models are able to create from a set of auditory and visual clues a combined musical/ illustration output which shares many of the properties of the original training data. These algorithms are not dependent on these particular auditory/ visual modalities and hence are of general use in the intelligent computation of outputs that require sensor fusion.

  4. The anterior olfactory nucleus and piriform cortex of the echidna and platypus.

    Science.gov (United States)

    Ashwell, Ken W S; Phillips, Jennifer M

    2006-01-01

    The cyto- and chemoarchitecture of the anterior olfactory nucleus and piriform cortex of the short-beaked echidna and platypus were studied to determine: (1) if these areas contain chemically distinct subdivisions, and (2) if the chemoarchitecture of those cortical olfactory regions differs from therians. Nissl and myelin staining were applied in conjunction with enzyme reactivity for NADPH diaphorase and acetylcholinesterase, and immunoreactivity for calcium-binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase. Golgi impregnations were also available for the echidna. In the echidna, the anterior olfactory nucleus is negligible in extent and merges at very rostral levels with a four-layered piriform cortex. Several rostrocaudally running subregions of the echidna piriform lobe could be identified on the basis of Nissl staining and calcium-binding protein immunoreactivity. Laminar-specific differences in calcium-binding protein immunoreactivity and NADPH-d-reactive neuron distribution were also noted. Neuron types identified in echidna piriform cortex included pyramidal neurons predominating in layers II and III and non-pyramidal neurons (e.g., multipolar profusely spiny and neurogliaform cells) in deeper layers. Horizontal cells were identified in both superficial and deep layers. By contrast, the platypus had a distinct anterior olfactory nucleus and a three-layered piriform cortex with no evidence of chemically distinct subregions within the piriform cortex. Volume of the paleocortex of the echidna was comparable to prosimians of similar body weight and, in absolute volume, exceeded that for eutherian insectivores such as T. ecaudatus and E. europaeus. The piriform cortex of the echidna shows evidence of regional differentiation, which in turn suggests highly specialized olfactory function.

  5. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control.

    Science.gov (United States)

    Tolomeo, Serenella; Christmas, David; Jentzsch, Ines; Johnston, Blair; Sprengelmeyer, Reiner; Matthews, Keith; Douglas Steele, J

    2016-06-01

    Converging evidence has linked the anterior mid-cingulate cortex to negative affect, pain and cognitive control. It has previously been proposed that this region uses information about punishment to control aversively motivated actions. Studies on the effects of lesions allow causal inferences about brain function; however, naturally occurring lesions in the anterior mid-cingulate cortex are rare. In two studies we therefore recruited 94 volunteers, comprising 15 patients with treatment-resistant depression who had received bilateral anterior cingulotomy, which consists of lesions made within the anterior mid-cingulate cortex, 20 patients with treatment-resistant depression who had not received surgery and 59 healthy control subjects. Using the Ekman 60 faces paradigm and two Stroop paradigms, we tested the hypothesis that patients who received anterior cingulotomy were impaired in recognizing negative facial affect expressions but not positive or neutral facial expressions, and impaired in Stroop cognitive control, with larger lesions being associated with more impairment. Consistent with this hypothesis, we found that larger volume lesions predicted more impairment in recognizing fear, disgust and anger, and no impairment in recognizing facial expressions of surprise or happiness. However, we found no impairment in recognizing expressions of sadness. Also consistent with the hypothesis, we found that larger volume lesions predicted impaired Stroop cognitive control. Notably, this relationship was only present when anterior mid-cingulate cortex lesion volume was defined as the overlap between cingulotomy lesion volume and Shackman's meta-analysis-derived binary masks for negative affect and cognitive control. Given substantial evidence from healthy subjects that the anterior mid-cingulate cortex is part of a network associated with the experience of negative affect and pain, engaging cognitive control processes for optimizing behaviour in the presence of such

  6. Spectral and temporal processing in rat posterior auditory cortex.

    Science.gov (United States)

    Pandya, Pritesh K; Rathbun, Daniel L; Moucha, Raluca; Engineer, Navzer D; Kilgard, Michael P

    2008-02-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex.

  7. Error Negativity Does Not Reflect Conflict: A Reappraisal of Conflict Monitoring and Anterior Cingulate Cortex Activity

    OpenAIRE

    2008-01-01

    Our ability to detect and correct errors is essential for our adaptive behavior. The conflict-loop theory states that the anterior cingulate cortex (ACC) plays a key role in detecting the need to increase control through conflict monitoring. Such monitoring is assumed to manifest itself in an electroencephalographic (EEG) component, the "error negativity" (Ne or "error-related negativity" [ERN]). We have directly tested the hypothesis that the ACC monitors conflict through simulation and expe...

  8. Functional dissociation of the left ventral occipito-temporal cortex in the direct and indirect retrieval of color features

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Jinghui Zhao; Jiongjiong Yang; Lin Ma; Sheng He; Xuchu Weng

    2009-01-01

    Previous studies suggest that the storage/retrieval of object features is related to brain regions that are involved in the processing of these features. However, it remains unclear whether, and under what conditions, retrieving information about a feature reactivates the same region that specifically supports that feature's perception. In this functional magnetic resonance imaging (fMRI) study, we com-pared brain activation in the left ventral occipito-temporal cortex during subjects performing a color perception task, and direct and indirect color retrieval tasks. After performing the color perception task to localize the regions responsible for color perception, subjects were intensively trained (outside of the scanner) to remember associations between colors and motion directions, and associations between colors and letters. Then, they were asked to perform two color retrieval tasks in the scanner, with stationary and gray scaled images as control stimuli. The results showed that the bilateral posterior occipito-temporal cortex was activated during the color percep-tion task. When color information was retrieved by direct cues (motion direction), the same bilateral oceipito-temporal region was acti-vated. When color information was retrieved indirectly (judging whether a motion direction matched a letter by their associated colors), a region anterior to the color perception region in the left ventral occipito-temporal cortex was additionally activated. Our results provided evidence for the functional dissociation in the two subregions of the ventral oecipito-temporal cortex during retrieval of color features: the posterior area might relate to perceptual features of color, while the anterior region might relate to the knowledge of associations with color.

  9. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    Science.gov (United States)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  10. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory.

    Science.gov (United States)

    Hales, J B; Brewer, J B

    2011-04-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance.

  11. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  12. The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection

    Science.gov (United States)

    Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.; Duncan, John S.

    2010-01-01

    Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy…

  13. Practice explains abolished behavioural adaptation after human dorsal anterior cingulate cortex lesions.

    Science.gov (United States)

    van Steenbergen, H; Haasnoot, E; Bocanegra, B R; Berretty, E W; Hommel, B

    2015-04-08

    The role of mid-cingulate cortex (MCC), also referred to as dorsal anterior cingulate cortex, in regulating cognitive control is a topic of primary importance in cognitive neuroscience. Although many studies have shown that MCC responds to cognitive demands, lesion studies in humans are inconclusive concerning the causal role of the MCC in the adaptation to these demands. By elegantly combining single-cell recordings with behavioural methods, Sheth et al. [Sheth, S. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218-22 (2012).] recently were able to show that neurons in MCC encode cognitive demand. Importantly, this study also claimed that focal lesions of the MCC abolished behavioural adaptation to cognitive demands. Here we show that the absence of post-cingulotomy behavioural adaptation reported in this study may have been due to practice effects. We run a control condition where we tested subjects before and after a dummy treatment, which substituted cingulotomy with a filler task (presentation of a documentary). The results revealed abolished behavioural adaptation following the dummy treatment. Our findings suggest that future work using proper experimental designs is needed to advance the understanding of the causal role of the MCC in behavioural adaptation.

  14. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  15. On the role of the anterior prefrontal cortex in cognitive 'branching': An fMRI study.

    Science.gov (United States)

    Chahine, George; Diekhof, Esther Kristina; Tinnermann, Alexandra; Gruber, Oliver

    2015-10-01

    The most anterior portion of prefrontal cortex (aPFC), more specifically Brodman Area 10 (BA10), has been implicated in 'branching operations', or the ability to perform tasks related to one goal, while keeping in working memory information related to a secondary goal. Such findings have been based on fMRI recordings under complex behavioral paradigms that compare 'branching' tasks with tasks where one goal is pursued at a time, but are limited by their complete reliance on verbal working memory and by small sample sizes. Here, we test the specificity of BA 10 to branching in similar behavioral paradigms but with a larger sample and in two different conditions involving verbal and visual working memory respectively. We find that BA 10 and other frontal and parietal brain areas are activated in all tasks, with an extent and level of significance increasing with the complexity of the task. We conclude that the activation of BA 10 is not specific to branching as previously hypothesized, but is related to the level of complexity of working memory performance. For further insight into the specific role of anterior portions of the frontal cortex we highlight the importance of simple control tasks with gradual and incremental increase in complexity.

  16. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    Directory of Open Access Journals (Sweden)

    Hiroki eNakata

    2014-12-01

    Full Text Available Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI, and neurophysiological methods, such as magnetoencephalography (MEG and electroencephalography (EEG, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation’. In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation.

  17. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  18. Structural basis of empathy and the domain general region in the anterior insular cortex

    Directory of Open Access Journals (Sweden)

    Isabella eMutschler

    2013-05-01

    Full Text Available Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises emotional and cognitive components, such as feeling and knowing what another person is feeling, and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person’s feelings and to reduce another person’s pain. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed by using a widely used and validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex determined by activation likelihood estimate (ALE meta-analysis of previous functional imaging studies. We found that gray matter density in the left dorsal anterior insular cortex correlates with empathy and that this area overlaps with the domain general region of the anterior insula that is situated in-between functional systems involved in emotion-cognition, pain and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy might play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy.

  19. Dissimilar processing of emotional facial expressions in human and monkey temporal cortex.

    Science.gov (United States)

    Zhu, Qi; Nelissen, Koen; Van den Stock, Jan; De Winter, François-Laurent; Pauwels, Karl; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2013-02-01

    Emotional facial expressions play an important role in social communication across primates. Despite major progress made in our understanding of categorical information processing such as for objects and faces, little is known, however, about how the primate brain evolved to process emotional cues. In this study, we used functional magnetic resonance imaging (fMRI) to compare the processing of emotional facial expressions between monkeys and humans. We used a 2×2×2 factorial design with species (human and monkey), expression (fear and chewing) and configuration (intact versus scrambled) as factors. At the whole brain level, neural responses to conspecific emotional expressions were anatomically confined to the superior temporal sulcus (STS) in humans. Within the human STS, we found functional subdivisions with a face-selective right posterior STS area that also responded to emotional expressions of other species and a more anterior area in the right middle STS that responded specifically to human emotions. Hence, we argue that the latter region does not show a mere emotion-dependent modulation of activity but is primarily driven by human emotional facial expressions. Conversely, in monkeys, emotional responses appeared in earlier visual cortex and outside face-selective regions in inferior temporal cortex that responded also to multiple visual categories. Within monkey IT, we also found areas that were more responsive to conspecific than to non-conspecific emotional expressions but these responses were not as specific as in human middle STS. Overall, our results indicate that human STS may have developed unique properties to deal with social cues such as emotional expressions.

  20. Progressive white matter changes following anterior temporal lobe resection for epilepsy ☆

    OpenAIRE

    Winston, Gavin P.; Jason Stretton; Sidhu, Meneka K; Symms, Mark R.; Duncan, John S.

    2013-01-01

    Anterior temporal lobe resection (ATLR) is an effective treatment for refractory temporal lobe epilepsy (TLE). Widespread abnormalities in diffusion parameters involving the ipsilateral temporal lobe white matter and extending into extratemporal white matter have been shown in cross-sectional studies in TLE. However longitudinal changes following surgery have been less well addressed. We systematically assess diffusion changes in white matter in patients with TLE in comparison to controls bef...

  1. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions.

  2. The expected value of control: an integrative theory of anterior cingulate cortex function.

    Science.gov (United States)

    Shenhav, Amitai; Botvinick, Matthew M; Cohen, Jonathan D

    2013-07-24

    The dorsal anterior cingulate cortex (dACC) has a near-ubiquitous presence in the neuroscience of cognitive control. It has been implicated in a diversity of functions, from reward processing and performance monitoring to the execution of control and action selection. Here, we propose that this diversity can be understood in terms of a single underlying function: allocation of control based on an evaluation of the expected value of control (EVC). We present a normative model of EVC that integrates three critical factors: the expected payoff from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in terms of cognitive effort. We propose that dACC integrates this information, using it to determine whether, where and how much control to allocate. We then consider how the EVC model can explain the diverse array of findings concerning dACC function.

  3. Differential contribution of right and left temporo-occipital and anterior temporal lesions to face recognition disorders

    Directory of Open Access Journals (Sweden)

    Guido eGainotti

    2011-06-01

    Full Text Available In the study of prosopagnosia, several issues (such as the specific or non-specific manifestations of prosopagnosia, the unitary or non-unitary nature of this syndrome and the mechanisms underlying face recognition disorders are still controversial. Two main sources of variance partially accounting for these controversies could be the qualitative differences between the face recognition disorders observed in patients with prevalent lesions of the right or left hemisphere and in those with lesions encroaching upon the temporo-occipital or the (right anterior temporal cortex.Results of our review seem to confirm these suggestions. Indeed, they show that (a the most specific forms of prosopagnosia are due to lesions of a right posterior network including the OFA and the FFA, whereas (b the face identification defects observed in patients with left temporo-occipital lesions seem due to a semantic defect impeding access to person-specific semantic information from the visual modality. Furthermore, face recognition defects resulting from right anterior temporal lesions can usually be considered as part of a multimodal people recognition disorder.The implications of our review are, therefore, the following: (1 to consider the components of visual agnosia often observed in prosopagnosic patients with bilateral temporo-occipital lesions as part of a semantic defect, resulting from left-sided lesions (and not from prosopagnosia proper; (2 to systematically investigate voice recognition disorders in patients with right anterior temporal lesions to determine whether the face recognition defect should be considered a form of ‘associative prosopagnosia’ or a form of the ‘multimodal people recognition disorder’.

  4. Temporal and spatial requirements for Nodal-induced anterior mesendoderm and mesoderm in anterior neurulation.

    Science.gov (United States)

    Gonsar, Ngawang; Coughlin, Alicia; Clay-Wright, Jessica A; Borg, Bethanie R; Kindt, Lexy M; Liang, Jennifer O

    2016-01-01

    Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid-late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling-deficient sqt mutant and Lefty1-overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm-derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal-induced mesendodermal/mesodermal precursors are competent to promote neurulation.

  5. Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging

    Directory of Open Access Journals (Sweden)

    Dengler Reinhard

    2009-05-01

    Full Text Available Abstract Background Pathophysiological evidence suggests an involvement of fronto-striatal circuits in Tourette syndrome (TS. To identify TS related abnormalities in gray and white matter we used optimized voxel-based morphometry (VBM and magnetization transfer imaging (MTI which are more sensitive to tissue alterations than conventional MRI and provide a quantitative measure of macrostructural integrity. Methods Volumetric high-resolution anatomical T1-weighted MRI and MTI were acquired in 19 adult, unmedicated male TS patients without co-morbidities and 20 age- and sex-matched controls on a 1.5 Tesla neuro-optimized GE scanner. Images were pre-processed and analyzed using an optimized version of VBM in SPM2. Results Using VBM, TS patients showed significant decreases in gray matter volumes in prefrontal areas, the anterior cingulate gyrus, sensorimotor areas, left caudate nucleus and left postcentral gyrus. Decreases in white matter volumes were detected in the right inferior frontal gyrus, the left superior frontal gyrus and the anterior corpus callosum. Increases were found in the left middle frontal gyrus and left sensorimotor areas. In MTI, white matter reductions were seen in the right medial frontal gyrus, the inferior frontal gyrus bilaterally and the right cingulate gyrus. Tic severity was negatively correlated with orbitofrontal structures, the right cingulate gyrus and parts of the parietal-temporal-occipital association cortex bilaterally. Conclusion Our MRI in vivo neuropathological findings using two sensitive and unbiased techniques support the hypothesis that alterations in frontostriatal circuitries underlie TS pathology. We suggest that anomalous frontal lobe association and projection fiber bundles cause disinhibition of the cingulate gyrus and abnormal basal ganglia function.

  6. Role of anterior piriform cortex in the acquisition of conditioned flavour preference.

    Science.gov (United States)

    Mediavilla, Cristina; Martin-Signes, Mar; Risco, Severiano

    2016-09-14

    Flavour aversion learning (FAL) and conditioned flavour preference (CFP) facilitate animal survival and play a major role in food selection, but the neurobiological mechanisms involved are not completely understood. Neuroanatomical bases of CFP were examined by using Fos immunohistochemistry to record neuronal activity. Rats were trained over eight alternating one-bottle sessions to acquire a CFP induced by pairing a flavour with saccharin (grape was CS+ in Group 1; cherry in Group 2; in Group 3, grape/cherry in half of animals; Group 4, grape/cherry in water). Animals were offered the grape flavour on the day immediately after the training and their brains were processed for c-Fos. Neurons evidencing Fos-like immunoreactivity were counted in the infralimbic cortex, nucleus accumbens core, and anterior piriform cortex (aPC). Analysis showed a significantly larger number of activated cells after learning in the aPC alone, suggesting that the learning process might have produced a change in this cortical region. Ibotenic lesions in the aPC blocked flavour-taste preference but did not interrupt flavour-toxin FAL by LiCl. These data suggest that aPC cells may be involved in the formation of flavour preferences and that the integrity of this region may be specifically necessary for the acquisition of a CFP.

  7. Evidence for loss of synaptic AMPA receptors in anterior piriform cortex of aged mice.

    Science.gov (United States)

    Gocel, James; Larson, John

    2013-01-01

    It has been suggested that age-related impairments in learning and memory may be due to age-related deficits in long-term potentiation of glutamatergic synaptic transmission. For example, olfactory discrimination learning is significantly affected by aging in mice and this may be due, in part, to diminished synaptic plasticity in piriform cortex. In the present study, we tested for alterations in electrophysiological properties and synaptic transmission in this simple cortical network. Whole-cell recordings were made from principal neurons in slices of anterior piriform cortex from young (3-6 months old) and old (24-28 months) C57Bl/6 mice. Miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were collected from cells in presence of tetrodotoxin (TTX) and held at -80 mV in voltage-clamp. Amplitudes of mEPSCs were significantly reduced in aged mice, suggesting that synaptic AMPA receptor expression is decreased during aging. In a second set of experiments, spontaneous excitatory postsynaptic currents (s/mEPSCs) were recorded in slices from different cohorts of young and old mice, in the absence of TTX. These currents resembled mEPSCs and were similarly reduced in amplitude in old mice. The results represent the first electrophysiological evidence for age-related declines in glutamatergic synaptic function in the mammalian olfactory system.

  8. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WANG Ya-rong; QIN Wei; YUAN Kai; TIAN Jie; LI Qiang; YANG Lan-ying; LU Lin; GUO You-min

    2010-01-01

    Background Previous studies with animal experiments, autopsy, structural magnetic resonance imaging (MRI) and task-related functional MRI (fMRI) have confirmed that brain functional connectivity in addicts has become impaired. The goal of this study was to investigate the alteration of resting-state functional connectivity of the ventral anterior cingulate cortex (vACC) in the heroin abusers' brain.Methods Fifteen heroin abusers and fifteen matched healthy volunteers were studied using vACC as the region-of interest (ROI) seed. A 3.0 T scanner with a standard head coil was the imagining apparatus. T2*-weighted gradient-echo planar imaging (GRE-EPI) was the scanning protocol. A ROI seed based correlation analysis used a SPM5 software package as the tool for all images processing.Results This study showed a functional connection to the insula vACC in heroin abusers. Compared with controls,heroin users showed decreased functional connectivity between the nucleus accumbens (NAc) and vACC, between the parahippocampala gyrus/amgdala (PHC/amygdala) and vACC, between the thalamus and vACC, and between the posterior cingulated cortex/precuneus (PCC/pC) and vACC.Conclusion The altered resting-state functional connectivity to the vACC suggests the neural circuitry on which the addictive drug has an affect and reflects the dysfunction of the addictive brain.

  9. Decreased expression of axon-guidance receptors in the anterior cingulate cortex in autism

    Directory of Open Access Journals (Sweden)

    Suda Shiro

    2011-08-01

    Full Text Available Abstract Background Axon-guidance proteins play a crucial role in brain development. As the dysfunction of axon-guidance signaling is thought to underlie the microstructural abnormalities of the brain in people with autism, we examined the postmortem brains of people with autism to identify any changes in the expression of axon-guidance proteins. Results The mRNA and protein expression of axon-guidance proteins, including ephrin (EFNA4, eEFNB3, plexin (PLXNA4, roundabout 2 (ROBO2 and ROBO3, were examined in the anterior cingulate cortex and primary motor cortex of autistic brains (n = 8 and n = 7, respectively and control brains (n = 13 and n = 8, respectively using real-time reverse-transcriptase PCR (RT-PCR and western blotting. Real-time RT-PCR revealed that the relative expression levels of EFNB3, PLXNA4A and ROBO2 were significantly lower in the autistic group than in the control group. The protein levels of these three genes were further analyzed by western blotting, which showed that the immunoreactive values for PLXNA4 and ROBO2, but not for EFNB3, were significantly reduced in the ACC of the autistic brains compared with control brains. Conclusions In this study, we found decreased expression of axon-guidance proteins such as PLXNA4 and ROBO2 in the brains of people with autism, and suggest that dysfunctional axon-guidance protein expression may play an important role in the pathophysiology of autism.

  10. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    Science.gov (United States)

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders.

  11. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  12. Projections from Orbitofrontal Cortex to Anterior Piriform Cortex in the Rat Suggest a Role in Olfactory Information Processing

    OpenAIRE

    ILLIG, KURT R.

    2005-01-01

    The orbitofrontal cortex (OFC) has been characterized as a higher-order, multimodal sensory cortex. Evidence from electrophysiological and behavioral studies in the rat has suggested that OFC plays a role in modulating olfactory guided behavior, and a significant projection to OFC arises from piriform cortex, the traditional primary olfactory cortex. To discern how OFC interacts with primary olfactory structures, the anterograde tracer Phaseolus vulgaris leucoagglutinin was injected into orbi...

  13. Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism.

    Science.gov (United States)

    Zahn, Roland; Moll, Jorge; Iyengar, Vijeth; Huey, Edward D; Tierney, Michael; Krueger, Frank; Grafman, Jordan

    2009-03-01

    Inappropriate social behaviours are early and distinctive symptoms of the temporal and frontal variants of frontotemporal lobar degeneration (FTLD). Knowledge of social behaviour is essential for appropriate social conduct. It is unknown, however, in what way this knowledge is degraded in FTLD. In a recent functional MRI study, we have identified a right-lateralized superior anterior temporal lobe (aTL) region showing selective activation for 'social concepts' (i.e. concepts describing social behaviour: e.g. 'polite', 'stingy') as compared with concepts describing less socially relevant animal behaviour ('animal function concepts': e.g. 'trainable', 'nutritious'). In a further fMRI study, superior aTL activation was independent of the context of actions and feelings associated with these social concepts. Here, we investigated whether the right superior sector of the aTL is necessary for context-independent knowledge of social concepts. We assessed neuronal glucose uptake using 18-fluoro-deoxy-glucose-positron emission tomography (FDG-PET) and a novel semantic discrimination task which probed knowledge of social and animal function concepts in patients with FTLD (n = 29) and corticobasal syndrome (n = 18). FTLD and corticobasal syndrome groups performed equally poorly on animal function concepts but FTLD patients showed more pronounced impairments on social concepts than corticobasal syndrome patients. FTLD patients with right superior aTL hypometabolism, as determined on individual ROI analyses, were significantly more impaired on social concepts than on animal function concepts. FTLD patients with selective impairments for social concepts, as determined on individual neuropsychological profiles, showed higher levels of inappropriate social behaviours ('disinhibition') and demonstrated more pronounced hypometabolism in the right superior aTL, the left temporal pole and the right lateral orbitofrontal and dorsomedial prefrontal cortex as compared with FTLD patients

  14. The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex.

    Science.gov (United States)

    Taubert, Jessica; Goffaux, Valerie; Van Belle, Goedele; Vanduffel, Wim; Vogels, Rufin

    2016-02-16

    Faces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g. changes in size) but not others (e.g. picture-plane rotation). By filtering face stimuli for orientation content, studies of human behavior and brain responses have shown that face processing is tuned to selective orientation ranges. In the present study, for the first time, we recorded the responses of face-selective neurons in monkey inferior temporal (IT) cortex to intact and scrambled faces that were filtered to selectively preserve horizontal or vertical information. Guided by functional maps, we recorded neurons in the lateral middle patch (ML), the lateral anterior patch (AL), and an additional region located outside of the functionally defined face-patches (CONTROL). We found that neurons in ML preferred horizontal-passed faces over their vertical-passed counterparts. Neurons in AL, however, had a preference for vertical-passed faces, while neurons in CONTROL had no systematic preference. Importantly, orientation filtering did not modulate the firing rate of neurons to phase-scrambled face stimuli in any recording region. Together these results suggest that face-selective neurons found in the face-selective patches are differentially tuned to orientation content, with horizontal tuning in area ML and vertical tuning in area AL.

  15. Memory fMRI predicts verbal memory decline after anterior temporal lobe resection

    OpenAIRE

    Sidhu, Meneka K; Stretton, Jason; Winston, Gavin P.; Symms, Mark; Thompson, Pamela J; Koepp, Matthias J; Duncan, John S.

    2015-01-01

    Objective: To develop a clinically applicable memory functional MRI (fMRI) method of predicting postsurgical memory outcome in individual patients. Methods: In this prospective cohort study, 50 patients with temporal lobe epilepsy (23 left) and 26 controls underwent an fMRI memory encoding paradigm of words with a subsequent out-of-scanner recognition assessment. Neuropsychological assessment was performed preoperatively and 4 months after anterior temporal lobe resection, and at equal time i...

  16. Motion verb sentences activate left posterior middle temporal cortex despite static context

    DEFF Research Database (Denmark)

    Wallentin, M; Ellegaard Lund, Torben; Østergaard, Svend;

    2005-01-01

    The left posterior middle temporal region, anterior to V5/MT, has been shown to be responsive both to images with implied motion, to simulated motion, and to motion verbs. In this study, we investigated whether sentence context alters the response of the left posterior middle temporal region. 'Fi...

  17. Selective Familiarity Deficits after Left Anterior Temporal-Lobe Removal with Hippocampal Sparing Are Material Specific

    Science.gov (United States)

    Martin, Chris B.; Bowles, Ben; Mirsattari, Seyed M.; Kohler, Stefan

    2011-01-01

    Research has firmly established a link between recognition memory and the functional integrity of the medial temporal lobes (MTL). Dual-process models of MTL organization maintain that there is a division of labour within the MTL, with the hippocampus (HC) supporting recollective processes and perirhinal cortex (PRc) supporting familiarity…

  18. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior

    Directory of Open Access Journals (Sweden)

    Avisa eAsemi

    2015-06-01

    Full Text Available Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC’s role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of fMRI BOLD signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA was compared to that between the dACC and Primary Motor Cortex (M1. The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior.

  19. Matching of feedback inhibition with excitation ensures fidelity of information flow in the anterior piriform cortex.

    Science.gov (United States)

    Sheridan, D C; Hughes, A R; Erdélyi, F; Szabó, G; Hentges, S T; Schoppa, N E

    2014-09-05

    Odor-evoked responses in mitral cells of the olfactory bulb are characterized by prolonged patterns of action potential (spike) activity. If downstream neurons are to respond to each spike in these patterns, the duration of the excitatory response to one spike should be limited, enabling cells to respond to subsequent spikes. To test for such mechanisms, we performed patch-clamp recordings in slices of the mouse anterior piriform cortex. Mitral cell axons in the lateral olfactory tract (LOT) were stimulated electrically at different intensities and with various frequency patterns to mimic changing input conditions that the piriform cortex likely encounters in vivo. We found with cell-attached measurements that superficial pyramidal (SP) cells in layer 2 consistently responded to LOT stimulation across conditions with a limited number (1-2) of spikes per stimulus pulse. The key synaptic feature accounting for the limited spike number appeared to be somatic inhibition derived from layer 3 fast-spiking cells. This inhibition tracked the timing of the first spike in SP cells across conditions, which naturally limited the spike number to 1-2. These response features to LOT stimulation were, moreover, not unique to SP cells, also occurring in a population of fluorescently labeled interneurons in glutamic acid decarboxylase 65-eGFP mice. That these different cortical cells respond to incoming inputs with 1-2 spikes per stimulus may be especially critical for relaying bulbar information contained in synchronized oscillations at beta (15-30Hz) or gamma (30-80Hz) frequencies.

  20. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  1. Spectro-Temporal Methods in Primary Auditory Cortex

    Science.gov (United States)

    2006-01-01

    LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 25 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE... Funcion Spike-triggered averaging of the spectro-temporal envelope directly gives a similar spectro-temporal response field to the spike- triggered

  2. Activation of mu opioid receptor inhibits the excitatory glutamatergic transmission in the anterior cingulate cortex of the rats with peripheral inflammation.

    Science.gov (United States)

    Zheng, Weihong

    2010-02-25

    Emerging evidence recently indicates that the anterior cingulate cortex is critically involved in the central processing and modulation of noxious stimulus, although the neuroadaptation in the anterior cingulate cortex has not been well documented in the conditions of chronic pain. Meanwhile, the cellular mechanism underlying opiate analgesia in the anterior cingulate cortex remains unclear. To address these issues, the present study was undertaken to explore the adaptation of excitatory glutamatergic transmission and mu opioid receptor-mediated modulation of glutamatergic transmission in the anterior cingulate cortex slices from the complete Freund's adjuvant (CFA)-inflamed rats. The results demonstrated that glutamatergic paired-pulse facilitation was decreased in the anterior cingulate cortex neurons from the CFA-inflamed rats, indicating an enhanced presynaptic glutamate release. In addition, activation of mu opioid receptor significantly inhibited the glutamatergic excitatory postsynaptic currents (EPSCs) in the anterior cingulate cortex neurons, which was attained through the suppression of presynaptic glutamate release. Taken together, these findings provided the evidence for the functional adaptation of central glutamatergic transmission induced by peripheral inflammation, and elucidated the cellular mechanism underlying opiate analgesia in the anterior cingulate cortex.

  3. Anomia for people's names after left anterior temporal lobe resection--case report.

    Science.gov (United States)

    Kurimoto, Masanori; Takaiwa, Akiko; Nagai, Shoichi; Hayashi, Nakamasa; Endo, Shunro

    2010-01-01

    A 47-year-old man was admitted to our hospital with an intrinsic brain tumor in the left anterior temporal lobe. Preoperative sodium thiopental test demonstrated left hemispheric dominance. Awake craniotomy was performed for dominant-hemispheric tumor resection using language mapping to identify the stimulation-induced positive language area. The tasks of object naming and repetition were used, along with specific tests for famous people's names. The language area was detected on the superior temporal gyrus and preserved. Following surgery, this patient was unable to retrieve the names of famous individuals (i.e. anomia for people's name) despite preservation of semantic knowledge for those individuals. This anomia for people's names showed no improvement at all for a period of 15 months. This case report and other sporadic cases with this type of deficit reveal the left anterior temporal lobe is an important brain area for retrieving people's names.

  4. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Science.gov (United States)

    Xie, Kun; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  5. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  6. Response Patterns of GABAergic Neurons in the Anterior Piriform Cortex of Awake Mice.

    Science.gov (United States)

    Hu, Rongfeng; Zhang, Juen; Luo, Minmin; Hu, Ji

    2016-06-01

    Local inhibition by γ-amino butyric acid (GABA)-containing neurons is of vital importance for the operation of sensory cortices. However, the physiological response patterns of cortical GABAergic neurons are poorly understood, especially in the awake condition. Here, we utilized the recently developed optical tagging technique to specifically record GABAergic neurons in the anterior piriform cortex (aPC) in awake mice. The identified aPC GABAergic neurons were stimulated with robotic delivery of 32 distinct odorants, which covered a broad range of functional groups. We found that aPC GABAergic neurons could be divided into 4 types based on their response patterns. Type I, type II, and type III neurons displayed broad excitatory responses to test odorants with different dynamics. Type I neurons were constantly activated during odorant stimulation, whereas type II neurons were only transiently activated at the onset of odorant delivery. In addition, type III neurons displayed transient excitatory responses both at the onset and termination of odorant presentation. Interestingly, type IV neurons were broadly inhibited by most of the odorants. Taken together, aPC GABAergic neurons adopt different strategies to affect the cortical circuitry. Our results will allow for better understanding of the role of cortical GABAergic interneurons in sensory information processing.

  7. Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa

    Science.gov (United States)

    Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan

    2017-01-01

    Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813

  8. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity.

    Science.gov (United States)

    Sturm, Virginia E; Sollberger, Marc; Seeley, William W; Rankin, Katherine P; Ascher, Elizabeth A; Rosen, Howard J; Miller, Bruce L; Levenson, Robert W

    2013-04-01

    Self-conscious emotions such as embarrassment arise when one's actions fail to meet salient social expectations and are accompanied by marked physiological and behavioral activation. We investigated the neural correlates of self-conscious emotional reactivity in 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that disrupts self-conscious emotion and targets brain regions critical for emotional functioning early in the disease course, and in 33 healthy older controls. Subjects participated in an embarrassing karaoke task in which they watched a video clip of themselves singing. They also watched a sad film clip; these data were used to control for non-self-conscious emotional reactivity in response to audiovisual stimuli. Using Freesurfer to quantify regional brain volumes from structural magnetic resonance imaging, right pregenual anterior cingulate cortex (pACC) gray matter volume was the only brain region that was a significant predictor of self-conscious emotion. Smaller pACC volume was associated with attenuated physiological and behavioral self-conscious emotional reactivity, and this relationship was not specific to diagnosis. We argue that these results reflect the significant role that right pACC plays in the visceromotor responding that accompanies self-conscious emotion and that neurodegeneration in this region may underlie the self-conscious emotional decline seen in bvFTD.

  9. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  10. Upregulation of glutamatergic transmission in anterior cingulate cortex in the diabetic rats with neuropathic pain.

    Science.gov (United States)

    Li, Weifang; Wang, Peng; Li, Hua

    2014-05-07

    Peripheral neuropathic pain is a common complication in the diabetic patients, and the underlying central mechanism remains unclear. Forebrain anterior cingulate cortex (ACC) is critically involved in the supraspinal perception of physical and affective components of noxious stimulus and pain modulation. Excitatory glutamatergic transmission in the ACC extensively contributed to the maintenance of negative affective component of chronic pain. The present study examined the adaptation of glutamatergic transmission in the ACC in rats with diabetic neuropathic pain. Injection with streptozotocin (STZ) induced hyperglycemia, thermal hyperalgesia and mechanical allodynia in the rats. In these rats, significant enhanced basal glutamatergic transmission was observed in the ACC neurons. The increased presynaptic glutamate release and enhanced conductance of postsynaptic glutamate receptors were also observed in the ACC neurons of these modeled rats. Increased phosphorylation of PKMζ, but not the expression of total PKMζ, was also observed in the ACC. Microinjection of PKMζ inhibitor ZIP into ACC attenuated the upregulation of glutamate transmission and painful behaviors in STZ-injected rats. These results revealed a substantial central sensitization in the ACC neurons in the rodents with diabetic neuropathic pain, which may partially underlie the negative affective components of patients with diabetic neuropathic pain.

  11. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  12. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  13. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  14. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    Science.gov (United States)

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic

  15. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  16. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    Science.gov (United States)

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  17. The 'when' and 'where' of semantic coding in the anterior temporal lobe: Temporal representational similarity analysis of electrocorticogram data.

    Science.gov (United States)

    Chen, Y; Shimotake, A; Matsumoto, R; Kunieda, T; Kikuchi, T; Miyamoto, S; Fukuyama, H; Takahashi, R; Ikeda, A; Lambon Ralph, M A

    2016-06-01

    Electrocorticograms (ECoG) provide a unique opportunity to monitor neural activity directly at the cortical surface. Ten patients with subdural electrodes covering ventral and lateral anterior temporal regions (ATL) performed a picture naming task. Temporal representational similarity analysis (RSA) was used, for the first time, to compare spatio-temporal neural patterns from the ATL surface with pre-defined theoretical models. The results indicate that the neural activity in the ventral subregion of the ATL codes semantic representations from 250 msec after picture onset. The observed activation similarity was not related to the visual similarity of the pictures or the phonological similarity of their names. In keeping with convergent evidence for the importance of the ATL in semantic processing, these results provide the first direct evidence of semantic coding from the surface of the ventral ATL and its time-course.

  18. Anterior cingulate cortex mediates the relationship between O3PUFAs and executive functions in APOE e4 carriers

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2015-05-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between biomarkers of diet and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between omega-3 polyunsaturated fatty acids (O3PUFAs and executive functions in at-risk (APOE e4 carriers, cognitively intact older adults. We hypothesized that higher levels of O3PUFAs are associated with better performance in a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter volume of a specific region thought to be important for cognitive flexibility, the anterior cingulate cortex. Methods: We examined 40 cognitively intact adults between the ages of 65 and 75 with the APOE e4 polymorphism to investigate the relationship between biomarkers of O3PUFAs, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter volume within regions of the prefrontal cortex. Results: A mediation analysis revealed that gray matter volume within the left rostral anterior cingulate cortex partially mediates the relationship between O3PUFA biomarkers and cognitive flexibility. Conclusion: These results suggest that the anterior cingulate cortex acts as a mediator of the relationship between O3PUFAs and cognitive flexibility in cognitively intact adults thought to be at risk for cognitive decline. Through their link to executive functions and neuronal measures of prefrontal cortex volume, O3PUFAs show potential as a nutritional therapy to prevent dysfunction in the aging brain.

  19. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  20. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex.

    Science.gov (United States)

    Blom, Sigrid Marie; Pfister, Jean-Pascal; Santello, Mirko; Senn, Walter; Nevian, Thomas

    2014-04-23

    Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.

  1. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP.

    Directory of Open Access Journals (Sweden)

    Sebastian J Lehmann

    Full Text Available The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013, and in particular in the anterior intraparietal cortex (AIP. To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta how different frequency bands of the local field potential (LFP in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively. Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  2. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP).

    Science.gov (United States)

    Lehmann, Sebastian J; Scherberger, Hansjörg

    2015-01-01

    The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand) has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013), and in particular in the anterior intraparietal cortex (AIP). To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta) how different frequency bands of the local field potential (LFP) in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively). Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach) information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  3. Thicker temporal cortex associates with a developmental trajectory for psychopathic traits in adolescents.

    Directory of Open Access Journals (Sweden)

    Yaling Yang

    Full Text Available Psychopathy is a clinical condition characterized by a failure in normal social interaction and morality. Recent studies have begun to reveal brain structural abnormalities associated with psychopathic tendencies in children. However, little is known about whether variations in brain morphology are linked to the developmental trajectory of psychopathic traits over time. In this study, structural magnetic resonance imaging (sMRI data from 108 14-year-old adolescents with no history of substance abuse (54 males and 54 females were examined to detect cortical thickness variations associated with psychopathic traits and individual rates of change in psychopathic traits from ages 9 to 18. We found cortical thickness abnormalities to correlate with psychopathic traits both cross-sectionally and longitudinally. Specifically, at age 14, higher psychopathic scores were correlated with thinner cortex in the middle frontal gyrus, particularly in females, and thicker cortex in the superior temporal gyrus, middle temporal gyrus, and parahippocampal gyrus, particularly in males. Longitudinally, individual rates of change in psychopathic tendency over time were correlated with thicker cortex in the superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, and posterior cingulate gyrus, particularly in males. Findings suggest that abnormal cortical thickness may reflect a delay in brain maturation, resulting in disturbances in frontal and temporal functioning such as impulsivity, sensation-seeking, and emotional dysregulation in adolescents. Thus, findings provide initial evidence supporting that abnormal cortical thickness may serve as a biomarker for the development of psychopathic propensity in adolescents.

  4. Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes

    Directory of Open Access Journals (Sweden)

    Lars A Ross

    2011-10-01

    Full Text Available Evidence from neuroimaging and neuropsychology suggests that portions of the anterior temporal lobes play a critical role in proper name retrieval. We previously found that anodal transcranial direct current stimulation (tDCS to the anterior temporal lobes improved retrieval of proper names in young adult. Here we extend that finding to older adults who tend to experience greater proper-naming deficits than young adults. The task was to look at pictures of famous faces or landmarks and verbally recall the associated proper name. Our results show a numerical improvement in face naming after left or right anterior temporal lobe stimulation, but a statistically significant effect only after left-lateralized stimulation. The magnitude of the enhancing effect was similar in older and younger adults but the lateralization of the effect differed depending on age. These results provide evidence that tDCS may be a useful tool for the neurorehabilitation of cognitive function in healthy and pathological cognitive decline.

  5. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    Science.gov (United States)

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation.

  6. Distributed Processing and Cortical Specialization for Speech and Environmental Sounds in Human Temporal Cortex

    Science.gov (United States)

    Leech, Robert; Saygin, Ayse Pinar

    2011-01-01

    Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially distributed neural system. We found that evidence for spatially distributed processing of speech and environmental sounds in a substantial…

  7. Auditory evoked fields elicited by spectral, temporal, and spectral-temporal changes in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Hidehiko eOkamoto

    2012-05-01

    Full Text Available Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral-temporal sound changes by means of magnetoencephalography (MEG. The auditory evoked responses elicited by the spectral-temporal change were very similar to those elicited by the spectral change, but those elicited by the temporal change were delayed by 30 – 50 ms and differed from the others in morphology. The results suggest that human brain responses corresponding to spectral sound changes precede those corresponding to temporal sound changes, even when the spectral and temporal changes occur simultaneously.

  8. On the definition and interpretation of voice selective activation in the temporal cortex

    Directory of Open Access Journals (Sweden)

    Anja eBethmann

    2014-07-01

    Full Text Available Regions along the superior temporal sulci and in the anterior temporal lobes have been found to be involved in voice processing. It has even been argued that parts of the temporal cortices serve as voice-selective areas. Yet, evidence for voice-selective activation in the strict sense is still missing. The current fMRI study aimed at assessing the degree of voice-specific processing in different parts of the superior and middle temporal cortices. To this end, voices of famous persons were contrasted with widely different categories, which were sounds of animals and musical instruments. The argumentation was that only brain regions with statistically proven absence of activation by the control stimuli may be considered as candidates for voice-selective areas. Neural activity was found to be stronger in response to human voices in all analyzed parts of the temporal lobes except for the middle and posterior STG. More importantly, the activation differences between voices and the other environmental sounds increased continuously from the mid-posterior STG to the anterior MTG. Here, only voices but not the control stimuli excited an increase of the BOLD response above a resting baseline level. The findings are discussed with reference to the function of the anterior temporal lobes in person recognition and the general question on how to define selectivity of brain regions for a specific class of stimuli or tasks. In addition, our results corroborate recent assumptions about the hierarchical organization of auditory processing building on a processing stream from the primary auditory cortices to anterior portions of the temporal lobes.

