WorldWideScience

Sample records for anterior prefrontal involvement

  1. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  2. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  3. Magnetoencephalographic signatures of right prefrontal cortex involvement in response inhibition.

    Science.gov (United States)

    Hege, Maike A; Preissl, Hubert; Stingl, Krunoslav T

    2014-10-01

    The prefrontal cortex has a pivotal role in top-down control of cognitive and sensory functions. In complex go-nogo tasks, the right dorsolateral prefrontal cortex is considered to be important for guiding the response inhibition. However, little is known about the temporal dynamics and neurophysiological nature of this activity. To address this issue, we recorded magnetoencephalographic brain activity in 20 women during a visual go-nogo task. The right dorsolateral prefrontal cortex showed an increase for the amplitude of the event-related fields and an increase in induced alpha frequency band activity for nogo in comparison to go trials. The peak of this prefrontal activity preceded the mean reaction time of around 360 ms for go trials, and thus supports the proposed role of right dorsolateral prefrontal cortex in gating the response inhibition and further suggests that right prefrontal alpha band activity might be involved in this gating. However, the results in right dorsolateral prefrontal cortex were similar for both successful and unsuccessful response inhibition. In these conditions, we instead observed pre- and poststimulus differences in alpha band activity in occipital and central areas. Thus, successful response inhibition seemed to additionally depend on prestimulus anticipatory alpha desynchronization in sensory areas as it was reduced prior to unsuccessful response inhibition. In conclusion, we suggest a role for functional inhibition by alpha synchronization not only in sensory, but also in prefrontal areas.

  4. The Anterior Prefrontal Cortex and the Hippocampus Are Negatively Correlated during False Memories

    Directory of Open Access Journals (Sweden)

    Brittany M. Jeye

    2017-01-01

    Full Text Available False memories commonly activate the anterior/dorsolateral prefrontal cortex (A/DLPFC and the hippocampus. These regions are assumed to work in concert during false memories, which would predict a positive correlation between the magnitudes of activity in these regions across participants. However, the A/DLPFC may also inhibit the hippocampus, which would predict a negative correlation between the magnitudes of activity in these regions. In the present functional magnetic resonance imaging (fMRI study, during encoding, participants viewed abstract shapes in the left or right visual field. During retrieval, participants classified each old shape as previously in the “left” or “right” visual field followed by an “unsure”–“sure”–“very sure” confidence rating. The contrast of left-hits and left-misses produced two activations in the hippocampus and three activations in the left A/DLPFC. For each participant, activity associated with false memories (right–“left”–“very sure” responses from the two hippocampal regions was plotted as a function of activity in each A/DLPFC region. Across participants, for one region in the left anterior prefrontal cortex, there was a negative correlation between the magnitudes of activity in this region and the hippocampus. This suggests that the anterior prefrontal cortex might inhibit the hippocampus during false memories and that participants engage either the anterior prefrontal cortex or the hippocampus during false memories.

  5. On the role of the anterior prefrontal cortex in cognitive 'branching': An fMRI study.

    Science.gov (United States)

    Chahine, George; Diekhof, Esther Kristina; Tinnermann, Alexandra; Gruber, Oliver

    2015-10-01

    The most anterior portion of prefrontal cortex (aPFC), more specifically Brodman Area 10 (BA10), has been implicated in 'branching operations', or the ability to perform tasks related to one goal, while keeping in working memory information related to a secondary goal. Such findings have been based on fMRI recordings under complex behavioral paradigms that compare 'branching' tasks with tasks where one goal is pursued at a time, but are limited by their complete reliance on verbal working memory and by small sample sizes. Here, we test the specificity of BA 10 to branching in similar behavioral paradigms but with a larger sample and in two different conditions involving verbal and visual working memory respectively. We find that BA 10 and other frontal and parietal brain areas are activated in all tasks, with an extent and level of significance increasing with the complexity of the task. We conclude that the activation of BA 10 is not specific to branching as previously hypothesized, but is related to the level of complexity of working memory performance. For further insight into the specific role of anterior portions of the frontal cortex we highlight the importance of simple control tasks with gradual and incremental increase in complexity.

  6. Balanitis xerotica obliterans involving anterior urethra.

    Science.gov (United States)

    Herschorn, S; Colapinto, V

    1979-12-01

    Balanitis xerotica obliterans (BXO) is known to affect the urethral meatus, glans, and prepuce. We describe a case of biopsy-proved BXO that involves not only the usual areas but the anterior urethra as well. Of added interest is the subsequent development of squamous cell carcinoma in the fossa navicularis. The literature is reviewed.

  7. Cross-modal sensory processing in the anterior cingulate and medial prefrontal cortices.

    Science.gov (United States)

    Laurienti, Paul J; Wallace, Mark T; Maldjian, Joseph A; Susi, Christina M; Stein, Barry E; Burdette, Jonathan H

    2003-08-01

    One of the principal functions of the nervous system is to synthesize information from multiple sensory channels into a coherent behavioral and perceptual gestalt. A critical feature of this multisensory synthesis is the sorting and coupling of information derived from the same event. One of the singular features of stimuli conveying such information is their contextual or semantic congruence. Illustrating this fact, subjects are typically faster and more accurate when performing tasks that include congruent compared to incongruent cross-modal stimuli. Using functional magnetic resonance imaging, we demonstrate that activity in select brain areas is sensitive to the contextual congruence among cross-modal cues and to task difficulty. The anterior cingulate gyrus and adjacent medial prefrontal cortices showed significantly greater activity when visual and auditory stimuli were contextually congruent (i.e., matching) than when they were nonmatching. Although activity in these regions was also dependent on task difficulty, showing decreased activity with decreasing task difficulty, the activity changes associated with stimulus congruence predominated.

  8. Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging

    Directory of Open Access Journals (Sweden)

    Dengler Reinhard

    2009-05-01

    Full Text Available Abstract Background Pathophysiological evidence suggests an involvement of fronto-striatal circuits in Tourette syndrome (TS. To identify TS related abnormalities in gray and white matter we used optimized voxel-based morphometry (VBM and magnetization transfer imaging (MTI which are more sensitive to tissue alterations than conventional MRI and provide a quantitative measure of macrostructural integrity. Methods Volumetric high-resolution anatomical T1-weighted MRI and MTI were acquired in 19 adult, unmedicated male TS patients without co-morbidities and 20 age- and sex-matched controls on a 1.5 Tesla neuro-optimized GE scanner. Images were pre-processed and analyzed using an optimized version of VBM in SPM2. Results Using VBM, TS patients showed significant decreases in gray matter volumes in prefrontal areas, the anterior cingulate gyrus, sensorimotor areas, left caudate nucleus and left postcentral gyrus. Decreases in white matter volumes were detected in the right inferior frontal gyrus, the left superior frontal gyrus and the anterior corpus callosum. Increases were found in the left middle frontal gyrus and left sensorimotor areas. In MTI, white matter reductions were seen in the right medial frontal gyrus, the inferior frontal gyrus bilaterally and the right cingulate gyrus. Tic severity was negatively correlated with orbitofrontal structures, the right cingulate gyrus and parts of the parietal-temporal-occipital association cortex bilaterally. Conclusion Our MRI in vivo neuropathological findings using two sensitive and unbiased techniques support the hypothesis that alterations in frontostriatal circuitries underlie TS pathology. We suggest that anomalous frontal lobe association and projection fiber bundles cause disinhibition of the cingulate gyrus and abnormal basal ganglia function.

  9. Anterior chest wall involvement in patients with pustulosis palmoplantaris.

    Science.gov (United States)

    Jurik, A G

    1990-01-01

    With the aim of determining the frequency and radiographic features of anterior chest wall involvement in patients with pustulosis palmoplantaris, a questionnaire was sent to 107 patients. Ninety-three patients returned the questionnaire, five of whom were excluded from further analysis due to the appearance of psoriatic lesions. Twenty-five (28%) of the remaining 88 patients reported pain and/or swelling of joints or bones in the anterior chest wall. All were examined radiographically, using tomography, and a group of 20 patients without anterior chest wall complaints were examined similarly. Sixteen of the patients with, but none of the patients without, complaints were found to have arthro-osteitis of the anterior chest wall, consisting of diffuse sclerosis of the manubrium sterni in one patient, localized sclerosis in seven patients, and sequelae of arthritis of the sternoclavicular, upper sternocostal and/or manubriosternal joint in eight patients.

  10. fMRI guided rTMS evidence for reduced left prefrontal involvement after task practice.

    Directory of Open Access Journals (Sweden)

    Johan Martijn Jansma

    Full Text Available INTRODUCTION: Cognitive tasks that do not change the required response for a stimulus over time ('consistent mapping' show dramatically improved performance after relative short periods of practice. This improvement is associated with reduced brain activity in a large network of brain regions, including left prefrontal and parietal cortex. The present study used fMRI-guided repetitive transcranial magnetic stimulation (rTMS, which has been shown to reduce processing efficacy, to examine if the reduced activity in these regions also reflects reduced involvement, or possibly increased efficiency. METHODS: First, subjects performed runs of a Sternberg task in the scanner with novel or practiced target-sets. This data was used to identify individual sites for left prefrontal and parietal peak brain activity, as well as to examine the change in activity related to practice. Outside of the scanner, real and sham rTMS was applied at left prefrontal and parietal cortex to examine their involvement novel and practiced conditions. RESULTS: Prefrontal as well as parietal rTMS significantly reduced target accuracy for novel targets. Prefrontal, but not parietal, rTMS interference was significantly lower for practiced than novel target-sets. rTMS did not affect non-target accuracy, or reaction time in any condition. DISCUSSION: These results show that task practice in a consistent environment reduces involvement of the prefrontal cortex. Our findings suggest that prefrontal cortex is predominantly involved in target maintenance and comparison, as rTMS interference was only detectable for targets. Findings support process switching hypotheses that propose that practice creates the possibility to select a response without the need to compare with target items. Our results also support the notion that practice allows for redistribution of limited maintenance resources.

  11. fMRI Guided rTMS Evidence for Reduced Left Prefrontal Involvement after Task Practice

    Science.gov (United States)

    Jansma, Johan Martijn; van Raalten, Tamar R.; Boessen, Ruud; Neggers, Sebastiaan F. W.; Jacobs, Richard H. A. H.; Kahn, René S.; Ramsey, Nick F.

    2013-01-01

    Introduction Cognitive tasks that do not change the required response for a stimulus over time (‘consistent mapping’) show dramatically improved performance after relative short periods of practice. This improvement is associated with reduced brain activity in a large network of brain regions, including left prefrontal and parietal cortex. The present study used fMRI-guided repetitive transcranial magnetic stimulation (rTMS), which has been shown to reduce processing efficacy, to examine if the reduced activity in these regions also reflects reduced involvement, or possibly increased efficiency. Methods First, subjects performed runs of a Sternberg task in the scanner with novel or practiced target-sets. This data was used to identify individual sites for left prefrontal and parietal peak brain activity, as well as to examine the change in activity related to practice. Outside of the scanner, real and sham rTMS was applied at left prefrontal and parietal cortex to examine their involvement novel and practiced conditions. Results Prefrontal as well as parietal rTMS significantly reduced target accuracy for novel targets. Prefrontal, but not parietal, rTMS interference was significantly lower for practiced than novel target-sets. rTMS did not affect non-target accuracy, or reaction time in any condition. Discussion These results show that task practice in a consistent environment reduces involvement of the prefrontal cortex. Our findings suggest that prefrontal cortex is predominantly involved in target maintenance and comparison, as rTMS interference was only detectable for targets. Findings support process switching hypotheses that propose that practice creates the possibility to select a response without the need to compare with target items. Our results also support the notion that practice allows for redistribution of limited maintenance resources. PMID:24376494

  12. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  13. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Directory of Open Access Journals (Sweden)

    Anders C. Green

    2012-01-01

    Full Text Available We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  14. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex.

