WorldWideScience

Sample records for anterior temporal cortex

  1. Neural correlates of associative face memory in the anterior inferior temporal cortex of monkeys.

    Science.gov (United States)

    Eifuku, Satoshi; Nakata, Ryuzaburo; Sugimori, Michiya; Ono, Taketoshi; Tamura, Ryoi

    2010-11-10

    To investigate the neural basis of the associative aspects of facial identification, we recorded neuronal activity from the ventral, anterior inferior temporal cortex (AITv) of macaque monkeys during the performance of an asymmetrical paired-association (APA) task that required associative pairing between an abstract pattern and five different facial views of a single person. In the APA task, after one element of a pair (either an abstract pattern or a face) was presented as a sample cue, the reward-seeking monkey correctly identified the other element of the pair among various repeatedly presented test stimuli (faces or patterns) that were temporally separated by interstimulus delays. The results revealed that a substantial number of AITv neurons responded both to faces and abstract patterns, and the majority of these neurons responded selectively to a particular associative pair. It was demonstrated that in addition to the view-invariant identity of faces used in the APA task, the population of AITv neurons was also able to represent the associative pairing between faces and abstract patterns, which was acquired by training in the APA task. It also appeared that the effect of associative pairing was not so strong that the abstract pattern could be treated in a manner similar to a series of faces belonging to a unique identity. Together, these findings indicate that the AITv plays a crucial role in both facial identification and semantic associations with facial identities.

  2. Sentence processing in anterior superior temporal cortex shows a social-emotional bias.

    Science.gov (United States)

    Mellem, Monika S; Jasmin, Kyle M; Peng, Cynthia; Martin, Alex

    2016-08-01

    The anterior region of the left superior temporal gyrus/superior temporal sulcus (aSTG/STS) has been implicated in two very different cognitive functions: sentence processing and social-emotional processing. However, the vast majority of the sentence stimuli in previous reports have been of a social or social-emotional nature suggesting that sentence processing may be confounded with semantic content. To evaluate this possibility we had subjects read word lists that differed in phrase/constituent size (single words, 3-word phrases, 6-word sentences) and semantic content (social-emotional, social, and inanimate objects) while scanned in a 7T environment. This allowed us to investigate if the aSTG/STS responded to increasing constituent structure (with increased activity as a function of constituent size) with or without regard to a specific domain of concepts, i.e., social and/or social-emotional content. Activity in the left aSTG/STS was found to increase with constituent size. This region was also modulated by content, however, such that social-emotional concepts were preferred over social and object stimuli. Reading also induced content type effects in domain-specific semantic regions. Those preferring social-emotional content included aSTG/STS, inferior frontal gyrus, posterior STS, lateral fusiform, ventromedial prefrontal cortex, and amygdala, regions included in the "social brain", while those preferring object content included parahippocampal gyrus, retrosplenial cortex, and caudate, regions involved in object processing. These results suggest that semantic content affects higher-level linguistic processing and should be taken into account in future studies. Copyright © 2016. Published by Elsevier Ltd.

  3. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    International Nuclear Information System (INIS)

    Moll, Jorge; Oliveira-Souza, Ricardo de

    2001-01-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  4. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  5. Anterior temporal cortex and semantic memory: reconciling findings from neuropsychology and functional imaging.

    Science.gov (United States)

    Rogers, Timothy T; Hocking, Julia; Noppeney, Uta; Mechelli, Andrea; Gorno-Tempini, Maria Luisa; Patterson, Karalyn; Price, Cathy J

    2006-09-01

    Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.

  6. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  7. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  8. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    OpenAIRE

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2011-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, an...

  9. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects Ativação do córtex frontopolar e temporal anterior em uma tarefa de julgamento moral: resultados preliminares de ressonância magnética funcional em indivíduos normais

    Directory of Open Access Journals (Sweden)

    Jorge Moll

    2001-09-01

    Full Text Available OBJECTIVE: To study the brain areas which are activated when normal subjects make moral judgments. METHOD: Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI during the auditory presentation of sentences that they were instructed to silently judge as either "right" or "wrong". Half of the sentences had an explicit moral content ("We break the law when necessary", the other half comprised factual statements devoid of moral connotation ("Stones are made of water". After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemodynamically modeled for event-related fMRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. RESULTS: Regions activated during moral judgment included the frontopolar cortex (FPC, medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (BA 10/46 and 9 were largely independent of emotional experience and represented the largest areas of activation. CONCLUSIONS: These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct.OBJETIVO: Estudar, com ressonância magnética funcional (RMf, as áreas cerebrais normalmente ativadas por julgamentos morais em tarefa de verificação de sentenças. MÉTODO: Dez adultos normais foram estudados com RMf-BOLD durante a apresentação auditiva de sentenças cujo conteúdo foram instruídos a julgar como "certo" ou "errado". Metade das sentenças possuía um conteúdo moral explícito ("Transgredimos a lei se necess

  10. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis

    Directory of Open Access Journals (Sweden)

    Jue Wang

    2015-10-01

    Full Text Available We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6–16 years, 42 boys. We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right in its superior part, rightward (left < right in its inferior part. Intrinsic connectivity analysis of these regions further revealed region-specific asymmetric connectivity profiles in dACC as well as their sex and age differences. Specifically, the superior dACC connectivity with frontoparietal network and the inferior dACC connectivity with visual network are rightward. The superior dACC connectivity with the default network (lateral temporal cortex was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure–function relationships during the development.

  11. The anterior temporal lobes support residual comprehension in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Zahn, Roland; Keidel, James L; Binney, Richard J; Sage, Karen; Lambon Ralph, Matthew A

    2014-03-01

    Wernicke's aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke's aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke's aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke's aphasia and 12 control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke's aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke's aphasia group displayed an 'over-activation' in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke's aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.

  12. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    Science.gov (United States)

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  13. Anterior Temporal Lobe Morphometry Predicts Categorization Ability

    Directory of Open Access Journals (Sweden)

    Béatrice Garcin

    2018-02-01

    Full Text Available Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  14. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  15. Value, search, persistence and model updating in anterior cingulate cortex

    NARCIS (Netherlands)

    Kolling, N.; Wittmann, M.K.; Behrens, T.E.J.; Boorman, E.D.; Mars, R.B.; Rushworth, M.F.S.

    2016-01-01

    Dorsal anterior cingulate cortex (dACC) carries a wealth of value-related information necessary for regulating behavioral flexibility and persistence. It signals error and reward events informing decisions about switching or staying with current behavior. During decision-making, it encodes the

  16. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  17. Role of Fusiform and Anterior Temporal Cortical Areas in Facial Recognition

    Science.gov (United States)

    Nasr, Shahin; Tootell, Roger BH

    2012-01-01

    Recent FMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus (‘AT’; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. PMID:23034518

  18. A functional dissociation of conflict processing within anterior cingulate cortex

    OpenAIRE

    Chobok Kim; James Kroger; Jeounghoon Kim

    2008-01-01

    Goal-directed behavior requires cognitive control to regulate neural processing when conflict is encountered. The dorsal anterior cingulate cortex (dACC) has been associated with detecting response conflict during conflict tasks. However, recent findings have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. We clarified a functional dissociation of the caudal dACC (cdACC) and t...

  19. Conflict processing in the anterior cingulate cortex constrains response priming.

    Science.gov (United States)

    Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T

    2010-05-01

    A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.

  20. Anterior Temporal Lobe Tracks the Formation of Prejudice.

    Science.gov (United States)

    Spiers, Hugo J; Love, Bradley C; Le Pelley, Mike E; Gibb, Charlotte E; Murphy, Robin A

    2017-03-01

    Despite advances in understanding the brain structures involved in the expression of stereotypes and prejudice, little is known about the brain structures involved in their acquisition. Here, we combined fMRI, a task involving learning the valence of different social groups, and modeling of the learning process involved in the development of biases in thinking about social groups that support prejudice. Participants read descriptions of valenced behaviors performed by members of novel social groups, with majority groups being more frequently encountered during learning than minority groups. A model-based fMRI analysis revealed that the anterior temporal lobe tracked the trial-by-trial changes in the valence associated with each group encountered in the task. Descriptions of behavior by group members that deviated from the group average (i.e., prediction errors) were associated with activity in the left lateral PFC, dorsomedial PFC, and lateral anterior temporal cortex. Minority social groups were associated with slower acquisition rates and more activity in the ventral striatum and ACC/dorsomedial PFC compared with majority groups. These findings provide new insights into the brain regions that (a) support the acquisition of prejudice and (b) detect situations in which an individual's behavior deviates from the prejudicial attitude held toward their group.

  1. Stimulus familiarity modulates functional connectivity of the perirhinal cortex and anterior hippocampus during visual discrimination of faces and objects

    Science.gov (United States)

    McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.

    2014-01-01

    Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075

  2. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    Science.gov (United States)

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Functional connectivity of parietal cortex during temporal selective attention.

    Science.gov (United States)

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  5. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-05-01

    Full Text Available Abstract Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC, in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice.

  6. Motivation of extended behaviors by anterior cingulate cortex.

    Science.gov (United States)

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Anterior Cingulate Cortex γ-Aminobutyric Acid in Depressed Adolescents

    Science.gov (United States)

    Gabbay, Vilma; Mao, Xiangling; Klein, Rachel G.; Ely, Benjamin A.; Babb, James S.; Panzer, Aviva M.; Alonso, Carmen M.; Shungu, Dikoma C.

    2013-01-01

    Context Anhedonia, a core symptom of major depressive disorder (MDD) and highly variable among adolescents with MDD, may involve alterations in the major inhibitory amino acid neurotransmitter system of γ-aminobutyric acid (GABA). Objective To test whether anterior cingulate cortex (ACC) GABA levels, measured by proton magnetic resonance spectroscopy, are decreased in adolescents with MDD. The associations of GABA alterations with the presence and severity of anhedonia were explored. Design Case-control, cross-sectional study using single-voxel proton magnetic resonance spectroscopy at 3 T. Setting Two clinical research divisions at 2 teaching hospitals. Participants Twenty psychotropic medication-free adolescents with MDD (10 anhedonic, 12 female, aged 12–19 years) with episode duration of 8 weeks or more and 21 control subjects group matched for sex and age. Main Outcome Measures Anterior cingulate cortex GABA levels expressed as ratios relative to unsuppressed voxel tissue water (w) and anhedonia scores expressed as a continuous variable. Results Compared with control subjects, adolescents with MDD had significantly decreased ACC GABA/w (t= 3.2; PGABA/w levels compared with control subjects (t=4.08; PGABA/w levels were negatively correlated with anhedonia scores for the whole MDD group (r = −0.50; P = .02), as well as for the entire participant sample including the control subjects (r=−0.54; PGABA, the major inhibitory neurotransmitter in the brain, may be implicated in adolescent MDD and, more specifically, in those with anhedonia. In addition, use of a continuous rather than categorical scale of anhedonia, as in the present study, may permit greater specificity in evaluating this important clinical feature. PMID:21969419

  8. A functional dissociation of conflict processing within anterior cingulate cortex.

    Science.gov (United States)

    Kim, Chobok; Kroger, James K; Kim, Jeounghoon

    2011-02-01

    Goal-directed behavior requires cognitive control to regulate the occurrence of conflict. The dorsal anterior cingulate cortex (dACC) has been suggested in detecting response conflict during various conflict tasks. Recent findings, however, have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. In this study, we sought to examine whether perceptual and response conflicts are functionally dissociated in dACC. Thirteen healthy subjects performed a version of the Stroop task during functional magnetic resonance imaging (fMRI) scanning. We identified a functional dissociation of the caudal dACC (cdACC) and the rostral dACC (rdACC) in their responses to different sources of conflict. The cdACC was selectively engaged in perceptual conflict whereas the rdACC was more active in response conflict. Further, the dorsolateral prefrontal cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest that cdACC plays an important role in regulative processing of perceptual conflict whereas rdACC is involved in detecting response conflict. Copyright © 2010 Wiley-Liss, Inc.

  9. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

    Science.gov (United States)

    Caruana, Fausto; Avanzini, Pietro; Gozzo, Francesca; Francione, Stefano; Cardinale, Francesco; Rizzolatti, Giacomo

    2015-10-01

    Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control.

    Science.gov (United States)

    Silton, Rebecca Levin; Heller, Wendy; Towers, David N; Engels, Anna S; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-04-15

    A network of brain regions has been implicated in top-down attentional control, including left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC). The present experiment evaluated predictions of the cascade-of-control model (Banich, 2009), which predicts that during attentionally-demanding tasks, LDLPFC imposes a top-down attentional set which precedes late-stage selection performed by dACC. Furthermore, the cascade-of-control model argues that dACC must increase its activity to compensate when top-down control by LDLPFC is poor. The present study tested these hypotheses using fMRI and dense-array ERP data collected from the same 80 participants in separate sessions. fMRI results guided ERP source modeling to characterize the time course of activity in LDLPFC and dACC. As predicted, dACC activity subsequent to LDLPFC activity distinguished congruent and incongruent conditions on the Stroop task. Furthermore, when LDLPFC activity was low, the level of dACC activity was related to performance outcome. These results demonstrate that dACC responds to attentional demand in a flexible manner that is dependent on the level of LDLPFC activity earlier in a trial. Overall, results were consistent with the temporal course of regional brain function proposed by the cascade-of-control model. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Dissociating response conflict and error likelihood in anterior cingulate cortex.

    Science.gov (United States)

    Yeung, Nick; Nieuwenhuis, Sander

    2009-11-18

    Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.

  12. Kainate-induced network activity in the anterior cingulate cortex.

    Science.gov (United States)

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Anterior medial prefrontal cortex implements social priming of mimicry.

    Science.gov (United States)

    Wang, Yin; Hamilton, Antonia F de C

    2015-04-01

    The neural and cognitive mechanisms by which primed constructs can impact on social behavior are poorly understood. In the present study, we used functional magnetic resonance imaging (fMRI) to explore how scrambled sentence priming can impact on mimicry behavior. Sentences involving pro/antisocial events from a first/third-person point of view were presented in short blocks, followed by a reaction-time assessment of mimicry. Behavioral results showed that both prosociality and viewpoint impact on mimicry, and fMRI analysis showed this effect is implemented by anterior medial prefrontal cortex (amPFC). We suggest that social primes may subtly modulate processing in amPFC in a manner linked to the later behavior, and that this same region also implements the top-down control of mimicry responses. This priming may be linked to processing of self-schemas in amPFC. Our findings demonstrate how social priming can be studied with fMRI, and have important implications for our understanding of the underlying mechanisms of prime-to-behavior effects as well as for current theories in social psychology. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. The anterior temporal lobes support residual comprehension in Wernicke’s aphasia

    Science.gov (United States)

    Robson, Holly; Zahn, Roland; Keidel, James L.; Binney, Richard J.; Sage, Karen; Lambon Ralph, Matthew A.

    2014-01-01

    Wernicke’s aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory–verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke’s aphasia and 12 control participants performed semantic animate–inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an ‘over-activation’ in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions. PMID:24519979

  15. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  16. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Science.gov (United States)

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  17. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  18. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    Science.gov (United States)

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  19. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  20. Right anterior temporal lobe dysfunction underlies theory of mind impairments in semantic dementia.

    Science.gov (United States)

    Irish, Muireann; Hodges, John R; Piguet, Olivier

    2014-04-01

    Semantic dementia is a progressive neurodegenerative disorder characterized by the amodal and profound loss of semantic knowledge attributable to the degeneration of the left anterior temporal lobe. Although traditionally conceptualized as a language disorder, patients with semantic dementia display significant alterations in behaviour and socioemotional functioning. Recent evidence points to an impaired capacity for theory of mind in predominantly left-lateralized cases of semantic dementia; however, it remains unclear to what extent semantic impairments contribute to these deficits. Further the neuroanatomical signature of such disturbance remains unknown. Here, we sought to determine the neural correlates of theory of mind performance in patients with left predominant semantic dementia (n=11), in contrast with disease-matched cases with behavioural-variant frontotemporal dementia (n=10) and Alzheimer's disease (n=10), and healthy older individuals (n=14) as control participants. Participants completed a simple cartoons task, in which they were required to describe physical and theory of mind scenarios. Irrespective of subscale, patients with semantic dementia exhibited marked impairments relative to control subjects; however, only theory of mind deficits persisted when we covaried for semantic comprehension. Voxel-based morphometry analyses revealed that atrophy in right anterior temporal lobe structures, including the right temporal fusiform cortex, right inferior temporal gyrus, bilateral temporal poles and amygdalae, correlated significantly with theory of mind impairments in the semantic dementia group. Our results point to the marked disruption of cognitive functions beyond the language domain in semantic dementia, not exclusively attributable to semantic processing impairments. The significant involvement of right anterior temporal structures suggests that with disease evolution, the encroachment of pathology into the contralateral hemisphere heralds the

  1. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches. Copyright 1998 Academic Press.

  2. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  3. Non-verbal auditory cognition in patients with temporal epilepsy before and after anterior temporal lobectomy

    Directory of Open Access Journals (Sweden)

    Aurélie Bidet-Caulet

    2009-11-01

    Full Text Available For patients with pharmaco-resistant temporal epilepsy, unilateral anterior temporal lobectomy (ATL - i.e. the surgical resection of the hippocampus, the amygdala, the temporal pole and the most anterior part of the temporal gyri - is an efficient treatment. There is growing evidence that anterior regions of the temporal lobe are involved in the integration and short-term memorization of object-related sound properties. However, non-verbal auditory processing in patients with temporal lobe epilepsy (TLE has raised little attention. To assess non-verbal auditory cognition in patients with temporal epilepsy both before and after unilateral ATL, we developed a set of non-verbal auditory tests, including environmental sounds. We could evaluate auditory semantic identification, acoustic and object-related short-term memory, and sound extraction from a sound mixture. The performances of 26 TLE patients before and/or after ATL were compared to those of 18 healthy subjects. Patients before and after ATL were found to present with similar deficits in pitch retention, and in identification and short-term memorisation of environmental sounds, whereas not being impaired in basic acoustic processing compared to healthy subjects. It is most likely that the deficits observed before and after ATL are related to epileptic neuropathological processes. Therefore, in patients with drug-resistant TLE, ATL seems to significantly improve seizure control without producing additional auditory deficits.

  4. Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita

    Science.gov (United States)

    Miyashita, Yasushi; Chang, Han Soo

    1988-01-01

    It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.

  5. Changed hub and corresponding functional connectivity of subgenual anterior cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Huawang Wu

    2016-12-01

    Full Text Available Major depressive disorder (MDD is one of the most prevalent mental disorders. In the brain, the hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of MDD remains unclear. Using resting-state functional magnetic resonance imaging and graph theory methods, we investigated whether alterations of hubs can be detected in MDD. First, we constructed the whole-brain voxel-wise functional networks and calculated a functional connectivity strength (FCS map in each subject in 34 MDD patients and 34 gender-, age-, and education level-matched healthy controls (HC. Next, the two-sample t-test was applied to compare the FCS maps between HC and MDD patients and identified significant decreased FCS in subgenual anterior cingulate cortex (sgACC in MDD patients. Subsequent functional connectivity analyses of sgACC showed disruptions in functional connectivity with posterior insula, middle and inferior temporal gyrus, lingual gyrus, and cerebellum in MDD patients. Furthermore, the changed FCS of sgACC and functional connections to sgACC were significantly correlated with the Hamilton Depression Rating Scale (HDRS scores in MDD patients. The results of the present study revealed the abnormal hub of sgACC and its corresponding disrupted frontal-limbic-visual cognitive-cerebellum functional networks in MDD. These findings may provide a new insight for the diagnosis and treatment of MDD.

  6. Increased Task Demand during Spatial Memory Testing Recruits the Anterior Cingulate Cortex

    Science.gov (United States)

    Carr, Joshua K.; Fournier, Neil M.; Lehmann, Hugo

    2016-01-01

    We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was…

  7. Communication Apprehension and Resting Alpha Range Asymmetry in the Anterior Cortex

    Science.gov (United States)

    Beatty, Michael J.; Heisel, Alan D.; Lewis, Robert J.; Pence, Michelle E.; Reinhart, Amber; Tian, Yan

    2011-01-01

    In this study, we examined the relationship between trait-like communication apprehension (CA) and resting alpha range asymmetry in the anterior cortex (AC). Although theory and research in cognitive neuroscience suggest that asymmetry in the AC constitutes a relatively stable, inborn, substrate of emotion, some studies indicate that asymmetry can…

  8. Decreased NOS1 expression in the anterior cingulate cortex in depression

    NARCIS (Netherlands)

    Gao, Shang-Feng; Qi, Xin-Rui; Zhao, Juan; Balesar, Rawien; Bao, Ai-Min; Swaab, Dick F.

    2013-01-01

    Decreased function of the anterior cingulate cortex (ACC) is crucially involved in the pathogenesis of depression. A key role of nitric oxide (NO) has also been proposed. We aimed to determine the NO content in the cerebrospinal fluid (CSF) and the expression of NO synthase (NOS) isoforms, that is,

  9. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    Science.gov (United States)

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  10. Bilingualism protects anterior temporal lobe integrity in aging.

    Science.gov (United States)

    Abutalebi, Jubin; Canini, Matteo; Della Rosa, Pasquale A; Sheung, Lo Ping; Green, David W; Weekes, Brendan S

    2014-09-01

    Cerebral gray-matter volume (GMV) decreases in normal aging but the extent of the decrease may be experience-dependent. Bilingualism may be one protective factor and in this article we examine its potential protective effect on GMV in a region that shows strong age-related decreases-the left anterior temporal pole. This region is held to function as a conceptual hub and might be expected to be a target of plastic changes in bilingual speakers because of the requirement for these speakers to store and differentiate lexical concepts in 2 languages to guide speech production and comprehension processes. In a whole brain comparison of bilingual speakers (n = 23) and monolingual speakers (n = 23), regressing out confounding factors, we find more extensive age-related decreases in GMV in the monolingual brain and significantly increased GMV in left temporal pole for bilingual speakers. Consistent with a specific neuroprotective effect of bilingualism, region of interest analyses showed a significant positive correlation between naming performance in the second language and GMV in this region. The effect appears to be bilateral though because there was a nonsignificantly different effect of naming performance on GMV in the right temporal pole. Our data emphasize the vulnerability of the temporal pole to normal aging and the value of bilingualism as both a general and specific protective factor to GMV decreases in healthy aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy.

    Science.gov (United States)

    Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T

    2012-01-01

    Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency

  12. Encoding model of temporal processing in human visual cortex.

    Science.gov (United States)

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  13. Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex

    Science.gov (United States)

    Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.

    2012-01-01

    We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972

  14. Non-invasive examinations successfully select patients with medial temporal lobe epilepsy for anterior temporal lobectomy

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Takato; Nishio, Shunji; Kawamura, Tadao; Fukui, Kimiko; Sasaki, Masayuki; Fukui, Masashi [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2001-06-01

    We retrospectively analyzed 8 patients with intractable medial temporal lobe epilepsy (MTLE) who underwent the anterior temporal lobectomy with hippocampectomy (ATL) without invasive examinations such as chronic subdural electrode recording. Five patients had a history of febrile convulsion. While all 8 patients had oral automatism, automatism of ipsilateral limbs with dystonic posture of contralateral limbs was demonstrated in 2 patients. Bilateral temporal paroxysmal activities on interictal EEG was observed in 4 patients and all patients had clear ictal onset zone on unilateral anterior temporal region. MRI demonstrated unilateral hippocampal sclerosis in 5 cases. Interictal FDG-PET depicted hypometabolism of the unilateral temporal lobe in all cases, however, ECD-SPECT failed to reveal the hypoperfusion of the unilateral temporal lobe in a case. Postoperatively, 7 cases became seizure free, and one had rare seizure. Non-invasive examinations, especially ictal EEG and concordant FDG-PET findings, in patients with oral automatism in seizure semiology, successfully select patients with MTLE for ATL. (author)

  15. Non-invasive examinations successfully select patients with medial temporal lobe epilepsy for anterior temporal lobectomy

    International Nuclear Information System (INIS)

    Morioka, Takato; Nishio, Shunji; Kawamura, Tadao; Fukui, Kimiko; Sasaki, Masayuki; Fukui, Masashi

    2001-01-01

    We retrospectively analyzed 8 patients with intractable medial temporal lobe epilepsy (MTLE) who underwent the anterior temporal lobectomy with hippocampectomy (ATL) without invasive examinations such as chronic subdural electrode recording. Five patients had a history of febrile convulsion. While all 8 patients had oral automatism, automatism of ipsilateral limbs with dystonic posture of contralateral limbs was demonstrated in 2 patients. Bilateral temporal paroxysmal activities on interictal EEG was observed in 4 patients and all patients had clear ictal onset zone on unilateral anterior temporal region. MRI demonstrated unilateral hippocampal sclerosis in 5 cases. Interictal FDG-PET depicted hypometabolism of the unilateral temporal lobe in all cases, however, ECD-SPECT failed to reveal the hypoperfusion of the unilateral temporal lobe in a case. Postoperatively, 7 cases became seizure free, and one had rare seizure. Non-invasive examinations, especially ictal EEG and concordant FDG-PET findings, in patients with oral automatism in seizure semiology, successfully select patients with MTLE for ATL. (author)

  16. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex.

    Science.gov (United States)

    Norman-Haignere, Sam; Kanwisher, Nancy; McDermott, Josh H

    2013-12-11

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.

  17. More Than Meets the Eye: The Merging of Perceptual and Conceptual Knowledge in the Anterior Temporal Face Area.

    Directory of Open Access Journals (Sweden)

    Jessica A. Collins

    2016-05-01

    Full Text Available An emerging body of research has supported the existence of a small face sensitive region in the ventral anterior temporal lobe (ATL, referred to here as the anterior temporal face area. The contribution of this region in the greater face-processing network remains poorly understood. The goal of the present study was to test the relative sensitivity of this region to perceptual as well as conceptual information about people and objects. We contrasted the sensitivity of this region to that of two highly-studied face-sensitive regions, the fusiform face area and the occipital face area, as well as a control region in early visual cortex. Our findings revealed that multivoxel activity patterns in the anterior temporal face area contain information about facial identity, as well as conceptual attributes such as one’s occupation. The sensitivity of this region to the conceptual attributes of people was greater than that of posterior face processing regions. In addition, the anterior temporal face area overlaps with voxels that contain information about the conceptual attributes of concrete objects, supporting a generalized role of the ventral ATLs in the identification and conceptual processing of multiple stimulus classes.1IntroductionOver a decade of neuroimaging work has characterized the neural basis of face perception and identified several nodes that preferentially respond to faces relative to other objects (Haxby, Hoffman, & Gobbini, 2000; Nancy Kanwisher & Yovel, 2006. Most of this work has focused on the fusiform face area (FFA and the occipital face area (OFA (Kanwisher, McDermott, & Chun, 1997; Kanwisher & Yovel, 2006; Pitcher, Walsh, Yovel, & Duchaine, 2007, however an emerging literature has implicated an anterior temporal face area, on the ventral surface of the right anterior temporal lobes (vATLs in or near perirhinal cortex, in facial processing (Avidan et al., 2013; Pinsk et al., 2009; Rajimehr, Young, & Tootell, 2009; Tsao

  18. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder.

    Science.gov (United States)

    Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne

    2012-11-01

    The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis

  19. Coherent concepts are computed in the anterior temporal lobes.

    Science.gov (United States)

    Lambon Ralph, Matthew A; Sage, Karen; Jones, Roy W; Mayberry, Emily J

    2010-02-09

    In his Philosophical Investigations, Wittgenstein famously noted that the formation of semantic representations requires more than a simple combination of verbal and nonverbal features to generate conceptually based similarities and differences. Classical and contemporary neuroscience has tended to focus upon how different neocortical regions contribute to conceptualization through the summation of modality-specific information. The additional yet critical step of computing coherent concepts has received little attention. Some computational models of semantic memory are able to generate such concepts by the addition of modality-invariant information coded in a multidimensional semantic space. By studying patients with semantic dementia, we demonstrate that this aspect of semantic memory becomes compromised following atrophy of the anterior temporal lobes and, as a result, the patients become increasingly influenced by superficial rather than conceptual similarities.

  20. Epistemic interrogatives in events anchored in the temporal anteriority

    Directory of Open Access Journals (Sweden)

    Vesela Chergova

    2012-12-01

    Full Text Available The present study attempts to analyse the epistemic modal functionality of temporal posteriority grammemes, referred to the “non-inactual plan”, i. e. the discourse plan measured directly from the moment of enunciation. In our opinion, the invariant category values of a verbal grameme predetermine the development of their complementary and contextual functions. Therefore, the analysis focuses also on the oppositional relations and neutralizations between the categories of verb tense, plan and perspective, on the temporal semantics and the aspectual values which maintain the oppositions between the nominal forms of the verb in accordance with the interpretation of verb categories proposed by Coseriu (1976. In this particular case, the complementary values which outline the scope of our interest fall into the parameters of the possibility and the probability (Veiga, 1991; Kitova-Vasileva, 2000, i.e. conjecture and conclusion in the field of epistemic semantics, yet with an orientation to the temporal anteriority epoch i.e. there is a conjecture regarding actions marked as prior to the moment of enunciation. The syntactic realisation of the epistemic values of conjecture is outlined in the sentence patterns of epistemic interrogatives of the type [Será que + V(P.P.S.] and [Ter(F.S. do Ind.+ V(Part.Pass.]. The study in this way goes beyond the semantic interpretation of the modal, temporal and aspectual values of the morphological instruments of conjecture, and follows the syntactic structure (the modus–dictum relations also in its discourse and pragmatic value.

  1. Encoding of temporal intervals in the rat hindlimb sensorimotor cortex

    Directory of Open Access Journals (Sweden)

    Eric Bean Knudsen

    2012-09-01

    Full Text Available The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its rate of climbing proportional to the delay period. However, it remains unclear whether these patterns of activity occur within areas of motor cortex dedicated to hindlimb movement. Moreover, the effects of behavioral training (e.g. motor tasks under different reward conditions but with similar behavioral output are not well addressed. To address this, we recorded activity from the hindlimb sensorimotor cortex (HLSMC of two groups of rats performing a skilled hindlimb press task. In one group, rats were trained only to a make a valid press within a finite window after cue presentation for reward (non-interval trained, nIT; n=5, while rats in the second group were given duration-specific cues in which they had to make presses of either short or long duration to receive reward (interval trained, IT; n=6. Using PETH analyses, we show that cells recorded from both groups showed climbing activity during the task in similar proportions (35% IT and 47% nIT, however only climbing activity from IT rats was temporally scaled to press duration. Furthermore, using single trial decoding techniques (Wiener filter, we show that press duration can be inferred using climbing activity from IT animals (R=0.61 significantly better than nIT animals (R=0.507, p<0.01, suggesting IT animals encode press duration through temporally scaled climbing activity. Thus, if temporal intervals are behaviorally relevant then the activity of climbing neurons is temporally scaled to encode the passage of time.

  2. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Koike, Takahiko; Yoshihara, Kazufumi; Yoshida, Yumiko; Takahashi, Haruka K; Nakagawa, Eri; Sadato, Norihiro

    2016-07-01

    Happiness is one of the most fundamental human goals, which has led researchers to examine the source of individual happiness. Happiness has usually been discussed regarding two aspects (a temporary positive emotion and a trait-like long-term sense of being happy) that are interrelated; for example, individuals with a high level of trait-like subjective happiness tend to rate events as more pleasant. In this study, we hypothesized that the interaction between the two aspects of happiness could be explained by the interaction between structure and function in certain brain regions. Thus, we first assessed the association between gray matter density (GMD) of healthy participants and trait-like subjective happiness using voxel-based morphometry (VBM). Further, to assess the association between the GMD and brain function, we conducted functional magnetic resonance imaging (MRI) using the task of positive emotion induction (imagination of several emotional life events). VBM indicated that the subjective happiness was positively correlated with the GMD of the rostral anterior cingulate cortex (rACC). Functional MRI demonstrated that experimentally induced temporal happy feelings were positively correlated with subjective happiness level and rACC activity. The rACC response to positive events was also positively correlated with its GMD. These results provide convergent structural and functional evidence that the rACC is related to happiness and suggest that the interaction between structure and function in the rACC may explain the trait-state interaction in happiness. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Behavioral conflict, anterior cingulate cortex, and experiment duration: implications of diverging data.

    Science.gov (United States)

    Erickson, Kirk I; Milham, Michael P; Colcombe, Stanley J; Kramer, Arthur F; Banich, Marie T; Webb, Andrew; Cohen, Neal J

    2004-02-01

    We investigated the relationship between behavioral measures of conflict and the degree of activity in the anterior cingulate cortex (ACC). We reanalyzed an existing data set that employed the Stroop task using functional magnetic resonance imaging [Milham et al., Brain Cogn 2002;49:277-296]. Although we found no changes in the behavioral measures of conflict from the first to the second half of task performance, we found a reliable reduction in the activity of the anterior cingulate cortex. This result suggests the lack of a strong relationship between behavioral measurements of conflict and anterior cingulate activity. A concomitant increase in dorsolateral prefrontal cortex activity was also found, which may reflect a tradeoff in the neural substrates involved in supporting conflict resolution, detection, or monitoring processes. A second analysis of the data revealed that the duration of an experiment can dramatically affect interpretations of the results, including the roles in which particular regions are thought to play in cognition. These results are discussed in relation to current conceptions of ACC's role in attentional control. In addition, we discuss the implication of our results with current conceptions of conflict and of its instantiation in the brain. Hum. Brain Mapping 21:96-105, 2004. Copyright 2003 Wiley-Liss, Inc.

  4. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Inka Ristow

    Full Text Available A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC and in a control region, the pregenual anterior cingulate cortex (pgACC in pedophilic sex offenders (N = 13 and matched controls (N = 13 using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS. In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel (p < 0.04. Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = −0.689. In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control. Keywords: Child sexual abuse, Dorsal anterior cingulate cortex, GABA, Magnetic resonance spectroscopy, Pedophilic sex offenders

  5. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    Science.gov (United States)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  6. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    Science.gov (United States)

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  7. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  8. Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control

    Directory of Open Access Journals (Sweden)

    Michael G. White

    2018-01-01

    Full Text Available Summary: Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action. : White et al. show that anterior cingulate cortex (ACC input to the claustrum encodes a top-down preparatory signal on a 5-choice response assay that is critical for task performance. Claustrum microcircuitry amplifies top-down ACC input in a frequency-dependent manner for eventual propagation to the cortex for cognitive control of action. Keywords: 5CSRTT, optogenetics, fiber photometry, microcircuit, attention, bottom-up, sensory cortices, motor cortices

  9. Anterior cingulate cortex instigates adaptive switches in choice by integrating immediate and delayed components of value in ventromedial prefrontal cortex.

    Science.gov (United States)

    Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J

    2014-02-26

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.

  10. Anatomical pathways for auditory memory II: Information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Directory of Open Access Journals (Sweden)

    Monica eMunoz-Lopez

    2015-05-01

    Full Text Available Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 minutes. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 seconds. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys’ auditory memory performance. It is possible, therefore, that the anatomical pathways differ. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC. We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG, and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY and anterograde (10% BDA 10,000 MW tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex, and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  11. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  12. From Thirst to Satiety: The Anterior Mid-Cingulate Cortex and Right Posterior Insula Indicate Dynamic Changes in Incentive Value

    Directory of Open Access Journals (Sweden)

    Christoph A. Becker

    2017-05-01

    Full Text Available The cingulate cortex and insula are among the neural structures whose activations have been modulated in functional imaging studies examining discrete states of thirst and drinking to satiation. Building upon these findings, the present study aimed to identify neural structures that change their pattern of activation elicited by water held in the mouth in relation to the internal body state, i.e., proportional to continuous water consumption. Accordingly, participants in a thirsty state were scanned while receiving increments of water until satiety was reached. As expected, fluid ingestion led to a clear decrease in self-reported thirst and the pleasantness ratings of the water ingested. Furthermore, linear decreases in the blood oxygenation level dependent (BOLD response to water ingestion were observed in the anterior mid-cingulate cortex (aMCC and right posterior insula as participants shifted towards the non-thirsty state. In addition, regions in the superior temporal gyrus (STG, supplementary motor area (SMA, superior parietal lobule (SPL, precuneus and calcarine sulcus also showed a linear decrease with increasing fluid consumption. Further analyses related single trial BOLD responses of associated regions to trial-by-trial ratings of thirst and pleasantness. Overall, the aMCC and posterior insula may be key sites of a neural network representing the motivation for drinking based on the dynamic integration of internal state and external stimuli.

  13. The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection

    Science.gov (United States)

    Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.; Duncan, John S.

    2010-01-01

    Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy…

  14. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex.

    Science.gov (United States)

    Ristow, Inka; Li, Meng; Colic, Lejla; Marr, Vanessa; Födisch, Carina; von Düring, Felicia; Schiltz, Kolja; Drumkova, Krasimira; Witzel, Joachim; Walter, Henrik; Beier, Klaus; Kruger, Tillmann H C; Ponseti, Jorge; Schiffer, Boris; Walter, Martin

    2018-01-01

    A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders ( N  = 13) and matched controls ( N  = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel ( p  < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.

  15. Lack of paternal care affects synaptic development in the anterior cingulate cortex.

    Science.gov (United States)

    Ovtscharoff, Wladimir; Helmeke, Carina; Braun, Katharina

    2006-10-20

    Exposure to enriched or impoverished environmental conditions, experience and learning are factors which influence brain development, and it has been shown that neonatal emotional experience significantly interferes with the synaptic development of higher associative forebrain areas. Here, we analyzed the impact of paternal care, i.e. the father's emotional contribution towards his offspring, on the synaptic development of the anterior cingulate cortex. Our light and electron microscopic comparison of biparentally raised control animals and animals which were raised in single-mother families revealed no significant differences in spine densities on the apical dendrites of layer II/III pyramidal neurons and of asymmetric and symmetric spine synapses. However, significantly reduced densities (-33%) of symmetric shaft synapses were found in layer II of the fatherless animals compared to controls. This finding indicates an imbalance between excitatory and inhibitory synapses in the anterior cingulate cortex of father-deprived animals. Our results query the general assumption that a father has less impact on the synaptic maturation of his offspring's brain than the mother.

  16. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  17. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Science.gov (United States)

    Sequeira, Adolfo; Morgan, Ling; Walsh, David M; Cartagena, Preston M; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda; Myers, Richard M; Jones, Edward G; Bunney, William E; Vawter, Marquis P

    2012-01-01

    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  18. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.

  19. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  20. Dynamic encoding of speech sequence probability in human temporal cortex.