  9. Involvement of the superior temporal cortex and the occipital cortex in spatial hearing: evidence from repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Lewald, Jörg; Meister, Ingo G; Weidemann, Jürgen; Töpper, Rudolf

    2004-06-01

    The processing of auditory spatial information in cortical areas of the human brain outside of the primary auditory cortex remains poorly understood. Here we investigated the role of the superior temporal gyrus (STG) and the occipital cortex (OC) in spatial hearing using repetitive transcranial magnetic stimulation (rTMS). The right STG is known to be of crucial importance for visual spatial awareness, and has been suggested to be involved in auditory spatial perception. We found that rTMS of the right STG induced a systematic error in the perception of interaural time differences (a primary cue for sound localization in the azimuthal plane). This is in accordance with the recent view, based on both neurophysiological data obtained in monkeys and human neuroimaging studies, that information on sound location is processed within a dorsolateral "where" stream including the caudal STG. A similar, but opposite, auditory shift was obtained after rTMS of secondary visual areas of the right OC. Processing of auditory information in the OC has previously been shown to exist only in blind persons. Thus, the latter finding provides the first evidence of an involvement of the visual cortex in spatial hearing in sighted human subjects, and suggests a close interconnection of the neural representation of auditory and visual space. Because rTMS induced systematic shifts in auditory lateralization, but not a general deterioration, we propose that rTMS of STG or OC specifically affected neuronal circuits transforming auditory spatial coordinates in order to maintain alignment with vision.

  10. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.

    Science.gov (United States)

    Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P

    2012-01-01

    The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits.

  11. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex.

    Science.gov (United States)

    Weiner, Kevin S; Golarai, Golijeh; Caspers, Julian; Chuapoco, Miguel R; Mohlberg, Hartmut; Zilles, Karl; Amunts, Katrin; Grill-Spector, Kalanit

    2014-01-01

    Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7-40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitectonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain.

  12. Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat

    Science.gov (United States)

    Shiba, Yoshiro; Kim, Charissa; Santangelo, Andrea M.; Roberts, Angela C.

    2015-01-01

    The ventral prefrontal cortex is an integral part of the neural circuitry that is dysregulated in mood and anxiety disorders. However, the contribution of its distinct sub-regions to the regulation of negative emotion are poorly understood. Recently we implicated both the ventrolateral prefrontal cortex (vlPFC) and anterior orbitofrontal cortex (antOFC) in the regulation of conditioned fear and anxiety responses to a social stimulus, i.e., human intruder, in the marmoset monkey. In the present study we extend our investigations to determine the role of these two regions in regulating innate responses and coping strategies to a predator stimulus, i.e., a model snake. Both the vlPFC and antOFC lesioned groups exhibited enhanced anxiety-related responses to the snake in comparison to controls. Both groups also showed a reduction in active coping behavior. These results indicate that the vlPFC and antOFC contribute independently to the regulation of both innate fear and, as previously reported, conditioned fear, and highlight the importance of these regions in producing stimulus-appropriate coping responses. The finding that dysregulation in two distinct prefrontal regions produces the apparently similar behavioral phenotype of heightened negative emotion provides insight into the varied etiology that may underlie this symptom across a wide variety of neuropsychiatric conditions with implications for personalized treatment strategies. PMID:25653599

  13. CLINICAL OBSERVATION ON APOPLEXY TREATED BY TRANSVERSE ACUPUNCTURE OF ANTERIOR OBLIQUE LINE OF VERTEX-TEMPORAL

    Institute of Scientific and Technical Information of China (English)

    睢明河; 张兆发

    2000-01-01

    72 cases of apoplexy were randomly divided into two groups: group A (40 cases)and group B (32 cases). In group A, we used transverse acupuncture of anterior-obligue line of vertextemporal plus acupuncture of commonly-used body acupoints for apoplexy. After 30 times of treatments, the results were as follows: In group A, basic recovery rate was 20%, marked improvement rate was 50%. In growp B, basic recovery rate was 9.4%, marked improvement rate was 25%. The total therapeutic effect in group A was better than that in group B. This indicated: Transverse acupuncture of anterior-oblique line of vertex-temporal has definite therapeutic effect for apoplexy and has better therapeutic effect than acupuncture along the line.

  14. Altered temporal dynamics of neural adaptation in the aging human auditory cortex.

    Science.gov (United States)

    Herrmann, Björn; Henry, Molly J; Johnsrude, Ingrid S; Obleser, Jonas

    2016-09-01

    Neural response adaptation plays an important role in perception and cognition. Here, we used electroencephalography to investigate how aging affects the temporal dynamics of neural adaptation in human auditory cortex. Younger (18-31 years) and older (51-70 years) normal hearing adults listened to tone sequences with varying onset-to-onset intervals. Our results show long-lasting neural adaptation such that the response to a particular tone is a nonlinear function of the extended temporal history of sound events. Most important, aging is associated with multiple changes in auditory cortex; older adults exhibit larger and less variable response magnitudes, a larger dynamic response range, and a reduced sensitivity to temporal context. Computational modeling suggests that reduced adaptation recovery times underlie these changes in the aging auditory cortex and that the extended temporal stimulation has less influence on the neural response to the current sound in older compared with younger individuals. Our human electroencephalography results critically narrow the gap to animal electrophysiology work suggesting a compensatory release from cortical inhibition accompanying hearing loss and aging.

  15. Multiple Stability of a Sparsely Encoded Attractor Neural Network Model for the Inferior Temporal Cortex

    Science.gov (United States)

    Kimoto, Tomoyuki; Uezu, Tatsuya; Okada, Masato

    2008-12-01

    We study a neural network model for the inferior temporal cortex, in terms of finite memory loading and sparse coding. We show that an uncorrelated Hopfield-type attractor and some correlated attractors have multiple stability, and examine the retrieval dynamics for these attractors when the initial state is set to a noise-degraded memory pattern. Then, we show that there is a critical initial overlap: that is, the system converges to the correlated attractor when the noise level is large, and otherwise to the Hopfield-type attractor. Furthermore, we study the time course of the correlation between the correlated attractors in the retrieval dynamics. On the basis of these theoretical results, we resolve the controversy regarding previous physiologic experimental findings regarding neuron properties in the inferior temporal cortex and propose a new experimental paradigm.

  16. The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex

    OpenAIRE

    Jessica Taubert; Valerie Goffaux; Goedele Van Belle; Wim Vanduffel; Rufin Vogels

    2016-01-01

    Faces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g. changes in size) but not others (e.g. picture-plane rotation). By filtering face stimuli for orientation content, studies of human behavior and brain responses have shown that face processing is tuned to selective orientation ranges. In the present study, for the first time, we recorded the responses of face-selective neurons in monkey inferior temporal (IT) cortex to intact and scr...

  17. Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring.

    Science.gov (United States)

    Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang

    2016-06-01

    Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.

  18. The Impact of Density and Ratio on Object-Ensemble Representation in Human Anterior-Medial Ventral Visual Cortex.

    Science.gov (United States)

    Cant, Jonathan S; Xu, Yaoda

    2015-11-01

    Behavioral research has demonstrated that observers can extract summary statistics from ensembles of multiple objects. We recently showed that a region of anterior-medial ventral visual cortex, overlapping largely with the scene-sensitive parahippocampal place area (PPA), participates in object-ensemble representation. Here we investigated the encoding of ensemble density in this brain region using fMRI-adaptation. In Experiment 1, we varied density by changing the spacing between objects and found no sensitivity in PPA to such density changes. Thus, density may not be encoded in PPA, possibly because object spacing is not perceived as an intrinsic ensemble property. In Experiment 2, we varied relative density by changing the ratio of 2 types of objects comprising an ensemble, and observed significant sensitivity in PPA to such ratio change. Although colorful ensembles were shown in Experiment 2, Experiment 3 demonstrated that sensitivity to object ratio change was not driven mainly by a change in the ratio of colors. Thus, while anterior-medial ventral visual cortex is insensitive to density (object spacing) changes, it does code relative density (object ratio) within an ensemble. Object-ensemble processing in this region may thus depend on high-level visual information, such as object ratio, rather than low-level information, such as spacing/spatial frequency.

  19. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory.

    Science.gov (United States)

    Corcoran, Kevin A; Frick, Brendan J; Radulovic, Jelena; Kay, Leslie M

    2016-01-01

    Memory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction. Specifically, exposure to a novel context and retrieval of recently acquired fear conditioning memory were associated with increased theta coherence between RSC and all three other structures. In contrast, RSC-DH and RSC-ADT theta coherence were decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote memory. Greater RSC-ADT theta and gamma coherence were observed during recent, compared to remote, extinction of freezing responses. Thus, the degree of coherence between RSC and connected brain areas may predict and contribute to context memory retrieval and retrieval-related phenomena such as fear extinction. Importantly, although theta coherence in this circuit increases during memory encoding and retrieval of recent memory, failure to decrease RSC-DH theta coherence might be linked to retrieval deficit in the long term, and possibly contribute to aberrant memory processing characteristic of neuropsychiatric disorders.

  20. Large anterior temporal Virchow-Robin spaces: unique MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Anthony T. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Chandra, Ronil V. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia); Trost, Nicholas M. [St Vincent' s Hospital, Neuroradiology Service, Melbourne (Australia); McKelvie, Penelope A. [St Vincent' s Hospital, Anatomical Pathology, Melbourne (Australia); Stuckey, Stephen L. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia)

    2015-05-01

    Large Virchow-Robin (VR) spaces may mimic cystic tumor. The anterior temporal subcortical white matter is a recently described preferential location, with only 18 reported cases. Our aim was to identify unique MR features that could increase prospective diagnostic confidence. Thirty-nine cases were identified between November 2003 and February 2014. Demographic, clinical data and the initial radiological report were retrospectively reviewed. Two neuroradiologists reviewed all MR imaging; a neuropathologist reviewed histological data. Median age was 58 years (range 24-86 years); the majority (69 %) was female. There were no clinical symptoms that could be directly referable to the lesion. Two thirds were considered to be VR spaces on the initial radiological report. Mean maximal size was 9 mm (range 5-17 mm); majority (79 %) had perilesional T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensity. The following were identified as potential unique MR features: focal cortical distortion by an adjacent branch of the middle cerebral artery (92 %), smaller adjacent VR spaces (26 %), and a contiguous cerebrospinal fluid (CSF) intensity tract (21 %). Surgery was performed in three asymptomatic patients; histopathology confirmed VR spaces. Unique MR features were retrospectively identified in all three patients. Large anterior temporal lobe VR spaces commonly demonstrate perilesional T2 or FLAIR signal and can be misdiagnosed as cystic tumor. Potential unique MR features that could increase prospective diagnostic confidence include focal cortical distortion by an adjacent branch of the middle cerebral artery, smaller adjacent VR spaces, and a contiguous CSF intensity tract. (orig.)

  1. Anterior temporal white matter lesions in myotonic dystrophy with intellectual impairment: an MRI and neuropathological study

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, A.; Tashiro, K. [Department of Neurology, Hokkaido University School of Medicine, North-14, West-5, Kita-ku, Sapporo 060 (Japan); Terae, S. [Department of Radiology, Hokkaido University School of Medicine, Sapporo (Japan); Fujita, M. [Department of Pathology, Hokkaido University School of Medicine, Sapporo (Japan)

    1998-07-01

    We studied 12 patients with myotonic dystrophy using MRI and the Mini-mental state examination (MMSE), to see it specific MRI findings were associated with intellectual impairment. We also compared them with the neuropathological findings in an autopsy case of MD with intellectual impairment. Mild intellectual impairment was found in 8 of the 12 patients. On T 2-weighted and proton density-weighted images, high-intensity areas were seen in cerebral white matter in 10 of the 12 patients. In seven of these, anterior temporal white-matter lesions (ATWML) were found; all seven had mild intellectual impairment (MMSE 22-26), whereas none of the four patients with normal mentation had ATWML. In only one of the eight patients with intellectual impairment were white-matter lesions not found. Pathological findings were severe loss and disordered arrangement of myelin sheaths and axons in addition to heterotopic neurons within anterior temporal white matter. Bilateral ATWML might be a factor for intellectual impairment in MD. The retrospective pathological study raised the possibility that the ATWML are compatible with focal dysplasia of white matter. (orig.) With 4 figs., 1 tab., 21 refs.

  2. Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval.

    Science.gov (United States)

    Foster, Brett L; Kaveh, Anthony; Dastjerdi, Mohammad; Miller, Kai J; Parvizi, Josef

    2013-06-19

    The involvement of retrosplenial cortex (RSC) in human autobiographical memory retrieval has been confirmed by functional brain imaging studies, and is supported by anatomical evidence of strong connectivity between the RSC and memory structures within the medial temporal lobe (MTL). However, electrophysiological investigations of the RSC and its interaction with the MTL have mostly remained limited to the rodent brain. Recently, we reported a selective increase of high-frequency broadband (HFB; 70-180 Hz) power within the human RSC during autobiographical retrieval, and a predominance of 3-5 Hz theta band oscillations within the RSC during the resting state. In the current study, we aimed to explore the temporal dynamics of theta band interaction between human RSC and MTL during autobiographical retrieval. Toward this aim, we obtained simultaneous recordings from the RSC and MTL in human subjects undergoing invasive electrophysiological monitoring, and quantified the strength of RSC-MTL theta band phase locking. We observed significant phase locking in the 3-4 Hz theta range between the RSC and the MTL during autobiographical retrieval. This theta band phase coupling was transient and peaked at a consistent latency before the peak of RSC HFB power across subjects. Control analyses confirmed that theta phase coupling between the RSC and MTL was not seen for other conditions studied, other sites of recording, or other frequency ranges of interest (1-20 Hz). Our findings provide the first evidence of theta band interaction between the human RSC and MTL during conditions of autobiographical retrieval.

  3. Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat

    Directory of Open Access Journals (Sweden)

    Yoshiro eShiba

    2015-01-01

    Full Text Available The ventral prefrontal cortex is an integral part of the neural circuitry that is dysregulated in mood and anxiety disorders. However, the contribution of its distinct sub-regions to the regulation of negative emotion are poorly understood. Recently we implicated both the ventrolateral PFC (vlPFC and anterior orbitofrontal cortex (antOFC in the regulation of conditioned fear and anxiety responses to a social stimulus, i.e. human intruder, in the marmoset monkey. In the present study we extend our investigations to determine the role of these two regions in regulating innate responses and coping strategies to a predator stimulus, i.e. a model snake. Both the vlPFC and antOFC lesioned groups exhibited enhanced anxiety-related responses to the snake in comparison to controls. Both groups also showed a reduction in active coping behavior. These results indicate that the vlPFC and antOFC contribute independently to the regulation of both innate fear and, as previously reported, conditioned fear, and highlight the importance of these regions in producing stimulus-appropriate coping responses. The finding that dysregulation in two distinct prefrontal regions produces the apparently similar behavioral phenotype of heightened negative emotion provides insight into the varied aetiology that may underlie this symptom across a wide variety of neuropsychiatric conditions with implications for personalized treatment strategies.

  4. Navigated transcranial magnetic stimulation of the primary somatosensory cortex impairs perceptual processing of tactile temporal discrimination.

    Science.gov (United States)

    Hannula, Henri; Neuvonen, Tuomas; Savolainen, Petri; Tukiainen, Taru; Salonen, Oili; Carlson, Synnöve; Pertovaara, Antti

    2008-05-30

    Previous studies indicate that transcranial magnetic stimulation (TMS) with biphasic pulses applied approximately over the primary somatosensory cortex (S1) suppresses performance in vibrotactile temporal discrimination tasks; these previous results, however, do not allow separating perceptual influence from memory or decision-making. Moreover, earlier studies using external landmarks for directing biphasic TMS pulses to the cortex do not reveal whether the changes in vibrotactile task performance were due to action on S1 or an adjacent area. In the present study, we determined whether the S1 area representing a cutaneous test site is critical for perceptual processing of tactile temporal discrimination. Electrical test pulses were applied to the thenar skin of the hand and the subjects attempted to discriminate single from twin pulses. During discrimination task, monophasic TMS pulses or sham TMS pulses were directed anatomically accurately to the S1 area representing the thenar using magnetic resonance image-guided navigation. The subject's capacity to temporal discrimination was impaired with a decrease in the delay between the TMS pulse and the cutaneous test pulse from 50 to 0 ms. The result indicates that S1 area representing a cutaneous test site is involved in perceptual processing of tactile temporal discrimination.

  5. Subclinical delusional thinking predicts lateral temporal cortex responses during social reflection.

    Science.gov (United States)

    Brent, Benjamin K; Coombs, Garth; Keshavan, Matcheri S; Seidman, Larry J; Moran, Joseph M; Holt, Daphne J

    2014-03-01

    Neuroimaging studies have demonstrated associations between delusions in psychotic disorders and abnormalities of brain areas involved in social cognition, including medial prefrontal cortex (MPFC), posterior cingulate cortex, and lateral temporal cortex (LTC). General population studies have linked subclinical delusional thinking to impaired social cognition, raising the question of whether a specific pattern of brain activity during social perception is associated with delusional beliefs. Here, we tested the hypothesis that subclinical delusional thinking is associated with changes in neural function, while subjects made judgments about themselves or others ['social reflection' (SR)]. Neural responses during SR and non-social tasks, as well as resting-state activity, were measured using functional magnetic resonance imaging in 22 healthy subjects. Delusional thinking was measured using the Peters et al. Delusions Inventory. Delusional thinking was negatively correlated with responses of the left LTC during SR (r = -0.61, P = 0.02, Bonferroni corrected), and connectivity between the left LTC and left ventral MPFC, and was positively correlated with connectivity between the left LTC and the right middle frontal and inferior temporal cortices. Thus, delusional thinking in the general population may be associated with reduced activity and aberrant functional connectivity of cortical areas involved in SR.

  6. Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex.

    Science.gov (United States)

    Hadj-Bouziane, Fadila; Bell, Andrew H; Knusten, Tamara A; Ungerleider, Leslie G; Tootell, Roger B H

    2008-04-08

    The ability to perceive and differentiate facial expressions is vital for social communication. Numerous functional MRI (fMRI) studies in humans have shown enhanced responses to faces with different emotional valence, in both the amygdala and the visual cortex. However, relatively few studies have examined how valence influences neural responses in monkeys, thereby limiting the ability to draw comparisons across species and thus understand the underlying neural mechanisms. Here we tested the effects of macaque facial expressions on neural activation within these two regions using fMRI in three awake, behaving monkeys. Monkeys maintained central fixation while blocks of different monkey facial expressions were presented. Four different facial expressions were tested: (i) neutral, (ii) aggressive (open-mouthed threat), (iii) fearful (fear grin), and (iv) submissive (lip smack). Our results confirmed that both the amygdala and the inferior temporal cortex in monkeys are modulated by facial expressions. As in human fMRI, fearful expressions evoked the greatest response in monkeys-even though fearful expressions are physically dissimilar in humans and macaques. Furthermore, we found that valence effects were not uniformly distributed over the inferior temporal cortex. Surprisingly, these valence maps were independent of two related functional maps: (i) the map of "face-selective" regions (faces versus non-face objects) and (ii) the map of "face-responsive" regions (faces versus scrambled images). Thus, the neural mechanisms underlying face perception and valence perception appear to be distinct.

  7. Neural selectivity and representation of gloss in the monkey inferior temporal cortex.

    Science.gov (United States)

    Nishio, Akiko; Goda, Naokazu; Komatsu, Hidehiko

    2012-08-01

    When we view an object, its appearance depends in large part on specific surface reflectance properties; among these is surface gloss, which provides important information about the material composition of the object and the fine structure of its surface. To study how gloss is represented in the visual cortical areas related to object recognition, we examined the responses of neurons in the inferior temporal (IT) cortex of the macaque monkey to a set of object images exhibiting various combinations of specular reflection, diffuse reflection, and roughness, which are important physical parameters of surface gloss. We found that there are neurons in the lower bank of the superior temporal sulcus that selectively respond to specific gloss. This neuronal selectivity was largely maintained when the shape or illumination of the object was modified and perceived glossiness was unchanged. By contrast, neural responses were significantly altered when the pixels of the images were randomly rearranged, and perceived glossiness was dramatically changed. The stimulus preference of these neurons differed from cell to cell, and, as a population, they systematically represented a variety of surface glosses. We conclude that, within the visual cortex, there are mechanisms operating to integrate local image features and extract information about surface gloss and that this information is systematically represented in the IT cortex, an area playing an important role in object recognition.

  8. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    Science.gov (United States)

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  9. The Anterior Temporal Face Area Contains Invariant Representations of Face Identity That Can Persist Despite the Loss of Right FFA and OFA.

    Science.gov (United States)

    Yang, Hua; Susilo, Tirta; Duchaine, Bradley

    2016-03-01

    Macaque neurophysiology found image-invariant representations of face identity in a face-selective patch in anterior temporal cortex. A face-selective area in human anterior temporal lobe (fATL) has been reported, but has not been reliably identified, and its function and relationship with posterior face areas is poorly understood. Here, we used fMRI adaptation and neuropsychology to ask whether fATL contains image-invariant representations of face identity, and if so, whether these representations require normal functioning of fusiform face area (FFA) and occipital face area (OFA). We first used a dynamic localizer to demonstrate that 14 of 16 normal subjects exhibit a highly selective right fATL. Next, we found evidence that this area subserves image-invariant representation of identity: Right fATL showed repetition suppression to the same identity across different images, while other areas did not. Finally, to examine fATL's relationship with posterior areas, we used the same procedures with Galen, an acquired prosopagnosic who lost right FFA and OFA. Despite the absence of posterior face areas, Galen's right fATL preserved its face selectivity and showed repetition suppression comparable to that in controls. Our findings suggest that right fATL contains image-invariant face representations that can persist despite the absence of right FFA and OFA, but these representations are not sufficient for normal face recognition.

  10. Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Directory of Open Access Journals (Sweden)

    Silberman Yaron

    2006-05-01

    Full Text Available Abstract Background Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. Methods The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes and base-level (e.g. tulip, rose, orchid, sunflower categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. Results Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. Conclusion Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms.

  11. A Novel Method of Quantitative Anterior Chamber Depth Estimation Using Temporal Perpendicular Digital Photography

    Science.gov (United States)

    Zamir, Ehud; Kong, George Y.X.; Kowalski, Tanya; Coote, Michael; Ang, Ghee Soon

    2016-01-01

    Purpose We hypothesize that: (1) Anterior chamber depth (ACD) is correlated with the relative anteroposterior position of the pupillary image, as viewed from the temporal side. (2) Such a correlation may be used as a simple quantitative tool for estimation of ACD. Methods Two hundred sixty-six phakic eyes had lateral digital photographs taken from the temporal side, perpendicular to the visual axis, and underwent optical biometry (Nidek AL scanner). The relative anteroposterior position of the pupillary image was expressed using the ratio between: (1) lateral photographic temporal limbus to pupil distance (“E”) and (2) lateral photographic temporal limbus to cornea distance (“Z”). In the first chronological half of patients (Correlation Series), E:Z ratio (EZR) was correlated with optical biometric ACD. The correlation equation was then used to predict ACD in the second half of patients (Prediction Series) and compared to their biometric ACD for agreement analysis. Results A strong linear correlation was found between EZR and ACD, R = −0.91, R2 = 0.81. Bland-Altman analysis showed good agreement between predicted ACD using this method and the optical biometric ACD. The mean error was −0.013 mm (range −0.377 to 0.336 mm), standard deviation 0.166 mm. The 95% limits of agreement were ±0.33 mm. Conclusions Lateral digital photography and EZR calculation is a novel method to quantitatively estimate ACD, requiring minimal equipment and training. Translational Relevance EZ ratio may be employed in screening for angle closure glaucoma. It may also be helpful in outpatient medical clinic settings, where doctors need to judge the safety of topical or systemic pupil-dilating medications versus their risk of triggering acute angle closure glaucoma. Similarly, non ophthalmologists may use it to estimate the likelihood of acute angle closure glaucoma in emergency presentations. PMID:27540496

  12. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  13. Is dorsal anterior cingulate cortex activation in response to social exclusion due to expectancy violation? An fMRI study.

    Science.gov (United States)

    Kawamoto, Taishi; Onoda, Keiichi; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2012-01-01

    People are typically quite sensitive about being accepted or excluded by others. Previous studies have suggested that the dorsal anterior cingulate cortex (dACC) is a key brain region involved in the detection of social exclusion. However, this region has also been shown to be sensitive to non-social expectancy violations. We often expect other people to follow an unwritten rule in which they include us as they would expect to be included, such that social exclusion likely involves some degree of expectancy violation. The present event-related functional magnetic resonance imaging (fMRI) study sought to separate the effects of expectancy violation from those of social exclusion, such that we employed an "overinclusion" condition in which a player was unexpectedly overincluded in the game by the other players. With this modification, we found that the dACC and right ventrolateral prefrontal cortex (rVLPFC) were activated by exclusion, relative to overinclusion. In addition, we identified a negative correlation between exclusion-evoked brain activity and self-rated social pain in the rVLPFC, but not in the dACC. These findings suggest that the rVLPFC is critical for regulating social pain, whereas the dACC plays an important role in the detection of exclusion. The neurobiological basis of social exclusion is different from that of mere expectancy violation.

  14. Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty.

    Science.gov (United States)

    Carnevale, Federico; de Lafuente, Victor; Romo, Ranulfo; Barak, Omri; Parga, Néstor

    2015-05-20

    Under uncertainty, the brain uses previous knowledge to transform sensory inputs into the percepts on which decisions are based. When the uncertainty lies in the timing of sensory evidence, however, the mechanism underlying the use of previously acquired temporal information remains unknown. We study this issue in monkeys performing a detection task with variable stimulation times. We use the neural correlates of false alarms to infer the subject's response criterion and find that it modulates over the course of a trial. Analysis of premotor cortex activity shows that this modulation is represented by the dynamics of population responses. A trained recurrent network model reproduces the experimental findings and demonstrates a neural mechanism to benefit from temporal expectations in perceptual detection. Previous knowledge about the probability of stimulation over time can be intrinsically encoded in the neural population dynamics, allowing a flexible control of the response criterion over time.

  15. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anteri

  16. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    Science.gov (United States)

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  17. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    Science.gov (United States)

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  18. Multi-voxel pattern analysis of noun and verb differences in ventral temporal cortex.

    Science.gov (United States)

    Boylan, Christine; Trueswell, John C; Thompson-Schill, Sharon L

    2014-10-01

    Recent evidence suggests a probabilistic relationship exists between the phonological/orthographic form of a word and its lexical-syntactic category (specifically nouns vs. verbs) such that syntactic prediction may elicit form-based estimates in sensory cortex. We tested this hypothesis by conducting multi-voxel pattern analysis (MVPA) of fMRI data from early visual cortex (EVC), left ventral temporal (VT) cortex, and a subregion of the latter - the left mid fusiform gyrus (mid FG), sometimes called the "visual word form area." Crucially, we examined only those volumes sampled when subjects were predicting, but not viewing, nouns and verbs. This allowed us to investigate prediction effects in visual areas without any bottom-up orthographic input. We found that voxels in VT and mid FG, but not in EVC, were able to classify noun-predictive trials vs. verb-predictive trials in sentence contexts, suggesting that sentence-level predictions are sufficient to generate word form-based estimates in visual areas.

  19. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    Directory of Open Access Journals (Sweden)

    Akiko Nishio

    2012-10-01

    Full Text Available The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task. We found that there exist neurons in the lower bank of the superior temporal sulcus that selectively responded to specific stimuli. The selectivity was largely maintained when the object shape or illumination condition was changed. In contrast, neural selectivity was lost when the pixels of objects were randomly rearranged. In the former manipulation of the stimuli, gloss perceptions were maintained, whereas in the latter manipulation, gloss perception was dramatically changed. These results indicate that these IT neurons selectively responded to gloss, not to the irrelevant local image features or average luminance or color. Next, to understand how the responses of gloss selective neurons are related to perceived gloss, responses of gloss selective neurons were mapped in perceptual gloss space in which glossiness changes uniformly. I found that responses of most gloss selective neurons can be explained by linear combinations of two parameters that are shown to be important for gloss perception. This result suggests that the responses of gloss selective neurons of IT cortex are closely related to gloss perception.

  20. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease.

    Science.gov (United States)

    Boggio, P S; Khoury, L P; Martins, D C S; Martins, O E M S; de Macedo, E C; Fregni, F

    2009-04-01

    Several studies have reported that transcranial direct current stimulation (tDCS), a non-invasive method of neuromodulation, enhances some aspects of working memory in healthy and Parkinson disease subjects. The aim of this study was to investigate the impact of anodal tDCS on recognition memory, working memory and selective attention in Alzheimer disease (AD). Ten patients with diagnosis of AD received three sessions of anodal tDCS (left dorsolateral prefrontal cortex, left temporal cortex and sham stimulation) with an intensity of 2 mA for 30 min. Sessions were performed in different days in a randomised order. The following tests were assessed during stimulation: Stroop, Digit Span and a Visual Recognition Memory task (VRM). The results showed a significant effect of stimulation condition on VRM (p = 0.0085), and post hoc analysis showed an improvement after temporal (p = 0.01) and prefrontal (p = 0.01) tDCS as compared with sham stimulation. There were no significant changes in attention as indexed by Stroop task performance. As far as is known, this is the first trial showing that tDCS can enhance a component of recognition memory. The potential mechanisms of action and the implications of these results are discussed.

  1. Awake fMRI reveals a specialized region in dog temporal cortex for face processing

    Science.gov (United States)

    Dilks, Daniel D.; Cook, Peter; Weiller, Samuel K.; Berns, Helen P.; Spivak, Mark

    2015-01-01

    Recent behavioral evidence suggests that dogs, like humans and monkeys, are capable of visual face recognition. But do dogs also exhibit specialized cortical face regions similar to humans and monkeys? Using functional magnetic resonance imaging (fMRI) in six dogs trained to remain motionless during scanning without restraint or sedation, we found a region in the canine temporal lobe that responded significantly more to movies of human faces than to movies of everyday objects. Next, using a new stimulus set to investigate face selectivity in this predefined candidate dog face area, we found that this region responded similarly to images of human faces and dog faces, yet significantly more to both human and dog faces than to images of objects. Such face selectivity was not found in dog primary visual cortex. Taken together, these findings: (1) provide the first evidence for a face-selective region in the temporal cortex of dogs, which cannot be explained by simple low-level visual feature extraction; (2) reveal that neural machinery dedicated to face processing is not unique to primates; and (3) may help explain dogs’ exquisite sensitivity to human social cues. PMID:26290784

  2. Error effects in anterior cingulate cortex reverse when error likelihood is high

    Science.gov (United States)

    Jessup, Ryan K.; Busemeyer, Jerome R.; Brown, Joshua W.

    2010-01-01

    Strong error-related activity in medial prefrontal cortex (mPFC) has been shown repeatedly with neuroimaging and event-related potential studies for the last several decades. Multiple theories have been proposed to account for error effects, including comparator models and conflict detection models, but the neural mechanisms that generate error signals remain in dispute. Typical studies use relatively low error rates, confounding the expectedness and the desirability of an error. Here we show with a gambling task and fMRI that when losses are more frequent than wins, the mPFC error effect disappears, and moreover, exhibits the opposite pattern by responding more strongly to unexpected wins than losses. These findings provide perspective on recent ERP studies and suggest that mPFC error effects result from a comparison between actual and expected outcomes. PMID:20203206

  3. Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex.

    Science.gov (United States)

    Fallon, James B; Shepherd, Robert K; Nayagam, David A X; Wise, Andrew K; Heffer, Leon F; Landry, Thomas G; Irvine, Dexter R F

    2014-09-01

    We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees.

  4. Medio-Frontal and Anterior Temporal abnormalities in children with attention deficit hyperactivity disorder (ADHD during an acoustic antisaccade task as revealed by electro-cortical source reconstruction

    Directory of Open Access Journals (Sweden)

    Rockstroh Brigitte

    2011-01-01

    Full Text Available Abstract Background Attention Deficit Hyperactivity Disorder (ADHD is one of the most prevalent disorders in children and adolescence. Impulsivity is one of three core symptoms and likely associated with inhibition difficulties. To date the neural correlate of the antisaccade task, a test of response inhibition, has not been studied in children with (or without ADHD. Methods Antisaccade responses to visual and acoustic cues were examined in nine unmedicated boys with ADHD (mean age 122.44 ± 20.81 months and 14 healthy control children (mean age 115.64 ± 22.87 months, three girls while an electroencephalogram (EEG was recorded. Brain activity before saccade onset was reconstructed using a 23-source-montage. Results When cues were acoustic, children with ADHD had a higher source activity than control children in Medio-Frontal Cortex (MFC between -230 and -120 ms and in the left-hemispheric Temporal Anterior Cortex (TAC between -112 and 0 ms before saccade onset, despite both groups performing similarly behaviourally (antisaccades errors and saccade latency. When visual cues were used EEG-activity preceding antisaccades did not differ between groups. Conclusion Children with ADHD exhibit altered functioning of the TAC and MFC during an antisaccade task elicited by acoustic cues. Children with ADHD need more source activation to reach the same behavioural level as control children.

  5. Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex.

    Science.gov (United States)

    Osmanski, B F; Martin, C; Montaldo, G; Lanièce, P; Pain, F; Tanter, M; Gurden, H

    2014-07-15

    Topographic representation of the outside world is a key feature of sensory systems, but so far it has been difficult to define how the activity pattern of the olfactory information is distributed at successive stages in the olfactory system. We studied odor-evoked activation patterns in the main olfactory bulb and the anterior piriform cortex of rats using functional ultrasound (fUS) imaging. fUS imaging is based on the use of ultrafast ultrasound scanners and detects variations in the local blood volume during brain activation. It makes deep brain imaging of ventral structures, such as the piriform cortex, possible. Stimulation with two different odors (hexanal and pentylacetate) induced the activation of odor-specific zones that were spatially segregated in the main olfactory bulb. Interestingly, the same odorants triggered the activation of the entire anterior piriform cortex, in all layers, with no distinguishable odor-specific areas detected in the power Doppler images. These fUS imaging results confirm the spatial distribution of odor-evoked activity in the main olfactory bulb, and furthermore, they reveal the absence of such a distribution in the anterior piriform cortex at the macroscopic scale in vivo.

  6. Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia.

    Science.gov (United States)

    Song, Sunbin; Garrido, Lúcia; Nagy, Zoltan; Mohammadi, Siawoosh; Steel, Adam; Driver, Jon; Dolan, Ray J; Duchaine, Bradley; Furl, Nicholas

    2015-11-01

    Individuals with developmental prosopagnosia (DP) experience face recognition impairments despite normal intellect and low-level vision and no history of brain damage. Prior studies using diffusion tensor imaging in small samples of subjects with DP (n=6 or n=8) offer conflicting views on the neurobiological bases for DP, with one suggesting white matter differences in two major long-range tracts running through the temporal cortex, and another suggesting white matter differences confined to fibers local to ventral temporal face-specific functional regions of interest (fROIs) in the fusiform gyrus. Here, we address these inconsistent findings using a comprehensive set of analyzes in a sample of DP subjects larger than both prior studies combined (n=16). While we found no microstructural differences in long-range tracts between DP and age-matched control participants, we found differences local to face-specific fROIs, and relationships between these microstructural measures with face recognition ability. We conclude that subtle differences in local rather than long-range tracts in the ventral temporal lobe are more likely associated with developmental prosopagnosia.

  7. Structural connectivity of the human anterior temporal lobe: A diffusion magnetic resonance imaging study.

    Science.gov (United States)

    Papinutto, Nico; Galantucci, Sebastiano; Mandelli, Maria Luisa; Gesierich, Benno; Jovicich, Jorge; Caverzasi, Eduardo; Henry, Roland G; Seeley, William W; Miller, Bruce L; Shapiro, Kevin A; Gorno-Tempini, Maria Luisa

    2016-06-01

    The anterior temporal lobes (ATL) have been implicated in a range of cognitive functions including auditory and visual perception, language, semantic knowledge, and social-emotional processing. However, the anatomical relationships between the ATLs and the broader cortical networks that subserve these functions have not been fully elucidated. Using diffusion tensor imaging (DTI) and probabilistic tractography, we tested the hypothesis that functional segregation of information in the ATLs is reflected by distinct patterns of structural connectivity to regions outside the ATLs. We performed a parcellation of the ATLs bilaterally based on the degree of connectivity of each voxel with eight ipsilateral target regions known to be involved in various cognitive networks. Six discrete segments within each ATL showed preferential connectivity to one of the ipsilateral target regions, via four major fiber tracts (uncinate, inferior longitudinal, middle longitudinal, and arcuate fasciculi). Two noteworthy interhemispheric differences were observed: connections between the ATL and orbito-frontal areas were stronger in the right hemisphere, while the consistency of the connection between the ATL and the inferior frontal gyrus through the arcuate fasciculus was greater in the left hemisphere. Our findings support the hypothesis that distinct regions within the ATLs have anatomical connections to different cognitive networks. Hum Brain Mapp 37:2210-2222, 2016. © 2016 Wiley Periodicals, Inc.

  8. Anterior temporal face patches: A meta-analysis and empirical study

    Directory of Open Access Journals (Sweden)

    Rebecca J. Von Der Heide

    2013-02-01

    Full Text Available Studies of nonhuman primates have reported face sensitive patches in the ventral anterior temporal lobes (ATL. In humans, ATL resection or damage causes an associative prosopagnosia in which face perception is intact but face memory is compromised. Some fMRI studies have extended these findings using famous and familiar faces. However, it is unclear whether these regions in the human ATL are in locations comparable to those reported in non-human primates, typically using unfamiliar faces. We present the results of two studies of person memory: a meta-analysis of existing fMRI studies and an empirical fMRI study using optimized imaging parameters. Both studies showed left-lateralized ATL activations to familiar individuals while novel faces activated the right ATL. Activations to famous faces were quite ventral, similar to what has been reported in monkeys. These findings suggest that face memory-sensitive patches in the human ATL are in the ventral/polar ATL.

  9. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization.

  10. TIRDA Originating From Lateral Temporal Cortex in a Patient With mTLE Is Not Related to Hippocampal Activity.

    Science.gov (United States)

    Serafini, Anna; Issa, Naoum P; Rose, Sandra; Wu, Shasha; Warnke, Peter; Tao, James X

    2016-12-01

    Electrophysiological studies have suggested that temporal intermittent rhythmic delta activity (TIRDA) has a localizing value similar to interictal spikes in patients with temporal lobe epilepsy and is associated with a favorable outcome after temporal lobectomy. However, it remains controversial whether TIRDA is an EEG marker for mesial or lateral temporal epileptogenesis. We simultaneously recorded scalp EEG and stereoencephalography in a patient with mesial temporal lobe epilepsy during epilepsy presurgical evaluation. Seizure onset was localized to the hippocampus. However, TIRDA originated from the lateral temporal cortex, and rhythmic delta activity was not observed concomitantly in the hippocampus. In addition, TIRDA was not associated with repetitive interictal spikes or subclinical seizures in the hippocampus as previously speculated. This case suggests that TIRDA can be an EEG marker that is independent of hippocampal activity and can represent temporal neocortical epileptogenesis.

  11. Increased temporal cortex ER stress proteins in depressed subjects who died by suicide.

    Science.gov (United States)

    Bown, C; Wang, J F; MacQueen, G; Young, L T

    2000-03-01

    Regulation of ER stress proteins, such as the 78-kilodalton glucose regulated protein (GRP78) by chronic treatment with mood stabilizing drugs suggests that this family of proteins may be involved in the pathophysiology of mood disorders. Indeed, increased levels of GRP78, GRP94, and calreticulin, a third member of the ER stress protein family, were found in temporal cortex of subjects with major depressive disorder who died by suicide compared with controls and subjects who died by other means. No such differences were found in subjects with other psychiatric disorders such as bipolar disorder or schizophrenia. These data suggest a potential role for ER stress proteins in severe depression that merits further study.

  12. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  13. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  14. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropostero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on receptive fields of ON-OFF neurons showed that the excitation of the ACC could change an ON-response on the verge of a receptive field into an ON-OFF response. The above results suggest that the ACC modulation sharpens the response of a VB neuron to a moving stimulus within its receptive field, indicating that the limbic system can modulate tactile ascending sensory information.

  15. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    曹晓华; 卢湘岳; 周绍慈

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropos-tero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on rec

  16. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  17. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHENG XinLing; LIU Fang; WU XingWen; LI BaoMing

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolaterel nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at '0' or 6 h post-treining. Saline was administered as control. Memory retention was tested 48 h poet-training. In-tra-BLA or intra-ACC infusion of MPD '0' h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  18. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    Full Text Available Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM analyses: Individuals with higher Media Multitasking Index (MMI scores had smaller gray matter density in the anterior cingulate cortex (ACC. Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.

  19. Therapygenetics: anterior cingulate cortex-amygdala coupling is associated with 5-HTTLPR and treatment response in panic disorder with agoraphobia.

    Science.gov (United States)

    Lueken, Ulrike; Straube, Benjamin; Wittchen, Hans-Ulrich; Konrad, Carsten; Ströhle, Andreas; Wittmann, André; Pfleiderer, Bettina; Arolt, Volker; Kircher, Tilo; Deckert, Jürgen; Reif, Andreas

    2015-01-01

    Variation in the 5'-flanking promoter region of the serotonin transporter gene SLC6A4, the 5-HTT-linked polymorphic region (5-HTTLPR) has been inconclusively associated with response to cognitive-behavioural therapy (CBT). As genomic functions are stronger related to neural than to behavioural markers, we investigated the association of treatment response, 5-HTTLPR and functional brain connectivity in patients with panic disorder with agoraphobia (PD/AG). Within the national research network PANIC-NET 231 PD/AG patients who provided genetic information underwent a manualized exposure-based CBT. A subset of 41 patients participated in a functional magnetic resonance imaging (fMRI) add-on study prior to treatment applying a differential fear conditioning task. Neither the treatment nor the reduced fMRI sample showed a direct effect of 5-HTTLPR on treatment response as defined by a reduction in the Hamilton Anxiety Scale score ≥50 % from baseline to post assessment. On a neural level, inhibitory anterior cingulate cortex (ACC)-amygdala coupling during fear conditioning that had previously been shown to characterize treatment response in this sample was driven by responders with the L/L genotype. Building upon conclusive evidence from basic and preclinical findings on the association of the 5-HTTLPR polymorphism with emotion regulation and related brain connectivity patterns, present findings translate these to a clinical sample of PD/AG patients and point towards a potential intermediate connectivity phenotype modulating response to exposure-based CBT.

  20. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  1. Cognitive MR spectroscopy of anterior cingulate cortex in ADHD: elevated choline signal correlates with slowed hit reaction times.