    Science.gov (United States)

    Littlefield, Melissa M; Dietz, Martin J; Fitzgerald, Des; Knudsen, Kasper J; Tonks, James

    2015-01-01

    "Truth" has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person's mental state, a phenomenon known as Theory of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in-group and out-group members. Participants were asked to be honest and were told that their evaluations would be made public. We found increased BOLD responses in the medial prefrontal cortex, bilateral anterior insula and precuneus when participants were asked to tell social truths compared to simple truths about another person. At the behavioral level, participants were slower at responding to social compared to simple questions about another person. These findings suggest that telling the truth is a nuanced cognitive operation that is dependent on the degree of mentalizing. Importantly, we show that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning.

  15. Anterior prefrontal hemodynamic connectivity in conscious 3- to 7-year-old children with typical development and autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    Full Text Available Socio-communicative impairments are salient features of autism spectrum disorder (ASD from a young age. The anterior prefrontal cortex (aPFC, or Brodmann area 10, is a key processing area for social function, and atypical development of this area is thought to play a role in the social deficits in ASD. It is important to understand these brain functions in developing children with ASD. However, these brain functions have not yet been well described under conscious conditions in young children with ASD. In the present study, we focused on the brain hemodynamic functional connectivity between the right and the left aPFC in children with ASD and typically developing (TD children and investigated whether there was a correlation between this connectivity and social ability. Brain hemodynamic fluctuations were measured non-invasively by near-infrared spectroscopy (NIRS in 3- to 7-year-old children with ASD (n = 15 and gender- and age-matched TD children (n = 15. The functional connectivity between the right and the left aPFC was assessed by measuring the coherence for low-frequency spontaneous fluctuations (0.01-0.10 Hz during a narrated picture-card show. Coherence analysis demonstrated that children with ASD had a significantly higher inter-hemispheric connectivity with 0.02-Hz fluctuations, whereas a power analysis did not demonstrate significant differences between the two groups in terms of low frequency fluctuations (0.01-0.10 Hz. This aberrant higher connectivity in children with ASD was positively correlated with the severity of social deficit, as scored with the Autism Diagnostic Observation Schedule. This is the first study to demonstrate aberrant brain functional connectivity between the right and the left aPFC under conscious conditions in young children with ASD.

  16. Involvement of the Ventrolateral Prefrontal Cortex in Learning Others' Bad Reputations and Indelible Distrust.

    Science.gov (United States)

    Suzuki, Atsunobu; Ito, Yuichi; Kiyama, Sachiko; Kunimi, Mitsunobu; Ohira, Hideki; Kawaguchi, Jun; Tanabe, Hiroki C; Nakai, Toshiharu

    2016-01-01

    A bad reputation can persistently affect judgments of an individual even when it turns out to be invalid and ought to be disregarded. Such indelible distrust may reflect that the negative evaluation elicited by a bad reputation transfers to a person. Consequently, the person him/herself may come to activate this negative evaluation irrespective of the accuracy of the reputation. If this theoretical model is correct, an evaluation-related brain region will be activated when witnessing a person whose bad reputation one has learned about, regardless of whether the reputation is deemed valid or not. Here, we tested this neural hypothesis with functional magnetic resonance imaging (fMRI). Participants memorized faces paired with either a good or a bad reputation. Next, they viewed the faces alone and inferred whether each person was likely to cooperate, first while retrieving the reputations, and then while trying to disregard them as false. A region of the left ventrolateral prefrontal cortex (vlPFC), which may be involved in negative evaluation, was activated by faces previously paired with bad reputations, irrespective of whether participants attempted to retrieve or disregard these reputations. Furthermore, participants showing greater activity of the left ventrolateral prefrontal region in response to the faces with bad reputations were more likely to infer that these individuals would not cooperate. Thus, once associated with a bad reputation, a person may elicit evaluation-related brain responses on their own, thereby evoking distrust independently of their reputation.

  17. Patterns of prefrontal dysfunction in alcoholics with and without Korsakoff's syndrome, patients with Parkinson's disease, and patients with rupture and repair of the anterior communicating artery.

    Science.gov (United States)

    Dirksen, Courtney L; Howard, Julie A; Cronin-Golomb, Alice; Oscar-Berman, Marlene

    2006-09-01

    This study compared patterns of frontal-lobe dysfunction in alcoholics with Korsakoff's syndrome (KS: n = 9), non-Korsakoff alcoholics (AL: n = 28), patients with Parkinson's disease (PD: n = 18), and patients with rupture and repair of the anterior communicating artery (ACoA: n = 4) relative to healthy non-neurological control (NC) participants (n = 70). The tests administered were sensitive to functions of dorsolateral prefrontal and orbito-frontal subsystems. Measures included perseverative errors on the Wisconsin Card Sorting Test (WCST-pe), errors on object alternation (OA), errors on Trails B, number of words generated on the Controlled Oral Word Association Test (COWAT), and number of categories completed on the WCST (WCST-cc). KS patients were as impaired as AL participants on orbitofrontal measures and, on dorsolateral prefrontal measures, were impaired relative to AL participants, whose performance did not differ from controls. Patients with PD also were impaired on tests of orbitofrontal and dorsolateral prefrontal functioning but to a lesser extent than the KS patients. Moreover, most of the PD deficits were driven by the impaired performance of patients whose initial symptoms were on the right side of the body. The ACoA patients were significantly impaired on tests of orbitofrontal but not dorsolateral prefrontal functioning relative to the control group. Together, the results confirm different patterns of frontal-system impairments in patient groups having compromised frontal lobe functioning consequent to varying etiologies.

  18. Testing the involvement of the prefrontal cortex in lucid dreaming: a tDCS study.

    Science.gov (United States)

    Stumbrys, Tadas; Erlacher, Daniel; Schredl, Michael

    2013-12-01

    Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to increase dream lucidity. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed.

  19. Anterior cingulate cortex involvement in subclinical social anxiety.

    Science.gov (United States)

    Duval, Elizabeth R; Hale, Lisa R; Liberzon, Israel; Lepping, Rebecca; N Powell, Joshua; Filion, Diane L; Savage, Cary R

    2013-12-30

    We demonstrated differential activation in the anterior cingulate cortex (ACC) between subjects with high and low social anxiety in response to angry versus neutral faces. Activation in the ACC distinguished between facial expressions in the low, but not the high, anxious group. The ACC's role in threat processing is discussed.

  20. Right Ventricular Involvement in either Anterior or Inferior Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Firoozeh Abtahi

    2016-06-01

    Full Text Available Background: Unlike left ventricular function, less attention has been paid to Right Ventricular (RV function after Myocardial Infarction (MI. Objectives: The current study aimed to compare RV function in patients with inferior and anterior MI. Patients and Methods: During the study period, 60 patients consecutively presented to the Emergency Department with chest pain were divided into two groups based on their electrocardiographic findings. Accordingly, 25 patients had inferior MI (IMI group and 35 ones had anterior MI (AMI group. Echocardiography was performed 48 hours after starting the standard therapy. Conventional echocardiographic parameters and Tissue Doppler Imaging (TDI measurements were acquired from the standard views. Student t-test and the chi-square test were respectively used for comparisons of the normally distributed continuous and categorical variables in the two groups. Besides, P < 0.05 was considered to be statistically significant.

  1. Ameloblastic fibrodentinoma involving anterior maxilla: A rare case report

    Directory of Open Access Journals (Sweden)

    Shailaja Sankireddy

    2013-01-01

    Full Text Available Ameloblastic fibroma (AF and related lesions comprise a complex group of mixed odontogenic tumors. Ameloblastic fibrodentinoma (AFD is a rare tumor and is considered as a histological variant of AF showing inductive changes that lead to the formation of dentin. Although the most common site for this tumor is the posterior mandible, hereby we are reporting a case of AFD in the anterior maxillary region which is a very rare site for this group of tumors. The present case report highlights the clinical, radiological and histological presentation of AFD in order to raise awareness for the earlier diagnosis and precise management of this rare pathological entity.

  2. Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat

    Science.gov (United States)

    Shiba, Yoshiro; Kim, Charissa; Santangelo, Andrea M.; Roberts, Angela C.

    2015-01-01

    The ventral prefrontal cortex is an integral part of the neural circuitry that is dysregulated in mood and anxiety disorders. However, the contribution of its distinct sub-regions to the regulation of negative emotion are poorly understood. Recently we implicated both the ventrolateral prefrontal cortex (vlPFC) and anterior orbitofrontal cortex (antOFC) in the regulation of conditioned fear and anxiety responses to a social stimulus, i.e., human intruder, in the marmoset monkey. In the present study we extend our investigations to determine the role of these two regions in regulating innate responses and coping strategies to a predator stimulus, i.e., a model snake. Both the vlPFC and antOFC lesioned groups exhibited enhanced anxiety-related responses to the snake in comparison to controls. Both groups also showed a reduction in active coping behavior. These results indicate that the vlPFC and antOFC contribute independently to the regulation of both innate fear and, as previously reported, conditioned fear, and highlight the importance of these regions in producing stimulus-appropriate coping responses. The finding that dysregulation in two distinct prefrontal regions produces the apparently similar behavioral phenotype of heightened negative emotion provides insight into the varied etiology that may underlie this symptom across a wide variety of neuropsychiatric conditions with implications for personalized treatment strategies. PMID:25653599

  3. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  4. Atypical presentation of popliteal artery entrapment syndrome: involvement of the anterior tibial artery.

    Science.gov (United States)

    Bou, Steven; Day, Carly

    2014-11-01

    Popliteal artery entrapment syndrome (PAES) is a rare condition that should be suspected in a young patient with exertional lower extremity pain. We report the case of an 18-year-old female volleyball player with bilateral exertional lower extremity pain who had been previously diagnosed with tendinitis and periostitis. Diagnostic studies showed entrapment of the left popliteal artery and the left anterior tibial artery. To our knowledge, there has only been 1 previous report of anterior tibial artery involvement in PAES.

  5. Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat

    Directory of Open Access Journals (Sweden)

    Yoshiro eShiba

    2015-01-01

    Full Text Available The ventral prefrontal cortex is an integral part of the neural circuitry that is dysregulated in mood and anxiety disorders. However, the contribution of its distinct sub-regions to the regulation of negative emotion are poorly understood. Recently we implicated both the ventrolateral PFC (vlPFC and anterior orbitofrontal cortex (antOFC in the regulation of conditioned fear and anxiety responses to a social stimulus, i.e. human intruder, in the marmoset monkey. In the present study we extend our investigations to determine the role of these two regions in regulating innate responses and coping strategies to a predator stimulus, i.e. a model snake. Both the vlPFC and antOFC lesioned groups exhibited enhanced anxiety-related responses to the snake in comparison to controls. Both groups also showed a reduction in active coping behavior. These results indicate that the vlPFC and antOFC contribute independently to the regulation of both innate fear and, as previously reported, conditioned fear, and highlight the importance of these regions in producing stimulus-appropriate coping responses. The finding that dysregulation in two distinct prefrontal regions produces the apparently similar behavioral phenotype of heightened negative emotion provides insight into the varied aetiology that may underlie this symptom across a wide variety of neuropsychiatric conditions with implications for personalized treatment strategies.