    Science.gov (United States)

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-06

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. Copyright © 2015 the authors 0270-6474/15/357203-12$15.00/0.

  1. Computational Models of Anterior Cingulate Cortex: At the Crossroads between Prediction and Effort

    Directory of Open Access Journals (Sweden)

    Eliana Vassena

    2017-06-01

    Full Text Available In the last two decades the anterior cingulate cortex (ACC has become one of the most investigated areas of the brain. Extensive neuroimaging evidence suggests countless functions for this region, ranging from conflict and error coding, to social cognition, pain and effortful control. In response to this burgeoning amount of data, a proliferation of computational models has tried to characterize the neurocognitive architecture of ACC. Early seminal models provided a computational explanation for a relatively circumscribed set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent models have focused on ACC's contribution to effortful control. In parallel to these developments, several proposals attempted to explain within a single computational framework a wider variety of empirical findings that span different cognitive processes and experimental modalities. Here we critically evaluate these modeling attempts, highlighting the continued need to reconcile the array of disparate ACC observations within a coherent, unifying framework.

  2. Brain cortex phosphatidylserine inhibits phosphatidylinositol turnover in rat anterior pituitary glands

    International Nuclear Information System (INIS)

    Bonetti, A.C.; Canonico, P.L.; MacLeod, R.M.

    1985-01-01

    The in vitro effect of bovine brain cortex phosphatidylserine on 32 Pi incorporation into phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine of rat anterior pituitary glands was studied. Phosphatidylserine (0.1 to 66.6 microM) decreased the incorporation of 32 Pi into phosphatidylinositol, but not phosphatidylcholine or phosphatidylethanolamine, in a concentration-related manner. The inhibitory effect of phosphatidylinositol was similar to that of dopamine in the same experimental conditions. The combined effects of submaximal concentrations of dopamine and phosphatidylserine elicited an apparently additive inhibitory effect on phosphatidylinositol synthesis. The inhibitory effect of phosphatidylserine was completely reversed by haloperidol and sulpiride and only partially by pimozide, antidopaminergic agents which per se do not affect phosphatidylinositol synthesis. The stimulatory effect of TRH to increase 32 Pi incorporation into phosphatidylinositol was decreased by phosphatidylserine. These observations suggest that the decrease in prolactin release in the presence of phosphatidylserine may be evoked through a dopaminergic mechanism

  3. Distributed representations of action sequences in anterior cingulate cortex: A recurrent neural network approach.

    Science.gov (United States)

    Shahnazian, Danesh; Holroyd, Clay B

    2018-02-01

    Anterior cingulate cortex (ACC) has been the subject of intense debate over the past 2 decades, but its specific computational function remains controversial. Here we present a simple computational model of ACC that incorporates distributed representations across a network of interconnected processing units. Based on the proposal that ACC is concerned with the execution of extended, goal-directed action sequences, we trained a recurrent neural network to predict each successive step of several sequences associated with multiple tasks. In keeping with neurophysiological observations from nonhuman animals, the network yields distributed patterns of activity across ACC neurons that track the progression of each sequence, and in keeping with human neuroimaging data, the network produces discrepancy signals when any step of the sequence deviates from the predicted step. These simulations illustrate a novel approach for investigating ACC function.

  4. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia.

    Science.gov (United States)

    Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A

    2018-03-01

    Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected  state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.

  6. Inflexible Functional Connectivity of the Dorsal Anterior Cingulate Cortex in Adolescent Major Depressive Disorder.

    Science.gov (United States)

    Ho, Tiffany C; Sacchet, Matthew D; Connolly, Colm G; Margulies, Daniel S; Tymofiyeva, Olga; Paulus, Martin P; Simmons, Alan N; Gotlib, Ian H; Yang, Tony T

    2017-11-01

    Recent evidence suggests that anterior cingulate cortex (ACC) maturation during adolescence contributes to or underlies the development of major depressive disorder (MDD) during this sensitive period. The ACC is a structure that sits at the intersection of several task-positive networks (eg, central executive network, CEN), which are still developing during adolescence. While recent work using seed-based approaches indicate that depressed adolescents show limited task-evoked vs resting-state connectivity (termed 'inflexibility') between the ACC and task-negative networks, no study has used network-based approaches to investigate inflexibility of the ACC in task-positive networks to understand adolescent MDD. Here, we used graph theory to compare flexibility of network-level topology in eight subregions of the ACC (spanning three task-positive networks) in 42 unmedicated adolescents with MDD and 53 well-matched healthy controls. All participants underwent fMRI scanning during resting state and a response inhibition task that robustly engages task-positive networks. Relative to controls, depressed adolescents were characterized by inflexibility in local efficiency of a key ACC node in the CEN: right dorsal anterior cingulate cortex/medial frontal gyrus (R dACC/MFG). Furthermore, individual differences in flexibility of local efficiency of R dACC/MFG significantly predicted inhibition performance, consistent with current literature demonstrating that flexible network organization affords successful cognitive control. Finally, reduced local efficiency of dACC/MFG during the task was significantly associated with an earlier age of depression onset, consistent with prior work suggesting that MDD may alter functional network development. Our results support a neurodevelopmental hypothesis of MDD wherein dysfunctional self-regulation is potentially reflected by altered ACC maturation.

  7. Anterior Cingulate Cortex Contributes to Alcohol Withdrawal- Induced and Socially Transferred Hyperalgesia.

    Science.gov (United States)

    Smith, Monique L; Walcott, Andre T; Heinricher, Mary M; Ryabinin, Andrey E

    2017-01-01

    Pain is often described as a "biopsychosocial" process, yet social influences on pain and underlying neural mechanisms are only now receiving significant experimental attention. Expression of pain by one individual can be communicated to nearby individuals by auditory, visual, and olfactory cues. Conversely, the perception of another's pain can lead to physiological and behavioral changes in the observer, which can include induction of hyperalgesia in "bystanders" exposed to "primary" conspecifics in which hyperalgesia has been induced directly. The current studies were designed to investigate the neural mechanisms responsible for the social transfer of hyperalgesia in bystander mice housed and tested with primary mice in which hyperalgesia was induced using withdrawal (WD) from voluntary alcohol consumption. Male C57BL/6J mice undergoing WD from a two-bottle choice voluntary alcohol-drinking procedure served as the primary mice. Mice housed in the same room served as bystanders. Naïve, water-drinking controls were housed in a separate room. Immunohistochemical mapping identified significantly enhanced Fos immunoreactivity (Fos-ir) in the anterior cingulate cortex (ACC) and insula (INS) of bystander mice compared to naïve controls, and in the dorsal medial hypothalamus (DMH) of primary mice. Chemogenetic inactivation of the ACC but not primary somatosensory cortex reversed the expression of hyperalgesia in both primary and bystander mice. These studies point to an overlapping neural substrate for expression of socially transferred hyperalgesia and that expressed during alcohol WD.

  8. Ultrastructural Alterations of Von Economo Neurons in the Anterior Cingulate Cortex in Schizophrenia.

    Science.gov (United States)

    Krause, Martin; Theiss, Carsten; Brüne, Martin

    2017-11-01

    Von Economo neurons (VENs) are large bipolar projection neurons mainly located in layer Vb of anterior cingulate cortex (ACC) and anterior insula. Both regions are involved in cognitive and emotional procedures and are functionally and anatomically altered in schizophrenia. Although the detailed function of VEN remains unclear, it has been suggested that these neurons are involved in the pathomechanism of schizophrenia. Here, we were interested in the question whether or not the VEN of schizophrenia patients would show abnormalities at the ultrastructural level. Accordingly, we examined the amount of lysosomal aggregations of the VEN in post-mortem tissue of patients with schizophrenia, bipolar disorder and psychologically unaffected individuals, and compared the findings with aggregations in adjacent pyramidal cells in layer Vb of the ACC. VEN of patients with schizophrenia, and to a lesser degree individuals with bipolar disorder contained significantly more lysosomal aggregations compared with tissue from unaffected controls. Specifically, the larger amount of lysosomal aggregations in schizophrenia seemed to be selective for VEN, with no differences occurring in pyramidal cells. These findings may indicate that the VEN of schizophrenia patients are selectively vulnerable to neuronal damage. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2017-2024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. The functional integration of the anterior cingulate cortex during conflict processing.

    Science.gov (United States)

    Fan, Jin; Hof, Patrick R; Guise, Kevin G; Fossella, John A; Posner, Michael I

    2008-04-01

    Although functional activation of the anterior cingulate cortex (ACC) related to conflict processing has been studied extensively, the functional integration of the subdivisions of the ACC and other brain regions during conditions of conflict is still unclear. In this study, participants performed a task designed to elicit conflict processing by using flanker interference on target response while they were scanned using event-related functional magnetic resonance imaging. The physiological response of several brain regions in terms of an interaction between conflict processing and activity of the anterior rostral cingulate zone (RCZa) of the ACC, and the effective connectivity between this zone and other regions were examined using psychophysiological interaction analysis and dynamic causal modeling, respectively. There was significant integration of the RCZa with the caudal cingulate zone (CCZ) of the ACC and other brain regions such as the lateral prefrontal, primary, and supplementary motor areas above and beyond the main effect of conflict and baseline connectivity. The intrinsic connectivity from the RCZa to the CCZ was modulated by the context of conflict. These findings suggest that conflict processing is associated with the effective contribution of the RCZa to the neuronal activity of CCZ, as well as other cortical regions.

  10. Role of the Anterior Cingulate Cortex in the Retrieval of Novel Object Recognition Memory after a Long Delay

    Science.gov (United States)

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C. F.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and…

  11. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study

    Czech Academy of Sciences Publication Activity Database

    Rusnáková-Aulická, Š.; Jurák, Pavel; Chládek, Jan; Daniel, P.; Halámek, Josef; Baláž, M.; Bočková, M.; Chrastina, J.; Rektor, I.

    2014-01-01

    Roč. 121, č. 10 (2014), s. 1287-1296 ISSN 0300-9564 R&D Projects: GA ČR GAP103/11/0933 Institutional support: RVO:68081731 Keywords : ERD/S * Anterior cingulate cortex * Subthalamic nucleus * Flanker test * Executive functions Subject RIV: BD - Theory of Information Impact factor: 2.402, year: 2014

  12. Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder

    NARCIS (Netherlands)

    Kennis, Mitzy; Rademaker, Arthur R.; van Rooij, Sanne J H; Kahn, René S.; Geuze, Elbert

    2015-01-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that is associated with structural and functional alterations in several brain areas, including the anterior cingulate cortex (ACC). Here, we examine resting state functional connectivity of ACC subdivisions in PTSD, using a seed-based

  13. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory

    Science.gov (United States)

    Hales, J. B.

    2011-01-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance. PMID:21248058

  14. Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.

    Science.gov (United States)

    Thaiss, Laila; Petrides, Michael

    2008-08-01

    Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.

  15. Differential contribution of right and left temporo-occipital and anterior temporal lesions to face recognition disorders

    Directory of Open Access Journals (Sweden)

    Guido eGainotti

    2011-06-01

    Full Text Available In the study of prosopagnosia, several issues (such as the specific or non-specific manifestations of prosopagnosia, the unitary or non-unitary nature of this syndrome and the mechanisms underlying face recognition disorders are still controversial. Two main sources of variance partially accounting for these controversies could be the qualitative differences between the face recognition disorders observed in patients with prevalent lesions of the right or left hemisphere and in those with lesions encroaching upon the temporo-occipital or the (right anterior temporal cortex.Results of our review seem to confirm these suggestions. Indeed, they show that (a the most specific forms of prosopagnosia are due to lesions of a right posterior network including the OFA and the FFA, whereas (b the face identification defects observed in patients with left temporo-occipital lesions seem due to a semantic defect impeding access to person-specific semantic information from the visual modality. Furthermore, face recognition defects resulting from right anterior temporal lesions can usually be considered as part of a multimodal people recognition disorder.The implications of our review are, therefore, the following: (1 to consider the components of visual agnosia often observed in prosopagnosic patients with bilateral temporo-occipital lesions as part of a semantic defect, resulting from left-sided lesions (and not from prosopagnosia proper; (2 to systematically investigate voice recognition disorders in patients with right anterior temporal lesions to determine whether the face recognition defect should be considered a form of ‘associative prosopagnosia’ or a form of the ‘multimodal people recognition disorder’.

  16. Face-specific impairment in holistic perception following focal lesion of the right anterior temporal lobe.

    Science.gov (United States)

    Busigny, Thomas; Van Belle, Goedele; Jemel, Boutheina; Hosein, Anthony; Joubert, Sven; Rossion, Bruno

    2014-04-01

    Recent studies have provided solid evidence for pure cases of prosopagnosia following brain damage. The patients reported so far have posterior lesions encompassing either or both the right inferior occipital cortex and fusiform gyrus, and exhibit a critical impairment in generating a sufficiently detailed holistic percept to individualize faces. Here, we extended these observations to include the prosopagnosic patient LR (Bukach, Bub, Gauthier, & Tarr, 2006), whose damage is restricted to the anterior region of the right temporal lobe. First, we report that LR is able to discriminate parametrically defined individual exemplars of nonface object categories as accurately and quickly as typical observers, which suggests that the visual similarity account of prosopagnosia does not explain his impairments. Then, we show that LR does not present with the typical face inversion effect, whole-part advantage, or composite face effect and, therefore, has impaired holistic perception of individual faces. Moreover, the patient is more impaired at matching faces when the facial part he fixates is masked than when it is selectively revealed by means of gaze contingency. Altogether these observations support the view that the nature of the critical face impairment does not differ qualitatively across patients with acquired prosopagnosia, regardless of the localization of brain damage: all these patients appear to be impaired to some extent at what constitutes the heart of our visual expertise with faces, namely holistic perception at a sufficiently fine-grained level of resolution to discriminate exemplars of the face class efficiently. This conclusion raises issues regarding the existing criteria for diagnosis/classification of patients as cases of apperceptive or associative prosopagnosia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  18. Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson's disease with depression.

    Science.gov (United States)

    Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong

    2018-07-16

    Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The anterior temporal artery: an underutilized but robust donor for revascularization of the distal middle cerebral artery.

    Science.gov (United States)

    Tayebi Meybodi, Ali; Lawton, Michael T; Griswold, Dylan; Mokhtari, Pooneh; Payman, Andre; Benet, Arnau

    2017-10-01

    OBJECTIVE The anterior temporal artery (ATA) supplies an area of the brain that, if sacrificed, does not cause a noticeable loss of function. Therefore, the ATA may be used as a donor in intracranial-intracranial (IC-IC) bypass procedures. The capacities of the ATA as a donor have not been studied previously. In this study, the authors assessed the feasibility of using the ATA as a donor for revascularization of different segments of the distal middle cerebral artery (MCA). METHODS The ATA was studied in 15 cadaveric specimens (8 heads, excluding 1 side). First, the cisternal segment of the artery was untethered from arachnoid adhesions and small branches feeding the anterior temporal lobe and insular cortex, to evaluate its capacity for a side-to-side bypass to insular, opercular, and cortical segments of the MCA. Any branch entering the anterior perforated substance was preserved. Then, the ATA was cut at the opercular-cortical junction and the capacity for an end-to-side bypass was assessed. RESULTS From a total of 17 ATAs, 4 (23.5%) arose as an early MCA branch. The anterior insular zone and the frontal parasylvian cortical arteries were the best targets (in terms of mobility and caliber match) for a side-to-side bypass. Most of the insula was accessible for end-to-side bypass, but anterior zones of the insula were more accessible than posterior zones. End-to-side bypass was feasible for most recipient cortical arteries along the opercula, except for posterior temporal and parietal regions. Early ATAs reached significantly farther on the insular MCA recipients than non-early ATAs for both side-to-side and end-to-side bypasses. CONCLUSIONS The ATA is a robust arterial donor for IC-IC bypass procedures, including side-to-side and end-to-side techniques. The evidence provided in this work supports the use of the ATA as a donor for distal MCA revascularization in well-selected patients.

  20. Spectro-Temporal Methods in Primary Auditory Cortex

    National Research Council Canada - National Science Library

    Klein, David; Depireux, Didier; Simon, Jonathan; Shamma, Shihab

    2006-01-01

    .... This briefing examines Spike-Triggered Averaging. Spike-Triggered Averaging is an effective method to measure the STRF, when used with Temporally Orthogonal Ripple Combinations (TORCs) as stimuli...

  1. Negative magnetic resonance imaging in three cases of anterior tibial cortex stress fractures

    International Nuclear Information System (INIS)

    Smith, Ralph; Moghal, M.; Newton, J.L.; Jones, N.; Teh, J.

    2017-01-01

    Anterior mid-tibial cortex stress fractures (ATCSF) are uncommon and notoriously challenging to treat. They are termed high risk due to their predilection to prolonged recovery, nonunion and complete fracture. Early diagnosis is essential to avoid progression and reduce fracture complications. Imaging plays a key role in confirming the diagnosis. Magnetic resonance imaging (MRI) is accepted as the gold standard modality due to its high accuracy and nonionizing properties. This report describes three cases of ATCSFs in recreational athletes who had positive radiographic findings with no significant MRI changes. Two athletes had multiple striations within their tibias. Despite the radiographic findings, their severity of symptoms were low with mild or no tenderness on examination. Clinicians should be mindful that the ATCSFs may not present with typical acute stress fracture symptoms. We recommend that plain radiographs should be used as the first line investigation when suspecting ATCSFs. Clinicians should be aware that despite MRI being considered the gold standard imaging modality, we report three cases where the MRI was unremarkable, whilst radiographs and computed tomography confirmed the diagnosis. We urge clinicians to continue to use radiographs as the first line imaging modality for ATCSFs and not to directly rely on MRI. Those who opt directly for MRI may be falsely reassured causing a delay in diagnosis. (orig.)

  2. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    Science.gov (United States)

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  3. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  4. The role of the anterior cingulate cortex in women's sexual decision making.

    Science.gov (United States)

    Rupp, Heather A; James, Thomas W; Ketterson, Ellen D; Sengelaub, Dale R; Janssen, Erick; Heiman, Julia R

    2009-01-02

    Women's sexual decision making is a complex process balancing the potential rewards of conception and pleasure against the risks of possible low paternal care or sexually transmitted infection. Although neural processes underlying social decision making are suggested to overlap with those involved in economic decision making, the neural systems associated with women's sexual decision making are unknown. Using fMRI, we measured the brain activation of 12 women while they viewed photos of men's faces. Face stimuli were accompanied by information regarding each man's potential risk as a sexual partner, indicated by a written description of the man's number of previous sexual partners and frequency of condom use. Participants were asked to evaluate how likely they would be to have sex with the man depicted. Women reported that they would be more likely to have sex with low compared to high risk men. Stimuli depicting low risk men also elicited stronger activation in the anterior cingulate cortex (ACC), midbrain, and intraparietal sulcus, possibly reflecting an influence of sexual risk on women's attraction, arousal, and attention during their sexual decision making. Activation in the ACC was positively correlated with women's subjective evaluations of sex likelihood and response times during their evaluations of high, but not low risk men. These findings provide evidence that neural systems involved in sexual decision making in women overlap with those described previously to underlie nonsexual decision making.

  5. Perceptual load modulates anterior cingulate cortex response to threat distractors in generalized social anxiety disorder.

    Science.gov (United States)

    Wheaton, Michael G; Fitzgerald, Daniel A; Phan, K Luan; Klumpp, Heide

    2014-09-01

    Generalized social anxiety disorder (gSAD) is associated with impoverished anterior cingulate cortex (ACC) engagement during attentional control. Attentional Control Theory proposes such deficiencies may be offset when demands on resources are increased to execute goals. To test the hypothesis attentional demands affect ACC response 23 patients with gSAD and 24 matched controls performed an fMRI task involving a target letter in a string of identical targets (low load) or a target letter in a mixed letter string (high load) superimposed on fearful, angry, and neutral face distractors. Regardless of load condition, groups were similar in accuracy and reaction time. Under low load gSAD patients showed deficient rostral ACC recruitment to fearful (vs. neutral) distractors. For high load, increased activation to fearful (vs. neutral) distractors was observed in gSAD suggesting a compensatory function. Results remained after controlling for group differences in depression level. Findings indicate perceptual demand modulates ACC in gSAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  7. Negative magnetic resonance imaging in three cases of anterior tibial cortex stress fractures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ralph; Moghal, M.; Newton, J.L.; Jones, N. [Oxford University Hospitals NHS Foundation Trust, Department of Sport and Exercise Medicine, Nuffield Orthopaedic Centre, Oxford (United Kingdom); Teh, J. [Oxford University Hospitals NHS Foundation Trust, Department of Radiology, Nuffield Orthopaedic Centre Oxford, Oxford (United Kingdom)

    2017-12-15

    Anterior mid-tibial cortex stress fractures (ATCSF) are uncommon and notoriously challenging to treat. They are termed high risk due to their predilection to prolonged recovery, nonunion and complete fracture. Early diagnosis is essential to avoid progression and reduce fracture complications. Imaging plays a key role in confirming the diagnosis. Magnetic resonance imaging (MRI) is accepted as the gold standard modality due to its high accuracy and nonionizing properties. This report describes three cases of ATCSFs in recreational athletes who had positive radiographic findings with no significant MRI changes. Two athletes had multiple striations within their tibias. Despite the radiographic findings, their severity of symptoms were low with mild or no tenderness on examination. Clinicians should be mindful that the ATCSFs may not present with typical acute stress fracture symptoms. We recommend that plain radiographs should be used as the first line investigation when suspecting ATCSFs. Clinicians should be aware that despite MRI being considered the gold standard imaging modality, we report three cases where the MRI was unremarkable, whilst radiographs and computed tomography confirmed the diagnosis. We urge clinicians to continue to use radiographs as the first line imaging modality for ATCSFs and not to directly rely on MRI. Those who opt directly for MRI may be falsely reassured causing a delay in diagnosis. (orig.)

  8. Conflict-related activity in the caudal anterior cingulate cortex in the absence of awareness

    Science.gov (United States)

    Ursu, Stefan; Clark, Kristi A.; Aizenstein, Howard J.; Stenger, V. Andrew; Carter, Cameron S.

    2009-01-01

    The caudal anterior cingulate cortex (cACC) is thought to be involved in performance monitoring, as conflict and error-related activity frequently co-localize in this area. Recent results suggest that these effects may be differentially modulated by awareness. To clarify the role of awareness in performance monitoring by the cACC, we used rapid event-related fMRI to examine the cACC activity while subjects performed a dual task: a delayed recognition task and a serial response task (SRT) with an implicit probabilistic learning rule (i.e. the stimulus location followed a probabilistic sequence of which the subjects were unaware). Task performance confirmed that the location sequence was learned implicitly. Even though we found no evidence of awareness for the presence of the sequence, imaging data revealed increased cACC activity during correct trials which violated the sequence (high conflict), relative to trials when stimuli followed the sequence (low conflict). Errors made with awareness also activated the same brain region. These results suggest that the performance monitoring function of the cACC extends beyond detection of errors made with or without awareness, and involves detection of multiple responses even when they are outside of awareness. PMID:19026710

  9. Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Ruohe Zhao

    2018-04-01

    Full Text Available The anterior cingulate cortex (ACC is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. Calcium imaging in the dorsal ACC revealed robust somatic activity in layer 5 (L5 pyramidal neurons in response to peripheral noxious stimuli, and the degree of evoked activity was correlated with the intensity of noxious stimulation. Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.

  10. Gray matter volume of the anterior insular cortex and social networking.

    Science.gov (United States)

    Spagna, Alfredo; Dufford, Alexander J; Wu, Qiong; Wu, Tingting; Zheng, Weihao; Coons, Edgar E; Hof, Patrick R; Hu, Bin; Wu, Yanhong; Fan, Jin

    2018-05-01

    In human life, social context requires the engagement in complex interactions among individuals as the dynamics of social networks. The evolution of the brain as the neurological basis of the mind must be crucial in supporting social networking. Although the relationship between social networking and the amygdala, a small but core region for emotion processing, has been reported, other structures supporting sophisticated social interactions must be involved and need to be identified. In this study, we examined the relationship between morphology of the anterior insular cortex (AIC), a structure involved in basic and high-level cognition, and social networking. Two independent cohorts of individuals (New York group n = 50, Beijing group n = 100) were recruited. Structural magnetic resonance images were acquired and the social network index (SNI), a composite measure summarizing an individual's network diversity, size, and complexity, was measured. The association between morphological features of the AIC, in addition to amygdala, and the SNI was examined. Positive correlations between the measures of the volume as well as sulcal depth of the AIC and the SNI were found in both groups, while a significant positive correlation between the volume of the amygdala and the SNI was only found in the New York group. The converging results from the two groups suggest that the AIC supports network-level social interactions. © 2018 Wiley Periodicals, Inc.

  11. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    Science.gov (United States)

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development

    Directory of Open Access Journals (Sweden)

    A. Cachia

    2016-06-01

    Full Text Available Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events – under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC – an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show – without exception–that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life.

  13. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  14. Syntactic Structure Building in the Anterior Temporal Lobe during Natural Story Listening

    Science.gov (United States)

    Brennan, Jonathan; Nir, Yuval; Hasson, Uri; Malach, Rafael; Heeger, David J.; Pylkkanen, Liina

    2012-01-01

    The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca's area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to…

  15. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    International Nuclear Information System (INIS)

    Petrides, M.; Pandya, D.N.

    1988-01-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus

  16. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey.

    Science.gov (United States)

    Petrides, M; Pandya, D N

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  17. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  18. Neural representation of cost-benefit selections in rat anterior cingulate cortex in self-paced decision making.

    Science.gov (United States)

    Wang, Shuai; Shi, Yi; Li, Bao-Ming

    2017-03-01

    The anterior cingulate cortex (ACC) is crucial for decision making which involves the processing of cost-benefit information. Our previous study has shown that ACC is essential for self-paced decision making. However, it is unclear how ACC neurons represent cost-benefit selections during the decision-making process. In the present study, we trained rats on the same "Do More Get More" (DMGM) task as in our previous work. In each trial, the animals stand upright and perform a sustained nosepoke of their own will to earn a water reward, with the amount of reward positively correlated to the duration of the nosepoke (i.e., longer nosepokes earn larger rewards). We then recorded ACC neuronal activity on well-trained rats while they were performing the DMGM task. Our results show that (1) approximately 3/5 ACC neurons (296/496, 59.7%) exhibited changes in firing frequency that were temporally locked with the main events of the DMGM task; (2) about 1/5 ACC neurons (101/496, 20.4%) or 1/3 of the event-modulated neurons (101/296, 34.1%) showed differential firing rate changes for different cost-benefit selections; and (3) many ACC neurons exhibited linear encoding of the cost-benefit selections in the DMGM task events. These results suggest that ACC neurons are engaged in encoding cost-benefit information, thus represent the selections in self-paced decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    Science.gov (United States)

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  20. Disrupted functional connectivity of the anterior cingulate cortex in cirrhotic patients without overt hepatic encephalopathy: a resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Long Jiang Zhang

    Full Text Available BACKGROUND: To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC in patients with cirrhosis without overt hepatic encephalopathy (HE using resting state functional MRI. METHODOLOGY/PRINCIPAL FINDINGS: Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE and 40 cirrhotic patients without MHE (non-HE, and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST] scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC, bilateral middle cingulate cortex (MCC, bilateral superior temporal gyri (STG/middle temporal gyri (MTG, bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients. CONCLUSIONS

  1. Combat Veterans with Comorbid PTSD and Mild TBI Exhibit a Greater Inhibitory Processing ERP from the Dorsal Anterior Cingulate Cortex

    Science.gov (United States)

    2014-08-08

    emotion processing biases in depressed undergraduates. Biological Psychology 81, 153–163. Krompinger, J.W., Simons, R.F., 2011. Cognitive inefficiency...in depressive under- graduates: stroop processing and ERPs. Biological Psychology 86, 239–246. Lanius, R.A., Vermetten, E., Loewenstein, R.J., Brand...prefrontal cortex and anterior cingulate during error processing. Psychosomatic Medicine 74, 471–475. I.-W. Shu et al. / Psychiatry Research: Neuroimaging 224

  2. Reliability of MEG source imaging of anterior temporal spikes: analysis of an intracranially characterized spike focus.

    Science.gov (United States)

    Wennberg, Richard; Cheyne, Douglas

    2014-05-01

    To assess the reliability of MEG source imaging (MSI) of anterior temporal spikes through detailed analysis of the localization and orientation of source solutions obtained for a large number of spikes that were separately confirmed by intracranial EEG to be focally generated within a single, well-characterized spike focus. MSI was performed on 64 identical right anterior temporal spikes from an anterolateral temporal neocortical spike focus. The effects of different volume conductors (sphere and realistic head model), removal of noise with low frequency filters (LFFs) and averaging multiple spikes were assessed in terms of the reliability of the source solutions. MSI of single spikes resulted in scattered dipole source solutions that showed reasonable reliability for localization at the lobar level, but only for solutions with a goodness-of-fit exceeding 80% using a LFF of 3 Hz. Reliability at a finer level of intralobar localization was limited. Spike averaging significantly improved the reliability of source solutions and averaging 8 or more spikes reduced dependency on goodness-of-fit and data filtering. MSI performed on topographically identical individual spikes from an intracranially defined classical anterior temporal lobe spike focus was limited by low reliability (i.e., scattered source solutions) in terms of fine, sublobar localization within the ipsilateral temporal lobe. Spike averaging significantly improved reliability. MSI performed on individual anterior temporal spikes is limited by low reliability. Reduction of background noise through spike averaging significantly improves the reliability of MSI solutions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Different effects of anterior temporal lobectomy and selective amygdalohippocampectomy on verbal memory performance of patients with epilepsy.

    Science.gov (United States)

    Boucher, Olivier; Dagenais, Emmanuelle; Bouthillier, Alain; Nguyen, Dang Khoa; Rouleau, Isabelle

    2015-11-01

    The advantage of selective amygdalohippocampectomy (SAH) over anterior temporal lobectomy (ATL) for the treatment of temporal lobe epilepsy (TLE) remains controversial. Because ATL is more extensive and involves the lateral and medial parts of the temporal lobe, it may be predicted that its impact on memory is more important than SAH, which involves resection of medial temporal structures only. However, several studies do not support this assumption. Possible explanations include task-specific factors such as the extent of semantic and syntactic information to be memorized and failure to control for main confounders. We compared preoperative vs. postoperative memory performance in 13 patients with SAH with 26 patients who underwent ATL matched on side of surgery, IQ, age at seizure onset, and age at surgery. Memory function was assessed using the Logical Memory subtest from the Wechsler Memory Scales - 3rd edition (LM-WMS), the Rey Auditory Verbal Learning Test (RAVLT), the Digit Span subtest from the Wechsler Adult Intelligence Scale, and the Rey-Osterrieth Complex Figure Test. Repeated measures analyses of variance revealed opposite effects of SAH and ATL on the two verbal learning memory tests. On the immediate recall trial of the LM-WMS, performance deteriorated after ATL in comparison with that after SAH. By contrast, on the delayed recognition trial of the RAVLT, performance deteriorated after SAH compared with that after ATL. However, additional analyses revealed that the latter finding was only observed when surgery was conducted in the right hemisphere. No interaction effects were found on other memory outcomes. The results are congruent with the view that tasks involving rich semantic content and syntactical structure are more sensitive to the effects of lateral temporal cortex resection as compared with mesiotemporal resection. The findings highlight the importance of task selection in the assessment of memory in patients undergoing TLE surgery

  4. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP.

    Directory of Open Access Journals (Sweden)

    Sebastian J Lehmann

    Full Text Available The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013, and in particular in the anterior intraparietal cortex (AIP. To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta how different frequency bands of the local field potential (LFP in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively. Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  5. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  6. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain.

    Science.gov (United States)

    Navratilova, Edita; Xie, Jennifer Yanhua; Meske, Diana; Qu, Chaoling; Morimura, Kozo; Okun, Alec; Arakawa, Naohisa; Ossipov, Michael; Fields, Howard L; Porreca, Frank

    2015-05-06

    Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolimbic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopamine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC) inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal clonidine, an α2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free, animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness. Copyright © 2015 the authors 0270-6474/15/357264-08$15.00/0.

  7. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia.

    Science.gov (United States)

    Reid, Meredith A; Salibi, Nouha; White, David M; Gawne, Timothy J; Denney, Thomas S; Lahti, Adrienne C

    2018-01-29

    Recent magnetic resonance spectroscopy (MRS) studies suggest that abnormalities of the glutamatergic system in schizophrenia may be dependent on illness stage, medication status, and symptomatology. Glutamatergic metabolites appear to be elevated in the prodromal and early stages of schizophrenia but unchanged or reduced below normal in chronic, medicated patients. However, few of these studies have measured metabolites with high-field 7T MR scanners, which offer higher signal-to-noise ratio and better spectral resolution than 3T scanners and facilitate separation of glutamate and glutamine into distinct signals. In this study, we examined glutamate and other metabolites in the dorsal anterior cingulate cortex (ACC) of first-episode schizophrenia patients. Glutamate and N-acetylaspartate (NAA) were significantly lower in schizophrenia patients vs controls. No differences were observed in levels of glutamine, GABA, or other metabolites. In schizophrenia patients but not controls, GABA was negatively correlated with the total score on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) as well as the immediate memory and language subscales. Our findings suggest that glutamate and NAA reductions in the ACC may be present early in the illness, but additional large-scale studies are needed to confirm these results as well as longitudinal studies to determine the effect of illness progression and treatment. The correlation between GABA and cognitive function suggests that MRS may be an important technique for investigating the neurobiology underlying cognitive deficits in schizophrenia. © The Author(s) 2018. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option.

    Science.gov (United States)

    Hart, Evan E; Gerson, Julian O; Zoken, Yael; Garcia, Marisella; Izquierdo, Alicia

    2017-07-01

    The anterior cingulate cortex (ACC) is known to be involved in effortful choice, yet its role in cost-benefit evaluation of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. Selecting between qualitatively different options is a decision type commonly faced by humans. Here, we assessed the role of ACC on a task that has primarily been used to probe striatal function in motivation. Rats were trained to stable performance on a progressive ratio schedule for sucrose pellets and were then given sham surgeries (control) or excitotoxic NMDA lesions of ACC. Subsequently, a choice was introduced: chow was concurrently available while animals could work for the preferred sucrose pellets. ACC lesions produced a significant decrease in lever presses for sucrose pellets compared to control, whereas chow consumption was unaffected. Lesions had no effect on sucrose pellet preference when both options were freely available. When laboratory chow was not concurrently available, ACC-lesioned rats exhibited similar lever pressing as controls. During a test under specific satiety for sucrose pellets, ACC-lesioned rats also showed intact devaluation effects. The effects of ACC lesions in our task are not mediated by decreased appetite, a change in food preference, a failure to update value or a learning deficit. Taken together, we found that ACC lesions decreased effort for a qualitatively preferred option. These results are discussed with reference to effects of striatal manipulations and our recent report of a role for basolateral amygdala in effortful choice. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Anterior paracingulate and cingulate cortex mediates the effects of cognitive load on speech sound discrimination.

    Science.gov (United States)

    Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L

    2018-06-11

    Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018. Published by Elsevier Inc.

  10. Glutamatergic activation of anterior cingulate cortex mediates the affective component of visceral pain memory in rats.

    Science.gov (United States)

    Yan, Ni; Cao, Bing; Xu, Jiahe; Hao, Chun; Zhang, Xu; Li, Ying

    2012-01-01

    Studies of both humans and animals suggest that anterior cingulate cortex (ACC) is important for processing pain perception. We identified that perigenul ACC (pACC) sensitization and enhanced visceral pain in a visceral hypersensitive rat in previous studies. Pain contains both sensory and affective dimensions. Teasing apart the mechanisms that control the neural pathways mediating pain affect and sensation in nociceptive behavioral response is a challenge. In this study, using a rodent visceral pain assay that combines the colorectal distension (CRD)-induced visceromotor response (VMR) with the conditioning place avoidance (CPA), we measured a learned behavior that directly reflects the affective component of visceral pain. When CRD was paired with a distinct environment context, the rats spent significantly less time in this compartment on the post-conditioning test days as compared with the pre-conditioning day. Effects were lasted for 14 days. Bilateral pACC lesion significantly reduced CPA scores without reducing acute visceral pain behaviors (CRD-induced VMR). Bilateral administration of non-NMDA receptor antagonist CNQX or NMDA receptor antagonist AP5 into the pACC decreased the CPA scores. AP5 or CNQX at dose of 400 mM produced about 70% inhibition of CRD-CPA in the day 1, 4 and 7, and completely abolished the CPA in the day 14 after conditioning. We concluded that neurons in the pACC are necessary for the "aversiveness" of visceral nociceptor stimulation. pACC activation is critical for the memory processing involved in long-term negative affective state and prediction of aversive stimuli by contextual cue. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Zavitsanou, K.; Huang, X.-F.

    2002-01-01

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [ 3 H]MK801, [ 3 H]AMPA and [ 3 H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [ 3 H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [ 3 H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [ 3 H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [ 3 H]AMPA and [ 3 H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  12. Differential encoding of factors influencing predicted reward value in monkey rostral anterior cingulate cortex.

    Science.gov (United States)

    Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka

    2012-01-01

    The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.

  13. Impaired learning from errors in cannabis users: Dorsal anterior cingulate cortex and hippocampus hypoactivity.

    Science.gov (United States)

    Carey, Susan E; Nestor, Liam; Jones, Jennifer; Garavan, Hugh; Hester, Robert

    2015-10-01

    The chronic use of cannabis has been associated with error processing dysfunction, in particular, hypoactivity in the dorsal anterior cingulate cortex (dACC) during the processing of cognitive errors. Given the role of such activity in influencing post-error adaptive behaviour, we hypothesised that chronic cannabis users would have significantly poorer learning from errors. Fifteen chronic cannabis users (four females, mean age=22.40 years, SD=4.29) and 15 control participants (two females, mean age=23.27 years, SD=3.67) were administered a paired associate learning task that enabled participants to learn from their errors, during fMRI data collection. Compared with controls, chronic cannabis users showed (i) a lower recall error-correction rate and (ii) hypoactivity in the dACC and left hippocampus during the processing of error-related feedback and re-encoding of the correct response. The difference in error-related dACC activation between cannabis users and healthy controls varied as a function of error type, with the control group showing a significantly greater difference between corrected and repeated errors than the cannabis group. The present results suggest that chronic cannabis users have poorer learning from errors, with the failure to adapt performance associated with hypoactivity in error-related dACC and hippocampal regions. The findings highlight a consequence of performance monitoring dysfunction in drug abuse and the potential consequence this cognitive impairment has for the symptom of failing to learn from negative feedback seen in cannabis and other forms of dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    Science.gov (United States)

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex.