    Science.gov (United States)

    Colla, Michael; Ende, Gabriele; Alm, Barbara; Deuschle, Michael; Heuser, Isabella; Kronenberg, Golo

    2008-06-01

    The anterior cingulate cortex (ACC) plays a major role in modulating executive control of attention. Here, 15 medication-nai ve patients with attention deficit/hyperactivity disorder (ADHD) and 10 carefully matched healthy controls were studied with 2D (1)H-magnetic resonance spectroscopic imaging (MRSI) of the ACC [Brodmann areas 24b'-c' and 32']. Attentional skills were assessed using the identical pairs version of the continuous performance task (CPT-IP). Analysis of regional brain spectra revealed a significantly increased signal of choline-containing compounds (Ch) in the ACC of ADHD patients (p<0.05). Across and within groups, the Ch signal showed high correlations with slowed hit reaction times on the CPT-IP. No group differences in N-acetyl-aspartate (NAA) and creatine (tCr) were detectable. The combination of performance deficits and elevated Ch levels in the ACC supports the hypothesis that subtle structural abnormalities underlie the functional alterations in ACC activation previously observed in ADHD patients.

  2. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex.

    Science.gov (United States)

    Littlefield, Melissa M; Dietz, Martin J; Fitzgerald, Des; Knudsen, Kasper J; Tonks, James

    2015-01-01

    "Truth" has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person's mental state, a phenomenon known as Theory of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in-group and out-group members. Participants were asked to be honest and were told that their evaluations would be made public. We found increased BOLD responses in the medial prefrontal cortex, bilateral anterior insula and precuneus when participants were asked to tell social truths compared to simple truths about another person. At the behavioral level, participants were slower at responding to social compared to simple questions about another person. These findings suggest that telling the truth is a nuanced cognitive operation that is dependent on the degree of mentalizing. Importantly, we show that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning.

  3. Memory signals are temporally dissociated in and across human hippocampus and perirhinal cortex.

    Science.gov (United States)

    Staresina, Bernhard P; Fell, Juergen; Do Lam, Anne T A; Axmacher, Nikolai; Henson, Richard N

    2012-07-01

    In the endeavor to understand how our brains enable our multifaceted memories, much controversy surrounds the contributions of the hippocampus and perirhinal cortex (PrC). We recorded functional magnetic resonance imaging (fMRI) in healthy controls and intracranial electroencephalography (EEG) in patients during a recognition memory task. Although conventional fMRI analysis showed indistinguishable roles of the hippocampus and PrC in familiarity-based item recognition and recollection-based source retrieval, event-related fMRI and EEG time courses revealed a clear temporal dissociation of memory signals in and across these regions. An early source retrieval effect was followed by a late, post-decision item novelty effect in hippocampus, whereas an early item novelty effect was followed by a sustained source retrieval effect in PrC. Although factors such as memory strength were not experimentally controlled, the temporal pattern across regions suggests that a rapid item recognition signal in PrC triggers a source retrieval process in the hippocampus, which in turn recruits PrC representations and/or mechanisms, evidenced here by increased hippocampal-PrC coupling during source recognition.

  4. The temporal dynamics of early visual cortex involvement in behavioral priming.

    Directory of Open Access Journals (Sweden)

    Christianne Jacobs

    Full Text Available Transcranial magnetic stimulation (TMS allows for non-invasive interference with ongoing neural processing. Applied in a chronometric design over early visual cortex (EVC, TMS has proved valuable in indicating at which particular time point EVC must remain unperturbed for (conscious vision to be established. In the current study, we set out to examine the effect of EVC TMS across a broad range of time points, both before (pre-stimulus and after (post-stimulus the onset of symbolic visual stimuli. Behavioral priming studies have shown that the behavioral impact of a visual stimulus can be independent from its conscious perception, suggesting two independent neural signatures. To assess whether TMS-induced suppression of visual awareness can be dissociated from behavioral priming in the temporal domain, we thus implemented three different measures of visual processing, namely performance on a standard visual discrimination task, a subjective rating of stimulus visibility, and a visual priming task. To control for non-neural TMS effects, we performed electrooculographical recordings, placebo TMS (sham, and control site TMS (vertex. Our results suggest that, when considering the appropriate control data, the temporal pattern of EVC TMS disruption on visual discrimination, subjective awareness and behavioral priming are not dissociable. Instead, TMS to EVC disrupts visual perception holistically, both when applied before and after the onset of a visual stimulus. The current findings are discussed in light of their implications on models of visual awareness and (subliminal priming.

  5. The temporal dynamics of early visual cortex involvement in behavioral priming.

    Science.gov (United States)

    Jacobs, Christianne; de Graaf, Tom A; Goebel, Rainer; Sack, Alexander T

    2012-01-01

    Transcranial magnetic stimulation (TMS) allows for non-invasive interference with ongoing neural processing. Applied in a chronometric design over early visual cortex (EVC), TMS has proved valuable in indicating at which particular time point EVC must remain unperturbed for (conscious) vision to be established. In the current study, we set out to examine the effect of EVC TMS across a broad range of time points, both before (pre-stimulus) and after (post-stimulus) the onset of symbolic visual stimuli. Behavioral priming studies have shown that the behavioral impact of a visual stimulus can be independent from its conscious perception, suggesting two independent neural signatures. To assess whether TMS-induced suppression of visual awareness can be dissociated from behavioral priming in the temporal domain, we thus implemented three different measures of visual processing, namely performance on a standard visual discrimination task, a subjective rating of stimulus visibility, and a visual priming task. To control for non-neural TMS effects, we performed electrooculographical recordings, placebo TMS (sham), and control site TMS (vertex). Our results suggest that, when considering the appropriate control data, the temporal pattern of EVC TMS disruption on visual discrimination, subjective awareness and behavioral priming are not dissociable. Instead, TMS to EVC disrupts visual perception holistically, both when applied before and after the onset of a visual stimulus. The current findings are discussed in light of their implications on models of visual awareness and (subliminal) priming.

  6. Composition of complex numbers: Delineating the computational role of the left anterior temporal lobe.

    Science.gov (United States)

    Blanco-Elorrieta, Esti; Pylkkänen, Liina

    2016-01-01

    What is the neurobiological basis of our ability to create complex messages with language? Results from multiple methodologies have converged on a set of brain regions as relevant for this general process, but the computational details of these areas remain to be characterized. The left anterior temporal lobe (LATL) has been a consistent node within this network, with results suggesting that although it rather systematically shows increased activation for semantically complex structured stimuli, this effect does not extend to number phrases such as 'three books.' In the present work we used magnetoencephalography to investigate whether numbers in general are an invalid input to the combinatory operations housed in the LATL or whether the lack of LATL engagement for stimuli such as 'three books' is due to the quantificational nature of such phrases. As a relevant test case, we employed complex number terms such as 'twenty-three', where one number term is not a quantifier of the other but rather, the two terms form a type of complex concept. In a number naming paradigm, participants viewed rows of numbers and depending on task instruction, named them as complex number terms ('twenty-three'), numerical quantifications ('two threes'), adjectival modifications ('blue threes') or non-combinatory lists (e.g., 'two, three'). While quantificational phrases failed to engage the LATL as compared to non-combinatory controls, both complex number terms and adjectival modifications elicited a reliable activity increase in the LATL. Our results show that while the LATL does not participate in the enumeration of tokens within a set, exemplified by the quantificational phrases, it does support conceptual combination, including the composition of complex number concepts.

  7. Comparative anatomic study of mandibular growth in rats after bilateral resections of superficial masseter, posterior temporal, and anterior digastric muscles.

    Science.gov (United States)

    Lifshitz, J

    1976-01-01

    Bilateral resections of the superficial masseter, posterior temporal, and anterior digastric muscles of rats were done to determine their effects on mandibular growth. The macroscopic findings support the functional matrix theory of mandibular growth. The analysis of body weight and the statistical two-way analysis of variance done suggest that malnutrition was the main factor that caused the mandibles of rats in the experimental groups of remain undersized.

  8. "That thing in New York": Impaired naming vs. preserved recognition of unique entities following an anterior temporal lobe lesion

    OpenAIRE

    Daniel Roberts; Shanti Shanker

    2014-01-01

    Background Anterior temporal lobe (aTL) damage often results in semantic impairment. As such, the contribution of this region to semantic processing has received considerable attention. Two theories exist to explain aTL function based on conflicting neuropsychological investigations. The first proposes bilateral aTLs form a “hub” implicated in multimodal semantics (for review see: Jefferies, 2013). The second assumes distinct functions. The left is thought to function as a repertoire for ...

  9. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem.

  10. Role of the dorsal anterior cingulate cortex in obsessive-compulsive disorder: converging evidence from cognitive neuroscience and psychiatric neurosurgery.

    Science.gov (United States)

    McGovern, Robert A; Sheth, Sameer A

    2017-01-01

    OBJECTIVE Advances in understanding the neurobiological basis of psychiatric disorders will improve the ability to refine neuromodulatory procedures for treatment-refractory patients. One of the core dysfunctions in obsessive-compulsive disorder (OCD) is a deficit in cognitive control, especially involving the dorsal anterior cingulate cortex (dACC). The authors' aim was to derive a neurobiological understanding of the successful treatment of refractory OCD with psychiatric neurosurgical procedures targeting the dACC. METHODS First, the authors systematically conducted a review of the literature on the role of the dACC in OCD by using the search terms "obsessive compulsive disorder" and "anterior cingulate." The neuroscience literature on cognitive control mechanisms in the dACC was then combined with the literature on psychiatric neurosurgical procedures targeting the dACC for the treatment of refractory OCD. RESULTS The authors reviewed 89 studies covering topics that included structural and functional neuroimaging and electrophysiology. The majority of resting-state functional neuroimaging studies demonstrated dACC hyperactivity in patients with OCD relative to that in controls, while task-based studies were more variable. Electrophysiological studies showed altered dACC-related biomarkers of cognitive control, such as error-related negativity in OCD patients. These studies were combined with the cognitive control neurophysiology literature, including the recently elaborated expected value of control theory of dACC function. The authors suggest that a central feature of OCD pathophysiology involves the generation of mis-specified cognitive control signals by the dACC, and they elaborate on this theory and provide suggestions for further study. CONCLUSIONS Although abnormalities in brain structure and function in OCD are distributed across a wide network, the dACC plays a central role. The authors propose a theory of cognitive control dysfunction in OCD that

  11. Cortical thinning of the right anterior cingulate cortex in spider phobia: a magnetic resonance imaging and spectroscopy study.

    Science.gov (United States)

    Linares, I M P; Jackowski, A P; Trzesniak, C M F; Arrais, K C; Chagas, M H N; Sato, J R; Santos, A C; Hallak, J E C; Zuardi, A W; Nardi, A E; Coimbra, N C; Crippa, J A S

    2014-08-12

    There a lack of consistent neuroimaging data on specific phobia (SP) and a need to assess volumetric and metabolic differences in structures implicated in this condition. The aim of this study is investigate possible metabolic (via (1)H MRS) and cortical thickness abnormalities in spider-phobic patients compared to healthy volunteers. Participants were recruited via public advertisement and underwent clinical evaluations and MRI scans. The study started in 2010 and the investigators involved were not blind in respect to patient groupings. The study was conducted at the Ribeirão Preto Medical School University Hospital of the University of São Paulo, Brazil. Patients with spider phobia (n=19) were matched to 17 healthy volunteers with respect to age, education and socio-economic status. The spider SP group fulfilled the diagnostic criteria for spider phobia according to the Structured Clinical Interview for DSM-IV. None of the participants had a history of neurological, psychiatric or other relevant organic diseases, use of prescribed psychotropic medication or substance abuse. All imaging and spectroscopy data were collected with a 3 T MRI scanner equipped with 25 mT gradient coils in 30-minute scans. The Freesurfer image analysis package and LC Model software were used to analyze data. The hypothesis being tested was formulated before the data collection (neural correlates of SP would include the amygdala, insula, anterior cingulate gyrus and others). The results indicated the absence of metabolic alterations, but thinning of the right anterior cingulate cortex (ACC) in the SP group when compared to the healthy control group (mean cortical thickness±SD: SP=2.11±0.45 mm; HC=2.16±0.42 mm; t (34)=3.19, p=0.001 [-35.45, 71.00, -23.82]). In spectroscopy, the ratios between N-acetylaspartate and creatine and choline levels were measured. No significant effect or correlation was found between MRS metabolites and scores in the Spider Phobia Questionnaire and Beck

  12. Proton magnetic resonance spectroscopy assessment of metabolite status of the anterior cingulate cortex in chronic pain patients and healthy controls

    Directory of Open Access Journals (Sweden)

    Ito T

    2017-01-01

    Full Text Available Takahiro Ito,1 Sachiko Tanaka-Mizuno,2,3 Narihito Iwashita,4 Ikuo Tooyama,5 Akihiko Shiino,6 Katsuyuki Miura,1,7 Sei Fukui4 1Department of Public Health, Shiga University of Medical Science, 2Department of Medical Statistics, Shiga University of Medical Science, Otsu, Japan; 3The Center for Data Science Education and Research, Shiga University, Hikone, Japan; 4Department of Anesthesiology, Interdisciplinary Pain Management Center, Shiga University of Medical Science Hospital, 5Molecular Neuroscience Research Center, Shiga University of Medical Science, 6Biomedical MR Science Center, Shiga University of Medical Science, 7Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan Background: Chronic pain is a common cause of reduced quality of life. Recent studies suggest that chronic pain patients have a different brain neurometabolic status to healthy people. Proton magnetic resonance spectroscopy (1H-MRS can determine the concentrations of metabolites in a specific region of the brain without being invasive. Patients and methods: We recruited 56 chronic pain patients and 60 healthy controls to compare brain metabolic characteristics. The concentrations of glutamic acid (Glu, myo-inositol (Ins, N-acetylaspartate (NAA, Glu + glutamine (Glx, and creatine + phosphocreatine (total creatine [tCr] in the anterior cingulate cortex of participants were measured using 1H-MRS. We used age- and gender-adjusted general linear models and receiver-operating characteristic analyses for this investigation. Patients were also assessed using the Hospital Anxiety and Depression Scale (HADS to reveal the existence of any mental health issues. Results: Our analysis indicates that pain patients have statistically significantly higher levels of Glu/tCr (p=0.039 and Glx/tCr (p<0.001 and lower levels of NAA/tCr than controls, although this did not reach statistical significance (p=0.052. Receiver-operating characteristic analysis

  13. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2015-10-01

    Full Text Available Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2 quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1 were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, with no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP.

  14. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia.

    Science.gov (United States)

    Cordes, Julia S; Mathiak, Krystyna A; Dyck, Miriam; Alawi, Eliza M; Gaber, Tilman J; Zepf, Florian D; Klasen, Martin; Zvyagintsev, Mikhail; Gur, Ruben C; Mathiak, Klaus

    2015-01-01

    Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the brain regions known to be dysfunctional in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over 3 days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. In a stepwise regression analysis, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, patients with schizophrenia can learn to regulate localized brain activity. However, cognitive strategies and neural network location differ from healthy controls. These data emphasize that for therapeutic interventions in patients with schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social NF based on fMRI may be one method to accomplish precise learning targets.

  15. Unlearning: NMDA receptor-mediated metaplasticity in the anterior piriform cortex following early odor preference training in rats.

    Science.gov (United States)

    Mukherjee, Bandhan; Morrison, Gillian L; Fontaine, Christine J; Hou, Qinlong; Harley, Carolyn W; Yuan, Qi

    2014-04-09

    Here we demonstrate metaplastic effect of a change in NMDA receptor (NMDAR) number in the anterior piriform cortex (aPC) in rat induced by a 10 min pairing of peppermint odor + stroking, which significantly modifies later learning and memory. Using isolated synaptoneurosomes, we found NR1 receptor downregulation 3 h after training and upregulation at 24 h. Consistent with the NR1 pattern, the NMDAR-mediated EPSP was smaller at 3 h and larger at 24 h. Subunit composition was unchanged. Whereas LTP was reduced at both times by training, LTD was facilitated only at 3 h. Behaviorally, pups, given a pairing of peppermint + stroking 3 h after an initial peppermint + stroking training, lost the normally acquired peppermint preference 24 h later. To probe the pathway specificity of this unlearning effect, pups were trained first with peppermint and then, at 3 h, given a second training with peppermint or vanillin. Pups given peppermint training at both times lost the learned peppermint preference. Pups given vanillin retraining at 3 h had normal peppermint preference. Downregulating NR1 with siRNA prevented odor preference learning. Finally, the NMDAR antagonist MK-801 blocked the LTD facilitation seen 3 h after training, and giving MK-801 before the second peppermint training trial eliminated the loss of peppermint odor preference. A training-associated reduction in NMDARs facilitates LTD 3 h later; training at the time of LTD facilitation reverses an LTP-dependent odor preference. Experience-dependent, pathway-specific metaplastic effects in a cortical structure have broad implications for the optimal spacing of learning experiences.

  16. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse.

    Science.gov (United States)

    Gocel, James; Larson, John

    2012-09-27

    Fragile X syndrome is a neurodevelopmental condition caused by the transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. The Fmr1 knockout (KO) mouse exhibits age-dependent deficits in long term potentiation (LTP) at association (ASSN) synapses in anterior piriform cortex (APC). To investigate the mechanisms for this, whole-cell voltage-clamp recordings of ASSN stimulation-evoked synaptic currents were made in APC of slices from adult Fmr1-KO and wild-type (WT) mice, using the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, CPP, to distinguish currents mediated by NMDA and AMPA receptors. NMDA/AMPA current ratios were lower in Fmr1-KO mice than in WT mice, at ages ranging from 3-18months. Since amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were no different in Fmr1-KO and WT mice at these ages, the results suggest that NMDA receptor-mediated currents are selectively reduced in Fmr1-KO mice. Analyses of voltage-dependence and decay kinetics of NMDA receptor-mediated currents did not reveal differences between Fmr1-KO and WT mice, suggesting that reduced NMDA currents in Fmr1-KO mice are due to fewer synaptic receptors rather than differences in receptor subunit composition. Reduced NMDA receptor signaling may help to explain the LTP deficit seen at APC ASSN synapses in Fmr1-KO mice at 6-18months of age, but does not explain normal LTP at these synapses in mice 3-6months old. Evoked currents and mEPSCs were also examined in senescent Fmr1-KO and WT mice at 24-28months of age. NMDA/AMPA ratios were similar in senescent WT and Fmr1-KO mice, due to a decrease in the ratio in the WT mice, without significant change in AMPA receptor-mediated mEPSCs.

  17. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger's Syndrome with Proton Magnetic Resonance Spectroscopy (MRS)

    Science.gov (United States)

    Goji, Aya; Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-01-01

    Purpose Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor neurobiochemical profiles in the brain. Asperger’s syndrome (AS) is a type of autism spectrum disorder, which is characterized by impaired social skills and restrictive, repetitive patterns of interest and activities, while intellectual levels and language skills are relatively preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling in the brain of AS remains to be clear. The present study used proton magnetic resonance spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable neurometabolic abnormalities that can contribute new information on the neurobiological underpinnings of the disorder. Methods Study participants consisted of 34 children with AS (2–12 years old; mean age 5.2 (±2.0); 28 boys) and 19 typically developed children (2–11 years old; mean age 5.6 (±2.6); 12 boys) who served as the normal control group. The 1H MRS data were obtained from two regions of interest: the anterior cingulate cortex (ACC) and left cerebellum. Results In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS compared to controls. On the other hand, no significant group differences in any of the metabolites were found in the left cerebellum. Neither age nor sex accounted for the metabolic findings in the regions. Conclusion The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebellar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort compared to controls. PMID:28060873

  18. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  19. Neural representation of ambiguous visual objects in the inferior temporal cortex.

    Directory of Open Access Journals (Sweden)

    Nazli Emadi

    Full Text Available Inferior temporal (IT cortex as the final stage of the ventral visual pathway is involved in visual object recognition. In our everyday life we need to recognize visual objects that are degraded by noise. Psychophysical studies have shown that the accuracy and speed of the object recognition decreases as the amount of visual noise increases. However, the neural representation of ambiguous visual objects and the underlying neural mechanisms of such changes in the behavior are not known. Here, by recording the neuronal spiking activity of macaque monkeys' IT we explored the relationship between stimulus ambiguity and the IT neural activity. We found smaller amplitude, later onset, earlier offset and shorter duration of the response as visual ambiguity increased. All of these modulations were gradual and correlated with the level of stimulus ambiguity. We found that while category selectivity of IT neurons decreased with noise, it was preserved for a large extent of visual ambiguity. This noise tolerance for category selectivity in IT was lost at 60% noise level. Interestingly, while the response of the IT neurons to visual stimuli at 60% noise level was significantly larger than their baseline activity and full (100% noise, it was not category selective anymore. The latter finding shows a neural representation that signals the presence of visual stimulus without signaling what it is. In general these findings, in the context of a drift diffusion model, explain the neural mechanisms of perceptual accuracy and speed changes in the process of recognizing ambiguous objects.

  20. Neural representation of ambiguous visual objects in the inferior temporal cortex.

    Science.gov (United States)

    Emadi, Nazli; Esteky, Hossein

    2013-01-01

    Inferior temporal (IT) cortex as the final stage of the ventral visual pathway is involved in visual object recognition. In our everyday life we need to recognize visual objects that are degraded by noise. Psychophysical studies have shown that the accuracy and speed of the object recognition decreases as the amount of visual noise increases. However, the neural representation of ambiguous visual objects and the underlying neural mechanisms of such changes in the behavior are not known. Here, by recording the neuronal spiking activity of macaque monkeys' IT we explored the relationship between stimulus ambiguity and the IT neural activity. We found smaller amplitude, later onset, earlier offset and shorter duration of the response as visual ambiguity increased. All of these modulations were gradual and correlated with the level of stimulus ambiguity. We found that while category selectivity of IT neurons decreased with noise, it was preserved for a large extent of visual ambiguity. This noise tolerance for category selectivity in IT was lost at 60% noise level. Interestingly, while the response of the IT neurons to visual stimuli at 60% noise level was significantly larger than their baseline activity and full (100%) noise, it was not category selective anymore. The latter finding shows a neural representation that signals the presence of visual stimulus without signaling what it is. In general these findings, in the context of a drift diffusion model, explain the neural mechanisms of perceptual accuracy and speed changes in the process of recognizing ambiguous objects.

  1. Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Michael A Harvey

    Full Text Available Our ability to perceive and discriminate textures relies on the transduction and processing of complex, high-frequency vibrations elicited in the fingertip as it is scanned across a surface. How naturalistic vibrations, and by extension texture, are encoded in the responses of neurons in primary somatosensory cortex (S1 is unknown. Combining single unit recordings in awake macaques and perceptual judgments obtained from human subjects, we show that vibratory amplitude is encoded in the strength of the response evoked in S1 neurons. In contrast, the frequency composition of the vibrations, up to 800 Hz, is not encoded in neuronal firing rates, but rather in the phase-locked responses of a subpopulation of neurons. Moreover, analysis of perceptual judgments suggests that spike timing not only conveys stimulus information but also shapes tactile perception. We conclude that information about the amplitude and frequency of natural vibrations is multiplexed at different time scales in S1, and encoded in the rate and temporal patterning of the response, respectively.

  2. Spinogenesis and pruning in the anterior ventral inferotemporal cortex of the macaque monkey: an intracellular injection study of layer III pyramidal cells

    Directory of Open Access Journals (Sweden)

    Guy N. Elston

    2011-07-01

    Full Text Available Cortical pyramidal cells grow and mature at different rates in visual, auditory and prefrontal cortex of the macaque monkey. In particular, differences across the areas have been reported in both the timing and magnitude of growth, branching, spinogenesis and pruning in the basal dendritic trees of cells in layer III. Presently available data suggest that these different growth profiles reflect the type of functions performed by these cells in the adult brain. However, to date, studies have focussed on only a relatively few cortical areas. In the present investigation we quantified the growth of the dendritic trees of layer III pyramidal cells in the anterior ventral portion of cytoarchitectonic area TE (TEav to better comprehend developmental trends in the cerebral cortex. We quantified the growth and branching of the dendrities, and spinogenesis and pruning of spines, from post-natal day 2 (PND2 to four and a half years of age. We found that the dendritic trees increase in size from PND2 to 7 months of age and thereafter become smaller. The dendritic trees became increasingly more branched from PND2 into adulthood. There was a 2-fold increase in the number of spines in the basal dendritic trees of pyramidal cells from PND2 to 3½ months of age and then a 10% net decrease in spine number into adulthood. Thus, the growth profile of layer III pyramidal cells in the anterior ventral portion of the inferotemporal cortex differs to that in other cortical areas associated with visual processing.

  3. The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development.

    Science.gov (United States)

    Klingler, Esther; Martin, Pierre-Marie; Garcia, Marta; Moreau-Fauvarque, Caroline; Falk, Julien; Chareyre, Fabrice; Giovannini, Marco; Chédotal, Alain; Girault, Jean-Antoine; Goutebroze, Laurence

    2015-06-01

    SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits.

  4. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    Victoria eHolec

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., courage. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to certain

  5. Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing.

    Science.gov (United States)

    Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit

    2015-01-07

    It is unknown if the white-matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white-matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white-matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white-matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits.

  6. Intracranial electroencephalography reveals different temporal profiles for dorsal- and ventro-lateral prefrontal cortex in preparing to stop action.

    Science.gov (United States)

    Swann, Nicole C; Tandon, Nitin; Pieters, Thomas A; Aron, Adam R

    2013-10-01

    Preparing to stop an inappropriate action requires keeping in mind the task goal and using this to influence the action control system. We tested the hypothesis that different subregions of prefrontal cortex show different temporal profiles consistent with dissociable contributions to preparing-to-stop, with dorsolateral prefrontal cortex (DLPFC) representing the task goal and ventrolateral prefrontal cortex (VLPFC) implementing action control. Five human subjects were studied using electrocorticography recorded from subdural grids over right lateral frontal cortex. On each trial, a task cue instructed the subject whether stopping might be needed or not (Maybe Stop [MS] or No Stop [NS]), followed by a go cue, and on some MS trials, a subsequent stop signal. We focused on go trials, comparing MS with NS. In the DLPFC, most subjects had an increase in high gamma activity following the task cue and the go cue. In contrast, in the VLPFC, all subjects had activity after the go cue near the time of the motor response on MS trials, related to behavioral slowing, and significantly later than the DLPFC activity. These different temporal profiles suggest that DLPFC and VLPFC could have dissociable roles, with DLPFC representing task goals and VLPFC implementing action control.

  7. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Science.gov (United States)

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  8. Arc visualization of odor objects reveals experience-dependent ensemble sharpening, separation, and merging in anterior piriform cortex in adult rat.

    Science.gov (United States)

    Shakhawat, Amin Md; Harley, Carolyn W; Yuan, Qi

    2014-07-30

    Visualization using the immediate early gene Arc revealed sparser and more robust odor representations in the anterior piriform cortex of adult rats when odor was associated with water reward over 2-3 d. Rewarded odor "mixtures" resulted in rats responding to either component odor similarly, and, correspondingly, the odor representations became more similar as indexed by increased overlap in piriform Arc-expressing (Arc(+)) pyramidal neurons. The increased overlap was consistent with the rats' generalization from component odors. Discriminating among highly similar odor mixtures for reward led to increased differentiation of the neural representations as indexed by a reduction in overlap for piriform Arc(+) pyramidal neurons after training. Similar odor mixture discrimination also required more trials to criterion. The visible reduction in the overlap of odor representations indexes pattern separation. The Arc visualization of odor representations in the anterior piriform network suggests that odor objects are widely distributed representations and can be rapidly modified by reward training in adult rats. We suggest that dynamic changes such as those observed here in piriform odor encoding are at the heart of perceptual learning and reflect the continuing plastic nature of mature associative cortex as an outcome of successful problem solving.

  9. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  10. P1-5: Effect of Luminance Contrast on the Color Selective Responses in the Inferior Temporal Cortex Neurons of the Macaque Monkey

    Directory of Open Access Journals (Sweden)

    Tomoyuki Namima

    2012-10-01

    Full Text Available Although the relationship between color signal and luminance signal is an important problem in visual perception, relatively little is known about how the luminance contrast affects the responses of color selective neurons in the visual cortex. In this study, we examined this problem in the inferior temporal (IT of the awake monkey performing a visual fixation task. Single neuron activities were recorded from the anterior and posterior color selective regions in IT cortex (AITC and PITC identified in previous studies where color selective neurons are accumulated. Color stimuli consisted of 28 stimuli that evenly distribute across the gamut of the CRT display defined on the CIE- xychromaticity diagram at two different luminance levels (5 cd/m 2or 20 cd/m 2 and 2 stimuli at white points. The background was maintained at 10 cd/m 2gray. We found that the effect of luminance contrast on the color selectivity was markedly different between AITC and PITC. When we examined the correlation between the responses to the bright stimuli and those to the dark stimuli with the same chromaticity coordinates, most AITC neurons exhibited high correlation whereas many PITC neurons showed no correlation or only weak correlation. In PITC, the effect was specifically large for neutral colors (white, gray, black and for colors with low saturation. These results indicate that the effect of luminance contrast on the color selective responses differs across different areas and suggest that the separation between color signal and luminance signal involves a higher stage of the cortical color processing.

  11. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  12. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness.

    Science.gov (United States)

    Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg

    2016-02-01

    Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity.

  13. Impact of family history of alcoholism on glutamine/glutamate ratio in anterior cingulate cortex in substance-naïve adolescents

    Directory of Open Access Journals (Sweden)

    Julia E. Cohen-Gilbert

    2015-12-01

    Full Text Available Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+ for alcoholism exhibit increased impulsivity compared to family history negative (FH− peers in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC. This study examined glutamate (Glu and glutamine (Gln, amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC using magnetic resonance spectroscopy (MRS at 4T. Participants were 28 adolescents (13 male, 12–14 yrs and 31 emerging adults (16 male, 18–25 yrs, stratified into FH− and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH− but not FH+ groups. In FH− adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life.

  14. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Lee, Seojung; Ran Kim, Kyung; Ku, Jeonghun; Lee, Jung-Hyun; Namkoong, Kee; Jung, Young-Chul

    2014-01-30

    Cortical areas supporting cognitive control and salience demonstrate different neural responses to visual food cues in patients with eating disorders. This top-down cognitive control, which interacts with bottom-up appetitive responses, is tightly integrated not only in task conditions but also in the resting-state. The dorsal anterior cingulate cortex (dACC) is a key node of a large-scale network that is involved in self-referential processing and cognitive control. We investigated resting-state functional connectivity of the dACC and hypothesized that altered connectivity would be demonstrated in cortical midline structures involved in self-referential processing and cognitive control. Seed-based resting-state functional connectivity was analyzed in women with anorexia nervosa (N=18), women with bulimia nervosa (N=20) and age matched healthy controls (N=20). Between group comparisons revealed that the anorexia nervosa group exhibited stronger synchronous activity between the dACC and retrosplenial cortex, whereas the bulimia nervosa group showed stronger synchronous activity between the dACC and medial orbitofrontal cortex. Both groups demonstrated stronger synchronous activity between the dACC and precuneus, which correlated with higher scores of the Body Shape Questionnaire. The dACC-precuneus resting-state synchrony might be associated with the disorder-specific rumination on eating, weight and body shape in patients with eating disorders.

  15. Anterior temporal artery tap to identify systemic interference using short-separation NIRS measurements

    DEFF Research Database (Denmark)

    Sood, Mehak; Jindal, Utkarsh; Chowdhury, Shubhajit Roy;

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate neural activity. Neural activity has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF) that supplies glucose via neurovascular coupling. Therefore, noninvasive and continuous monitoring...... of neural activity is possible with a measure of cerebral hemoglobin oxygenation using near-infrared spectroscopy (NIRS). In principal accordance, NIRS can capture the hemodynamic response to tDCS but the challenge remains in removing the systemic interference occurring in the superficial layers of the head...... that are also affected by tDCS. An approach may be to use short optode separations to measure systemic hemodynamic fluctuations occurring in the superficial layers which can then be used as regressors to remove the systemic contamination. Here, we demonstrate that temporal artery tap may be used to better...

  16. Insular cortex and neuropsychiatric disorders: a review of recent literature.

    Science.gov (United States)

    Nagai, M; Kishi, K; Kato, S

    2007-09-01

    The insular cortex is located in the centre of the cerebral hemisphere, having connections with the primary and secondary somatosensory areas, anterior cingulate cortex, amygdaloid body, prefrontal cortex, superior temporal gyrus, temporal pole, orbitofrontal cortex, frontal and parietal opercula, primary and association auditory cortices, visual association cortex, olfactory bulb, hippocampus, entorhinal cortex, and motor cortex. Accordingly, dense connections exist among insular cortex neurons. The insular cortex is involved in the processing of visceral sensory, visceral motor, vestibular, attention, pain, emotion, verbal, motor information, inputs related to music and eating, in addition to gustatory, olfactory, visual, auditory, and tactile data. In this article, the literature on the relationship between the insular cortex and neuropsychiatric disorders was summarized following a computer search of the Pub-Med database. Recent neuroimaging data, including voxel based morphometry, PET and fMRI, revealed that the insular cortex was involved in various neuropsychiatric diseases such as mood disorders, panic disorders, PTSD, obsessive-compulsive disorders, eating disorders, and schizophrenia. Investigations of functions and connections of the insular cortex suggest that sensory information including gustatory, olfactory, visual, auditory, and tactile inputs converge on the insular cortex, and that these multimodal sensory information may be integrated there.

  17. Electrical brain imaging evidences left auditory cortex involvement in speech and non-speech discrimination based on temporal features

    Directory of Open Access Journals (Sweden)

    Jancke Lutz

    2007-12-01

    Full Text Available Abstract Background Speech perception is based on a variety of spectral and temporal acoustic features available in the acoustic signal. Voice-onset time (VOT is considered an important cue that is cardinal for phonetic perception. Methods In the present study, we recorded and compared scalp auditory evoked potentials (AEP in response to consonant-vowel-syllables (CV with varying voice-onset-times (VOT and non-speech analogues with varying noise-onset-time (NOT. In particular, we aimed to investigate the spatio-temporal pattern of acoustic feature processing underlying elemental speech perception and relate this temporal processing mechanism to specific activations of the auditory cortex. Results Results show that the characteristic AEP waveform in response to consonant-vowel-syllables is on a par with those of non-speech sounds with analogue temporal characteristics. The amplitude of the N1a and N1b component of the auditory evoked potentials significantly correlated with the duration of the VOT in CV and likewise, with the duration of the NOT in non-speech sounds. Furthermore, current density maps indicate overlapping supratemporal networks involved in the perception of both speech and non-speech sounds with a bilateral activation pattern during the N1a time window and leftward asymmetry during the N1b time window. Elaborate regional statistical analysis of the activation over the middle and posterior portion of the supratemporal plane (STP revealed strong left lateralized responses over the middle STP for both the N1a and N1b component, and a functional leftward asymmetry over the posterior STP for the N1b component. Conclusion The present data demonstrate overlapping spatio-temporal brain responses during the perception of temporal acoustic cues in both speech and non-speech sounds. Source estimation evidences a preponderant role of the left middle and posterior auditory cortex in speech and non-speech discrimination based on temporal

  18. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  19. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    Science.gov (United States)

    Bonell, Claudia E.; Cherniz, Analía S.; Tabernig, Carolina B.

    2007-11-01

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives.

  20. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    Energy Technology Data Exchange (ETDEWEB)

    Bonell, Claudia E; Cherniz, AnalIa S; Tabernig, Carolina B [Laboratorio de Ingenieria de Rehabilitacion e Investigaciones Neuromusculares y Sensoriales, Facultad de Ingenieria, UNER, Oro Verde (Argentina)

    2007-11-15

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives.

  1. Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe.

    Science.gov (United States)

    Li, Rui; Zhu, Xinyi; Yin, Shufei; Niu, Yanan; Zheng, Zhiwei; Huang, Xin; Wang, Baoxi; Li, Juan

    2014-01-01

    The prefrontal cortex and medial temporal lobe are particularly vulnerable to the effects of aging. The disconnection between them is suggested to be an important cause of cognitive decline in normal aging. Here, using multimodal intervention training, we investigated the functional plasticity in resting-state connectivity of these two regions in older adults. The multimodal intervention, comprised of cognitive training, Tai Chi exercise, and group counseling, was conducted to explore the regional connectivity changes in the default-mode network, as well as changes in prefrontal-based voxel-wise connectivity in the whole brain. Results showed that the intervention selectively affected resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Moreover, the strength of resting-state functional connectivity between these regions correlated with individual cognitive performance. Our results suggest that multimodal intervention could postpone the effects of aging and improve the function of the regions that are most heavily influenced by aging, as well as play an important role in preserving the brain and cognition during old age.

  2. Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe

    Directory of Open Access Journals (Sweden)

    Rui eLi

    2014-03-01

    Full Text Available The prefrontal cortex and medial temporal lobe are particularly vulnerable to the effects of aging. The disconnection between them is suggested to be an important cause of cognitive decline in normal aging. Here, using multimodal intervention training, we investigated the functional plasticity in resting-state connectivity of these two regions in older adults. The multimodal intervention, comprised of cognitive training, Tai Chi exercise, and group counseling, was conducted to explore the regional connectivity changes in the default-mode network, as well as changes in prefrontal-based voxel-wise connectivity in the whole brain. Results showed that the intervention selectively affected resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Moreover, the strength of resting-state functional connectivity between these regions correlated with individual cognitive performance. Our results suggest that multimodal intervention could postpone the effects of aging and improve the function of the regions that are most heavily influenced by aging, as well as play an important role in preserving the brain and cognition during old age.Clinical Trial Registration: This trial was registered in the Chinese Clinical Trial Registry (ChiCTR (http://www.chictr.org: ChiCTR-PNRC-13003813.

  3. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Vasavi R. Gorantla

    2016-01-01

    Full Text Available Temporal lobe epilepsy (TLE is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure and in a second experiment after a 60 d period of normal activity (delayed exposure. Morphometric counting of neuron numbers (NN and dendritic branch points and intersections (DDBPI was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed.

  4. Does a single session of theta-burst transcranial magnetic stimulation of inferior temporal cortex affect tinnitus perception?

    Directory of Open Access Journals (Sweden)

    Moser Tobias

    2009-05-01

    Full Text Available Abstract Background Cortical excitability changes as well as imbalances in excitatory and inhibitory circuits play a distinct pathophysiological role in chronic tinnitus. Repetitive transcranial magnetic stimulation (rTMS over the temporoparietal cortex was recently introduced to modulate tinnitus perception. In the current study, the effect of theta-burst stimulation (TBS, a novel rTMS paradigm was investigated in chronic tinnitus. Twenty patients with chronic tinnitus completed the study. Tinnitus severity and loudness were monitored using a tinnitus questionnaire (TQ and a visual analogue scale (VAS before each session. Patients received 600 pulses of continuous TBS (cTBS, intermittent TBS (iTBS and intermediate TBS (imTBS over left inferior temporal cortex with an intensity of 80% of the individual active or resting motor threshold. Changes in subjective tinnitus perception were measured with a numerical rating scale (NRS. Results TBS applied to inferior temporal cortex appeared to be safe. Although half of the patients reported a slight attenuation of tinnitus perception, group analysis resulted in no significant difference when comparing the three specific types of TBS. Converting the NRS into the VAS allowed us to compare the time-course of aftereffects. Only cTBS resulted in a significant short-lasting improvement of the symptoms. In addition there was no significant difference when comparing the responder and non-responder groups regarding their anamnestic and audiological data. The TQ score correlated significantly with the VAS, lower loudness indicating less tinnitus distress. Conclusion TBS does not offer a promising outcome for patients with tinnitus in the presented study.

  5. β-Adrenoceptor activation enhances L-type calcium channel currents in anterior piriform cortex pyramidal cells of neonatal mice: implication for odor learning.

    Science.gov (United States)

    Ghosh, Abhinaba; Mukherjee, Bandhan; Chen, Xihua; Yuan, Qi

    2017-03-01

    Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. β-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether β-adrenoceptors interact directly with LTCCs in aPC pyramidal cells is unknown. Here we show that pyramidal cells expressed significant LTCC currents that declined with age. β-Adrenoceptor activation via isoproterenol age-dependently enhanced LTCC currents. Nifedipine-sensitive, isoproterenol enhancement of calcium currents was only observed in post-natal day 7-10 mice. APC β-adrenoceptor activation induced early odor preference learning was blocked by nifedipine coinfusion.

  6. Effects of essential amino acid deficiency: down-regulation of KCC2 and the GABAA receptor; disinhibition in the anterior piriform cortex.

    Science.gov (United States)

    Sharp, James W; Ross-Inta, Catherine M; Baccelli, Irène; Payne, John A; Rudell, John B; Gietzen, Dorothy W

    2013-11-01

    The anterior piriform cortex (APC) is activated by, and is the brain area most sensitive to, essential (indispensable) amino acid (IAA) deficiency. The APC is required for the rapid (20 min) behavioral rejection of IAA deficient diets and increased foraging, both crucial adaptive functions supporting IAA homeostasis in omnivores. The biochemical mechanisms signaling IAA deficiency in the APC block initiation of translation in protein synthesis via uncharged tRNA and the general amino acid control kinase, general control nonderepressing kinase 2. Yet, how inhibition of protein synthesis activates the APC is unknown. The neuronal K(+) Cl(-) cotransporter, neural potassium chloride co-transporter (KCC2), and GABAA receptors are essential inhibitory elements in the APC with short plasmalemmal half-lives that maintain control in this highly excitable circuitry. After a single IAA deficient meal both proteins were reduced (vs. basal diet controls) in western blots of APC (but not neocortex or cerebellum) and in immunohistochemistry of APC. Furthermore, electrophysiological analyses support loss of inhibitory elements such as the GABAA receptor in this model. As the crucial inhibitory function of the GABAA receptor depends on KCC2 and the Cl(-) transmembrane gradient it establishes, these results suggest that loss of such inhibitory elements contributes to disinhibition of the APC in IAA deficiency. The circuitry of the anterior piriform cortex (APC) is finely balanced between excitatory (glutamate, +) and inhibitory (GABA, -) transmission. GABAA receptors use Cl(-), requiring the neural potassium chloride co-transporter (KCC2). Both are rapidly turning-over proteins, dependent on protein synthesis for repletion. In IAA (indispensable amino acid) deficiency, within 20 min, blockade of protein synthesis prevents restoration of these inhibitors; they are diminished; disinhibition ensues. GCN2 = general control non-derepressing kinase 2, eIF2α = α-subunit of the eukaryotic

  7. The use of sequential hippocampal-dependent and -non-dependent tasks to study the activation profile of the anterior cingulate cortex during recent and remote memory tests.

    Science.gov (United States)

    Wartman, Brianne C; Holahan, Matthew R

    2013-11-01

    Recent findings suggest that as time passes, cortical networks become recruited for memory storage. In animal models, this has been studied by exposing rodents to one task, allowing them to form a memory representation for the task then waiting different periods of time to determine, either through brain imaging or region-specific inactivation, the location of the memory representation. A number of reports show that 30 days after a memory has been encoded, it comes to be stored in cortical areas such as the anterior cingulate cortex. The present study sought to determine what factors, in addition to the passage of time, would influence whether memory retrieval was associated with cortical activation. To this end, rats were assigned to one of three behavioural groups: (1) Training on one hippocampal-dependent memory task, the water maze (WM); (2) Training on two, different hippocampal-dependent memory tasks, the WM followed by the radial arm maze; (3) Training on one hippocampal-dependent memory task (WM) followed by training on one, non-hippocampal-dependent task, operant conditioning. After training, each group received a recent (2d) or remote (31d) water maze probe test. The group trained on two different hippocampal-dependent tasks and tested 2d later, showed the strongest preference for the platform location during the probe test. This group also displayed a pattern of c-Fos staining in the anterior cingulate cortex similar to the pattern of staining observed in the remotely-tested groups and different from that seen in the other recently-tested groups. These results suggest the formation of multiple hippocampal-dependent memories accelerate the speed at which cortical network recruitment is seen and leads to enhanced behavioural performance in the recent term.