  6. Medial Prefrontal Cortex Is Selectively Involved in Response Selection Using Visual Context in the Background

    Science.gov (United States)

    Lee, Inah; Shin, Ji Yun

    2012-01-01

    The exact roles of the medial prefrontal cortex (mPFC) in conditional choice behavior are unknown and a visual contextual response selection task was used for examining the issue. Inactivation of the mPFC severely disrupted performance in the task. mPFC inactivations, however, did not disrupt the capability of perceptual discrimination for visual…

  7. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  8. Anterior Cingulate Cortex and Cognitive Control: Neuropsychological and Electrophysiological Findings in Two Patients with Lesions to Dorsomedial Prefrontal Cortex

    Science.gov (United States)

    Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.

    2012-01-01

    Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…

  9. Medial prefrontal depressor response: involvement of the rostral and caudal ventrolateral medulla in the rat.

    Science.gov (United States)

    Owens, N C; Verberne, A J

    2000-01-14

    The importance of neurones of the caudal and rostral ventrolateral medulla (CVLM and RVLM, respectively) in mediation of the medial prefrontal cortex depressor response was studied in halothane-anaesthetised rats. Blockade of GABA(A) receptors in the RVLM produced by microinjection of bicuculline (50 nl, 2 mM, n = 6) resulted in reversal of the depressor (-9.5 +/- 1.2 mm Hg) and lumbar sympathetic (-6.5 +/- 5.7 units) responses to pressor (+7.8 +/- 3.5 mm Hg) and sympathoexcitatory (+19.3 +/- 12.5 units) responses and simultaneous blockade of baroreceptor reflex-mediated sympathoinhibition. Baroreflex blockade was reflected by a significant reduction in the gain (slope of the blood pressure vs. lumbar sympathetic nerve discharge regression line) of the reflex. Microinjection of the excitatory amino acid antagonist kynurenic acid (100 nl, 50 mM, n = 6) into the CVLM blocked the baroreflex and significantly reduced the depressor (-9.6 +/- 0.4 to -6.9 +/- 0.6 mm Hg) and lumbar sympathetic (-4.0 +/- 2.1 to 2.9 +/- 1.9 units) responses to medial prefrontal cortex stimulation. These results support the hypothesis that the medial prefrontal cortex depressor response is mediated by a pathway which converges at the level of the RVLM and which is only partly dependent on an excitatory input to caudal ventrolateral medullary neurones.

  10. Extensive balanitis xerotica obliterans (BXO) involving the anterior urethra and scrotum.

    Science.gov (United States)

    Singh, Iqbal; Ansari, M S

    2006-01-01

    We describe an unusual case of balanitis xerotica obliterans (BXO) involving the entire anterior urethra and the scrotum that had presented as a palpable nodular scrotal mass with obstructive voiding symptoms in middle aged man. He was managed by a staged urethroplasty. We report the first such case of BXO involving the scrotum resulting in a nodular mass that has not been described and reported till date.

  11. Differential involvement of the anterior temporal lobes in famous people semantics

    Directory of Open Access Journals (Sweden)

    Georges Chedid

    2016-08-01

    Full Text Available The ability to recognize a famous person occurs through semantic memory. Previous neuroimaging studies have shown that the anterior temporal lobes (ATLs are involved in the recognition of famous people. However, it is still a matter of debate whether the semantic processing of names or pictures of famous people has an impact on the activation of ATLs. The aim of this study was to explore the pattern of activation associated with a semantic processing of famous people based on face and written name stimuli. Fifteen healthy young individuals participated in our fMRI study, in which they were asked to perform a semantic categorization judgement task, based on profession, of visually presented pictures and names of famous people. Neuroimaging findings showed a common pattern of activation for faces and names mainly involving the inferior frontal regions, the posterior temporal lobe, the visual cortex and the anterior temporal lobes. We found that the comparison names vs. pictures lead to significant activation in the anterior superior temporal gyrus. On the other hand, faces vs. names seemed associated with increased activation in the medial ATL. Moreover, our results demonstrated that the functional connectivity network anchored to the medial ATL, compared to the anterior STG, is more connected to the bilateral occipital lobe and fusiform gyrus that are regions implicated in the visual system and visual processing of faces. This study provides critical evidence of the differential involvement of ATL regions in semantics of famous people.

  12. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music

    DEFF Research Database (Denmark)

    Green, Anders Christian; Bærentsen, Klaus B.; Stødkilde-Jørgensen, Hans

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning......, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous...... exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory...

  13. Patterns of prefrontal dysfunction in alcoholics with and without Korsakoff’s syndrome, patients with Parkinson’s disease, and patients with rupture and repair of the anterior communicating artery

    OpenAIRE

    Dirksen, Courtney L; Howard, Julie A.; Cronin-Golomb, Alice; Oscar-Berman, Marlene

    2006-01-01

    This study compared patterns of frontal-lobe dysfunction in alcoholics with Korsakoff’s syndrome (KS: n = 9), non-Korsakoff alcoholics (AL: n = 28), patients with Parkinson’s disease (PD: n = 18), and patients with rupture and repair of the anterior communicating artery (ACoA: n = 4) relative to healthy non-neurological control (NC) participants (n = 70). The tests administered were sensitive to functions of dorsolateral prefrontal and orbito-frontal subsystems. Measures included perseverativ...

  14. Differential Involvement of the Anterior Temporal Lobes in Famous People Semantics

    Science.gov (United States)

    Chedid, Georges; Wilson, Maximiliano A.; Provost, Jean-Sebastien; Joubert, Sven; Rouleau, Isabelle; Brambati, Simona M.

    2016-01-01

    The ability to recognize a famous person occurs through semantic memory. Previous neuroimaging studies have shown that the anterior temporal lobes (ATLs) are involved in the recognition of famous people. However, it is still a matter of debate whether the semantic processing of names or pictures of famous people has an impact on the activation of ATLs. The aim of this study was to explore the pattern of activation associated with a semantic processing of famous people based on face and written name stimuli. Fifteen healthy young individuals participated in our fMRI study, in which they were asked to perform a semantic categorization judgment task, based on profession, of visually presented pictures, and names of famous people. Neuroimaging findings showed a common pattern of activation for faces and names mainly involving the inferior frontal regions, the posterior temporal lobe, the visual cortex, and the ATLs. We found that the comparison names vs. pictures lead to significant activation in the anterior superior temporal gyrus. On the other hand, faces vs. names seemed associated with increased activation in the medial ATL. Moreover, our results demonstrated that the functional connectivity network anchored to the medial ATL, compared to the anterior STG, is more connected to the bilateral occipital lobe and fusiform gyrus that are regions implicated in the visual system and visual processing of faces. This study provides critical evidence of the differential involvement of ATL regions in semantics of famous people. PMID:27625630

  15. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Juan Carlos López-Ramos

    2015-01-01

    Full Text Available Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex is identified in rodents by its dense connectivity with the mediodorsal thalamus, and because of its inputs from other sites, such as hippocampus and amygdala. The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the mediodorsal thalamus, the hippocampal CA1 area, or the basolateral amygdala, and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. Field postsynaptic potentials evoked at the medial prefrontal cortex from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. Field postsynaptic potentials collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations.

  16. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  17. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Directory of Open Access Journals (Sweden)

    Garreth Prendergast

    Full Text Available The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG. Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  18. Impaired attention and synaptic senescence of the prefrontal cortex involves redox regulation of NMDA receptors.

    Science.gov (United States)

    Guidi, Michael; Kumar, Ashok; Foster, Thomas C

    2015-03-04

    Young (3-6 months) and middle-age (10-14 months) rats were trained on the five-choice serial reaction time task. Attention and executive function deficits were apparent in middle-age animals observed as a decrease in choice accuracy, increase in omissions, and increased response latency. The behavioral differences were not due to alterations in sensorimotor function or a diminished motivational state. Electrophysiological characterization of synaptic transmission in slices from the mPFC indicated an age-related decrease in glutamatergic transmission. In particular, a robust decrease in N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic responses in the mPFC was correlated with several measures of attention. The decrease in NMDAR function was due in part to an altered redox state as bath application of the reducing agent, dithiothreitol, increased the NMDAR component of the synaptic response to a greater extent in middle-age animals. Together with previous work indicating that redox state mediates senescent physiology in the hippocampus, the results indicate that redox changes contribute to senescent synaptic function in vulnerable brain regions involved in age-related cognitive decline.

  19. Gap Junctions in the Ventral Hippocampal-Medial Prefrontal Pathway Are Involved in Anxiety Regulation

    Science.gov (United States)

    Schoenfeld, Timothy J.; Kloth, Alexander D.; Hsueh, Brian; Runkle, Matthew B.; Kane, Gary A.; Wang, Samuel S.-H.

    2014-01-01

    Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP–mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety. PMID:25411496

  20. MODIFIED TRANSCRANIAL APPROACH FOR RESECTION OF TUMORS INVOLVING THE ANTERIOR CRANIAL FOSSA

    Institute of Scientific and Technical Information of China (English)

    赵素萍; 陶正德; 肖健云

    2001-01-01

    Objective: To introduce the method of a modified transcranial approach for resection of paranasal sinuses tumors involving the anterior skull base and to address our experience with the approach. Patients and Methods: Ten cases were operated by the approach. Among them, 4 suffered from benign meningeomas, 6 with malignant tumors included one chondrosarcoma, two malignant meningeomas, two olfactory neuroblastomas, and one squamous sarcoma. Of the patients, 4 cases had primary tumor and 6 cases had recurrent tumors. Result: All of the ten cases underwent operation and no postopertion complication occurred. 7 cases have survived for one to four years without tumor recurrence. 3 cases with malignant tumor died of tumor relapse in one to two years. Conclusion: This method significantly has helped to reduce the persistence and recurrence of the disease.

  1. Housing condition-related changes involved in reversal learning and its c-Fos associated activity in the prefrontal cortex.

    Science.gov (United States)

    Sampedro-Piquero, P; Zancada-Menendez, C; Begega, A

    2015-10-29

    Our study examined how different housing conditions modulated the acquisition of a spatial reference memory task and also, a reversal task in the 4-radial arm water maze (4-RAWM). The animals were randomly assigned to standard or enriched cages, and, as a type of complementary stimulation along with the environmental enrichment (EE), a group of rats also ran 15 min/day in a Rotarod. Elevated-zero maze results allowed us to discard that our exercise training increased anxiety-related behaviors. 4-RAWM results revealed that the non-enriched group had a worse performance during the acquisition and also, during the first trial of each session with respect to the enriched groups. Regarding the reversal task, this group made more perseverative errors in the previous platform position. Interestingly, we hardly found differences between the two enriched groups (with and without exercise). We also analyzed how the reversal learning, depending on the previous housing condition, modulated the expression of c-Fos-positive nuclei in different subdivisions of the medial prefrontal cortex (cingulate (Cg), prelimbic (PL) and infralimbic (IL) cortices) and in the orbitofrontal (OF) cortex. The enriched groups had higher c-Fos expression in the Cg and OF cortices and lower in the IL cortex respect to the non-enriched animals. In the PL cortex, we did not find significant differences between the groups that performed the reversal task. Therefore, our short EE protocol improved the performance in a spatial memory and a reversal task, whereas the exercise training, combined with the EE, did not produce a greater benefit. This better performance seemed to be related with the specific pattern of c-Fos expression in brain regions involved in cognitive flexibility.

  2. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    Science.gov (United States)

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training.