    Science.gov (United States)

    Takeuchi, Daigo; Hirabayashi, Toshiyuki; Tamura, Keita; Miyashita, Yasushi

    2011-03-18

    The primate temporal cortex implements visual long-term memory. However, how its interlaminar circuitry executes cognitive computations is poorly understood. Using linear-array multicontact electrodes, we simultaneously recorded unit activities across cortical layers in the perirhinal cortex of macaques performing a pair-association memory task. Cortical layers were estimated on the basis of current source density profiles with histological verifications, and the interlaminar signal flow was determined with cross-correlation analysis between spike trains. During the cue period, canonical "feed-forward" signals flowed from granular to supragranular layers and from supragranular to infragranular layers. During the delay period, however, the signal flow reversed to the "feed-back" direction: from infragranular to supragranular layers. This reversal of signal flow highlights how the temporal cortex differentially recruits its laminar circuits for sensory and mnemonic processing.

  16. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    Science.gov (United States)

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  17. Surgical versus conservative treatment for high-risk stress fractures of the lower leg (anterior tibial cortex, navicular and fifth metatarsal base): a systematic review

    NARCIS (Netherlands)

    Mallee, Wouter H.; Weel, Hanneke; van Dijk, C. Niek; van Tulder, Maurits W.; Kerkhoffs, Gino M.; Lin, Chung-Wei Christine

    2015-01-01

    To compare surgical and conservative treatment for high-risk stress fractures of the anterior tibial cortex, navicular and proximal fifth metatarsal. Systematic searches of CENTRAL, MEDLINE, EMBASE, CINAHL, SPORTDiscus and PEDro were performed to identify relevant prospective and retrospective

  18. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient

  19. Decoding ensemble activity from neurophysiological recordings in the temporal cortex.

    Science.gov (United States)

    Kreiman, Gabriel

    2011-01-01

    We study subjects with pharmacologically intractable epilepsy who undergo semi-chronic implantation of electrodes for clinical purposes. We record physiological activity from tens to more than one hundred electrodes implanted in different parts of neocortex. These recordings provide higher spatial and temporal resolution than non-invasive measures of human brain activity. Here we discuss our efforts to develop hardware and algorithms to interact with the human brain by decoding ensemble activity in single trials. We focus our discussion on decoding visual information during a variety of visual object recognition tasks but the same technologies and algorithms can also be directly applied to other cognitive phenomena.

  20. Guilt-selective functional disconnection of anterior temporal and subgenual cortices in major depressive disorder.

    Science.gov (United States)

    Green, Sophie; Lambon Ralph, Matthew A; Moll, Jorge; Deakin, John F W; Zahn, Roland

    2012-10-01

    Proneness to overgeneralization of self-blame is a core part of cognitive vulnerability to major depressive disorder (MDD) and remains dormant after remission of symptoms. Current neuroanatomical models of MDD, however, assume general increases of negative emotions and are unable to explain biases toward emotions entailing self-blame (eg, guilt) relative to those associated with blaming others (eg, indignation). Recent functional magnetic resonance imaging (fMRI) studies in healthy participants have shown that moral feelings such as guilt activate representations of social meaning within the right superior anterior temporal lobe (ATL). Furthermore, this area was selectively coupled with the subgenual cingulate cortex and adjacent septal region (SCSR) during the experience of guilt compared with indignation. Despite its psychopathological importance, the functional neuroanatomy of guilt in MDD is unknown. To use fMRI to test the hypothesis that, in comparison with control individuals, participants with remitted MDD exhibit guilt-selective SCSR-ATL decoupling as a marker of deficient functional integration. Case-control study from May 1, 2008, to June 1, 2010. Clinical research facility. Twenty-five patients with remitted MDD (no medication in 16 patients) with no current comorbid Axis I disorders and 22 controls with no personal or family history of MDD. Between-group difference of ATL coupling with a priori SCSR region of interest for guilt vs indignation. We corroborated the prediction of a guilt-selective reduction in ATL-SCSR coupling in MDD vs controls (familywise error-corrected P=.001 over the region of interest) and revealed additional medial frontopolar, right hippocampal, and lateral hypothalamic areas of decoupling while controlling for medication status and intensity of negative emotions. Lower levels of ATL-SCSR coupling were associated with higher scores on a validated measure of overgeneralized self-blame (67-item Interpersonal Guilt Questionnaire

  1. SPHENOID SINUS (SS ANTERIOR MEDIAL TEMPORAL LOBE ENCEPHALOCELE (AMTLE WITH SPONTANEOUS CSF RHINORRHOEA : A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Laveena

    2015-09-01

    Full Text Available Cranial encephaloceles are the herniation of intracranial meninges and brain tissue through a defect in the cranium or skull base. These are rare conditions with an incidence of approximately 1 in 35,000 people, and are more common in the anterior cranial fossa than those in the middle one . 1,2 Temporal lobe herniation through a mid dle fossa defect into the lateral recess of the Sphenoid Sinus is even rarer than its medial representation. Intrasphenoidal encephaloceles are extremely rare findings 3 . Spontaneous, or primary, CSF fistula is a separate entity with no underlying cause of the CSF leak. Spontaneous CSF leaks are usually associated with a co - existing encephalocele of variable size 4 . We present a case of spontaneous CSF rhinorrhoea in a sphenoid sinus Anterior Medial Temporal lobe encephalocele herniating through a clinically silent lateral Craniopharyngeal canal.

  2. Esthetic Rehabilitation of Primary Anterior Teeth using Temporization Material: A Novel Approach

    Science.gov (United States)

    Pandit, IK; Gupta, Monika; Nagpal, Jyoti

    2017-01-01

    Pediatric dentists should always aim for esthetic and functional rehabilitation of decayed/traumatized primary teeth. The most common method for restoring such teeth involves the use of “strip crowns” with composites, while the recent trend is toward using other extracoronal restorations including preve-neered stainless steel crowns and zirconia crowns. All these restorative options have shown good success rates, but also have some limitations. This case series depicts novel clinical technique of using a temporization material for full-coronal restoration(s) in primary anterior teeth. This included the chair-side custom fabrication of full-coronal restoration using temporization material, which has resulted in good immediate esthetics and might be a cost-effective alternative for restoring primary anterior teeth in future. How to cite this article Gugnani N, Pandit IK, Gupta M, Nagpal J. Esthetic Rehabilitation of Primary Anterior Teeth using Temporization Material: A Novel Approach. Int J Clin Pediatr Dent 2017;10(1):111-114. PMID:28377667

  3. Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes

    Directory of Open Access Journals (Sweden)

    Lars A Ross

    2011-10-01

    Full Text Available Evidence from neuroimaging and neuropsychology suggests that portions of the anterior temporal lobes play a critical role in proper name retrieval. We previously found that anodal transcranial direct current stimulation (tDCS to the anterior temporal lobes improved retrieval of proper names in young adult. Here we extend that finding to older adults who tend to experience greater proper-naming deficits than young adults. The task was to look at pictures of famous faces or landmarks and verbally recall the associated proper name. Our results show a numerical improvement in face naming after left or right anterior temporal lobe stimulation, but a statistically significant effect only after left-lateralized stimulation. The magnitude of the enhancing effect was similar in older and younger adults but the lateralization of the effect differed depending on age. These results provide evidence that tDCS may be a useful tool for the neurorehabilitation of cognitive function in healthy and pathological cognitive decline.

  4. Anterior & lateral extension of optic radiation & safety of amygdalohippocampectomy through middle temporal gyrus: a cadaveric study of 11 cerebral hemispheres.

    Science.gov (United States)

    Chowdhury, F H; Khan, A H

    2010-01-01

    This is a cadaveric anatomical study on the localization of the optic radiation within the temporal lobe and to find whether surgical intervention to the temporal lobe, especially amygdalohippocampectomy, can damage the optic radiation or not. 11 cadaveric cerebral hemispheres were used for the study. A 2 cm long antero-posterior incision was done with a sharp knife, on middle temporal gyrus, starting 3 cm posterior to temporal pole. The incision was deepened perpendicular to surface of the gyrus to reach the temporal horn. The optic radiation was dissected under operating microscope using Klinger's fiber dissection technique and measurements were taken to define the anterior and lateral extension of optic radiation. The optic radiation in each hemispehere was inspected for any incision related damage. No damage to the optic radiation was found, caused by the 2 cm long anterior-posterior incision on middle temporal gyrus 3 cm posterior to temporal pole. Most anterior 9mm (8-10mm) of the Meyer loop was completely on the roof and there was no extension over lateral wall of the temporal horn. In next posterior 17.5mm (16-20 mm) it extended over lateral wall of temporal horn with gradual progression. The most anterior extension of optic radiation was 26mm (23-31mm) posterior to temporal pole. Amygdalohippocampectomy through a 2 cm long horizontal incision on the middle temporal gyrus, starting 3 cm posterior to the temporal pole, to enter into the temporal horn through the lower aspect of the lateral wall is unlikely to cause damage to the Meyer's loop. Any entry from the superior aspect of the temporal horn and any temporal lobectomy inclusive of the superior temporal gyrus to enter the temporal horn is likely to cause Meyer's loop injury. The findings support the fact that the more inferior the surgical trajectory to the temporal horn of the lateral ventricle, the lover is the risk of visual field damage.

  5. A word expressing affective pain activates the anterior cingulate cortex in the human brain: an fMRI study.

    Science.gov (United States)

    Osaka, Naoyuki; Osaka, Mariko; Morishita, Masanao; Kondo, Hirohito; Fukuyama, Hidenao

    2004-08-12

    We present an fMRI study demonstrating that an onomatopoeia word highly suggestive of subjective pain, heard by the ear, significantly activates the anterior cingulate cortex (ACC) while hearing non-sense words that did not imply affective pain under the same task does not activate this area in humans. We concluded that the ACC would be a pivotal locus for perceiving affective pain evoked by an onomatopoeia word that implied affective pain closely associated with the unpleasantness of pain. We suggest that the pain affect sustained by pain unpleasantness may depend on ACC-prefrontal cortical interactions that modify cognitive evaluation of emotions associated with word-induced pain.

  6. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech

    Science.gov (United States)

    Van Ackeren, Markus Johannes; Barbero, Francesca M; Mattioni, Stefania; Bottini, Roberto

    2018-01-01

    The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives. PMID:29338838

  7. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy.

    Science.gov (United States)

    van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C

    2014-03-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    OpenAIRE

    Akiko Nishio; Naokazu Goda; Hidehiko Komatsu

    2012-01-01

    The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT) cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task...

  10. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  11. The neocortical network representing associative memory reorganizes with time in a process engaging the anterior temporal lobe.

    Science.gov (United States)

    Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Oostenveld, Robert; McNaughton, Bruce L; Fernández, Guillén; Jensen, Ole

    2012-11-01

    During encoding, the distributed neocortical representations of memory components are presumed to be associatively linked by the hippocampus. With time, a reorganization of brain areas supporting memory takes place, which can ultimately result in memories becoming independent of the hippocampus. While it is theorized that with time, the neocortical representations become linked by higher order neocortical association areas, this remains to be experimentally supported. In this study, 24 human participants encoded sets of face-location associations, which they retrieved 1 or 25 h later ("recent" and "remote" conditions, respectively), while their brain activity was recorded using whole-head magnetoencephalography. We investigated changes in the functional interactions between the neocortical representational areas emerging over time. To assess functional interactions, trial-by-trial high gamma (60-140 Hz) power correlations were calculated between the neocortical representational areas relevant to the encoded information, namely the fusiform face area (FFA) and posterior parietal cortex (PPC). With time, both the FFA and the PPC increased their functional interactions with the anterior temporal lobe (ATL). Given that the ATL is involved in semantic representation of paired associates, our results suggest that, already within 25 h after acquiring new memory associations, neocortical functional links are established via higher order semantic association areas.

  12. Navigation-assisted trans-inferotemporal cortex selective amygdalohippocampectomy for mesial temporal lobe epilepsy; preserving the temporal stem.

    Science.gov (United States)

    Kishima, Haruhiko; Kato, Amami; Oshino, Satoru; Tani, Naoki; Maruo, Tomoyuki; Khoo, Hui Ming; Yanagisawa, Takufumi; Edakawa, Kotaro; Kobayashi, Maki; Tanaka, Masataka; Hosomi, Koichi; Hirata, Masayuki; Yoshimine, Toshiki

    2017-03-01

    Selective amygdalohippocampectomy (SAH) can be used to obtain satisfactory seizure control in patients with mesial temporal lobe epilepsy (MTLE). Several SAH procedures have been reported to achieve satisfactory outcomes for seizure control, but none yield fully satisfactory outcomes for memory function. We hypothesized that preserving the temporal stem might play an important role. To preserve the temporal stem, we developed a minimally invasive surgical procedure, 'neuronavigation-assisted trans-inferotemporal cortex SAH' (TITC-SAH). TITC-SAH was performed in 23 patients with MTLE (MTLE on the language-non-dominant hemisphere, n = 11). The inferior horn of the lateral ventricle was approached via the inferior or middle temporal gyrus along the inferior temporal sulcus under neuronavigation guidance. The hippocampus was dissected in a subpial manner and resected en bloc together with the parahippocampal gyrus. Seizure control at one year and memory function at 6 months postoperatively were evaluated. One year after TITC-SAH, 20 of the 23 patients were seizure-free (ILAE class 1), 2 were class 2, and 1 was class 3. Verbal memory improved significantly in 13 patients with a diagnosis of hippocampal sclerosis, for whom WMS-R scores were available both pre- and post-operatively. Improvements were seen regardless of whether the SAH was on the language-dominant or non-dominant hemisphere. No major complication was observed. Navigation-assisted TITC-SAH performed for MTLE offers a simple, minimally invasive procedure that appears to yield excellent outcomes in terms of seizure control and preservation of memory function, because this procedure does not damage the temporal stem. TITC-SAH should be one of the feasible surgical procedures for MTLE. SAH: Amygdalohippocampectomy; MTLE: Mesial temporal lobe epilepsy (MTLE); TITC-SAH: Ttrans-inferotemporal cortex SAH; ILAE: International League Against Epilepsy (ILAE); MRI: Magnetic resonance imaging; EEG

  13. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  14. The acquisition of face and person identity information following anterior temporal lobectomy.

    Science.gov (United States)

    Moran, Maria; Seidenberg, Michael; Sabsevitz, Dave; Swanson, Sara; Hermann, Bruce

    2005-05-01

    Thirty unilateral anterior temporal lobectomy (ATL) subjects (15 right and 15 left) and 15 controls were presented a multitrial learning task in which unfamiliar faces were paired with biographical information (occupation, city location, and a person's name). Face recognition hits were similar between groups, but the right ATL group committed more false-positive errors to face foils. Both left and right ATL groups were impaired relative to controls in acquiring biographical information, but the deficit was more pronounced for the left ATL group. Recall levels also varied for the different types of biographical information; occupation was most commonly recalled followed by city name and person name. In addition, city and person name recall was more likely when occupation was also recalled. Overall, recall of biographical information was positively correlated with clinical measures of anterograde episodic memory. Findings are discussed in terms of the role of the temporal lobe and associative learning ability in the successful acquisition of new face semantic (biographical) representations.

  15. White matter abnormalities in the anterior temporal lobe suggest the side of the seizure foci in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Y.; Yagishita, A. [Tokyo Metropolitan Neurological Hospital, Department of Neuroradiology, Fuchu, Tokyo (Japan); Arai, N. [Tokyo Metropolitan Neurological Institute, Department of Clinical Neuropathology, Fuchu, Tokyo (Japan)

    2006-07-15

    White matter abnormalities in the anterior temporal lobe (WAATL) are sometimes observed on magnetic resonance (MR) images of patients with temporal lobe epilepsy (TLE). Our purpose was to determine whether WAATL could indicate if the seizure foci are ipsilateral on electroencephalograms (EEG) in TLE patients. We reviewed 112 consecutive patients with medically intractable TLE. We compared the side of seizure foci on EEG (preoperative and intraoperative) and MR images. Both loss of gray-white matter demarcation and increased signal intensity changes in the anterior white matter (positive WAATL) were observed in 54 of 112 patients (48.2%) with TLE. WAATL were present on the same side as the seizure foci on preoperative intracranial EEG with subdural electrodes (iEEG) and on intraoperative electrocorticography (ECG) in all the patients. In 47 patients, MR images showed WAATL and focal lesions that were possibly epileptogenic for TLE. In 2 of the 47 patients, the seizure foci on iEEG and ECG were contralateral to the focal lesion; in the remaining 45 patients, the seizure foci on surface EEG (sEEG) and ECG and the focal lesion were on the same side. In three patients, no focal lesions were seen but WAATL were present on the same side as the seizure foci on sEEG and ECG. In four patients, MR images showed focal lesions for which epileptogenicity was questionable, and WAATL on the same side as the seizure foci on EEG. WAATL are clinically useful because they indicate the side of the seizure foci. (orig.)

  16. White matter abnormalities in the anterior temporal lobe suggest the side of the seizure foci in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Adachi, Y.; Yagishita, A.; Arai, N.

    2006-01-01

    White matter abnormalities in the anterior temporal lobe (WAATL) are sometimes observed on magnetic resonance (MR) images of patients with temporal lobe epilepsy (TLE). Our purpose was to determine whether WAATL could indicate if the seizure foci are ipsilateral on electroencephalograms (EEG) in TLE patients. We reviewed 112 consecutive patients with medically intractable TLE. We compared the side of seizure foci on EEG (preoperative and intraoperative) and MR images. Both loss of gray-white matter demarcation and increased signal intensity changes in the anterior white matter (positive WAATL) were observed in 54 of 112 patients (48.2%) with TLE. WAATL were present on the same side as the seizure foci on preoperative intracranial EEG with subdural electrodes (iEEG) and on intraoperative electrocorticography (ECG) in all the patients. In 47 patients, MR images showed WAATL and focal lesions that were possibly epileptogenic for TLE. In 2 of the 47 patients, the seizure foci on iEEG and ECG were contralateral to the focal lesion; in the remaining 45 patients, the seizure foci on surface EEG (sEEG) and ECG and the focal lesion were on the same side. In three patients, no focal lesions were seen but WAATL were present on the same side as the seizure foci on sEEG and ECG. In four patients, MR images showed focal lesions for which epileptogenicity was questionable, and WAATL on the same side as the seizure foci on EEG. WAATL are clinically useful because they indicate the side of the seizure foci. (orig.)

  17. Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human.

    Science.gov (United States)

    Garell, P C; Bakken, H; Greenlee, J D W; Volkov, I; Reale, R A; Oya, H; Kawasaki, H; Howard, M A; Brugge, J F

    2013-10-01

    The connection between auditory fields of the temporal lobe and prefrontal cortex has been well characterized in nonhuman primates. Little is known of temporofrontal connectivity in humans, however, due largely to the fact that invasive experimental approaches used so successfully to trace anatomical pathways in laboratory animals cannot be used in humans. Instead, we used a functional tract-tracing method in 12 neurosurgical patients with multicontact electrode arrays chronically implanted over the left (n = 7) or right (n = 5) perisylvian temporal auditory cortex (area PLST) and the ventrolateral prefrontal cortex (VLPFC) of the inferior frontal gyrus (IFG) for diagnosis and treatment of medically intractable epilepsy. Area PLST was identified by the distribution of average auditory-evoked potentials obtained in response to simple and complex sounds. The same sounds evoked little if there is any activity in VLPFC. A single bipolar electrical pulse (0.2 ms, charge-balanced) applied between contacts within physiologically identified PLST resulted in polyphasic evoked potentials clustered in VLPFC, with greatest activation being in pars triangularis of the IFG. The average peak latency of the earliest negative deflection of the evoked potential on VLPFC was 13.48 ms (range: 9.0-18.5 ms), providing evidence for a rapidly conducting pathway between area PLST and VLPFC.

  18. Preference for orientations commonly viewed for one's own hand in the anterior intraparietal cortex.

    Directory of Open Access Journals (Sweden)

    Regine Zopf

    Full Text Available Brain regions in the intraparietal and the premotor cortices selectively process visual and multisensory events near the hands (peri-hand space. Visual information from the hand itself modulates this processing potentially because it is used to estimate the location of one's own body and the surrounding space. In humans specific occipitotemporal areas process visual information of specific body parts such as hands. Here we used an fMRI block-design to investigate if anterior intraparietal and ventral premotor 'peri-hand areas' exhibit selective responses to viewing images of hands and viewing specific hand orientations. Furthermore, we investigated if the occipitotemporal 'hand area' is sensitive to viewed hand orientation. Our findings demonstrate increased BOLD responses in the left anterior intraparietal area when participants viewed hands and feet as compared to faces and objects. Anterior intraparietal and also occipitotemporal areas in the left hemisphere exhibited response preferences for viewing right hands with orientations commonly viewed for one's own hand as compared to uncommon own hand orientations. Our results indicate that both anterior intraparietal and occipitotemporal areas encode visual limb-specific shape and orientation information.

  19. Effects of dual pathology on cognitive outcome following left anterior temporal lobectomy for treatment of epilepsy.

    Science.gov (United States)

    Prayson, B E; Prayson, R A; Kubu, C S; Bingaman, W; Najm, I M; Busch, R M

    2013-09-01

    The objective of this retrospective study was to determine if dual pathology [DUAL - focal cortical dysplasia (FCD) and mesial temporal sclerosis (MTS)] in patients with left temporal lobe epilepsy is associated with greater risk for cognitive decline following temporal lobectomy than single pathology (MTS only). Sixty-three adults (Mage=36.5years, female: 52.4%) who underwent left anterior temporal lobectomy for treatment of epilepsy (MTS=28; DUAL=35) completed preoperative and postoperative neuropsychological evaluations. The base rate of dual pathology was 55.5%. Repeated measures ANOVAs yielded significant 2-way interactions (group×time) on most measures of language and memory with generally moderate effect sizes. Specifically, patients with MTS only demonstrated postoperative declines, while those with dual pathology remained unchanged or improved. Results suggest that dual pathology may be associated with better cognitive outcome following epilepsy surgery than MTS alone, possibly reflecting limited functionality of the resected tissue or intrahemispheric reorganization of function in the context of a developmental lesion. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Large anterior temporal Virchow-Robin spaces: unique MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Anthony T. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Chandra, Ronil V. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia); Trost, Nicholas M. [St Vincent' s Hospital, Neuroradiology Service, Melbourne (Australia); McKelvie, Penelope A. [St Vincent' s Hospital, Anatomical Pathology, Melbourne (Australia); Stuckey, Stephen L. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia)

    2015-05-01

    Large Virchow-Robin (VR) spaces may mimic cystic tumor. The anterior temporal subcortical white matter is a recently described preferential location, with only 18 reported cases. Our aim was to identify unique MR features that could increase prospective diagnostic confidence. Thirty-nine cases were identified between November 2003 and February 2014. Demographic, clinical data and the initial radiological report were retrospectively reviewed. Two neuroradiologists reviewed all MR imaging; a neuropathologist reviewed histological data. Median age was 58 years (range 24-86 years); the majority (69 %) was female. There were no clinical symptoms that could be directly referable to the lesion. Two thirds were considered to be VR spaces on the initial radiological report. Mean maximal size was 9 mm (range 5-17 mm); majority (79 %) had perilesional T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensity. The following were identified as potential unique MR features: focal cortical distortion by an adjacent branch of the middle cerebral artery (92 %), smaller adjacent VR spaces (26 %), and a contiguous cerebrospinal fluid (CSF) intensity tract (21 %). Surgery was performed in three asymptomatic patients; histopathology confirmed VR spaces. Unique MR features were retrospectively identified in all three patients. Large anterior temporal lobe VR spaces commonly demonstrate perilesional T2 or FLAIR signal and can be misdiagnosed as cystic tumor. Potential unique MR features that could increase prospective diagnostic confidence include focal cortical distortion by an adjacent branch of the middle cerebral artery, smaller adjacent VR spaces, and a contiguous CSF intensity tract. (orig.)

  1. Anterior temporal white matter lesions in myotonic dystrophy with intellectual impairment: an MRI and neuropathological study

    International Nuclear Information System (INIS)

    Ogata, A.; Tashiro, K.; Terae, S.; Fujita, M.

    1998-01-01

    We studied 12 patients with myotonic dystrophy using MRI and the Mini-mental state examination (MMSE), to see it specific MRI findings were associated with intellectual impairment. We also compared them with the neuropathological findings in an autopsy case of MD with intellectual impairment. Mild intellectual impairment was found in 8 of the 12 patients. On T 2-weighted and proton density-weighted images, high-intensity areas were seen in cerebral white matter in 10 of the 12 patients. In seven of these, anterior temporal white-matter lesions (ATWML) were found; all seven had mild intellectual impairment (MMSE 22-26), whereas none of the four patients with normal mentation had ATWML. In only one of the eight patients with intellectual impairment were white-matter lesions not found. Pathological findings were severe loss and disordered arrangement of myelin sheaths and axons in addition to heterotopic neurons within anterior temporal white matter. Bilateral ATWML might be a factor for intellectual impairment in MD. The retrospective pathological study raised the possibility that the ATWML are compatible with focal dysplasia of white matter. (orig.)

  2. A case of amusia caused by the infarction of anterior portion of bilateral temporal lobes.

    Science.gov (United States)

    Satoh, Masayuki; Takeda, Katsuhiko; Murakami, Yasuo; Onouchi, Kenji; Inoue, Kiyoharu; Kuzuhara, Shigeki

    2005-02-01

    It remains an unsettled question which brain regions participate in music perception. During singing a familiar song, the retrieval from long-term memory is necessary, but the mechanism of that retrieval is still unclear. We carried out a detailed examination of musical ability in a patient with amusia and control subjects and identified the lesion sites of our patient using MRI. Compared with controls, the patient manifested the following impairments in music perception: (i) the recognition and discrimination of familiar melodies; (ii) the discrimination of unfamiliar phrases; (iii) the discrimination of isolated chords. During singing familiar nursery songs, the patient showed the replacement of one phrase of the melody. In MRI, the patient had old infarction in the anterior portion of the temporal lobes bilaterally. In conclusion, the anterior temporal lobes participate in the perception and expression of music. During singing, the song is retrieved from long-term memory by a unit of one phrase. The dysfunction of that retrieval caused the replacement of the succeeding phrases of the original with the wrong tune, and we named this phenomenon paramelodia.

  3. Vocal amusia in a professional tango singer due to a right superior temporal cortex infarction.

    Science.gov (United States)

    Terao, Yasuo; Mizuno, Tomoyuki; Shindoh, Mitsuko; Sakurai, Yasuhisa; Ugawa, Yoshikazu; Kobayashi, Shunsuke; Nagai, Chiyoko; Furubayashi, Toshiaki; Arai, Noritoshi; Okabe, Shingo; Mochizuki, Hitoshi; Hanajima, Ritsuko; Tsuji, Shouji

    2006-01-01

    We describe the psychophysical features of vocal amusia in a professional tango singer caused by an infarction mainly involving the superior temporal cortex of the right hemisphere. The lesion also extended to the supramarginal gyrus, the posterior aspect of the postcentral gyrus and the posterior insula. She presented with impairment of musical perception that was especially pronounced in discriminating timbre and loudness but also in discriminating pitch, and a severely impaired ability to reproduce the pitch just presented. In contrast, language and motor disturbances were almost entirely absent. By comparing her pre- and post-stroke singing, we were able to show that her singing after the stroke lacked the fine control of the subtle stress and pitch changes that characterized her pre-stroke singing. Such impairment could not be explained by the impairment of pitch perception. The findings suggest that damage to the right temporoparietal cortex is enough to produce both perceptive and expressive deficits in music.

  4. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex.

    Science.gov (United States)

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-09-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings - as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is better specified by their visible features - however, not all of these features will be relevant to uncovering a given association, tapping selection/inhibition processes. To explore potential differences across modalities, we took a commonly-used manipulation of controlled retrieval demands, namely the identification of weak vs. strong associations, and compared word and picture versions. There were 4 key findings: (1) Regions of interest (ROIs) in posterior IFG (BA44) showed graded effects of modality (e.g., words>pictures in left BA44; pictures>words in right BA44). (2) An equivalent response was observed in left mid-IFG (BA45) across modalities, consistent with the multimodal semantic control deficits that typically follow LIFG lesions. (3) The anterior IFG (BA47) ROI showed a stronger response to verbal than pictorial associations, potentially reflecting a role for this region in establishing a meaningful context that can be used to direct semantic retrieval. (4) The left pMTG ROI also responded to difficulty across modalities yet showed a stronger response overall to verbal stimuli, helping to reconcile two distinct literatures that have implicated this site in semantic control and lexical-semantic access respectively. We propose that left anterior IFG and pMTG work together to maintain a meaningful context that shapes ongoing semantic processing, and that this process is more strongly taxed by word than picture associations. Copyright © 2015 The Authors. Published by

  5. Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Directory of Open Access Journals (Sweden)

    Silberman Yaron

    2006-05-01

    Full Text Available Abstract Background Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. Methods The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes and base-level (e.g. tulip, rose, orchid, sunflower categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. Results Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. Conclusion Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms.

  6. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  7. Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task.

    Science.gov (United States)

    Kanske, Philipp; Kotz, Sonja A

    2011-02-01

    Coherent behavior depends on attentional control that detects and resolves conflict between opposing actions. The current functional magnetic resonance imaging study tested the hypothesis that emotion triggers attentional control to speed up conflict processing in particularly salient situations. Therefore, we presented emotionally negative and neutral words in a version of the flanker task. In response to conflict, we found activation of the dorsal anterior cingulate cortex (ACC) and of the amygdala for emotional stimuli. When emotion and conflict coincided, a region in the ventral ACC was activated, which resulted in faster conflict processing in reaction times. Emotion also increased functional connectivity between the ventral ACC and activation of the dorsal ACC and the amygdala in conflict trials. These data suggest that the ventral ACC integrates emotion and conflict and prioritizes the processing of conflict in emotional trials. This adaptive mechanism ensures rapid detection and resolution of conflict in potentially threatening situations signaled by emotional stimuli. Copyright © 2010 Wiley-Liss, Inc.

  8. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla.

    Science.gov (United States)

    Brandt, Allison S; Unschuld, Paul G; Pradhan, Subechhya; Lim, Issel Anne L; Churchill, Gregory; Harris, Ashley D; Hua, Jun; Barker, Peter B; Ross, Christopher A; van Zijl, Peter C M; Edden, Richard A E; Margolis, Russell L

    2016-04-01

    The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  10. Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues.

    Science.gov (United States)

    George, M S; Anton, R F; Bloomer, C; Teneback, C; Drobes, D J; Lorberbaum, J P; Nahas, Z; Vincent, D J

    2001-04-01

    Functional imaging studies have recently demonstrated that specific brain regions become active in cocaine addicts when they are exposed to cocaine stimuli. To test whether there are regional brain activity differences during alcohol cue exposure between alcoholic subjects and social drinkers, we designed a functional magnetic resonance imaging (fMRI) protocol involving alcohol-specific cues. Ten non-treatment-seeking adult alcoholic subjects (2 women) (mean [SD] age, 29.9 [9.9] years) as well as 10 healthy social drinking controls of similar age (2 women) (mean [SD] age, 29.4 [8.9] years) were recruited, screened, and scanned. In the 1.5-T magnetic resonance imaging scanner, subjects were serially rated for alcohol craving before and after a sip of alcohol, and after a 9-minute randomized presentation of pictures of alcoholic beverages, control nonalcoholic beverages, and 2 different visual control tasks. During picture presentation, changes in regional brain activity were measured with the blood oxygen level-dependent technique. Alcoholic subjects, compared with the social drinking subjects, reported higher overall craving ratings for alcohol. After a sip of alcohol, while viewing alcohol cues compared with viewing other beverage cues, only the alcoholic subjects had increased activity in the left dorsolateral prefrontal cortex and the anterior thalamus. The social drinkers exhibited specific activation only while viewing the control beverage pictures. When exposed to alcohol cues, alcoholic subjects have increased brain activity in the prefrontal cortex and anterior thalamus-brain regions associated with emotion regulation, attention, and appetitive behavior.

  11. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  12. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls.

    Science.gov (United States)

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-03-01

    There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of cognitive control functions, however, exist in paediatric depression. This study investigated whether medication-naïve adolescents with MDD show abnormal brain activation of fronto-striatal and fronto-cingulate networks when performing tasks of attentional and cognitive control. Event-related functional magnetic resonance imaging was used to compare brain activation between 21 medication-naïve adolescents with a first-episode of MDD aged 14-17 years and 21 healthy adolescents, matched for handedness, age, sex, demographics and IQ. Activation paradigms were tasks of selective attention (Simon task), attentional switching (Switch task), and motor response inhibition and error detection (Stop task). In all three tasks, adolescents with depression compared to healthy controls demonstrated reduced activation in task-relevant right dorsolateral (DLPFC), inferior prefrontal cortex (IFC) and anterior cingulate gyrus (ACG). Additional areas of relatively reduced activation were in the parietal lobes during the Stop and Switch tasks, putamen, insula and temporal lobes during the Switch task and precuneus during the Simon task. This study shows first evidence that medication-naïve adolescents with MDD are characterised by abnormal function in ACG and right lateral prefrontal cortex during tasks of attention and performance monitoring, suggesting an early pathogenesis of these functional abnormalities attributed to MDD.

  13. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    Science.gov (United States)

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Intracerebral stimulation of left and right ventral temporal cortex during object naming.

    Science.gov (United States)

    Bédos Ulvin, Line; Jonas, Jacques; Brissart, Hélène; Colnat-Coulbois, Sophie; Thiriaux, Anne; Vignal, Jean-Pierre; Maillard, Louis

    2017-12-01

    While object naming is traditionally considered asa left hemisphere function, neuroimaging studies have reported activations related to naming in the ventral temporal cortex (VTC) bilaterally. Our aim was to use intracerebral electrical stimulation to specifically compare left and right VTC in naming. In twenty-three epileptic patients tested for visual object naming during stimulation, the proportion of naming impairments was significantly higher in the left than in the right VTC (31.3% vs 13.6%). The highest proportions of positive naming sites were found in the left fusiform gyrus and occipito-temporal sulcus (47.5% and 31.8%). For 17 positive left naming sites, an additional semantic picture matching was carried out, always successfully performed. Our results showed the enhanced role of the left compared to the right VTC in naming and suggest that it may be involved in lexical retrieval rather than in semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining.

    Science.gov (United States)

    Gittins, Rebecca; Harrison, Paul J

    2004-03-15

    There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.

  16. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex.

    Science.gov (United States)

    Matsumoto, Atsushi; Kakigi, Ryusuke

    2014-01-01

    Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.

  17. P1-24: Neural Representation of Gloss in the Macaque Inferior Temporal Cortex

    Directory of Open Access Journals (Sweden)

    Akiko Nishio

    2012-10-01

    Full Text Available The variation of the appearance such as gloss provides one of the most important information for object recognition. However, little is known about the neural mechanisms related to the perception of gloss. We examined whether the neurons in the inferior temporal (IT cortex of the monkeys are coding gloss of objects. We made visual stimuli which have various surface reflectance properties, and tested responses of IT neurons to these stimuli while a monkey was performing a visual fixation task. We found that there exist neurons in the lower bank of the superior temporal sulcus that selectively responded to specific stimuli. The selectivity was largely maintained when the object shape or illumination condition was changed. In contrast, neural selectivity was lost when the pixels of objects were randomly rearranged. In the former manipulation of the stimuli, gloss perceptions were maintained, whereas in the latter manipulation, gloss perception was dramatically changed. These results indicate that these IT neurons selectively responded to gloss, not to the irrelevant local image features or average luminance or color. Next, to understand how the responses of gloss selective neurons are related to perceived gloss, responses of gloss selective neurons were mapped in perceptual gloss space in which glossiness changes uniformly. I found that responses of most gloss selective neurons can be explained by linear combinations of two parameters that are shown to be important for gloss perception. This result suggests that the responses of gloss selective neurons of IT cortex are closely related to gloss perception.

  18. A Novel Method of Quantitative Anterior Chamber Depth Estimation Using Temporal Perpendicular Digital Photography.

    Science.gov (United States)

    Zamir, Ehud; Kong, George Y X; Kowalski, Tanya; Coote, Michael; Ang, Ghee Soon

    2016-07-01

    We hypothesize that: (1) Anterior chamber depth (ACD) is correlated with the relative anteroposterior position of the pupillary image, as viewed from the temporal side. (2) Such a correlation may be used as a simple quantitative tool for estimation of ACD. Two hundred sixty-six phakic eyes had lateral digital photographs taken from the temporal side, perpendicular to the visual axis, and underwent optical biometry (Nidek AL scanner). The relative anteroposterior position of the pupillary image was expressed using the ratio between: (1) lateral photographic temporal limbus to pupil distance ("E") and (2) lateral photographic temporal limbus to cornea distance ("Z"). In the first chronological half of patients (Correlation Series), E:Z ratio (EZR) was correlated with optical biometric ACD. The correlation equation was then used to predict ACD in the second half of patients (Prediction Series) and compared to their biometric ACD for agreement analysis. A strong linear correlation was found between EZR and ACD, R = -0.91, R 2 = 0.81. Bland-Altman analysis showed good agreement between predicted ACD using this method and the optical biometric ACD. The mean error was -0.013 mm (range -0.377 to 0.336 mm), standard deviation 0.166 mm. The 95% limits of agreement were ±0.33 mm. Lateral digital photography and EZR calculation is a novel method to quantitatively estimate ACD, requiring minimal equipment and training. EZ ratio may be employed in screening for angle closure glaucoma. It may also be helpful in outpatient medical clinic settings, where doctors need to judge the safety of topical or systemic pupil-dilating medications versus their risk of triggering acute angle closure glaucoma. Similarly, non ophthalmologists may use it to estimate the likelihood of acute angle closure glaucoma in emergency presentations.

  19. Differential contributions of the anterior temporal and medial temporal lobe to the retrieval of memory for person identity information.