  8. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    Science.gov (United States)

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  9. Comprehension of Concrete and Abstract Words in Patients with Selective Anterior Temporal Lobe Resection and in Patients with Selective Amygdalo-Hippocampectomy

    Science.gov (United States)

    Loiselle, Magalie; Rouleau, Isabelle; Nguyen, Dang Khoa; Dubeau, Francois; Macoir, Joel; Whatmough, Christine; Lepore, Franco; Joubert, Sven

    2012-01-01

    The role of the anterior temporal lobe (ATL) in semantic memory is now firmly established. There is still controversy, however, regarding the specific role of this region in processing various types of concepts. There have been reports of patients suffering from semantic dementia (SD), a neurodegenerative condition in which the ATL is damaged…

  10. Temporal sequence of visuo-auditory interaction in multiple areas of the guinea pig visual cortex.

    Directory of Open Access Journals (Sweden)

    Masataka Nishimura

    Full Text Available Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1. Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction.

  11. Lateralized odor preference training in rat pups reveals an enhanced network response in anterior piriform cortex to olfactory input that parallels extended memory.

    Science.gov (United States)

    Fontaine, Christine J; Harley, Carolyn W; Yuan, Qi

    2013-09-18

    The present study examines synaptic plasticity in the anterior piriform cortex (aPC) using ex vivo slices from rat pups given lateralized odor preference training. In the early odor preference learning model, a brief 10 min training session yields 24 h memory, while four daily sessions yield 48 h memory. Odor preference memory can be lateralized through naris occlusion as the anterior commissure is not yet functional. AMPA receptor-mediated postsynaptic responses in the aPC to lateral olfactory tract input, shown to be enhanced at 24 h, are no longer enhanced 48 h after a single training session. Following four spaced lateralized trials, the AMPA receptor-mediated fEPSP is enhanced in the trained aPC at 48 h. Calcium imaging of aPC pyramidal cells within 48 h revealed decreased firing thresholds in the pyramidal cell network. Thus multiday odor preference training induced increased odor input responsiveness in previously weakly activated aPC cells. These results support the hypothesis that increased synaptic strength in olfactory input networks mediates odor preference memory. The increase in aPC network activation parallels behavioral memory.

  12. Modeling of Spatial and Temporal Dynamics in Biological Olfactory Systems

    Science.gov (United States)

    2007-09-21

    anterior part of piriform cortex can be excited by the temporal encoding and processing. In static systems afferent input alone, the posterior areas...between different odors, but instead seem to encode 2.2.1 Synaptic organization. The piriform cortex (PC), odor concentration. The latency of their...the U.S. government. Nature 387: 285-288 Ketchum KL, Haberly LB (1993a) Synaptic events that generate fast oscillations in piriform cortex. I

  13. Open label smoking cessation with varenicline is associated with decreased glutamate levels and functional changes in anterior cingulate cortex: preliminary findings

    Directory of Open Access Journals (Sweden)

    Muriah Dawn Wheelock

    2014-07-01

    Full Text Available Rationale: Varenicline, the most effective single agent for smoking cessation, is a partial agonist at α4β2 nicotinic acetylcholine receptors. Increasing evidence implicates glutamate in the pathophysiology of addiction and one of the benefits of treatment for smoking cessation is the ability to regain cognitive control. Objective: To evaluate the effects of 12 week varenicline administration on glutamate levels in the dorsal anterior cingulate cortex (dACC and functional changes within the cognitive control network.Methods: We used single-voxel proton magnetic resonance spectroscopy (1H-MRS in the dACC and functional MRI (fMRI during performance of a Stroop color-naming task before and after smoking cessation with varenicline in 11 healthy smokers (open label design. Using the dACC as a seed region, we evaluated functional connectivity changes using a psychophysiological interaction (PPI analysis. Results: We observed a significant decrease in dACC glutamate + glutamine (Glx/Cr levels as well as significant blood oxygen level-dependent signal (BOLD decreases in the rostral ACC/medial orbitofrontal cortex and precuneus/posterior cingulate cortex. These BOLD changes are suggestive of alterations in default mode network (DMN function and are further supported by the results of the PPI analysis that revealed changes in connectivity between the dACC and regions of the DMN. Baseline measures of nicotine dependence and craving positively correlated with baseline Glx/Cr levels.Conclusions: These results suggest possible mechanisms of action for varenicline such as reduction in Glx levels in dACC and shifts in BOLD activities between large scale brain networks. They also suggest a role for ACC Glx in the modulation of behavior. Due to the preliminary nature of this study (lack of control group and small sample size, future studies are needed to replicate these findings.

  14. Apples are not the only fruit: The effects of concept typicality on semantic representation in the anterior temporal lobe

    Directory of Open Access Journals (Sweden)

    Anna M. Woollams

    2012-04-01

    Full Text Available Intuitively, an apple seems a fairly good example of a fruit, whereas an avocado seems less so. The extent to which an exemplar is representative of its category, a variable known as concept typicality, has long been thought to be a key dimension determining semantic representation. Concept typicality is, however, correlated with a number of other variables, in particular age of acquisition and name frequency. Consideration of picture naming accuracy from a large case-series of semantic dementia patients demonstrated strong effects of concept typicality that were maximal in the moderately impaired patients, over and above the impact of age of acquisition and name frequency. Induction of a temporary virtual lesion to the left anterior temporal lobe, the region most commonly affected in semantic dementia, via repetitive Transcranial Magnetic Stimulation produced an enhanced effect of concept typicality in the picture naming of normal participants, but did not affect the magnitude of the age of acquisition or name frequency effects. These results indicate that concept typicality exerts its influence on semantic representations themselves, as opposed to the strength of connections outside the semantic system. To date, there has been little direct exploration of the dimension of concept typicality within connectionist models of intact and impaired conceptual representation, and these findings provide a target for future computational simulation.

  15. Proper name anomia with preserved lexical and semantic knowledge after left anterior temporal lesion: a two-way convergence defect.

    Science.gov (United States)

    Busigny, Thomas; de Boissezon, Xavier; Puel, Michèle; Nespoulous, Jean-Luc; Barbeau, Emmanuel J

    2015-04-01

    This article describes the case of a patient who, following herpes simplex encephalitis (HSE), retained the ability to access rich conceptual semantic information for familiar people whom he was no longer able to name. Moreover, this patient presented the very rare combination of name production and name comprehension deficits for different categories of proper names (persons and acronyms). Indeed, besides his difficulty to retrieve proper names, SL presented a severe deficit in understanding and identifying them. However, he was still able to recognize proper names on familiarity decision, demonstrating that name forms themselves were intact. We interpret SL's deficit as a rare form of two-way lexico-semantic disconnection, in which intact lexical knowledge is disconnected from semantic knowledge and face units. We suggest that this disconnection reflects the role of the left anterior temporal lobe in binding together different types of knowledge and supports the classical convergence-zones framework (e.g., Damasio, 1989) rather than the amodal semantic hub theory (e.g., Patterson, Nestor, & Rogers, 2007).

  16. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Audet, M.A.; Doucet, G.; Oleskevich, S.; Descarries, L.

    1988-08-15

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with (3H)DA and citalopram or with (3H)NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after (3H)NA incubation with or without DMI were observed after (3H)NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness.

  17. Continuous representation of human portraits and natural scenery in human ventral temporal cortex:evidence from functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    肖壮伟; 林冲宇; 罗小景; 黄芳梅; 庄伟端; 李俊雄; 翁旭初; 吴仁华

    2004-01-01

    Background Functional magnetic resonance imaging (fMRI) has become a powerful tool for tracking human brain activity in vivo. This technique is mainly based on blood oxygenation level dependence (BOLD) contrast. In the present study, we employed this newly developed technique to characterize the neural representations of human portraits and natural sceneries in the human brain.Methods Nine subjects were scanned with a 1.5 T magnetic resonance imaging (MRI) scanner using gradient-recalled echo and echo-planar imaging (GRE-EPI) pulse sequence while they were visually presented with 3 types of white-black photographs: natural scenery, human portraits, and scrambled nonsense pictures. Multiple linear regression was used to identify brain regions responding preferentially to each type of stimulus and common regions for both human portraits and natural scenery. The relative contributions of each type of stimulus to activation in these regions were examined using linear combinations of a general linear test.Results Multiple linear regression analysis revealed two distinct but adjacent regions in both sides of the ventral temporal cortex. The medial region preferentially responded to natural scenery, whereas the lateral one preferentially responded to the human portraits. The general linear test further revealed a distribution gradient such that a change from portraits to scenes shifted areas of activation from lateral to medial.Conclusions The boundary between portrait-associated and scenery-associated areas is not as clear as previously demonstrated. The representations of portraits and scenes in ventral temporal cortex appear to be continuous and overlap.

  18. Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Rick L Jenison

    Full Text Available Spectro-Temporal Receptive Fields (STRFs were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM. A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl's gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl's gyrus recordings elicited by click-train stimuli.

  19. Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    Full Text Available Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas.

  20. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor e

  1. "That thing in New York": Impaired naming vs. preserved recognition of unique entities following an anterior temporal lobe lesion

    Directory of Open Access Journals (Sweden)

    Daniel Roberts

    2014-04-01

    Full Text Available Background Anterior temporal lobe (aTL damage often results in semantic impairment. As such, the contribution of this region to semantic processing has received considerable attention. Two theories exist to explain aTL function based on conflicting neuropsychological investigations. The first proposes bilateral aTLs form a “hub” implicated in multimodal semantics (for review see: Jefferies, 2013. The second assumes distinct functions. The left is thought to function as a repertoire for knowledge of entities with unique lexical-conceptual associations (for review: Ross & Olson, 2012. These items represent an extreme end of a continuum of semantic specificity spanning unique (e.g., Eiffel Tower over less specific (e.g., tower to nonspecific (e.g., landmark – often denoted by famous faces, landmarks and proper names. LaTL function, therefore, is to link semantics to language systems for naming, whilst RaTL is involved in familiarity and recognition (e.g., Eiffel Tower -> a building in Paris; Drane et al., 2013. Evidence for each theory has proceeded in parallel but there has been no attempt to directly test them in a patient (Simmons & Martin, 2009. The novelty of this study, therefore, was to determine whether LaTL lesions disproportionately affect unique entity naming vs. recognition. Method WRP, a 51year old right-handed male, three year post-HSVE has a LaTL lesion with destruction of the temporal pole, extending to medial temporal, amygdala and hippocampus and atypical connectivity particularly involving the uncinate fasciculas. There is no evidence of either cortical or white matter damage in the right hemisphere. Previous work with WRP revealed a mild/moderate category-specific semantic deficit (Roberts et al., 2012. This new study focuses on unique entity picture naming, recognition and word-to-picture matching (WPM. Results & Discussion As predicted, results (Table 1 show that WRP was severely impaired in naming different categories

  2. The Effect of Temporal Context on the Sustained Pitch Response in Human Auditory Cortex

    OpenAIRE

    Gutschalk, Alexander; Patterson, Roy D.; Scherg, Michael; Uppenkamp, Stefan; Rupp, André

    2006-01-01

    Recent neuroimaging studies have shown that activity in lateral Heschl’s gyrus covaries specifically with the strength of musical pitch. Pitch strength is important for the perceptual distinctiveness of an acoustic event, but in complex auditory scenes, the distinctiveness of an event also depends on its context. In this magnetoencephalography study, we evaluate how temporal context influences the sustained pitch response (SPR) in lateral Heschl’s gyrus. In 2 sequences of continuously alterna...

  3. Clinical curative effect analysis and predictors of prognosis in patients with temporal lobe epilepsy after anterior temporal lobectomy:results after five years

    Institute of Scientific and Technical Information of China (English)

    Sun Zhenxing; Yuan Dan; Sun Yaxing; Zhang Jianguo; Zuo Huancong; Zhang Kai

    2014-01-01

    Background Anterior temporal lobectomy (ATL) is the most common surgical treatment for temporal lobe epilepsy (TLE),although long-term prognosis is often less favorable than short-term outcomes.This study aimed to examine the outcomes of patients with TLE 5 years after undergoing ATL,and to seek possible predictors of prognosis.Methods We examined the clinical records of 121 patients with TLE who underwent ATL in our institution between January 2005 and December 2008.The Engel seizure classification was used to divide patients into "seizure free" and "non-seizure free" groups.Univariate and multivariate Logistic regression analyses were used to identify potential prognostic indicators,including history,clinical features of seizures,and magnetic resonance imaging (MRI) and videoelectroencephalography (EEG) findings.Results The majority of patients were seizure free during the follow-up period:71.9% 1 year after surgery; 71.6% after 2 years; 75.8% after 3 years; 78.8% after 4 years after surgery and 68.8% after 5 years.There were significant differences between seizure-free and non-seizure-free groups in terms of preoperative seizure duration,history of febrile seizures,type of seizure,and MRI and video-EEG findings (P <0.05),but not in terms of sex,age at seizure onset,age at surgery,side of surgery,auras,family history of seizure,or history of traumatic brain injury,perinatal anoxia or intracranial infection history (P >0.05).Multivariate Logistic regression analysis showed that a preoperative seizure duration <10 years,a history of febrile seizures,simple complex partial seizures,positive MRI findings,hippocampal sclerosis and unilateral localized video-EEG spikes predicted better outcome (P <0.05).Conclusions ATL appears to be an effective means of treating TLE.Patients undergoing ATL for TLE require careful and comprehensive assessment to ensure optimal outcomes and to allow patients to make informed decisions about their treatment.

  4. The val158met polymorphism of human catechol-O-methyltransferase (COMT affects anterior cingulate cortex activation in response to painful laser stimulation

    Directory of Open Access Journals (Sweden)

    Musso Francesco

    2010-05-01

    Full Text Available Abstract Background Pain is a complex experience with sensory, emotional and cognitive aspects. Genetic and environmental factors contribute to pain-related phenotypes such as chronic pain states. Genetic variations in the gene coding for catechol-O-methyltransferase (COMT have been suggested to affect clinical and experimental pain-related phenotypes including regional μ-opioid system responses to painful stimulation as measured by ligand-PET (positron emission tomography. The functional val158met single nucleotide polymorphism has been most widely studied. However, apart from its impact on pain-induced opioid release the effect of this genetic variation on cerebral pain processing has not been studied with activation measures such as functional magnetic resonance imaging (fMRI, PET or electroencephalography. In the present fMRI study we therefore sought to investigate the impact of the COMT val158met polymorphism on the blood oxygen level-dependent (BOLD response to painful laser stimulation. Results 57 subjects were studied. We found that subjects homozygous for the met158 allele exhibit a higher BOLD response in the anterior cingulate cortex (ACC, foremost in the mid-cingulate cortex, than carriers of the val158 allele. Conclusion This result is in line with previous studies that reported higher pain sensitivity in homozygous met carriers. It adds to the current literature in suggesting that this behavioral phenotype may be mediated by, or is at least associated with, increased ACC activity. More generally, apart from one report that focused on pain-induced opioid release, this is the first functional neuroimaging study showing an effect of the COMT val158met polymorphism on cerebral pain processing.

  5. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study.

    Science.gov (United States)

    Li, Xingbao; Hartwell, Karen J; Borckardt, Jeffery; Prisciandaro, James J; Saladin, Michael E; Morgan, Paul S; Johnson, Kevin A; Lematty, Todd; Brady, Kathleen T; George, Mark S

    2013-07-01

    Numerous research groups are now using analysis of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) results and relaying back information about regional activity in their brains to participants in the scanner in 'real time'. In this study, we explored the feasibility of self-regulation of frontal cortical activation using real-time fMRI (rtfMRI) neurofeedback in nicotine-dependent cigarette smokers during exposure to smoking cues. Ten cigarette smokers were shown smoking-related visual cues in a 3 Tesla MRI scanner to induce their nicotine craving. Participants were instructed to modify their craving using rtfMRI feedback with two different approaches. In a 'reduce craving' paradigm, participants were instructed to 'reduce' their craving, and decrease the anterior cingulate cortex (ACC) activity. In a separate 'increase resistance' paradigm, participants were asked to increase their resistance to craving and to increase middle prefrontal cortex (mPFC) activity. We found that participants were able to significantly reduce the BOLD signal in the ACC during the 'reduce craving' task (P=0.028). There was a significant correlation between decreased ACC activation and reduced craving ratings during the 'reduce craving' session (P=0.011). In contrast, there was no modulation of the BOLD signal in mPFC during the 'increase resistance' session. These preliminary results suggest that some smokers may be able to use neurofeedback via rtfMRI to voluntarily regulate ACC activation and temporarily reduce smoking cue-induced craving. Further research is needed to determine the optimal parameters of neurofeedback rtfMRI, and whether it might eventually become a therapeutic tool for nicotine dependence.

  6. Relationship of γ-aminobutyric acid and glutamate+glutamine concentrations in the perigenual anterior cingulate cortex with performance of Cambridge Gambling Task.

    Science.gov (United States)

    Fujihara, Kazuyuki; Narita, Kosuke; Suzuki, Yusuke; Takei, Yuichi; Suda, Masashi; Tagawa, Minami; Ujita, Koichi; Sakai, Yuki; Narumoto, Jin; Near, Jamie; Fukuda, Masato

    2015-04-01

    The anterior cingulate cortex (ACC), consisting of the perigenual ACC (pgACC) and mid-ACC (i.e., affective and cognitive areas, respectively), plays a significant role in the performance of gambling tasks, which are used to measure decision-making behavior under conditions of risk. Although recent neuroimaging studies have suggested that the γ-aminobutyric acid (GABA) concentration in the pgACC is associated with decision-making behavior, knowledge regarding the relationship of GABA concentrations in subdivisions of the ACC with gambling task performance is still limited. The aim of our magnetic resonance spectroscopy study is to investigate in 20 healthy males the relationship of concentrations of GABA and glutamate+glutamine (Glx) in the pgACC, mid-ACC, and occipital cortex (OC) with multiple indexes of decision-making behavior under conditions of risk, using the Cambridge Gambling Task (CGT). The GABA/creatine (Cr) ratio in the pgACC negatively correlated with delay aversion score, which corresponds to the impulsivity index. The Glx/Cr ratio in the pgACC negatively correlated with risk adjustment score, which is reported to reflect the ability to change the amount of the bet depending on the probability of winning or losing. The scores of CGT did not significantly correlate with the GABA/Cr or Glx/Cr ratio in the mid-ACC or OC. Results of this study suggest that in the pgACC, but not in the mid-ACC or OC, GABA and Glx concentrations play a distinct role in regulating impulsiveness and risk probability during decision-making behavior under conditions of risk, respectively.

  7. Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex.

    Science.gov (United States)

    Bonte, Milene; Frost, Martin A; Rutten, Sanne; Ley, Anke; Formisano, Elia; Goebel, Rainer

    2013-12-01

    We study the developmental trajectory of morphology and function of the superior temporal cortex (STC) in children (8-9 years), adolescents (14-15 years) and young adults. We analyze cortical surface landmarks and functional MRI (fMRI) responses to voices, other natural categories and tones and examine how hemispheric asymmetry and inter-subject variability change across age. Our results show stable morphological asymmetries across age groups, including a larger left planum temporale and a deeper right superior temporal sulcus. fMRI analyses show that a rightward lateralization for voice-selective responses is present in all groups but decreases with age. Furthermore, STC responses to voices change from being less selective and more spatially diffuse in children to highly selective and focal in adults. Interestingly, the analysis of morphological landmarks reveals that inter-subject variability increases during development in the right--but not in the left--STC. Similarly, inter-subject variability of cortically-realigned functional responses to voices, other categories and tones increases with age in the right STC. Our findings reveal asymmetric developmental changes in brain regions crucial for auditory and voice perception. The age-related increase of inter-subject variability in right STC suggests that anatomy and function of this region are shaped by unique individual developmental experiences.

  8. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  9. The Cytokine Temporal Profile in Rat Cortex after Controlled Cortical Impact

    Directory of Open Access Journals (Sweden)

    Clifton L Dalgard

    2012-01-01

    Full Text Available Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury. Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12 and 24 hours and extended (3, and 7 days timepoints post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemilumenscence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFNγ, IL4, and IL5 reached peak concentrations 4 hours post-injury and immediately returned to levels not different from control tissue. The levels of IL1b, IL13, and TNFa were also highest at 4 hours post-injury although their expression remained significantly above levels in uninjured tissue at extended time points. Additionally, IL1b and IL13 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in an anti-inflammatory process. Interestingly, CCL2 and CCL20 did not reach peak levels until 1 day post-injury. Peak CCL2 levels were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may provide increased insight into a number of secondary cascade events that are initiated or regulated by inflammatory responses.

  10. Encoding of temporal information by timing, rate, and place in cat auditory cortex.

    Directory of Open Access Journals (Sweden)

    Kazuo Imaizumi

    Full Text Available A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1 the event-locked spike-timing precision, 2 the mean firing rate, and 3 the interspike interval (ISI. To determine how well these response aspects capture information about the repetition rate stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF to click trains and calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward processing streams that contribute differently to higher-order sound analysis.

  11. 额颞开颅颞前叶切除术中颞肌处理的技术问题%Management of temporal muscle in anterior temporal lobectomy during fronto-temporal craniotomy

    Institute of Scientific and Technical Information of China (English)

    苏崇德; 常鹏飞

    2011-01-01

    Objective Anterior temporal lobectomy and fronto-temporal craniotomy are the traditional surgical method for temporal lobe epilespy, in which management of temporal muscle is crucial. Any improper management of temporal muscle may result in the atrophy of post-operative temporal muscle. The study aims to put forward the surgical principles and techniques for the management of temporal muscle in fronto-temporal craniotomy according to our experiences and the anatomic study. Methods On the basis of anatomic study of fronto-temporal region and the literature review, the following surgical principles were put forward: firstly, during the incision and elevation of fronto-temporal scalp flap, the superficial temporal artery and the branches of facial nerves should be well preserved; secondly, preservation of temporal fascia attachment on the superior temporal line was helpful for the anatomic restoration of the temporal muscle; thirdly, retrograde dissection of the temporal muscle together with the temporal fascia was important; fourthly, wider stem of temporal muscle flap should be preserved and the transection of the muscle should be avoided; lastly, monopolar cautery was not suggested in the dissection of temporal muscle. Results Sixty-eight patients underwent the craniotomy according to the above-mentioned principles. Only 3 patients suffered the postoperative chewing ache in temporal region. No case of temporal muscle atrophy was found in 43 cases during 6 months to 2 years' follow-up. Conclusion Proper management of the temporal muscle and innervated nerves and arteries is helpful for the exposure and important for the prevention of complication, such as atrophy of temporal muscle.%目的 额颞开颅、颞前叶切除术是外科治疗颞叶癫痫的基本术式,开颅术中颞肌的处理是一个关键环节,如果手术操作不当会产生颞肌萎缩等并发症.本文总结了我们手术的经验,根据额颞区的解剖特点,提出额颞开颅术中颞

  12. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  13. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  14. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory.

    Science.gov (United States)

    Mukherjee, Bandhan; Yuan, Qi

    2016-10-14

    The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.

  15. Ultrastructure and synaptic connectivity of main and accessory olfactory bulb efferent projections terminating in the rat anterior piriform cortex and medial amygdala.

    Science.gov (United States)

    Park, Sook Kyung; Kim, Jong Ho; Yang, Eun Sun; Ahn, Dong Kuk; Moon, Cheil; Bae, Yong Chul

    2014-09-01

    Neurons in the main olfactory bulb relay peripheral odorant signals to the anterior piriform cortex (aPir), whereas neurons of the accessory olfactory bulb relay pheromone signals to the medial amygdala (MeA), suggesting that they belong to two functionally distinct systems. To help understand how odorant and pheromone signals are further processed in the brain, we investigated the synaptic connectivity of identified axon terminals of these neurons in layer Ia of the aPir and posterodorsal part of the MeA, using anterograde tracing with horseradish peroxidase, quantitative ultrastructural analysis of serial thin sections, and immunogold staining. All identified boutons contained round vesicles and some also contained many large dense core vesicles. The number of postsynaptic dendrites per labeled bouton was significantly higher in the aPir than in the MeA, suggesting higher synaptic divergence at a single bouton level. While a large fraction of identified boutons (29%) in the aPir contacted 2-4 postsynaptic dendrites, only 7% of the identified boutons in the MeA contacted multiple postsynaptic dendrites. In addition, the majority of the identified boutons in the aPir (95%) contacted dendritic spines, whereas most identified boutons in the MeA (64%) contacted dendritic shafts. Identified boutons and many of the postsynaptic dendrites showed glutamate immunoreactivity. These findings suggest that odorant and pheromone signals are processed differently in the brain centers of the main and accessory olfactory systems.

  16. Distribution of D1 and D2-dopamine receptors in calcium-binding-protein expressing interneurons in rat anterior cingulate cortex.

    Science.gov (United States)

    Xu, Lei; Zhang, Xue-Han

    2015-04-25

    Dopamine plays an important role in cognitive functions including decision making, attention, learning and memory in the anterior cingulate cortex (ACC). However, little is known about dopamine receptors (DAR) expression patterns in ACC neurons, especially GABAergic interneurons. The aim of the present study was to investigate the expression of the most abundant DAR subtypes, D1 receptors (D1Rs) and D2 receptors (D2Rs), in major types of GABAergic interneurons in rat ACC, including parvalbumin (PV)-, calretinin (CR)-, and calbindin D-28k (CB)-containing interneurons. Double immunofluorescence staining and confocal scanning were used to detect protein expression in rat brain sections. The results showed a high proportion of PV-containing interneurons express D1Rs and D2Rs, while a low proportion of CR-positive interneurons express D1Rs and D2Rs. D1R- and D2R-expressing PV interneurons are more prevalently distributed in deep layers than superficial layers of ACC. Moreover, we found the proportion of D2Rs expressed in CR cells is much greater than that of D1Rs. These regional and interneuron type-specific differences of D1Rs and D2Rs indicate functionally distinct roles for dopamine in modulating ACC activities via stimulating D1Rs and D2Rs.

  17. Mechanical Stimulus-Induced Wthdrawal Behavior Increases Subsequent Pre-Stimulus Local Field Potential Power in the Rostral Anterior Cingulate Cortex in Unanesthetized Rats.

    Science.gov (United States)

    Shen, Zui; Sun, Jing; Liu, Boyi; Jiang, Yongliang; Wu, Yuanyuan; Wang, Jialing; Shao, Xiaomei; Fang, Jianqiao

    2017-03-02

    BACKGROUND The rostral anterior cingulate cortex (rACC) is important in pain expectation. Previous studies demonstrated that mechanical stimulus-induced withdrawal behaviors are spinally-mediated nocifensive reflexes in rats, but it is not known whether pain expectation is influenced by withdrawal behaviors. MATERIAL AND METHODS We reanalyzed previous mechanosensitivity measurements of 244 rats measured 5 times in succession. To study neural oscillation in the rACC, 1 recording microwire array was surgically implanted. Then, we simultaneously recorded the local field potential (LFP) of the rACC over the course of multiple withdrawal behaviors in unanesthetized rats. RESULTS From our previous withdrawal behavioral data in 244 rats, we observed that the distributions of paw withdrawal thresholds (PWTs) were denser and more concentrated after the first withdrawal behavior. Compared to the first mechanical stimulus, increased neuronal synchrony and a stronger delta band component existed in each pre-stimulus LFP in the rACC during subsequent stimuli. CONCLUSIONS Pain expectation could be involved in withdrawal behaviors, which is related to increased total power and delta band power of the subsequent pre-stimulus LFPs in the rACC.

  18. Matching categorical object representations in inferior temporal cortex of man and monkey.

    Science.gov (United States)

    Kriegeskorte, Nikolaus; Mur, Marieke; Ruff, Douglas A; Kiani, Roozbeh; Bodurka, Jerzy; Esteky, Hossein; Tanaka, Keiji; Bandettini, Peter A

    2008-12-26

    Inferior temporal (IT) object representations have been intensively studied in monkeys and humans, but representations of the same particular objects have never been compared between the species. Moreover, IT's role in categorization is not well understood. Here, we presented monkeys and humans with the same images of real-world objects and measured the IT response pattern elicited by each image. In order to relate the representations between the species and to computational models, we compare response-pattern dissimilarity matrices. IT response patterns form category clusters, which match between man and monkey. The clusters correspond to animate and inanimate objects; within the animate objects, faces and bodies form subclusters. Within each category, IT distinguishes individual exemplars, and the within-category exemplar similarities also match between the species. Our findings suggest that primate IT across species may host a common code, which combines a categorical and a continuous representation of objects.

  19. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    Science.gov (United States)

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context.

  20. [The postnatal development of the lamina V pyramidal cells in the temporal cortex of the albino rat].

    Science.gov (United States)

    Nicolai, B

    1981-01-01

    1. The development of layer V pyramidal neurons is analysed quantitatively in albino rat temporal ("auditory") cortex from the 1st to the 90th postnatal days (12 stages). The length of apical dendrites, the number of primary dendrites and the total amount of apical dendrite spines are registered in Golgi-Cox preparations (55 animals). The diameters of the nucleus, length and width of the perikaryon and the relation between nucleus and perikaryon are measured in Nissl-series (45 animals). 2. Two types of development can be recognised by the examined parameters: --Length of apical dendrites, number of primary dendrites and of apical dendrite spines aspire more or less continuously to a maximum value. --Sizes of nucleus and perikaryon show intermediately a higher value than the terminal one ("overshooting growth"). 3. The postnatal development of the parameters suggests that the dendritic growth (also after initiated phase) starts from the perikaryon and relates with dendritic neuroplasmic flow. 4. In order to give general statements about the evolution of layer V pyramidal neuron's rates of growth are counted and their degree of maturity is determined. The biggest rates of growth are reached up to the 12th day post partum. At this time the pyramidal neurons have a relatively high degree of maturity. 5. There are two periods with especially marked alterations of structure of the layer V pyramidal neurons. These alterations are regarded as morphokineses according to Scharf. I. The morphological changes between the 8th and the 12th day are regarded as "morphokinesis as a reaction to planned crises" (2.2., according to Scharf 1970). In this case the critical situation is the beginning of hearing of the young rats, which is to be prepared. II. The morphological changes between the 24th and 36th day take place in the critical period of primary socialization (Scott et al. 1974). This could be understood as "morphokinesis as a reaction to environmental influences" (2

  1. Functional plasticity in ventral temporal cortex following cognitive rehabilitation of a congenital prosopagnosic.

    Science.gov (United States)

    DeGutis, Joseph M; Bentin, Shlomo; Robertson, Lynn C; D'Esposito, Mark

    2007-11-01

    We used functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) to measure neural changes associated with training configural processing in congenital prosopagnosia, a condition in which face identification abilities are not properly developed in the absence of brain injury or visual problems. We designed a task that required discriminating faces by their spatial configuration and, after extensive training, prosopagnosic MZ significantly improved at face identification. Event-related potential results revealed that although the N170 was not selective for faces before training, its selectivity after training was normal. fMRI demonstrated increased functional connectivity between ventral occipital temporal face-selective regions (right occipital face area and right fusiform face area) that accompanied improvement in face recognition. Several other regions showed fMRI activity changes with training; the majority of these regions increased connectivity with face-selective regions. Together, the neural mechanisms associated with face recognition improvements involved strengthening early face-selective mechanisms and increased coordination between face-selective and nonselective regions, particularly in the right hemisphere.

  2. The temporal dynamics of implicit processing of non-letter, letter, and word-forms in the human visual cortex.

    Science.gov (United States)

    Appelbaum, Lawrence G; Liotti, Mario; Perez, Ricardo; Fox, Sarabeth P; Woldorff, Marty G

    2009-01-01

    The decoding of visually presented line segments into letters, and letters into words, is critical to fluent reading abilities. Here we investigate the temporal dynamics of visual orthographic processes, focusing specifically on right hemisphere contributions and interactions between the hemispheres involved in the implicit processing of visually presented words, consonants, false fonts, and symbolic strings. High-density EEG was recorded while participants detected infrequent, simple, perceptual targets (dot strings) embedded amongst a of character strings. Beginning at 130 ms, orthographic and non-orthographic stimuli were distinguished by a sequence of ERP effects over occipital recording sites. These early latency occipital effects were dominated by enhanced right-sided negative-polarity activation for non-orthographic stimuli that peaked at around 180 ms. This right-sided effect was followed by bilateral positive occipital activity for false-fonts, but not symbol strings. Moreover the size of components of this later positive occipital wave was inversely correlated with the right-sided ROcc180 wave, suggesting that subjects who had larger early right-sided activation for non-orthographic stimuli had less need for more extended bilateral (e.g., interhemispheric) processing of those stimuli shortly later. Additional early (130-150 ms) negative-polarity activity over left occipital cortex and longer-latency centrally distributed responses (>300 ms) were present, likely reflecting implicit activation of the previously reported 'visual-word-form' area and N400-related responses, respectively. Collectively, these results provide a close look at some relatively unexplored portions of the temporal flow of information processing in the brain related to the implicit processing of potentially linguistic information and provide valuable information about the interactions between hemispheres supporting visual orthographic processing.

  3. Bodies are Represented as Wholes Rather Than Their Sum of Parts in the Occipital-Temporal Cortex.

    Science.gov (United States)

    Brandman, Talia; Yovel, Galit

    2016-02-01

    Behavioral studies suggested that bodies are represented as wholes rather than in a part-based manner. However, neural selectivity for body stimuli is found for both whole bodies and body parts. It is therefore undetermined whether the neural representation of bodies is configural or part-based. We used functional MRI to test the role of first-order configuration on body representation in the human occipital-temporal cortex by comparing the response to a whole body versus the sum of its parts. Results show that body-selective areas, whether defined by selectivity to headless bodies or body parts, preferred whole bodies over their sum of parts and successfully decoded body configuration. This configural representation was specific to body stimuli and not found for faces. In contrast, general object areas showed no preference for wholes over parts and decoded the configuration of both bodies and faces. Finally, whereas effects of inversion on configural face representation were specific to face-selective mechanisms, effects of body inversion were not unique to body-selective mechanisms. We conclude that the neural representation of body parts is strengthened by their arrangement into an intact body, thereby demonstrating a central role of first-order configuration in the neural representation of bodies in their category-selective areas.

  4. Differential DNA Methylation of MicroRNA Genes in Temporal Cortex from Alzheimer’s Disease Individuals

    Directory of Open Access Journals (Sweden)

    Darine Villela

    2016-01-01

    Full Text Available This study investigated for the first time the genomewide DNA methylation changes of noncoding RNA genes in the temporal cortex samples from individuals with Alzheimer’s disease (AD. The methylome of 10 AD individuals and 10 age-matched controls were obtained using Illumina 450 K methylation array. A total of 2,095 among the 15,258 interrogated noncoding RNA CpG sites presented differential methylation, 161 of which were associated with miRNA genes. In particular, 10 miRNA CpG sites that were found to be hypermethylated in AD compared to control brains represent transcripts that have been previously associated with the disease. This miRNA set is predicted to target 33 coding genes from the neuregulin receptor complex (ErbB signaling pathway, which is required for the neurons myelination process. For 6 of these miRNA genes (MIR9-1, MIR9-3, MIR181C, MIR124-1, MIR146B, and MIR451, the hypermethylation pattern is in agreement with previous results from literature that shows downregulation of miR-9, miR-181c, miR-124, miR-146b, and miR-451 in the AD brain. Our data implicate dysregulation of miRNA methylation as contributor to the pathogenesis of AD.

  5. Dissociable stages of problem solving (II): first evidence for process-contingent temporal order of activation in dorsolateral prefrontal cortex.

    Science.gov (United States)

    Ruh, Nina; Rahm, Benjamin; Unterrainer, Josef M; Weiller, Cornelius; Kaller, Christoph P

    2012-10-01

    In a companion study, eye-movement analyses in the Tower of London task (TOL) revealed independent indicators of functionally separable cognitive processes during problem solving, with processes of building up an internal representation of the problem preceding actual planning processes. These results imply that processes of internalization and planning should also be distinguishable in time and space with respect to concomitant brain activation patterns. To investigate this possibility, here we conducted analyses of fMRI data for left and right dorsolateral prefrontal cortex (dlPFC) during problem solving in the TOL task by accounting for the trial-by-trial variability of onsets and durations of the different cognitive processing stages. Comparisons between stimulus-locked and response-locked modeling approaches affirmed that activation in left dlPFC was elicited particularly during early processes of internalization, comprising the extraction of goal information and the generation of an internal problem representation, whereas activation in right dlPFC was predominantly attributable to later processes of mental transformations on this representation, that is planning proper. Thus, present data corroborate the proposal that often observed bilateral dlPFC activation patterns during complex cognitive tasks such as problem solving may reflect functionally and, to some extent, even temporally separable processes with opposing lateralizations.

  6. A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats.

    Science.gov (United States)

    Treviño, Samuel; Aguilar-Alonso, Patrícia; Flores Hernandez, Jose Angel; Brambila, Eduardo; Guevara, Jorge; Flores, Gonzalo; Lopez-Lopez, Gustavo; Muñoz-Arenas, Guadalupe; Morales-Medina, Julio Cesar; Toxqui, Veronica; Venegas, Berenice; Diaz, Alfonso

    2015-09-01

    A high calorie intake can induce the appearance of the metabolic syndrome (MS), which is a serious public health problem because it affects glucose levels and triglycerides in the blood. Recently, it has been suggested that MS can cause complications in the brain, since chronic hyperglycemia and insulin resistance are risk factors for triggering neuronal death by inducing a state of oxidative stress and inflammatory response that affect cognitive processes. This process, however, is not clear. In this study, we evaluated the effect of the consumption of a high-calorie diet (HCD) on both neurodegeneration and spatial memory impairment in rats. Our results demonstrated that HCD (90 day consumption) induces an alteration of the main energy metabolism markers, indicating the development of MS in rats. Moreover, an impairment of spatial memory was observed. Subsequently, the brains of these animals showed activation of an inflammatory response (increase in reactive astrocytes and interleukin1-β as well as tumor necrosis factor-α) and oxidative stress (reactive oxygen species and lipid peroxidation), causing a reduction in the number of neurons in the temporal cortex and hippocampus. Altogether, these results suggest that a HCD promotes the development of MS and contributes to the development of a neurodegenerative process and cognitive failure. In this regard, it is important to understand the relationship between MS and neuronal damage in order to prevent the onset of neurodegenerative disorders.

  7. Identification of atrophy of the subgenual anterior cingulate cortex, in particular the subcallosal area, as an effective auxiliary means of diagnosis for major depressive disorder

    Directory of Open Access Journals (Sweden)

    Niida A

    2012-08-01

    cingulate cortex (sACC on the z-score map obtained.Results: No significant difference in atrophy was noted between the left and right sACCs. The VSRAD advance used in the present study was more effective than the VSRAD plus for diagnosis of MDD, with a sensitivity of 90.7%, specificity of 86.7%, accuracy of 89.5%, a positive predictive value of 94.4%, and a negative predictive value of 78.8%. In particular, atrophy was observed in the subcallosal area of the sACC.Conclusion: The identification of atrophy in the sACC, in particular of the subcallosal area, with the use of updated voxel-based morphometric software proved to be effective as an auxiliary diagnostic method for MDD.Keywords: major depressive disorder, magnetic resonance imaging, subgenual anterior cingulate cortex, voxel-based morphometry, VSRAD

  8. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study

    Science.gov (United States)

    Slaats-Willemse, Dorine; Kan, Cornelis C.; Goebel, Rainer; Buitelaar, Jan K.

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study’s small sample size, potential clinical benefits need to be further investigated in future studies. Trial Registration: ISRCTN12390961 PMID:28125735

  9. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    Science.gov (United States)

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  10. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  11. Norepinephrine modulates pyramidal cell synaptic properties in the anterior piriform cortex of mice: age-dependent effects of β-adrenoceptors

    Directory of Open Access Journals (Sweden)

    Abhinaba eGhosh

    2015-11-01

    Full Text Available Early odor preference learning in rodents occurs within a sensitive period (≤postnatal day (P10-12, during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g. stroking. Norepinephrine (NE release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice - odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8-11 and P14+, NE at two concentrations (0.1 and 10 μM did not alter intrinsic properties in either group. In contrast, in P8-11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM, suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.

  12. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup.

    Science.gov (United States)

    Morrison, Gillian L; Fontaine, Christine J; Harley, Carolyn W; Yuan, Qi

    2013-07-01

    cFos activation in the anterior piriform cortex (aPC) occurs in early odor preference learning in rat pups (Roth and Sullivan 2005). Here we provide evidence that the pairing of odor as a conditioned stimulus and β-adrenergic activation in the aPC as an unconditioned stimulus generates early odor preference learning. β-Adrenergic blockade in the aPC prevents normal preference learning. Enhancement of aPC cAMP response element-binding protein (CREB) phosphorylation in trained hemispheres is consistent with a role for this cascade in early odor preference learning in the aPC. In vitro experiments suggested theta-burst-mediated long-term potentiation (LTP) at the lateral olfactory tract (LOT) to aPC synapse depends on N-methyl-D-aspartate (NMDA) receptors and can be significantly enhanced by β-adrenoceptor activation, which causes increased glutamate release from LOT synapses during LTP induction. NMDA receptors in aPC are also shown to be critical for the acquisition, but not expression, of odor preference learning, as would be predicted if they mediate initial β-adrenoceptor-promoted aPC plasticity. Ex vivo experiments 3 and 24 h after odor preference training reveal an enhanced LOT-aPC field excitatory postsynaptic potential (EPSP). At 3 h both presynaptic and postsynaptic potentiations support EPSP enhancement while at 24 h only postsynaptic potentiation is seen. LOT-LTP in aPC is excluded by odor preference training. Taken together with earlier work on the role of the olfactory bulb in early odor preference learning, these outcomes suggest early odor preference learning is normally supported by and requires multiple plastic changes at least at two levels of olfactory circuitry.

  13. Norepinephrine Modulates Pyramidal Cell Synaptic Properties in the Anterior Piriform Cortex of Mice: Age-Dependent Effects of β-adrenoceptors.

    Science.gov (United States)

    Ghosh, Abhinaba; Purchase, Nicole C; Chen, Xihua; Yuan, Qi

    2015-01-01

    Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10-12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice - odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC) in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8-11 and P14+), NE at two concentrations (0.1 and 10 μM) did not alter intrinsic properties in either group. In contrast, in P8-11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM), suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM) acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.

  14. BOLD response to direct thalamic stimulation reveals a functional connection between the medial thalamus and the anterior cingulate cortex in the rat.