  3. Oxytocin in the medial prefrontal cortex is involved in maternal care, maternal aggression and anxiolysis during the postpartum period

    OpenAIRE

    2014-01-01

    The neuropeptide oxytocin (OT) acts on a widespread network of brain regions to regulate numerous behavioral adaptations during the postpartum period including maternal care, maternal aggression, and anxiolysis. In the present study, we examined whether this network also includes the medial prefrontal cortex (mPFC). We found that bilateral infusion of a highly specific oxytocin receptor antagonist (OTR-A) into the prelimbic (PL) region of the mPFC increased anxiety-like behavior in postpartum...

  4. Reversible antisocial behavior in ventromedial prefrontal lobe epilepsy.

    Science.gov (United States)

    Trebuchon, Agnès; Bartolomei, Fabrice; McGonigal, Aileen; Laguitton, Virginie; Chauvel, Patrick

    2013-11-01

    Frontal lobe dysfunction is known to be associated with impairment in social behavior. We investigated the link between severe pharmacoresistant frontal lobe epilepsy and antisocial trait. We studied four patients with pharmacoresistant epilepsy involving the prefrontal cortex, presenting abnormal interictal social behavior. Noninvasive investigations (video-EEG, PET, MRI) and intracerebral recording (stereoelectroencephalography (SEEG)) were performed as part of a presurgical assessment. Comprehensive psychiatric and cognitive evaluation was performed pre- and postoperatively for frontal lobe epilepsy, with at least 7years of follow-up. All patients shared a characteristic epilepsy pattern: (1) chronic severe prefrontal epilepsy with daily seizures and (2) an epileptogenic zone as defined by intracerebral recording involving the anterior cingulate cortex, ventromedial PFC, and the posterior part of the orbitofrontal cortex, with early propagation to contralateral prefrontal and ipsilateral medial temporal structures. All patients fulfilled the diagnostic criteria (DSM-IV) of antisocial personality disorder, which proved to be reversible following seizure control. Pharmacoresistant epilepsy involving a prefrontal network is associated with antisocial personality. We hypothesize that the occurrence of frequent seizures in this region over a prolonged period produces functional damage leading to impaired prefrontal control of social behavior. This functional damage is reversible since successful epilepsy surgery markedly improved antisocial behavior in these patients. The results are in line with previous reports of impairment of social and moral behavior following ventromedial frontal lobe injury.

  5. Long-term expression of human contextual fear and extinction memories involves amygdala, hippocampus and ventromedial prefrontal cortex: a reinstatement study in two independent samples.

    Science.gov (United States)

    Lonsdorf, Tina B; Haaker, Jan; Kalisch, Raffael

    2014-12-01

    Human context conditioning studies have focused on acquisition and extinction. Subsequent long-term changes in fear behaviors not only depend on associative learning processes during those phases but also on memory consolidation processes and the later ability to retrieve and express fear and extinction memories. Clinical theories explain relapse after successful exposure-based treatment with return of fear memories and remission with stable extinction memory expression. We probed contextual fear and extinction memories 1 week (Day8) after conditioning (Day1) and subsequent extinction (Day2) by presenting conditioned contexts before (Test1) and after (Test2) a reinstatement manipulation. We find consistent activation patterns in two independent samples: activation of a subgenual part of the ventromedial prefrontal cortex before reinstatement (Test1) and (albeit with different temporal profiles between samples) of the amygdala after reinstatement (Test2) as well as up-regulation of anterior hippocampus activity after reinstatement (Test2 > Test1). These areas have earlier been implicated in the expression of cued extinction and fear memories. The present results suggest a general role for these structures in defining the balance between fear and extinction memories, independent of the conditioning mode. The results are discussed in the light of hypotheses implicating the anterior hippocampus in the processing of situational ambiguity.

  6. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues.

    Science.gov (United States)

    Dumont, Julie R; Amin, Eman; Aggleton, John P

    2014-01-01

    To test potential parallels between hippocampal and anterior thalamic function, rats with anterior thalamic lesions were trained on a series of biconditional learning tasks. The anterior thalamic lesions did not disrupt learning two biconditional associations in operant chambers where a specific auditory stimulus (tone or click) had a differential outcome depending on whether it was paired with a particular visual context (spot or checkered wall-paper) or a particular thermal context (warm or cool). Likewise, rats with anterior thalamic lesions successfully learnt a biconditional task when they were reinforced for digging in one of two distinct cups (containing either beads or shredded paper), depending on the particular appearance of the local context on which the cup was placed (one of two textured floors). In contrast, the same rats were severely impaired at learning the biconditional rule to select a specific cup when in a particular location within the test room. Place learning was then tested with a series of go/no-go discriminations. Rats with anterior thalamic nuclei lesions could learn to discriminate between two locations when they were approached from a constant direction. They could not, however, use this acquired location information to solve a subsequent spatial biconditional task where those same places dictated the correct choice of digging cup. Anterior thalamic lesions produced a selective, but severe, biconditional learning deficit when the task incorporated distal spatial cues. This deficit mirrors that seen in rats with hippocampal lesions, so extending potential interdependencies between the two sites.

  7. Medial Prefrontal Cortex Involvement in the Expression of Extinction and ABA Renewal of Instrumental Behavior for a Food Reinforcer

    Science.gov (United States)

    Eddy, Meghan C.; Todd, Travis P.; Bouton, Mark E.; Green, John T.

    2015-01-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  8. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.

    Science.gov (United States)

    Eddy, Meghan C; Todd, Travis P; Bouton, Mark E; Green, John T

    2016-02-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  9. Loss of anterior concavity of the first sacrum can predict spinal involvement in ankylosing spondylitis.

    Science.gov (United States)

    Kim, Ji Young; Lee, Seunghun; Joo, Kyung Bin; Song, Yoonah; Joo, Young Bin; Kim, Tae-Hwan

    2016-01-01

    In this study, we evaluated the frequency of squaring of the first sacrum (S1), defined as the loss of anterior concavity, in patients with ankylosing spondylitis (AS). We also determined the interobserver reliability in the assessment of S1 squaring and the relationships of S1 squaring with MRI findings and the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). To this end, we performed a retrospective study of 100 patients with AS (mean age 33.2 years; range 19-57 years) and 100 control patients (mean age 35.6 years; range 19-50 years). Four experienced radiologists independently assessed the presence of S1 squaring in the AS and control groups. The frequencies of S1 squaring as scored by the four observers were 47, 48, 46, and 42 in the AS group and 3, 6, 4, and 6 in the control group. The interobserver agreement among the four observers with respect to S1 squaring was excellent (κ value 0.80) in the AS group and fair to good (κ value 0.61) in the control group. In patients with AS, the presence of S1 squaring showed fair to good agreement with the MRI changes (κ value 0.74). Moreover, the mSASSSs of patients with versus without S1 squaring were significantly different (mean 23.9 vs 7.0, p < 0.001). In conclusion, S1 squaring is relatively common in patients with AS. Moreover, S1 squaring is closely correlated with MRI changes and significantly associated with the mSASSS. Assessment of S1 squaring could be a simple method that is potentially useful for predicting early spinal structural involvement in patients with AS.

  10. Segond fracture: involvement of the iliotibial band, anterolateral ligament, and anterior arm of the biceps femoris in knee trauma

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, Michel de; Boulet, Cedric; Willekens, Inneke; Mey, Johan de; Shahabpour, Maryam [Universitair Ziekenhuis Brussel, Department of Radiology, Brussels (Belgium); Lenchik, Leon [Wake Forest University, Department of Radiology, Winston Salem, NC (United States); Cattrysse, Erik [Vrije Universiteit Brussel, Department of Experimental Anatomy, Brussels (Belgium)

    2014-12-04

    To evaluate the involvement of the iliotibial band (ITB), the anterolateral ligament (ALL), and the anterior arm of the biceps femoris in MRI-diagnosed Segond fracture and to evaluate other associated findings of Segond fracture. We retrospectively reviewed the MRI of 13 cases of Segond fracture. The studies included proton density-weighted, T2-weighted, and proton density-weighted with fat saturation images in the three planes. We studied 2 cadaveric specimens with emphasis on the ALL. One cadaveric specimen was dissected while the other was sectioned in the sagittal plane. The mean age of the patients was 36 years (range, 17-52). There were 7 men and 6 women. The mean size of the Segond bone fragment was 8 x 10 x 2 mm. The distance from the tibia varied from 2 to 6 mm. Associated findings included anterior cruciate ligament (ACL) tear (n = 13), medial collateral ligament (MCL) tear (n = 8), meniscocapsular tear of the posterior horn of the medial meniscus (n = 5), and posterolateral corner involvement (n = 4). Bone marrow edema involved the mid-lateral femoral condyle and the posterior tibial plateau on both the medial and the lateral side. Edema at the Segond area was seen, but was limited. Fibular head edema was also seen. The ITB (11 out of 13) and ALL (10 out of 13) inserted on the Segond bone fragment. The anterior arm of the biceps tendon did not insert on the Segond fracture. Associated findings of Segond fracture include ACL tear, MCL tear, medial meniscus tear, and posterolateral corner injury. Both the ITB and the ALL may be involved in the Segond avulsion. The anterior arm of the biceps femoris tendon is not involved. (orig.)

  11. Medial Prefrontal Cortex Plays a Critical and Selective Role in "Feeling of Knowing" Meta-Memory Judgments

    Science.gov (United States)

    Modirrousta, Mandana; Fellows, Lesley K.

    2008-01-01

    The frontal lobes are thought to play a role in the monitoring of memory performance, or "meta-memory," but the specific circuits involved have yet to be definitively established. Medial prefrontal cortex in general and the anterior cingulate cortex in particular, have been implicated in other forms of monitoring, such as error and conflict…

  12. Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction.

    Science.gov (United States)

    Xin, Jian; Ma, Ling; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Kong, Liang; Chen, Zhe-Yu

    2014-05-21

    Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator.

  13. Loss of phenotype of parvalbumin interneurons in rat prefrontal cortex is involved in antidepressant- and propsychotic-like behaviors following acute and repeated ketamine administration.

    Science.gov (United States)

    Zhou, ZhiQiang; Zhang, GuangFen; Li, XiaoMin; Liu, XiaoYu; Wang, Nan; Qiu, LiLi; Liu, WenXue; Zuo, ZhiYi; Yang, JianJun

    2015-04-01

    Accumulating evidence has demonstrated that single subanesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant-like effects. Nevertheless, repeated subanesthetic doses of ketamine produce psychosis-like effects with dysfunction of parvalbumin (PV) interneurons. We hypothesized that PV interneurons play an important role in the antidepressant-like actions of ketamine, and different changes in PV interneurons occur with the antidepressant-like and propsychotic-like effects of ketamine. To test this hypothesis, ketamine's antidepressant-like effects were evaluated by the forced swimming test. Ketamine-induced stereotyped behaviors and hyperactivity actions and the function of PV interneurons were also assessed. We demonstrated that an acute dose of 10 mg/kg ketamine induced significant antidepressant-like effects and reduced the levels of PV and the gamma-aminobutyric acid (GABA)-producing enzyme GAD67 in the rat prefrontal cortex. Moreover, inhibition of ketamine-induced loss of PV by apocynin blocked these antidepressant-like effects. Repeated administration of 30 mg/kg ketamine elicited stereotyped behaviors and hyperactivity actions as well as a longer duration of PV and GAD67 loss, higher brain glutamate levels, and lower brain GABA levels than acute single dose of ketamine. Our results reveal that the loss of phenotype of PV interneurons in the prefrontal cortex contributes to the antidepressant-like actions and is also involved in the propsychotic-like behaviors following acute and repeated ketamine administration, which may be partially mediated by the disinhibition of glutamate signaling. The different degrees and durations of the actions on PV interneurons produced by the two regimens of ketamine may partly underline the behavioral variance between the antidepressant- and propsychotic-like effects.