    Science.gov (United States)

    Tsukiura, Takashi; Suzuki, Chisato; Shigemune, Yayoi; Mochizuki-Kawai, Hiroko

    2008-12-01

    Although previous studies have suggested the importance of the bilateral anterior temporal (ATL) and medial temporal lobes (MTL) in the retrieval of person identity information, there is little evidence concerning how these regions differentially contribute to the process. Here we investigated this question using functional magnetic resonance imaging (fMRI). Before scanning, subjects learned associations among faces (F), names (N), and job titles (as a form of person-related semantics, S). During retrieval with fMRI, subjects were presented with previously learned and new S stimuli, and judged whether the stimuli were old or new. Successful retrieval (H) trials were divided into three conditions: retrieval of S and associated F and N (HSFN); retrieval of S and associated F (HSF); and retrieval of S only (HS). The left ATL was significantly activated in HSFN, compared to HSF or HS, whereas the right ATL and MTL were significantly activated in HSFN and HSF relative to HS. In addition, activity in bilateral ATL was significantly correlated with reaction time for HSFN, whereas we found no significant correlation between activity in the right MTL and reaction time in any condition. The present findings suggest that the left ATL may mediate associations between names and person-related semantic information, whereas the right ATL mediates the association between faces and person-related semantic information in memory for person identity information. In addition, activation of the right MTL region implies that this area may contribute to a more general relational processing of associative components, including memory for person identity information. Copyright 2007 Wiley-Liss, Inc.

  20. Surgical versus conservative treatment for high-risk stress fractures of the lower leg (anterior tibial cortex, navicular and fifth metatarsal base): a systematic review

    NARCIS (Netherlands)

    Mallee, W.H.; Weel, H.; van Dijk, C.N.; van Tulder, M.W.; Kerkhoffs, G.M.; Lin, C.W.C.

    2015-01-01

    Aim To compare surgical and conservative treatment for high-risk stress fractures of the anterior tibial cortex, navicular and proximal fifth metatarsal. Methods Systematic searches of CENTRAL, MEDLINE, EMBASE, CINAHL, SPORTDiscus and PEDro were performed to identify relevant prospective and

  1. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, P.J.; de Ruiter, M.B.; Elzinga, B.M.; van Balkom, A.J.L.M.; Smit, J.H.; Veltman, D.J.

    2012-01-01

    Background Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence

  2. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, N.; de Ruiter, M. B.; Elzinga, B. M.; van Balkom, A. J.; Smit, J. H.; Veltman, D. J.

    2012-01-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that

  3. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum.

    Science.gov (United States)

    Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.

  4. The fusion of mental imagery and sensation in the temporal association cortex.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2014-10-08

    It is well understood that the brain integrates information that is provided to our different senses to generate a coherent multisensory percept of the world around us (Stein and Stanford, 2008), but how does the brain handle concurrent sensory information from our mind and the external world? Recent behavioral experiments have found that mental imagery--the internal representation of sensory stimuli in one's mind--can also lead to integrated multisensory perception (Berger and Ehrsson, 2013); however, the neural mechanisms of this process have not yet been explored. Here, using functional magnetic resonance imaging and an adapted version of a well known multisensory illusion (i.e., the ventriloquist illusion; Howard and Templeton, 1966), we investigated the neural basis of mental imagery-induced multisensory perception in humans. We found that simultaneous visual mental imagery and auditory stimulation led to an illusory translocation of auditory stimuli and was associated with increased activity in the left superior temporal sulcus (L. STS), a key site for the integration of real audiovisual stimuli (Beauchamp et al., 2004a, 2010; Driver and Noesselt, 2008; Ghazanfar et al., 2008; Dahl et al., 2009). This imagery-induced ventriloquist illusion was also associated with increased effective connectivity between the L. STS and the auditory cortex. These findings suggest an important role of the temporal association cortex in integrating imagined visual stimuli with real auditory stimuli, and further suggest that connectivity between the STS and auditory cortex plays a modulatory role in spatially localizing auditory stimuli in the presence of imagined visual stimuli. Copyright © 2014 the authors 0270-6474/14/3313684-09$15.00/0.

  5. High-Throughput Data of Circular RNA Profiles in Human Temporal Cortex Tissue Reveals Novel Insights into Temporal Lobe Epilepsy.

    Science.gov (United States)

    Li, Jiaxin; Lin, Haijun; Sun, Zhenrong; Kong, Guanyi; Yan, Xu; Wang, Yujiao; Wang, Xiaoxuan; Wen, Yanhua; Liu, Xiang; Zheng, Hongkun; Jia, Mei; Shi, Zhongfang; Xu, Rong; Yang, Shaohua; Yuan, Fang

    2018-01-01

    Circular RNAs (circRNAs) are a class of long noncoding RNAs with a closed loop structure that regulate gene expression as microRNA sponges. CircRNAs are more enriched in brain tissue, but knowledge of the role of circRNAs in temporal lobe epilepsy (TLE) has remained limited. This study is the first to identify the global expression profiles and characteristics of circRNAs in human temporal cortex tissue from TLE patients. Temporal cortices were collected from 17 TLE patients and 17 non-TLE patients. Total RNA was isolated, and high-throughput sequencing was used to profile the transcriptome of dysregulated circRNAs. Quantitative PCR was performed for the validation of changed circRNAs. In total, 78983 circRNAs, including 15.29% known and 84.71% novel circRNAs, were detected in this study. Intriguingly, 442 circRNAs were differentially expressed between the TLE and non-TLE groups (fold change≥2.0 and FDR≤0.05). Of these circRNAs, 188 were up-regulated, and 254 were down-regulated in the TLE patient group. Eight circRNAs were validated by real-time PCR. Remarkably, circ-EFCAB2 was intensely up-regulated, while circ-DROSHA expression was significantly lower in the TLE group than in the non-TLE group (P<0.05). Bioinformatic analysis revealed that circ-EFCAB2 binds to miR-485-5p to increase the expression level of the ion channel CLCN6, while circ-DROSHA interacts with miR-1252-5p to decrease the expression level of ATP1A2. The dysregulations of circRNAs may reflect the pathogenesis of TLE and circ-EFCAB2 and circ-DROSHA might be potential therapeutic targets and biomarkers in TLE patients. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Temporal association between changes in primary sensory cortex and corticomotor output during muscle pain.

    Science.gov (United States)

    Schabrun, S M; Jones, E; Kloster, J; Hodges, P W

    2013-04-03

    Integration of information between multiple cortical regions is thought to underpin the experience of pain. Yet studies tend to focus on pain related changes in discrete cortical regions. Although altered processing in the primary motor (M1) and sensory cortex (S1) is implicated in pain, the temporal relationship between these regions is unknown and may provide insight into the interaction between them. We used recordings of somatosensory-evoked potentials (SEPs) and transcranial magnetic stimulation to investigate the temporal relationship between altered excitability of the primary sensory cortex and corticomotor output during and after muscle pain induced by hypertonic saline infusion into the right first dorsal interosseous. SEPs and motor-evoked potentials (MEPs) were recorded in 12 healthy individuals. Participants reported an average pain intensity of 5.4 (0.5) on a 10-cm visual analogue scale. The area of the N20-P25-N33 complex of the SEP was reduced during and after pain, but MEP amplitudes were suppressed only after pain had resolved. Our data show that pain reduces sensory processing before motor output is altered. This temporal dispersion, coupled with the lack of correlation between pain-induced changes in S1 and M1 excitability, imply either that independent processes are involved, or that reduced excitability of S1 during acute experimental muscle pain mediates latent reductions in motor output via processes that are non-linear and potentially involve activation of a wider brain network. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex.

    Science.gov (United States)

    Jiang, Yaoguang; Platt, Michael L

    2018-05-29

    The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence social functions in many mammals. In humans and rhesus macaques, OT delivered intranasally can promote prosocial behavior in certain contexts. Yet the precise neural mechanisms mediating these behavioral effects remain unclear. Here we show that treating a group of male macaque monkeys intranasally with aerosolized OT relaxes their spontaneous social interactions with other monkeys. OT reduces differences in social behavior between dominant and subordinate monkeys, thereby flattening the status hierarchy. OT also increases behavioral synchrony within a pair. Intranasal delivery of aerosolized AVP reproduces the effects of OT with greater efficacy. Remarkably, all behavioral effects are replicated when OT or AVP is injected focally into the anterior cingulate gyrus (ACCg), a brain area linked to empathy and other-regarding behavior. ACCg lacks OT receptors but is rich in AVP receptors, suggesting exogenous OT may shape social behavior, in part, via nonspecific binding. Notably, OT and AVP alter behaviors of both the treated monkey and his untreated partner, consistent with enhanced feedback through reciprocal social interactions. These findings bear important implications for use of OT in both basic research and as a therapy for social impairments in neurodevelopmental disorders.

  8. Short-Term and Procedural Memory for Colours and Inferior Temporal Cortex Activity

    Directory of Open Access Journals (Sweden)

    E. Castro-Sierra

    1997-01-01

    Full Text Available Two children (male, 10 years, and female, 13 years one month with tumours of the inferior temporal (IT cortex of the brain were studied post-surgically for their abilities to carry out a short-term memory test. This involved: differences in colour, number and shape of small plastic objects; differences in receptacles where these objects should be placed and in ways in which this placement should be done; a procedural task involving differences either in colour or in size of wooden rings employed in the task. Their performances in these tests, and those of patients with tumours of other encephalic areas, were compared with the performances of normal controls. The subjects with IT tumours spent a significantly greater amount of time than normal subjects of their age in carrying out the procedural task involving differences in colour. One of the IT subjects also spent a significantly greater amount of time in the procedural task involving size differences. Other differences in the performances of patients with encephalic tumours and the performances of normal controls were not significant. Results are discussed in relation to findings of colour and size perception and memory localized to the inferior temporal and middle temporal cortices.

  9. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Vogt, B.A.; Gabriel, M.; Vogt, L.J.; Poremba, A.; Jensen, E.L.; Kubota, Y.; Kang, E.

    1991-01-01

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  10. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness

    Directory of Open Access Journals (Sweden)

    Catherine eOrr

    2012-06-01

    Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

  12. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  14. Resting state functional connectivity of the anterior striatum and prefrontal cortex predicts reading performance in school-age children.

    Science.gov (United States)

    Alcauter, Sarael; García-Mondragón, Liliana; Gracia-Tabuenca, Zeus; Moreno, Martha B; Ortiz, Juan J; Barrios, Fernando A

    2017-11-01

    The current study investigated the neural basis of reading performance in 60 school-age Spanish-speaking children, aged 6 to 9years. By using a data-driven approach and an automated matching procedure, we identified a left-lateralized resting state network that included typical language regions (Wernicke's and Broca's regions), prefrontal cortex, pre- and post-central gyri, superior and middle temporal gyri, cerebellum, and subcortical regions, and explored its relevance for reading performance (accuracy, comprehension and speed). Functional connectivity of the left frontal and temporal cortices and subcortical regions predicted reading speed. These results extend previous findings on the relationship between functional connectivity and reading competence in children, providing new evidence about such relationships in previously unexplored regions in the resting brain, including the left caudate, putamen and thalamus. This work highlights the relevance of a broad network, functionally synchronized in the resting state, for the acquisition and perfecting of reading abilities in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex.

    Science.gov (United States)

    Littlefield, Melissa M; Dietz, Martin J; Fitzgerald, Des; Knudsen, Kasper J; Tonks, James

    2015-01-01

    "Truth" has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person's mental state, a phenomenon known as Theory of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in-group and out-group members. Participants were asked to be honest and were told that their evaluations would be made public. We found increased BOLD responses in the medial prefrontal cortex, bilateral anterior insula and precuneus when participants were asked to tell social truths compared to simple truths about another person. At the behavioral level, participants were slower at responding to social compared to simple questions about another person. These findings suggest that telling the truth is a nuanced cognitive operation that is dependent on the degree of mentalizing. Importantly, we show that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning.

  16. Exploring individual differences in task switching: Persistence and other personality traits related to anterior cingulate cortex function.

    Science.gov (United States)

    Umemoto, A; Holroyd, C B

    2016-01-01

    Anterior cingulate cortex (ACC) is involved in cognitive control and decision-making but its precise function is still highly debated. Based on evidence from lesion, neurophysiological, and neuroimaging studies, we have recently proposed a critical role for ACC in motivating extended behaviors according to learned task values (Holroyd and Yeung, 2012). Computational simulations based on this theory suggest a hierarchical mechanism in which a caudal division of ACC selects and applies control over task execution, and a rostral division of ACC facilitates switches between tasks according to a higher task strategy (Holroyd and McClure, 2015). This theoretical framework suggests that ACC may contribute to personality traits related to persistence and reward sensitivity (Holroyd and Umemoto, 2016). To explore this possibility, we carried out a voluntary task switching experiment in which on each trial participants freely chose one of two tasks to perform, under the condition that they try to select the tasks "at random" and equally often. The participants also completed several questionnaires that assessed personality trait related to persistence, apathy, anhedonia, and rumination, in addition to the Big 5 personality inventory. Among other findings, we observed greater compliance with task instructions by persistent individuals, as manifested by a greater facility with switching between tasks, which is suggestive of increased engagement of rostral ACC. © 2016 Elsevier B.V. All rights reserved.

  17. The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Francisco Velasquez

    2017-04-01

    Full Text Available Social deficits in autism spectrum disorder (ASD are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task.

  18. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  19. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  20. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals.

    Science.gov (United States)

    Fornito, Alex; Yung, Alison R; Wood, Stephen J; Phillips, Lisa J; Nelson, Barnaby; Cotton, Sue; Velakoulis, Dennis; McGorry, Patrick D; Pantelis, Christos; Yücel, Murat

    2008-11-01

    Abnormalities of the anterior cingulate cortex (ACC) are frequently implicated in the pathophysiology of psychotic disorders, but whether such changes are apparent before psychosis onset remains unclear. In this study, we characterized prepsychotic ACC abnormalities in a sample of individuals at ultra-high-risk (UHR) for psychosis. Participants underwent baseline magnetic resonance imaging and were followed-up over 12-24 months to ascertain diagnostic outcomes. Baseline ACC morphometry was then compared between UHR individuals who developed psychosis (UHR-P; n = 35), those who did not (UHR-NP; n = 35), and healthy control subjects (n = 33). Relative to control subjects, UHR-P individuals displayed bilateral thinning of a rostral paralimbic ACC region that was negatively correlated with negative symptoms, whereas UHR-NP individuals displayed a relative thickening of dorsal and rostral limbic areas that was correlated with anxiety ratings. Baseline ACC differences between the two UHR groups predicted time to psychosis onset, independently of symptomatology. Subdiagnostic comparisons revealed that changes in the UHR-P group were driven by individuals subsequently diagnosed with a schizophrenia spectrum psychosis. These findings indicate that anatomic abnormalities of the ACC precede psychosis onset and that baseline ACC differences distinguish between UHR individuals who do and do not subsequently develop frank psychosis. They also indicate that prepsychotic changes are relatively specific to individuals who develop a schizophrenia spectrum disorder, suggesting they may represent a diagnostically specific risk marker.

  1. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    Full Text Available Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM analyses: Individuals with higher Media Multitasking Index (MMI scores had smaller gray matter density in the anterior cingulate cortex (ACC. Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.

  2. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    Science.gov (United States)

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (pchronic pain at T2 (p'schronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  4. The inferior, anterior temporal lobes and semantic memory clarified: novel evidence from distortion-corrected fMRI.

    Science.gov (United States)

    Visser, M; Embleton, K V; Jefferies, E; Parker, G J; Ralph, M A Lambon

    2010-05-01

    The neural basis of semantic memory generates considerable debate. Semantic dementia results from bilateral anterior temporal lobe (ATL) atrophy and gives rise to a highly specific impairment of semantic memory, suggesting that this region is a critical neural substrate for semantic processing. Recent rTMS experiments with neurologically-intact participants also indicate that the ATL are a necessary substrate for semantic memory. Exactly which regions within the ATL are important for semantic memory are difficult to detect from these methods (because the damage in SD covers a large part of the ATL). Functional neuroimaging might provide important clues about which specific areas exhibit activation that correlates with normal semantic performance. Neuroimaging studies, however, have not consistently found anterior temporal lobe activation in semantic tasks. A recent meta-analysis indicates that this inconsistency may be due to a collection of technical limitations associated with previous studies, including a reduced field-of-view and magnetic susceptibility artefacts associated with standard gradient echo fMRI. We conducted an fMRI study of semantic memory using a combination of techniques which improve sensitivity to ATL activations whilst preserving whole-brain coverage. As expected from SD patients and ATL rTMS experiments, this method revealed bilateral temporal activation extending from the inferior temporal lobe along the fusiform gyrus to the anterior temporal regions, bilaterally. We suggest that the inferior, anterior temporal lobe region makes a crucial contribution to semantic cognition and utilising this version of fMRI will enable further research on the semantic role of the ATL. 2010 Elsevier Ltd. All rights reserved.

  5. Memory outcome following left anterior temporal lobectomy in patients with a failed Wada test.

    Science.gov (United States)

    Rathore, Chaturbhuj; Alexander, Aley; Sarma, P Sankara; Radhakrishnan, Kurupath

    2015-03-01

    This study aimed to compare the memory outcome following left anterior temporal lobectomy (ATL) between patients with a failed Wada test and patients who passed the Wada test. From 1996 to 2002, we performed the Wada test on all patients with unilateral left mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and concordant electroclinical data before ATL. We used a 12-item recognition paradigm for memory testing and awarded a score of +1 for each correct response and -0.5 for each incorrect response. No patient was denied surgery on the basis of Wada scores. We assessed cognitive and memory functions using the Wechsler Adult Intelligence Scale and the Wechsler Memory Scale preoperatively and at one year after ATL. We compared the number of patients who showed decline in memory scores, as per the published reliable change indices, between the patients with a failed Wada test and the patients who passed the Wada test. Out of the 116 eligible patients with left MTLE-HS, 88 underwent bilateral Wada test, while 28 underwent ipsilateral Wada test. None of them developed postoperative amnesia. Approximately, one-third of patients with a failed Wada memory test when the failure was defined as a contralateral score of 8, and as an asymmetry score of failed Wada memory test and the group who passed the Wada memory test. The results remained the same when analyses were repeated at various other cutoff points. The patients with left MTLE-HS with concordant electroclinical, MRI, and neuropsychological data should not be denied ATL solely on the basis of Wada memory test results. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Revascularization of the upper posterior circulation with the anterior temporal artery: an anatomical feasibility study.

    Science.gov (United States)

    Tayebi Meybodi, Ali; Lawton, Michael T; Griswold, Dylan; Mokhtari, Pooneh; Payman, Andre; Tabani, Halima; Yousef, Sonia; Benet, Arnau

    2017-09-22

    OBJECTIVE In various disease processes, including unclippable aneurysms, a bypass to the upper posterior circulation (UPC) including the superior cerebellar artery (SCA) and posterior cerebral artery (PCA) may be needed. Various revascularization options exist, but the role of intracranial (IC) donors has not been scrutinized. The objective of this study was to evaluate the anatomical feasibility of utilizing the anterior temporal artery (ATA) for revascularization of the UPC. METHODS ATA-SCA and ATA-PCA bypasses were performed on 14 cadaver specimens. After performing an orbitozygomatic craniotomy and opening the basal cisterns, the ATA was divided at the M 3 -M 4 junction and mobilized to the crural cistern to complete an end-to-side bypass to the SCA and PCA. The length of the recipient artery between the anastomosis and origin was measured. RESULTS Seventeen ATAs were found. Successful anastomosis was performed in 14 (82%) of the ATAs. The anastomosis point on the PCA was 14.2 mm from its origin on the basilar artery. The SCA anastomosis point was 10.1 mm from its origin. Three ATAs did not reach the UPC region due to a common opercular origin with the middle temporal artery. The ATA-SCA bypass was also applied to the management of an incompletely coiled SCA aneurysm. CONCLUSIONS The ATA is a promising IC donor for UPC revascularization. The ATA is exposed en route to the proximal SCA and PCA through the pterional-orbitozygomatic approach. Also, the end-to-side anastomosis provides an efficient and straightforward bypass without the need to harvest a graft or perform multiple or difficult anastomoses.

  7. Medio-Frontal and Anterior Temporal abnormalities in children with attention deficit hyperactivity disorder (ADHD during an acoustic antisaccade task as revealed by electro-cortical source reconstruction

    Directory of Open Access Journals (Sweden)

    Rockstroh Brigitte

    2011-01-01

    Full Text Available Abstract Background Attention Deficit Hyperactivity Disorder (ADHD is one of the most prevalent disorders in children and adolescence. Impulsivity is one of three core symptoms and likely associated with inhibition difficulties. To date the neural correlate of the antisaccade task, a test of response inhibition, has not been studied in children with (or without ADHD. Methods Antisaccade responses to visual and acoustic cues were examined in nine unmedicated boys with ADHD (mean age 122.44 ± 20.81 months and 14 healthy control children (mean age 115.64 ± 22.87 months, three girls while an electroencephalogram (EEG was recorded. Brain activity before saccade onset was reconstructed using a 23-source-montage. Results When cues were acoustic, children with ADHD had a higher source activity than control children in Medio-Frontal Cortex (MFC between -230 and -120 ms and in the left-hemispheric Temporal Anterior Cortex (TAC between -112 and 0 ms before saccade onset, despite both groups performing similarly behaviourally (antisaccades errors and saccade latency. When visual cues were used EEG-activity preceding antisaccades did not differ between groups. Conclusion Children with ADHD exhibit altered functioning of the TAC and MFC during an antisaccade task elicited by acoustic cues. Children with ADHD need more source activation to reach the same behavioural level as control children.

  8. Fear conditioning following a unilateral anterior temporal lobectomy: reduced autonomic responding and stimulus contingency knowledge.

    Science.gov (United States)

    Coppens, Evelien; van Paesschen, Wim; Vandenbulcke, Mathieu; Vansteenwegen, Debora

    2010-03-01

    Animal research demonstrated that during fear conditioning the amygdala plays a central role in forming an association between the conditioned stimulus (CS) and the unconditioned stimulus (US). Lesion studies conducted in patients who underwent a unilateral anterior temporal lobe resection, however; yielded contradictory findings. To date, it remains unclear whether amygdala damage only affects fear-conditioned startle responding or impairs both the latter and fear-conditioned skin conductance responding (SCR). Moreover inconsistency exists regarding the preservation of contingency knowledge in amygdala-damaged patients. In the current study, a differential fear conditioning task was presented to a unilaterally amygdala-damaged patient group and a healthy control group, recording fear-potentiated startle responses along with SCRs. Retrospectively, the valence of the CSs and contingency awareness was assessed. Unlike the control group, unilaterally amygdala-damaged patients showed neither in their SCRs nor in their valence ratings an effect of fear conditioning. The startle data, however, yielded in none of the two test groups fear-conditioned responding. Finally, considerably fewer patients (37.5%) than controls (95%) acquired correct memory of the presented contingency. Based on these findings we concluded that the fear conditioning impairment in amygdala-damaged patients was not restricted to SCRs, but also affected valence ratings and memory of the presented contingency. A broader theory of the amygdala as relevance detector is proposed in order to account for the diverse neurological findings obtained so far.

  9. The role of the left anterior temporal lobe in semantic composition vs. semantic memory.

    Science.gov (United States)

    Westerlund, Masha; Pylkkänen, Liina

    2014-05-01

    The left anterior temporal lobe (LATL) is robustly implicated in semantic processing by a growing body of literature. However, these results have emerged from two distinct bodies of work, addressing two different processing levels. On the one hand, the LATL has been characterized as a 'semantic hub׳ that binds features of concepts across a distributed network, based on results from semantic dementia and hemodynamic findings on the categorization of specific compared to basic exemplars. On the other, the LATL has been implicated in combinatorial operations in language, as shown by increased activity in this region associated with the processing of sentences and of basic phrases. The present work aimed to reconcile these two literatures by independently manipulating combination and concept specificity within a minimal MEG paradigm. Participants viewed simple nouns that denoted either low specificity (fish) or high specificity categories (trout) presented in either combinatorial (spotted fish/trout) or non-combinatorial contexts (xhsl fish/trout). By combining these paradigms from the two literatures, we directly compared the engagement of the LATL in semantic memory vs. semantic composition. Our results indicate that although noun specificity subtly modulates the LATL activity elicited by single nouns, it most robustly affects the size of the composition effect when these nouns are adjectivally modified, with low specificity nouns eliciting a much larger effect. We conclude that these findings are compatible with an account in which the specificity and composition effects arise from a shared mechanism of meaning specification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Relational vs. attributive interpretation of nominal compounds differentially engages angular gyrus and anterior temporal lobe.

    Science.gov (United States)

    Boylan, Christine; Trueswell, John C; Thompson-Schill, Sharon L

    2017-06-01

    The angular gyrus (AG) and anterior temporal lobe (ATL) have been found to respond to a number of tasks involving combinatorial processing. In this study, we investigate the conceptual combination of nominal compounds, and ask whether ATL/AG activity is modulated by the type of combinatorial operation applied to a nominal compound. We compare relational and attributive interpretations of nominal compounds and find that ATL and AG both discriminate these two types, but in distinct ways. While right AG demonstrated greater positive task-responsive activity for relational compounds, there was a greater negative deflection in the BOLD response in left AG for relational compounds. In left ATL, we found an earlier peak in subjects' BOLD response curves for attributive interpretations. In other words, we observed dissociations in both AG and ATL between relational and attributive nominal compounds, with regard to magnitude in the former and to timing in the latter. These findings expand on prior studies that posit roles for both AG and ATL in conceptual processing generally, and in conceptual combination specifically, by indicating possible functional specializations of these two regions within a larger conceptual knowledge network. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anterior temporal face patches: A meta-analysis and empirical study

    Directory of Open Access Journals (Sweden)

    Rebecca J. Von Der Heide

    2013-02-01

    Full Text Available Studies of nonhuman primates have reported face sensitive patches in the ventral anterior temporal lobes (ATL. In humans, ATL resection or damage causes an associative prosopagnosia in which face perception is intact but face memory is compromised. Some fMRI studies have extended these findings using famous and familiar faces. However, it is unclear whether these regions in the human ATL are in locations comparable to those reported in non-human primates, typically using unfamiliar faces. We present the results of two studies of person memory: a meta-analysis of existing fMRI studies and an empirical fMRI study using optimized imaging parameters. Both studies showed left-lateralized ATL activations to familiar individuals while novel faces activated the right ATL. Activations to famous faces were quite ventral, similar to what has been reported in monkeys. These findings suggest that face memory-sensitive patches in the human ATL are in the ventral/polar ATL.

  12. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    Science.gov (United States)

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  13. Fluid consumption and taste novelty determines transcription temporal dynamics in the gustatory cortex.

    Science.gov (United States)

    Inberg, Sharon; Jacob, Eyal; Elkobi, Alina; Edry, Efrat; Rappaport, Akiva; Simpson, T Ian; Armstrong, J Douglas; Shomron, Noam; Pasmanik-Chor, Metsada; Rosenblum, Kobi

    2016-02-09

    Novel taste memories, critical for animal survival, are consolidated to form long term memories which are dependent on translation regulation in the gustatory cortex (GC) hours following acquisition. However, the role of transcription regulation in the process is unknown. Here, we report that transcription in the GC is necessary for taste learning in rats, and that drinking and its consequences, as well as the novel taste experience, affect transcription in the GC during taste memory consolidation. We show differential effects of learning on temporal dynamics in set of genes in the GC, including Arc/Arg3.1, known to regulate the homeostasis of excitatory synapses. We demonstrate that in taste learning, transcription programs were activated following the physiological responses (i.e., fluid consumption following a water restriction regime, reward, arousal of the animal, etc.) and the specific information about a given taste (i.e., taste novelty). Moreover, the cortical differential prolonged kinetics of mRNA following novel versus familiar taste learning may represent additional novelty related molecular response, where not only the total amount, but also the temporal dynamics of transcription is modulated by sensory experience of novel information.

  14. Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes.

    Science.gov (United States)

    Davey, James; Thompson, Hannah E; Hallam, Glyn; Karapanagiotidis, Theodoros; Murphy, Charlotte; De Caso, Irene; Krieger-Redwood, Katya; Bernhardt, Boris C; Smallwood, Jonathan; Jefferies, Elizabeth

    2016-08-15

    Making sense of the world around us depends upon selectively retrieving information relevant to our current goal or context. However, it is unclear whether selective semantic retrieval relies exclusively on general control mechanisms recruited in demanding non-semantic tasks, or instead on systems specialised for the control of meaning. One hypothesis is that the left posterior middle temporal gyrus (pMTG) is important in the controlled retrieval of semantic (not non-semantic) information; however this view remains controversial since a parallel literature links this site to event and relational semantics. In a functional neuroimaging study, we demonstrated that an area of pMTG implicated in semantic control by a recent meta-analysis was activated in a conjunction of (i) semantic association over size judgements and (ii) action over colour feature matching. Under these circumstances the same region showed functional coupling with the inferior frontal gyrus - another crucial site for semantic control. Structural and functional connectivity analyses demonstrated that this site is at the nexus of networks recruited in automatic semantic processing (the default mode network) and executively demanding tasks (the multiple-demand network). Moreover, in both task and task-free contexts, pMTG exhibited functional properties that were more similar to ventral parts of inferior frontal cortex, implicated in controlled semantic retrieval, than more dorsal inferior frontal sulcus, implicated in domain-general control. Finally, the pMTG region was functionally correlated at rest with other regions implicated in control-demanding semantic tasks, including inferior frontal gyrus and intraparietal sulcus. We suggest that pMTG may play a crucial role within a large-scale network that allows the integration of automatic retrieval in the default mode network with executively-demanding goal-oriented cognition, and that this could support our ability to understand actions and non

  15. Age-related changes in the functional network underlying specific and general autobiographical memory retrieval: a pivotal role for the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Pénélope Martinelli

    Full Text Available Age-related changes in autobiographical memory (AM recall are characterized by a decline in episodic details, while semantic aspects are spared. This deleterious effect is supposed to be mediated by an inefficient recruitment of executive processes during AM retrieval. To date, contrasting evidence has been reported on the neural underpinning of this decline, and none of the previous studies has directly compared the episodic and semantic aspects of AM in elderly. We asked 20 young and 17 older participants to recall specific and general autobiographical events (i.e., episodic and semantic AM elicited by personalized cues while recording their brain activity by means of fMRI. At the behavioral level, we confirmed that the richness of episodic AM retrieval is specifically impoverished in aging and that this decline is related to the reduction of executive functions. At the neural level, in both age groups, we showed the recruitment of a large network during episodic AM retrieval encompassing prefrontal, cortical midline and posterior regions, and medial temporal structures, including the hippocampus. This network was very similar, but less extended, during semantic AM retrieval. Nevertheless, a greater activity was evidenced in the dorsal anterior cingulate cortex (dACC during episodic, compared to semantic AM retrieval in young participants, and a reversed pattern in the elderly. Moreover, activity in dACC during episodic AM retrieval was correlated with inhibition and richness of memories in both groups. Our findings shed light on the direct link between episodic AM retrieval, executive control, and their decline in aging, proposing a possible neuronal signature. They also suggest that increased activity in dACC during semantic AM retrieval in the elderly could be seen as a compensatory mechanism underpinning successful AM performance observed in aging. These results are discussed in the framework of recently proposed models of neural

  16. Difference in temporal lobe dose between two radiotherapy techniques in the treatment of NPC with anterior nasal involvement

    International Nuclear Information System (INIS)

    Wu, V.W.C.; Luk, J.H.Y.; Wong, S.F.T.; Lam, E.C.H.; Fung, M.C.Y.; Tong, S.M.; Ku, I.K.M.

    1997-01-01

    Nasopharyngeal carcinoma with anterior extension are treated with special radiotherapy techniques. The purpose of this study is to investigate the difference of temporal lobe dose between two radiotherapy techniques (A and B) which are commonly used in the treatment of such condition in Hong Kong. The study is carried out by performing radiation treatments to a humanoid phantom under simulated conditions of the two techniques. The dose measurement is done by thermoluminescent dosimeters (TLD) which are placed inside the phantom. Both techniques employ a '3-field' arrangement: a heavy-weighted anterior facial fields with two lateral opposing facial fields. The main difference lies in the anterior facial field in which technique A uses electron beam throughout while technique B uses a mixture of photon and electron beams. The results demonstrates that technique A delivers higher dose to temporal lobe than technique B. In a course of radical external beam radiotherapy (66 Gy), the mean dose to inferior temporal lobe are 59.29 Gy in technique A and 34.06 Gy in technique B respectively (p < 0.0001). Furthermore, it is found that the temporal lobe dose difference between the two techniques is mainly due to their phase I treatment. (p < 0.0001 for phase I and p = 0.078 for phase II). (authors)

  17. Difference in temporal lobe dose between two radiotherapy techniques in the treatment of NPC with anterior nasal involvement

    Energy Technology Data Exchange (ETDEWEB)

    Wu, V.W.C.; Luk, J.H.Y.; Wong, S.F.T.; Lam, E.C.H.; Fung, M.C.Y.; Tong, S.M.; Ku, I.K.M. [Hong Kong Polytechnic University, Hong Kong, (Hong Kong). Department of Radiography and Optometry

    1997-04-01

    Nasopharyngeal carcinoma with anterior extension are treated with special radiotherapy techniques. The purpose of this study is to investigate the difference of temporal lobe dose between two radiotherapy techniques (A and B) which are commonly used in the treatment of such condition in Hong Kong. The study is carried out by performing radiation treatments to a humanoid phantom under simulated conditions of the two techniques. The dose measurement is done by thermoluminescent dosimeters (TLD) which are placed inside the phantom. Both techniques employ a `3-field` arrangement: a heavy-weighted anterior facial fields with two lateral opposing facial fields. The main difference lies in the anterior facial field in which technique A uses electron beam throughout while technique B uses a mixture of photon and electron beams. The results demonstrates that technique A delivers higher dose to temporal lobe than technique B. In a course of radical external beam radiotherapy (66 Gy), the mean dose to inferior temporal lobe are 59.29 Gy in technique A and 34.06 Gy in technique B respectively (p < 0.0001). Furthermore, it is found that the temporal lobe dose difference between the two techniques is mainly due to their phase I treatment. (p < 0.0001 for phase I and p = 0.078 for phase II). (authors). 14 refs., 3 tabs., 6 figs.

  18. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain

    Directory of Open Access Journals (Sweden)

    Mariela eRance

    2014-10-01

    Full Text Available The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC and the left posterior insula (pInsL on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1 or the pInsL (state 2 being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: (rACC – pInsL increase (state 1, rACC – pInsL decrease (state 2, pInsL – rACC increase (state 2, pInsL – rACC decrease (state 1. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e. learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of

  19. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    Science.gov (United States)

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem.

  1. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    Science.gov (United States)

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights

  2. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure.

    Science.gov (United States)

    Migliorini, Robyn; Moore, Eileen M; Glass, Leila; Infante, M Alejandra; Tapert, Susan F; Jones, Kenneth Lyons; Mattson, Sarah N; Riley, Edward P

    2015-10-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice.

    Science.gov (United States)

    Ito, Hiroshi; Nagano, Masatoshi; Suzuki, Hidenori; Murakoshi, Takayuki

    2010-01-01

    The anterior cingulate cortex (ACC) is involved in the pathophysiology of a variety of mental disorders, many of which are exacerbated by stress. There are few studies, however, of stress-induced modification of synaptic function in the ACC that is relevant to emotional behavior. We investigated the effects of chronic restraint stress (CRS) on behavior and synaptic function in layers II/III of the ACC in mice. The duration of field excitatory postsynaptic potentials (fEPSPs) was longer in CRS mice than in control mice. The frequency of miniature inhibitory postsynaptic currents (mIPSCs) recorded by whole-cell patch-clamping was reduced in CRS mice, while miniature excitatory postsynaptic currents (mEPSCs) remained unchanged. Paired-pulse ratios (PPRs) of the fEPSP and evoked EPSC were larger in CRS. There was no difference in NMDA component of evoked EPSCs between the groups. Both long-term potentiation (LTP) and long-term depression of fEPSP were larger in CRS mice than in control mice. The differences between the groups in fEPSP duration, PPRs and LTP level were not observed when the GABA(A) receptor was blocked by bicuculline. Compared to control mice, CRS mice exhibited hyper-locomotive activity in an open field test, while no difference was observed between the groups in anxiety-like behavior in a light/dark choice test. CRS mice displayed decreased freezing behavior in fear conditioning tests compared to control mice. These findings suggest that CRS facilitates synaptic plasticity in the ACC via increased excitability due to disinhibition of GABA(A) receptor signalling, which may underlie induction of behavioral hyper-locomotive activity after CRS. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    Science.gov (United States)

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  5. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  6. Paclitaxel Causes Electrophysiological Changes in the Anterior Cingulate Cortex via Modulation of the γ-Aminobutyric Acid-ergic System.

    Science.gov (United States)

    Nashawi, Houda; Masocha, Willias; Edafiogho, Ivan O; Kombian, Samuel B

    The aim of this study was to elucidate any electrophysiological changes that may contribute to the development of neuropathic pain during treatment with the anticancer drug paclitaxel, particularly in the γ-aminobutyric acid (GABA) system. One hundred and eight Sprague-Dawley rats were used (untreated control: 43; vehicle-treated: 21, and paclitaxel-treated: 44). Paclitaxel (8 mg/kg) was administered intraperitoneally on 2 alternate days to induce mechanical allodynia. The rats were sacrificed 7 days after treatment to obtain slices of the anterior cingulate cortex (ACC), a brain region involved in the central processing of pain. Field excitatory postsynaptic potentials (fEPSPs) were recorded in layer II/III of ACC slices, and stimulus-response curves were constructed. The observed effects were pharmacologically characterized by bath application of GABA and appropriate drugs to the slices. The paclitaxel-treated rats developed mechanical allodynia (i.e. reduced withdrawal threshold to mechanical stimuli). Slices from paclitaxel-treated rats produced a significantly higher maximal response (Emax) than those from untreated rats (p GABA (0.4 µM) reversed this effect and returned the excitability to a level similar to control. Pretreatment of the slices with the GABAB receptor blocker CGP 55845 (50 µM) increased Emax in slices from untreated rats (p GABA deficit in paclitaxel-treated rats compared to untreated ones. Such a deficit could contribute to the pathophysiology of paclitaxel-induced neuropathic pain (PINP). Thus, the GABAergic system might be a potential therapeutic target for managing PINP. © 2016 S. Karger AG, Basel.

  7. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.

    Science.gov (United States)

    Umemoto, Akina; Inzlicht, Michael; Holroyd, Clay B

    2018-06-14

    Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2hours in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels foster rapid improvements in task performance, and a later phase in which high control levels were necessary to maintain stable task performance, perhaps counteracting waning reward valuation. Copyright © 2018. Published by Elsevier Ltd.

  8. Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion.