    Science.gov (United States)

    Shyu, Bai-Chung; Lin, Chun-Yu; Sun, Jyh-Jang; Chen, Shin-Lang; Chang, Chen

    2004-07-01

    Recent functional neuroimaging studies in humans and rodents have shown that the anterior cingulate cortex (ACC) is activated by painful stimuli, and plays an important role in the affective aspect of pain sensation. The aim of the present study was to develop a suitable stimulation method for direct activation of the brain in fMRI studies and to investigate the functional connectivity in the thalamo-cingulate pathway. In the first part of the study, tungsten, stainless steel, or glass-coated carbon fiber microelectrodes were implanted in the left medial thalamus (MT) of anesthetized rats, and T2*-weighted gradient-echo (GE) images were obtained in the sagittal plane on a 4.7 T system (Biospec BMT 47/40). Only the images obtained with the carbon fiber electrode were acceptable without a reduction of the signal-to-noise ratio (SNR) and image distortion. In the second part of the study, a series of two-slice GE images were acquired during electrical stimulation of the MT with the use of a carbon fiber electrode. A cross-correlation analysis showed that the signal intensities of activated areas in the ipsilateral ACC were significantly increased by about 4.5% during MT stimulation. Functional activation, as assessed by the distribution of c-Fos immunoreactivity, showed strong c-Fos expression in neurons in the ipsilateral ACC. The present study shows that glass-coated carbon fiber electrodes are suitable for fMRI studies and can be used to investigate functional thalamocortical activation.

  15. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points.

    Science.gov (United States)

    Wartman, Brianne C; Holahan, Matthew R

    2014-01-01

    Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC) may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioral procedures. Rats were trained on one hippocampal-dependent task only (a water maze task), two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task), or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task). Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA). Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioral group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories.

  16. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points.

    Directory of Open Access Journals (Sweden)

    Brianne Courtney Wartman

    2014-04-01

    Full Text Available Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioural procedures.Rats were trained on one hippocampal-dependent task only (a water maze task, two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task, or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task. Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA. Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioural group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories.

  17. Inhibition of p38 mitogen-activated protein kinase activation in the rostral anterior cingulate cortex attenuates pain-related negative emotion in rats.

    Science.gov (United States)

    Cao, Hong; Zang, Kai-Kai; Han, Mei; Zhao, Zhi-Qi; Wu, Gen-Cheng; Zhang, Yu-Qiu

    2014-08-01

    The emotional components of pain are far less studied than the sensory components. Previous studies have indicated that the rostral anterior cingulate cortex (rACC) is implicated in the affective response to noxious stimuli. Activation of p38 mitogen-activated protein kinase (MAPK) in the spinal cord has been documented to play an important role in diverse kinds of pathological pain states. We used formalin-induced conditioned place aversion (F-CPA) in rats, an animal model believed to reflect the emotional response to pain, to investigate the involvement of p38 MAPK in the rACC after the induction of affective pain. Intraplantar formalin injection produced a significant activation of p38 MAPK, as well as mitogen-activated kinase kinase (MKK) 3 and MKK6, its upstream activators, in the bilateral rACC. p38 MAPK was elevated in both NeuN-positive neurons and Iba1-positive microglia in the rACC, but not GFAP-positive cells. Blocking p38 MAPK activation in the bilateral rACC using its specific inhibitor SB203580 or SB239063 dose-dependently suppressed the formation of F-CPA. Inhibiting p38 MAPK activation did not affect formalin-induced two-phase spontaneous nociceptive response and low intensity electric foot-shock induced CPA. The present study demonstrated that p38 MAPK signaling pathway in the rACC contributes to pain-related negative emotion. Thus, a new pharmacological strategy targeted at the p38 MAPK cascade may be useful in treating pain-related emotional disorders.

  18. 4-Methylcatechol prevents derangements of brain-derived neurotrophic factor and TrkB-related signaling in anterior cingulate cortex in chronic pain with depression-like behavior.

    Science.gov (United States)

    Ishikawa, Kozo; Yasuda, Seiko; Fukuhara, Kayoko; Iwanaga, Yasutake; Ida, Yuika; Ishikawa, Junko; Yamagata, Hirotaka; Ono, Midori; Kakeda, Takahiro; Ishikawa, Toshizo

    2014-03-05

    Chronic pain with mood disorder, resulting from a peripheral nerve injury, is a serious clinical problem affecting the quality of life. A lack of brain-derived neurotrophic factor (BDNF) and abnormal intercellular signaling in the brain can mediate this symptom. BDNF is induced in cultured neurons by 4-methylcatechol (4-MC), but little is known about its role in pain-emotion. Thus, we characterized the actions of 4-MC on TrkB receptor-related pERK and BDNF mRNA in discreet brain regions related to pain-emotion after chronic pain in rat. Rats implanted with a stainless steel cannula into the lateral ventricular were subjected to chronic constriction injury (CCI). Pain was assessed by changes in paw withdrawal latency (PWL) to heat stimuli after CCI. Immobility time during the forced swimming testing was measured for depression-like behavior. Analgesic and antidepression modulations with 4-MC were examined by an anti-BDNF antibody (K252a, a TrkB receptor inhibitor). The animals were perfused and fixed (4% paraformaldehyde) for immunohistochemistry analysis (c-FOS/pERK). BDNF mRNA expression (anterior cingulate cortex) was determined using reverse transcription-PCR. Rats showed a sustained decrease in PWL, associated with a prolonged immobility time after CCI. 4-MC reduced decreases in PWL and increased immobility time. 4-MC reduced increases in pERK immunoreactivity and decreases in BDNF mRNA expression in regions related to pain and the limbic system. Anti-BDNF blocked effects induced by 4-MC. We suggest that a lack of BDNF associated with activated extracellular signal-regulated kinase in the pain-emotion network may be involved in depression-like behavior during chronic pain. 4-MC ameliorates pain-emotion symptoms by inducing BDNF and normalizing pERK activities.

  19. 双相抑郁患者前额叶和前扣带回皮质氢质子波谱研究%A 1H magnetic resonance spectroscopy imaging study on prefrontal cortex and anterior cingulate cortex in patients with bipolar depression

    Institute of Scientific and Technical Information of China (English)

    马海波; 宁厚梅; 李国海; 王冬青; 李一云; 张礼荣

    2013-01-01

    Objective: To measure the levels of metabolites in the prefrontal cortex and anterior cingulate cortex of patients with bipolar depression. Method:1 H-MRS was performed on prefrontal cortex and anterior cingulated cortex in 30 unmedicated patients with bipolar depression and 30 healthy controls. The patients underwent 1 H-MRS again after six weeks of drug treatment. The compounds measured were N-acetylaspartate (NAA) ,choline (Cho) , glutamate/glutamine (Glx) and creatine (Cr). Results: Bipolar depressive patients had significantly lower NAA/Cr ratios in left prefrontal cortex and bilateral anterior cingulate cortex than healthy controls (P 0. 05). After drug treatment , the ratios of NAA/Cr in left prefrontal cortex and bilateral anterior cingulate cortex were significantly increased compared with those before treatment (P <0. 05) , and the ratios of Cho/Cr, Glx/Cr in left prefrontal cortex and bilateral anterior cingulate cortex were significantly decreased compared with those before treatment (P<0.05). Conclusion:Alterations in the levels of NAA,Cho,Glx in prefrontal cortex and anterior cingulated cortex may be implicated in the pathogenesis of bipolar depression and are related to the efficacy of drug. A%目的:研究双相抑郁患者前额叶皮质、前扣带回皮质代谢物的相对含量. 方法:对30例未服药双相抑郁患者和30名健康志愿者的前额叶皮质、前扣带回皮质进行氢质子波谱(1 H-MRS)扫描,双相抑郁患者经6周药物治疗后再次做1 H-MRS扫描,检测N-乙酰天门冬氨酸(NAA)、胆碱(Cho)、谷氨酸复合物(Glx)、肌酸(Cr)4种代谢物. 结果:双相抑郁组左侧前额叶皮质、双侧前扣带回皮质NAA/Cr值均显著低于正常对照组(P<0.05),Cho/Cr值、Glx/Cr值均显著高于正常对照组(P<0.05),双相抑郁组右侧前额叶皮质NAA/Cr、Cho/Cr、Glx/Cr值两组比较差异无统计学意义(P>0.05).经药物治疗后,左侧前额叶皮质、双侧前扣带回皮质NAA/Cr值较

  20. Chronic intermittent hypoxia increases encoding pigment epithelium-derived factor gene expression, although not that of the protein itself, in the temporal cortex of rats,

    Directory of Open Access Journals (Sweden)

    Guilherme Silva Julian

    2015-02-01

    Full Text Available Objective: Obstructive sleep apnea syndrome is mainly characterized by intermittent hypoxia (IH during sleep, being associated with several complications. Exposure to IH is the most widely used animal model of sleep apnea, short-term IH exposure resulting in cognitive and neuronal impairment. Pigment epithelium-derived factor (PEDF is a hypoxia-sensitive factor acting as a neurotrophic, neuroprotective, and antiangiogenic agent. Our study analyzed performance on learning and cognitive tasks, as well as PEDF gene expression and PEDF protein expression in specific brain structures, in rats exposed to long-term IH. Methods: Male Wistar rats were exposed to IH (oxygen concentrations of 21-5% for 6 weeks-the chronic IH (CIH group-or normoxia for 6 weeks-the control group. After CIH exposure, a group of rats were allowed to recover under normoxic conditions for 2 weeks (the CIH+N group. All rats underwent the Morris water maze test for learning and memory, PEDF gene expression and PEDF protein expression in the hippocampus, frontal cortex, and temporal cortex being subsequently assessed. Results: The CIH and CIH+N groups showed increased PEDF gene expression in the temporal cortex, PEDF protein expression remaining unaltered. PEDF gene expression and PEDF protein expression remained unaltered in the frontal cortex and hippocampus. Long-term exposure to IH did not affect cognitive function. Conclusions: Long-term exposure to IH selectively increases PEDF gene expression at the transcriptional level, although only in the temporal cortex. This increase is probably a protective mechanism against IH-induced injury.

  1. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex

    Science.gov (United States)

    Hofstetter, Christoph; Vuilleumier, Patrik

    2014-01-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  2. Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer’s Disease

    Science.gov (United States)

    Ułamek-Kozioł, Marzena; Kocki, Janusz; Bogucka-Kocka, Anna; Petniak, Alicja; Gil-Kulik, Paulina; Januszewski, Sławomir; Bogucki, Jacek; Jabłoński, Mirosław; Furmaga-Jabłońska, Wanda; Brzozowska, Judyta; Czuczwar, Stanisław J.; Pluta, Ryszard

    2016-01-01

    Ischemic brain damage is a pathological incident that is often linked with medial temporal lobe cortex injury and finally its atrophy. Post-ischemic brain injury associates with poor prognosis since neurons of selectively vulnerable ischemic brain areas are disappearing by apoptotic program of neuronal death. Autophagy has been considered, after brain ischemia, as a guardian against neurodegeneration. Consequently, we have examined changes in autophagy (BECN 1), mitophagy (BNIP 3), and apoptotic (caspase 3) genes in the medial temporal lobe cortex with the use of quantitative reverse-transcriptase PCR following transient 10-min global brain ischemia in rats with survival 2, 7, and 30 days. The intense significant overexpression of BECN 1 gene was noted on the 2nd day, while on days 7–30 the expression of this gene was still upregulated. BNIP 3 gene was downregulated on the 2nd day, but on days 7–30 post-ischemia, there was a significant reverse tendency. Caspase 3 gene, associated with apoptotic neuronal death, was induced in the same way as BNIP 3 gene after brain ischemia. Thus, the demonstrated changes indicate that the considerable dysregulation of expression of BECN 1, BNIP 3, and caspase 3 genes may be connected with a response of neuronal cells in medial temporal lobe cortex to transient complete brain ischemia. PMID:27472881

  3. What role does the anterior temporal lobe play in sentence-level processing? Neural correlates of syntactic processing in semantic variant primary progressive aphasia.

    Science.gov (United States)

    Wilson, Stephen M; DeMarco, Andrew T; Henry, Maya L; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2014-05-01

    Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA; also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the ATLs is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA to determine which regions normally involved in syntactic processing are damaged in semantic PPA and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural MRI and fMRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that, in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, whereas anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the ATLs but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left ATL did show abnormal functionality in semantic PPA patients; however, this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared

  4. Spatial Frequency Dependence of the Human Visual Cortex Response on Temporal Frequency Modulation Studied by fMRI

    Directory of Open Access Journals (Sweden)

    A. Mirzajani

    2006-07-01

    Full Text Available Background/Objective: The brain response to temporal frequencies (TF has been already reported. However, there is no study on different TF with respect to various spatial frequencies (SF. Materials and Methods: Functional magnetic resonance imaging (fMRI was done by a 1.5 T General Electric system for 14 volunteers (9 males and 5 females, aged 19–26 years during square-wave reversal checkerboard visual stimulation with different temporal frequencies of 4, 6, 8 and 10 Hz in 2 states of low SF of 0.4 and high SF of 8 cycles/degree (cpd. All subjects had normal visual acuity of 20/20 based on Snellen’s fraction in each eye with good binocular vision and normal visual field based on confrontation test. The mean luminance of the entire checkerboard was 161.4 cd/m2 and the black and white check contrast was 96%. The activation map was created using the data obtained from the block designed fMRI study. Pixels with a Z score above a threshold of 2.3, at a statistical significance level of 0.05, were considered activated. The average percentage blood oxygenation level dependent (BOLD signal change for all activated pixels within the occipital lobe, multiplied by the total number of activated pixels within the occipital lobe, was used as an index for the magnitude of the fMRI signal at each state of TF&SF. Results: The magnitude of the fMRI signal in response to different TF’s was maximum at 6 Hz for a high SF value of 8 cpd; it was however, maximum at a TF of 8 Hz for a low SF of 0.4 cpd. Conclusion: The results of this study agree with those of animal invasive neurophysiologic studies showing SF and TF selectivity of neurons in visual cortex. These results can be useful for vision therapy and selecting visual tasks in fMRI studies.

  5. Increased anterior cingulate and temporal lobe activity during visuospatial working memory in children and adolescents with schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); D. Hongwanishkul (Donaya); M. Schmidt (Manfred)

    2011-01-01

    textabstractObjective: Similar to adults, children and adolescents with schizophrenia present with significant working memory (WkM) deficits. However, unlike adults, findings of abnormal activity in the prefrontal cortex in early-onset schizophrenia (EOS) are not consistently reported. Since WkM con

  6. Specialized elements of orbitofrontal cortex in primates.

    Science.gov (United States)

    Barbas, Helen

    2007-12-01

    The orbitofrontal cortex is associated with encoding the significance of stimuli within an emotional context, and its connections can be understood in this light. This large cortical region is architectonically heterogeneous, but its connections and functions can be summarized by a broad grouping of areas by cortical type into posterior and anterior sectors. The posterior (limbic) orbitofrontal region is composed of agranular and dysgranular-type cortices and has unique connections with primary olfactory areas and rich connections with high-order sensory association cortices. Posterior orbitofrontal areas are further distinguished by dense and distinct patterns of connections with the amygdala and memory-related anterior temporal lobe structures that may convey signals about emotional import and their memory. The special sets of connections suggest that the posterior orbitofrontal cortex is the primary region for the perception of emotions. In contrast to orbitofrontal areas, posterior medial prefrontal areas in the anterior cingulate are not multi-modal, but have strong connections with auditory association cortices, brain stem vocalization, and autonomic structures, in pathways that may mediate emotional communication and autonomic activation in emotional arousal. Posterior orbitofrontal areas communicate with anterior orbitofrontal areas and, through feedback projections, with lateral prefrontal and other cortices, suggesting a sequence of information processing for emotions. Pathology in orbitofrontal cortex may remove feedback input to sensory cortices, dissociating emotional context from sensory content and impairing the ability to interpret events.

  7. Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Emiko; Kanagaki, Mitsunori; Okada, Tomohisa; Yamamoto, Akira; Togashi, Kaori [Kyoto University Graduate School of Medicine, Department of Diagnostic Imaging and Nuclear Medicine, Kyoto (Japan); Mori, Nobuyuki [Tenri Hospital, Department of Radiology, Tenri, Nara (Japan); Matsumoto, Riki; Ikeda, Akio; Takahashi, Ryosuke [Kyoto University Graduate School of Medicine, Department of Neurology, Kyoto (Japan); Mikuni, Nobuhiro [Sapporo Medical University, Department of Neurosurgery, Sapporo, Hokkaido (Japan); Kunieda, Takeharu; Miyamoto, Susumu [Kyoto University Graduate School of Medicine, Department of Neurosurgery, Kyoto (Japan); Paul, Dominik [Siemens AG Healthcare Sector, Erlangen (Germany)

    2013-01-15

    To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences. This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using {kappa} statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar's test with multiple comparisons. Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P {<=} 0.031 for each evaluator). The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE. (orig.)

  8. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  9. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Wen-Han Hu; De-Long Wu; Kai Zhang; Jian-Guo Zhang

    2015-01-01

    Background:Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions.The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit,including the anterior nucleus of thalamus (ANT),the entorhinal cortex (EC),and the fornix (FX),on cognitive behaviors in an Alzheimer's disease (AD) rat model.Methods:Forty-eight rats were subjected to an intrahippocampal injection ofamyloid peptides 1-42 to induce an AD model.Rats were divided into six groups:DBS and sham DBS groups of ANT,EC,and FX.Spatial learning and memory were assessed by the Morris water maze (MWM).Recognition memory was investigated by the novel object recognition memory test (NORM).Locomotor and anxiety-related behaviors were detected by the open field test (OF).By using two-way analysis of variance (ANOVA),behavior differences between the six groups were analyzed.Results:In the MWM,the ANT,EC,and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2.23) =6.04,P < 0.01),the frequency of platform crossing (F(2,23) =11.53,P < 0.001),and the percent time spent within the platform quadrant (F(2,23) =6.29,P < 0.01).In the NORM,the EC and FX DBS groups spent more time with the novel object,although the ANT DBS group did not (F(2,23) =10.03,P < 0.001).In the OF,all of the groups showed a similar total distance moved (F(1.42) =1.14,P =0.29)and relative time spent in the center (F(2,42) =0.56,P =0.58).Conclusions:Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently thanANT DBS.In addition,hippocampus-independent recognition memory was enhanced by EC and FX DBS.None of the targets showed side-effects of anxiety or locomotor behaviors.

  10. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Science.gov (United States)

    2016-01-01

    Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav) subunits by real time polymerase chain reaction (PCR) in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct) values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP) there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain. PMID:27896032

  11. Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients

    Science.gov (United States)

    2013-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) has shown promise in the alleviation of acute and chronic pain by altering the activity of cortical areas involved in pain sensation. However, current single-coil rTMS technology only allows for effects in surface cortical structures. The ability to affect activity in certain deep brain structures may however, allow for a better efficacy, safety, and tolerability. This study used PET imaging to determine whether a novel multi-coil rTMS would allow for preferential targeting of the dorsal anterior cingulate cortex (dACC), an area always activated with pain, and to provide preliminary evidence as to whether this targeted approach would allow for efficacious, safe, and tolerable analgesia both in a volunteer/acute pain model as well as in fibromyalgia chronic pain patients. Methods Part 1: Different coil configurations were tested in a placebo-controlled crossover design in volunteers (N = 16). Tonic pain was induced using a capsaicin/thermal pain model and functional brain imaging was performed by means of H215O positron emission tomography – computed tomography (PET/CT) scans. Differences in NRS pain ratings between TMS and sham treatment (NRSTMS-NRSplacebo) which were recorded each minute during the 10 minute PET scans. Part 2: 16 fibromyalgia patients were subjected to 20 multi-coil rTMS treatments over 4 weeks and effects on standard pain scales (Brief Pain Inventory, item 5, i.e. average pain NRS over the last 24 hours) were recorded. Results A single 30 minute session using one of 3 tested rTMS coil configurations operated at 1 Hz consistently produced robust reduction (mean 70% on NRS scale) in evoked pain in volunteers. In fibromyalgia patients, the 20 rTMS sessions also produced a significant pain inhibition (43% reduction in NRS pain over last 24 hours), but only when operated at 10 Hz. This degree of pain control was maintained for at least 4 weeks after the final session

  12. Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without past history of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katarina eDedovic

    2016-03-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD, as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels. Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the

  13. Signed words in the congenitally deaf evoke typical late lexicosemantic responses with no early visual responses in left superior temporal cortex.

    Science.gov (United States)

    Leonard, Matthew K; Ferjan Ramirez, Naja; Torres, Christina; Travis, Katherine E; Hatrak, Marla; Mayberry, Rachel I; Halgren, Eric

    2012-07-11

    Congenitally deaf individuals receive little or no auditory input, and when raised by deaf parents, they acquire sign as their native and primary language. We asked two questions regarding how the deaf brain in humans adapts to sensory deprivation: (1) is meaning extracted and integrated from signs using the same classical left hemisphere frontotemporal network used for speech in hearing individuals, and (2) in deafness, is superior temporal cortex encompassing primary and secondary auditory regions reorganized to receive and process visual sensory information at short latencies? Using MEG constrained by individual cortical anatomy obtained with MRI, we examined an early time window associated with sensory processing and a late time window associated with lexicosemantic integration. We found that sign in deaf individuals and speech in hearing individuals activate a highly similar left frontotemporal network (including superior temporal regions surrounding auditory cortex) during lexicosemantic processing, but only speech in hearing individuals activates auditory regions during sensory processing. Thus, neural systems dedicated to processing high-level linguistic information are used for processing language regardless of modality or hearing status, and we do not find evidence for rewiring of afferent connections from visual systems to auditory cortex.

  14. Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: an fMRI study.

    Science.gov (United States)

    Kitada, Ryo; Johnsrude, Ingrid S; Kochiyama, Takanori; Lederman, Susan J

    2009-10-01

    Humans can recognize common objects by touch extremely well whenever vision is unavailable. Despite its importance to a thorough understanding of human object recognition, the neuroscientific study of this topic has been relatively neglected. To date, the few published studies have addressed the haptic recognition of nonbiological objects. We now focus on haptic recognition of the human body, a particularly salient object category for touch. Neuroimaging studies demonstrate that regions of the occipito-temporal cortex are specialized for visual perception of faces (fusiform face area, FFA) and other body parts (extrastriate body area, EBA). Are the same category-sensitive regions activated when these components of the body are recognized haptically? Here, we use fMRI to compare brain organization for haptic and visual recognition of human body parts. Sixteen subjects identified exemplars of faces, hands, feet, and nonbiological control objects using vision and haptics separately. We identified two discrete regions within the fusiform gyrus (FFA and the haptic face region) that were each sensitive to both haptically and visually presented faces; however, these two regions differed significantly in their response patterns. Similarly, two regions within the lateral occipito-temporal area (EBA and the haptic body region) were each sensitive to body parts in both modalities, although the response patterns differed. Thus, although the fusiform gyrus and the lateral occipito-temporal cortex appear to exhibit modality-independent, category-sensitive activity, our results also indicate a degree of functional specialization related to sensory modality within these structures.

  15. A SINGLE VISIT IMMEDIATE TEMPORIZATION WITH NATURAL TOOTH PONTIC FOR PERIODONTALLY INVOLVED ANTERIOR TEETH : ANESTHETIC AND INNOVATIVE APPROACH

    Directory of Open Access Journals (Sweden)

    Nilofer Sultan Sheikh, Neelima S. Rajhans, Preeti Mundhe, Gabriela Jude Fernandez, Nilkanth Mhaske, Nikesh Moolya, Sudeep HM

    2015-01-01

    Full Text Available Aim and Objectives: Sudden loss of anterior tooth is a dreadful situation. It can be as a result of trauma, endodontic failure or periodontal disease which is a true aesthetic emergency for a patient. Along with the patient, the dentist also emphasizes on saving an anterior tooth for the primary reason of aesthetics. If the tooth crown is intact, is not grossly decayed, broken down or discoloured, it can be used as a natural tooth pontic in designing an interim prosthesis. Case: A chair side technique for replacing the missing tooth using the patient’s own natural tooth as a pontic in the three dimensional original position using a fibre reinforced composite resin splint thus restoring the aesthetics and relieving the apprehension of the patient, as described in this case report. Conclusion: The concept of Natural tooth pontic placement is a simple, economical, minimal intervention, viable and an easy to handle treatment option and promises an excellent transient aesthetic solution for a lost tooth as well as require minimal or no tooth preparation, thus is a reversible technique and avoids the laboratory cost.

  16. Temporal Dynamics of Acute Stress-Induced Dendritic Remodeling in Medial Prefrontal Cortex and the Protective Effect of Desipramine

    DEFF Research Database (Denmark)

    Nava, Nicoletta; Treccani, Giulia; Alabsi, Abdelrahman;

    2015-01-01

    Stressful events are associated with increased risk of mood disorders. Volumetric reductions have been reported in brain areas critical for the stress response, such as medial prefrontal cortex (mPFC), and dendritic remodeling has been proposed as an underlying factor. Here, we investigated...

  17. 术中皮层脑电图在颞叶癫痫手术中的应用%Application of introperative electrocorticography in anterior temporal lobectomy

    Institute of Scientific and Technical Information of China (English)

    李安民; 梁树立; 孙雅静; 于晓曼; 梁爽爽; 张继武; 姚世斌

    2010-01-01

    Objective To study the application value of introperative electrocorticography (ECoG)in anterior temporal lobectomy.Methods To retrospectively collect the clinical data and results of introperative ECoG of 105 patients with anterior temporal lobectomy,and analyze the affect factors of ECoG and relationship of results of ECoG and surgical outcomes.Results The average duration for preresective ECoG was 72 min,and results of preresective ECoG included normality in 11 cases,focal epileptiform discharge in anterior or inferior temporal lobe in 73 patients,and diffuse epileptiform discharge in 21 cases.The average time for postresective ECoG was 38 min,and results of preresective ECoG included normality in 91 cases,focal epileptiform discharge in residual temporal lobe in 9 patients,and diffuse epileptiform discharge in 5 cases.Significant difference wasn't found in result of preresective ECoG in different age groups.Patients with short seizure history (<5 yrs) rendered 83.3% focal epileptiform discharge,which was significant higher than those of the other 2 groups.6 cases underwent extensive resection on the basis of results of postresective ECoG.Patients with focal discharge in preresective ECoG and normality in postresective ECoG presented better surgical outcomes than others' results in ECoG,and the difference was significant.Conclusion 70% patients with temporal lobe epilepsy present focal epileptiform discharger in anterior temporal lobe in introperative EcoG.The results of ECoG could be useful to forcast surgical outcome,therefore ECoG has definite application value in anterior temporal lobectomy.%目的 探讨术中皮层脑电图(ECoG)在颢叶癫痫手术中的应用价值.方法 回顾性分析105例前颞叶切除手术患者的临床资料与ECoG的监测结果,统计对ECoG的影响因素及其对手术疗效的影响.结果 术前ECoG平均监测时间为72 min,结果显示:无异常11例、颢叶或前颞叶局限性放电73例、广泛痫性放电21

  18. Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language

    NARCIS (Netherlands)

    Willems, R.M.; Özyürek, A.; Hagoort, P.

    2009-01-01

    Several studies indicate that both posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG) and left inferior frontal gyrus (LIFG) are involved in integrating information from different modalities. Here we investigated the respective roles of these two areas in integration of action and l

  19. Temporal and spatial distribution of metabotropic glutamate receptor 5 during development in the rat cortex and hippocampus

    Institute of Scientific and Technical Information of China (English)

    Xinli Xiao; Ming Hu; Pengbo Yang; Lin Zhang; Xinlin Chen; Yong Liu

    2011-01-01

    Metabotropic glutamate receptor 5 (mGluR5) is expressed by neurons in zones of active neurogenesis and is involved in the development of neural stem cells in vivo and in vitro. We examined the expression of mGluR5 in the cortex and hippocampus of rats during various prenatal and postnatal periods using immunohistochemistry. During prenatal development, mGluR5 was primarily localized to neuronal somas in the forebrain. During early postnatal periods, the receptor was mainly present on somas in the cortex. mGluR5 immunostaining was visible in apical dendrites and in the neuropil of neurons and persisted throughout postnatal development. During this period, pyramidal neurons were strongly labeled for the receptor. In the hippocampal CA1 region, mGluR5 immunoreactivity was more intense in the stratum oriens, stratum radiatum, and lacunosum moleculare at P0, P5 and P10 relative to P60. mGluR5 expression increased significantly in the molecular layer and decreased significantly in the granule cell layer of the dentate gyrus at P5, P10 and P60 in comparison with P0. Furthermore, some mGluR5-positive cells were also bromodeoxyuridine- or NeuroD-positive in the dentate gyrus at P14. These results demonstrate that mGluR5 has a differential expression pattern in the cortex and hippocampus during early growth, suggesting a role for this receptor in the control of domain specific brain developmental events.

  20. Validation of the WMS-III Facial Memory subtest with the Graduate Hospital Facial Memory Test in a sample of right and left anterior temporal lobectomy patients.

    Science.gov (United States)

    Chiaravalloti, Nancy D; Tulsky, David S; Glosser, Guila

    2004-06-01

    A number of studies have shown visuospatial memory deficits following anterior temporal lobectomy (ATL) in the right, nondominant temporal lobe (RATL). The current study examines 26 patients with intractable temporal lobe epilepsy who underwent ATL in either the right (RATL, n = 16) or left temporal lobe (LATL, n = 10) on two tests of facial memory abilities, the Wechsler Memory Scale-III (WMS-III) Faces subtest and the Graduate Hospital Facial Memory Test (FMT). Repeated measures ANOVA on the FMT indicated a significant main effect of side of surgery. The RATL group performed significantly below the LATL group overall. Both groups showed a slight, but non-significant, improvement in performance from pre- to postsurgery on the FMT immediate memory, likely due to practice effects. Repeated measures ANOVA on the WMS-III Faces subtest revealed a significant interaction of group (RATL vs. LATL) by delay (immediate vs. delayed). Overall, the LATL group showed an improvement in recognition scores from immediate to delayed memory, whereas the RATL group performed similarly at both immediate and delayed testing. No effects of surgery were noted on the WMS-III. Following initial data analysis the WMS-III Faces I and II data were re-scored using the scoring suggested by Holdnack and Delis (2003), earlier in this issue. Repeated measures ANOVA revealed a trend toward significance in the three-way interaction of group (RATL vs. LATL) x time of testing (pre- versus postop) x delay (immediate vs. delayed memory). On the Faces I subtest, both the RATL and LATL groups showed a decline from preoperative to postoperative testing. However, on Faces II the LATL group showed an increase in performance from preoperative to postoperative testing, while the RALT group showed a decline in performance from preoperative to postoperative testing. While the FMT appears to be superior to the WMS-III Faces subtest in identifying deficits in facial memory prior to and following RATL, the

  1. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.

    Science.gov (United States)

    Pinsk, Mark A; Arcaro, Michael; Weiner, Kevin S; Kalkus, Jan F; Inati, Souheil J; Gross, Charles G; Kastner, Sabine

    2009-05-01

    Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between

  2. Action word Related to Walk Heard by the Ears Activates Visual Cortex and Superior Temporal Gyrus: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Naoyuki Osaka

    2012-10-01

    Full Text Available Cognitive neuroscience of language of action processing is one of the interesting issues on the cortical “seat” of word meaning and related action (Pulvermueller, 1999 Behavioral Brain Sciences 22 253–336. For example, generation of action verbs referring to various arm or leg actions (e.g., pick or kick differentially activate areas along the motor strip that overlap with those areas activated by actual movement of the fingers or feet (Hauk et al., 2004 Neuron 41 301–307. Meanwhile, mimic words like onomatopoeia have the other potential to selectively and strongly stimulate specific brain regions having a specified “seat” of action meaning. In fact, mimic words highly suggestive of laughter and gaze significantly activated the extrastriate visual /premotor cortices and the frontal eye field, respectively (Osaka et al., 2003 Neuroscience Letters 340 127–130; 2009 Neuroscience Letters 461 65–68. However, the role of a mimic word related to walk on specific brain regions has not yet been investigated. The present study showed that a mimic word highly suggestive of human walking, heard by the ears with eyes closed, significantly activated the visual cortex located in extrastriate cortex and superior temporal gyrus while hearing non-sense words that did not imply walk under the same task did not activate these areas. These areas would be a critical region for generating visual images of walking and related action.

  3. Distinct transcriptome expression of the temporal cortex of the primate Microcebus murinus during brain aging versus Alzheimer's disease-like pathology.

    Directory of Open Access Journals (Sweden)

    Ronza Abdel Rassoul

    Full Text Available Aging is the primary risk factor of neurodegenerative disorders such as Alzheimer's disease (AD. However, the molecular events occurring during brain aging are extremely complex and still largely unknown. For a better understanding of these age-associated modifications, animal models as close as possible to humans are needed. We thus analyzed the transcriptome of the temporal cortex of the primate Microcebus murinus using human oligonucleotide microarrays (Affymetrix. Gene expression profiles were assessed in the temporal cortex of 6 young adults, 10 healthy old animals and 2 old, "AD-like" animals that presented ß-amyloid plaques and cortical atrophy, which are pathognomonic signs of AD in humans. Gene expression data of the 14,911 genes that were detected in at least 3 samples were analyzed. By SAM (significance analysis of microarrays, we identified 47 genes that discriminated young from healthy old and "AD-like" animals. These findings were confirmed by principal component analysis (PCA. ANOVA of the expression data from the three groups identified 695 genes (including the 47 genes previously identified by SAM and PCA with significant changes of expression in old and "AD-like" in comparison to young animals. About one third of these genes showed similar changes of expression in healthy aging and in "AD-like" animals, whereas more than two thirds showed opposite changes in these two groups in comparison to young animals. Hierarchical clustering analysis of the 695 markers indicated that each group had distinct expression profiles which characterized each group, especially the "AD-like" group. Functional categorization showed that most of the genes that were up-regulated in healthy old animals and down-regulated in "AD-like" animals belonged to metabolic pathways, particularly protein synthesis. These data suggest the existence of compensatory mechanisms during physiological brain aging that disappear in "AD-like" animals. These results open

  4. Activation of the anti-inflammatory reflex blocks lipopolysaccharide-induced decrease in synaptic inhibition in the temporal cortex of the rat.

    Science.gov (United States)

    Garcia-Oscos, Francisco; Peña, David; Housini, Mohammad; Cheng, Derek; Lopez, Diego; Cuevas-Olguin, Roberto; Saderi, Nadia; Salgado Delgado, Roberto; Galindo Charles, Luis; Salgado Burgos, Humberto; Rose-John, Stefan; Flores, Gonzalo; Kilgard, Michael P; Atzori, Marco

    2015-06-01

    Stress is a potential trigger for a number of neuropsychiatric conditions, including anxiety syndromes and schizophrenic psychoses. The temporal neocortex is a stress-sensitive area involved in the development of such conditions. We have recently shown that aseptic inflammation and mild electric shock shift the balance between synaptic excitation and synaptic inhibition in favor of the former in this brain area (Garcia-Oscos et al., 2012), as well as in the prefrontal cortex (Garcia-Oscos et al., 2014). Given the potential clinical importance of this phenomenon in the etiology of hyperexcitable neuropsychiatric illness, this study investigates whether inactivation of the peripheral immune system by the "anti-inflammatory reflex" would reduce the central response to aseptic inflammation. For a model of aseptic inflammation, this study used i.p. injections of the bacterial toxin lipopolysaccharide (LPS; 5 µM) and activated the anti-inflammatory reflex either pharmacologically by i.p. injections of the nicotinic α7 receptor agonist PHA543613 or physiologically through electrical stimulation of the left vagal nerve (VNS). Patch-clamp recording was used to monitor synaptic function. Recordings from LPS-injected Sprague Dawley rats show that activation of the anti-inflammatory reflex either pharmacologically or by VNS blocks or greatly reduces the LPS-induced decrease of the synaptic inhibitory-to-excitatory ratio and the saturation level of inhibitory current input-output curves. Given the ample variety of pharmacologically available α7 nicotinic receptor agonists as well as the relative safety of clinical VNS already approved by the FDA for the treatment of epilepsy and depression, our findings suggest a new therapeutic avenue in the treatment of stress-induced hyperexcitable conditions mediated by a decrease in synaptic inhibition in the temporal cortex.

  5. 'Doctor' or 'darling'? Decoding the communication partner from ECoG of the anterior temporal lobe during non-experimental, real-life social interaction

    Directory of Open Access Journals (Sweden)

    Johanna eDerix

    2012-09-01

    Full Text Available Human brain processes underlying real-life social interaction in everyday situations have been difficult to study and have, until now, remained largely unknown. Here, we investigated whether electrocorticography (ECoG recorded for pre-neurosurgical diagnostics during the daily hospital life of epilepsy patients could provide a way to elucidate the neural correlates of non-experimental social interaction. We identified time periods in which patients were involved in conversations with either their respective life partners (Condition 1; C1 or attending physicians (Condition 2; C2. These two conditions can be expected to differentially involve subfunctions of social interaction which have been associated with activity in the anterior temporal lobe (ATL, including the temporal poles (TP. Therefore, we specifically focused on ECoG recordings from this brain region and investigated spectral power modulations in the alpha (8-12 Hz and theta (3-5 Hz frequency ranges, which have been previously assumed to play an important role in the processing of social interaction. We hypothesized that brain activity in this region might be sensitive to differences in the two interaction situations and tested whether these differences can be detected by single-trial decoding. Condition-specific effects in both theta and alpha bands were observed: the left and right TP exclusively showed increased power in C1 compared to C2, whereas more posterior parts of the ATL exhibited similar (C1 > C2 and also contrary (C2 > C1 effects. Single-trial decoding accuracies for classification of these effects were highly above chance. Our findings demonstrate that it is possible to study the neural correlates of human social interaction in non-experimental conditions. Decoding the identity of the communication partner and adjusting the speech output accordingly may be useful in the emerging field of brain- machine interfacing for restoration of expressive speech.

  6. Mapping the Multiple Graded Contributions of the Anterior Temporal Lobe Representational Hub to Abstract and Social Concepts: Evidence from Distortion-corrected fMRI.

    Science.gov (United States)

    Binney, Richard J; Hoffman, Paul; Lambon Ralph, Matthew A

    2016-09-06

    A growing body of recent convergent evidence indicates that the anterior temporal lobe (ATL) has connectivity-derived graded differences in semantic function: the ventrolateral region appears to be the transmodal, omni-category center-point of the hub whilst secondary contributions come from the peripheries of the hub in a manner that reflects their differential connectivity to different input/output modalities. One of the key challenges for this neurocognitive theory is how different types of concept, especially those with less reliance upon external sensory experience (such as abstract and social concepts), are coded across the graded ATL hub. We were able to answer this key question by using distortion-corrected fMRI to detect functional activations across the entire ATL region and thus to map the neural basis of social and psycholinguistically-matched abstract concepts. Both types of concept engaged a core left-hemisphere semantic network, including the ventrolateral ATL, prefrontal regions and posterior MTG. Additionally, we replicated previous findings of weaker differential activation of the superior and polar ATL for the processing of social stimuli, in addition to the stronger, omni-category activation observed in the vATL. These results are compatible with the view of the ATL as a graded transmodal substrate for the representation of coherent concepts.

  7. Mapping the Multiple Graded Contributions of the Anterior Temporal Lobe Representational Hub to Abstract and Social Concepts: Evidence from Distortion-corrected fMRI

    Science.gov (United States)

    Binney, Richard J.; Hoffman, Paul; Lambon Ralph, Matthew A.

    2016-01-01

    A growing body of recent convergent evidence indicates that the anterior temporal lobe (ATL) has connectivity-derived graded differences in semantic function: the ventrolateral region appears to be the transmodal, omni-category center-point of the hub whilst secondary contributions come from the peripheries of the hub in a manner that reflects their differential connectivity to different input/output modalities. One of the key challenges for this neurocognitive theory is how different types of concept, especially those with less reliance upon external sensory experience (such as abstract and social concepts), are coded across the graded ATL hub. We were able to answer this key question by using distortion-corrected fMRI to detect functional activations across the entire ATL region and thus to map the neural basis of social and psycholinguistically-matched abstract concepts. Both types of concept engaged a core left-hemisphere semantic network, including the ventrolateral ATL, prefrontal regions and posterior MTG. Additionally, we replicated previous findings of weaker differential activation of the superior and polar ATL for the processing of social stimuli, in addition to the stronger, omni-category activation observed in the vATL. These results are compatible with the view of the ATL as a graded transmodal substrate for the representation of coherent concepts. PMID:27600844

  8. Is the right anterior temporal variant of prosopagnosia a form of 'associative prosopagnosia' or a form of 'multimodal person recognition disorder'?

    Science.gov (United States)

    Gainotti, Guido

    2013-06-01

    The construct of associative prosopagnosia is strongly debated for two main reasons. The first is that, according to some authors, even patients with putative forms of associative visual agnosia necessarily present perceptual defects, that are the cause of their recognition impairment. The second is that in patients with right anterior temporal lobe (ATL) lesions (and sparing of the occipital and fusiform face areas), who can present a defect of familiar people recognition, with normal results on tests of face perception, the disorder is often multimodal, affecting voices (and to a lesser extent names) in addition to faces. The present review was prompted by the claim, recently advanced by some authors, that face recognition disorders observed in patients with right ATL lesions should be considered as an associative or amnestic form of prosopagnosia, because in them both face perception and retrieval of personal semantic knowledge from name are spared. In order to check this claim, we surveyed all the cases of patients who satisfied the criteria of associative prosopagnosia reported in the literature, to see if their defect was circumscribed to the visual modality or also affected other channels of people recognition. The review showed that in most patients the study had been limited to the visual modality, but that, when the other modalities of people recognition had been taken into account, the defect was often multimodal, affecting voice (and to a lesser extent name) in addition to face.

  9. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network

    Science.gov (United States)

    Binney, Richard J.; Lambon Ralph, Matthew A.

    2015-01-01

    By developing and applying a method which combines fMRI and rTMS to explore semantic cognition, we identified both intrinsic (related to automatic changes in task/stimulus-related processing) and induced (i.e., associated with the effect of TMS) activation changes in the core, functionally-coupled network elements. Low-frequency rTMS applied to the human anterior temporal lobe (ATL) induced: (a) a local suppression at the site of stimulation; (b) remote suppression in three other ipsilateral semantic regions; and (c) a compensatory up-regulation in the contralateral ATL. Further examination of activity over time revealed that the compensatory changes appear to be a modulation of intrinsic variations that occur within the unperturbed network. As well as providing insights into the dynamic collaboration between core regions, the ability to observe intrinsic and induced changes in vivo may provide an important opportunity to understand the key mechanisms that underpin recovery of function in neurological patient groups. PMID:25448851

  10. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset.