  14. Transthoracic approach for lesions involving the anterior dorsal spine: A multidisciplinary approach with good outcomes

    Directory of Open Access Journals (Sweden)

    Srikant Balasubramaniam

    2016-01-01

    Materials and Methods: A total of 16 patients were operated for varying lesions of body of dorsal vertebra by the transthoracic approach. The study was for a period of 5 years from January 2011 to December 2015. Patients age ranged from 25 to 61 years with an average of 36.4 yrs. There were 7 males and 9 females. In our series 9 patients had Kochs spine, 4 patients were traumatic fracture spine and 3 had neoplastic lesion. Majority of patients had multiple symptoms with backache being present in all patients. Results: There was one post operative mortality which was unrelated to surgery. One patient had post operative delayed kyphosis. Remaining patients improved in their symptoms following surgery. Conclusion: With careful coordination by thoracic surgeons, neurospinal surgeons and anaesthetists, the anterior spine approach for dorsal spine is safe and effective. Adequate preoperative evaluation should stratify the risk and institute measures to reduce it. Accurate surgical planning and careful surgical technique are the key to yield a good outcome and to reduce the risk of complications.

  15. Determining monkey free choice long before the choice is made: the principal role of prefrontal neurons involved in both decision and motor processes

    Directory of Open Access Journals (Sweden)

    Encarni Marcos

    2016-09-01

    Full Text Available When choices are made freely, they might emerge from pre-existing neural activity. However, whether neurons in the prefrontal cortex (PF show this anticipatory effect and, if so, in which part of the process they are involved is still debated. To answer this question, we studied PF activity in monkeys while they performed a strategy task. In this task when the stimulus changed from the previous trial, the monkeys had to shift their response to 1 of 2 spatial goals, excluding the one that had been previously selected. Under this free-choice condition, the prestimulus activity of the same neurons that are involved in decision and motor processes predicted future choices. These neurons developed the same goal preferences during the prestimulus presentation as they did later in the decision phase. In contrast, the same effect was not observed in motor-only neurons and it was present but weaker in decision-only neurons. Overall, our results suggest that the PF neuronal activity predicts upcoming actions mainly through the decision-making network that integrate in time decision and motor task aspects.

  16. Prefrontal-hippocampal pathways underlying inhibitory control over memory.

    Science.gov (United States)

    Anderson, Michael C; Bunce, Jamie G; Barbas, Helen

    2016-10-01

    A key function of the prefrontal cortex is to support inhibitory control over behavior. It is widely believed that this function extends to stopping cognitive processes as well. Consistent with this, mounting evidence establishes the role of the right lateral prefrontal cortex in a clear case of cognitive control: retrieval suppression. Retrieval suppression refers to the ability to intentionally stop the retrieval process that arises when a reminder to a memory appears. Functional imaging data indicate that retrieval suppression involves top-down modulation of hippocampal activity by the dorsolateral prefrontal cortex, but the anatomical pathways supporting this inhibitory modulation remain unclear. Here we bridge this gap by integrating key findings about retrieval suppression observed through functional imaging with a detailed consideration of relevant anatomical pathways observed in non-human primates. Focusing selectively on the potential role of the anterior cingulate cortex, we develop two hypotheses about the pathways mediating interactions between lateral prefrontal cortex and the medial temporal lobes during suppression, and their cellular targets: the entorhinal gating hypothesis, and thalamo-hippocampal modulation via the nucleus reuniens. We hypothesize that whereas entorhinal gating is well situated to stop retrieval proactively, thalamo-hippocampal modulation may interrupt an ongoing act of retrieval reactively. Isolating the pathways that underlie retrieval suppression holds the potential to advance our understanding of a range of psychiatric disorders characterized by persistent intrusive thoughts. More broadly, an anatomical account of retrieval suppression would provide a key model system for understanding inhibitory control over cognition.

  17. Overlapping prefrontal systems involved in cognitive and emotional processing in euthymic bipolar disorder and following sleep deprivation: A review of functional neuroimaging studies

    Science.gov (United States)

    McKenna, Benjamin S; Eyler, Lisa T

    2013-01-01

    Prefrontal cortex (PFC) mediated cognitive and emotional processing deficits in bipolar disorder lead to functional limitations even during periods of mood stability. Alterations of sleep and circadian functioning are well-documented in bipolar disorder, but there is little research directly examining the mechanistic role of sleep and/or circadian rhythms in the observed cognitive and emotional processing deficits. We systematically review the cognitive and emotional processing deficits reliant upon PFC functioning of euthymic patients with bipolar disorder and in healthy individuals deprived of sleep. The evidence from two parallel lines of investigation suggests that sleep and circadian rhythms may be involved in the cognitive and emotional processing deficits seen in bipolar disorder through overlapping neurobiological systems. We discuss current models of bipolar highlighting the PFC-limbic connections and discuss inclusion of sleep-related mechanisms. Sleep and circadian dysfunction is a core feature of bipolar disorder and models of neurobiological abnormalities should incorporate chronobiological measures. Further research into the role of sleep and circadian rhythms in cognition and emotional processing in bipolar disorder is warranted. PMID:22926687

  18. Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior: involvement of 5HT1A receptors and previous stressful experience.

    Science.gov (United States)

    Fogaça, M V; Reis, F M C V; Campos, A C; Guimarães, F S

    2014-03-01

    The prelimbic medial prefrontal cortex (PL) is an important encephalic structure involved in the expression of emotional states. In a previous study, intra-PL injection of cannabidiol (CBD), a major non-psychotomimetic cannabinoid present in the Cannabis sativa plant, reduced the expression of fear conditioning response. Although its mechanism remains unclear, CBD can facilitate 5HT1A receptor-mediated neurotransmission when injected into several brain structures. This study was aimed at verifying if intra-PL CBD could also induce anxiolytic-like effect in a conceptually distinct animal model, the elevated plus maze (EPM). We also verified if CBD effects in the EPM and contextual fear conditioning test (CFC) depend on 5HT1A receptors and previous stressful experience. CBD induced opposite effects in the CFC and EPM, being anxiolytic and anxiogenic, respectively. Both responses were prevented by WAY100,635, a 5HT1A receptor antagonist. In animals that had been previously (24h) submitted to a stressful event (2h-restraint) CBD caused an anxiolytic, rather than anxiogenic, effect in the EPM. This anxiolytic response was abolished by previous injection of metyrapone, a glucocorticoid synthesis blocker. Moreover, restraint stress increased 5HT1A receptors expression in the dorsal raphe nucleus, an effect that was attenuated by injection of metyrapone before the restraint procedure. Taken together, these results suggest that CBD modulation of anxiety in the PL depend on 5HT1A-mediated neurotransmission and previous stressful experience.

  19. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings......The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control...

  20. 双相抑郁患者前额叶和前扣带回皮质氢质子波谱研究%A 1H magnetic resonance spectroscopy imaging study on prefrontal cortex and anterior cingulate cortex in patients with bipolar depression

    Institute of Scientific and Technical Information of China (English)

    马海波; 宁厚梅; 李国海; 王冬青; 李一云; 张礼荣

    2013-01-01

    Objective: To measure the levels of metabolites in the prefrontal cortex and anterior cingulate cortex of patients with bipolar depression. Method:1 H-MRS was performed on prefrontal cortex and anterior cingulated cortex in 30 unmedicated patients with bipolar depression and 30 healthy controls. The patients underwent 1 H-MRS again after six weeks of drug treatment. The compounds measured were N-acetylaspartate (NAA) ,choline (Cho) , glutamate/glutamine (Glx) and creatine (Cr). Results: Bipolar depressive patients had significantly lower NAA/Cr ratios in left prefrontal cortex and bilateral anterior cingulate cortex than healthy controls (P 0. 05). After drug treatment , the ratios of NAA/Cr in left prefrontal cortex and bilateral anterior cingulate cortex were significantly increased compared with those before treatment (P <0. 05) , and the ratios of Cho/Cr, Glx/Cr in left prefrontal cortex and bilateral anterior cingulate cortex were significantly decreased compared with those before treatment (P<0.05). Conclusion:Alterations in the levels of NAA,Cho,Glx in prefrontal cortex and anterior cingulated cortex may be implicated in the pathogenesis of bipolar depression and are related to the efficacy of drug. A%目的:研究双相抑郁患者前额叶皮质、前扣带回皮质代谢物的相对含量. 方法:对30例未服药双相抑郁患者和30名健康志愿者的前额叶皮质、前扣带回皮质进行氢质子波谱(1 H-MRS)扫描,双相抑郁患者经6周药物治疗后再次做1 H-MRS扫描,检测N-乙酰天门冬氨酸(NAA)、胆碱(Cho)、谷氨酸复合物(Glx)、肌酸(Cr)4种代谢物. 结果:双相抑郁组左侧前额叶皮质、双侧前扣带回皮质NAA/Cr值均显著低于正常对照组(P<0.05),Cho/Cr值、Glx/Cr值均显著高于正常对照组(P<0.05),双相抑郁组右侧前额叶皮质NAA/Cr、Cho/Cr、Glx/Cr值两组比较差异无统计学意义(P>0.05).经药物治疗后,左侧前额叶皮质、双侧前扣带回皮质NAA/Cr值较

  1. Anterior Crossbite and Crowding Correction with a Series of Clear Aligners Involving Lower Incisor Extraction: "The Clear Way" Case Report.

    Science.gov (United States)

    Bawaskar, Naval Suresh

    2015-01-01

    The Clear Aligner can be used to correct tooth movement without involving extraction, surgery, and other adjunct orthopaedic appliances. Some forms ofattachments are required with clear aligners to achieve all major types of orthodontic tooth movements. The Clear Aligner is a procedure that can be performed by a clinician with computer simulation/calculation. Since the Clear Aligner can be fabricated in steps, it is readily available to change the treatment sequence throughout the course of the treatment in cases of complex malocclusions. The patient can receive any necessary dental procedures with ease during the course of the treatment. The treatment can also be easily resumed even if the patient has not worn the aligners for a period of time. The purpose of this article is to report dental anterior crossbite correction with a series of Clear Aligners without the use of any forms of attachments. The Clear Aligner could be used as an alternative in appropriate cases for those who are reluctant with conventional appliances.