    Science.gov (United States)

    Ohmatsu, Satoko; Nakano, Hideki; Tominaga, Takanori; Terakawa, Yuzo; Murata, Takaho; Morioka, Shu

    2014-08-15

    Pedaling exercise (PE) of moderate intensity has been shown to ease anxiety and discomfort; however, little is known of the changes that occur in brain activities and in the serotonergic (5-HT) system after PE. Therefore, this study was conducted for the following reasons: (1) to localize the changes in the brain activities induced by PE using a distributed source localization algorithm, (2) to examine the changes in frontal asymmetry, as used in the Davidson model, with electroencephalography (EEG) activity, and (3) to examine the effect of PE on the 5-HT system. A 32-channel EEG was used to record before and after PE. Profile of Mood States tests indicated that there was a significant decrease in tension-anxiety and a significant increase in vigor after PE. A standardized low-resolution brain electromagnetic tomography analysis showed a significant decrease in brain activities after PE in the alpha-2 band (10-12.5 Hz) in the anterior cingulate cortex (ACC). Moreover, a significant increase in frontal EEG asymmetry was observed after PE in the alpha-1 band (7.5-10 Hz). Urine 5-HT levels significantly increased after PE. Urine 5-HT levels positively correlated with the degree of frontal EEG asymmetry in the alpha-1 band and negatively correlated with brain activity in ACC. Our results suggested that PE activates the 5-HT system and consequently induces increases in frontal EEG asymmetry in the alpha-1 band and reductions of brain activity in the alpha-2 band in the ACC region. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Composition of complex numbers: Delineating the computational role of the left anterior temporal lobe.

    Science.gov (United States)

    Blanco-Elorrieta, Esti; Pylkkänen, Liina

    2016-01-01

    What is the neurobiological basis of our ability to create complex messages with language? Results from multiple methodologies have converged on a set of brain regions as relevant for this general process, but the computational details of these areas remain to be characterized. The left anterior temporal lobe (LATL) has been a consistent node within this network, with results suggesting that although it rather systematically shows increased activation for semantically complex structured stimuli, this effect does not extend to number phrases such as 'three books.' In the present work we used magnetoencephalography to investigate whether numbers in general are an invalid input to the combinatory operations housed in the LATL or whether the lack of LATL engagement for stimuli such as 'three books' is due to the quantificational nature of such phrases. As a relevant test case, we employed complex number terms such as 'twenty-three', where one number term is not a quantifier of the other but rather, the two terms form a type of complex concept. In a number naming paradigm, participants viewed rows of numbers and depending on task instruction, named them as complex number terms ('twenty-three'), numerical quantifications ('two threes'), adjectival modifications ('blue threes') or non-combinatory lists (e.g., 'two, three'). While quantificational phrases failed to engage the LATL as compared to non-combinatory controls, both complex number terms and adjectival modifications elicited a reliable activity increase in the LATL. Our results show that while the LATL does not participate in the enumeration of tokens within a set, exemplified by the quantificational phrases, it does support conceptual combination, including the composition of complex number concepts. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Involvement of the prelimbic cortex in contextual fear conditioning with temporal and spatial discontinuity.

    Science.gov (United States)

    Santos, Thays Brenner; Kramer-Soares, Juliana Carlota; Favaro, Vanessa Manchim; Oliveira, Maria Gabriela Menezes

    2017-10-01

    Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The influence of experimental interfering occlusal contacts on the postural activity of the anterior temporal and masseter muscles in young adults.

    Science.gov (United States)

    Riise, C; Sheikholeslam, A

    1982-09-01

    The effects of an intercuspal occlusal interference on the pattern of postural activity of the anterior temporal and masseter muscles were studied in eleven volunteers with complete, natural dentitions. The results indicate that, in man, there is postural activity in the anterior temporal and sometimes in the masseter muscles. The pattern of postural activity is influenced by the occurrence of an experimental occlusal interference, sometimes as early as 1 h after the insertion. After 48 h there was a significant increase of the activity in the anterior temporal muscles. This increased activity persisted until the interference was removed 1 week later and had almost disappeared 1 week after the removal.

  12. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse.

    Science.gov (United States)

    Finnie, J W; Blumbergs, P C; Manavis, J

    2016-05-01

    This study examined the temporal sequence of post-mortem changes in the cerebellar cortical granular and Purkinje cell layers of mice kept at a constant ambient temperature for up to 4 weeks. Nuclei of granule cell microneurons became pyknotic early after death, increasing progressively until, by 7 days, widespread nuclear lysis resulted in marked cellular depletion of the granular layer. Purkinje cells were relatively unaltered until about 96 h post mortem, at which time there was shrinkage and multivacuolation of the amphophilic cytoplasm, nuclear hyperchromasia and, sometimes, a perinuclear clear space. By 7 days, Purkinje cells had hypereosinophilic cytoplasm and frequent nuclear pyknosis. By 2 weeks after death, Purkinje cells showed homogenization, the cytoplasm being uniformly eosinophilic, progressing to a 'ghost-like' appearance in which the cytoplasm had pale eosinophilic staining with indistinct cell boundaries, and nuclei often absent. The results of this study could assist in differentiating post-mortem autolysis from ante-mortem lesions in the cerebellar cortex and determining the post-mortem interval. Moreover, this information could be useful when interpreting brain lesions in valuable mice found dead unexpectedly during the course of biomedical experiments. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Reafferent copies of imitated actions in the right superior temporal cortex

    Science.gov (United States)

    Iacoboni, Marco; Koski, Lisa M.; Brass, Marcel; Bekkering, Harold; Woods, Roger P.; Dubeau, Marie-Charlotte; Mazziotta, John C.; Rizzolatti, Giacomo

    2001-01-01

    Imitation is a complex phenomenon, the neural mechanisms of which are still largely unknown. When individuals imitate an action that already is present in their motor repertoire, a mechanism matching the observed action onto an internal motor representation of that action should suffice for the purpose. When one has to copy a new action, however, or to adjust an action present in one's motor repertoire to a different observed action, an additional mechanism is needed that allows the observer to compare the action made by another individual with the sensory consequences of the same action made by himself. Previous experiments have shown that a mechanism that directly matches observed actions on their motor counterparts exists in the premotor cortex of monkeys and humans. Here we report the results of functional magnetic resonance experiments, suggesting that in the superior temporal sulcus, a higher order visual region, there is a sector that becomes active both during hand action observation and during imitation even in the absence of direct vision of the imitator's hand. The motor-related activity is greater during imitation than during control motor tasks. This newly identified region has all the requisites for being the region at which the observed actions, and the reafferent motor-related copies of actions made by the imitator, interact. PMID:11717457

  14. Involvement of the dorsolateral prefrontal cortex and superior temporal sulcus in impaired social perception in schizophrenia.

    Science.gov (United States)

    Shin, Jung Eun; Choi, Soo-Hee; Lee, Hyeongrae; Shin, Young Seok; Jang, Dong-Pyo; Kim, Jae-Jin

    2015-04-03

    Schizophrenia is a mental disorder characterized by impairments in diverse thinking and emotional responses, which are related to social perception dysfunction. This fMRI study was designed to investigate a neurobiological basis of social perception deficits of patients with schizophrenia in various social situations of daily life and their relationship with clinical symptoms and social dysfunction. Seventeen patients and 19 controls underwent functional magnetic resonance imaging, during which participants performed a virtual social perception task, containing an avatar's speech with positive, negative or neutral emotion in a virtual reality space. Participants were asked to determine whether or not the avatar's speech was appropriate to each situation. The significant group×appropriateness interaction was seen in the left dorsolateral prefrontal cortex (DLPFC), resulting from lower activity in patients in the inappropriate condition, and left DLPFC activity was negatively correlated with the severity of negative symptoms and positively correlated with the level of social functioning. The significant appropriateness×emotion interaction observed in the left superior temporal sulcus (STS) was present in controls, but absent in patients, resulting from the existence and absence of a difference between the inappropriate positive and negative conditions, respectively. These findings indicate that dysfunction of the DLPFC-STS network may underlie patients' abnormal social perception in various social situations of daily life. Abnormal functioning of this network may contribute to increases of negative symptoms and decreases of social functioning. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Temporal course of gene expression during motor memory formation in primary motor cortex of rats.

    Science.gov (United States)

    Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A

    2016-12-01

    Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Functional organization of the face-sensitive areas in human occipital-temporal cortex.

    Science.gov (United States)

    Shao, Hanyu; Weng, Xuchu; He, Sheng

    2017-08-15

    Human occipital-temporal cortex features several areas sensitive to faces, presumably forming the biological substrate for face perception. To date, there are piecemeal insights regarding the functional organization of these regions. They have come, however, from studies that are far from homogeneous with regard to the regions involved, the experimental design, and the data analysis approach. In order to provide an overall view of the functional organization of the face-sensitive areas, it is necessary to conduct a comprehensive study that taps into the pivotal functional properties of all the face-sensitive areas, within the context of the same experimental design, and uses multiple data analysis approaches. In this study, we identified the most robustly activated face-sensitive areas in bilateral occipital-temporal cortices (i.e., AFP, aFFA, pFFA, OFA, pcSTS, pSTS) and systemically compared their regionally averaged activation and multivoxel activation patterns to 96 images from 16 object categories, including faces and non-faces. This condition-rich and single-image analysis approach critically samples the functional properties of a brain region, allowing us to test how two basic functional properties, namely face-category selectivity and face-exemplar sensitivity are distributed among these regions. Moreover, by examining the correlational structure of neural responses to the 96 images, we characterize their interactions in the greater face-processing network. We found that (1) r-pFFA showed the highest face-category selectivity, followed by l-pFFA, bilateral aFFA and OFA, and then bilateral pcSTS. In contrast, bilateral AFP and pSTS showed low face-category selectivity; (2) l-aFFA, l-pcSTS and bilateral AFP showed evidence of face-exemplar sensitivity; (3) r-OFA showed high overall response similarities with bilateral LOC and r-pFFA, suggesting it might be a transitional stage between general and face-selective information processing; (4) r-aFFA showed high

  17. Preoperative MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe in epileptic patients

    International Nuclear Information System (INIS)

    Jack, C.R.; Sharbrough, F.W.; Twomey, C.; Zinsmeister, A.R.; Cascino, G.D.; Hirschorn, K.A.; Marsh, W.R.

    1989-01-01

    MR-based volume measurements of the anterior temporal lobe and hippocampal formation were performed in 36 patients who subsequently underwent surgery for medically refractory temporal lobe epilepsy. Seizure lateralization was based on standard clinical and electroencephalographic criteria. No surgical pathologic specimens contained structural lesions; epilepsy in these patients was therefore presumably due to mesial sclerosis. The right-minus-left hippocampal formation volume difference was greater than 0 in all 20 patients operated on the left side and less than 0 in all 16 patients operated on the right side. This difference completely separated the two surgical groups, while the same measurement in a group of 35 normal controls fell between the two surgical groups. Measurements of the anterior temporal to be showed a similar trend but incompletely separated controls, right- and left-sided epileptics. These results suggest that in a significant percentage of cases, MR-based volume measurements correctly identify the unilateral hippocampal atrophy that is known to occur in cases of mesial temporal sclerosis

  18. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    Victoria eHolec

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., courage. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to certain

  19. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex

    OpenAIRE

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-01-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings – as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is ...

  20. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Directory of Open Access Journals (Sweden)

    Laura V Cuaya

    Full Text Available Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI. We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  1. Impaired expression of GABA transporters in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Fuhrer, Tessa E; Palpagama, Thulani H; Waldvogel, Henry J; Synek, Beth J L; Turner, Clinton; Faull, Richard L; Kwakowsky, Andrea

    2017-05-20

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. We found a significant increase in BGT-1 expression associated with AD in all layers of the dentate gyrus, in the stratum oriens of the CA2 and CA3 and the superior temporal gyrus. In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  3. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex.

    Science.gov (United States)

    van Atteveldt, Nienke M; Blau, Vera C; Blomert, Leo; Goebel, Rainer

    2010-02-02

    Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI) studies propose the (posterior) superior temporal cortex (STC) as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent) versus nonmatching (incongruent) multisensory inputs. Here, we used fMR-adaptation (fMR-A) in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs) and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs). We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation. The results revealed an occipital-temporal network that adapted independently of the audiovisual relation. Interestingly, several smaller clusters distributed over superior temporal cortex within that network, adapted stronger to congruent than to incongruent audiovisual repetitions, indicating sensitivity to content congruency. These results suggest that the revealed clusters contain multisensory neuronal populations that encode content relatedness by selectively responding to congruent audiovisual inputs, since unisensory neuronal populations are assumed to be insensitive to the audiovisual relation. These findings extend our previously revealed mechanism for the integration of letters and speech sounds and

  4. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex

    Directory of Open Access Journals (Sweden)

    Blomert Leo

    2010-02-01

    Full Text Available Abstract Background Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI studies propose the (posterior superior temporal cortex (STC as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent versus nonmatching (incongruent multisensory inputs. Here, we used fMR-adaptation (fMR-A in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs. We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation. Results The results revealed an occipital-temporal network that adapted independently of the audiovisual relation. Interestingly, several smaller clusters distributed over superior temporal cortex within that network, adapted stronger to congruent than to incongruent audiovisual repetitions, indicating sensitivity to content congruency. Conclusions These results suggest that the revealed clusters contain multisensory neuronal populations that encode content relatedness by selectively responding to congruent audiovisual inputs, since unisensory neuronal populations are assumed to be insensitive to the audiovisual relation. These findings extend our previously revealed mechanism for

  5. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder.

    Science.gov (United States)

    Thomaes, K; Dorrepaal, E; Draijer, N; de Ruiter, M B; Elzinga, B M; van Balkom, A J; Smit, J H; Veltman, D J

    2012-11-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that treatment can normalize these activation patterns. At baseline, we compared classic and emotional Stroop performance and blood oxygenation level-dependent responses (functional magnetic resonance imaging) of 29 child abuse-related complex PTSD patients with 22 non-trauma-exposed healthy controls. In 16 of these patients, we studied treatment effects of psycho-educational and cognitive behavioural stabilizing group treatment (experimental treatment; EXP) added to treatment as usual (TAU) versus TAU only, and correlations with clinical improvement. At baseline, complex PTSD patients showed a trend for increased left anterior insula and dorsal ACC activation in the classic Stroop task. Only EXP patients showed decreased dorsal ACC and left anterior insula activation after treatment. In the emotional Stroop contrasts, clinical improvement was associated with decreased dorsal ACC activation and decreased left anterior insula activation. We found further evidence that successful treatment in child abuse-related complex PTSD is associated with functional changes in the ACC and insula, which may be due to improved selective attention and lower emotional arousal, indicating greater cognitive control over PTSD symptoms.

  6. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials

    Directory of Open Access Journals (Sweden)

    Zehan Wu

    2017-06-01

    Full Text Available We propose electrocorticographic temporal alteration mapping (ETAM for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM, which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8% and specificity (94.3% in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%. These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  7. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    Science.gov (United States)

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-06-10

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

  8. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    Science.gov (United States)

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2

  9. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography.

    Science.gov (United States)

    Ozker, Muge; Schepers, Inga M; Magnotti, John F; Yoshor, Daniel; Beauchamp, Michael S

    2017-06-01

    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.

  10. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    OpenAIRE

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary induct...

  11. P1-5: Effect of Luminance Contrast on the Color Selective Responses in the Inferior Temporal Cortex Neurons of the Macaque Monkey

    Directory of Open Access Journals (Sweden)

    Tomoyuki Namima

    2012-10-01

    Full Text Available Although the relationship between color signal and luminance signal is an important problem in visual perception, relatively little is known about how the luminance contrast affects the responses of color selective neurons in the visual cortex. In this study, we examined this problem in the inferior temporal (IT of the awake monkey performing a visual fixation task. Single neuron activities were recorded from the anterior and posterior color selective regions in IT cortex (AITC and PITC identified in previous studies where color selective neurons are accumulated. Color stimuli consisted of 28 stimuli that evenly distribute across the gamut of the CRT display defined on the CIE- xychromaticity diagram at two different luminance levels (5 cd/m 2or 20 cd/m 2 and 2 stimuli at white points. The background was maintained at 10 cd/m 2gray. We found that the effect of luminance contrast on the color selectivity was markedly different between AITC and PITC. When we examined the correlation between the responses to the bright stimuli and those to the dark stimuli with the same chromaticity coordinates, most AITC neurons exhibited high correlation whereas many PITC neurons showed no correlation or only weak correlation. In PITC, the effect was specifically large for neutral colors (white, gray, black and for colors with low saturation. These results indicate that the effect of luminance contrast on the color selective responses differs across different areas and suggest that the separation between color signal and luminance signal involves a higher stage of the cortical color processing.

  12. Atividade eletromiográfica dos músculos temporal anterior e masseter em crianças respiradoras bucais e em respiradoras nasais Electrical Activity of the Anterior Temporal and Masseter Muscles in Mouth and Nasal Breathing Children

    Directory of Open Access Journals (Sweden)

    Aline Ferla

    2008-08-01

    Full Text Available A respiração bucal tem sido estudada por causar sérios efeitos no desenvolvimento do sistema estomatognático. OBJETIVO: Estudar, através da análise eletromiográfica, o padrão de atividade elétrica dos músculos temporal anterior e masseter em crianças com respiração bucal, comparando-os com o de crianças com respiração nasal. MATERIAL E MÉTODO: Foram estudados dois grupos de crianças: 17 respiradoras bucais (RB e 12 respiradoras nasais (RN. As crianças foram submetidas à avaliação eletromiográfica bilateral dos músculos supracitados nas situações de máxima intercuspidação e mastigação habitual. Utilizou-se o eletromiógrafo Myosystem Br-1, com 12 canais de aquisição, amplificação com ganho total de 5938, taxa de aquisição de 4000Hz e filtro passa-faixa de 20-1000Hz. O sinal foi processado em RMS, mensurado em µV e analisado e expresso em %, normalizado. Os dados foram tratados estatisticamente através do Teste t (Student. RESULTADOS: Observou-se que o nível de atividade elétrica do grupo RB foi inferior para todos os músculos e estatisticamente significante somente para o temporal esquerdo; os respiradores bucais apresentaram predomínio de atividade elétrica no lado direito e no músculo temporal durante a mastigação habitual. CONCLUSÃO: A respiração bucal interferiu na atividade elétrica dos músculos estudados nas situações funcionais de máxima intercuspidação e mastigação habitual.Mouth breathing has been associated with severe impact on the development of the stomatognathic system. AIM: This paper aims to analyze the electromyographical findings and patterns of electrical activity of the anterior temporal and masseter muscles in mouth and nasal breathing children. MATERIAL AND METHOD: The patients were divided into two groups: mouth breathers (n=17 and nasal breathers (n=12. The children underwent bilateral electromyographic examination of the anterior temporal and masseter muscles at

  13. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  14. Impact of family history of alcoholism on glutamine/glutamate ratio in anterior cingulate cortex in substance-naïve adolescents.

    Science.gov (United States)

    Cohen-Gilbert, Julia E; Sneider, Jennifer T; Crowley, David J; Rosso, Isabelle M; Jensen, J Eric; Silveri, Marisa M

    2015-12-01

    Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+) for alcoholism exhibit increased impulsivity compared to family history negative (FH-) peers in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC). This study examined glutamate (Glu) and glutamine (Gln), amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC) using magnetic resonance spectroscopy (MRS) at 4T. Participants were 28 adolescents (13 male, 12-14 yrs) and 31 emerging adults (16 male, 18-25 yrs), stratified into FH- and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH- but not FH+ groups. In FH- adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Lee, Seojung; Ran Kim, Kyung; Ku, Jeonghun; Lee, Jung-Hyun; Namkoong, Kee; Jung, Young-Chul

    2014-01-30

    Cortical areas supporting cognitive control and salience demonstrate different neural responses to visual food cues in patients with eating disorders. This top-down cognitive control, which interacts with bottom-up appetitive responses, is tightly integrated not only in task conditions but also in the resting-state. The dorsal anterior cingulate cortex (dACC) is a key node of a large-scale network that is involved in self-referential processing and cognitive control. We investigated resting-state functional connectivity of the dACC and hypothesized that altered connectivity would be demonstrated in cortical midline structures involved in self-referential processing and cognitive control. Seed-based resting-state functional connectivity was analyzed in women with anorexia nervosa (N=18), women with bulimia nervosa (N=20) and age matched healthy controls (N=20). Between group comparisons revealed that the anorexia nervosa group exhibited stronger synchronous activity between the dACC and retrosplenial cortex, whereas the bulimia nervosa group showed stronger synchronous activity between the dACC and medial orbitofrontal cortex. Both groups demonstrated stronger synchronous activity between the dACC and precuneus, which correlated with higher scores of the Body Shape Questionnaire. The dACC-precuneus resting-state synchrony might be associated with the disorder-specific rumination on eating, weight and body shape in patients with eating disorders. © 2013 Published by Elsevier Ireland Ltd.

  16. The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex.

    Science.gov (United States)

    Leodori, Giorgio; Formica, Alessandra; Zhu, Xiaoying; Conte, Antonella; Belvisi, Daniele; Cruccu, Giorgio; Hallett, Mark; Berardelli, Alfredo

    2017-10-01

    The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information, but little is known about the physiological correlates of somatosensory temporal discrimination. The objective of this study was to investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the third-stimulus temporal discrimination threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus following a pair of stimuli delivered at the STDT. The STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1 continuous theta-burst stimulation (S1-cTBS) on the STDT and ThirdDT. Results show that ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, although the latter was affected to a greater extent and for a longer period of time. We conclude that the interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1, probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination. NEW & NOTEWORTHY To investigate whether the time interval required to discriminate between stimuli varies according to changes in the stimulation pattern, we used the third-stimulus temporal discrimination threshold (ThirdDT). We found that the somatosensory temporal discrimination acuity varies according to the number of stimuli in the

  17. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  18. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Science.gov (United States)

    Hoekert, Marjolijn; Bais, Leonie; Kahn, René S; Aleman, André

    2008-05-21

    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS) to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms). Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction), revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become more apparent half

  19. Amodal Semantic Representations Depend on both Anterior Temporal Lobes: Evidence from Repetitive Transcranial Magnetic Stimulation

    Science.gov (United States)

    Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon

    2010-01-01

    The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words?…

  20. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy

    NARCIS (Netherlands)

    Geldorp, B. van; Bouman, Z.; Hendriks, M.P.H.; Kessels, R.P.C.

    2014-01-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks

  1. Evidence for Non-Opponent Coding of Colour Information in Human Visual Cortex: Selective Loss of "Green" Sensitivity in a Subject with Damaged Ventral Occipito-Temporal Cortex.

    Science.gov (United States)

    Rauscher, Franziska G; Plant, Gordon T; James-Galton, Merle; Barbur, John L

    2011-01-01

    Damage to ventral occipito-temporal extrastriate visual cortex leads to the syndrome of prosopagnosia often with coexisting cerebral achromatopsia. A patient with this syndrome resulting in a left upper homonymous quadrantanopia, prosopagnosia, and incomplete achromatopsia is described. Chromatic sensitivity was assessed at a number of locations in the intact visual field using a dynamic luminance contrast masking technique that isolates the use of colour signals. In normal subjects chromatic detection thresholds form an elliptical contour when plotted in the Commission Internationale d'Eclairage, (x-y), chromaticity diagram. Because the extraction of colour signals in early visual processing involves opponent mechanisms, subjects with Daltonism (congenital red/green loss of sensitivity) show symmetric increase in thresholds towards the long wavelength ("red") and middle wavelength ("green") regions of the spectrum locus. This is also the case with acquired loss of chromatic sensitivity as a result of retinal or optic nerve disease. Our patient's results were an exception to this rule. Whilst his chromatic sensitivity in the central region of the visual field was reduced symmetrically for both "red/green" and "yellow/blue" directions in colour space, the subject's lower left quadrant showed a marked asymmetry in "red/green" thresholds with the greatest loss of sensitivity towards the "green" region of the spectrum locus. This spatially localized asymmetric loss of "green" but not "red" sensitivity has not been reported previously in human vision. Such loss is consistent with selective damage of neural substrates in the visual cortex that process colour information, but are spectrally non-opponent.

  2. Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.

    Science.gov (United States)

    Allison, J D; Smith, K R; Bonds, A B

    2001-01-01

    A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.

  3. Does a single session of theta-burst transcranial magnetic stimulation of inferior temporal cortex affect tinnitus perception?

    Directory of Open Access Journals (Sweden)

    Moser Tobias

    2009-05-01

    Full Text Available Abstract Background Cortical excitability changes as well as imbalances in excitatory and inhibitory circuits play a distinct pathophysiological role in chronic tinnitus. Repetitive transcranial magnetic stimulation (rTMS over the temporoparietal cortex was recently introduced to modulate tinnitus perception. In the current study, the effect of theta-burst stimulation (TBS, a novel rTMS paradigm was investigated in chronic tinnitus. Twenty patients with chronic tinnitus completed the study. Tinnitus severity and loudness were monitored using a tinnitus questionnaire (TQ and a visual analogue scale (VAS before each session. Patients received 600 pulses of continuous TBS (cTBS, intermittent TBS (iTBS and intermediate TBS (imTBS over left inferior temporal cortex with an intensity of 80% of the individual active or resting motor threshold. Changes in subjective tinnitus perception were measured with a numerical rating scale (NRS. Results TBS applied to inferior temporal cortex appeared to be safe. Although half of the patients reported a slight attenuation of tinnitus perception, group analysis resulted in no significant difference when comparing the three specific types of TBS. Converting the NRS into the VAS allowed us to compare the time-course of aftereffects. Only cTBS resulted in a significant short-lasting improvement of the symptoms. In addition there was no significant difference when comparing the responder and non-responder groups regarding their anamnestic and audiological data. The TQ score correlated significantly with the VAS, lower loudness indicating less tinnitus distress. Conclusion TBS does not offer a promising outcome for patients with tinnitus in the presented study.

  4. Influence of experimental interfering occlusal contacts on the activity of the anterior temporal and masseter muscles during mastication.

    Science.gov (United States)

    Riise, C; Sheikholeslam, A

    1984-07-01

    Quantitative electromyography (EMG) was used to study, in eleven volunteers with complete, natural dentitions, the effects of an experimental intercuspal occlusal interference on the pattern of activity of the anterior temporal and masseter muscles during mastication. The results show that a small occlusal interference (about 0.5 mm) in the intercuspal position can change the co-ordination of muscular activity during mastication. In general, there was a prolonged contraction time as well as a reduction of the activity in all the investigated elevators, especially on the side of the interference. Furthermore, after 48 h several subjects preferred to chew unilaterally. After removal of the interference, the pattern of co-ordination of muscular activity returned almost to the pre-experimental pattern within 2 weeks.

  5. Altered Connectivity of the Anterior Cingulate and the Posterior Superior Temporal Gyrus in a Longitudinal Study of Later-life Depression

    Directory of Open Access Journals (Sweden)

    Kenichiro Harada

    2018-02-01

    Full Text Available Patients with later-life depression (LLD show abnormal gray matter (GM volume, white matter (WM integrity and functional connectivity in the anterior cingulate cortex (ACC and posterior superior temporal gyrus (pSTG, but it remains unclear whether these abnormalities persist over time. We examined whether structural and functional abnormalities in these two regions are present within the same subjects during depressed vs. remitted phases. Sixteen patients with LLD and 30 healthy subjects were studied over a period of 1.5 years. Brain images obtained with a 3-Tesla magnetic resonance imaging (MRI system were analyzed by voxel-based morphometry of the GM volume, and diffusion tensor imaging (DTI and resting-state functional MRI were used to assess ACC–pSTG connectivity. Patients with LLD in the depressed and remitted phases showed significantly smaller GM volume in the left ACC and left pSTG than healthy subjects. Both patients with LLD in the depressed and remitted phases had significantly higher diffusivities in the WM tract of the left ACC–pSTG than healthy subjects. Remitted patients with LLD showed lower functional ACC–pSTG connectivity compared to healthy subjects. No difference was found in the two regions between depressed and remitted patients in GM volume, structural or functional connectivity. Functional ACC–pSTG connectivity was positively correlated with lower global function during remission. Our preliminary data show that structural and functional abnormalities of the ACC and pSTG occur during LLD remission. Our findings tentatively reveal the brain pathophysiology involved in LLD and may aid in developing neuroanatomical biomarkers for this condition.

  6. Altered Connectivity of the Anterior Cingulate and the Posterior Superior Temporal Gyrus in a Longitudinal Study of Later-life Depression.

    Science.gov (United States)

    Harada, Kenichiro; Ikuta, Toshikazu; Nakashima, Mami; Watanuki, Toshio; Hirotsu, Masako; Matsubara, Toshio; Yamagata, Hirotaka; Watanabe, Yoshifumi; Matsuo, Koji

    2018-01-01

    Patients with later-life depression (LLD) show abnormal gray matter (GM) volume, white matter (WM) integrity and functional connectivity in the anterior cingulate cortex (ACC) and posterior superior temporal gyrus (pSTG), but it remains unclear whether these abnormalities persist over time. We examined whether structural and functional abnormalities in these two regions are present within the same subjects during depressed vs. remitted phases. Sixteen patients with LLD and 30 healthy subjects were studied over a period of 1.5 years. Brain images obtained with a 3-Tesla magnetic resonance imaging (MRI) system were analyzed by voxel-based morphometry of the GM volume, and diffusion tensor imaging (DTI) and resting-state functional MRI were used to assess ACC-pSTG connectivity. Patients with LLD in the depressed and remitted phases showed significantly smaller GM volume in the left ACC and left pSTG than healthy subjects. Both patients with LLD in the depressed and remitted phases had significantly higher diffusivities in the WM tract of the left ACC-pSTG than healthy subjects. Remitted patients with LLD showed lower functional ACC-pSTG connectivity compared to healthy subjects. No difference was found in the two regions between depressed and remitted patients in GM volume, structural or functional connectivity. Functional ACC-pSTG connectivity was positively correlated with lower global function during remission. Our preliminary data show that structural and functional abnormalities of the ACC and pSTG occur during LLD remission. Our findings tentatively reveal the brain pathophysiology involved in LLD and may aid in developing neuroanatomical biomarkers for this condition.

  7. Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex

    Science.gov (United States)

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction. PMID:23029483

  8. Resting-state functional connectivity between right anterior insula and right orbital frontal cortex correlate with insight level in obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2017-01-01

    Full Text Available Few studies have explored the neurobiological basis of insight level in obsessive-compulsive disorder (OCD, though the salience network (SN has been implicated in insight deficits in schizophrenia. This study was then designed to investigate whether resting-state (rs functional connectivity (FC of SN was associated with insight level in OCD patients. We analyzed rs-functional magnetic resonance imaging (fMRI data from 21 OCD patients with good insight (OCD-GI, 19 OCD patients with poor insight (OCD-PI, and 24 healthy controls (HCs. Seed-based whole-brain FC and ROI (region of interest-wise connectivity analyses were performed with seeds/ROIs in the bilateral anterior insula (AI and dorsal anterior cingulate cortex (dACC. The right AI-right medial orbital frontal cortex (mOFC connectivity was found to be uniquely decreased in the OCD-PI group, and the value of this aberrant connectivity correlated with insight level in OCD patients. In addition, we found that the OCD-GI group had significantly increased right AI-left dACC connectivity within the SN, relative to HCs (overall trend for groups: OCD-GI > OCD-PI > HC. Our findings suggest that abnormal right AI-right mOFC FC may mediate insight deficits in OCD, perhaps due to impaired encoding and integration of self-evaluative information about OCD-related beliefs and behaviors. Our findings indicate a SN connectivity dissociation between OCD-GI and OCD-PI patients and support the notion of considering OCD-GI and OCD-PI as two distinct disorder subtypes.

  9. Asymmetric Temporal Integration of Layer 4 and Layer 2/3 Inputs in Visual Cortex

    OpenAIRE

    Hang, Giao B.; Dan, Yang

    2010-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices...

  10. Fluid consumption and taste novelty determines transcription temporal dynamics in the gustatory cortex

    OpenAIRE

    Inberg, Sharon; Jacob, Eyal; Elkobi, Alina; Edry, Efrat; Rappaport, Akiva; Simpson, T. Ian; Armstrong, J. Douglas; Shomron, Noam; Pasmanik-Chor, Metsada; Rosenblum, Kobi

    2016-01-01

    Background Novel taste memories, critical for animal survival, are consolidated to form long term memories which are dependent on translation regulation in the gustatory cortex (GC) hours following acquisition. However, the role of transcription regulation in the process is unknown. Results Here, we report that transcription in the GC is necessary for taste learning in rats, and that drinking and its consequences, as well as the novel taste experience, affect transcription in the GC during ta...

  11. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex

    Science.gov (United States)

    Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.

    2016-01-01

    In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315

  12. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness.

    Science.gov (United States)

    Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg

    2016-02-01

    Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Assessing the Molecular Genetics of the Development of Executive Attention in Children: Focus on Genetic Pathways Related to the Anterior Cingulate Cortex and Dopamine

    Science.gov (United States)

    Brocki, Karin; Clerkin, Suzanne M.; Guise, Kevin G.; Fan, Jin; Fossella, John A.

    2009-01-01

    It is well-known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and fronto-striatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to-date that employs both adult and child-friendly versions of the Attention Network Task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention. PMID:19344637

  14. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    International Nuclear Information System (INIS)

    Bonell, Claudia E; Cherniz, AnalIa S; Tabernig, Carolina B

    2007-01-01

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives

  15. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    Energy Technology Data Exchange (ETDEWEB)

    Bonell, Claudia E; Cherniz, AnalIa S; Tabernig, Carolina B [Laboratorio de Ingenieria de Rehabilitacion e Investigaciones Neuromusculares y Sensoriales, Facultad de Ingenieria, UNER, Oro Verde (Argentina)

    2007-11-15

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives.

  16. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  17. Lateralized odor preference training in rat pups reveals an enhanced network response in anterior piriform cortex to olfactory input that parallels extended memory.

    Science.gov (United States)

    Fontaine, Christine J; Harley, Carolyn W; Yuan, Qi

    2013-09-18

    The present study examines synaptic plasticity in the anterior piriform cortex (aPC) using ex vivo slices from rat pups given lateralized odor preference training. In the early odor preference learning model, a brief 10 min training session yields 24 h memory, while four daily sessions yield 48 h memory. Odor preference memory can be lateralized through naris occlusion as the anterior commissure is not yet functional. AMPA receptor-mediated postsynaptic responses in the aPC to lateral olfactory tract input, shown to be enhanced at 24 h, are no longer enhanced 48 h after a single training session. Following four spaced lateralized trials, the AMPA receptor-mediated fEPSP is enhanced in the trained aPC at 48 h. Calcium imaging of aPC pyramidal cells within 48 h revealed decreased firing thresholds in the pyramidal cell network. Thus multiday odor preference training induced increased odor input responsiveness in previously weakly activated aPC cells. These results support the hypothesis that increased synaptic strength in olfactory input networks mediates odor preference memory. The increase in aPC network activation parallels behavioral memory.

  18. Corticothalamic and corticotectal somatosensory projections from the anterior ectosylvian sulcus (SIV cortex) in neonatal cats: an anatomical demonstration with HRP and 3H-leucine

    International Nuclear Information System (INIS)

    McHaffie, J.G.; Kruger, L.; Clemo, H.R.; Stein, B.E.

    1988-01-01

    Corticothalamic and corticotectal projections from the anterior ectosylvian sulcus (AES) in neonatal cats were studied with anterograde and retrograde neuroanatomical techniques. When the injection site was relatively restricted to the sulcal walls and fundus of the rostral AES (i.e., the SIV cortex), heavy ipsilateral thalamic label was observed in the medial subdivision of the posterior group, in the suprageniculate nucleus, and in the external medullary lamina. No terminal label was seen in the contralateral thalamus although the contralateral homotopic cortex was heavily labeled. Within the ventrobasal complex (VB), dense axonal label was observed in fascicles that traversed VB, but only light terminal label was observed within VB itself. However, in cases where the tracer spread into adjacent SII, terminal label in VB was pronounced. Similarly, when the injection site extended into auditory cortex, terminal label was observed in the lateral and intermediate subdivisions of the posterior group. Rostral AES injections produced distinct, predominantly ipsilateral, terminal label in the superior colliculus that was distributed in two tiers: a discontinuous band in the stratum griseum intermedium and a more diffuse band in stratum griseum profundum. Caudally, dense terminal label was seen in the intercollicular zone and dorsolateral periaqueductal gray. When the injection site did not include rostral AES, no label was observed in the superior colliculus. Horseradish peroxidase injections into the superior colliculus of neonates produced retrogradely labeled neurons throughout the AES, but none was found on the crown of the gyrus where SII is located. Thus, the neonatal corticotectal somatosensory projection arises exclusively from AES and parallels that found in adults

  19. Open label smoking cessation with varenicline is associated with decreased glutamate levels and functional changes in anterior cingulate cortex: preliminary findings

    Directory of Open Access Journals (Sweden)

    Muriah Dawn Wheelock

    2014-07-01

    Full Text Available Rationale: Varenicline, the most effective single agent for smoking cessation, is a partial agonist at α4β2 nicotinic acetylcholine receptors. Increasing evidence implicates glutamate in the pathophysiology of addiction and one of the benefits of treatment for smoking cessation is the ability to regain cognitive control. Objective: To evaluate the effects of 12 week varenicline administration on glutamate levels in the dorsal anterior cingulate cortex (dACC and functional changes within the cognitive control network.Methods: We used single-voxel proton magnetic resonance spectroscopy (1H-MRS in the dACC and functional MRI (fMRI during performance of a Stroop color-naming task before and after smoking cessation with varenicline in 11 healthy smokers (open label design. Using the dACC as a seed region, we evaluated functional connectivity changes using a psychophysiological interaction (PPI analysis. Results: We observed a significant decrease in dACC glutamate + glutamine (Glx/Cr levels as well as significant blood oxygen level-dependent signal (BOLD decreases in the rostral ACC/medial orbitofrontal cortex and precuneus/posterior cingulate cortex. These BOLD changes are suggestive of alterations in default mode network (DMN function and are further supported by the results of the PPI analysis that revealed changes in connectivity between the dACC and regions of the DMN. Baseline measures of nicotine dependence and craving positively correlated with baseline Glx/Cr levels.Conclusions: These results suggest possible mechanisms of action for varenicline such as reduction in Glx levels in dACC and shifts in BOLD activities between large scale brain networks. They also suggest a role for ACC Glx in the modulation of behavior. Due to the preliminary nature of this study (lack of control group and small sample size, future studies are needed to replicate these findings.