    Directory of Open Access Journals (Sweden)

    Yuki eNakagami

    2013-04-01

    Full Text Available We investigated the time course of the expression of several activity-dependent genes evoked by visual inputs in the primary visual cortex (V1 in adult marmosets. In order to examine the rapid time course of activity-dependent gene expression, marmosets were first monocularly inactivated by tetrodotoxin (TTX, kept in darkness for two days, and then exposed to various length of light stimulation. Activity-dependent genes including HTR1B, HTR2A, whose activity-dependency were previously reported by us, and well-known immediate early genes (IEGs, c-FOS, ZIF268, and ARC, were examined by in situ hybridization. Using this system, first, we demonstrated the ocular dominance type of gene expression pattern in V1 under this condition. IEGs were expressed in columnar patterns throughout layers II-VI of all the tested monocular marmosets. Second, we showed the regulation of HTR1B and HTR2A expressions by retinal spontaneous activity, because HTR1B and HTR2A mRNA expressions sustained a certain level regardless of visual stimulation and were inhibited by a blockade of the retinal activity with TTX. Third, IEGs dynamically changed its laminar distribution from half an hour to several hours upon a stimulus onset with the unique time course for each gene. The expression patterns of these genes were different in neurons of each layer as well. These results suggest that the regulation of each neuron in the primary visual cortex of marmosets is subjected to different regulation upon the change of activities from retina. It should be related to a highly differentiated laminar structure of primate visual systems, reflecting the functions of the activity-dependent gene expression in marmoset V1.

  11. Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy.

    Science.gov (United States)

    He, Jiao-Jiang; Sun, Fei-Ji; Wang, Yu; Luo, Xiao-Qin; Lei, Peng; Zhou, Jie; Zhu, Di; Li, Zhi-Yun; Yang, Hui

    2016-09-15

    Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsies in adults and proinflammatory cytokines have long been thought to play an important role in pathogenesis and epileptogenicity. In the present study, we investigated the levels and expression patterns of the interleukin 17 (IL-17) system in temporal neocortex and hippocampus from 24 patients with MTLE and 8 control (Ctr) samples. We found that IL-17 and IL-17 receptor (IL-17R) were clearly upregulated in MTLE at both mRNA and protein levels, compared with Ctr. Immunostaining indicated that neurons, astrocytes, microglia and endothelial cells of blood vessels are the major sources of IL-17. These findings suggest that IL-17 system may be involved in the pathogenesis and epileptogenicity of MTLE.

  12. The orbitofrontal cortex: novelty, deviation from expectation, and memory.

    Science.gov (United States)

    Petrides, Michael

    2007-12-01

    The orbitofrontal cortex is strongly connected with limbic areas of the medial temporal lobe that are critically involved in the establishment of declarative memories (entorhinal and perirhinal cortex and the hippocampal region) as well as the amygdala and the hypothalamus that are involved in emotional and motivational states. The present article reviews evidence regarding the role of the orbitofrontal cortex in the processing of novel information, breaches of expectation, and memory. Functional neuroimaging evidence is provided that there is a difference between the anterior and posterior orbitofrontal cortex in such processing. Exposure to novel information gives rise to a selective increase of activity in the granular anterior part of the orbitofrontal cortex (area 11) and this activity increases when subjects attempt to encode this information in memory. If the stimuli violate expectations (e.g., inspection of graffiti-like stimuli in the context of other regular stimuli) or are unpleasant (i.e., exposure to the sounds of car crashes), there is increased response in the posteromedial agranular/dysgranular area 13 of the orbitofrontal region. The anatomic data provide a framework within which to understand these functional neuroimaging findings.

  13. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex.

    Science.gov (United States)

    Varga, Csaba; Tamas, Gabor; Barzo, Pal; Olah, Szabolcs; Somogyi, Peter

    2015-11-01

    Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I-III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells.

  14. Birds of a feather flock together: experience-driven formation of visual object categories in human ventral temporal cortex.

    Directory of Open Access Journals (Sweden)

    Marieke van der Linden

    Full Text Available The present functional magnetic resonance imaging study provides direct evidence on visual object-category formation in the human brain. Although brain imaging has demonstrated object-category specific representations in the occipitotemporal cortex, the crucial question of how the brain acquires this knowledge has remained unresolved. We designed a stimulus set consisting of six highly similar bird types that can hardly be distinguished without training. All bird types were morphed with one another to create different exemplars of each category. After visual training, fMRI showed that responses in the right fusiform gyrus were larger for bird types for which a discrete category-boundary was established as compared with not-trained bird types. Importantly, compared with not-trained bird types, right fusiform responses were smaller for visually similar birds to which subjects were exposed during training but for which no category-boundary was learned. These data provide evidence for experience-induced shaping of occipitotemporal responses that are involved in category learning in the human brain.

  15. Cervicoplastia anterior Anterior cervicoplasty

    Directory of Open Access Journals (Sweden)

    Lucas Gomes Patrocínio

    2004-10-01

    Full Text Available Muitos pacientes buscam correção estética da frouxidão da pele do pescoço, depósito de gordura na região submentoneana ou bandas de platisma. Em grande parte dos casos a ação medial, via cervicoplastia anterior é necessária. OBJETIVO: Demonstrar a casuística e avaliar os resultados e complicações com a técnica de cervicoplastia anterior no Serviço de Otorrinolaringologia da Universidade Federal de Uberlândia. FORMA DE ESTUDO: Relato de série. PACIENTES E MÉTODOS: Quarenta e dois pacientes, entre 39 e 65 anos de idade, sendo 40 (95,2% do sexo feminino e 2 (4,8% do masculino, foram submetidos a cervicoplastia anterior. Retrospectivamente foram avaliados resultados e complicações. RESULTADOS: Destes, 34 apresentaram resultados satisfatórios, 4 apresentaram déficit estético notado somente pelo cirurgião, 3 apresentaram déficit estético notado somente pelo paciente e 1 apresentou déficit estético necessitando cirurgia revisional. Ao estudo fotográfico, todos os pacientes apresentaram melhora do perfil cervical, redução das bandas de platisma e da frouxidão da pele, estabilização da musculatura cervical e acentuação do ângulo cervicomental, em graus variados. Houve complicação em 2 casos (discreto serohematoma e cicatriz um pouco alargada. CONCLUSÃO: A cervicoplastia, associada ou não à tração lateral pela ritidoplastia, é uma técnica que produz resultados satisfatórios na grande maioria dos casos.Many patients look for aesthetic correction of the laxity of neck skin, submandibular fat deposit or platisma bands. In a large part of the cases, medial action, through anterior cervicoplasty is necessary. AIM: To demonstrate the casuistic and to evaluate the results and complications with anterior cervicoplasty technique in the Otorhinolaryngology Service of the Federal University of Uberlândia. STUDY DESIGN: Serie report. PATIENTS AND METHODS: Forty-two patients, between 39 and 65 years of age, being 40 (95

  16. N-acetylaspartate levels in the prefrontal cortex,anterior cingulate cortex and hippocampus of major depressive patients:A proton magnetic resonance spectroscopy study%抑郁症患者额叶、前扣带回、海马N-乙酰天冬氨酸磁共振质子波谱研究

    Institute of Scientific and Technical Information of China (English)

    李国海; 刘珺; 申变红; 张礼荣; 尉传社

    2009-01-01

    目的 探讨抑郁症患者额叶、前扣带回皮质、海马N-乙酰天冬氨酸(NAA)的相对含量.方法 对13例未服药的抑郁症患者及13位健康志愿者前扣带回行多体素磁共振氢质子波谱(1H-MRS)扫描,抑郁症患者经6周抗抑郁治疗后再次作1H-MRS扫描,测定的生化物质为NAA和肌酸(Cr).结果 抑郁症组左侧和右侧额前皮质、左侧和右侧海马NAA/Cr值[分别为(1.29±0.18),(1.33±0.23),(0.93±0.21),(0.96±0.19)]低于正常对照组,差异有显著性(均P <0.01),双侧前扣带回皮质NAA/Cr值与正常对照组差异无显著性( P >0.05).抗抑郁治疗后,左侧额前皮质NAA/Cr值(1.63±0.42)较治疗前(1.29±0.18)升高( P =0.010);右侧额前皮质、双侧海马、右侧前扣带回皮质NAA/Cr值较治疗前均有所升高,但无统计学意义( P >0.05);双侧额前皮质、双侧前扣带回皮质、左侧海马NAA/Cr值治疗后与正常对照组无显著差异( P >0.05).结论 额前皮质和海马N-乙酰天冬氨酸的含量改变与抑郁症的发生和抗抑郁剂的疗效有关.%Objective To measure the levels of N-acetylaspartate (NAA) in the prefrontal cortex,anterior cingulate cortex and hippocampus of major depressive patients. Methods Multi voxel proton magnetic resonance spectroscopy (1H-MRS) was performed to assess NAA levels in 13 unmedicated patients with major depressive disorder and 13 healthy controls. The patients underwent 1H-MRS again after six weeks of antidepressant treatment. The compounds measured were NAA and creatine (Cr). Results Depressive patients had significantly lower NAA/Cr ratios in left and right prefrontal cortex,and left and right hippocampus (1.29±0.18,1.33±0.23,0.93±0.21,0.96±0.19,respectively)than healthy controls( P =0.00). No significant difference was found in the N-acetylaspartate levels in bilateral anterior cingulate cortex between depressive patients and healthy controls( P >0.05). After antidepressant treatment,N-acetylaspartate level

  17. Relationship between size summation properties, contrast sensitivity and response latency in the dorsomedial and middle temporal areas of the primate extrastriate cortex.

    Directory of Open Access Journals (Sweden)

    Leo L Lui

    Full Text Available Analysis of the physiological properties of single neurons in visual cortex has demonstrated that both the extent of their receptive fields and the latency of their responses depend on stimulus contrast. Here, we explore the question of whether there are also systematic relationships between these response properties across different cells in a neuronal population. Single unit recordings were obtained from the middle temporal (MT and dorsomedial (DM extrastriate areas of anaesthetized marmoset monkeys. For each cell, spatial integration properties (length and width summation, as well as the presence of end- and side-inhibition within 15° of the receptive field centre were determined using gratings of optimal direction of motion and spatial and temporal frequencies, at 60% contrast. Following this, contrast sensitivity was assessed using gratings of near-optimal length and width. In both areas, we found a relationship between spatial integration and contrast sensitivity properties: cells that summated over smaller areas of the visual field, and cells that displayed response inhibition at larger stimulus sizes, tended to show higher contrast sensitivity. In a sample of MT neurons, we found that cells showing longer latency responses also tended to summate over larger expanses of visual space in comparison with neurons that had shorter latencies. In addition, longer-latency neurons also tended to show less obvious surround inhibition. Interestingly, all of these effects were stronger and more consistent with respect to the selectivity for stimulus width and strength of side-inhibition than for length selectivity and end-inhibition. The results are partially consistent with a hierarchical model whereby more extensive receptive fields require convergence of information from larger pools of "feedforward" afferent neurons to reach near-optimal responses. They also suggest that a common gain normalization mechanism within MT and DM is involved, the

  18. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    Directory of Open Access Journals (Sweden)

    Francesca eBaglio

    2014-10-01

    Full Text Available Borderline intellectual functioning (BIF is a condition characterized by an intelligence quotient (IQ between 70 and 85. BIF children present with cognitive, motor, social and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. Aim of this study was to investigate brain morphometry and its relation to IQ level in borderline intellectual functioning children.Thirteen children with BIF and 14 age- and sex-matched typically developing children were enrolled. All children underwent a full IQ assessment (WISC-III scale and a Magnetic Resonance (MR examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel based morphometry (VBM analysis. To investigate to what extent the group influenced gray matter volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional gray matter volume in bilateral sensori-motor and right posterior temporal cortices and decreased gray matter volume in right parahippocampal gyrus. Gray matter volumes were highly correlated with IQ indices.Our is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning and behavioral processes. Our findings, although allowing for little generalization to general population, contributes to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  19. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning.

    Science.gov (United States)

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  20. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.

    Science.gov (United States)

    Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro

    2010-08-01

    In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals.

  1. [Dose-dependent tazepam modulation of amplitude-temporal characteristics of thalamocortical responses and the constant potential of the sensorimotor cortex in rabbits at eye opening].

    Science.gov (United States)

    Shimko, I A; Fokin, V F

    2000-01-01

    The pronounced benzodiazepine (antiphobic) modulation of the amplitude-temporal parameters of different components of the thalamocortical responses (TCR) of the sensorimotor cortex is observed in rabbits in their early postnatal ontogeny. This modulation is of a dose-dependent character and is registered not after the injection of tazepam in a concentration of the "therapeutic tranquilizing window" but also in the psychotoxic plasma range. A gradual increase in blood tazepam concentration in a young rabbit pup is accompanied by the wave-like and differential decrease in the amplitude of the second and third positive (P2 and P3) and third negative (N3) TCR components, while the second negative (N2) and fourth positive (P4) components tend to a wave-like increase. The dose-dependent dynamics of tazepam modulation of the P2, P3, and N3 latencies is characterized by a wave-like and differential increase. The latency of P4 decreases slightly and that of the N2 increases with a low degree of significance. The selective dynamics of benzodiazepine modulation appears to be related with peculiarities of the electrogenesis of each of the components. The dose-dependent modulation of the level of cortical DC potential is of the same character as the respective amplitude changes in P2, P3, and N3, but its fluctiatuons are more pronounced.

  2. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Science.gov (United States)

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  3. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Alfonso Díaz

    2016-01-01

    Full Text Available Energy drinks (EDs are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx and hippocampus (Hp of adult rats (90 days old. Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  4. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Campbell, Iain; Nestler, Steffen; Rubia, Katya; David, Anthony S; Schmidt, Ulrike

    2014-07-01

    Bulimia nervosa, binge-eating disorder, and some forms of obesity are characterised by compulsive overeating that is often precipitated by food craving. Transcranial direct current stimulation (tDCS) has been used to suppress food cravings, but there is insufficient evidence to support its application in clinical practice. Furthermore, the potential moderating role of impulsivity has not been considered. This study used a randomised within-subjects crossover design to examine whether a 20-minute session of sham-controlled bilateral tDCS to the dorsolateral prefrontal cortex (anode right/cathode left) would transiently modify food cravings and temporal discounting (TD; a measure of choice impulsivity) in 17 healthy women with frequent food cravings. Whether the effects of tDCS on food craving were moderated by individual differences in TD behaviour was also explored. Participants were exposed to food and a film of people eating, and food cravings and TD were assessed before and after active and sham stimulation. Craving for sweet but not savoury foods was reduced following real tDCS. Participants that exhibited more reflective choice behaviour were more susceptible to the anti-craving effects of tDCS than those that displayed more impulsive choice behaviour. No differences were seen in TD or food consumption after real versus sham tDCS. These findings support the efficacy of tDCS in temporarily lowering food cravings and identify the moderating role of TD behaviour.

  5. 电针改变CFA炎症痛大鼠前扣带回脑区神经元放电活动%ELECTRO-ACUPUNCTURE MODULATES THE NEURONAL FIRINGS OF ANTERIOR CINGULATE CORTEX IN RATS WITH INFLAMMATORY PAIN

    Institute of Scientific and Technical Information of China (English)

    周萌萌; 刘风雨; 岳路鹏; 蔡捷; 廖斐斐; 朱兵; 景向红; 万有; 伊鸣

    2016-01-01

    目的:研究电针对炎症痛大鼠前扣带回(anterior cingulate cortex,ACC)神经元放电的影响.方法:实验大鼠分为4组:CFA炎症痛模型组加电针,CFA炎症痛模型组加假电针,对照组加电针,对照组加假电针.应用多通道在体记录技术,记录在电针前、后1h内以及给予激光痛刺激前、后ACC神经元的放电,处理记录到的神经信号并进行统计分析.结果:电针后,CFA炎症痛组和对照组大鼠ACC神经元的平均放电率均增高,CFA炎症痛组大鼠ACC脑区内对激光痛刺激有反应的兴奋性神经元反应性降低.结论:电针激活炎症痛大鼠ACC脑区的神经元,但抑制ACC脑区内对痛刺激起兴奋性反应的神经元.推测电针通过调节ACC脑区神经元活动而镇痛.

  6. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.

    Science.gov (United States)

    Suder, Katrin; Funke, Klaus; Zhao, Yongqiang; Kerscher, Nicolas; Wennekers, Thomas; Wörgötter, Florentin

    2002-06-01

    We investigated how changes in the temporal firing rate of thalamocortical activity affect the spatiotemporal structure of receptive field (RF) subunits in cat primary visual cortex. Spike activity of 67 neurons (48 simple, 19 complex cells) was extracellulary recorded from area 17/18 of anesthetized and paralyzed cats. A total of 107 subfields (on/off) were mapped by applying a reverse correlation technique to the activity elicited by bright and dark rectangles flashed for 300 ms in a 20x10 grid. We found that the width of the (suprathreshold) discharge fields shrank on average by 22% during this 300-ms-long stimulus presentation time. Fifty-eight subfields (54%) shrank by more than 20% of peak width and only ten (less than 10%) showed a slight increase over time. The main size reduction took place 40-60 ms after response onset, which corresponded to the transition from transient peak firing to tonic visual activity in thalamocortical relay cells (TC). The experimentally obtained RFs were then fitted with the aid of a neural field model of the primary visual pathway. Assuming a Gaussian-shaped spatial sensitivity profile across the RF subfield width, the model allowed us to estimate the subthreshold RF (depolarization field, D-field) from the minimal discharge field (MDF). The model allowed us to test to what degree the temporal dynamics of thalamocortical activity contributes to the spatiotemporal changes of cortical RFs. To this end, we performed the fitting procedure either with a pure feedforward model or with a field model that also included intracortical feedback. Spatial and temporal parameters obtained from fits of the experimental RFs matched closely to those achieved by simulating a pure feedforward system with the field model but were not compatible with additional intracortical feedback. Thus, our results show that dot stimulation, which optimally excites thalamocortical cells, leads to a shrinkage with respect to the size of the RF subfield at the

  7. Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Jos J Eggermont

    Full Text Available Multi-electrode array recordings of spike and local field potential (LFP activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs and 492 frequency-tuning curves (FTCs based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm and the 16-40 Hz LFP (7.4 mm, whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz LFP-pair correlations showed that about 16% (9% of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.

  8. Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex.

    Science.gov (United States)

    Eggermont, Jos J; Munguia, Raymundo; Pienkowski, Martin; Shaw, Greg

    2011-01-01

    Multi-electrode array recordings of spike and local field potential (LFP) activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs) and 492 frequency-tuning curves (FTCs) based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF) gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm) and the 16-40 Hz LFP (7.4 mm), whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz) LFP-pair correlations showed that about 16% (9%) of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.

  9. Peripheral sounds rapidly activate visual cortex: evidence from electrocorticography.

    Science.gov (United States)

    Brang, David; Towle, Vernon L; Suzuki, Satoru; Hillyard, Steven A; Di Tusa, Senneca; Dai, Zhongtian; Tao, James; Wu, Shasha; Grabowecky, Marcia

    2015-11-01

    Neurophysiological studies with animals suggest that sounds modulate activity in primary visual cortex in the presence of concurrent visual stimulation. Noninvasive neuroimaging studies in humans have similarly shown that sounds modulate activity in visual areas even in the absence of visual stimuli or visual task demands. However, the spatial and temporal limitations of these noninvasive methods prevent the determination of how rapidly sounds activate early visual cortex and what information about the sounds is relayed there. Using spatially and temporally precise measures of local synaptic activity acquired from depth electrodes in humans, we demonstrate that peripherally presented sounds evoke activity in the anterior portion of the contralateral, but not ipsilateral, calcarine sulcus within 28 ms of sound onset. These results suggest that auditory stimuli rapidly evoke spatially specific activity in visual cortex even in the absence of concurrent visual stimulation or visual task demands. This rapid auditory-evoked activation of primary visual cortex is likely to be mediated by subcortical pathways or direct cortical projections from auditory to visual areas.

  10. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: Implications for affective pain

    Institute of Scientific and Technical Information of China (English)

    Hong Cao; Wen-Hua Ren; Mu-Ye Zhu; Zhi-Qi Zhao; Yu-Qiu Zhang

    2012-01-01

    Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain.N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB).The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC.Methods Immunohistochemistry and Western blot analysis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo.Double immunostaining was also used to determine the colocalization of pERK and pCREB.Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC,which was inhibited by the NMDAR antagonist DL-2-amino-5-phospho-novaleric acid.Selective blockade of the NMDAR GluN2B subunit and the glycinebinding site,or degradation of endogenous D-serine,a co-agonist for the glycine site,significantly decreased the upregulation of pERK and pCREB expression in the rACC.Further,the activated ERK predominantly colocalized with CREB.Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats,and these might be fundamental molecular mechanisms underlying pain affect.

  11. 认知行为治疗对首次发病轻中度抑郁症患者膝下前扣带回功能连接的影响%The effect of cognitive behavior therapy on functional connectivity of subgenual anterior cingulated cortex in first-episode treatment-na(i)ve mild to moderate patients with major depressive disorder

    Institute of Scientific and Technical Information of China (English)

    滕昌军; 王纯; 张宁; 马辉; 谭雅容; 肖朝勇; 高帅; 李鸿磊; 张文瑄

    2016-01-01

    目的 通过静息态功能连接探讨认知行为治疗(cognitive behavior therapy,CBT)早期对首次发病轻中度抑郁症患者膝下前扣带回(subgenual anterior cingulated cortex,sgACC)功能连接的影响,初步探讨CBT对抑郁症患者的神经作用机制.方法 对18例首次发病未服药轻中度抑郁症患者(抑郁症组)及相匹配的20名健康对照者(对照组)进行静息态功能磁共振扫描.抑郁症组接受6周CBT后进行第2次扫描.采用DPARSF和REST软件以sgACC为种子点进行基于感兴趣区的全脑功能连接分析并比较差异.结果 治疗前,抑郁症组sgACC与左侧额上回(t=-5.50)、左侧额中回(t=-3.78)、左侧角回(t=-3.38)功能连接低于对照组(均P<0.05).治疗后,抑郁症组sgACC与右侧额下回(蒙特利尔神经科学研究所坐标:x=42,y=33,z=6;t=3.61)、右侧小脑(蒙特利尔神经科学研究所坐标:x=36,y=-42,z=-48;t=4.08)功能连接较对照组增高(均P<0.05),与右侧额上回(t=-4.02)、左侧额上回(t=-3.67)、左侧内侧额上回(t=-4.38)、右侧楔前叶(t=-4.59)、左侧角回(t=-4.71)功能连接低于对照组(均P<0.05).治疗后,抑郁症组sgACC与左侧额下回(t=6.22)、右侧额下回(t=4.66)、左侧颞中回(t=4.76)、右侧颞中回(t=4.43)、左侧颞下回(t=5.33)、右侧缘上回(t=5.51)、左侧中央前回(t=4.68)和右侧小脑(t=3.88)功能连接较治疗前增加(均P<0.05).结论 CBT早期可能通过直接调节sgACC与额下回、默认网络内节点的功能连接而改善抑郁症患者反应抑制功能、降低自我参照性加工和反刍.%Objective To explore the neurobiological mechanism of cognitive behavior therapy(CBT) by detecting alterations of resting state functional connectivitiy of subgenual anterior cingulate cortex (sgACC) of CBT for first episode patients with mild to moderate depression.Methods Resting state fMRI data were collected from 18 first-episode treatment na(i)ve patients who suffered from major

  12. Absent activation in medial prefrontal cortex and temporoparietal junction but not superior temporal sulcus during the perception of biological motion in schizophrenia: a functional MRI study

    Directory of Open Access Journals (Sweden)

    Hashimoto N

    2014-11-01

    Full Text Available Naoki Hashimoto,1,2 Atsuhito Toyomaki,1 Masahiro Hirai,3 Tamaki Miyamoto,1 Hisashi Narita,1 Ryo Okubo,1 Ichiro Kusumi1 1Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; 2Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco, CA, USA; 3Center for Development of Advanced Medical Technology, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan Background: Patients with schizophrenia show disturbances in both visual perception and social cognition. Perception of biological motion (BM is a higher-level visual process, and is known to be associated with social cognition. BM induces activation in the “social brain network”, including the superior temporal sulcus (STS. Although deficits in the detection of BM and atypical activation in the STS have been reported in patients with schizophrenia, it remains unclear whether other nodes of the “social brain network” are also atypical in patients with schizophrenia.Purpose: We aimed to explore whether brain regions other than STS were involved during BM perception in patients with schizophrenia, using functional magnetic resonance imaging (fMRI.Methods and patients: Seventeen patients with schizophrenia, and 17 age- and sex- matched healthy controls, underwent fMRI scanning during a one-back visual task, containing three experimental conditions: (1 BM, (2 scrambled motion (SM, and (3 static condition. We used one-sample t-tests to examine neural responses selective to BM versus SM within each group, and two-sample t-tests to directly compare neural patterns to BM versus SM in schizophrenics versus controls.Results: We found significant activation in the STS region when BM was contrasted with SM in both groups, with no significant difference between groups. On the contrary, significant activation in the medial prefrontal cortex (MPFC and bilateral temporoparietal junction (TPJ was found only in the

  13. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing

    Science.gov (United States)

    Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio

    2003-01-01

    We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.

  14. Temporal prediction errors modulate task-switching performance

    Directory of Open Access Journals (Sweden)

    Roberto eLimongi

    2015-08-01

    Full Text Available We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI, causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected, which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad-hoc concepts such as executive control is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

  15. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  16. 芍药苷对急性缺氧前扣带回锥体神经元的影响%Effect of Paeoniflorin on Anterior Cingulate Cortex Pyramidal Neurons After Acute Hypoxia

    Institute of Scientific and Technical Information of China (English)

    李果; 杜永平; 张月萍; 徐晖; 胡三觉

    2011-01-01

    Objective: To investigate the neuroprotective effect of paeoniflorin (PF) on the anterior cingulate cortex(ACC) pyramidal neurons after acute hypoxia. Methods: Before and after the application of PF,variations of frequencies on the neuronal miniature excitatory postsynaptic current (mEPSC) in ACC were recorded by the whole-cell patch clamp techniques of rat brain slices following acute hypoxia. Results: After acute hypoxic insult,the frequence of the mEPSC was significantly increased in the pyramidal neurons of the ACC. When perfusion with 300μmol/L PF of artificial cerebrospinal fluid,the frequency of the mEPSC was remarkably reduced in comparison with the frequency determined following acute hypoxia. Conclusion: PF may modulate the plasticity of synaptic activities through decreasing the frequency of the neuronal mEPSC induced by acute hypoxic insult. All these results indicate that PF may have neuroprotective effects.%目的 探讨芍药昔对急性缺氧形成的前扣带回(ACC)锥体神经元损伤的保护作用.方法 应用全细胞膜片钳技术记录急性缺氧ACC锥体神经元微小兴奋性突触后电流(mEPSC)频率的变化,观察芍药苷对急性缺氧后mEPSC的影响.结果 急性缺氧后,ACC锥体神经元的mEPSC频率明显增加;灌流含有芍药苷(300μmol/L)的正常人工脑脊液(ACSF),神经元的mEPSC频率与急性缺氧后相比明显降低.结论 芍药苷可能通过抑制急性缺氧ACC锥体神经元mEPSC的频率,调节突触活动的可塑性变化,达到神经保护作用.

  17. NMDA receptors contribute to synaptic transmission in anterior cingulate cortex of adult mice%NMDA受体参与小鼠的前额扣带回的神经突触传递

    Institute of Scientific and Technical Information of China (English)

    Jason LIAUW; 王过渡; 卓敏

    2003-01-01

    谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触.在正常条件下, 大多数的突触反应是由谷氨酸的AMPA受体传递的.NMDA受体在静息电位下为镁离子抑制.在被激活时, NMDA受体主要参与突触的可塑性变化.但是, 许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应, 提示NMDA受体可能参与静息状态的生理功能.此文中, 我们在离体的前额扣带回脑片上进行电生理记录, 发现NMDA受体参与前额扣带回的突触传递.在重复刺激或近于生理性温度时, NMDA受体传递的反应更为明显.本文直接显示了NMDA受体参与前额扣带回的突触传递, 并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用.%Glutamatergic synapses are common excitatory chemical connections in mammalian central nervous system. At these synapses, most of baseline synaptic transmission is mediated by glutamate AMPA receptors. NMDA receptors that are sensitive to voltage-dependent magnesium blockade selectively contribute to activity-dependent synaptic plasticity. However, inhibition of NMDA receptors by systemic or local administration of NMDA receptor antagonists produced significant effects on different physiological functions that are not believed to depend on NMDA receptor related synaptic plasticity. Here we show that NMDA receptors contribute to synaptic responses in the anterior cingulate cortex (ACC), a region important for cognitive and other brain functions. The contribution of NMDA receptors became more prominent when synapses are stimulated at higher frequencies. Furthermore, at temperatures more close to physiological brain temperatures, more NMDA receptor mediated responses were recorded as compared to the room temperature. These data suggest a new function for NMDA receptors in the ACC as important postsynaptic receptors involved in synaptic transmission, in particular when cells are firing at high frequencies.

  18. Effects of functional connectivity between anterior cingulate cortex and dorsolateral prefrontal cortex on executive control of attention in healthy individuals%前扣带回与背外侧额前皮质的功能连接影响执行控制

    Institute of Scientific and Technical Information of China (English)

    韩燕; 徐君海; 尹训涛; 张栋; 徐文坚; 逄增昌; 葛海涛; 刘树伟

    2013-01-01

    目的 探讨执行控制过程中健康人大脑前扣带回(ACC)与背外侧额前皮质(DLPFC)之间的功能连接及其与行为学表现之间的关系.方法 2011年1至5月25名17~20岁的健康志愿者在青岛大学医学院附属医院放射科进行3.0T功能磁共振扫描,采用注意网络测试(ANT)作为试验范式,计算ACC和DLPFC之间的功能连接,并与ANT的行为学得分做相关分析.结果 在执行控制过程中,背侧ACC(dACC)与两侧的DLPFC之间存在显著的功能连接,其中左侧的dACC和DLPFC之间的功能连接系数与执行控制的行为学得分存在显著负相关(r=-0.63;P <0.01).结论 ACC与DLPFC之间存在功能连接,并对注意的执行控制功能存在有利的影响,这有助于我们理解注意功能中相关脑区的功能整合作用.%Objective To explore the presence of functional connectivity between anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) during the manipulation of attentional network test (ANT) and its relationship with behavioral performance.Methods Functional magnetic resonance imaging was performed on 25 healthy subjects aged 17-20 years.And ANT was used as a paradigm.Functional connectivity between ACC-DLPFC was tested and correlation analysis conducted between functional connectivity coefficients and behavioral scores of ANT.Results Significant functional connectivity between the dorsal ACC (dACC) with bilateral DLPFC was found.Furthermore,event-related functional connectivity coefficients between left dACC and lefi DLPFC were negatively associated with the behavioral scores of executive control (r =-0.63 ; P < 0.01).Conclusion Our findings provide new evidence that ACC and DLPFC are functionally connected and such functional connectivity has advantageous influence on executive control function of attention so as to contribute to our understanding of the integrated role of these brain regions in attentional network.

  19. Functional and structural amygdala - anterior cingulate connectivity correlates with attentional bias to masked fearful faces.

    Science.gov (United States)

    Carlson, Joshua M; Cha, Jiook; Mujica-Parodi, Lilianne R

    2013-10-01

    An attentional bias to threat has been causally related to anxiety. Recent research has linked nonconscious attentional bias to threat with variability in the integrity of the amygdala - anterior cingulate pathway, which sheds light on the neuroanatomical basis for a behavioral precursor to anxiety. However, the extent to which structural variability in amygdala - anterior cingulate integrity relates to the functional connectivity within this pathway and how such functional connectivity may relate to attention bias behavior, remain critical missing pieces of the puzzle. In 15 individuals we measured the structural integrity of the amygdala - prefrontal pathway with diffusion tensor-weighted MRI (magnetic resonance imaging), amygdala-seeded intrinsic functional connectivity to the anterior cingulate, and attentional bias toward backward masked fearful faces with a dot-probe task. We found that greater biases in attention to threat predicted greater levels of uncinate fasciculus integrity, greater positive amygdala - anterior cingulate functional connectivity, and greater amygdala coupling with a broader social perception network including the superior temporal sulcus, tempoparietal junction (TPJ), and somatosensory cortex. Additionally, greater levels of uncinate fasciculus integrity correlated with greater levels of amygdala - anterior cingulate intrinsic functional connectivity. Thus, high bias individuals displayed a heightened degree of amygdala - anterior cingulate connectivity during basal conditions, which we believe predisposes these individuals to focus their attention on signals of threat within their environment.

  20. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?

    Science.gov (United States)

    Aggleton, John P.; Nelson, Andrew J.D.

    2015-01-01

    Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions. PMID:25195980

  1. Processing of sound location in human cortex.

    Science.gov (United States)

    Lewald, Jörg; Riederer, Klaus A J; Lentz, Tobias; Meister, Ingo G

    2008-03-01

    This functional magnetic resonance imaging study was focused on the neural substrates underlying human auditory space perception. In order to present natural-like sound locations to the subjects, acoustic stimuli convolved with individual head-related transfer functions were used. Activation foci, as revealed by analyses of contrasts and interactions between sound locations, formed a complex network, including anterior and posterior regions of temporal lobe, posterior parietal cortex, dorsolateral prefrontal cortex and inferior frontal cortex. The distinct topography of this network was the result of different patterns of activation and deactivation, depending on sound location, in the respective voxels. These patterns suggested different levels of complexity in processing of auditory spatial information, starting with simple left/right discrimination in the regions surrounding the primary auditory cortex, while the integration of information on hemispace and eccentricity of sound may take place at later stages. Activations were identified as being located in regions assigned to both the dorsal and ventral auditory cortical streams, that are assumed to be preferably concerned with analysis of spatial and non-spatial sound features, respectively. The finding of activations also in the ventral stream could, on the one hand, reflect the well-known functional duality of auditory spectral analysis, that is, the concurrent extraction of information based on location (due to the spectrotemporal distortions caused by head and pinnae) and spectral characteristics of a sound source. On the other hand, this result may suggest the existence of shared neural networks, performing analyses of auditory 'higher-order' cues for both localization and identification of sound sources.

  2. Time Course of the Involvement of the Right Anterior Superior Temporal Gyrus and the Right Fronto-Parietal Operculum in Emotional Prosody Perception

    NARCIS (Netherlands)

    Hoekert, Marjolijn; Bais, Leonie; Kahn, Rene S.; Aleman, Andre

    2008-01-01

    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional

  3. Beyond the core face-processing network: Intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia.

    Science.gov (United States)

    Jonas, Jacques; Rossion, Bruno; Brissart, Hélène; Frismand, Solène; Jacques, Corentin; Hossu, Gabriela; Colnat-Coulbois, Sophie; Vespignani, Hervé; Vignal, Jean-Pierre; Maillard, Louis

    2015-11-01

    According to neuropsychological evidence, a distributed network of regions of the ventral visual pathway - from the lateral occipital cortex to the temporal pole - supports face recognition. However, functional magnetic resonance imaging (fMRI) studies have generally confined ventral face-selective areas to the posterior section of the occipito-temporal cortex, i.e., the inferior occipital gyrus occipital face area (OFA) and the posterior and middle fusiform gyrus fusiform face area (FFA). There is recent evidence that intracranial electrical stimulation of these areas in the right hemisphere elicits face matching and recognition impairments (i.e., prosopagnosia) as well as perceptual face distortions. Here we report a case of transient inability to recognize faces following electrical stimulation of the right anterior fusiform gyrus, in a region located anteriorly to the FFA. There was no perceptual face distortion reported during stimulation. Although no fMRI face-selective responses were found in this region due to a severe signal drop-out as in previous studies, intracerebral face-selective event-related potentials and gamma range electrophysiological responses were found at the critical site of stimulation. These results point to a causal role in face recognition of the right anterior fusiform gyrus and more generally of face-selective areas located beyond the "core" face-processing network in the right ventral temporal cortex. It also illustrates the diagnostic value of intracerebral electrophysiological recordings and stimulation in understanding the neural basis of face recognition and visual recognition in general.

  4. Intradural anterior transpetrosal approach.

    Science.gov (United States)

    Ichimura, Shinya; Hori, Satoshi; Hecht, Nils; Czabanka, Marcus; Vajkoczy, Peter

    2016-10-01

    The standard anterior transpetrosal approach (ATPA) for petroclival lesions is fundamentally an epidural approach and has been practiced for many decades quite successfully. However, this approach has some disadvantages, such as epidural venous bleeding around foramen ovale. We describe here our experience with a modified technique for anterior petrosectomy via an intradural approach that overcomes these disadvantages. Five patients with petroclival lesions underwent surgery via the intradural ATPA. The intraoperative hallmarks are detailed, and surgical results are reported. Total removal of the lesions was achieved in two patients with petroclival meningioma and two patients with pontine cavernoma, whereas subtotal removal was achieved in one patient with petroclival meningioma without significant morbidity. No patient experienced cerebrospinal fluid leakage. The intradural approach is allowed to tailor the extent of anterior petrosectomy to the individually required exposure, and the surgical procedure appeared to be more straightforward than via the epidural route. Caveats encountered with the approach were the temporal basal veins that could be spared as well as identification of the petrous apex due to the lack of familial epidural landmarks. The risk of injury to the temporal bridging veins is higher in this approach than in the epidural approach. Intradural approach is recommended in patients with a large epidural venous route, such as sphenobasal and sphenopetrosal vein. Navigation via bone-window computed tomography is useful to identify the petrous apex.

  5. Association of fronto-temporal function with cognitive ability in schizophrenia

    Science.gov (United States)

    Pu, Shenghong; Nakagome, Kazuyuki; Itakura, Masashi; Iwata, Masaaki; Nagata, Izumi; Kaneko, Koichi

    2017-01-01

    Deficits in neuropsychological performance are common in schizophrenia, but their relationship with the fronto-temporal functional abnormalities associated with this condition remains unclear. We explored the relationship between neuropsychological performance as measured using the Brief Assessment of Cognition in Schizophrenia (BACS) and the Social Cognition Screening Questionnaire theory of mind (ToM) subscale and fronto-temporal function in 23 patients with schizophrenia and 23 age- and gender-matched healthy controls (HCs), using 52-channel near-infrared spectroscopy (NIRS). Regional hemodynamic changes were significantly smaller in the schizophrenia group than in the HCs group in the ventro-lateral prefrontal cortex and the anterior part of the temporal cortex (VLPFC/aTC) and dorso-lateral prefrontal cortex and frontopolar cortex (DLPFC/FPC) regions. To dissect the effect of variance in BACS cognitive domains from the relationship between ToM function and fronto-temporal function, we performed additional partial correlation analyses between ToM and NIRS data, using BACS composite score as a control variable. The correlation between ToM and NIRS data remained significant only in the DLPFC/FPC region. This finding is important to models of recovery, as it suggests that intervention programs focusing on enhancing fronto-temporal function may have a greater impact on social and occupational outcomes than traditional rehabilitation programs focusing on neuropsychological performance. PMID:28205609

  6. Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function.

    Science.gov (United States)

    Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L; Rajah, M Natasha

    2016-06-01

    The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife.

  7. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.

  8. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents.

    Science.gov (United States)

    Insausti, R; Herrero, M T; Witter, M P

    1997-01-01

    The origins and terminations of entorhinal cortical projections in the rat were analyzed in detail with retrograde and anterograde tracing techniques. Retrograde fluorescent tracers were injected in different portions of olfactory, medial frontal (infralimbic and prelimbic areas), lateral frontal (motor area), temporal (auditory), parietal (somatosensory), occipital (visual), cingulate, retrosplenial, insular, and perirhinal cortices. Anterograde tracer injections were placed in various parts of the rat entorhinal cortex to demonstrate the laminar and topographical distribution of the cortical projections of the entorhinal cortex. The retrograde experiments showed that each cortical area explored receives projections from a specific set of entorhinal neurons, limited in number and distribution. By far the most extensive entorhinal projection was directed to the perirhinal cortex. This projection, which arises from all layers, originates throughout the entorhinal cortex, although its major origin is from the more lateral and caudal parts of the entorhinal cortex. Projections to the medial frontal cortex and olfactory structures originate largely in layers II and III of much of the intermediate and medial portions of the entorhinal cortex, although a modest component arises from neurons in layer V of the more caudal parts of the entorhinal cortex. Neurons in layer V of an extremely laterally located strip of entorhinal cortex, positioned along the rhinal fissure, give rise to the projections to lateral frontal (motor), parietal (somatosensory), temporal (auditory), occipital (visual), anterior insular, and cingulate cortices. Neurons in layer V of the most caudal part of the entorhinal cortex originate projections to the retrosplenial cortex. The anterograde experiments confirmed these findings and showed that in general, the terminal fields of the entorhinal-cortical projections were densest in layers I, II, and III, although particularly in the more densely

  9. The spatial-temporal interaction in the LTP induction between layer IV to layer II/III and layer II/III to layer II/III connections in rats' visual cortex during the development.

    Science.gov (United States)

    Li, Da-Ke; Zhang, Chao; Gu, Yu; Zhang, She-Hong; Shi, Jian; Chen, Xian-Hua

    2017-03-20

    During the early developmental period, long-term potentiation (LTP) can be induced in both vertical and horizontal connections in the rat visual cortex. However, the temporal difference in LTP change between the two pathways during animal development remains unclear. In this study, LTP in vertical (from layer IV to layer II/III) and horizontal (from layer II/III to layer II/III) synaptic connections were recorded in brain slices from the same rats, and the developmental changes of LTP in both directions were compared within the animals' eye-opening period. The results showed that the LTP amplitudes declined to unobservable levels on P16 in the horizontal connections and on P20 in the vertical synaptic connections. Meanwhile, V-LTP (LTP induced in the vertical direction) was always stronger than H-LTP (LTP induced in the horizontal direction) under the same conditions of pairing stimulus (PS). Next, H-LTP and V-LTP were induced from the same neuron in layer II/III to determine the spatiotemporal interactions between layer II/III horizontal inputs and ascending synaptic inputs during the maturation of rat visual cortex. The data show that the weak PS, which failed to induce H-LTP alone, was able to induce H-LTP effectively while V-LTP was performed on P10. Our results suggest that V-LTP can strengthen H-LTP induction in the visual cortex during the early developmental period. In contrast, the regulatory effect of H-LTP on V-LTP was much weaker.

  10. Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Ravnoor Singh Gill

    2017-01-01

    Full Text Available We studied the graph topological properties of brain networks derived from resting-state functional magnetic resonance imaging in a kainic acid induced model of temporal lobe epilepsy (TLE in rats. Functional connectivity was determined by temporal correlation of the resting-state Blood Oxygen Level Dependent (BOLD signals between two brain regions during 1.5% and 2% isoflurane, and analyzed as networks in epileptic and control rats. Graph theoretical analysis revealed a significant increase in functional connectivity between brain areas in epileptic than control rats, and the connected brain areas could be categorized as a limbic network and a default mode network (DMN. The limbic network includes the hippocampus, amygdala, piriform cortex, nucleus accumbens, and mediodorsal thalamus, whereas DMN involves the medial prefrontal cortex, anterior and posterior cingulate cortex, auditory and temporal association cortex, and posterior parietal cortex. The TLE model manifested a higher clustering coefficient, increased global and local efficiency, and increased small-worldness as compared to controls, despite having a similar characteristic path length. These results suggest extensive disruptions in the functional brain networks, which may be the basis of altered cognitive, emotional and psychiatric symptoms in TLE.