  2. Differential Involvement of Dopamine D1 Receptor and MEK Signaling Pathway in the Ventromedial Prefrontal Cortex in Consolidation and Reconsolidation of Recognition Memory

    Science.gov (United States)

    Maroun, Mouna; Akirav, Irit

    2009-01-01

    We investigated MEK and D1 receptors in the ventromedial prefrontal cortex (vmPFC) in consolidation and reconsolidation of recognition memory in rats nonhabituated to the experimental context (NH) or with reduced arousal due to extensive prior habituation (H). The D1 receptor antagonist enhanced consolidation and impaired reconsolidation in NH but…

  3. Polysialic acid is required for dopamine D2 receptor-mediated plasticity involving inhibitory circuits of the rat medial prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Esther Castillo-Gómez

    Full Text Available Decreased expression of dopamine D2 receptors (D2R, dysfunction of inhibitory neurotransmission and impairments in the structure and connectivity of neurons in the medial prefrontal cortex (mPFC are involved in the pathogenesis of schizophrenia and major depression, but the relationship between these changes remains unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM, a plasticity-related molecule, may serve as a link. This molecule is expressed in cortical interneurons and dopamine, via D2R, modulates its expression in parallel to that of proteins related to synapses and inhibitory neurotransmission, suggesting that D2R-targeted antipsychotics/antidepressants may act by affecting the plasticity of mPFC inhibitory circuits. To understand the role of PSA-NCAM in this plasticity, rats were chronically treated with a D2R agonist (PPHT after cortical PSA depletion. PPHT-induced increases in GAD67 and synaptophysin (SYN neuropil expression were blocked when PSA was previously removed, indicating a role for PSA-NCAM in this plasticity. The number of PSA-NCAM expressing interneuron somata also increased after PPHT treatment, but the percentages of these cells belonging to different interneuronal subpopulations did not change. Cortical pyramidal neurons did not express PSA-NCAM, but puncta co-expressing this molecule and parvalbumin could be found surrounding their somata. PPHT treatment increased the number of PSA-NCAM and parvalbumin expressing perisomatic puncta, but decreased the percentage of parvalbumin puncta that co-expressed SYN. PSA depletion did not block these effects on the perisomatic region, but increased further the number of parvalbumin expressing puncta and increased the percentage of puncta co-expressing SYN and parvalbumin, suggesting that the polysialylation of NCAM may regulate perisomatic inhibition of mPFC principal neurons. Summarizing, the present results indicate that dopamine acting on D2R

  4. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  5. Choristoma involving the floor of the mouth and the anterior tongue: a case of teratoid cyst with gastric and respiratory epithelia.

    Science.gov (United States)

    Pentenero, Monica; Marino, Roberto; Familiari, Ubaldo; Gandolfo, Sergio

    2013-10-01

    Oral dysontogenic cysts result from defective embryonic development. Among them teratoid cysts are the most unusual presentation and may be lined by gastric, intestinal, respiratory, squamous, ciliated epithelium or even pancreatic structures. Teratoid cysts containing respiratory and gastrointestinal epithelium have typically been called choristomas. This article describes a 15-year-old boy presenting a choristoma involving both the floor of the mouth and the anterior tongue and characterized by the presence of squamous epithelium with skin adnexa, gastric and respiratory epithelium.

  6. Single- vs. double-bundle anterior cruciate ligament reconstruction: a new aspect of knee assessment during activities involving dynamic knee rotation.

    Science.gov (United States)

    Czamara, Andrzej; Królikowska, Aleksandra; Szuba, Łukasz; Widuchowski, Wojciech; Kentel, Maciej

    2015-02-01

    Few studies have compared single-bundle (SB) and double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) in the knee joint during activities involving change-of-direction maneuvers and knee rotation. This study examined whether the type of ACLR contributes to postphysiotherapy outcomes, with an emphasis on knee function assessment during activities involving dynamic knee rotation. Fifteen male patients after SB ACLR and 15 male patients after DB ACLR took part in the same physiotherapy program. Twenty-four weeks after ACLR, both groups underwent anterior laxity measurement, pivot shift tests, range of movement and joint circumference measurements, subjective assessment of pain and stability levels in the knee joint, peak torque measurement of the muscles rotating the tibia toward the femur, and a run test with maximal speed and change-of-direction maneuvers. Comparative analysis did not show any differences between the results of anterior tibial translation, pivot shift test, range of movement and joint circumference, and subjective assessment of pain and knee joint stability levels. No differences were noted between the groups in peak torque values obtained from the muscles responsible for internal and external tibial rotation or results of the run test. The data obtained from this study can be used by research teams to monitor and compare the effectiveness of various study protocols involving surgical and physiotherapy treatment. The data are especially useful when combined with the clinical assessment of patients who would like to return to sport.

  7. The Cortical Signature of Central Poststroke Pain: Gray Matter Decreases in Somatosensory, Insular, and Prefrontal Cortices.

    Science.gov (United States)

    Krause, T; Asseyer, S; Taskin, B; Flöel, A; Witte, A V; Mueller, K; Fiebach, J B; Villringer, K; Villringer, A; Jungehulsing, G J

    2016-01-01

    It has been proposed that cortical structural plasticity plays a crucial role in the emergence and maintenance of chronic pain. Various distinct pain syndromes have accordingly been linked to specific patterns of decreases in regional gray matter volume (GMV). However, it is not known whether central poststroke pain (CPSP) is also associated with cortical structural plasticity. To determine this, we employed T1-weighted magnetic resonance imaging at 3 T and voxel-based morphometry in 45 patients suffering from chronic subcortical sensory stroke with (n = 23) and without CPSP (n = 22), and healthy matched controls (n = 31). CPSP patients showed decreases in GMV in comparison to healthy controls, involving secondary somatosensory cortex (S2), anterior as well as posterior insular cortex, ventrolateral prefrontal and orbitofrontal cortex, temporal cortex, and nucleus accumbens. Comparing CPSP patients to nonpain patients revealed a similar but more restricted pattern of atrophy comprising S2, ventrolateral prefrontal and temporal cortex. Additionally, GMV in the ventromedial prefrontal cortex negatively correlated to pain intensity ratings. This shows for the first time that CPSP is accompanied by a unique pattern of widespread structural plasticity, which involves the sensory-discriminative areas of insular/somatosensory cortex, but also expands into prefrontal cortex and ventral striatum, where emotional aspects of pain are processed.

  8. [The role of the prefrontal cortex in the sensory problems of children with autism spectrum disorder and its involvement in social aspects].

    Science.gov (United States)

    Martínez-Sanchis, Sonia

    2015-02-25

    Introduccion. En las personas con trastornos del espectro autista (TEA), las percepciones sensoriales aberrantes podrian ser tan caracteristicas y disruptivas como la presencia de anomalias en la comunicacion e interaccion social, asi como de intereses restringidos y repetitivos. La mayoria presenta trastornos de la modulacion sensorial (hiper o hiporresponsividad) en varios canales sensoriales. Ademas, muestra un deficit en la integracion de la informacion procedente de varios sistemas sensoriales (por ejemplo, auditivo y visual). Todo ello agravaria los sintomas nucleares relacionados con la comunicacion y aumentaria la aparicion de problemas conductuales. Objetivo. Revisar la evidencia experimental que aborda el papel de la corteza prefrontal en las experiencias sensoriales inusuales en los TEA y su implicacion en los aspectos sociales. Hay evidencia de hipoactivacion y disfuncion en redes neurales, que incluyen la corteza prefrontal y participan en la cognicion social, como la red por defecto y el sistema de neuronas espejo en niños con TEA. Conclusiones. Los problemas sensoriomotores a edad temprana suponen una disrupcion de la organizacion y regulacion no solo de la percepcion y la accion, sino tambien del lenguaje, el pensamiento, la emocion e incluso la memoria.

  9. Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data

    Directory of Open Access Journals (Sweden)

    Gil eGonen-Yaacovi

    2013-08-01

    Full Text Available Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC, the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks, although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas.

  10. Effective amygdala-prefrontal connectivity predicts individual differences in successful emotion regulation.

    Science.gov (United States)

    Morawetz, Carmen; Bode, Stefan; Baudewig, Juergen; Heekeren, Hauke R

    2016-12-20

    The ability to voluntarily regulate our emotional response to threatening and highly arousing stimuli by using cognitive reappraisal strategies is essential for our mental and physical well-being. This might be achieved by prefrontal brain regions (e.g., inferior frontal gyrus, IFG) down-regulating activity in the amygdala. It is unknown, to which degree effective connectivity within the emotion-regulation network is linked to individual differences in reappraisal skills. Using psychophysiological interaction (PPI) analyses of functional magnetic resonance imaging data, we examined changes in inter-regional connectivity between the amygdala and IFG with other brain regions during reappraisal of emotional responses and used emotion regulation success as an explicit regressor. During down-regulation of emotion, reappraisal success correlated with effective connectivity between IFG with dorsolateral, dorsomedial and ventromedial prefrontal cortex (PFC). During up-regulation of emotion, effective coupling between IFG with anterior cingulate cortex, dorsomedial and ventromedial PFC as well as the amygdala correlated with reappraisal success. Activity in the amygdala covaried with activity in lateral and medial prefrontal regions during the up-regulation of emotion and correlated with reappraisal success. These results suggest that successful reappraisal is linked to changes in effective connectivity between two systems, prefrontal cognitive control regions and regions crucially involved in emotional evaluation.

  11. A SINGLE VISIT IMMEDIATE TEMPORIZATION WITH NATURAL TOOTH PONTIC FOR PERIODONTALLY INVOLVED ANTERIOR TEETH : ANESTHETIC AND INNOVATIVE APPROACH

    Directory of Open Access Journals (Sweden)

    Nilofer Sultan Sheikh, Neelima S. Rajhans, Preeti Mundhe, Gabriela Jude Fernandez, Nilkanth Mhaske, Nikesh Moolya, Sudeep HM

    2015-01-01

    Full Text Available Aim and Objectives: Sudden loss of anterior tooth is a dreadful situation. It can be as a result of trauma, endodontic failure or periodontal disease which is a true aesthetic emergency for a patient. Along with the patient, the dentist also emphasizes on saving an anterior tooth for the primary reason of aesthetics. If the tooth crown is intact, is not grossly decayed, broken down or discoloured, it can be used as a natural tooth pontic in designing an interim prosthesis. Case: A chair side technique for replacing the missing tooth using the patient’s own natural tooth as a pontic in the three dimensional original position using a fibre reinforced composite resin splint thus restoring the aesthetics and relieving the apprehension of the patient, as described in this case report. Conclusion: The concept of Natural tooth pontic placement is a simple, economical, minimal intervention, viable and an easy to handle treatment option and promises an excellent transient aesthetic solution for a lost tooth as well as require minimal or no tooth preparation, thus is a reversible technique and avoids the laboratory cost.

  12. DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in schizophrenic patients--support for the glutamate hypothesis of schizophrenias.

    Science.gov (United States)

    Fallgatter, A J; Ehlis, A-C; Herrmann, M J; Hohoff, C; Reif, A; Freitag, C M; Deckert, J

    2010-07-01

    Dysbindin (DTNBP1) is a recently characterized protein that seems to be involved in the modulation of glutamatergic neurotransmission in the human brain, thereby influencing prefrontal cortex function and associated cognitive processes. While association, neuroanatomical and cellular studies indicate that DTNBP1 might be one of several susceptibility genes for schizophrenia, the effect of dysbindin on prefrontal brain function at an underlying neurophysiological level has not yet been explored for these patients. The NoGo-anteriorization (NGA) is a topographical event-related potential measure, which has been established as a valid neurophysiological marker of prefrontal brain function. In the present study, we investigated the influence of seven dysbindin gene variants on the NGA in a group of 44 schizophrenic patients. In line with our a priori hypothesis, one DTNBP1 polymorphism previously linked to schizophrenia (rs2619528) was found to be associated with changes in the NGA; however, the direction of this association directly contrasts with our previous findings in a healthy control sample. This differential impact of DTNBP1 gene variation on prefrontal functioning in schizophrenic patients vs. healthy controls is discussed in terms of abnormal glutamatergic baseline levels in patients suffering from schizophrenic illnesses. This is the first report on a role of DTNBP1 gene variation for prefrontal functioning at a basic neurophysiological level in schizophrenic patients. An impact on fundamental processes of cognitive response control may be one mechanism by which DTNBP1 gene variants via glutamatergic transmission contribute to the pathophysiology underlying schizophrenic illnesses.

  13. The role of prefrontal cortex in psychopathy

    OpenAIRE

    Koenigs, Michael

    2012-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingu...