  20. Anterior temporal artery tap to identify systemic interference using short-separation NIRS measurements

    DEFF Research Database (Denmark)

    Sood, Mehak; Jindal, Utkarsh; Chowdhury, Shubhajit Roy

    2015-01-01

    that are also affected by tDCS. An approach may be to use short optode separations to measure systemic hemodynamic fluctuations occurring in the superficial layers which can then be used as regressors to remove the systemic contamination. Here, we demonstrate that temporal artery tap may be used to better...... of neural activity is possible with a measure of cerebral hemoglobin oxygenation using near-infrared spectroscopy (NIRS). In principal accordance, NIRS can capture the hemodynamic response to tDCS but the challenge remains in removing the systemic interference occurring in the superficial layers of the head...... identify systemic interference using this short-separation NIRS. Moreover, NIRS-EEG joint-imaging during anodal tDCS was used to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along with changes in the log-transformed mean-power of EEG within 0.5 Hz-11.25 Hz. We found that percent...

  1. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  2. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor

  3. Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    Full Text Available Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas.

  4. Dissociating the Representation of Action- and Sound-Related Concepts in Middle Temporal Cortex

    Science.gov (United States)

    Kiefer, Markus; Trumpp, Natalie; Herrnberger, Barbel; Sim, Eun-Jin; Hoenig, Klaus; Pulvermuller, Friedemann

    2012-01-01

    Modality-specific models of conceptual memory propose close links between concepts and the sensory-motor systems. Neuroimaging studies found, in different subject groups, that action-related and sound-related concepts activated different parts of posterior middle temporal gyrus (pMTG), suggesting a modality-specific representation of conceptual…

  5. Abnormal functional activation and maturation of ventromedial prefrontal cortex and cerebellum during temporal discounting in autism spectrum disorder.

    Science.gov (United States)

    Murphy, Clodagh M; Christakou, Anastasia; Giampietro, Vincent; Brammer, Michael; Daly, Eileen M; Ecker, Christine; Johnston, Patrick; Spain, Debbie; Robertson, Dene M; Murphy, Declan G; Rubia, Katya

    2017-11-01

    People with autism spectrum disorder (ASD) have poor decision-making and temporal foresight. This may adversely impact on their everyday life, mental health, and productivity. However, the neural substrates underlying poor choice behavior in people with ASD, or its' neurofunctional development from childhood to adulthood, are unknown. Despite evidence of atypical structural brain development in ASD, investigation of functional brain maturation in people with ASD is lacking. This cross-sectional developmental fMRI study investigated the neural substrates underlying performance on a temporal discounting (TD) task in 38 healthy (11-35 years old) male adolescents and adults with ASD and 40 age, sex, and IQ-matched typically developing healthy controls. Most importantly, we assessed group differences in the neurofunctional maturation of TD across childhood and adulthood. Males with ASD had significantly poorer task performance and significantly lower brain activation in typical regions that mediate TD for delayed choices, in predominantly right hemispheric regions of ventrolateral/dorsolateral prefrontal cortices, ventromedial prefrontal cortex, striatolimbic regions, and cerebellum. Importantly, differential activation in ventromedial frontal cortex and cerebellum was associated with abnormal functional brain maturation; controls, in contrast to people with ASD, showed progressively increasing activation with increasing age in these regions; which furthermore was associated with performance measures and clinical ASD measures (stereotyped/restricted interests). Findings provide first cross-sectional evidence that reduced activation of TD mediating brain regions in people with ASD during TD is associated with abnormal functional brain development in these regions between childhood and adulthood, and this is related to poor task performance and clinical measures of ASD. Hum Brain Mapp 38:5343-5355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. The correlation between E.M.I. scan appearances and the pathologic findings in a small group of patients submitted to anterior temporal lobectomy for intractable epilepsy

    International Nuclear Information System (INIS)

    Polkey, C.E.

    1978-01-01

    In a group of nine patients undergoing anterior temporal lobectomy for intractable epilepsy, EMI scans are available for direct comparison with other neuroradiological investigations and the pathology found in the resected temporal lobes. The atrophic lesion of mesial temporal sclerosis is difficult to demonstrated by CAT scanning. However, lesions such as tumours and angiomas containing areas of increased radiodensity are better indentified by this method. Because of this difference, CAT scanning is not a suitable single investigation for screening epileptic populations for surgical candidates. (orig.) [de

  7. Does pain in the masseter and anterior temporal muscles influence maximal bite force?

    Science.gov (United States)

    Goiato, Marcelo Coelho; Zuim, Paulo Renato Junqueira; Moreno, Amália; Dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas; de Caxias, Fernanda Pereira; Turcio, Karina Helga Leal

    2017-11-01

    The aim of this study was to evaluate changes in pain and muscle force, and the relationship between them, in patients with muscle pain and bruxism, prior to and after treatment. Thirty women with bruxism and myofascial pain (Ia) were included in this study. Sleep bruxism diagnosis was made based on clinical diagnostic criteria, and awake bruxism diagnosis was made by patient questionnaires and the presence of tooth wear. The diagnosis of myofascial pain was established according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC-TMD). Dentulous or partially edentulous patients (rehabilitated with conventional fixed prostheses) were included in the study according to the inclusion and exclusion criteria. The pain treatment protocol included occlusal splints, patient education, and physiotherapy for 30days. Bite force was measured using a dynamometer at the central incisor and the first molar regions on both sides. The exams were performed at baseline, after 7days, and 30days after treatment. The Wilcoxon test was used to compare patient pain level response among the periods analyzed in the study. Bite force data were submitted to two-way repeated-measures ANOVA, followed by the Tukey HSD test (pforce. Results revealed that there was a statistical difference in pain level over time for both muscles and sides (pforce exhibited significantly higher values after 30days of treatment, when compared with the baseline (pforce only for the temporal muscle in all periods analyzed (pforce. Pain level decreased and bite force increased in the molar region after treatment. No strong correlation or dispersion in the relationship between pain levels and bite force was seen in women with myofascial pain and bruxism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Visual perception and memory systems: from cortex to medial temporal lobe.

    Science.gov (United States)

    Khan, Zafar U; Martín-Montañez, Elisa; Baxter, Mark G

    2011-05-01

    Visual perception and memory are the most important components of vision processing in the brain. It was thought that the perceptual aspect of a visual stimulus occurs in visual cortical areas and that this serves as the substrate for the formation of visual memory in a distinct part of the brain called the medial temporal lobe. However, current evidence indicates that there is no functional separation of areas. Entire visual cortical pathways and connecting medial temporal lobe are important for both perception and visual memory. Though some aspects of this view are debated, evidence from both sides will be explored here. In this review, we will discuss the anatomical and functional architecture of the entire system and the implications of these structures in visual perception and memory.

  9. Temporal dynamics of contrast gain in single cells of the cat striate cortex.

    Science.gov (United States)

    Bonds, A B

    1991-03-01

    The response amplitude of cat striate cortical cells is usually reduced after exposure to high-contrast stimuli. The temporal characteristics and contrast sensitivity of this phenomenon were explored by stimulating cortical cells with drifting gratings in which contrast sequentially incremented and decremented in stepwise fashion over time. All responses showed a clear hysteresis, in which contrast gain dropped on average 0.36 log unit and then returned to baseline values within 60 s. Noticeable gain adjustments were seen in as little as 3 s and with peak contrasts as low as 3%. Contrast adaptation was absent in responses from LGN cells. Adaptation was found to depend on temporal frequency of stimulation, with greater and more rapid adaptation at higher temporal frequencies. Two different tests showed that the mechanism controlling response reduction was influenced primarily by stimulus contrast rather than response amplitude. These results support the existence of a rapid and sensitive cortically based system that normalizes the output of cortical cells as a function of local mean contrast. Control of the adaptation appears to arise at least in part across a population of cells, which is consistent with the idea that the gain control serves to limit the information converging from many cells onto subsequent processing areas.

  10. Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex.

    Science.gov (United States)

    Bonte, Milene; Frost, Martin A; Rutten, Sanne; Ley, Anke; Formisano, Elia; Goebel, Rainer

    2013-12-01

    We study the developmental trajectory of morphology and function of the superior temporal cortex (STC) in children (8-9 years), adolescents (14-15 years) and young adults. We analyze cortical surface landmarks and functional MRI (fMRI) responses to voices, other natural categories and tones and examine how hemispheric asymmetry and inter-subject variability change across age. Our results show stable morphological asymmetries across age groups, including a larger left planum temporale and a deeper right superior temporal sulcus. fMRI analyses show that a rightward lateralization for voice-selective responses is present in all groups but decreases with age. Furthermore, STC responses to voices change from being less selective and more spatially diffuse in children to highly selective and focal in adults. Interestingly, the analysis of morphological landmarks reveals that inter-subject variability increases during development in the right--but not in the left--STC. Similarly, inter-subject variability of cortically-realigned functional responses to voices, other categories and tones increases with age in the right STC. Our findings reveal asymmetric developmental changes in brain regions crucial for auditory and voice perception. The age-related increase of inter-subject variability in right STC suggests that anatomy and function of this region are shaped by unique individual developmental experiences. © 2013.

  11. Optical inactivation of the anterior cingulate cortex modulate descending pain pathway in a rat model of trigeminal neuropathic pain created via chronic constriction injury of the infraorbital nerve

    Directory of Open Access Journals (Sweden)

    Moon HC

    2017-10-01

    Full Text Available Hyeong Cheol Moon,1 Won Ik Heo,2 Yon Ji Kim,3 Daae Lee,4 So Yoon Won,5 Hong Rae Kim,1 Seung Man Ha,1 Youn Joo Lee,6 Young Seok Park1 1Department of Medical Neuroscience and Neurosurgery, College of Medicine, 2Department of Veterinary, College of Veterinary Medicine, 3Department of Biology, College of Natural Sciences, 4Department of Advanced Material Engineering, College of Engineering, 5Biochemistry and Medical Research Center, Chungbuk National University, Cheongju, 6Department of Radiology, Daejoen St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea Purpose: The anterior cingulate cortex (ACC plays a critical role in the initiation, development, and maintenance of neuropathic pain. Recently, the effects of optical stimulation on pain have been investigated, but the therapeutic effects of optical stimulation on trigeminal neuralgia (TN have not been clearly shown. Here, we investigated the effects of optical inhibition of the ACC on TN lesions to determine whether the alleviation of pain affects behavior performance and thalamic neuron signaling.Materials and methods: TN lesions were established in animals by generating a chronic constriction injury of the infraorbital nerve, and the animals received injections of AAV-hSyn-eNpHR3.0-EYFP or a vehicle (phosphate-buffered saline [PBS] in the ACC. The optical fiber was fixed into the ipsilateral ACC after the injection of adeno-associated virus plasmids or vehicle. Behavioral testing, consisting of responses to an air puff and cold allodynia, was performed, and thalamic neuronal activity was monitored following optical stimulation in vivo. Optical stimulation experiments were executed in three steps: during pre-light-off, stimulation-light-on, and post-light-off states. The role of the optical modulation of the ACC in response to pain was shown using a combination of optical stimulation and electrophysiological recordings in vivo.Results: Mechanical thresholds and

  12. Abnormal Functional Connectivity of Anterior Cingulate Cortex in Patients With Primary Insomnia: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Chao-Qun Yan

    2018-06-01

    Full Text Available Background: Recently, there have been many reports about abnormalities regarding structural and functional brain connectivity of the patients with primary insomnia. However, the alterations in functional interaction between the left and right cerebral hemispheres have not been well understood. The resting-state fMRI approach, which reveals spontaneous neural fluctuations in blood-oxygen-level-dependent signals, offers a method to quantify functional interactions between the hemispheres directly.Methods: We compared interhemispheric functional connectivity (FC between 26 patients with primary insomnia (48.85 ± 12.02 years and 28 healthy controls (49.07 ± 11.81 years using a voxel-mirrored homotopic connectivity (VMHC method. The patients with primary insomnia and healthy controls were matched for age, gender, and education. Brain regions, which had significant differences in VMHC maps between the primary insomnia and healthy control groups, were defined as seed region of interests. A seed-based approach was further used to reveal significant differences of FC between the seeds and the whole contralateral hemisphere.Results: The patients with primary insomnia showed higher VMHC than healthy controls in the anterior cingulate cortex (ACC bilaterally. The seed-based analyses demonstrated increased FC between the left ACC and right thalamus (and the right ACC and left orbitofrontal cortex in patients with primary insomnia, revealing abnormal connectivity between the two cerebral hemispheres. The VMHC values in the ACC were positively correlated with the time to fall asleep and Self-Rating Depression Scale scores (SDS.Conclusions: The results demonstrate that there is abnormal interhemispheric resting-state FC in the brain regions of patients with primary insomnia, especially in the ACC. Our finding demonstrates valid evidence that the ACC is an area of interest in the neurobiology of primary insomnia.

  13. Magnetic resonance imaging of anterior temporal lobe cysts in children: discriminating special imaging features in a particular group of diseases

    International Nuclear Information System (INIS)

    Hoffmann Nunes, Renato; Torres Pacheco, Felipe; Rocha, Antonio Jose da

    2014-01-01

    We hypothesized that disorders with anterior temporal lobe (ATL) cysts might exhibit common peculiarities and distinguishable imaging features that could be useful for diagnosis. We reviewed a series of patients for neuroimaging contributions to specific diagnoses. A literature search was conducted, and institutional imaging files were reviewed to identify MR examinations with ATL cysts in children. Patients were divided according to head size, calcifications, white matter and cortical abnormalities. Unsupervised hierarchical clustering of patients on the basis of their MR and CT items was performed. We identified 23 patients in our database in whom MR revealed ATL cysts. Our series included five patients with congenital muscular dystrophy (05/23 = 21.7 %), six with megalencephalic leukoencephalopathy with subcortical cysts (06/23 = 26.1 %), three with non-megalencephalic leukoencephalopathy with subcortical cysts (03/23 = 13.1 %), seven with congenital cytomegalovirus disease (07/23 = 30.4 %) and two with Aicardi-Goutieres syndrome (02/23 = 8.7 %). After analysis, 11 clusters resulted in the highest discriminative indices. Thereafter, patients' clusters were linked to their underlying diseases. The features that best discriminated between clusters included brainstem abnormalities, cerebral calcifications and some peculiar grey and white matter abnormalities. A flow chart was drafted to guide the radiologist in these diagnoses. The authors encourage the combined interpretation of these features in the herein proposed approach that confidently predicted the final diagnosis in this particular group of disorders associated with ATL cysts. (orig.)

  14. Apples are not the only fruit: The effects of concept typicality on semantic representation in the anterior temporal lobe

    Directory of Open Access Journals (Sweden)

    Anna M. Woollams

    2012-04-01

    Full Text Available Intuitively, an apple seems a fairly good example of a fruit, whereas an avocado seems less so. The extent to which an exemplar is representative of its category, a variable known as concept typicality, has long been thought to be a key dimension determining semantic representation. Concept typicality is, however, correlated with a number of other variables, in particular age of acquisition and name frequency. Consideration of picture naming accuracy from a large case-series of semantic dementia patients demonstrated strong effects of concept typicality that were maximal in the moderately impaired patients, over and above the impact of age of acquisition and name frequency. Induction of a temporary virtual lesion to the left anterior temporal lobe, the region most commonly affected in semantic dementia, via repetitive Transcranial Magnetic Stimulation produced an enhanced effect of concept typicality in the picture naming of normal participants, but did not affect the magnitude of the age of acquisition or name frequency effects. These results indicate that concept typicality exerts its influence on semantic representations themselves, as opposed to the strength of connections outside the semantic system. To date, there has been little direct exploration of the dimension of concept typicality within connectionist models of intact and impaired conceptual representation, and these findings provide a target for future computational simulation.

  15. Magnetic resonance imaging of anterior temporal lobe cysts in children: discriminating special imaging features in a particular group of diseases

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann Nunes, Renato; Torres Pacheco, Felipe; Rocha, Antonio Jose da [Fleury Medicina e Saude, Division of Neuroradiology, Sao Paulo (Brazil); Servico de Diagnostico por Imagem, Division of Neuroradiology, Santa Casa de Misericordia de Sao Paulo Paulo, Sao Paulo (Brazil)

    2014-07-15

    We hypothesized that disorders with anterior temporal lobe (ATL) cysts might exhibit common peculiarities and distinguishable imaging features that could be useful for diagnosis. We reviewed a series of patients for neuroimaging contributions to specific diagnoses. A literature search was conducted, and institutional imaging files were reviewed to identify MR examinations with ATL cysts in children. Patients were divided according to head size, calcifications, white matter and cortical abnormalities. Unsupervised hierarchical clustering of patients on the basis of their MR and CT items was performed. We identified 23 patients in our database in whom MR revealed ATL cysts. Our series included five patients with congenital muscular dystrophy (05/23 = 21.7 %), six with megalencephalic leukoencephalopathy with subcortical cysts (06/23 = 26.1 %), three with non-megalencephalic leukoencephalopathy with subcortical cysts (03/23 = 13.1 %), seven with congenital cytomegalovirus disease (07/23 = 30.4 %) and two with Aicardi-Goutieres syndrome (02/23 = 8.7 %). After analysis, 11 clusters resulted in the highest discriminative indices. Thereafter, patients' clusters were linked to their underlying diseases. The features that best discriminated between clusters included brainstem abnormalities, cerebral calcifications and some peculiar grey and white matter abnormalities. A flow chart was drafted to guide the radiologist in these diagnoses. The authors encourage the combined interpretation of these features in the herein proposed approach that confidently predicted the final diagnosis in this particular group of disorders associated with ATL cysts. (orig.)

  16. Decision Making in the Balloon Analogue Risk Task (BART): Anterior Cingulate Cortex Signals Loss-Aversion but not the Infrequency of Risky Choices

    Science.gov (United States)

    Fukunaga, Rena; Brown, Joshua W.; Bogg, Tim

    2012-01-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision-making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether ACC and IFG/AI regions correspond to loss-aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss-aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward-seeking. However, in the cingulate and mainly bilateral IFG regions, BOLD activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings consistent with a reduced loss-aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision-making, as well as the importance of distinguishing decision and feedback signals. PMID:22707378

  17. Decision making in the Balloon Analogue Risk Task (BART): anterior cingulate cortex signals loss aversion but not the infrequency of risky choices.

    Science.gov (United States)

    Fukunaga, Rena; Brown, Joshua W; Bogg, Tim

    2012-09-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., Journal of Experimental Psychology: Applied, 8, 75-84, 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether the ACC and IFG/AI regions correspond to loss aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward seeking. However, in the cingulate and in mainly bilateral IFG regions, blood-oxygenation-level-dependent activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings that are consistent with a reduced loss aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision making, as well as the importance of distinguishing between decision and feedback signals.

  18. Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration.

    Science.gov (United States)

    Zhao, Wanying; Riggs, Kevin; Schindler, Igor; Holle, Henning

    2018-02-21

    Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas. SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being

  19. Object Representations in Human Visual Cortex Formed Through Temporal Integration of Dynamic Partial Shape Views.

    Science.gov (United States)

    Orlov, Tanya; Zohary, Ehud

    2018-01-17

    We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on

  20. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  1. "That thing in New York": Impaired naming vs. preserved recognition of unique entities following an anterior temporal lobe lesion

    Directory of Open Access Journals (Sweden)

    Daniel Roberts

    2014-04-01

    Full Text Available Background Anterior temporal lobe (aTL damage often results in semantic impairment. As such, the contribution of this region to semantic processing has received considerable attention. Two theories exist to explain aTL function based on conflicting neuropsychological investigations. The first proposes bilateral aTLs form a “hub” implicated in multimodal semantics (for review see: Jefferies, 2013. The second assumes distinct functions. The left is thought to function as a repertoire for knowledge of entities with unique lexical-conceptual associations (for review: Ross & Olson, 2012. These items represent an extreme end of a continuum of semantic specificity spanning unique (e.g., Eiffel Tower over less specific (e.g., tower to nonspecific (e.g., landmark – often denoted by famous faces, landmarks and proper names. LaTL function, therefore, is to link semantics to language systems for naming, whilst RaTL is involved in familiarity and recognition (e.g., Eiffel Tower -> a building in Paris; Drane et al., 2013. Evidence for each theory has proceeded in parallel but there has been no attempt to directly test them in a patient (Simmons & Martin, 2009. The novelty of this study, therefore, was to determine whether LaTL lesions disproportionately affect unique entity naming vs. recognition. Method WRP, a 51year old right-handed male, three year post-HSVE has a LaTL lesion with destruction of the temporal pole, extending to medial temporal, amygdala and hippocampus and atypical connectivity particularly involving the uncinate fasciculas. There is no evidence of either cortical or white matter damage in the right hemisphere. Previous work with WRP revealed a mild/moderate category-specific semantic deficit (Roberts et al., 2012. This new study focuses on unique entity picture naming, recognition and word-to-picture matching (WPM. Results & Discussion As predicted, results (Table 1 show that WRP was severely impaired in naming different categories

  2. Focal versus distributed temporal cortex activity for speech sound category assignment

    Science.gov (United States)

    Bouton, Sophie; Chambon, Valérian; Tyrand, Rémi; Seeck, Margitta; Karkar, Sami; van de Ville, Dimitri; Giraud, Anne-Lise

    2018-01-01

    Percepts and words can be decoded from distributed neural activity measures. However, the existence of widespread representations might conflict with the more classical notions of hierarchical processing and efficient coding, which are especially relevant in speech processing. Using fMRI and magnetoencephalography during syllable identification, we show that sensory and decisional activity colocalize to a restricted part of the posterior superior temporal gyrus (pSTG). Next, using intracortical recordings, we demonstrate that early and focal neural activity in this region distinguishes correct from incorrect decisions and can be machine-decoded to classify syllables. Crucially, significant machine decoding was possible from neuronal activity sampled across different regions of the temporal and frontal lobes, despite weak or absent sensory or decision-related responses. These findings show that speech-sound categorization relies on an efficient readout of focal pSTG neural activity, while more distributed activity patterns, although classifiable by machine learning, instead reflect collateral processes of sensory perception and decision. PMID:29363598

  3. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  4. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    Science.gov (United States)

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The cytokine temporal profile in rat cortex after controlled cortical impact.

    Science.gov (United States)

    Dalgard, Clifton L; Cole, Jeffrey T; Kean, William S; Lucky, Jessica J; Sukumar, Gauthaman; McMullen, David C; Pollard, Harvey B; Watson, William D

    2012-01-01

    Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may

  6. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    Science.gov (United States)

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context. Copyright © 2012. Published by Elsevier Ltd.

  7. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats.

    Science.gov (United States)

    Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J

    2002-08-01

    The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.

  8. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.

    Science.gov (United States)

    Hosking, Jay G; Cocker, Paul J; Winstanley, Catharine A

    2014-06-01

    Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.

  9. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  10. Inhibition of the cAMP/PKA/CREB Pathway Contributes to the Analgesic Effects of Electroacupuncture in the Anterior Cingulate Cortex in a Rat Pain Memory Model.

    Science.gov (United States)

    Shao, Xiao-Mei; Sun, Jing; Jiang, Yong-Liang; Liu, Bo-Yi; Shen, Zui; Fang, Fang; Du, Jun-Ying; Wu, Yuan-Yuan; Wang, Jia-Ling; Fang, Jian-Qiao

    2016-01-01

    Pain memory is considered as endopathic factor underlying stubborn chronic pain. Our previous study demonstrated that electroacupuncture (EA) can alleviate retrieval of pain memory. This study was designed to observe the different effects between EA and indomethacin (a kind of nonsteroid anti-inflammatory drugs, NSAIDs) in a rat pain memory model. To explore the critical role of protein kinase A (PKA) in pain memory, a PKA inhibitor was microinjected into anterior cingulate cortex (ACC) in model rats. We further investigated the roles of the cyclic adenosine monophosphate (cAMP), PKA, cAMP response element-binding protein (CREB), and cAMP/PKA/CREB pathway in pain memory to explore the potential molecular mechanism. The results showed that EA alleviates the retrieval of pain memory while indomethacin failed. Intra-ACC microinjection of a PKA inhibitor blocked the occurrence of pain memory. EA reduced the activation of cAMP, PKA, and CREB and the coexpression levels of cAMP/PKA and PKA/CREB in the ACC of pain memory model rats, but indomethacin failed. The present findings identified a critical role of PKA in ACC in retrieval of pain memory. We propose that the proper mechanism of EA on pain memory is possibly due to the partial inhibition of cAMP/PKA/CREB signaling pathway by EA.

  11. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory.

    Science.gov (United States)

    Mukherjee, Bandhan; Yuan, Qi

    2016-10-14

    The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.

  12. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study.

    Science.gov (United States)

    Zilverstand, Anna; Sorger, Bettina; Slaats-Willemse, Dorine; Kan, Cornelis C; Goebel, Rainer; Buitelaar, Jan K

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study's small sample size, potential clinical benefits need to be further investigated in future studies. ISRCTN12390961.

  13. Imaging the spatio-temporal dynamics of supragranular activity in the rat somatosensory cortex in response to stimulation of the paws.

    Directory of Open Access Journals (Sweden)

    M L Morales-Botello

    Full Text Available We employed voltage-sensitive dye (VSD imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1 Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2 While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3 Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4 Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.

  14. Adaptation can explain evidence for encoding of probabilistic information in macaque inferior temporal cortex.

    Science.gov (United States)

    Vinken, Kasper; Vogels, Rufin

    2017-11-20

    In predictive coding theory, the brain is conceptualized as a prediction machine that constantly constructs and updates expectations of the sensory environment [1]. In the context of this theory, Bell et al.[2] recently studied the effect of the probability of task-relevant stimuli on the activity of macaque inferior temporal (IT) neurons and observed a reduced population response to expected faces in face-selective neurons. They concluded that "IT neurons encode long-term, latent probabilistic information about stimulus occurrence", supporting predictive coding. They manipulated expectation by the frequency of face versus fruit stimuli in blocks of trials. With such a design, stimulus repetition is confounded with expectation. As previous studies showed that IT neurons decrease their response with repetition [3], such adaptation (or repetition suppression), instead of expectation suppression as assumed by the authors, could explain their effects. The authors attempted to control for this alternative interpretation with a multiple regression approach. Here we show by using simulation that adaptation can still masquerade as expectation effects reported in [2]. Further, the results from the regression model used for most analyses cannot be trusted, because the model is not uniquely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cue competition affects temporal dynamics of edge-assignment in human visual cortex.

    Science.gov (United States)

    Brooks, Joseph L; Palmer, Stephen E

    2011-03-01

    Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.

  16. Influence of experimental interfering occlusal contacts on the activity of the anterior temporal and masseter muscles during submaximal and maximal bite in the intercuspal position.

    Science.gov (United States)

    Sheikholeslam, A; Riise, C

    1983-05-01

    The effects of an intercuspal occlusal interference on the pattern of activity of the anterior temporal and masseter muscles during submaximal and maximal bite, were studied in eleven volunteers with complete, natural dentitions. The results show that, during maximal and submaximal bite an occlusal interference (about 0.5 mm) in the intercuspal position is able to disturb the almost symmetric pattern of muscular activity in the anterior temporal and masseter muscles. Further, the level of muscular activity during maximal bite decreased significantly in all muscles studied. In some subjects, the decrease of muscular activity could still be observed one week after insertion of the interfering contact. After eliminating the interference, the muscular co-ordination pattern improved and the level of muscular activity increased significantly.

  17. The anterior-ventrolateral temporal lobe contributes to boosting visual working memory capacity for items carrying semantic information.

    Science.gov (United States)

    Chiou, Rocco; Lambon Ralph, Matthew A

    2018-04-01

    Working memory (WM) is a buffer that temporarily maintains information, be it visual or auditory, in an active state, caching its contents for online rehearsal or manipulation. How the brain enables long-term semantic knowledge to affect the WM buffer is a theoretically significant issue awaiting further investigation. In the present study, we capitalise on the knowledge about famous individuals as a 'test-case' to study how it impinges upon WM capacity for human faces and its neural substrate. Using continuous theta-burst transcranial stimulation combined with a psychophysical task probing WM storage for varying contents, we provide compelling evidence that (1) faces (regardless of familiarity) continued to accrue in the WM buffer with longer encoding time, whereas for meaningless stimuli (colour shades) there was little increment; (2) the rate of WM accrual was significantly more efficient for famous faces, compared to unknown faces; (3) the right anterior-ventrolateral temporal lobe (ATL) causally mediated this superior WM storage for famous faces. Specifically, disrupting the ATL (a region tuned to semantic knowledge including person identity) selectively hinders WM accrual for celebrity faces while leaving the accrual for unfamiliar faces intact. Further, this 'semantically-accelerated' storage is impervious to disruption of the right middle frontal gyrus and vertex, supporting the specific and causative contribution of the right ATL. Our finding advances the understanding of the neural architecture of WM, demonstrating that it depends on interaction with long-term semantic knowledge underpinned by the ATL, which causally expands the WM buffer when visual content carries semantic information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. A conceptual lemon: theta burst stimulation to the left anterior temporal lobe untangles object representation and its canonical color.

    Science.gov (United States)

    Chiou, Rocco; Sowman, Paul F; Etchell, Andrew C; Rich, Anina N

    2014-05-01

    Object recognition benefits greatly from our knowledge of typical color (e.g., a lemon is usually yellow). Most research on object color knowledge focuses on whether both knowledge and perception of object color recruit the well-established neural substrates of color vision (the V4 complex). Compared with the intensive investigation of the V4 complex, we know little about where and how neural mechanisms beyond V4 contribute to color knowledge. The anterior temporal lobe (ATL) is thought to act as a "hub" that supports semantic memory by integrating different modality-specific contents into a meaningful entity at a supramodal conceptual level, making it a good candidate zone for mediating the mappings between object attributes. Here, we explore whether the ATL is critical for integrating typical color with other object attributes (object shape and name), akin to its role in combining nonperceptual semantic representations. In separate experimental sessions, we applied TMS to disrupt neural processing in the left ATL and a control site (the occipital pole). Participants performed an object naming task that probes color knowledge and elicits a reliable color congruency effect as well as a control quantity naming task that also elicits a cognitive congruency effect but involves no conceptual integration. Critically, ATL stimulation eliminated the otherwise robust color congruency effect but had no impact on the numerical congruency effect, indicating a selective disruption of object color knowledge. Neither color nor numerical congruency effects were affected by stimulation at the control occipital site, ruling out nonspecific effects of cortical stimulation. Our findings suggest that the ATL is involved in the representation of object concepts that include their canonical colors.

  19. MEG evidence for conceptual combination but not numeral quantification in the left anterior temporal lobe during language production

    Directory of Open Access Journals (Sweden)

    Paul eDel Prato

    2014-06-01

    Full Text Available The left anterior temporal lobe (LATL has risen as a leading candidate for a brain locus of composition in language; yet the computational details of its function are unknown. Although most literature discusses it as a combinatory region in very general terms, it has also been proposed to reflect the more specific function of conceptual combination, which in the classic use of this term mainly pertains to the combination of open class words with obvious conceptual contributions. We aimed to distinguish between these two possibilities by contrasting plural nouns in contexts where they were either preceded by a color modifier (red cups, eliciting conceptual combination, or by a number word (two cups, eliciting numeral quantification but no conceptual combination. This contrast was chosen because within a production task, it allows the manipulation of composition type while keeping the physical stimulus constant: a display of two red cups can be named as two cups or red cups depending on the task instruction. These utterances were compared to productions of two-word number and color lists, intended as noncombinatory control conditions. MEG activity was recorded during the planning for production, prior to motion artifacts. As expected on the basis of comprehension studies, color modification elicited increased LATL activity as compared to color lists, demonstrating that this basic combinatory effect is strongly crossmodal. However, numeral quantification did not elicit a parallel effect, suggesting that the function of the LATL is (i semantic and not syntactic (given that both color modification and numeral quantification involve syntactic composition and (ii corresponds more closely to the classical psychological notion of conceptual combination as opposed to a more general semantic combinatory function.

  20. The temporal dynamics of implicit processing of non-letter, letter, and word-forms in the human visual cortex

    Directory of Open Access Journals (Sweden)

    Lawrence Gregory Appelbaum

    2009-11-01

    Full Text Available The decoding of visually presented line segments into letters, and letters into words, is critical to fluent reading abilities. Here we investigate the temporal dynamics of visual orthographic processes, focusing specifically on right hemisphere contributions and interactions between the hemispheres involved in the implicit processing of visually presented words, consonants, false fonts, and symbolic strings. High-density EEG was recorded while participants detected infrequent, simple, perceptual targets (dot strings embedded amongst a of character strings. Beginning at 130ms, orthographic and non-orthographic stimuli were distinguished by a sequence of ERP effects over occipital recording sites. These early latency occipital effects were dominated by enhanced right-sided negative-polarity activation for non-orthographic stimuli that peaked at around 180ms. This right-sided effect was followed by bilateral positive occipital activity for false-fonts, but not symbol strings. Moreover the size of components of this later positive occipital wave was inversely correlated with the right-sided ROcc180 wave, suggesting that subjects who had larger early right-sided activation for non-orthographic stimuli had less need for more extended bilateral (e.g. interhemispheric processing of those stimuli shortly later. Additional early (130-150ms negative-polarity activity over left occipital cortex and longer-latency centrally distributed responses (>300ms were present, likely reflecting implicit activation of the previously reported ‘visual-word-form’ area and N400-related responses, respectively. Collectively, these results provide a close look at some relatively unexplored portions of the temporal flow of information processing in the brain related to the implicit processing of potentially linguistic information and provide valuable information about the interactions between hemispheres supporting visual orthographic processing.

  1. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans.

    Directory of Open Access Journals (Sweden)

    Antonella Conte

    Full Text Available BACKGROUND: The somatosensory temporal discrimination threshold (STDT measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. METHODOLOGY/PRINCIPAL FINDINGS: To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS on the right primary somatosensory area (S1, pre-supplementary motor area (pre-SMA, right dorsolateral prefrontal cortex (DLPFC and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. CONCLUSIONS/SIGNIFICANCE: Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease.

  2. Theta-Burst Stimulation-Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal Discrimination in Healthy Humans

    Science.gov (United States)

    Conte, Antonella; Rocchi, Lorenzo; Nardella, Andrea; Dispenza, Sabrina; Scontrini, Alessandra; Khan, Nashaba; Berardelli, Alfredo

    2012-01-01

    Background The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. Methodology/Principal Findings To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. Conclusions/Significance Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease. PMID:22412964

  3. Differential DNA Methylation of MicroRNA Genes in Temporal Cortex from Alzheimer’s Disease Individuals

    Directory of Open Access Journals (Sweden)

    Darine Villela

    2016-01-01

    Full Text Available This study investigated for the first time the genomewide DNA methylation changes of noncoding RNA genes in the temporal cortex samples from individuals with Alzheimer’s disease (AD. The methylome of 10 AD individuals and 10 age-matched controls were obtained using Illumina 450 K methylation array. A total of 2,095 among the 15,258 interrogated noncoding RNA CpG sites presented differential methylation, 161 of which were associated with miRNA genes. In particular, 10 miRNA CpG sites that were found to be hypermethylated in AD compared to control brains represent transcripts that have been previously associated with the disease. This miRNA set is predicted to target 33 coding genes from the neuregulin receptor complex (ErbB signaling pathway, which is required for the neurons myelination process. For 6 of these miRNA genes (MIR9-1, MIR9-3, MIR181C, MIR124-1, MIR146B, and MIR451, the hypermethylation pattern is in agreement with previous results from literature that shows downregulation of miR-9, miR-181c, miR-124, miR-146b, and miR-451 in the AD brain. Our data implicate dysregulation of miRNA methylation as contributor to the pathogenesis of AD.

  4. The Neural Correlates of Mindful Awareness: A Possible Buffering Effect on Anxiety-Related Reduction in Subgenual Anterior Cingulate Cortex Activity

    Science.gov (United States)

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Background Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Methods Resting brain glucose metabolism (GM) was measured using [18F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Results Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = −0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = −8, y = 32, z = −8, k = 423, Z = 4.41, corrected p FDR = 0.030). Conclusion The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in

  5. The neural correlates of mindful awareness: a possible buffering effect on anxiety-related reduction in subgenual anterior cingulate cortex activity.

    Science.gov (United States)

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Resting brain glucose metabolism (GM) was measured using [(18)F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = -0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = -8, y = 32, z = -8, k = 423, Z = 4.41, corrected p (FDR) = 0.030). The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in individuals with a risk for or having

  6. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis.

    Directory of Open Access Journals (Sweden)

    Gabriela Cruz

    Full Text Available Time-based prospective memory (PM, remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention plus target checking (intermittent time checks. The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks.24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis.Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC, showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se.The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task and anticipatory/decision making processing associated with clock-checks.

  7. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    Science.gov (United States)

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  8. The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost-benefit decision making in rats.

    Science.gov (United States)

    Wang, Shuai; Hu, Shan-Hu; Shi, Yi; Li, Bao-Ming

    2017-03-01

    It has been shown that the anterior cingulate cortex (ACC) and its dopamine system are crucial for decision making that requires physical/emotional effort, but not for all forms of cost-benefit decision making. Previous studies had mostly employed behavioral tasks with two competing cost-reward options that were preset by the experimenters. However, few studies have been conducted using scenarios in which the subjects have full control over the energy/time expenditure required to obtain a proportional reward. Here, we assessed the roles of the ACC and its dopamine system in cost-benefit decision making by utilizing a "do more get more" (DMGM) task and a time-reward trade-off (TRTO) task, wherein the animals were able to self-determine how much effort or time to expend at a nosepoke operandum for a proportional reward. Our results showed that (1) ACC inactivation severely impaired DMGM task performance, with a reduction in the rate of correct responses and a decrease in the effort expended, but did not affect the TRTO task; and (2) blocking ACC D2 receptors had no impact on DMGM task performance in the baseline cost-benefit scenario, but it significantly reduced the attempts to invest increased effort for a large reward when the benefit-cost ratio was reduced by half. In contrast, blocking ACC D1 receptors had no effect on DMGM task performance. These findings suggest that the ACC is required for self-paced effort-based but not for time-reward trade-off decision making. Furthermore, ACC dopamine D2 but not D1 receptors are involved in DMGM decision making.

  9. Structural brain correlates of executive engagement in working memory: children's inter-individual differences are reflected in the anterior insular cortex.