  11. Calretinin, parvalbumin and calbindin immunoreactive interneurons in perirhinal cortex and temporal area Te3V of the rat brain: qualitative and quantitative analyses.

    Science.gov (United States)

    Barinka, Filip; Salaj, Martin; Rybář, Jan; Krajčovičová, Eva; Kubová, Hana; Druga, Rastislav

    2012-02-03

    The perirhinal cortex (PRC) composed of areas 35 and 36 forms an important route for activity transfer between the hippocampus-entorhinal cortex and neocortex. Its function in memory formation and consolidation as well as in the initiation and spreading of epileptic activity was already partially elucidated. We studied the general pattern of calretinin (CR), parvalbumin (PV) and calbindin (CB) immunoreactivity and its corrected relative optical density (cROD) as well as morphological features and density of CR and PV immunoreactive (CR+, PV+) interneurons in the rat PRC. Neighboring neocortical association area Te3V was analyzed as well. The PRC differed from the Te3V in higher CR and lower PV overall immunoreactivity level. On CR immunostained sections, the difference between high cROD value in area 35 and low cROD value in area Te3V reached statistical significance (pinterneurons was expressed as a percentage of the total neurons counts. The percentage of CR+ interneurons was higher in area 35 by comparison with area Te3 (pinterneurons did not significantly differ among the examined areas. In conclusion, the PRC possesses specific interneuronal equipment with unusually high proportion of CR+ interneurons, what might be of importance for the presumed gating function of PRC in normal and diseased states.

  12. Epidermoid cyst in Anterior, Middle

    Directory of Open Access Journals (Sweden)

    Kankane Vivek Kumar

    2016-09-01

    Full Text Available Epidermoid cysts are benign slow growing more often extra-axial tumors that insinuate between brain structures, we present the clinical, imaging, and pathological findings in 35 years old female patients with atypical epidermoid cysts which was situated anterior, middle & posterior cranial fossa. NCCT head revealed hypodense lesion over right temporal and perisylvian region with extension in prepontine cistern with mass effect & midline shift and MRI findings revealed a non-enhancing heterogeneous signal intensity cystic lesion in right frontal & temporal region extending into prepontine cistern with restricted diffusion. Patient was detoriated in night of same day of admission, emergency Fronto-temporal craniotomy with anterior peterousectomy and subtotal resection was done. The histological examination confirms the epidermoid cyst. The timing of ectodermal tissue sequestration during fetal development may account for the occurrence of atypical epidermoid cysts.

  13. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  14. Entorhinal cortex and consolidated memory.

    Science.gov (United States)

    Takehara-Nishiuchi, Kaori

    2014-07-01

    The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.

  15. Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32.

    Science.gov (United States)

    Mellott, Jeffrey G; Van der Gucht, Estel; Lee, Charles C; Carrasco, Andres; Winer, Jeffery A; Lomber, Stephen G

    2010-08-01

    The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative; nearly all immunoreactive cells are pyramidal; and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations.

  16. Segregation of vowels and consonants in human auditory cortex: Evidence for distributed hierarchical organization

    Directory of Open Access Journals (Sweden)

    Jonas eObleser

    2010-12-01

    Full Text Available The speech signal consists of a continuous stream of consonants and vowels, which must be de– and encoded in human auditory cortex to ensure the robust recognition and categorization of speech sounds. We used small-voxel functional magnetic resonance imaging (fMRI to study information encoded in local brain activation patterns elicited by consonant-vowel syllables, and by a control set of noise bursts.First, activation of anterior–lateral superior temporal cortex was seen when controlling for unspecific acoustic processing (syllables versus band-passed noises, in a classic subtraction-based design. Second, a classifier algorithm, which was trained and tested iteratively on data from all subjects to discriminate local brain activation patterns, yielded separations of cortical patches discriminative of vowel category versus patches discriminative of stop-consonant category across the entire superior temporal cortex, yet with regional differences in average classification accuracy. Overlap (voxels correctly classifying both speech sound categories was surprisingly sparse. Third, lending further plausibility to the results, classification of speech–noise differences was generally superior to speech–speech classifications, with the notable exception of a left anterior region, where speech–speech classification accuracies were significantly better.These data demonstrate that acoustic-phonetic features are encoded in complex yet sparsely overlapping local patterns of neural activity distributed hierarchically across different regions of the auditory cortex. The redundancy apparent in these multiple patterns may partly explain the robustness of phonemic representations.

  17. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain

    Science.gov (United States)

    Martino, Juan; De Witt Hamer, Philip C; Vergani, Francesco; Brogna, Christian; de Lucas, Enrique Marco; Vázquez-Barquero, Alfonso; García-Porrero, Juan A; Duffau, Hugues

    2011-01-01

    Classical fiber dissection of post mortem human brains enables us to isolate a fiber tract by removing the cortex and overlying white matter. In the current work, a modification of the dissection methodology is presented that preserves the cortex and the relationships within the brain during all stages of dissection, i.e. ‘cortex-sparing fiber dissection’. Thirty post mortem human hemispheres (15 right side and 15 left side) were dissected using cortex-sparing fiber dissection. Magnetic resonance imaging study of a healthy brain was analyzed using diffusion tensor imaging (DTI)-based tractography software. DTI fiber tract reconstructions were compared with cortex-sparing fiber dissection results. The fibers of the superior longitudinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) were isolated so as to enable identification of their cortical terminations. Two segments of the SLF were identified: first, an indirect and superficial component composed of a horizontal and vertical segment; and second, a direct and deep component or arcuate fasciculus. The IFOF runs within the insula, temporal stem and sagittal stratum, and connects the frontal operculum with the occipital, parietal and temporo-basal cortex. The UF crosses the limen insulae and connects the orbito-frontal gyri with the anterior temporal lobe. Finally, a portion of the ILF was isolated connecting the fusiform gyrus with the occipital gyri. These results indicate that cortex-sparing fiber dissection facilitates study of the 3D anatomy of human brain tracts, enabling the tracing of fibers to their terminations in the cortex. Consequently, it is an important tool for neurosurgical training and neuroanatomical research. PMID:21767263

  18. Experience-dependent spatial expectations in mouse visual cortex

    DEFF Research Database (Denmark)

    Fiser, Aris; Mahringer, David; Oyibo, Hassana K.

    2016-01-01

    primary visual cortex (V1) becomes increasingly informative of spatial location. We found that a subset of V1 neurons exhibited responses that were predictive of the upcoming visual stimulus in a spatially dependent manner and that the omission of an expected stimulus drove strong responses in V1....... Stimulus-predictive responses also emerged in V1-projecting anterior cingulate cortex axons, suggesting that anterior cingulate cortex serves as a source of predictions of visual input to V1. These findings are consistent with the hypothesis that visual cortex forms an internal representation of the visual...... scene based on spatial location and compares this representation with feed-forward visual input....

  19. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat.

    Science.gov (United States)

    Mouly, A-M; Di Scala, G

    2006-01-01

    The rodent olfactory bulb sends direct projections to the piriform cortex and to two structures intimately implicated in memory processes, the entorhinal cortex and the amygdala. The piriform cortex has monosynaptic projections with the amygdala and the piriform cortex and is therefore in a position to modulate olfactory input either directly in the piriform cortex, or via the amygdala. In order to investigate this hypothesis, field potential signals induced in anesthetized rats by electrical stimulation of the olfactory bulb or the entorhinal cortex were recorded simultaneously in the piriform cortex (anterior part and posterior part) and the amygdala (basolateral nucleus and cortical nucleus). Single-site paired-pulse stimulation was used to assess the time courses of short-term inhibition and facilitation in each recording site in response to electrical stimulation of the olfactory bulb and entorhinal cortex. Paired-pulse stimulation of the olfactory bulb induced homosynaptic inhibition for short interpulse interpulse intervals (20-30 ms) in all the recording sites, with a significantly lower degree of inhibition in the anterior piriform cortex than in the other structures. At longer intervals (40-80 ms), paired-pulse facilitation was observed in all the structures. Paired-pulse stimulation of the entorhinal cortex mainly resulted in inhibition for the shortest interval duration (20 ms) in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. Double-site paired-pulse stimulation was then applied to determine if stimulation of the entorhinal cortex can modulate responses to olfactory bulb stimulation. For short interpulse intervals (20 ms) heterosynaptic inhibition was observed in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. The level of inhibition was greater in the basolateral nucleus than in the other structures. Taken together these data suggest that the

  20. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes - A report of 4 cases

    NARCIS (Netherlands)

    O. Borens; M.K. Sen; R.C. Huang; J. Richmond; P. Kloen; J.B. Jupiter; D.L. Helfet

    2006-01-01

    Stress fracture of the anterior tibial cortex is an extremely challenging fracture to treat, especially in the high-performance female athlete who requires rapid return to competition. Previous reports have not addressed treating these fractures in the world-class athlete with anterior plating. We h

  1. 广泛性焦虑症患者额中回、扣带回、海马磁共振质子波谱成像研究%A 1H-magnetic resonance spectroscopy imaging study on frontal gyrus, anterior cingulate cortex and hippocampus of patients with generalized anxiety disorder

    Institute of Scientific and Technical Information of China (English)

    魏杰; 王建安; 杨庚林; 张薇

    2013-01-01

    Objective To study the feature of brain functional in front gyrus,anterior cingulate cortex and hippocampus of patients with generalized anxiety disorder (GAD).Methods 19 patients with GAD and 20 healthy volunteers were scanned on brain using proton magnetic resonance spectroscopic imaging (1H-MRS).The levels of Choline (Cho),Creatine (Cr),N-acetyl-aspartate (NAA) were measured in the frontal gyrus,anterior cingulate cortex and hippocampus of all subjects.The 1H-MRS data were compared between two groups.Results Compared with the healthy matched control,the levels of Cho (7.22 ± 1.99),Cr (5.44 ± 1.68),NAA (12.09 ±2.30)in right frontal gyrus white matter,the levels of Cho(9.89 ±2.40),Cr(8.59 ± 1.71) in right anterior cingulate cortex and the levels of NAA in left anterior cingulate cortex were significantly high (P < 0.05).The ratio of NAA/Cr and Cho/Cr were not difference in two groups.In the hippocampus of the patients,the Cho,Cr,NAA,NAA/Cr and Cho/Cr ratio were not significantly higher or lower than those in control (P > 0.05).Conclusion The brain substance metabolisms of the patients with GAD are abnormal and asymmetrical between left and right brain,especially occurred in right brain.%目的 探讨广泛性焦虑症患者(Generalized Anxiety Disorder,GAD)脑额中回、扣带回和海马功能.方法 19名符合ICD-10诊断标准的GAD患者为试验组,20名条件匹配的健康志愿者为对照组,用磁共振质子波谱成像技术(1 H-Magnetic Resonance Spectroscopy,1H-MRS)对所有入组者行脑额中回、扣带回和海马中胆碱化合物(Cho)、肌酸(Cr)、N-乙酰天冬氨酸(NAA)物质水平测定,并行两组间比较.结果 GAD组右额中回白质Cho(7.22±1.99)、Cr(5.44 ±1.68)、NAA(12.09±2.30)及右扣带回皮质Cho(9.89±2.40)、Cr(8.59±1.71)、左扣带回皮质NAA(13.49±2.27)明显高于对照组,差异具有统计学意义(P<0.05);两组右扣带回皮质NAA、左扣带回皮质Cho、Cr及左额中回白质Cho、Cr

  2. Undetected iatrogenic lesions of the anterior femoral shaft during intramedullary nailing: a cadaveric study

    Directory of Open Access Journals (Sweden)

    Shepherd Lane

    2008-07-01

    Full Text Available Abstract Background The incidence of undetected radiographically iatrogenic longitudinal splitting in the anterior cortex during intramedullary nailing of the femur has not been well documented. Methods Cadaveric study using nine pairs of fresh-frozen femora from adult cadavers. The nine pairs of femora underwent a standardized antegrade intramedullary nailing and the detection of iatrogenic lesions, if any, was performed macroscopically and by radiographic control. Results Longitudinal splitting in the anterior cortex was revealed in 5 of 18 cadaver femora macroscopically. Anterior splitting was not detectable in radiographic control. Conclusion Longitudinal splitting in the anterior cortex during intramedullary nailing of the femur cannot be detected radiographically.

  3. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  4. Functional connectivity based parcellation of the human medial temporal lobe.

    Science.gov (United States)

    Wang, Shao-Fang; Ritchey, Maureen; Libby, Laura A; Ranganath, Charan

    2016-10-01

    Regional differences in large-scale connectivity have been proposed to underlie functional specialization along the anterior-posterior axis of the medial temporal lobe (MTL), including the hippocampus (HC) and the parahippocampal gyrus (PHG). However, it is unknown whether functional connectivity (FC) can be used reliably to parcellate the human MTL. The current study aimed to differentiate subregions of the HC and the PHG based on patterns of whole-brain intrinsic FC. FC maps were calculated for each slice along the longitudinal axis of the PHG and the HC. A hierarchical clustering algorithm was then applied to these data in order to group slices according to the similarity of their connectivity patterns. Surprisingly, three discrete clusters were identified in the PHG. Two clusters corresponded to the parahippocampal cortex (PHC) and the perirhinal cortex (PRC), and these regions showed preferential connectivity with previously described posterior-medial and anterior-temporal networks, respectively. The third cluster corresponded to an anterior PRC region previously described as area 36d, and this region exhibited preferential connectivity with auditory cortical areas and with a network involved in visceral processing. The three PHG clusters showed different profiles of activation during a memory-encoding task, demonstrating that the FC-based parcellation identified functionally dissociable sub-regions of the PHG. In the hippocampus, no sub-regions were identified via the parcellation procedure. These results indicate that connectivity-based methods can be used to parcellate functional regions within the MTL, and they suggest that studies of memory and high-level cognition need to differentiate between PHC, posterior PRC, and anterior PRC.

  5. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization.

    Directory of Open Access Journals (Sweden)

    Femke E van den Berg

    Full Text Available Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS to investigate whether representations of the wrist flexor (FCR and extensor (ECR in M1(ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi than in the right. In experiment 2, we tested whether the modulations of M1(ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI. We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.

  6. Speech-evoked activation in adult temporal cortex measured using functional near-infrared spectroscopy (fNIRS): Are the measurements reliable?

    Science.gov (United States)

    Wiggins, Ian M; Anderson, Carly A; Kitterick, Pádraig T; Hartley, Douglas E H

    2016-09-01

    Functional near-infrared spectroscopy (fNIRS) is a silent, non-invasive neuroimaging technique that is potentially well suited to auditory research. However, the reliability of auditory-evoked activation measured using fNIRS is largely unknown. The present study investigated the test-retest reliability of speech-evoked fNIRS responses in normally-hearing adults. Seventeen participants underwent fNIRS imaging in two sessions separated by three months. In a block design, participants were presented with auditory speech, visual speech (silent speechreading), and audiovisual speech conditions. Optode arrays were placed bilaterally over the temporal lobes, targeting auditory brain regions. A range of established metrics was used to quantify the reproducibility of cortical activation patterns, as well as the amplitude and time course of the haemodynamic response within predefined regions of interest. The use of a signal processing algorithm designed to reduce the influence of systemic physiological signals was found to be crucial to achieving reliable detection of significant activation at the group level. For auditory speech (with or without visual cues), reliability was good to excellent at the group level, but highly variable among individuals. Temporal-lobe activation in response to visual speech was less reliable, especially in the right hemisphere. Consistent with previous reports, fNIRS reliability was improved by averaging across a small number of channels overlying a cortical region of interest. Overall, the present results confirm that fNIRS can measure speech-evoked auditory responses in adults that are highly reliable at the group level, and indicate that signal processing to reduce physiological noise may substantially improve the reliability of fNIRS measurements.

  7. Impact of the chronic arsenic poisoning on the ultraturcture of adult mouse brain temporal lobe cortex%慢性砷中毒对成年小鼠大脑皮质颞叶超微结构的影响

    Institute of Scientific and Technical Information of China (English)

    花伟; 臧贵勇

    2015-01-01

    Objective To observe the changes of the ultrastructure of the temporal lobe cortex for the brains of these mouse with chronic arsenicpoisoning ,to explore the mechanism of arsenic toxicity on the brain .Method 60 healthy adult Kunming mouse ( 30 male and 30 female) were selected and divided into control group ,low and high dose groups . There were 20 mouse in each group . The dye arsenic group respectively with distilled water , 1/5LD50 ,1/50LD50 ,As2 O3 solution to fill the stomach ,for three consecutive months .After building ,canister , based on the determination of arsenic in groups of mice brain ,Nepal’s dyeing were used to observe the cerebral cor‐tex of temporal morphology change ,transmission electronmicroscope to observe the changes of the ultrastructure of the cerebral cortex temporal lobe in mice .Result It might be the type the type of arsenic content in the cerebral cor‐tex was significantly higher than the control group (P<0 .05) .It was observed the decrease in the number of infec‐ted each cortical neurons ,shape was irregular ,intracytoplasmic austenite reduced .It was observed under electron microscope the prion edema groups of nerve cells ,organelles decreased ,mitochondrial cristae fracture and cavity . Conclusion Arsenic poisoning can cause nerve cell pathology and ultrastructure change of cerebral cortex .%目的:观察慢性砷中毒对小鼠大脑皮质颞叶超微结构的改变,探讨砷对大脑的毒性机制。方法选取健康成年昆明小鼠60只,雌雄各半,分为对照组、慢性砷中毒低、高剂量组,每组20只,各染砷组分别以蒸馏水、1/5LD50、1/50 LD50的As2 O3溶液灌胃,连续3个月。经造模、染毒、取材后,测定各组小鼠大脑中砷含量,采用尼氏染色观察大脑皮质颞叶形态学改变,透射电镜观察小鼠大脑皮质颞叶超微结构的变化。结果(1)染毒各组小鼠大脑皮质中砷含量明显高于对照组(P<0.05);(2)

  8. Goal-dependent modulation of declarative memory: neural correlates of temporal recency decisions and novelty detection.

    Science.gov (United States)

    Dudukovic, Nicole M; Wagner, Anthony D

    2007-06-18

    Declarative memory allows an organism to discriminate between previously encountered and novel items, and to place past encounters in time. Numerous imaging studies have investigated the neural processes supporting item recognition, whereas few have examined retrieval of temporal information. In the present study, functional magnetic resonance imaging (fMRI) was conducted while subjects engaged in temporal recency and item novelty decisions. Subjects encountered three-alternative forced-choice retrieval trials, each consisting of two words from a preceding study phase and one novel word, and were instructed to either identify the novel item (Novelty trials) or the more recently presented study item (Recency trials). Relative to correct Novelty decisions, correct Recency decisions elicited greater activation in a network of left-lateralized regions, including frontopolar and dorsolateral prefrontal cortex and intraparietal sulcus. A conjunction analysis revealed that these left-lateralized regions overlapped with those previously observed to be engaged during source recollection versus novelty detection, suggesting that during Recency trials subjects attempted to recollect event details. Consistent with this interpretation, correct Recency decisions activated posterior hippocampus and parahippocampal cortex, whereas incorrect Recency decisions elicited greater anterior cingulate activation. The magnitude of this latter effect positively correlated with activation in right dorsolateral prefrontal cortex. Finally, correct Novelty decisions activated the anterior medial temporal lobe to a greater extent than did correct Recency decisions, suggesting that medial temporal novelty responses are not obligatory but rather can be modulated by the goal-directed allocation of attention. Collectively, these findings advance understanding of how subjects strategically engage frontal and parietal mechanisms in the service of attempting to remember the temporal order of events

  9. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    Science.gov (United States)

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-09

    cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex.

  10. Expression of Brain-derived Neurotrophic Factor in Temporal Cortex of Autism Model Rats%脑源性神经营养因子在孤独症模型鼠颞叶皮层中的表达

    Institute of Scientific and Technical Information of China (English)

    陈淑娟; 姜志梅; 郭岚敏; 张士岭; 孙奇峰; 李丽; 王长山

    2012-01-01

    Objective To explore the role of brain-derived neurotrophic factor (BDNF) in pathogenesis of autism. Methods 12.5 d pregnant Wistar rats were injected sodium valproate (VPA) 600 mg/kg or normal saline (NS). Their newborn rats were observed ethologically. The expression of BDNF was measured in their temporal cortex with immunohistochemical stain. Results Compared with NS group, VPA group expressed less body mass (P<0.05), eyes opening delay (P<0.05), poorer coordination response (P<0.05), slower taxis response (P< 0.05). The number of social behavior decreased (P<0.05), latency increased (P<0.05), duration shortened (P<0.05), repetitive activities increased (P<0.05). Purkinje cells reduced in cerebellum. The expression of BDNF increased significantly in temporal cortex 1 d, 7 d and 14 d postnatally (P<0.01), but decreased 35 d and 49 dpostnatally (P<0.01). Conclusion BDNF plays a role in the pathogenesis of autism.%目的 研究颞叶皮层脑源性神经营养因子(BDNF)表达与孤独症的关系.方法 孕12.5dWistar大鼠腹腔注射丙戊酸钠(VPA)600mg/kg,观察仔鼠(VPA组)的行为学特征,应用免疫组化法检测VPA组与对照仔鼠(对照组,腹腔注射等量生理盐水)颞叶皮层BDNF表达.结果 与对照组相比,VPA组表现为低体重(P<0.05),睁眼时间延迟(P<0.05),协调性反应差(P<0.05),方向趋向性反应迟缓(P<0.05);社交行为次数减少(P<0.05)、潜伏期延长(P<0.05)、持续时间缩短(P<0.05),重复行为增多(P<0.05).小脑浦肯野细胞数量减少.出生后1d、7d、14d时,VPA组颞叶皮层BDNF表达明显高于对照组(P<0.01),而出生后35d、49d时,VPA组颞叶皮层BDNF表达明显低于对照组(P<0.01).结论 颞叶BDNF表达参与孤独症的发病过程.

  11. Associative Encoding in Posterior Piriform Cortex during Odor Discrimination and Reversal Learning

    OpenAIRE

    Calu, Donna J.; Roesch, Matthew R.; Stalnaker, Thomas A; Schoenbaum, Geoffrey

    2006-01-01

    Recent proposals have conceptualized piriform cortex as an association cortex, capable of integrating incoming olfactory information with descending input from higher order associative regions such as orbitofrontal cortex and basolateral amygdala (ABL). If true, encoding in piriform cortex should reflect associative features prominent in these areas during associative learning involving olfactory cues. We recently reported that neurons in anterior piriform cortex (APC) in rats exhibited signi...

  12. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  13. Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study.

    Science.gov (United States)

    Sidhu, Meneka K; Stretton, Jason; Winston, Gavin P; McEvoy, Andrew W; Symms, Mark; Thompson, Pamela J; Koepp, Matthias J; Duncan, John S

    2016-02-01

    left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery.

  14. Morphogenetic and histogenetic roles of the temporal-spatial organization of cell proliferation in the vertebrate corticogenesis as revealed by inter-specific analyses of the optic tectum cortex development

    Directory of Open Access Journals (Sweden)

    Melina eRapacioli

    2016-03-01

    Full Text Available The central nervous system areas displaying the highest structural and functional complexity correspond to the so called cortices, i.e. concentric alternating neuronal and fibrous layers. Corticogenesis, i.e. the development of the cortical organization, depends on the temporal-spatial organization of several developmental events: (a the duration of the proliferative phase of the neuroepithelium, (b the relative duration of symmetric (expansive versus asymmetric (neuronogenic sub phases, (c the spatial organization of each kind of cell division, (e the time of determination and cell cycle exit and (f the time of onset of the postmitotic neuronal migration and (g the time of onset of the neuronal structural and functional differentiation. The first five events depend on molecular mechanisms that perform a fine tuning of the proliferative activity. Changes in any of them significantly influence the cortical size or volume (tangential expansion and radial thickness, morphology, architecture and also impact on neuritogenesis and synaptogenesis affecting the cortical wiring. This paper integrates information, obtained in several species, on the developmental roles of cell proliferation in the development of the optic tectum cortex, a multilayered associative area of the dorsal (alar midbrain. The present review (1 compiles relevant information on the temporal and spatial organization of cell proliferation in different species (fish, amphibians, birds and mammals, (2 revises the main molecular events involved in the isthmic organizer determination and localization, (3 describes how the patterning installed by isthmic organizer is translated into spatially organized neural stem cell proliferation (i.e. by means of growth factors, receptors, transcription factors, signaling pathways, etc. and (4 describes the morpho- and histogenetic effect of a spatially organized cell proliferation in the above mentioned species. A brief section on the optic tectum

  15. Is the subcallosal medial prefrontal cortex a common site of atrophy in Alzheimer’s disease and frontotemporal lobar degeneration?

    Directory of Open Access Journals (Sweden)

    Olof eLindberg

    2012-11-01

    Full Text Available Regions affected late in neurodegenerative disease are thought to be anatomically connected to regions affected earlier. The subcallosal medial prefrontal cortex (SMPC has connections with the dorsolateral prefrontal cortex (DLPFC, orbitofrontal cortex (OFC and hippocampus (HC, which are regions that may become atrophic in frontotemporal lobar degeneration (FTLD and Alzheimer’s disease (AD. We hypothesized that the SMPC is a common site of frontal atrophy in the FTLD subtypes and in AD. The volume of the SMPC, DLPFC, OFC, HC and entorhinal cortex were manually delineated for 12 subjects with frontotemporal dementia (FTD, 13 with semantic dementia (SD, 9 with progressive nonfluent aphasia (PNFA, 10 AD cases and 13 controls. Results revealed significant volume loss in the left SMPC in FTD, SD and PNFA, while the right SMPC was also atrophied in SD and FTD. In AD a non significant tendency of volume loss in the left SMPC was found (p=0.08, with no volume loss on the right side. Results indicated that volume loss reflected the degree of brain connectivity. In SD and AD temporal regions displayed most atrophy. Among the frontal regions, the SMPC (which receives the strongest temporal projections demonstrated most volume loss, the OFC (which receives less temporal projections less volume loss, while the DLPFC (which is at multisynaptic distance from the temporal regions demonstrated no volume loss. In PNFA, the left SMPC was atrophic, possibly reflecting progression from the left anterior insula, while FTD patients may have had SMPC atrophy at the initial stages of the disease. Atrophy of the SMPC may thus be affected by either initial temporal or initial frontal atrophy, making it a common site of frontal atrophy in the dementia subtypes investigated.

  16. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. A.; Son, H. S.; Kim, S. H.; Jung, S. G [The Catholic University of Korea, Seoul (Korea, Republic of)

    2004-07-01

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control.

  17. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    Science.gov (United States)

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  18. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    Science.gov (United States)

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  19. Projection from the perirhinal cortex to the frontal motor cortex in the rat.

    Science.gov (United States)

    Kyuhou, Shin ichi; Gemba, Hisae

    2002-03-01

    Stimulation of the anterior perirhinal cortex (PERa) induced marked surface-negative and depth-positive field potentials in the rat frontal motor cortex (MC) including the rostral and caudal forelimb areas. Injection of biotinylated dextran into the PERa densely labeled axon terminals in the superficial layers of the MC, where vigorous unit responses were evoked after PERa stimulation, indicated that the perirhinal-frontal projection preferentially activates the superficial layer neurons of the MC.

  20. Time-perception network and default mode network are associated with temporal prediction in a periodic motion task

    Directory of Open Access Journals (Sweden)

    Fabiana Mesquita Carvalho

    2016-06-01

    Full Text Available The updating of prospective internal models is necessary to accurately predict future observations. Uncertainty-driven internal model updating has been studied using a variety of perceptual paradigms, and have revealed engagement of frontal and parietal areas. In a distinct literature, studies on temporal expectations have also characterized a time-perception network, which relies on temporal orienting of attention. However, the updating of prospective internal models is highly dependent on temporal attention, since temporal attention must be reoriented according to the current environmental demands. In this study we used fMRI to evaluate to what extend the continuous manipulation of temporal prediction would recruit update-related areas and the time-perception network areas. We developed an exogenous temporal task that combines rhythm cueing and time-to-contact principles to generate implicit temporal expectation. Two patterns of motion were created: periodic (simple harmonic oscillation and non-periodic (harmonic oscillation with variable acceleration. We found that non-periodic motion engaged the exogenous temporal orienting network, which includes the ventral premotor and inferior parietal cortices, and the cerebellum, as well as the presupplementary motor area, which has previously been implicated in internal model updating, and the motion-sensitive area MT+. Interestingly, we found a right-hemisphere preponderance suggesting the engagement of explicit timing mechanisms. We also show that the periodic motion condition, when compared to the non-periodic motion, activated a particular subset of the default-mode network (DMN midline areas, including the left dorsomedial prefrontal cortex, anterior cingulate cortex, and bilateral posterior cingulate cortex/precuneus. It suggests that the DMN plays a role in processing contextually expected information and supports recent evidence that the DMN may reflect the validation of prospective internal

  1. The visual pulvinar in tree shrews II. Projections of four nuclei to areas of visual cortex.

    Science.gov (United States)

    Lyon, David C; Jain, Neeraj; Kaas, Jon H

    2003-12-22

    Patterns of thalamocortical connections were related to architectonically defined subdivisions of the pulvinar complex and the dorsolateral geniculate nucleus (LGN) in tree shrews (Tupaia belangeri). Tree shrews are of special interest because they are considered close relatives of primates, and they have a highly developed visual system. Several distinguishable tracers were injected within and across cortical visual areas in individual tree shrews in order to reveal retinotopic patterns and cortical targets of subdivisions of the pulvinar. The results indicate that each of the three architectonic regions of the pulvinar has a distinctive pattern of cortical connections and that one of these divisions is further divided into two regions with different patterns of connections. Two of the pulvinar nuclei have similar retinotopic patterns of projections to caudal visual cortex. The large central nucleus of the pulvinar (Pc) projects to the first and second visual areas, V1 and V2, and an adjoining temporal dorsal area (TD) in retinotopic patterns indicating that the upper visual quadrant is represented dorsal to the lower quadrant in Pc. The smaller ventral nucleus (Pv) which stains darkly for the Cat-301 antigen, projects to these same cortical areas, with a retinotopic pattern. Pv also projects to a temporal anterior area, TA. The dorsal nucleus (Pd), which densely expresses AChE, projects to posterior and ventral areas of temporal extrastriate cortex, areas TP and TPI. A posterior nucleus, Pp, projects to anterior areas TAL and TI, of the temporal lobe, as well as TPI. Injections in different cortical areas as much as 6 mm apart labeled overlapping zones in Pp and double-labeled some cells. These results indicate that the visual pulvinar of tree shrews contains at least four functionally distinct subdivisions, or nuclei. In addition, the cortical injections revealed that the LGN projects topographically and densely to V1 and that a significant number of LGN neurons

  2. Alpha-actinin expression at different differentiating time points from temporal lobe cerebral cortex neural stem cells to neuron-like cells using energy dispersive X-ray analysis

    Institute of Scientific and Technical Information of China (English)

    Bo YU; Hua Li; Zhe Du; Yang Hong; Meng Sang; Yuxiu Shi

    2009-01-01

    BACKGROUND: Alpha-actinin (a-actinin) plays a key role in neuronal growth cone migration during directional differentiation from neural stem cells (NSCs) to neurons.OBJECTIVE: To detect in situ microdistribution and quantitative expression of a-actinin during directional differentiation of NSCs to neurons in the temporal lobe cerebral cortex of neonatal rats.DESIGN, TIME AND SETTING: Between January 2006 and December 2008, culture and directional differentiation of NSCs were performed at Department of Histology and Embryology, Preclinical Medical College, China Medical University. Immune electron microscopy was performed at Department of Histology and Embryology and Department of Electron Micrology, Preclinical Medical College, China Medical University. Spectrum analysis was performed at Laboratory of Electron Microscopy, Mental Research Institute, Chinese Academy of Sciences.MATERIALS: Basic fibroblast growth factor, epidermal growth factor, brain-derived nerve growth factor, type-1 insulin like growth factor, and a-actinin antibody were provided by Gibco BRL, USA; rabbit-anti-rat nestin monoclonal antibody, rabbit-anti-rat neuron specific enolase polyclonal antibody, and EDAX-9100 energy dispersive X-ray analysis were provided by PHILIPS Company, Netherlands.METHODS: NSCs, following primary and passage culture, were differentiated with serum culture medium (DMEM/F12+10% fetal bovine serum+2 ng/mL brain-derived nerve growth factor+2 ng/mL type-1 insulin like growth factor).MAIN OUTCOME MEASURES: Expression of a-actinin in neuron-like cells was quantitatively and qualitatively detected with immunocytochemistry using energy dispersive X-ray analysis. RESULTS: Immunocytochemistry, combined with electron microscopy, indicated that positive a-actinin expression was like a spheroid particle with high electron density. In addition, the expression was gradually concentrated from the nuclear edge to the cytoplasm and expanded into developing neurites, during

  3. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David;

    2009-01-01

    was measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35...

  4. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects Ativação do córtex frontopolar e temporal anterior em uma tarefa de julgamento moral: resultados preliminares de ressonância magnética funcional em indivíduos normais

    OpenAIRE

    Jorge Moll; Eslinger, Paul J.; Ricardo de Oliveira-Souza

    2001-01-01

    OBJECTIVE: To study the brain areas which are activated when normal subjects make moral judgments. METHOD: Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either "right" or "wrong". Half of the sentences had an explicit moral content ("We break the law when necessary"), the other half comprised factual statements devoid of moral connotation ("Stones are made of water"). A...

  5. Válvula de uretra anterior Anterior urethral valves

    Directory of Open Access Journals (Sweden)

    Silvio Tucci Jr.

    2003-02-01

    Full Text Available Objetivo: apresentar os aspectos clínicos, diagnósticos e terapêuticos de pacientes portadores de válvula da uretra anterior. Descrição: em dois neonatos, o diagnóstico presuntivo de patologia obstrutiva do trato urinário foi sugerido pela ultra-sonografia realizada no período pré-natal, confirmando-se o diagnóstico de válvula de uretra anterior pela avaliação pós-natal. Os pacientes foram submetidos a tratamento cirúrgico paliativo, com vesicostomia temporária e, posteriormente, definitivo, pela fulguração endoscópica das válvulas. Ambos evoluíram com função renal normal. Comentários: a válvula da uretra anterior é anomalia rara que deve ser considerada em meninos com quadro radiológico pré-natal sugestivo de obstrução infravesical, secundariamente à hipótese mais comum de válvula da uretra posterior. Ressaltamos a utilização da vesicostomia como derivação urinária temporária nestes casos, prevenindo potenciais complicações pela manipulação da uretra do recém-nascido.Objective: to discuss clinical signs, diagnostic tools and therapeutics of anterior urethral valves, an obstructive anomaly of the urinary system in males. Description: signs of urinary tract obstruction were identified on pre-natal ultrasound in two male fetuses and the diagnosis of anterior urethral valves was made through post-natal evaluation. As an initial treatment, vesicostomy was performed in both patients. Later, the valves were fulgurated using an endoscopic procedure. During the follow-up period both patients presented normal renal function. Comments: anterior urethral valves are a rare form of urethral anomaly that must be ruled out in boys with pre-natal ultrasound indicating infravesical obstruction. Vesicostomy used as an initial treatment rather than transurethral fulguration may prevent potential complications that can occur due to the small size of the neonatal urethra.

  6. Dissociable effects of anterior and mediodorsal thalamic lesions on spatial goal-directed behavior.

    Science.gov (United States)

    Alcaraz, Fabien; Naneix, Fabien; Desfosses, Emilie; Marchand, Alain R; Wolff, Mathieu; Coutureau, Etienne

    2016-01-01

    Goal-directed behaviors are thought to be supported by a neural circuit encompassing the prefrontal cortex, the dorsomedial striatum, the amygdala, and, as more recently suggested, the limbic thalamus. Since evidence indicates that the various thalamic nuclei contribute to dissociable functions, we directly compared the functional contribution of the mediodorsal thalamus (MD) and of the anterior thalamic nuclei (ATN) in a new task assessing spatial goal-directed behavior in a cross-maze. Rats sustaining lesions of the mediodorsal or the anterior thalamus were trained to associate each of the two goal arms with a distinctive food reward. Unlike control rats, both lesioned groups failed to express a bias for the goal arm corresponding to the non-devalued outcome following devaluation by sensory-specific satiety. In addition, MD rats were slower than the other groups to complete the trials. When tested for spatial working memory using a standard non-matching-to-place procedure in the same apparatus, ATN rats were severely impaired but MD rats performed as well as controls, even when spatial or temporal challenges were introduced. Finally, all groups displayed comparable breaking points in a progressive ratio test, indicating that the slower choice performance of MD rats did not result from motivational factors. Thus, a spatial task requiring the integration of instrumental and Pavlovian contingencies reveals a fundamental deficit of MD rats in adapting their choice according to goal value. By contrast, the deficit associated with anterior thalamic lesions appears to simply reflect the inability to process spatial information.

  7. Bone cancer pain induce anxiety-like behavior and high expression of NR2B subunit in anterior cingulate cortex of rats%骨癌痛诱发大鼠焦虑样行为和前扣带回脑区NR2B 的上调表达

    Institute of Scientific and Technical Information of China (English)

    赵宇; 刘瑾瑜

    2016-01-01

    Objective To investigate the effect of bone cancer pain on emotion and NMDA re-ceptor NR2B subunit expression level in anterior cingulate cortex (ACC)in rats.Methods One hun-dred and fifty healthy male Wistar rats weighing 200-250 g aged 3 months old were randomly divided into 3 groups (n = 50 in each group):sham operation group (group S),bone cancer pain group (group BCP),RO25-6981 group (group RO).The BCP model was established by inoculating Walker 256 breast cancer cells into right intra-tibial.Rats in group S were given the same dose of d-hanks. Group RO was injected intraperitoneally with RO25-6981 (5 mg/kg/d)on the day of inoculation, while rats in the group S and group BCP were given the same dose of normal saline.Mechanical with-drawal threshold (MWT)and thermal withdrawal latency (TWL)of right hind legs were measured on day 7,10,14 after inoculation respectively.Elevated plus-maze test was carried out to investigate the effect of bone cancer pain on emotion in rats after pain threshold detection,then the percentage of the times entering the open arms (OE)and the percentage of the time staying in the open arms (OT) duration the total period were evaluated.Then the anterior cingulate cortex tissue was removed to e-valuate the NR2B protein and mRNA expression levels by RT-PCR,Western blot and immunofluo-rescence methods on day 14 after elevated plus-maze test.Results All the parameters did not differ with significant difference between group S and group RO.MWT decreased and TWL shortened on day 7,10,14 after inoculation in group BCP compared with those before inoculation and those of group S and group RO.OE and OT in group BCP reduced remarkably than those before inoculation and those of group S and group RO.Relative absorbance of NR2B mRNA,the expression of NR2B pro-tein,average NR2B relative fluorescence intensity value is obviously higher than that of group S and group RO (P <0.05).Conclusion Bone cancer pain can induce pain-related aversion and anxiety

  8. Altered anterior visual system development following early monocular enucleation

    Directory of Open Access Journals (Sweden)

    Krista R. Kelly

    2014-01-01

    Conclusions: The novel finding of an asymmetry in morphology of the anterior visual system following long-term survival from early monocular enucleation indicates altered postnatal visual development. Possible mechanisms behind this altered development include recruitment of deafferented cells by crossing nasal fibres and/or geniculate cell retention via feedback from primary visual cortex. These data highlight the importance of balanced binocular input during postnatal maturation for typical anterior visual system morphology.

  9. Social inference deficits in temporal lobe epilepsy and lobectomy: risk factors and neural substrates.

    Science.gov (United States)

    Cohn, Melanie; St-Laurent, Marie; Barnett, Alexander; McAndrews, Mary Pat

    2015-05-01

    In temporal lobe epilepsy and lobectomy, deficits in emotion identification have been found consistently, but there is limited evidence for complex social inference skills such as theory of mind. Furthermore, risk factors and the specific neural underpinnings of these deficits in this population are unclear. We investigated these issues using a comprehensive range of social inference tasks (emotion identification and comprehension of sincere, deceitful and sarcastic social exchanges) in individuals with temporal lobe epilepsy or lobectomy (n = 87). We observed deficits across patient groups which were partly related to the presence of mesial temporal lobe sclerosis, early age of seizure onset and left lobectomy. A voxel-based morphometry analysis conducted in the pre-operative group confirmed the importance of the temporal lobe by showing a relationship between left hippocampal atrophy and overall social inference abilities, and between left anterior neocortex atrophy and sarcasm comprehension. These findings are in keeping with theoretical proposals that the hippocampus is critical for binding diverse elements in cognitive domains beyond canonical episodic memory operations, and that the anterior temporal cortex is a convergence zone of higher-order perceptual and emotional processes, and of stored representations. As impairments were frequent, we require further investigation of this behavioural domain and its impact on the lives of people with epilepsy.

  10. Hierarchical error representation in medial prefrontal cortex.

    Science.gov (United States)

    Zarr, Noah; Brown, Joshua W

    2016-01-01

    The medial prefrontal cortex (mPFC) is reliably activated by both performance and prediction errors. Error signals have typically been treated as a scalar, and it is unknown to what extent multiple error signals may co-exist within mPFC. Previous studies have shown that lateral frontal cortex (LFC) is arranged in a hierarchy of abstraction, such that more abstract concepts and rules are represented in more anterior cortical regions. Given the close interaction between lateral and medial prefrontal cortex, we explored the hypothesis that mPFC would be organized along a similar rostro-caudal gradient of abstraction, such that more abstract prediction errors are represented further anterior and more concrete errors further posterior. We show that multiple prediction error signals can be found in mPFC, and furthermore, these are arranged in a rostro-caudal gradient of abstraction which parallels that found in LFC. We used a task that requires a three-level hierarchy of rules to be followed, in which the rules changed without warning at each level of the hierarchy. Task feedback indicated which level of the rule hierarchy changed and led to corresponding prediction error signals in mPFC. Moreover, each identified region of mPFC was preferentially functionally connected to correspondingly anterior regions of LFC. These results suggest the presence of a parallel structure between lateral and medial prefrontal cortex, with the medial regions monitoring and evaluating performance based on rules maintained in the corresponding lateral regions.

  11. Tonotopic organization of human auditory association cortex.

    Science.gov (United States)

    Cansino, S; Williamson, S J; Karron, D

    1994-11-07

    Neuromagnetic studies of responses in human auditory association cortex for tone burst stimuli provide evidence for a tonotopic organization. The magnetic source image for the 100 ms component evoked by the onset of a tone is qualitatively similar to that of primary cortex, with responses lying deeper beneath the scalp for progressively higher tone frequencies. However, the tonotopic sequence of association cortex in three subjects is found largely within the superior temporal sulcus, although in the right hemisphere of one subject some sources may be closer to the inferior temporal sulcus. The locus of responses for individual subjects suggests a progression across the cortical surface that is approximately proportional to the logarithm of the tone frequency, as observed previously for primary cortex, with the span of 10 mm for each decade in frequency being comparable for the two areas.