  14. Muscle involvement in leprosy: study of the anterior tibial muscle in 40 patients Alterações musculares na lepra: estudo do músculo tibial anterior em 40 pacientes

    Directory of Open Access Journals (Sweden)

    LINEU CESAR WERNECK

    1999-09-01

    Full Text Available The involvement of skeletal striated muscle in leprosy is considered secondary due to peripheral neuropathy, but some studies point it to a primary muscle lesion. In order to investigate the muscle involvement in leprosy, we studied 40 patients (lepromatous 23, tuberculoid 13, borderline 2 and indeterminate 2. The motor nerve conduction of the peroneal nerves had a reduction of the velocity, decreased compound muscle action potential and sometimes absence of potentials. The electromyographic study of the anterior tibial muscle showed signs of recent and chronic denervation in 77.5% of the cases and no myopathic potentials. The anterior tibial muscle biopsy revealed denervation in 45% of the cases, interstitial inflammatory myopathy in 30% and mixed (myopathic and neuropathic pattern in 12.5%. Acid fast bacillus was detected in 25% of the cases, always in the interstitial tissue. Inflammatory reaction was present in the interstitial space and in patients with the lepromatous type. The histological findings clearly defined the presence of the so-called "Leprous Interstitial Myositis" on the top of denervation signs.O envolvimento do músculo estriado na lepra é considerado secundário à lesão dos nervos periféricos, mas alguns estudos relataram acometimento muscular primário. A fim de verificar esta controvérsia estudamos 40 pacientes com lepra, sendo 23 da forma lepromatosa, 13 da tuberculoide, 2 borderline e 2 indeterminada. Realizamos a neurocondução do nervo peroneiro, junto com eletromiografia e biópsia do músculo tibial anterior. Encontramos redução de velocidade de condução, da amplitude e algumas vezes ausência de potenciais no nervo peroneiro. A eletromiografia do tibial anterior mostrou sinais de desinervação recente e crônica em 77,5% dos casos e não foi encontrada evidência de padrão "miopático". A biópsia do músculo tibial anterior revelou desinervação em 45% dos casos, miopatia inflamatória intersticial em

  15. Hierarchical error representation in medial prefrontal cortex.

    Science.gov (United States)

    Zarr, Noah; Brown, Joshua W

    2016-01-01

    The medial prefrontal cortex (mPFC) is reliably activated by both performance and prediction errors. Error signals have typically been treated as a scalar, and it is unknown to what extent multiple error signals may co-exist within mPFC. Previous studies have shown that lateral frontal cortex (LFC) is arranged in a hierarchy of abstraction, such that more abstract concepts and rules are represented in more anterior cortical regions. Given the close interaction between lateral and medial prefrontal cortex, we explored the hypothesis that mPFC would be organized along a similar rostro-caudal gradient of abstraction, such that more abstract prediction errors are represented further anterior and more concrete errors further posterior. We show that multiple prediction error signals can be found in mPFC, and furthermore, these are arranged in a rostro-caudal gradient of abstraction which parallels that found in LFC. We used a task that requires a three-level hierarchy of rules to be followed, in which the rules changed without warning at each level of the hierarchy. Task feedback indicated which level of the rule hierarchy changed and led to corresponding prediction error signals in mPFC. Moreover, each identified region of mPFC was preferentially functionally connected to correspondingly anterior regions of LFC. These results suggest the presence of a parallel structure between lateral and medial prefrontal cortex, with the medial regions monitoring and evaluating performance based on rules maintained in the corresponding lateral regions.

  16. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  17. Cervicoplastia anterior Anterior cervicoplasty

    Directory of Open Access Journals (Sweden)

    Lucas Gomes Patrocínio

    2004-10-01

    Full Text Available Muitos pacientes buscam correção estética da frouxidão da pele do pescoço, depósito de gordura na região submentoneana ou bandas de platisma. Em grande parte dos casos a ação medial, via cervicoplastia anterior é necessária. OBJETIVO: Demonstrar a casuística e avaliar os resultados e complicações com a técnica de cervicoplastia anterior no Serviço de Otorrinolaringologia da Universidade Federal de Uberlândia. FORMA DE ESTUDO: Relato de série. PACIENTES E MÉTODOS: Quarenta e dois pacientes, entre 39 e 65 anos de idade, sendo 40 (95,2% do sexo feminino e 2 (4,8% do masculino, foram submetidos a cervicoplastia anterior. Retrospectivamente foram avaliados resultados e complicações. RESULTADOS: Destes, 34 apresentaram resultados satisfatórios, 4 apresentaram déficit estético notado somente pelo cirurgião, 3 apresentaram déficit estético notado somente pelo paciente e 1 apresentou déficit estético necessitando cirurgia revisional. Ao estudo fotográfico, todos os pacientes apresentaram melhora do perfil cervical, redução das bandas de platisma e da frouxidão da pele, estabilização da musculatura cervical e acentuação do ângulo cervicomental, em graus variados. Houve complicação em 2 casos (discreto serohematoma e cicatriz um pouco alargada. CONCLUSÃO: A cervicoplastia, associada ou não à tração lateral pela ritidoplastia, é uma técnica que produz resultados satisfatórios na grande maioria dos casos.Many patients look for aesthetic correction of the laxity of neck skin, submandibular fat deposit or platisma bands. In a large part of the cases, medial action, through anterior cervicoplasty is necessary. AIM: To demonstrate the casuistic and to evaluate the results and complications with anterior cervicoplasty technique in the Otorhinolaryngology Service of the Federal University of Uberlândia. STUDY DESIGN: Serie report. PATIENTS AND METHODS: Forty-two patients, between 39 and 65 years of age, being 40 (95

  18. N-acetylaspartate levels in the prefrontal cortex,anterior cingulate cortex and hippocampus of major depressive patients:A proton magnetic resonance spectroscopy study%抑郁症患者额叶、前扣带回、海马N-乙酰天冬氨酸磁共振质子波谱研究

    Institute of Scientific and Technical Information of China (English)

    李国海; 刘珺; 申变红; 张礼荣; 尉传社

    2009-01-01

    目的 探讨抑郁症患者额叶、前扣带回皮质、海马N-乙酰天冬氨酸(NAA)的相对含量.方法 对13例未服药的抑郁症患者及13位健康志愿者前扣带回行多体素磁共振氢质子波谱(1H-MRS)扫描,抑郁症患者经6周抗抑郁治疗后再次作1H-MRS扫描,测定的生化物质为NAA和肌酸(Cr).结果 抑郁症组左侧和右侧额前皮质、左侧和右侧海马NAA/Cr值[分别为(1.29±0.18),(1.33±0.23),(0.93±0.21),(0.96±0.19)]低于正常对照组,差异有显著性(均P <0.01),双侧前扣带回皮质NAA/Cr值与正常对照组差异无显著性( P >0.05).抗抑郁治疗后,左侧额前皮质NAA/Cr值(1.63±0.42)较治疗前(1.29±0.18)升高( P =0.010);右侧额前皮质、双侧海马、右侧前扣带回皮质NAA/Cr值较治疗前均有所升高,但无统计学意义( P >0.05);双侧额前皮质、双侧前扣带回皮质、左侧海马NAA/Cr值治疗后与正常对照组无显著差异( P >0.05).结论 额前皮质和海马N-乙酰天冬氨酸的含量改变与抑郁症的发生和抗抑郁剂的疗效有关.%Objective To measure the levels of N-acetylaspartate (NAA) in the prefrontal cortex,anterior cingulate cortex and hippocampus of major depressive patients. Methods Multi voxel proton magnetic resonance spectroscopy (1H-MRS) was performed to assess NAA levels in 13 unmedicated patients with major depressive disorder and 13 healthy controls. The patients underwent 1H-MRS again after six weeks of antidepressant treatment. The compounds measured were NAA and creatine (Cr). Results Depressive patients had significantly lower NAA/Cr ratios in left and right prefrontal cortex,and left and right hippocampus (1.29±0.18,1.33±0.23,0.93±0.21,0.96±0.19,respectively)than healthy controls( P =0.00). No significant difference was found in the N-acetylaspartate levels in bilateral anterior cingulate cortex between depressive patients and healthy controls( P >0.05). After antidepressant treatment,N-acetylaspartate level

  19. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David;

    2009-01-01

    was measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35...

  20. Reconstrução tridimensional da face nos tumores avançados com invasão da fossa craniana anterior Tridimensional facial reconstruction following major resection of tumors involving the anterior cranial fossa

    Directory of Open Access Journals (Sweden)

    Mario Sergio Lomba Galvão

    2004-04-01

    Full Text Available OBJETIVO: Analisar as indicações cirúrgicas e o seguimento pós operatório, ressaltando as complicações e efetividade da abordagem multidisciplinar, para os tumores avançados da base do crânio. MÉTODO: Análise retrospectiva de 46 prontuários de pacientes submetidos à ressecção de tumores invadindo a fossa craniana anterior e reconstruídos com retalhos microcirúrgicos, operados entre março de 1990 e julho de 2002. Todos os pacientes foram operados pelo núcleo de cirurgia de base do crânio do INCA. RESULTADOS: As estruturas mais envolvidas na ressecção foram por ordem: a órbita (76,5%, seio maxilar (76,5%, seio esfenoidal (63,8%, paredes da cavidade nasal (59,5% e palato (42,5%. A dura-máter estava acometida em 32,6% dos casos. A reconstrução microcirúrgica utilizando os retalhos do músculo reto abdominal foi empregada em 93,5 % dos casos. A taxa de sucesso dos transplantes livres foi de 97,8%. As complicações ocorreram em 58,6% dos pacientes e as mais freqüentes foram: infecções locais (21,7%, fístulas liquóricas (15,2%, meningite (6,5% e hematoma (6,5%. CONCLUSÕES: A reconstrução com técnica microcirúrgica permite que se realizem ressecções alargadas destes tumores com limites seguros e índices de complicações aceitáveis, permitindo a estes pacientes uma melhoria da qualidade de vida e da sobrevida, com baixo índice de recidiva.BACKGROUND: The analysis of the surgical indications and the follow-up, stressing the surgical complications and efficiency of a team approach for the advanced tumors involving the anterior skull base are the purpose of the present study. METHODS: The authors present a retrospective evaluation of 46 patients who underwent resections of advanced tumors involving the anterior skull base, which were reconstructed with free flaps from May, 1990 to July, 2002. Those patients have been treated by the skull base surgical team of INCA. RESULTS: The commonest resected structures were

  1. Executive deficits, not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Pettit, Lewis D; Bastin, Mark E; Smith, Colin; Bak, Thomas H; Gillingwater, Thomas H; Abrahams, Sharon

    2013-11-01

    Cognitive impairment in amyotrophic lateral sclerosis is characterized by deficits on tests of executive function; however, the contribution of abnormal processing speed is unknown. Methods are confounded by tasks that depend on motor speed in patients with physical disability. Structural and functional magnetic resonance imaging studies have revealed multi-system cerebral involvement, with evidence of reduced white matter volume and integrity in predominant frontotemporal regions. The current study has two aims. First, to investigate whether cognitive impairments in amyotrophic lateral sclerosis are due to executive dysfunction or slowed processing speed using methodology that accommodates motor disability. This is achieved using a dual-task paradigm and tasks that manipulate stimulus presentation times and do not rely on response motor speed. Second, to identify relationships between specific cognitive impairments and the integrity of distinct white matter tracts. Thirty patients with amyotrophic lateral sclerosis and 30 age- and education-matched control subjects were administered an experimental dual-task procedure that combined a visual inspection time task and digit recall. In addition, measures of executive function (including letter fluency) and processing speed (visual inspection time and rapid serial letter identification) were administered. Integrity of white matter tracts was determined using region of interest analyses of diffusion tensor magnetic resonance imaging data. Patients with amyotrophic lateral sclerosis did not show impairments on tests of processing speed, but executive deficits were revealed once visual inspection time was combined with digit recall (dual-task) and in letter fluency. In addition to the corticospinal tracts, significant differences in fractional anisotropy and mean diffusivity were found between groups in a number of prefrontal and temporal white matter tracts including the anterior cingulate, anterior thalamic radiation

  2. The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development.

    Science.gov (United States)

    Klingler, Esther; Martin, Pierre-Marie; Garcia, Marta; Moreau-Fauvarque, Caroline; Falk, Julien; Chareyre, Fabrice; Giovannini, Marco; Chédotal, Alain; Girault, Jean-Antoine; Goutebroze, Laurence

    2015-06-01

    SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits.