    Science.gov (United States)

    Rossi, Sandrine; Lubin, Amélie; Simon, Grégory; Lanoë, Céline; Poirel, Nicolas; Cachia, Arnaud; Pineau, Arlette; Houdé, Olivier

    2013-06-01

    Although the development of executive functions has been extensively investigated at a neurofunctional level, studies of the structural relationships between executive functions and brain anatomy are still scarce. Based on our previous meta-analysis of functional neuroimaging studies examining executive functions in children (Houdé, Rossi, Lubin, and Joliot, (2010). Developmental Science, 13, 876-885), we investigated six a priori regions of interest: the left anterior insular cortex (AIC), the left and the right supplementary motor areas, the right middle and superior frontal gyri, and the left precentral gyrus. Structural magnetic resonance imaging scans were acquired from 22 to 10-year-old children. Local gray matter volumes, assessed automatically using a standard voxel-based morphometry approach, were correlated with executive and storage working memory capacities evaluated using backward and forward digit span tasks, respectively. We found an association between smaller gray matter volume--i.e., an index of neural maturation--in the left AIC and high backward memory span while gray matter volumes in the a priori selected regions of interest were not linked with forward memory span. These results were corroborated by a whole-brain a priori free analysis that revealed a significant negative correlation in the frontal and prefrontal regions, including the left AIC, with the backward memory span, and in the right inferior parietal lobe, with the forward memory span. Taken together, these results suggest a distinct and specific association between regional gray matter volume and the executive component vs. the storage component of working memory. Moreover, they support a key role for the AIC in the executive network of children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    Science.gov (United States)

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Role for the Ventral Posterior Medial/Posterior Lateral Thalamus and Anterior Cingulate Cortex in Affective/Motivation Pain Induced by Varicella Zoster Virus

    Directory of Open Access Journals (Sweden)

    Phillip R. Kramer

    2017-10-01

    Full Text Available Varicella zoster virus (VZV infects the face and can result in chronic, debilitating pain. The mechanism for this pain is unknown and current treatment is often not effective, thus investigations into the pain pathway become vital. Pain itself is multidimensional, consisting of sensory and affective experiences. One of the primary brain substrates for transmitting sensory signals in the face is the ventral posterior medial/posterior lateral thalamus (VPM/VPL. In addition, the anterior cingulate cortex (ACC has been shown to be vital in the affective experience of pain, so investigating both of these areas in freely behaving animals was completed to address the role of the brain in VZV-induced pain. Our lab has developed a place escape avoidance paradigm (PEAP to measure VZV-induced affective pain in the orofacial region of the rat. Using this assay as a measure of the affective pain experience a significant response was observed after VZV injection into the whisker pad and after VZV infusion into the trigeminal ganglion. Local field potentials (LFPs are the summed electrical current from a group of neurons. LFP in both the VPM/VPL and ACC was attenuated in VZV injected rats after inhibition of neuronal activity. This inhibition of VPM/VPL neurons was accomplished using a designer receptor exclusively activated by a designer drug (DREADD. Immunostaining showed that cells within the VPM/VPL expressed thalamic glutamatergic vesicle transporter-2, NeuN and DREADD suggesting inhibition occurred primarily in excitable neurons. From these results we conclude: (1 that VZV associated pain does not involve a mechanism exclusive to the peripheral nerve terminals, and (2 can be controlled, in part, by excitatory neurons within the VPM/VPL that potentially modulate the affective experience by altering activity in the ACC.

  12. Anterior cingulate cortex is crucial for contra- but not ipsi-lateral electro-acupuncture in the formalin-induced inflammatory pain model of rats

    Directory of Open Access Journals (Sweden)

    Xing Guo-Gang

    2011-08-01

    Full Text Available Abstract Acupuncture and electro-acupuncture (EA are now widely used to treat disorders like pain. We and others have shown previously that current frequency, intensity and treatment duration all significantly influence the anti-nociceptive effects of EA. There is evidence that stimulating sites also affect the antinociception, with EA applied ipsilaterally to the pain site being more effective under some pain states but contralateral EA under others. It was recently reported that local adenosine A1 receptors were responsible for ipsilateral acupuncture, but what mechanisms specifically mediate the anti-nociceptive effects of contralateral acupuncture or EA remains unclear. In the present study, we applied 100 Hz EA on the ipsi- or contra-lateral side of rats with inflammatory pain induced by intra-plantar injection of formalin, and reported distinct anti-nociceptive effects and mechanisms between them. Both ipsi- and contra-lateral EA reduced the paw lifting time in the second phase of the formalin test and attenuated formalin-induced conditioned place aversion. Contralateral EA had an additional effect of reducing paw licking time, suggesting a supraspinal mechanism. Lesions of rostral anterior cingulate cortex (ACC completely abolished the anti-nociceptive effects of contra- but not ipsi-lateral EA. These findings were not lateralized effects, since injection of formalin into the left or right hind paws produced similar results. Overall, these results demonstrated distinct anti-nociceptive effects and mechanisms between different stimulating sides and implied the necessity of finding the best stimulating protocols for different pain states.

  13. Association of a History of Child Abuse With Impaired Myelination in the Anterior Cingulate Cortex: Convergent Epigenetic, Transcriptional, and Morphological Evidence.

    Science.gov (United States)

    Lutz, Pierre-Eric; Tanti, Arnaud; Gasecka, Alicja; Barnett-Burns, Sarah; Kim, John J; Zhou, Yi; Chen, Gang G; Wakid, Marina; Shaw, Meghan; Almeida, Daniel; Chay, Marc-Aurele; Yang, Jennie; Larivière, Vanessa; M'Boutchou, Marie-Noël; van Kempen, Léon C; Yerko, Volodymyr; Prud'homme, Josée; Davoli, Maria Antonietta; Vaillancourt, Kathryn; Théroux, Jean-François; Bramoullé, Alexandre; Zhang, Tie-Yuan; Meaney, Michael J; Ernst, Carl; Côté, Daniel; Mechawar, Naguib; Turecki, Gustavo

    2017-12-01

    Child abuse has devastating and long-lasting consequences, considerably increasing the lifetime risk of negative mental health outcomes such as depression and suicide. Yet the neurobiological processes underlying this heightened vulnerability remain poorly understood. The authors investigated the hypothesis that epigenetic, transcriptomic, and cellular adaptations may occur in the anterior cingulate cortex as a function of child abuse. Postmortem brain samples from human subjects (N=78) and from a rodent model of the impact of early-life environment (N=24) were analyzed. The human samples were from depressed individuals who died by suicide, with (N=27) or without (N=25) a history of severe child abuse, as well as from psychiatrically healthy control subjects (N=26). Genome-wide DNA methylation and gene expression were investigated using reduced representation bisulfite sequencing and RNA sequencing, respectively. Cell type-specific validation of differentially methylated loci was performed after fluorescence-activated cell sorting of oligodendrocyte and neuronal nuclei. Differential gene expression was validated using NanoString technology. Finally, oligodendrocytes and myelinated axons were analyzed using stereology and coherent anti-Stokes Raman scattering microscopy. A history of child abuse was associated with cell type-specific changes in DNA methylation of oligodendrocyte genes and a global impairment of the myelin-related transcriptional program. These effects were absent in the depressed suicide completers with no history of child abuse, and they were strongly correlated with myelin gene expression changes observed in the animal model. Furthermore, a selective and significant reduction in the thickness of myelin sheaths around small-diameter axons was observed in individuals with history of child abuse. The results suggest that child abuse, in part through epigenetic reprogramming of oligodendrocytes, may lastingly disrupt cortical myelination, a

  14. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  15. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.

    Science.gov (United States)

    Conklin, Sarah M; Runyan, Caroline A; Leonard, Sherry; Reddy, Ravinder D; Muldoon, Matthew F; Yao, Jeffrey K

    2010-01-01

    Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Delta5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships. Published by Elsevier Ltd.

  16. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    Science.gov (United States)

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  17. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex.

    Science.gov (United States)

    Koyano, Kenji W; Takeda, Masaki; Matsui, Teppei; Hirabayashi, Toshiyuki; Ohashi, Yohei; Miyashita, Yasushi

    2016-10-19

    The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    Science.gov (United States)

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  19. Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory.

    Science.gov (United States)

    Van den Oever, Michel C; Rotaru, Diana C; Heinsbroek, Jasper A; Gouwenberg, Yvonne; Deisseroth, Karl; Stuber, Garret D; Mansvelder, Huibert D; Smit, August B

    2013-11-13

    In addicts, associative memories related to the rewarding effects of drugs of abuse can evoke powerful craving and drug seeking urges, but effective treatment to suppress these memories is not available. Detailed insight into the neural circuitry that mediates expression of drug-associated memory is therefore of crucial importance. Substantial evidence from rodent models of addictive behavior points to the involvement of the ventromedial prefrontal cortex (vmPFC) in conditioned drug seeking, but specific knowledge of the temporal role of vmPFC pyramidal cells is lacking. To this end, we used an optogenetics approach to probe the involvement of vmPFC pyramidal cells in expression of a recent and remote conditioned cocaine memory. In mice, we expressed Channelrhodopsin-2 (ChR2) or Halorhodopsin (eNpHR3.0) in pyramidal cells of the vmPFC and studied the effect of activation or inhibition of these cells during expression of a cocaine-contextual memory on days 1-2 (recent) and ∼3 weeks (remote) after conditioning. Whereas optical activation of pyramidal cells facilitated extinction of remote memory, without affecting recent memory, inhibition of pyramidal cells acutely impaired recall of recent cocaine memory, without affecting recall of remote memory. In addition, we found that silencing pyramidal cells blocked extinction learning at the remote memory time-point. We provide causal evidence of a critical time-dependent switch in the contribution of vmPFC pyramidal cells to recall and extinction of cocaine-associated memory, indicating that the circuitry that controls expression of cocaine memories reorganizes over time.

  20. GABAA receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Kwakowsky, Andrea; Calvo-Flores Guzmán, Beatriz; Pandya, Madhavi; Turner, Clinton; Waldvogel, Henry J; Faull, Richard L

    2018-02-27

    Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA type A receptors (GABA A Rs) are severely affected in Alzheimer's disease (AD). However, the distribution and subunit composition of GABA A Rs in the AD brain are not well understood. This is the first comprehensive study to show brain region- and cell layer-specific alterations in the expression of the GABA A R subunits α1-3, α5, β1-3 and γ2 in the human AD hippocampus, entorhinal cortex and superior temporal gyrus (STG). In late-stage AD tissue samples using immunohistochemistry we found significant alteration of all investigated GABA A Rs subunits except for α3 and β1 that were well preserved. The most prominent changes include an increase in GABA A R α1 expression associated with AD in all layers of the CA3 region, in the stratum (str.) granulare and hilus of the dentate gyrus (DG). We found a significant increase in GABA A R α2 expression in the str. oriens of the CA1-3, str. radiatum of the CA2,3 and decrease in the str. pyramidale of the CA1 region in AD cases. In AD there was a significant increase in GABA A R α5 subunit expression in str. pyramidale, str. oriens of the CA1 region and decrease in the STG. We also found a significant decrease in the GABA A R β3 subunit immunoreactivity in the str. oriens of the CA2, str. granulare and str. moleculare of the DG. In conclusion, these findings indicate that the expression of the GABA A R subunits shows brain region- and layer-specific alterations in AD, and these changes could significantly influence and alter GABA A R function in the disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia.

    Science.gov (United States)

    Joo, Sung Woo; Chon, Myong-Wuk; Rathi, Yogesh; Shenton, Martha E; Kubicki, Marek; Lee, Jungsun

    2018-02-01

    Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Hierarchical Bayesian Model for the Identification of PET Markers Associated to the Prediction of Surgical Outcome after Anterior Temporal Lobe Resection

    Directory of Open Access Journals (Sweden)

    Sharon Chiang

    2017-12-01

    Full Text Available We develop an integrative Bayesian predictive modeling framework that identifies individual pathological brain states based on the selection of fluoro-deoxyglucose positron emission tomography (PET imaging biomarkers and evaluates the association of those states with a clinical outcome. We consider data from a study on temporal lobe epilepsy (TLE patients who subsequently underwent anterior temporal lobe resection. Our modeling framework looks at the observed profiles of regional glucose metabolism in PET as the phenotypic manifestation of a latent individual pathologic state, which is assumed to vary across the population. The modeling strategy we adopt allows the identification of patient subgroups characterized by latent pathologies differentially associated to the clinical outcome of interest. It also identifies imaging biomarkers characterizing the pathological states of the subjects. In the data application, we identify a subgroup of TLE patients at high risk for post-surgical seizure recurrence after anterior temporal lobe resection, together with a set of discriminatory brain regions that can be used to distinguish the latent subgroups. We show that the proposed method achieves high cross-validated accuracy in predicting post-surgical seizure recurrence.

  3. Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study.

    Science.gov (United States)

    Chen, Mu-Hong; Li, Cheng-Ta; Lin, Wei-Chen; Hong, Chen-Jee; Tu, Pei-Chi; Bai, Ya-Mei; Cheng, Chih-Ming; Su, Tung-Ping

    2018-01-01

    A single low-dose ketamine infusion exhibited a rapid antidepressant effect within 1h. Despite its short biological half-life (approximately 3h), the antidepressant effect of ketamine has been demonstrated to persist for several days. However, changes in brain function responsible for the persistent antidepressant effect of a single low-dose ketamine infusion remain unclear METHODS: Twenty-four patients with treatment-resistant depression (TRD) were randomized into three groups according to the treatment received: 0.5mg/kg ketamine, 0.2mg/kg ketamine, and normal saline infusion. Standardized uptake values (SUVs) of glucose metabolism measured through 18 F-FDG positron-emission-tomography before infusion and 1day after a 40-min ketamine or normal saline infusion were used for subsequent whole-brain voxel-wise analysis and were correlated with depressive symptoms, as defined using the Hamilton Depression Rating Scale-17 (HDRS-17) score RESULTS: The voxel-wise analysis revealed that patients with TRD receiving the 0.5mg/kg ketamine infusion had significantly higher SUVs (corrected for family-wise errors, P = 0.014) in the supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC) than did those receiving the 0.2mg/kg ketamine infusion. The increase in the SUV in the dACC was negatively correlated with depressive symptoms at 1day after ketamine infusion DISCUSSION: The persistent antidepressant effect of a 0.5mg/kg ketamine infusion may be mediated by increased activation in the SMA and dACC. The higher increase in dACC activation was related to the reduction in depressive symptoms after ketamine infusion. A 0.5mg/kg ketamine infusion facilitated the glutamatergic neurotransmission in the SMA and dACC, which may be responsible for the persistent antidepressant effect of ketamine much beyond its half-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  5. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer′s Disease

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2015-01-01

    Full Text Available Background: Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS can be used as a tool to enhance cognitive functions. The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit, including the anterior nucleus of thalamus (ANT, the entorhinal cortex (EC, and the fornix (FX, on cognitive behaviors in an Alzheimer′s disease (AD rat model. Methods: Forty-eight rats were subjected to an intrahippocampal injection of amyloid peptides 1-42 to induce an AD model. Rats were divided into six groups: DBS and sham DBS groups of ANT, EC, and FX. Spatial learning and memory were assessed by the Morris water maze (MWM. Recognition memory was investigated by the novel object recognition memory test (NORM. Locomotor and anxiety-related behaviors were detected by the open field test (OF. By using two-way analysis of variance (ANOVA, behavior differences between the six groups were analyzed. Results: In the MWM, the ANT, EC, and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2,23 = 6.04, P < 0.01, the frequency of platform crossing (F(2,23 = 11.53, P < 0.001, and the percent time spent within the platform quadrant (F(2,23 = 6.29, P < 0.01. In the NORM, the EC and FX DBS groups spent more time with the novel object, although the ANT DBS group did not (F(2,23 = 10.03, P < 0.001. In the OF, all of the groups showed a similar total distance moved (F (1,42 = 1.14, P = 0.29 and relative time spent in the center (F(2,42 = 0.56, P = 0.58. Conclusions: Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently than ANT DBS. In addition, hippocampus-independent recognition memory was enhanced by EC and FX DBS. None of the targets showed side-effects of anxiety or locomotor behaviors.

  6. Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without past history of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katarina eDedovic

    2016-03-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD, as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels. Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the

  7. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  8. Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Emiko; Kanagaki, Mitsunori; Okada, Tomohisa; Yamamoto, Akira; Togashi, Kaori [Kyoto University Graduate School of Medicine, Department of Diagnostic Imaging and Nuclear Medicine, Kyoto (Japan); Mori, Nobuyuki [Tenri Hospital, Department of Radiology, Tenri, Nara (Japan); Matsumoto, Riki; Ikeda, Akio; Takahashi, Ryosuke [Kyoto University Graduate School of Medicine, Department of Neurology, Kyoto (Japan); Mikuni, Nobuhiro [Sapporo Medical University, Department of Neurosurgery, Sapporo, Hokkaido (Japan); Kunieda, Takeharu; Miyamoto, Susumu [Kyoto University Graduate School of Medicine, Department of Neurosurgery, Kyoto (Japan); Paul, Dominik [Siemens AG Healthcare Sector, Erlangen (Germany)

    2013-01-15

    To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences. This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using {kappa} statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar's test with multiple comparisons. Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P {<=} 0.031 for each evaluator). The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE. (orig.)

  9. Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging

    International Nuclear Information System (INIS)

    Morimoto, Emiko; Kanagaki, Mitsunori; Okada, Tomohisa; Yamamoto, Akira; Togashi, Kaori; Mori, Nobuyuki; Matsumoto, Riki; Ikeda, Akio; Takahashi, Ryosuke; Mikuni, Nobuhiro; Kunieda, Takeharu; Miyamoto, Susumu; Paul, Dominik

    2013-01-01

    To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences. This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using κ statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar's test with multiple comparisons. Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P ≤ 0.031 for each evaluator). The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE. (orig.)

  10. Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes.

    Science.gov (United States)

    Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A

    2015-10-01

    Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. © The Author 2014. Published by Oxford University Press.

  11. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey

    Science.gov (United States)

    Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.

  12. Damage to Broca’s area OR the anterior temporal lobe is implicated in stroke-induced agrammatic comprehension: it depends on the task

    Directory of Open Access Journals (Sweden)

    Corianne Rogalsky

    2015-04-01

    Full Text Available The neurobiology of sentence comprehension remains unresolved. Previous large-scale studies of stroke patients have yielded conflicting results regarding sentence comprehension, implicating inferior frontal, anterior temporal and/or posterior temporal regions (Dronkers et al., 2004; Magnusdottir et al., 2013; Thothathiri et al. 2012. Furthermore, only one large-scale lesion study (Magnusdottir et al. 2013 has examined the neural underpinnings of agrammatic comprehension (i.e. substantially worse performance on sentences with noncanonical word orders compared to canonical word order sentences in English, a hallmark of Broca’s aphasia. This one previous study of noncanonical < canonical sentence performance on a sentence picture-matching task implicated damage to the left anterior temporal lobe (ATL and to a lesser degree Broca’s area damage (i.e. < 10% of significant voxels (Magnusdottir et al. 2013. The present study investigated the neurobiology of agrammatic comprehension with two sentence comprehension tasks in the MARC test battery: a sentence-picture matching task (the SOAP Test: a test of syntactic complexity; Love & Oster, 2002 and a sentence plausibility judgment task. Each task contained active, passive, subject-relative and object-relative sentences. Participants included 91 patients with chronic focal cerebral damage. First, we conducted voxel-based lesion symptom mapping (VLSM; Bates et al. 2003 for each sentence type in each task. Consistent with previous studies (Magnusdottir et al. 2013; Thothathiri et al. 2012, the VLSMs identified a significant association between sentence comprehension impairments and damage to a large left temporal-inferior parietal network for all sentences (peak t values were in posterior temporal and inferior parietal voxels; no areas of frontal lobe damage were significant for any sentence type/task. We then conducted VLSMs to identify areas of damage associated specifically with agrammatic

  13. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex

    NARCIS (Netherlands)

    van Atteveldt, Nienke M; Blau, Vera C; Blomert, Leo; Goebel, Rainer

    2010-01-01

    BACKGROUND: Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional

  14. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

    Science.gov (United States)

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2013-01-01

    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with

  15. Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex.

    Science.gov (United States)

    Centanni, T M; Booker, A B; Sloan, A M; Chen, F; Maher, B J; Carraway, R S; Khodaparast, N; Rennaker, R; LoTurco, J J; Kilgard, M P

    2014-07-01

    One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain's ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    Science.gov (United States)

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  17. Action word Related to Walk Heard by the Ears Activates Visual Cortex and Superior Temporal Gyrus: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Naoyuki Osaka

    2012-10-01

    Full Text Available Cognitive neuroscience of language of action processing is one of the interesting issues on the cortical “seat” of word meaning and related action (Pulvermueller, 1999 Behavioral Brain Sciences 22 253–336. For example, generation of action verbs referring to various arm or leg actions (e.g., pick or kick differentially activate areas along the motor strip that overlap with those areas activated by actual movement of the fingers or feet (Hauk et al., 2004 Neuron 41 301–307. Meanwhile, mimic words like onomatopoeia have the other potential to selectively and strongly stimulate specific brain regions having a specified “seat” of action meaning. In fact, mimic words highly suggestive of laughter and gaze significantly activated the extrastriate visual /premotor cortices and the frontal eye field, respectively (Osaka et al., 2003 Neuroscience Letters 340 127–130; 2009 Neuroscience Letters 461 65–68. However, the role of a mimic word related to walk on specific brain regions has not yet been investigated. The present study showed that a mimic word highly suggestive of human walking, heard by the ears with eyes closed, significantly activated the visual cortex located in extrastriate cortex and superior temporal gyrus while hearing non-sense words that did not imply walk under the same task did not activate these areas. These areas would be a critical region for generating visual images of walking and related action.

  18. The topology of connections between rat prefrontal and temporal cortices

    Directory of Open Access Journals (Sweden)

    Stacey eBedwell

    2015-05-01

    Full Text Available Understanding the structural organisation of the prefrontal cortex (PFC is an important step towards determining its functional organisation. Here we investigated the organisation of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100nl and anterograde (Biotinylated dextran amine (BDA or Fluoro-Ruby, 100nl tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labelled neurons and anterogradely labelled axon terminals were then analysed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral and medial-lateral axes: p<0.001 and retrograde (anterior-posterior, dorsal-ventral and medial-lateral axes: p<0.001 connections of PFC. We observed that anterograde and retrograde labelling in ipsilateral temporal cortex (i.e. PFC inputs and outputs often occurred reciprocally (i.e. the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labelling. However, often the same specific columnar temporal cortex regions contained only either labelling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched.

  19. Effective Connectivity between Ventral Occipito-Temporal and Ventral Inferior Frontal Cortex during Lexico-Semantic Processing. A Dynamic Causal Modeling Study

    Directory of Open Access Journals (Sweden)

    Marcela Perrone-Bertolotti

    2017-06-01

    Full Text Available It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral, the superior temporal gyrus (STG; dorsal, the dorsal inferior frontal gyrus (dIFG; dorsal, and the ventral IFG (vIFG; ventral. We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG regardless of task demands. Moreover, we found that (a during semantic processing (direct ventral pathway the vOTC -> vIFG connection strength specifically increased and (b a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.

  20. Evidence for Non-Opponent Coding of Colour Information in Human Visual Cortex: Selective Loss of “Green” Sensitivity in a Subject with Damaged Ventral Occipito-Temporal Cortex

    Science.gov (United States)

    Rauscher, Franziska G.; Plant, Gordon T.; James-Galton, Merle; Barbur, John L.

    2011-01-01

    Damage to ventral occipito-temporal extrastriate visual cortex leads to the syndrome of prosopagnosia often with coexisting cerebral achromatopsia. A patient with this syndrome resulting in a left upper homonymous quadrantanopia, prosopagnosia, and incomplete achromatopsia is described. Chromatic sensitivity was assessed at a number of locations in the intact visual field using a dynamic luminance contrast masking technique that isolates the use of colour signals. In normal subjects chromatic detection thresholds form an elliptical contour when plotted in the Commission Internationale d’Eclairage, (x-y), chromaticity diagram. Because the extraction of colour signals in early visual processing involves opponent mechanisms, subjects with Daltonism (congenital red/green loss of sensitivity) show symmetric increase in thresholds towards the long wavelength (“red”) and middle wavelength (“green”) regions of the spectrum locus. This is also the case with acquired loss of chromatic sensitivity as a result of retinal or optic nerve disease. Our patient’s results were an exception to this rule. Whilst his chromatic sensitivity in the central region of the visual field was reduced symmetrically for both “red/green” and “yellow/blue” directions in colour space, the subject’s lower left quadrant showed a marked asymmetry in “red/green” thresholds with the greatest loss of sensitivity towards the “green” region of the spectrum locus. This spatially localized asymmetric loss of “green” but not “red” sensitivity has not been reported previously in human vision. Such loss is consistent with selective damage of neural substrates in the visual cortex that process colour information, but are spectrally non-opponent. PMID:27956924

  1. Individual variation in the propensity for prospective thought is associated with functional integration between visual and retrosplenial cortex.

    Science.gov (United States)

    Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan

    2018-02-01

    It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a

  2. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  3. 'Doctor' or 'darling'? Decoding the communication partner from ECoG of the anterior temporal lobe during non-experimental, real-life social interaction

    Directory of Open Access Journals (Sweden)

    Johanna eDerix

    2012-09-01

    Full Text Available Human brain processes underlying real-life social interaction in everyday situations have been difficult to study and have, until now, remained largely unknown. Here, we investigated whether electrocorticography (ECoG recorded for pre-neurosurgical diagnostics during the daily hospital life of epilepsy patients could provide a way to elucidate the neural correlates of non-experimental social interaction. We identified time periods in which patients were involved in conversations with either their respective life partners (Condition 1; C1 or attending physicians (Condition 2; C2. These two conditions can be expected to differentially involve subfunctions of social interaction which have been associated with activity in the anterior temporal lobe (ATL, including the temporal poles (TP. Therefore, we specifically focused on ECoG recordings from this brain region and investigated spectral power modulations in the alpha (8-12 Hz and theta (3-5 Hz frequency ranges, which have been previously assumed to play an important role in the processing of social interaction. We hypothesized that brain activity in this region might be sensitive to differences in the two interaction situations and tested whether these differences can be detected by single-trial decoding. Condition-specific effects in both theta and alpha bands were observed: the left and right TP exclusively showed increased power in C1 compared to C2, whereas more posterior parts of the ATL exhibited similar (C1 > C2 and also contrary (C2 > C1 effects. Single-trial decoding accuracies for classification of these effects were highly above chance. Our findings demonstrate that it is possible to study the neural correlates of human social interaction in non-experimental conditions. Decoding the identity of the communication partner and adjusting the speech output accordingly may be useful in the emerging field of brain- machine interfacing for restoration of expressive speech.

  4. Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Jastorff, Jan; De Winter, Francois-Laurent; Van den Stock, Jan; Vandenberghe, Rik; Giese, Martin A; Vandenbulcke, Mathieu

    2016-12-01

    Several brain regions are involved in the processing of emotional stimuli, however, the contribution of specific regions to emotion perception is still under debate. To investigate this issue, we combined behavioral testing, structural and resting state imaging in patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and age matched controls, with task-based functional imaging in young, healthy volunteers. As expected, bvFTD patients were impaired in emotion detection as well as emotion categorization tasks, testing dynamic emotional body expressions as stimuli. Interestingly, their performance in the two tasks correlated with gray matter volume in two distinct brain regions, the left anterior temporal lobe for emotion detection and the left inferior frontal gyrus (IFG) for emotion categorization. Confirming this observation, multivoxel pattern analysis in healthy volunteers demonstrated that both ROIs contained information for emotion detection, but that emotion categorization was only possible from the pattern in the IFG. Furthermore, functional connectivity analysis showed reduced connectivity between the two regions in bvFTD patients. Our results illustrate that the mentalizing network and the action observation network perform distinct tasks during emotion processing. In bvFTD, communication between the networks is reduced, indicating one possible cause underlying the behavioral symptoms. Hum Brain Mapp 37:4472-4486, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Masked immediate-repetition-priming effect on the early lexical process in the bilateral anterior temporal areas assessed by neuromagnetic responses.

    Science.gov (United States)

    Fujimaki, Norio; Hayakawa, Tomoe; Ihara, Aya; Matani, Ayumu; Wei, Qiang; Terazono, Yasushi; Murata, Tsutomu

    2010-10-01

    A masked priming paradigm has been used to measure unconscious and automatic context effects on the processing of words. However, its spatiotemporal neural basis has not yet been clarified. To test the hypothesis that masked repetition priming causes enhancement of neural activation, we conducted a magnetoencephalography experiment in which a prime was visually presented for a short duration (50 ms), preceded by a mask pattern, and followed by a target word that was represented by a Japanese katakana syllabogram. The prime, which was identical to the target, was represented by another hiragana syllabogram in the "Repeated" condition, whereas it was a string of unreadable pseudocharacters in the "Unrepeated" condition. Subjects executed a categorical decision task on the target. Activation was significantly larger for the Repeated condition than for the Unrepeated condition at a time window of 150-250 ms in the right occipital area, 200-250 ms in the bilateral ventral occipitotemporal areas, and 200-250 ms and 200-300 ms in the left and right anterior temporal areas, respectively. These areas have been reported to be related to processing of visual-form/orthography and lexico-semantics, and the enhanced activation supports the hypothesis. However, the absence of the priming effect in the areas related to phonological processing implies that automatic phonological priming effect depends on task requirements. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  6. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex

    Science.gov (United States)

    Varga, Csaba; Tamas, Gabor; Barzo, Pal; Olah, Szabolcs; Somogyi, Peter

    2015-01-01

    Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells. PMID:25787832

  7. Top-down regulation of left temporal cortex by hypnotic amusia for rhythm: a pilot study on mismatch negativity.

    Science.gov (United States)

    Facco, Enrico; Ermani, Mario; Rampazzo, Patrizia; Tikhonoff, Valérie; Saladini, Marina; Zanette, Gastone; Casiglia, Edoardo; Spiegel, David

    2014-01-01

    To evaluate the effect of hypnotically induced amusia for rhythm (a condition in which individuals are unable to recognize melodies or rhythms) on mismatch negativity (MMN), 5 highly (HH) and 5 poorly (LH) hypnotizable nonmusician volunteers underwent MMN recording before and during a hypnotic suggestion for amusia. MMN amplitude was recorded using a 19-channel montage and then processed using the low-resolution electromagnetic tomography (LORETA) to localize its sources. MMN amplitude was significantly decreased during hypnotic amusia (p < .04) only in HH, where the LORETA maps of MMN showed a decreased source amplitude in the left temporal lobe, suggesting a hypnotic top-down regulation of activity of these areas and that these changes can be assessed by neurophysiological investigations.

  8. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils.

    Directory of Open Access Journals (Sweden)

    Markus K Schaefer

    Full Text Available In mammals, acoustic communication plays an important role during social behaviors. Despite their ethological relevance, the mechanisms by which the auditory cortex represents different communication call properties remain elusive. Recent studies have pointed out that communication-sound encoding could be based on discharge patterns of neuronal populations. Following this idea, we investigated whether the activity of local neuronal networks, such as those occurring within individual cortical columns, is sufficient for distinguishing between sounds that differed in their spectro-temporal properties. To accomplish this aim, we analyzed simple pure-tone and complex communication call elicited multi-unit activity (MUA as well as local field potentials (LFP, and current source density (CSD waveforms at the single-layer and columnar level from the primary auditory cortex of anesthetized Mongolian gerbils. Multi-dimensional scaling analysis was used to evaluate the degree of "call-specificity" in the evoked activity. The results showed that whole laminar profiles segregated 1.8-2.6 times better across calls than single-layer activity. Also, laminar LFP and CSD profiles segregated better than MUA profiles. Significant differences between CSD profiles evoked by different sounds were more pronounced at mid and late latencies in the granular and infragranular layers and these differences were based on the absence and/or presence of current sinks and on sink timing. The stimulus-specific activity patterns observed within cortical columns suggests that the joint activity of local cortical populations (as local as single columns could indeed be important for encoding sounds that differ in their acoustic attributes.

  9. Top-down and bottom-up influences on the left ventral occipito-temporal cortex during visual word recognition: an analysis of effective connectivity.

    Science.gov (United States)

    Schurz, Matthias; Kronbichler, Martin; Crone, Julia; Richlan, Fabio; Klackl, Johannes; Wimmer, Heinz

    2014-04-01

    The functional role of the left ventral occipito-temporal cortex (vOT) in visual word processing has been studied extensively. A prominent observation is higher activation for unfamiliar but pronounceable letter strings compared to regular words in this region. Some functional accounts have interpreted this finding as driven by top-down influences (e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Price and Devlin [2011]: Trends Cogn Sci 15:246-253), while others have suggested a difference in bottom-up processing (e.g., Glezer et al. [2009]: Neuron 62:199-204; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594). We used dynamic causal modeling for fMRI data to test bottom-up and top-down influences on the left vOT during visual processing of regular words and unfamiliar letter strings. Regular words (e.g., taxi) and unfamiliar letter strings of pseudohomophones (e.g., taksi) were presented in the context of a phonological lexical decision task (i.e., "Does the item sound like a word?"). We found no differences in top-down signaling, but a strong increase in bottom-up signaling from the occipital cortex to the left vOT for pseudohomophones compared to words. This finding can be linked to functional accounts which assume that the left vOT contains neurons tuned to complex orthographic features such as morphemes or words [e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594]: For words, bottom-up signals converge onto a matching orthographic representation in the left vOT. For pseudohomophones, the propagated signals do not converge, but (partially) activate multiple orthographic word representations, reflected in increased effective connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  10. The insular cortex: relationship to skin conductance responses to facial expression of emotion in temporal lobe epilepsy.

    Science.gov (United States)

    Banks, Sarah J; Bellerose, Jenny; Douglas, Danielle; Jones-Gotman, Marilyn

    2014-03-01

    The insula plays an important role both in emotion processing and in the generation of epileptic seizures. In the current study we examined thickness of insular cortices and bilateral skin conductance responses (SCR) in healthy subjects in addition to a small number of patients with temporal lobe epilepsy. SCR measures arousal and is used to assess non-conscious responses to emotional stimuli. We used two emotion tasks, one explicitly about emotion and the other implicit. The explicit task required judgments about emotions being expressed in photographs of faces, while the implicit one required judgments about the age of the people in the photographs. Patients and healthy differed in labeling neutral faces, but not other emotions. They also differed in their SCR to emotions, though the profile depended on which hand the recordings were from. Finally, we found relationships between the thickness of the insula and SCR to each task: in the healthy group the thickness of the left insula was related to SCR to the emotion-labeling task; in the patient group it was between the thickness of the right insula and SCR in the age-labeling task. These patterns were evident only for the right hand recordings, thus underscoring the importance of bilateral recordings.

  11. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.

    Science.gov (United States)

    Tanaka, Takuma; Aoyagi, Toshio; Kaneko, Takeshi

    2012-10-01

    We propose a new principle for replicating receptive field properties of neurons in the primary visual cortex. We derive a learning rule for a feedforward network, which maintains a low firing rate for the output neurons (resulting in temporal sparseness) and allows only a small subset of the neurons in the network to fire at any given time (resulting in population sparseness). Our learning rule also sets the firing rates of the output neurons at each time step to near-maximum or near-minimum levels, resulting in neuronal reliability. The learning rule is simple enough to be written in spatially and temporally local forms. After the learning stage is performed using input image patches of natural scenes, output neurons in the model network are found to exhibit simple-cell-like receptive field properties. When the output of these simple-cell-like neurons are input to another model layer using the same learning rule, the second-layer output neurons after learning become less sensitive to the phase of gratings than the simple-cell-like input neurons. In particular, some of the second-layer output neurons become completely phase invariant, owing to the convergence of the connections from first-layer neurons with similar orientation selectivity to second-layer neurons in the model network. We examine the parameter dependencies of the receptive field properties of the model neurons after learning and discuss their biological implications. We also show that the localized learning rule is consistent with experimental results concerning neuronal plasticity and can replicate the receptive fields of simple and complex cells.

  12. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    Directory of Open Access Journals (Sweden)

    Francesca eBaglio

    2014-10-01

    Full Text Available Borderline intellectual functioning (BIF is a condition characterized by an intelligence quotient (IQ between 70 and 85. BIF children present with cognitive, motor, social and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. Aim of this study was to investigate brain morphometry and its relation to IQ level in borderline intellectual functioning children.Thirteen children with BIF and 14 age- and sex-matched typically developing children were enrolled. All children underwent a full IQ assessment (WISC-III scale and a Magnetic Resonance (MR examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel based morphometry (VBM analysis. To investigate to what extent the group influenced gray matter volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional gray matter volume in bilateral sensori-motor and right posterior temporal cortices and decreased gray matter volume in right parahippocampal gyrus. Gray matter volumes were highly correlated with IQ indices.Our is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning and behavioral processes. Our findings, although allowing for little generalization to general population, contributes to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  13. The processing of semantic relatedness in the brain: Evidence from associative and categorical false recognition effects following transcranial direct current stimulation of the left anterior temporal lobe.

    Science.gov (United States)

    Díez, Emiliano; Gómez-Ariza, Carlos J; Díez-Álamo, Antonio M; Alonso, María A; Fernandez, Angel

    2017-08-01

    A dominant view of the role of the anterior temporal lobe (ATL) in semantic memory is that it serves as an integration hub, specialized in the processing of semantic relatedness by way of mechanisms that bind together information from different brain areas to form coherent amodal representations of concepts. Two recent experiments, using brain stimulation techniques along with the Deese-Roediger-McDermott (DRM) paradigm, have found a consistent false memory reduction effect following stimulation of the ATL, pointing to the importance of the ATL in semantic/conceptual processing. To more precisely identify the specific process being involved, we conducted a DRM experiment in which transcranial direct current stimulation (anode/cathode/sham) was applied over the participants' left ATL during the study of lists of words that were associatively related to their non-presented critical words (e.g., rotten, worm, red, tree, liqueur, unripe, cake, food, eden, peel, for the critical item apple) or categorically related (e.g., pear, banana, peach, orange, cantaloupe, watermelon, strawberry, cherry, kiwi, plum, for the same critical item apple). The results showed that correct recognition was not affected by stimulation. However, an interaction between stimulation condition and type of relation for false memories was found, explained by a significant false recognition reduction effect in the anodal condition for associative lists that was not observed for categorical lists. Results are congruent with previous findings and, more importantly, they help to clarify the nature and locus of false memory reduction effects, suggesting a differential role of the left ATL, and providing critical evidence for understanding the creation of semantic relatedness-based memory illusions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.