  12. Anterior commissure absence without callosal agenesis: a new brain malformation.

    Science.gov (United States)

    Mitchell, T N; Stevens, J M; Free, S L; Sander, J W; Shorvon, S D; Sisodiya, S M

    2002-04-23

    The authors report a novel human brain malformation characterized by the absence of the anterior commissure without callosal agenesis, but associated with gross unilateral panhemispheric malformation incorporating subependymal heterotopia, subcortical heterotopia, and gyral abnormalities including temporal malformation and polymicrogyria. In contrast, a normal anterior commissure was found in 125 control subjects and in 113 other subjects with a range of brain malformations.

  13. Merging functional and structural properties of the monkey auditory cortex

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-07-01

    Full Text Available Recent neuroimaging studies in primates aim to define the functional properties of auditory cortical areas, especially areas beyond A1, in order to further our understanding of the auditory cortical organization. Precise mapping of functional magnetic resonance imaging (fMRI results and interpretation of their localizations among all the small auditory subfields remains challenging. To facilitate this mapping, we combined here information from cortical folding, micro-anatomy, surface-based atlas and tonotopic mapping. We used for the first time, phase-encoded fMRI design for mapping the monkey tonotopic organization. From posterior to anterior, we found a high-low-high progression of frequency preference on the superior temporal plane. We show a faithful representation of the fMRI results on a locally flattened surface of the superior temporal plane. In a tentative scheme to delineate core versus belt regions which share similar tonotopic organizations we used the ratio of T1-weighted and T2-weighted MR images as a measure of cortical myelination. Our results, presented along a co-registered surface-based atlas, can be interpreted in terms of a current model of the monkey auditory cortex.

  14. Temporal prediction errors modulate cingulate-insular coupling.

    Science.gov (United States)

    Limongi, Roberto; Sutherland, Steven C; Zhu, Jian; Young, Michael E; Habib, Reza

    2013-05-01

    Prediction error (i.e., the difference between the expected and the actual event's outcome) mediates adaptive behavior. Activity in the anterior mid-cingulate cortex (aMCC) and in the anterior insula (aINS) is associated with the commission of prediction errors under uncertainty. We propose a dynamic causal model of effective connectivity (i.e., neuronal coupling) between the aMCC, the aINS, and the striatum in which the task context drives activity in the aINS and the temporal prediction errors modulate extrinsic cingulate-insular connections. With functional magnetic resonance imaging, we scanned 15 participants when they performed a temporal prediction task. They observed visual animations and predicted when a stationary ball began moving after being contacted by another moving ball. To induced uncertainty-driven prediction errors, we introduced spatial gaps and temporal delays between the balls. Classical and Bayesian fMRI analyses provided evidence to support that the aMCC-aINS system along with the striatum not only responds when humans predict whether a dynamic event occurs but also when it occurs. Our results reveal that the insula is the entry port of a three-region pathway involved in the processing of temporal predictions. Moreover, prediction errors rather than attentional demands, task difficulty, or task duration exert an influence in the aMCC-aINS system. Prediction errors debilitate the effect of the aMCC on the aINS. Finally, our computational model provides a way forward to characterize the physiological parallel of temporal prediction errors elicited in dynamic tasks.

  15. Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individuals.

    Science.gov (United States)

    Leo, Andrea; Bernardi, Giulio; Handjaras, Giacomo; Bonino, Daniela; Ricciardi, Emiliano; Pietrini, Pietro

    2012-01-01

    Previous studies in early blind individuals posited a possible role of parieto-occipital connections in conveying nonvisual information to the visual occipital cortex. As a consequence of blindness, parietal areas would thus become able to integrate a greater amount of multimodal information than in sighted individuals. To verify this hypothesis, we compared fMRI-measured BOLD signal temporal variability, an index of efficiency in functional information integration, in congenitally blind and sighted individuals during tactile spatial discrimination and motion perception tasks. In both tasks, the BOLD variability analysis revealed many cortical regions with a significantly greater variability in the blind as compared to sighted individuals, with an overlapping cluster located in the left inferior parietal/anterior intraparietal cortex. A functional connectivity analysis using this region as seed showed stronger correlations in both tasks with occipital areas in the blind as compared to sighted individuals. As BOLD variability reflects neural integration and processing efficiency, these cross-modal plastic changes in the parietal cortex, even if described in a limited sample, reinforce the hypothesis that this region may play an important role in processing nonvisual information in blind subjects and act as a hub in the cortico-cortical pathway from somatosensory cortex to the reorganized occipital areas.

  16. Increased BOLD Variability in the Parietal Cortex and Enhanced Parieto-Occipital Connectivity during Tactile Perception in Congenitally Blind Individuals

    Directory of Open Access Journals (Sweden)

    Andrea Leo

    2012-01-01

    Full Text Available Previous studies in early blind individuals posited a possible role of parieto-occipital connections in conveying nonvisual information to the visual occipital cortex. As a consequence of blindness, parietal areas would thus become able to integrate a greater amount of multimodal information than in sighted individuals. To verify this hypothesis, we compared fMRI-measured BOLD signal temporal variability, an index of efficiency in functional information integration, in congenitally blind and sighted individuals during tactile spatial discrimination and motion perception tasks. In both tasks, the BOLD variability analysis revealed many cortical regions with a significantly greater variability in the blind as compared to sighted individuals, with an overlapping cluster located in the left inferior parietal/anterior intraparietal cortex. A functional connectivity analysis using this region as seed showed stronger correlations in both tasks with occipital areas in the blind as compared to sighted individuals. As BOLD variability reflects neural integration and processing efficiency, these cross-modal plastic changes in the parietal cortex, even if described in a limited sample, reinforce the hypothesis that this region may play an important role in processing nonvisual information in blind subjects and act as a hub in the cortico-cortical pathway from somatosensory cortex to the reorganized occipital areas.

  17. CONGENITAL ANTERIOR TIBIOFEMURAL SUBLUXATION

    Directory of Open Access Journals (Sweden)

    A. Shahla

    2008-06-01

    Full Text Available Congenital anterior tibiofemoral subluxation is an extremely rare disorder. All reported cases accompanied by other abnormalities and syndromes. A 16-year-old high school girl referred to us with bilateral anterior tibiofemoral subluxation as the knees were extended and reduced at more than 30 degrees flexion. Deformities were due to tightness of the iliotibial band and biceps femuris muscles and corrected by surgical release. Associated disorders included bilateral anterior shoulders dislocation, short metacarpals and metatarsals, and right calcaneuvalgus deformity.

  18. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  19. The role of prefrontal cortex in psychopathy

    OpenAIRE

    Koenigs, Michael

    2012-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingu...

  20. Characterization of the fiber connectivity profile of the cerebral cortex in schizotypal personality disorder: A pilot study

    Directory of Open Access Journals (Sweden)

    Kai eLiu

    2016-05-01

    Full Text Available Schizotypal personality disorder (SPD is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs by combining the techniques of brain surface morphometry and white matter (WM tractography. Diffusion and structural MR data were collected from twenty subjects with SPD (all males; age, 19.7 ± 0.9 yrs and eighteen healthy controls (all males; age, 20.3 ± 1.0 yrs. To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA9 and BA10 and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected. Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02. Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  1. Characterization of the Fiber Connectivity Profile of the Cerebral Cortex in Schizotypal Personality Disorder: A Pilot Study.

    Science.gov (United States)

    Liu, Kai; Zhang, Teng; Zhang, Qing; Sun, Yueji; Wu, Jianlin; Lei, Yi; Chu, Winnie C W; Mok, Vincent C T; Wang, Defeng; Shi, Lin

    2016-01-01

    Schizotypal personality disorder (SPD) is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs) by combining the techniques of brain surface morphometry and white matter tractography. Diffusion and structural MR data were collected from 20 subjects with SPD (all males; age, 19.7 ± 0.9 years) and 18 healthy controls (all males; age, 20.3 ± 1.0 years). To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD) value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA 9 and BA 10) and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected). Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02). Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  2. Systematic Regional Variations of GABA, Glutamine, and Glutamate Concentrations Follow Receptor Fingerprints of Human Cingulate Cortex

    NARCIS (Netherlands)

    Dou, Weiqiang; Palomero-Gallagher, Nicola; van Tol, Marie-Jose; Kaufmann, Joern; Zhong, Kai; Bernstein, Hans-Gert; Heinze, Hans-Jochen; Speck, Oliver; Walter, Martin

    2013-01-01

    Magnetic resonance spectroscopy (MRS) of glutamatergic or GABAergic measures in anterior cingulate cortex (ACC) was found altered in psychiatric disorders and predictive of interindividual variations of functional responses in healthy populations. Several ACC subregions have been parcellated into re

  3. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex.

    Science.gov (United States)

    Hutcherson, Cendri A; Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-09-09

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. Significance statement: Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  4. Hurt but still alive: Residual activity in the parahippocampal cortex conditions the recognition of familiar places in a patient with topographic agnosia☆

    Science.gov (United States)

    van Assche, Mitsouko; Kebets, Valeria; Lopez, Ursula; Saj, Arnaud; Goldstein, Rachel; Bernasconi, Françoise; Vuilleumier, Patrik; Assal, Frédéric

    2016-01-01

    The parahippocampal cortex (PHC) participates in both perception and memory. However, the way perceptual and memory processes cooperate when we navigate in our everyday life environment remains poorly understood. We studied a stroke patient presenting a brain lesion in the right PHC, which resulted in a mild and quantifiable topographic agnosia, and allowed us to investigate the role of this structure in overt place recognition. Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI). Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia. PMID:26909331

  5. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  6. Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia.

    Science.gov (United States)

    Thomas, Cibu; Avidan, Galia; Humphreys, Kate; Jung, Kwan-jin; Gao, Fuqiang; Behrmann, Marlene

    2009-01-01

    Using diffusion tensor imaging and tractography, we found that a disruption in structural connectivity in ventral occipito-temporal cortex may be the neurobiological basis for the lifelong impairment in face recognition that is experienced by individuals who suffer from congenital prosopagnosia. Our findings suggest that white-matter fibers in ventral occipito-temporal cortex support the integrated function of a distributed cortical network that subserves normal face processing.

  7. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex.

    Science.gov (United States)

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-03-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.

  8. Anterior Cruciate Ligament (ACL) Injuries

    Science.gov (United States)

    ... Week of Healthy Breakfasts Shyness Anterior Cruciate Ligament (ACL) Injuries KidsHealth > For Teens > Anterior Cruciate Ligament (ACL) ... and Recovery Coping With an ACL Injury About ACL Injuries A torn anterior cruciate ligament (ACL) is ...

  9. Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain.

    Science.gov (United States)

    Zlatkina, Veronika; Petrides, Michael

    2014-12-22

    Distinct parts of the intraparietal sulcal cortex contribute to sensorimotor integration and visual spatial attentional processing. A detailed examination of the morphological relations of the different segments of the complex intraparietal sulcal region in the human brain in standard stereotaxic space, which is a prerequisite for detailed structure-to-function studies, is not available. This study examined the intraparietal sulcus (IPS) and the related sulcus of Jensen in magnetic resonance imaging brain volumes registered in the Montreal Neurological Institute stereotaxic space. It was demonstrated that the IPS is divided into two branches: the anterior ramus and the posterior ramus of the IPS, often separated by a submerged gyral passage. The sulcus of Jensen emerges between the anterior and posterior rami of the IPS, and its ventral end is positioned between the first and second caudal branches of the superior temporal sulcus. In a small number of brains, the sulcus of Jensen may merge superficially with the first caudal branch of the superior temporal sulcus. The above morphological findings are discussed in relation to previously reported functional neuroimaging findings and provide the basis for future exploration of structure-to-function relations in the posterior parietal region of individual subjects.

  10. The obese brain athlete: self-regulation of the anterior insula in adiposity.

    Directory of Open Access Journals (Sweden)

    Sabine Frank

    Full Text Available The anterior insular cortex (AIC is involved in emotional processes and gustatory functions which can be examined by imaging techniques. Such imaging studies showed increased activation in the insula in response to food stimuli as well as a differential activation in lean and obese people. Additionally, studies investigating lean subjects established the voluntary regulation of the insula by a real-time functional magnetic resonance imaging-brain computer interface (rtfMRI-BCI approach. In this exploratory study, 11 lean and 10 obese healthy, male participants were investigated in a rtfMRI-BCI protocol. During the training sessions, all obese participants were able to regulate the activity of the AIC voluntarily, while four lean participants were not able to regulate at all. In successful regulators, functional connectivity during regulation vs. relaxation between the AIC and all other regions of the brain was determined by a seed voxel approach. Lean in comparison to obese regulators showed stronger connectivity in cingular and temporal cortices during regulation. We conclude, that obese people possess an improved capacity to self-regulate the anterior insula, a brain system tightly related to bodily awareness and gustatory functions.

  11. Ictal vomiting as a sign of temporal lobe epilepsy confirmed by stereo-EEG and surgical outcome.

    Science.gov (United States)

    Pietrafusa, Nicola; de Palma, Luca; De Benedictis, Alessandro; Trivisano, Marina; Marras, Carlo Efisio; Vigevano, Federico; Specchio, Nicola

    2015-12-01

    Vomiting is uncommon in patients with epilepsy and has been reported in both idiopathic and symptomatic epilepsies. It is presumed to originate in the anterior part of the temporal lobe or insula. To date, 44 cases of nonidiopathic focal epilepsy and seizures associated with ictal vomiting have been reported. Of the 44 cases, eight were studied using invasive exploration (3 stereo-EEG/5 subdural grids). Here, we report a 4-year-and-7-month-old patient with a history of febrile convulsion in the second year of life and who developed episodes of vomiting and complex partial seizures at 3 years of age. Scalp EEG showed no electrical modification during vomiting while the complex partial seizure displayed a clear right temporal origin. Brain MR showed hippocampal volume reduction with mild diffuse blurring of the temporal lobe. Stereoelectroencephalography study confirmed the mesiotemporal origin of the seizures and showed that the episodes of vomiting were strictly related to an ictal discharge originating in the mesial temporal structures without insular diffusion. The patient is now seizure-free (18 months) after removal of the right anterior and mesial temporal structures. In all the reported patients, seizures seemed to start in mesial temporal structures. The grid subgroup is more homogeneous, and the most prominent characteristic (4/5) is the involvement of both mesial and lateral temporal structures at the time of vomiting. In the S-EEG group, there is evidence of involvement of either the anterior temporal structures alone (2/3) or both insular cortices (1/3). Our case confirms that vomiting could occur when the ictal discharge is limited to the anterior temporal structure without insular involvement. Regarding the pathophysiology of vomiting, the role of subcortical structures such as the dorsal vagal complex and the central pattern generators (CPG) located in the reticular area is well established. Vomiting as an epileptic phenomenon seems to be related to

  12. Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia.

    Science.gov (United States)

    Hornberger, Michael; Geng, John; Hodges, John R

    2011-09-01

    Disinhibition is a common behavioural symptom in frontotemporal dementia but its neural correlates are still debated. In the current study, we investigated the grey and white matter neural correlates of disinhibition in a sample of behavioural variant frontotemporal dementia (n = 14) and patients with Alzheimer's disease (n = 15). We employed an objective (Hayling Test of inhibitory functioning) and subjective/carer-based (Neuropsychiatric Inventory) measure of disinhibition to reveal convergent evidence of disinhibitory behaviour. Mean and overlap-based statistical analyses were conducted to investigate profiles of performance in patients with behavioural variant frontotemporal dementia, Alzheimer's disease and controls. Hayling Test and Neuropsychiatric Inventory scores were entered as covariates in a grey matter voxel-based morphometry, as well as in a white matter diffusion tensor imaging analysis to determine the underlying grey and white matter correlates. Patients with behavioural variant frontotemporal dementia showed more disinhibition on both behavioural measures in comparison to patients with Alzheimer's disease and controls. Voxel-based morphometry results revealed that atrophy in orbitofrontal/subgenual, medial prefrontal cortex and anterior temporal lobe areas covaried with total errors score of the Hayling Test. Similarly, the Neuropsychiatric Inventory disinhibition frequency score correlated with atrophy in orbitofrontal cortex and temporal pole brain regions. The orbitofrontal atrophy related to the objective (Hayling Test) and subjective (Neuropsychiatric Inventory) measures of disinhibition was partially overlapping. Diffusion tensor imaging analysis revealed that white matter integrity fractional anisotropy values of the white matter tracts connecting the identified grey matter regions, namely uncinate fasciculus, forceps minor and genu of the corpus callosum, correlated well with the total error score of the Hayling Test. Our results

  13. Anterior cervical plating

    Directory of Open Access Journals (Sweden)

    Gonugunta V

    2005-01-01

    Full Text Available Although anterior cervical instrumentation was initially used in cervical trauma, because of obvious benefits, indications for its use have been expanded over time to degenerative cases as well as tumor and infection of the cervical spine. Along with a threefold increase in incidence of cervical fusion surgery, implant designs have evolved over the last three decades. Observation of graft subsidence and phenomenon of stress shielding led to the development of the new generation dynamic anterior cervical plating systems. Anterior cervical plating does not conclusively improve clinical outcome of the patients, but certainly enhances the efficacy of autograft and allograft fusion and lessens the rate of pseudoarthrosis and kyphosis after multilevel discectomy and fusions. A review of biomechanics, surgical technique, indications, complications and results of various anterior cervical plating systems is presented here to enable clinicians to select the appropriate construct design.

  14. Evidence of fronto-temporal interactions for strategic inference processes during language comprehension.

    Science.gov (United States)

    Chow, Ho Ming; Kaup, Barbara; Raabe, Markus; Greenlee, Mark W

    2008-04-01

    We investigated how readers strategically infer context-appropriate information on the basis of the presented text and their world knowledge during passage reading. In the main experimental condition, participants were instructed to read short passages and to predict the development of the situation described in each passage during reading. To accomplish this task, we assumed that participants need to draw strategic inferences relevant to the contexts. Comparing this condition with a passage-reading condition without prediction, we found out that the left anterior prefrontal cortex (aPFC) in Brodmann area 9/10 and the left anterior ventral inferior frontal gyrus (vIFG) in Brodmann area 47 elicited increased hemodynamic responses. These two regions are probably critical in coherence evaluation and in drawing strategic inferences. Additionally, we used dynamic causal modelling (DCM) to investigate the fronto-temporal interactions induced by the experimental conditions. Ten models with different plausible ways to modulate the connections between frontal and temporal regions were compared. The DCM results showed a consistent conclusion: The connectivity between the left posterior superior temporal sulcus (pSTS) and the left dorsal lateral inferior frontal gyrus (dIFG) were enhanced when participants made inferential predictions during reading. The results support the role of top-down influences mediated by the neural pathways between dIFG and pSTS in retrieving strategic inferences. With these findings we discuss functional roles of aPFC, vIFG and dIFG-pSTS connections in drawing strategic inferences.

  15. Alcohol consumption impairs detection of performance errors in mediofrontal cortex

    NARCIS (Netherlands)

    Ridderinkhof, K.R.; de Vlugt, Y.; Bramlage, A.; Spaan, M.; Elton, M.; Snel, J.

    2002-01-01

    The anterior cingulate cortex (ACC) is a critical component of the human mediofrontal neural circuit that monitors ongoing processing in the cognitive system for signs of erroneous outcomes. Here, we show that the consumption of alcohol in moderate doses induces a significant deterioration of the ab

  16. Thinner Cortex in Collegiate Football Players With, but not Without, a Self-Reported History of Concussion.

    Science.gov (United States)

    Meier, Timothy B; Bellgowan, Patrick S F; Bergamino, Maurizio; Ling, Josef M; Mayer, Andrew R

    2016-02-15

    Emerging evidence suggests that a history of sports-related concussions can lead to long-term neuroanatomical changes. The extent to which similar changes are present in young athletes is undetermined at this time. Here, we tested the hypothesis that collegiate football athletes with (n = 25) and without (n = 24) a self-reported history of concussion would have cortical thickness differences and altered white matter integrity relative to healthy controls (n = 27) in fronto-temporal regions that appear particularly susceptible to traumatic brain injury. Freesurfer software was used to estimate cortical thickness, fractional anisotropy was calculated in a priori white matter tracts, and behavior was assessed using a concussion behavioral battery. Groups did not differ in self-reported symptoms (p > 0.10) or cognitive performance (p > 0.10). Healthy controls reported significantly higher happiness levels than both football groups (all p 0.10). However, football athletes with a history of concussion had significantly thinner cortex in the left anterior cingulate cortex, orbital frontal cortex, and medial superior frontal cortex relative to healthy controls (p = 0.02, d = -0.69). Further, football athletes with a history of concussion had significantly thinner cortex in the right central sulcus and precentral gyrus relative to football athletes without a history of concussion (p = 0.03, d = -0.71). No differences were observed between football athletes without a history of concussion and healthy controls. These results suggest that previous concussions, but not necessarily football exposure, may be associated with cortical thickness differences in collegiate football athletes.

  17. The Role of Medial Temporal Lobe Regions in Incidental and Intentional Retrieval of Item and Relational Information in Aging.

    Science.gov (United States)

    Wang, Wei-Chun; Giovanello, Kelly S

    2016-06-01

    Considerable neuropsychological and neuroimaging work indicates that the medial temporal lobes are critical for both item and relational memory retrieval. However, there remain outstanding issues in the literature, namely the extent to which medial temporal lobe regions are differentially recruited during incidental and intentional retrieval of item and relational information, and the extent to which aging may affect these neural substrates. The current fMRI study sought to address these questions; participants incidentally encoded word pairs embedded in sentences and incidental item and relational retrieval were assessed through speeded reading of intact, rearranged, and new word-pair sentences, while intentional item and relational retrieval were assessed through old/new associative recognition of a separate set of intact, rearranged, and new word pairs. Results indicated that, in both younger and older adults, anterior hippocampus and perirhinal cortex indexed incidental and intentional item retrieval in the same manner. In contrast, posterior hippocampus supported incidental and intentional relational retrieval in both age groups and an adjacent cluster in posterior hippocampus was recruited during both forms of relational retrieval for older, but not younger, adults. Our findings suggest that while medial temporal lobe regions do not differentiate between incidental and intentional forms of retrieval, there are distinct roles for anterior and posterior medial temporal lobe regions during retrieval of item and relational information, respectively, and further indicate that posterior regions may, under certain conditions, be over-recruited in healthy aging. © 2016 Wiley Periodicals, Inc.

  18. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    Science.gov (United States)

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc.

  19. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    Science.gov (United States)

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  20. Temporal dynamics of reward processing revealed by magnetoencephalography.

    Science.gov (United States)

    Doñamayor, Nuria; Marco-Pallarés, Josep; Heldmann, Marcus; Schoenfeld, M Ariel; Münte, Thomas F

    2011-12-01

    Monetary gains and losses in gambling situations are associated with a distinct electroencephalographic signature: in the event-related potentials (ERPs), a mediofrontal feedback-related negativity (FRN) is seen for losses, whereas oscillatory activity shows a burst of in the θ-range for losses and in the β-range for gains. We used whole-head magnetoencephalography to pinpoint the magnetic counterparts of these effects in young healthy adults and explore their evolution over time. On each trial, participants bet on one of two visually presented numbers (25 or 5) by button-press. Both numbers changed color: if the chosen number turned green (red), it indicated a gain (loss) of the corresponding sum in Euro cent. For losses, we found the magnetic correlate of the FRN extending between 230 and 465 ms. Source localization with low-resolution electromagnetic tomography indicated a first generator in posterior cingulate cortex with subsequent activity in the anterior cingulate cortex. Importantly, this effect was sensitive to the magnitude of the monetary loss (25 cent > 5 cent). Later activation was also found in the right insula. Time-frequency analysis revealed a number of oscillatory components in the theta, alpha, and high-beta/low-gamma bands associated to gains, and in the high-beta band, associated to the magnitude of the loss. All together, these effects provide a more fine-grained picture of the temporal dynamics of the processing of monetary rewards and losses in the brain.

  1. Structural imaging reveals anatomical alterations in inferotemporal cortex in congenital prosopagnosia.

    Science.gov (United States)

    Behrmann, Marlene; Avidan, Galia; Gao, Fuqiang; Black, Sandra

    2007-10-01

    Congenital prosopagnosia (CP) refers to the lifelong impairment in face recognition in individuals who have intact low-level visual processing, normal cognitive abilities, and no known neurological disorder. Although the face recognition impairment is profound and debilitating, its neural basis remains elusive. To investigate this, we conducted detailed morphometric and volumetric analyses of the occipitotemporal (OT) cortex in a group of CP individuals and matched control subjects using high-spatial resolution magnetic resonance imaging. Although there were no significant group differences in the depth or deviation from the midline of the OT or collateral sulci, the CP individuals evince a larger anterior and posterior middle temporal gyrus and a significantly smaller anterior fusiform (aF) gyrus. Interestingly, this volumetric reduction in the aF gyrus is correlated with the behavioral decrement in face recognition. These findings implicate a specific cortical structure as the neural basis of CP and, in light of the familial history of CP, target the aF gyrus as a potential site for further, focused genetic investigation.

  2. Variáveis espaço-temporais da marcha de crianças com paralisia cerebral submetidas a eletroestimulação no músculo tibial anterior Spatio-temporal gait variables of children with cerebral palsy undergoing electrostimulation in the anterior tibial muscle

    Directory of Open Access Journals (Sweden)

    BP Jerônimo

    2007-08-01

    Full Text Available OBJETIVO: Este estudo teve como objetivo descrever variáveis espaço-temporais da marcha de crianças de 4 a 5 anos de idade com paralisia cerebral (PC do tipo hemiplegia espástica, antes e após sessões de eletroestimulação do músculo tibial anterior do dimídio plégico. METODOLOGIA: Cinco crianças foram submetidas à eletroestimulação durante 12 sessões (três vezes na semana. Para a coleta dos dados biomecânicos, foi realizada análise da marcha através do sistema Peak Motus versão 7.0 com duas câmeras de vídeo SVHS com taxa de aquisição de 60 Hz. Para reconstrução tridimensional dos movimentos, foi utilizado o método Direct Linear Trasformation (DLT. RESULTADOS: Após a intervenção, todas as crianças apresentaram diferenças menores entre o comprimento dos passos do dimídio plégico e não-plégico (p= 0,009. Observou-se o aumento no comprimento do ciclo em quatro crianças. Duas crianças tiveram aumento da cadência, velocidade e tempo de apoio simples do dimídio plégico. CONCLUSÕES: Foi verificada a melhoria da simetria da marcha relacionada ao comprimento do passo antes e após a intervenção, embora o aumento nas variáveis espaço-temporais não tenha ocorrido da mesma maneira para todas as crianças. Apesar das dificuldades em se obterem amostras maiores e mais homogêneas em estudos desse tipo, os dados sugerem a necessidade de identificação e maior controle das variáveis intervenientes no tratamento e na marcha de crianças portadoras de paralisia cerebral.OBJECTIVE: This study had the objective of describing spatiotemporal gait variables of four to five-year-old children with spastic hemiplegic cerebral palsy, before and after sessions of electrostimulation of the anterior tibial muscle on the paralyzed side. METHOD: Five children underwent 12 sessions of electrostimulation (three times a week. To collect biomechanical data, the gait was analyzed using the Peak Motus system, version 7.0, with two S

  3. Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns.

    Science.gov (United States)

    Abrams, Daniel A; Bhatara, Anjali; Ryali, Srikanth; Balaban, Evan; Levitin, Daniel J; Menon, Vinod

    2011-07-01

    Music and speech are complex sound streams with hierarchical rules of temporal organization that become elaborated over time. Here, we use functional magnetic resonance imaging to measure brain activity patterns in 20 right-handed nonmusicians as they listened to natural and temporally reordered musical and speech stimuli matched for familiarity, emotion, and valence. Heart rate variability and mean respiration rates were simultaneously measured and were found not to differ between musical and speech stimuli. Although the same manipulation of temporal structure elicited brain activation level differences of similar magnitude for both music and speech stimuli, multivariate classification analysis revealed distinct spatial patterns of brain responses in the 2 domains. Distributed neuronal populations that included the inferior frontal cortex, the posterior and anterior superior and middle temporal gyri, and the auditory brainstem classified temporal structure manipulations in music and speech with significant levels of accuracy. While agreeing with previous findings that music and speech processing share neural substrates, this work shows that temporal structure in the 2 domains is encoded differently, highlighting a fundamental dissimilarity in how the same neural resources are deployed.

  4. Observation on local and/or unilateral pathologic changes in renal cortex by CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Isao; Shinoda, Akira (Kanazawa Medical Univ. (Japan)); Onouchi, Zengoro; Saito, Yasuhito; Matsuura, Hajime

    1984-03-01

    Renal cortex visualization after bolus injection of contrast medium using computed tomography (CT), was obtained in 132 consecutive patients with renal disease. Local pathological changes in the functioning cortex of the kidney were easily recognized in 37 cases and unilateral cortical thinning was found in 17 cases. Unilateral poor enhancement of the cortex with bilateral equal cortex thickness was noted in 4 cases. Several representative cases are reported with CT scans. The cortex at the posterior aspect of the renal graft compressed on psoas muscle was thinner than that at the anterior aspect in renal transplant cases. The macroscopic observation on the renal cortex presented here is far superior to the nephrogram or pyelogram seen through conventional radiographic examination. In vivo cortex visualization will correlate renal biopsy findings with the state of the whole kidney.

  5. Anterior hippocampus and goal-directed spatial decision making.

    Science.gov (United States)

    Viard, Armelle; Doeller, Christian F; Hartley, Tom; Bird, Chris M; Burgess, Neil

    2011-03-23

    Planning spatial paths through our environment is an important part of everyday life and is supported by a neural system including the hippocampus and prefrontal cortex. Here we investigated the precise functional roles of the components of this system in humans by using fMRI as participants performed a simple goal-directed route-planning task. Participants had to choose the shorter of two routes to a goal in a visual scene that might contain a barrier blocking the most direct route, requiring a detour, or might be obscured by a curtain, requiring memory for the scene. The participant's start position was varied to parametrically manipulate their proximity to the goal and the difference in length of the two routes. Activity in medial prefrontal cortex, precuneus, and left posterior parietal cortex was associated with detour planning, regardless of difficulty, whereas activity in parahippocampal gyrus was associated with remembering the spatial layout of the visual scene. Activity in bilateral anterior hippocampal formation showed a strong increase the closer the start position was to the goal, together with medial prefrontal, medial and posterior parietal cortices. Our results are consistent with computational models in which goal proximity is used to guide subsequent navigation and with the association of anterior hippocampal areas with nonspatial functions such as arousal and reward expectancy. They illustrate how spatial and nonspatial functions combine within the anterior hippocampus, and how these functions interact with parahippocampal, parietal, and prefrontal areas in decision making and mnemonic function.

  6. Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation.

    Science.gov (United States)

    Hu, Shiyan; Coupé, Pierrick; Pruessner, Jens C; Collins, D Louis

    2014-02-01

    The human medial temporal lobe (MTL) is an important part of the limbic system, and its substructures play key roles in learning, memory, and neurodegeneration. The MTL includes the hippocampus (HC), amygdala (AG), parahippocampal cortex (PHC), entorhinal cortex, and perirhinal cortex--structures that are complex in shape and have low between-structure intensity contrast, making them difficult to segment manually in magnetic resonance images. This article presents a new segmentation method that combines active appearance modeling and patch-based local refinement to automatically segment specific substructures of the MTL including HC, AG, PHC, and entorhinal/perirhinal cortex from MRI data. Appearance modeling, relying on eigen-decomposition to analyze statistical variations in image intensity and shape information in study population, is used to capture global shape characteristics of each structure of interest with a generative model. Patch-based local refinement, using nonlocal means to compare the image local intensity properties, is applied to locally refine the segmentation results along the structure borders to improve structure delimitation. In this manner, nonlocal regularization and global shape constraints could allow more accurate segmentations of structures. Validation experiments against manually defined labels demonstrate that this new segmentation method is computationally efficient, robust, and accurate. In a leave-one-out validation on 54 normal young adults, the method yielded a mean Dice κ of 0.87 for the HC, 0.81 for the AG, 0.73 for the anterior parts of the parahippocampal gyrus (entorhinal and perirhinal cortex), and 0.73 for the posterior parahippocampal gyrus.

  7. Temporal dynamics of perisylvian activation during language processing in children and adults.

    Science.gov (United States)

    Brauer, Jens; Neumann, Jane; Friederici, Angela D

    2008-07-15

    The perisylvian region of the human cortex is known to play a major role in language processing. Especially the superior temporal cortex (STC) and the inferior frontal cortex (IFC) have been investigated with respect to their particular involvement in language comprehension. In the present research, the timing of recruitment of these language-related brain areas in both hemispheres was examined as a function of age using functional imaging data of 6-year-old children and adults with a special focus on blood oxygenation level dependent (BOLD) response time courses. The results show that children's activation time courses differ from that of adults. First, children show an overall later peak of BOLD responses. Second, children's IFC responds much later than their STC, while in adults the difference between both regions is less pronounced. Within the STC, both groups show similar regionally U-shaped activation patterns with fastest peaks in voxels at the STC's mid-portion around Heschl's gyrus and longer latencies in anterior and posterior directions, suggesting a coarsely similar information flow in adults and children in the temporal region. Finally, children in contrast to adults, display a temporal primacy of right over left hemispheric activation. The observed overall latency differences between children and adults are in line with the assumption of ongoing maturation in perisylvian brain regions and the connections between them. A functional perspective on BOLD timing argues for a developmental change from higher processing costs in children compared to adults due to slower and less automatic language processes, in particular those located in the IFC. The observed hemispheric differences are discussed in the context of developmental models assuming a high reliance on right-hemisphere-based suprasegmental information processing during language comprehension in childhood.

  8. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  9. Action preparation shapes processing in early visual cortex.

    Science.gov (United States)

    Gutteling, Tjerk P; Petridou, Natalia; Dumoulin, Serge O; Harvey, Ben M; Aarnoutse, Erik J; Kenemans, J Leon; Neggers, Sebastian F W

    2015-04-22

    Preparation for an action, such as grasping an object, is accompanied by an enhanced perception of the object's action-relevant features, such as orientation and size. Cortical feedback from motor planning areas to early visual areas may drive this enhanced perception. To examine whether action preparation modulates activity in early human visual cortex, subjects grasped or pointed to oriented objects while high-resolution fMRI data were acquired. Using multivoxel pattern analysis techniques, we could decode with >70% accuracy whether a grasping or pointing action was prepared from signals in visual cortex as early as V1. These signals in early visual cortex were observed even when actions were only prepared but not executed. Anterior parietal cortex, on the other hand, showed clearest modulation for actual movements. This demonstrates that preparation of actions, even without execution, modulates relevant neuronal populations in early visual areas.

  10. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

    Science.gov (United States)

    Mori, Kensaku; Manabe, Hiroyuki; Narikiyo, Kimiya; Onisawa, Naomi

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness may require neuronal circuit mechanisms for the "binding" of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron-olfactory bulb-olfactory cortex-orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  11. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex and orbitofrontal cortex

    Directory of Open Access Journals (Sweden)

    Kensaku eMori

    2013-10-01

    Full Text Available The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron – olfactory bulb – olfactory cortex – orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  12. Anterior crucate ligament (ACL) injury

    Science.gov (United States)

    ... An anterior cruciate ligament injury is the over-stretching or tearing of the anterior cruciate ligament (ACL) ... may be injured. This is a medical emergency. Prevention Use proper techniques when playing sports or exercising. ...

  13. Medial temporal lobe coding of item and spatial information during relational binding in working memory.

    Science.gov (United States)

    Libby, Laura A; Hannula, Deborah E; Ranganath, Charan

    2014-10-22

    Several models have proposed that different medial temporal lobe (MTL) regions represent different kinds of information in the service of long-term memory. For instance, it has been proposed that perirhinal cortex (PRC), parahippocampal cortex (PHC), and hippocampus differentially support long-term memory for item information, spatial context, and item-context relations present during an event, respectively. Recent evidence has indicated that, in addition to long-term memory, MTL subregions may similarly contribute to processes that support the retention of complex spatial arrangements of objects across short delays. Here, we used functional magnetic resonance imaging and multivoxel pattern similarity analysis to investigate the extent to which human MTL regions independently code for object and spatial information, as well as the conjunction of this information, during working memory encoding and active maintenance. Voxel activity patterns in PRC, temporopolar cortex, and amygdala carried information about individual objects, whereas activity patterns in the PHC and posterior hippocampus carried information about the configuration of spatial locations that was to be remembered. Additionally, the integrity of multivoxel patterns in the right anterior hippocampus across encoding and delay periods was predictive of accurate short-term memory for object-location relationships. These results are consistent with parallel processing of item and spatial context information by PRC and PHC, respectively, and the binding of item and context by the hippocampus.

  14. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  15. Facetas em dentes anteriores

    OpenAIRE

    Veloso, Helena Rafaela Lourenço Martins

    2015-01-01

    Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária A presente revisão bibliográfica aborda as facetas estéticas em dentes anteriores, pela crescente valorização de um sorriso esteticamente agradável, facto que faz com que as pessoas procurem cada vez mais alternativas de tratamento para melhorar a aparência do seu sorriso. Os dentes anteriores são decisivos na aparência estética e, c...

  16. Hurt but still alive: Residual activity in the parahippocampal cortex conditions the recognition of familiar places in a patient with topographic agnosia

    Directory of Open Access Journals (Sweden)

    Mitsouko van Assche

    2016-01-01

    Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI. Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia.

  17. Spatiotemporal integration of tactile information in human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Zumer Johanna M

    2007-03-01

    Full Text Available Abstract Background Our goal was to examine the spatiotemporal integration of tactile information in the hand representation of human primary somatosensory cortex (anterior parietal somatosensory areas 3b and 1, secondary somatosensory cortex (S2, and the parietal ventral area (PV, using high-resolution whole-head magnetoencephalography (MEG. To examine representational overlap and adaptation in bilateral somatosensory cortices, we used an oddball paradigm to characterize the representation of the index finger (D2; deviant stimulus as a function of the location of the standard stimulus in both right- and left-handed subjects. Results We found that responses to deviant stimuli presented in the context of standard stimuli with an interstimulus interval (ISI of 0.33s were significantly and bilaterally attenuated compared to deviant stimulation alone in S2/PV, but not in anterior parietal cortex. This attenuation was dependent upon the distance between the deviant and standard stimuli: greater attenuation was found when the standard was immediately adjacent to the deviant (D3 and D2 respectively, with attenuation decreasing for non-adjacent fingers (D4 and opposite D2. We also found that cutaneous mechanical stimulation consistently elicited not only a strong early contralateral cortical response but also a weak ipsilateral response in anterior parietal cortex. This ipsilateral response appeared an average of 10.7 ± 6.1 ms later than the early contralateral response. In addition, no hemispheric differences either in response amplitude, response latencies or oddball responses were found, independent of handedness. Conclusion Our findings are consistent with the large receptive fields and long neuronal recovery cycles that have been described in S2/PV, and suggest that this expression of spatiotemporal integration underlies the complex functions associated with this region. The early ipsilateral response suggests that anterior parietal fields also

  18. Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus

    Directory of Open Access Journals (Sweden)

    Francine eFoo

    2016-04-01

    Full Text Available The auditory cortex is well known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG signals directly from the lateral surface of either the left or right temporal lobe of 8 patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70-150 Hz frequency range within the superior temporal gyrus (STG and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75-200ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity towards dissonance.

  19. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function.

    Science.gov (United States)

    Aggleton, John P

    2012-08-01

    A review of medial temporal lobe connections reveals three distinct groupings of hippocampal efferents. These efferent systems and their putative memory functions are: (1) The 'extended-hippocampal system' for episodic memory, which involves the anterior thalamic nuclei, mammillary bodies and retrosplenial cortex, originates in the subicular cortices, and has a largely laminar organisation; (2) The 'rostral hippocampal system' for affective and social learning, which involves prefrontal cortex, amygdala and nucleus accumbens, has a columnar organisation, and originates from rostral CA1 and subiculum; (3) The 'reciprocal hippocampal-parahippocampal system' for sensory processing and integration, which originates from the length of CA1 and the subiculum, and is characterised by columnar, connections with reciprocal topographies. A fourth system, the 'parahippocampal-prefrontal system' that supports familiarity signalling and retrieval processing, has more widespread prefrontal connections than those of the hippocampus, along with different thalamic inputs. Despite many interactions between these four systems, they may retain different roles in memory which when combined explain the importance of the medial temporal lobe for the formation of declarative memories.

  20. Contribution of inferior temporal and posterior parietal activity to three-dimensional shape perception.

    Science.gov (United States)

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2010-05-25

    One of the fundamental goals of neuroscience is to understand how perception arises from the activity of neurons in the brain. Stereopsis is a type of three-dimensional (3D) perception that relies on two slightly different projections of the world onto the retinas of the two eyes, i.e., binocular disparity. Neurons selective for curved surfaces defined by binocular disparity may contribute to the perception of an object's 3D structure. Such neurons have been observed in both the anterior lower bank of the superior temporal sulcus (TEs, part of the inferior temporal cortex [IT]) and the anterior intraparietal area (AIP). However, the specific contributions of IT and AIP to depth perception remain unknown. We simultaneously recorded multiunit activity in IT and AIP while monkeys discriminated between concave and convex 3D shapes. We observed a correlation between the neural activity and behavioral choice that arose early and during perceptual decision formation in IT but later and after perceptual decision formation in AIP. These results suggest a role for IT, but not AIP, in 3D shape discrimination. Furthermore, the results demonstrate that similar neuronal stimulus selectivities in two areas do not imply a similar function.

  1. Disentangling Representations of Object Shape and Object Category in Human Visual Cortex: The Animate-Inanimate Distinction.

    Science.gov (United States)

    Proklova, Daria; Kaiser, Daniel; Peelen, Marius V

    2016-05-01

    Objects belonging to different categories evoke reliably different fMRI activity patterns in human occipitotemporal cortex, with the most prominent distinction being that between animate and inanimate objects. An unresolved question is whether these categorical distinctions reflect category-associated visual properties of objects or whether they genuinely reflect object category. Here, we addressed this question by measuring fMRI responses to animate and inanimate objects that were closely matched for shape and low-level visual features. Univariate contrasts revealed animate- and inanimate-preferring regions in ventral and lateral temporal cortex even for individually matched object pairs (e.g., snake-rope). Using representational similarity analysis, we mapped out brain regions in which the pairwise dissimilarity of multivoxel activity patterns (neural dissimilarity) was predicted by the objects' pairwise visual dissimilarity and/or their categorical dissimilarity. Visual dissimilarity was measured as the time it took participants to find a unique target among identical distractors in three visual search experiments, where we separately quantified overall dissimilarity, outline dissimilarity, and texture dissimilarity. All three visual dissimilarity structures predicted neural dissimilarity in regions of visual cortex. Interestingly, these analyses revealed several clusters in which categorical dissimilarity predicted neural dissimilarity after regressing out visual dissimilarity. Together, these results suggest that the animate-inanimate organization of human visual cortex is not fully explained by differences in the characteristic shape or texture properties of animals and inanimate objects. Instead, representations of visual object properties and object category may coexist in more anterior parts of the visual system.

  2. Segregated and integrated coding of reward and punishment in the cingulate cortex.