    Science.gov (United States)

    Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro

    2010-08-01

    In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Campbell, Iain; Nestler, Steffen; Rubia, Katya; David, Anthony S; Schmidt, Ulrike

    2014-07-01

    Bulimia nervosa, binge-eating disorder, and some forms of obesity are characterised by compulsive overeating that is often precipitated by food craving. Transcranial direct current stimulation (tDCS) has been used to suppress food cravings, but there is insufficient evidence to support its application in clinical practice. Furthermore, the potential moderating role of impulsivity has not been considered. This study used a randomised within-subjects crossover design to examine whether a 20-minute session of sham-controlled bilateral tDCS to the dorsolateral prefrontal cortex (anode right/cathode left) would transiently modify food cravings and temporal discounting (TD; a measure of choice impulsivity) in 17 healthy women with frequent food cravings. Whether the effects of tDCS on food craving were moderated by individual differences in TD behaviour was also explored. Participants were exposed to food and a film of people eating, and food cravings and TD were assessed before and after active and sham stimulation. Craving for sweet but not savoury foods was reduced following real tDCS. Participants that exhibited more reflective choice behaviour were more susceptible to the anti-craving effects of tDCS than those that displayed more impulsive choice behaviour. No differences were seen in TD or food consumption after real versus sham tDCS. These findings support the efficacy of tDCS in temporarily lowering food cravings and identify the moderating role of TD behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The Impact of Single Session Intermittent Theta-Burst Stimulation over the Dorsolateral Prefrontal Cortex and Posterior Superior Temporal Sulcus on Adults with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Hsing-Chang Ni

    2017-05-01

    Full Text Available Intermittent theta burst stimulation (iTBS, a patterned repetitive transcranial magnetic stimulation, was applied over the posterior superior temporal sulcus (pSTS or dorsolateral prefrontal cortex (DLPFC to explore its impact in adults with autism spectrum disorder (ASD. Among 25 adults with ASD, 19 (mean age: 20.8 years completed the randomized, sham-controlled, crossover trial. Every participant received iTBS over the bilateral DLPFC, bilateral pSTS and inion (as a sham control stimulation in a randomized order with a 1-week interval. Neuropsychological functions were assessed using the Conners' Continuous Performance Test (CCPT and the Wisconsin Card Sorting Test (WCST. Behavioral outcomes were measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS and the Social Responsiveness Scale (SRS. In comparison to that in the sham stimulation, the reaction time in the CCPT significantly decreased following single DLPFC session (p = 0.04, effect size = 0.71 while there were no significant differences in the CCPT and WCST following single pSTS session. Besides, the results in behavioral outcomes were inconsistent and had discrepancy between reports of parents and patients. In conclusion, a single session of iTBS over the bilateral DLPFC may alter the neuropsychological function in adults with ASD. The impacts of multiple-sessions iTBS over the DLPFC or pSTS deserve further investigations.

  17. Altered spontaneous activity of posterior cingulate cortex and superior temporal gyrus are associated with a smoking cessation treatment outcome using varenicline revealed by regional homogeneity.

    Science.gov (United States)

    Wang, Chao; Shen, Zhujing; Huang, Peiyu; Qian, Wei; Yu, Xinfeng; Sun, Jianzhong; Yu, Hualiang; Yang, Yihong; Zhang, Minming

    2017-06-01

    Compared to nonsmokers, smokers exhibit a number of potentially important differences in regional brain function. However, little is known about the associations between the local spontaneous brain activity and smoking cessation treatment outcomes. In the present analysis, we aimed to evaluate whether the local features of spontaneous brain activity prior to the target quit date was associated with the smoking cessation outcomes. All the participants underwent magnetic resonance imaging scans and smoking-related behavioral assessments. After a 12-week treatment with varenicline, 23 smokers succeeded in quitting smoking and 32 failed. Smokers underwent functional magnetic resonance imaging (fMRI) scanning prior to an open label smoking cessation treatment trial. Regional homogeneity (ReHo) was used to measure spontaneous brain activity, and whole-brain voxel-wise comparisons of ReHo were performed to detect brain regions with altered spontaneous brain activity between relapser and quitter groups. After controlling for potentially confounding factors including years of education, years smoked, cigarettes smoked per day and FTND score as covariates, compared to quitters, relapsers displayed significantly decreased ReHo in bilateral posterior cingulate cortex (PCC), as well as increased ReHo in left superior temporal gyrus (STG). These preliminary results suggest that regional brain function variables may be promising predictors of smoking relapse. This study provided novel insights into the neurobiological mechanisms underlying smoking relapse. A deeper understanding of the neurobiological mechanisms associated with relapse may result in novel pharmacological and behavioral interventions.

  18. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Alfonso Díaz

    2016-01-01

    Full Text Available Energy drinks (EDs are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx and hippocampus (Hp of adult rats (90 days old. Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  19. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    Science.gov (United States)

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats.

    Science.gov (United States)

    Kokane, Saurabh S; Gong, Kerui; Jin, Jianhui; Lin, Qing

    2017-09-01

    Ketamine is a commonly used anesthetic among pediatric patients due to its high efficacy. However, it has been demonstrated by several preclinical studies that, widespread accelerated programmed death of neurons (neuroapoptosis) occurs due to prolonged or repeated exposure to ketamine specifically in the neonatal brain. Therefore, an emphasis on understanding the molecular mechanisms underlying this selective vulnerability of the neonatal brain to ketamine-induced neuroapoptosis becomes important in order to identify potential therapeutic targets, which would help prevent or at least ameliorate this neuroapoptosis. In this study, we demonstrated that repeated ketamine administration (6 injections of 20mg/kg dose given over 12h time period) in neonatal (postnatal day 7; PND 7) Sprague-Dawley rats induced a progressive increase in N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) in the neurons of the anterior cingulate cortex (ACC) for up to 6h after the last ketamine dose. Specifically, we observed that the increased EPSCs were largely mediated by GluN2B-containing NMDARs in the neurons of the ACC. Along with increased synaptic transmission, there was also a significant increase in the expression of the GluN2B-containing NMDARs as well. Taken together, these results showed that after repeated exposure to ketamine, the synaptic transmission mediated by GluN2B-containing NMDARs was significantly increased in the neonatal brain. This was significant as it showed for the first time that ketamine had subunit-specific effects on GluN2B-containing NMDARs, potentially implicating the involvement of these subunits in the increased vulnerability of immature neurons of the neonatal brain to ketamine-induced neuroapoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Lower grey matter density and functional connectivity in the anterior insula in smokers compared to never-smokers

    Science.gov (United States)

    Stoeckel, Luke E.; Chai, Xiaoqian J.; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A. Eden

    2015-01-01

    Rationale While nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. Objectives (1) To evaluate grey matter density and functional connectivity of the anterior insula in cigarette smokers and never-smokers and (2) characterize how differences in these measures related to smoking behavior. Methods We compared structural MRI (grey matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never-smokers. Results Compared to controls, smokers had lower grey matter density in left anterior insula extending into inferior frontal and temporal cortex. Grey matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lateral prefrontal cortex) and semantic processing / emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. Conclusions There were differences in the anterior insula, a central region in the brain’s salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, was also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865

  2. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  3. Brain activity related to working memory for temporal order and object information.

    Science.gov (United States)

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal

  4. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  5. Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study.

    Science.gov (United States)

    Guo, Lili; Bai, Genji; Zhang, Hui; Lu, Daoyan; Zheng, Jiyong; Xu, Gang

    2017-12-01

    We aimed to analyze the association between resting-state functional magnetic resonance imaging (re-fMRI) and cognitive function (including language, executive, and memory functions) in temporal lobe epilepsy (TLE) patients, which will help to explore the mechanism of brain function in patients. 15 TLE patients and 15 non-TLE patients were recruited. All subjects underwent neuropsychological testing and memory functional evaluation. Changes in verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), full intelligence quotient (FIQ), and memory quotient (MQ) were compared between two groups. Re-fMRI data were also collected from two groups to evaluate these changes. Each individual score of neuropsychological testing and memory functional evaluation were higher in control group, which was statistically different (all P temporal gyrus back, right superior temporal gyrus, left cerebellum, left angular gyrus, left wedge anterior lobe, and left central back; while the negatively activated brain regions were left prefrontal, right cerebellum, right corner back, and right anterior cingulate gyrus. During the language task, the activated brain regions of the TLE patients were right prefrontal lobe, the lateral temporal gyri, the left cerebellum, left cornu laterale gyrus, left precuneus, and the left postcentral gyrus, whereas the negatively activated brain areas were the left prefrontal cortex, the right cerebellum, right cornu laterale gyrus, and the right anterior cingulate gyrus. During the executive task, epilepsy patients showed activation difference in right prefrontal and right frontal lobe and right brain, left superior temporal gyrus, and right cerebellum anterior lobe compared with the control group; no negatively activated differences in brain areas. During the memory task, the difference lay in bilateral anterior cingulate gyrus and bilateral wedge anterior lobe while the negatively activated brain areas were the left inferior frontal

  6. Time Course of the Involvement of the Right Anterior Superior Temporal Gyrus and the Right Fronto-Parietal Operculum in Emotional Prosody Perception

    NARCIS (Netherlands)

    Hoekert, Marjolijn; Bais, Leonie; Kahn, Rene S.; Aleman, Andre

    2008-01-01

    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional

  7. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Herniation of the anterior lens capsule

    Directory of Open Access Journals (Sweden)

    Pereira Nolette

    2007-01-01

    Full Text Available Herniation of the anterior lens capsule is a rare abnormality in which the capsule bulges forward in the pupillary area. This herniation can be mistaken for an anterior lenticonus where both the capsule and the cortex bulge forward. The exact pathology behind this finding is still unclear. We report the clinical, ultrasound biomicroscopy (UBM and histopathological findings of a case of herniation of the anterior lens capsule. UBM helped to differentiate this entity from anterior lenticonus. Light microscopy revealed capsular splitting suggestive of capsular delamination and collection of fluid (aqueous in the area of herniation giving it a characteristic appearance.

  9. Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers.

    Science.gov (United States)

    Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden

    2016-07-01

    Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). © 2015 Society for the Study of Addiction.

  10. Epilepsy Surgery for Skull-Base Temporal Lobe Encephaloceles: Should We Spare the Hippocampus from Resection?

    Science.gov (United States)

    Bannout, Firas; Harder, Sheri; Lee, Michael; Zouros, Alexander; Raghavan, Ravi; Fogel, Travis; De Los Reyes, Kenneth; Losey, Travis

    2018-01-01

    The neurosurgical treatment of skull base temporal encephalocele for patients with epilepsy is variable. We describe two adult cases of temporal lobe epilepsy (TLE) with spheno-temporal encephalocele, currently seizure-free for more than two years after anterior temporal lobectomy (ATL) and lesionectomy sparing the hippocampus without long-term intracranial electroencephalogram (EEG) monitoring. Encephaloceles were detected by magnetic resonance imaging (MRI) and confirmed by maxillofacial head computed tomography (CT) scans. Seizures were captured by scalp video-EEG recording. One case underwent intraoperative electrocorticography (ECoG) with pathology demonstrating neuronal heterotopia. We propose that in some patients with skull base temporal encephaloceles, minimal surgical resection of herniated and adjacent temporal cortex (lesionectomy) is sufficient to render seizure freedom. In future cases, where an associated malformation of cortical development is suspected, newer techniques such as minimally invasive EEG monitoring with stereotactic-depth EEG electrodes should be considered to tailor the surrounding margins of the resected epileptogenic zone. PMID:29534521

  11. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  12. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  13. Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex

    OpenAIRE

    Angamo, Eskedar Ayele; ul Haq, Rizwan; Roesner, Joerg; Gabriel, Siegrun; Gerevich, Zoltan; Heinemann, Uwe; Kovacs, Richard

    2017-01-01

    Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed th...

  14. Activation of anterior paralimbic structures during guilt-related script-driven imagery.

    Science.gov (United States)

    Shin, L M; Dougherty, D D; Orr, S P; Pitman, R K; Lasko, M; Macklin, M L; Alpert, N M; Fischman, A J; Rauch, S L

    2000-07-01

    Several recent neuroimaging studies have examined the neuroanatomical correlates of normal emotional states, such as happiness, sadness, fear, anger, anxiety, and disgust; however, no previous study has examined the emotional state of guilt. In the current study, we used positron emission tomography and the script-driven imagery paradigm to study regional cerebral blood flow (rCBF) during the transient emotional experience of guilt in eight healthy male participants. In the Guilt condition, participants recalled and imagined participating in a personal event involving the most guilt they had ever experienced. In the Neutral condition, participants recalled and imagined participating in an emotionally neutral personal event. In the Guilt versus Neutral comparison, rCBF increases occurred in anterior paralimbic regions of the brain: bilateral anterior temporal poles, anterior cingulate gyrus, and left anterior insular cortex/inferior frontal gyrus. These results, along with those of previous studies, are consistent with the notion that anterior paralimbic regions of the brain mediate negative emotional states in healthy individuals.

  15. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  16. Epidermoid cyst in Anterior, Middle

    Directory of Open Access Journals (Sweden)

    Kankane Vivek Kumar

    2016-09-01

    Full Text Available Epidermoid cysts are benign slow growing more often extra-axial tumors that insinuate between brain structures, we present the clinical, imaging, and pathological findings in 35 years old female patients with atypical epidermoid cysts which was situated anterior, middle & posterior cranial fossa. NCCT head revealed hypodense lesion over right temporal and perisylvian region with extension in prepontine cistern with mass effect & midline shift and MRI findings revealed a non-enhancing heterogeneous signal intensity cystic lesion in right frontal & temporal region extending into prepontine cistern with restricted diffusion. Patient was detoriated in night of same day of admission, emergency Fronto-temporal craniotomy with anterior peterousectomy and subtotal resection was done. The histological examination confirms the epidermoid cyst. The timing of ectodermal tissue sequestration during fetal development may account for the occurrence of atypical epidermoid cysts.

  17. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood.

    Science.gov (United States)

    Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao

    2017-10-03

    Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Anterior tibial stress fractures treated with anterior tension band plating in high-performance athletes.

    Science.gov (United States)

    Cruz, Alexandre Santa; de Hollanda, João Paris Buarque; Duarte, Aires; Hungria Neto, José Soares

    2013-06-01

    The non-surgical treatment of anterior tibial cortex stress fractures requires long periods of abstention from sports activities and often results in non-union. Many different surgical techniques have already been previously described to treat these fractures, but there is no consensus on the best treatment. We describe the outcome of treatment using anterior tibial tension band plating in three high-performance athletes (4 legs) with anterior tibial cortex stress fractures. Tibial osteosynthesis with a 3.5-mm locking compression plate in the anterolateral aspect of the tibia was performed in all patients diagnosed with anterior tibial stress fracture after September 2010 at Santa Casa Hospital. All of the fractures were consolidated within a period of 3 months after surgery, allowing for an early return to pre-injury levels of competitive sports activity. There were no infection, non-union, malunion or anterior knee pain complications. Anterior tibial tension band plating leads to prompt fracture consolidation and is a good alternative for the treatment of anterior tibial cortex stress fractures. Bone grafts were shown to be unnecessary.

  19. Effect of Temporal Neocortical Pathology on Seizure Freeness in Adult Patients with Temporal Lobe Epilepsy.

    Science.gov (United States)

    Kemerdere, Rahsan; Ahmedov, Merdin Lyutviev; Alizada, Orkhan; Yeni, Seher Naz; Oz, Buge; Tanriverdi, Taner

    2018-05-23

    Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy. Focal cortical dysplasia is the most common dual pathology found in association with the hippocampal sclerosis. In this study, the effect of dual pathology on freedom from seizure was sought in patients with TLE. This study performed a retrospective analysis of patients with TLE who underwent surgery between 2010 and 2017. Histopathologic analysis was performed on patients with and without dual pathology in the temporal neocortex. Seizure outcomes were compared. A total of 54 patients with TLE were included. The rate of overall favorable seizure outcome was found to be 96.3%. In 53.7%, dual pathology was present in the temporal cortices in addition to the hippocampal sclerosis. Patients without dual pathology showed significantly greater freedom from seizure (P = 0.02). Patients without dual pathology had a significantly higher seizure-free rate after anterior temporal resection than patients with dual pathology. Resection of the temporal cortex in addition to mesial temporal structures seems to be reasonable for better seizure outcome. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Differential Resting-State Connectivity Patterns of the Right Anterior and Posterior Dorsolateral Prefrontal Cortices (DLPFC in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Natalia Chechko

    2018-05-01

    Full Text Available In schizophrenia (SCZ, dysfunction of the dorsolateral prefrontal cortex (DLPFC has been linked to the deficits in executive functions and attention. It has been suggested that, instead of considering the right DLPFC as a cohesive functional entity, it can be divided into two parts (anterior and posterior based on its whole-brain connectivity patterns. Given these two subregions' differential association with cognitive processes, we investigated the functional connectivity (FC profile of both subregions through resting-state data to determine whether they are differentially affected in SCZ. Resting-state magnetic resonance imaging (MRI scans were obtained from 120 patients and 172 healthy controls (HC at 6 different MRI sites. The results showed differential FC patterns for the anterior and posterior parts of the right executive control-related DLPFC in SCZ with the parietal, the temporal and the cerebellar regions, along with a convergent reduction of connectivity with the striatum and the occipital cortex. An increased psychopathology level was linked to a higher difference in posterior vs. anterior FC for the left IFG/anterior insula, regions involved in higher-order cognitive processes. In sum, the current analysis demonstrated that even between two neighboring clusters connectivity could be differentially disrupted in SCZ. Lacking the necessary anatomical specificity, such notions may in fact be detrimental to a proper understanding of SCZ pathophysiology.

  1. Distortion of time interval reproduction in an epileptic patient with a focal lesion in the right anterior insular/inferior frontal cortices.

    Science.gov (United States)

    Monfort, Vincent; Pfeuty, Micha; Klein, Madelyne; Collé, Steffie; Brissart, Hélène; Jonas, Jacques; Maillard, Louis

    2014-11-01

    This case report on an epileptic patient suffering from a focal lesion at the junction of the right anterior insular cortex (AIC) and the adjacent inferior frontal cortex (IFC) provides the first evidence that damage to this brain region impairs temporal performance in a visual time reproduction task in which participants had to reproduce the presentation duration (3, 5 and 7s) of emotionally-neutral and -negative pictures. Strikingly, as compared to a group of healthy subjects, the AIC/IFC case considerably overestimated reproduction times despite normal variability. The effect was obtained in all duration and emotion conditions. Such a distortion in time reproduction was not observed in four other epileptic patients without insular or inferior frontal damage. Importantly, the absolute extent of temporal over-reproduction increased in proportion to the magnitude of the target durations, which concurs with the scalar property of interval timing, and points to an impairment of time-specific rather than of non temporal (such as motor) mechanisms. Our data suggest that the disability in temporal reproduction of the AIC/IFC case would result from a distorted memory representation of the encoded duration, occurring during the process of storage and/or of recovery from memory and leading to a deviation of the temporal judgment during the reproduction task. These findings support the recent proposal that the anterior insular/inferior frontal cortices would be involved in time interval representation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization.

    Directory of Open Access Journals (Sweden)

    Femke E van den Berg

    Full Text Available Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS to investigate whether representations of the wrist flexor (FCR and extensor (ECR in M1(ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi than in the right. In experiment 2, we tested whether the modulations of M1(ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI. We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.

  3. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  4. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  5. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Science.gov (United States)

    Ballotta, Daniela; Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  6. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Directory of Open Access Journals (Sweden)

    Daniela Ballotta

    Full Text Available According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a whether observation of facial expressions of pain interferes with time production; and b the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1 the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2 the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  7. Modulation of neural circuits underlying temporal production by facial expressions of pain

    Science.gov (United States)

    Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems. PMID:29447256

  8. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes: a report of 4 cases

    NARCIS (Netherlands)

    Borens, Olivier; Sen, Milan K.; Huang, Russel C.; Richmond, Jeffrey; Kloen, Peter; Jupiter, Jesse B.; Helfet, David L.

    2006-01-01

    Stress fracture of the anterior tibial cortex is an extremely challenging fracture to treat, especially in the high-performance female athlete who requires rapid return to competition. Previous reports have not addressed treating these fractures in the world-class athlete with anterior plating. We

  9. Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex.

    Science.gov (United States)

    Angamo, Eskedar Ayele; ul Haq, Rizwan; Rösner, Jörg; Gabriel, Siegrun; Gerevich, Zoltán; Heinemann, Uwe; Kovács, Richard

    2017-08-23

    Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺] O ) were recorded in parallel with tissue pO₂ and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO₂ following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺] O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.

  10. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  11. Purine-related metabolites and their converting enzymes are altered in frontal, parietal and temporal cortex at early stages of Alzheimer's disease pathology.

    Science.gov (United States)

    Alonso-Andrés, Patricia; Albasanz, José Luis; Ferrer, Isidro; Martín, Mairena

    2018-01-24

    Adenosine, hypoxanthine, xanthine, guanosine and inosine levels were assessed by HPLC, and the activity of related enzymes 5'-nucleotidase (5'-NT), adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) measured in frontal (FC), parietal (PC) and temporal (TC) cortices at different stages of disease progression in Alzheimer's disease (AD) and in age-matched controls. Significantly decreased levels of adenosine, guanosine, hypoxanthine and xanthine, and apparently less inosine, are found in FC from the early stages of AD; PC and TC show an opposing pattern, as adenosine, guanosine and inosine are significantly increased at least at determinate stages of AD whereas hypoxanthine and xanthine levels remain unaltered. 5'-NT is reduced in membranes and cytosol in FC mainly at early stages but not in PC, and only at advanced stages in cytosol in TC. ADA activity is decreased in AD when considered as a whole but increased at early stages in TC. Finally, PNP activity is increased only in TC at early stages. Purine metabolism alterations occur at early stages of AD independently of neurofibrillary tangles and β-amyloid plaques. Alterations are stage dependent and region dependent, the latter showing opposite patterns in FC compared with PC and TC. Adenosine is the most affected of the assessed purines. © 2018 International Society of Neuropathology.

  12. Morphogenetic and histogenetic roles of the temporal-spatial organization of cell proliferation in the vertebrate corticogenesis as revealed by inter-specific analyses of the optic tectum cortex development

    Directory of Open Access Journals (Sweden)

    Melina eRapacioli

    2016-03-01

    Full Text Available The central nervous system areas displaying the highest structural and functional complexity correspond to the so called cortices, i.e. concentric alternating neuronal and fibrous layers. Corticogenesis, i.e. the development of the cortical organization, depends on the temporal-spatial organization of several developmental events: (a the duration of the proliferative phase of the neuroepithelium, (b the relative duration of symmetric (expansive versus asymmetric (neuronogenic sub phases, (c the spatial organization of each kind of cell division, (e the time of determination and cell cycle exit and (f the time of onset of the postmitotic neuronal migration and (g the time of onset of the neuronal structural and functional differentiation. The first five events depend on molecular mechanisms that perform a fine tuning of the proliferative activity. Changes in any of them significantly influence the cortical size or volume (tangential expansion and radial thickness, morphology, architecture and also impact on neuritogenesis and synaptogenesis affecting the cortical wiring. This paper integrates information, obtained in several species, on the developmental roles of cell proliferation in the development of the optic tectum cortex, a multilayered associative area of the dorsal (alar midbrain. The present review (1 compiles relevant information on the temporal and spatial organization of cell proliferation in different species (fish, amphibians, birds and mammals, (2 revises the main molecular events involved in the isthmic organizer determination and localization, (3 describes how the patterning installed by isthmic organizer is translated into spatially organized neural stem cell proliferation (i.e. by means of growth factors, receptors, transcription factors, signaling pathways, etc. and (4 describes the morpho- and histogenetic effect of a spatially organized cell proliferation in the above mentioned species. A brief section on the optic tectum

  13. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards.

    Science.gov (United States)

    Smith, David V; Clithero, John A; Boltuck, Sarah E; Huettel, Scott A

    2014-12-01

    According to many studies, the ventromedial prefrontal cortex (VMPFC) encodes the subjective value of disparate rewards on a common scale. Yet, a host of other reward factors-likely represented outside of VMPFC-must be integrated to construct such signals for valuation. Using functional magnetic resonance imaging (fMRI), we tested whether the interactions between posterior VMPFC and functionally connected brain regions predict subjective value. During fMRI scanning, participants rated the attractiveness of unfamiliar faces. We found that activation in dorsal anterior cingulate cortex, anterior VMPFC and caudate increased with higher attractiveness ratings. Using data from a post-scan task in which participants spent money to view attractive faces, we quantified each individual's subjective value for attractiveness. We found that connectivity between posterior VMPFC and regions frequently modulated by social information-including the temporal-parietal junction (TPJ) and middle temporal gyrus-was correlated with individual differences in subjective value. Crucially, these additional regions explained unique variation in subjective value beyond that extracted from value regions alone. These findings indicate not only that posterior VMPFC interacts with additional brain regions during valuation, but also that these additional regions carry information employed to construct the subjective value for social reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    Science.gov (United States)

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  15. Khat distorts the prefrontal cortex histology and function of adult ...

    African Journals Online (AJOL)

    Khat is a psychoactive herbal drug of pronounced ethno-pharmacological significance often abused due to its unregulated use. It affects many brain centers including the prefrontal cortex which is the anterior most part of the frontal lobe. The prefrontal cortex modulates working memory, planning complex cognitive ...

  16. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  17. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    International Nuclear Information System (INIS)

    Jung, J. A.; Son, H. S.; Kim, S. H.; Jung, S. G

    2004-01-01

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control

  18. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. A.; Son, H. S.; Kim, S. H.; Jung, S. G [The Catholic University of Korea, Seoul (Korea, Republic of)

    2004-07-01

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control.

  19. Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.

    Science.gov (United States)

    Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J

    2017-02-01

    Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. The neural basis of temporal order processing in past and future thought.

    Science.gov (United States)

    D'Argembeau, Arnaud; Jeunehomme, Olivier; Majerus, Steve; Bastin, Christine; Salmon, Eric

    2015-01-01

    Although growing evidence has shown that remembering the past and imagining the future recruit a common core network of frontal-parietal-temporal regions, the extent to which these regions contribute to the temporal dimension of autobiographical thought remains unclear. In this fMRI study, we focused on the event-sequencing aspect of time and examined whether ordering past and future events involve common neural substrates. Participants had to determine which of two past (or future) events occurred (or would occur) before the other, and these order judgments were compared with a task requiring to think about the content of the same past or future events. For both past and future events, we found that the left posterior hippocampus was more activated when establishing the order of events, whereas the anterior hippocampus was more activated when representing their content. Aside from the hippocampus, most of the brain regions that were activated when thinking about temporal order (notably the intraparietal sulcus, dorsolateral pFC, dorsal anterior cingulate, and visual cortex) lied outside the core network and may reflect the involvement of controlled processes and visuospatial imagery to locate events in time. Collectively, these findings suggest (a) that the same processing operations are engaged for ordering past events and planned future events in time, (b) that anterior and posterior portions of the hippocampus are involved in processing different aspects of autobiographical thought, and (c) that temporal order is not necessarily an intrinsic property of memory or future thought but instead requires additional, controlled processes.

  1. Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.

    Science.gov (United States)

    Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko

    2017-08-15

    During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex.

    Science.gov (United States)

    Jonas, Jacques; Frismand, Solène; Vignal, Jean-Pierre; Colnat-Coulbois, Sophie; Koessler, Laurent; Vespignani, Hervé; Rossion, Bruno; Maillard, Louis

    2014-07-01

    Electrical brain stimulation can provide important information about the functional organization of the human visual cortex. Here, we report the visual phenomena evoked by a large number (562) of intracerebral electrical stimulations performed at low-intensity with depth electrodes implanted in the occipito-parieto-temporal cortex of 22 epileptic patients. Focal electrical stimulation evoked primarily visual hallucinations with various complexities: simple (spot or blob), intermediary (geometric forms), or complex meaningful shapes (faces); visual illusions and impairments of visual recognition were more rarely observed. With the exception of the most posterior cortical sites, the probability of evoking a visual phenomenon was significantly higher in the right than the left hemisphere. Intermediary and complex hallucinations, illusions, and visual recognition impairments were almost exclusively evoked by stimulation in the right hemisphere. The probability of evoking a visual phenomenon decreased substantially from the occipital pole to the most anterior sites of the temporal lobe, and this decrease was more pronounced in the left hemisphere. The greater sensitivity of the right occipito-parieto-temporal regions to intracerebral electrical stimulation to evoke visual phenomena supports a predominant role of right hemispheric visual areas from perception to recognition of visual forms, regardless of visuospatial and attentional factors. Copyright © 2013 Wiley Periodicals, Inc.

  3. Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex.

    Science.gov (United States)

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I

    2015-01-06

    When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face-voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions.

  4. Anterior perineal hernia after anterior exenteration

    Directory of Open Access Journals (Sweden)

    Ka Wing Wong

    2017-10-01

    Full Text Available Perineal hernia is a rare complication of anterior exenteration. We reported this complication after an anterior exenteration for bladder cancer with bleeding complication requiring packing and second-look laparotomy. Perineal approach is a simple and effective method for repair of perineal hernia.

  5. Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon Young; Kim, Sun Jung; Kim, Byung-Tae; Kim, Sang Eun [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, 135-710, Kangnam-ku, Seoul (Korea); Hong, Seung Bong; Seo, Dae Won [Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea); Hong, Seung Chyul [Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea)

    2003-04-01

    We investigated the relationship between the presence of extratemporal hypometabolism on fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) and seizure outcome after temporal lobectomy in patients with medically intractable temporal lobe epilepsy (TLE). In 47 patients with intractable unilateral mesial TLE, regional metabolic changes on FDG PET images obtained during the 2 months preceding anterior temporal lobectomy were compared with postoperative seizure outcome. Postoperative seizure outcome was evaluated with a mean follow-up period of 6.1{+-}0.6 years (range 5.2-7.2 years). Forty-two (89%) of the 47 patients achieved a good postoperative seizure outcome (Engel class I or II). All patients had hypometabolism in the temporal cortex ipsilateral to the epileptogenic region on FDG PET scans. Fourteen (78%) of the 18 patients with hypometabolism only in the ipsilateral temporal cortex were completely seizure free (Engel class Ia) after surgery. In contrast, five (45%) of the 11 patients with extratemporal cortical hypometabolism confined to the ipsilateral cerebral hemisphere and only four (22%) of the 18 patients with hypometabolism in the contralateral cerebral cortex were completely seizure free after surgery. The postoperative seizure-free rates were significantly different across the three groups of patients with different cortical metabolic patterns (P<0.005). Furthermore, all of the nine patients with a non-class I outcome (Engel class II-IV) had extratemporal (including contralateral temporal) cortical hypometabolism. Thalamic hypometabolism was noted in 20 (43%) of the 47 patients (ipsilateral in 12, bilateral in 8). Sixteen (59%) of the 27 patients with normal thalamic metabolism were completely seizure free after surgery, while only seven (35%) of the 20 patients with thalamic hypometabolism became completely seizure free (P<0.05). Multivariate analysis revealed that among variables including clinical, EEG, magnetic resonance imaging

  6. Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy

    International Nuclear Information System (INIS)

    Choi, Joon Young; Kim, Sun Jung; Kim, Byung-Tae; Kim, Sang Eun; Hong, Seung Bong; Seo, Dae Won; Hong, Seung Chyul

    2003-01-01

    We investigated the relationship between the presence of extratemporal hypometabolism on fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) and seizure outcome after temporal lobectomy in patients with medically intractable temporal lobe epilepsy (TLE). In 47 patients with intractable unilateral mesial TLE, regional metabolic changes on FDG PET images obtained during the 2 months preceding anterior temporal lobectomy were compared with postoperative seizure outcome. Postoperative seizure outcome was evaluated with a mean follow-up period of 6.1±0.6 years (range 5.2-7.2 years). Forty-two (89%) of the 47 patients achieved a good postoperative seizure outcome (Engel class I or II). All patients had hypometabolism in the temporal cortex ipsilateral to the epileptogenic region on FDG PET scans. Fourteen (78%) of the 18 patients with hypometabolism only in the ipsilateral temporal cortex were completely seizure free (Engel class Ia) after surgery. In contrast, five (45%) of the 11 patients with extratemporal cortical hypometabolism confined to the ipsilateral cerebral hemisphere and only four (22%) of the 18 patients with hypometabolism in the contralateral cerebral cortex were completely seizure free after surgery. The postoperative seizure-free rates were significantly different across the three groups of patients with different cortical metabolic patterns (P<0.005). Furthermore, all of the nine patients with a non-class I outcome (Engel class II-IV) had extratemporal (including contralateral temporal) cortical hypometabolism. Thalamic hypometabolism was noted in 20 (43%) of the 47 patients (ipsilateral in 12, bilateral in 8). Sixteen (59%) of the 27 patients with normal thalamic metabolism were completely seizure free after surgery, while only seven (35%) of the 20 patients with thalamic hypometabolism became completely seizure free (P<0.05). Multivariate analysis revealed that among variables including clinical, EEG, magnetic resonance imaging

  7. Válvula de uretra anterior Anterior urethral valves

    Directory of Open Access Journals (Sweden)

    Silvio Tucci Jr.

    2003-02-01

    Full Text Available Objetivo: apresentar os aspectos clínicos, diagnósticos e terapêuticos de pacientes portadores de válvula da uretra anterior. Descrição: em dois neonatos, o diagnóstico presuntivo de patologia obstrutiva do trato urinário foi sugerido pela ultra-sonografia realizada no período pré-natal, confirmando-se o diagnóstico de válvula de uretra anterior pela avaliação pós-natal. Os pacientes foram submetidos a tratamento cirúrgico paliativo, com vesicostomia temporária e, posteriormente, definitivo, pela fulguração endoscópica das válvulas. Ambos evoluíram com função renal normal. Comentários: a válvula da uretra anterior é anomalia rara que deve ser considerada em meninos com quadro radiológico pré-natal sugestivo de obstrução infravesical, secundariamente à hipótese mais comum de válvula da uretra posterior. Ressaltamos a utilização da vesicostomia como derivação urinária temporária nestes casos, prevenindo potenciais complicações pela manipulação da uretra do recém-nascido.Objective: to discuss clinical signs, diagnostic tools and therapeutics of anterior urethral valves, an obstructive anomaly of the urinary system in males. Description: signs of urinary tract obstruction were identified on pre-natal ultrasound in two male fetuses and the diagnosis of anterior urethral valves was made through post-natal evaluation. As an initial treatment, vesicostomy was performed in both patients. Later, the valves were fulgurated using an endoscopic procedure. During the follow-up period both patients presented normal renal function. Comments: anterior urethral valves are a rare form of urethral anomaly that must be ruled out in boys with pre-natal ultrasound indicating infravesical obstruction. Vesicostomy used as an initial treatment rather than transurethral fulguration may prevent potential complications that can occur due to the small size of the neonatal urethra.

  8. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    Science.gov (United States)

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the

  9. Upper motor neuron predominant degeneration with frontal and temporal lobe atrophy.

    Science.gov (United States)

    Konagaya, M; Sakai, M; Matsuoka, Y; Konagaya, Y; Hashizume, Y

    1998-11-01

    The autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. He showed slowly progressive spasticity, pseudobulbar palsy and character change, and died 32 months after the onset of symptoms. Autopsy revealed severe atrophy of the frontal and temporal lobes, remarkable neuronal loss and gliosis in the precentral gyrus, left temporal lobe pole and amygdala, mild degeneration of the Ammon's horn, degeneration of the corticospinal tract, and very mild involvement of the lower motor neurons. The anterior horn cells only occasionally demonstrated Bunina body by cystatin-C staining, and skein-like inclusions by ubiquitin staining. This is a peculiar case with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease predominantly affecting the upper motor neuron.

  10. Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.

    Science.gov (United States)

    Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris

    2016-05-04

    Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Memory-guided attention in the anterior thalamus.

    Science.gov (United States)

    Leszczyński, Marcin; Staudigl, Tobias

    2016-07-01

    The anterior thalamus is densely connected with both the hippocampus and the prefrontal cortex. It is known to play a role in learning and episodic memory. Given its connectivity profile with the prefrontal cortex, it may also be expected to contribute to executive functions. Recent studies in both rodents and humans add to our understanding of anterior thalamic function, suggesting that it is a key region for allocating attention. We discuss the convergence between studies in rodents and humans, both of which imply that the anterior thalamus may play a key role in memory-guided attention. We suggest that efficient allocation of attention to memory representations requires interaction between the memory-related hippocampal and the attention related fronto-parietal networks. We further propose that the anterior thalamus is a hub that connects and modulates both systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Anterior-posterior and lateral hemispheric alterations in cortical glucose utilization in Alzheimer's disease

    International Nuclear Information System (INIS)

    Friedland, T.F.; Budinger, T.F.; Jaqust, W.J.; Yano, Y.; Huesman, R.H.; Knittel, B.; Koss, E.; Ober, B.A.

    1984-01-01

    The anatomical and chemical features of Alzheimer's disease (AD) are not distributed evenly throughout the brain. However, the nature of this focality has not been well established in vivo. Dynamic studies using the Donner 280-Crystal Positron Tomograph with (F-18)2-fluorodeoxyglucose were performed in 17 subjects meeting current research criteria for AD, and in 7 healthy age-matched control subjects. Glucose metabolic rates in the temporal-parietal cortex are 27% lower in AD than in controls. Ratios of activity density reveal consistently lower metabolic rates in temporal-parietal than frontal cortex in the AD group, while healthy aged subjects have equal metabolic rates in the two areas. Similar findings have been reported by other laboratories. A major finding is a striking lateral asymmetry of cortical metabolism in AD which does not favor either hemisphere. (The asymmetry is 13% in the AD group, 3% in controls, p<.005.) This has not been previously reported in AD. The consistency with which anterior-posterior metabolic differences are found in AD suggests that the focality of the metabolic changes may be used to develop a noninvasive diagnostic test for the disorder. The metabolic asymmetry in AD may be compared to the clinical and pathological asymmetry found in Creutzfeldt-Jakob disease, and may represent an additional link between AD and the subacute spongiform encephalopathies

  13. Exploring the spatio-temporal neural basis of face learning

    Science.gov (United States)

    Yang, Ying; Xu, Yang; Jew, Carol A.; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.

    2017-01-01

    Humans are experts at face individuation. Although previous work has identified a network of face-sensitive regions and some of the temporal signatures of face processing, as yet, we do not have a clear understanding of how such face-sensitive regions support learning at different time points. To study the joint spatio-temporal neural basis of face learning, we trained subjects to categorize two groups of novel faces and recorded their neural responses using magnetoencephalography (MEG) throughout learning. A regression analysis of neural responses in face-sensitive regions against behavioral learning curves revealed significant correlations with learning in the majority of the face-sensitive regions in the face network, mostly between 150–250 ms, but also after 300 ms. However, the effect was smaller in nonventral regions (within the superior temporal areas and prefrontal cortex) than that in the ventral regions (within the inferior occipital gyri (IOG), midfusiform gyri (mFUS) and anterior temporal lobes). A multivariate discriminant analysis also revealed that IOG and mFUS, which showed strong correlation effects with learnin