  3. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  4. Bilinearity, rules, and prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Peter Dayan

    2007-11-01

    Full Text Available Humans can be instructed verbally to perform computationally complex cognitive tasks; their performance then improves relatively slowly over the course of practice. Many skills underlie these abilities; in this paper, we focus on the particular question of a uniform architecture for the instantiation of habitual performance and the storage, recall, and execution of simple rules. Our account builds on models of gated working memory, and involves a bilinear architecture for representing conditional input-output maps and for matching rules to the state of the input and working memory. We demonstrate the performance of our model on two paradigmatic tasks used to investigate prefrontal and basal ganglia function.

  5. Distinct regions of prefrontal cortex are associated with the controlled retrieval and selection of social information.

    Science.gov (United States)

    Satpute, Ajay B; Badre, David; Ochsner, Kevin N

    2014-05-01

    Research in social neuroscience has uncovered a social knowledge network that is particularly attuned to making social judgments. However, the processes that are being performed by both regions within this network and those outside of this network that are nevertheless engaged in the service of making a social judgment remain unclear. To help address this, we drew upon research in semantic memory, which suggests that making a semantic judgment engages 2 distinct control processes: A controlled retrieval process, which aids in bringing goal-relevant information to mind from long-term stores, and a selection process, which aids in selecting the information that is goal-relevant from the information retrieved. In a neuroimaging study, we investigated whether controlled retrieval and selection for social information engage distinct portions of both the social knowledge network and regions outside this network. Controlled retrieval for social information engaged an anterior ventrolateral portion of the prefrontal cortex, whereas selection engaged both the dorsomedial prefrontal cortex and temporoparietal junction within the social knowledge network. These results suggest that the social knowledge network may be more involved with the selection of social information than the controlled retrieval of it and incorporates lateral prefrontal regions in accessing memory for making social judgments.

  6. Behcet's disease presenting with sudden-onset paraplegia due to anterior spinal artery involvement: 1-year follow-up of rehabilitation in conjunction with medication.

    Science.gov (United States)

    Duman, Iltekin; Guzelkucuk, Umut; Tezel, Kutay; Aydemir, Koray; Yılmaz, Bilge

    2013-06-01

    A 26-year-old male patient with sudden-onset paraplegia was presented. Clinical and imaging evaluation revealed isolated spinal cord lesions at thoracal levels and anterior spinal arterial involvement. Diagnosis of Behcet's disease was established with associating clinical findings with medical history. Vigorous medication and rehabilitation program were performed. Through the 1-year rehabilitation period in conjunction with medication, strength and functions improved gradually. A satisfactory functional gain as a rehabilitative goal in independence in activities of daily living and long-distance ambulation achieved around 4 months. The patient reached full independence after 1-year. As conclusion, Behcet's disease can present with sudden-onset paraplegia. In case of no evident etiology for paraplegia in young male, neuro-Behcet's disease also should be kept in mind. Contrary to assumption, early aggressive treatment and continuous rehabilitation in conjunction with medication might provide good prognosis with excellent clinical outcome in spinal cord involvement. Satisfactory functional recovery should be expected only after 3-4 months, and complete independence can be achieved after 1 year.

  7. Prefrontal Dynamics Underlying Rapid Instructed Task Learning Reverse with Practice

    Science.gov (United States)

    Cole, Michael W.; Bagic, Anto; Kass, Robert; Schneider, Walter

    2011-01-01

    The ability to rapidly reconfigure our minds to perform novel tasks is important for adapting to an ever-changing world, yet little is understood about its basis in the brain. Furthermore, it is unclear how this kind of task preparation changes with practice. Previous research suggests that prefrontal cortex (PFC) is essential when preparing to perform either novel or practiced tasks. Building upon recent evidence that PFC is organized in an anterior-to-posterior hierarchy, we postulated that novel and practiced task preparation would differentiate hierarchically distinct regions within PFC across time. Specifically, we hypothesized and confirmed using functional magnetic resonance imaging and magnetoencephalography with humans that novel task preparation is a bottom-up process that involves lower-level rule representations in dorsolateral PFC (DLPFC) before a higher-level rule-integrating task representation in anterior PFC (aPFC). In contrast, we identified a complete reversal of this activity pattern during practiced task preparation. Specifically, we found that practiced task preparation is a top-down process that involves a higher-level rule-integrating task representation (recalled from long-term memory) in aPFC before lower-level rule representations in DLPFC. These findings reveal two distinct yet highly inter-related mechanisms for task preparation, one involving task set formation from instructions during rapid instructed task learning and the other involving task set retrieval from long-term memory to facilitate familiar task performance. These two mechanisms demonstrate the exceptional flexibility of human PFC as it rapidly reconfigures cognitive brain networks to implement a wide variety of possible tasks. PMID:20962245

  8. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.

  9. Middle frontal horizontal partial laryngectomy (MFHPL: a treatment for stage T1b squamous cell carcinoma of the glottic larynx involving anterior vocal commissure.

    Directory of Open Access Journals (Sweden)

    Wen-bin Lei

    Full Text Available OBJECTIVE: The therapeutic effect of middle frontal horizontal partial laryngectomy (MFHPL in treating stage T1b squamous cell carcinoma of the glottic larynx involving anterior vocal commissure (AVC was compared with that of the anterior frontolateral vertical partial laryngectomy (AFVPL. The feasibility and practical significance of MFHPL in clinical application was discussed in the present study. METHODS: From January 1996 to January 2010, a total of 65 patients diagnosed with stage T1bN0M0 glottic laryngeal cancer were treated with MFHPL or AFVPL. The postoperative complications, glottic reconstruction, recurrence rate, voice quality and survival rates were evaluated and compared between two treatments. RESULTS: AFVPL and MFHPL were performed in 34 and 31 patients, respectively. Flexible fiberoptic laryngoscopy revealed that in the MFHPL-treated patients the reconstructed glottis was spacious and symmetric. In contrast, AFVPL treatment resulted in irregular glottic area with poor symmetry and tubular glottis. The incidence of postoperative laryngeal stenosis significantly differed between the MFHPL- and AFVPL-treated groups (P = 0.025. No significant difference was detected in the 3- and 5-year overall- or tumor-free survival rates between two treatments. The Voice Handicap Index (VHI and maximum phonation time (MPT after surgery were 51.0±12.99 and 12.42±3.44 sec in the AFVPL-treated group; while in the MFHPL-treated patients they were 31.81±7.48 and 7.65±1.98 sec, respectively. Both differences in VHI (P = 0.012 and MPT (P = 0.024 were significant between two treatments. CONCLUSIONS: MFHPL was comparable to AFVPL with respect to postoperative complications, recurrence rate and survival rates, but possessed advantages over AFVPL in terms of the incidence of laryngeal stenosis and voice quality. Our study indicated that MFHPL has a potential value in clinical practice of treating stage T1b squamous cell carcinoma of the

  10. Involvement of nitric oxide pathways in short term modulation of tyrosine hydroxylase activity by endothelins 1 and 3 in the rat anterior hypothalamus.

    Science.gov (United States)

    Morgazo, Carolina; Perfume, Guadalupe; Legaz, Guillermina; di Nunzio, Andrea; Hope, Sandra I; Bianciotti, Liliana G; Vatta, Marcelo S

    2005-09-02

    The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.

  11. Prefrontal cortex and drug abuse vulnerability: translation to prevention and treatment interventions.

    Science.gov (United States)

    Perry, Jennifer L; Joseph, Jane E; Jiang, Yang; Zimmerman, Rick S; Kelly, Thomas H; Darna, Mahesh; Huettl, Peter; Dwoskin, Linda P; Bardo, Michael T

    2011-01-01

    Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and humans. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals.

  12. Affective ambiguity for a group recruits ventromedial prefrontal cortex.

    Science.gov (United States)

    Simmons, Alan; Stein, Murray B; Matthews, Scott C; Feinstein, Justin S; Paulus, Martin P

    2006-01-15

    Affective appraisal often involves processing complex and ambiguous stimuli, such as the mood of a group people. However, affective neuroimaging research often uses individual faces as stimuli when exploring the neural circuitry involved in social appraisal. Results from studies using single face paradigms may not generalize to settings where multiple faces are simultaneously processed. The goal of the current study was to use a novel task that presents groups of affective faces to probe the medial prefrontal cortex (PFC), a region that is critically involved in appraisal of ambiguous affective stimuli, in healthy volunteers. In the current study, 27 subjects performed the Wall of Faces (WOF) task in which multiple matrices of faces were briefly presented during functional MRI. Subjects were asked to decide whether there were more angry or happy faces (emotional decision) or whether there were more male or female faces (gender decision). In each condition, the array contained either an equal (ambiguous trials) or an unequal (unambiguous trials) distribution of one affect or gender. Ambiguous trials relative to unambiguous trials activated regions implicated in conflict monitoring and cognitive control, including the dorsal anterior cingulate cortex (ACC), dorsolateral PFC, and posterior parietal cortex. When comparing ambiguous affective decisions with ambiguous gender decisions, the ventromedial PFC (including the ventral ACC) was significantly more active. This supports the dissociation of the ACC into dorsal cognitive and ventral affective divisions, and suggests that the ventromedial PFC may play a critical role in appraising affective tone in a complex display of multiple human faces.

  13. Anterior ventral tegmental area dopaminergic neurons are not involved in the motivational effects of bromocriptine, pramipexole and cocaine in drug-free rats.

    Science.gov (United States)

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2014-04-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. Dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease, by acting on the neuronal reward circuitry. We previously demonstrated that the posterior (p) VTA, which projects to the nucleus accumbens (NAc), is implicated in the motivational effect of dopamine receptor agonists in 6-OHDA bilateral pVTA-lesioned drug-free animals. In the present study we investigated the implication of the anterior (a) VTA in the potential reinforcement effect of dopamine receptor agonists. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists (bromocriptine and pramipexole), and cocaine in rats with a 6-OHDA bilateral lesion of the aVTA. Bromocriptine and pramipexole did not induce a significant CPP at 1mg/kg in both sham and bilateral 6-OHDA-lesioned rats. However bromocriptine induced CPP only at a dose of 3mg/kg in both animal groups. Moreover cocaine, which is known to increase dopamine release, induced reinforcing effects in both 6-OHDA-lesioned and sham rats. Our data show a lack of involvement of aVTA dopamine neurons in the motivational effects of bromocriptine, pramipexole and cocaine.

  14. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    Science.gov (United States)

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  15. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    Science.gov (United States)

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering.

  16. Neuropsychology of prefrontal cortex

    OpenAIRE

    2008-01-01

    The history of clinical frontal lobe study is long and rich which provides valuable insights into neuropsychologic determinants of functions of prefrontal cortex (PFC). PFC is often classified as multimodal association cortex as extremely processed information from various sensory modalities is integrated here in a precise fashion to form the physiologic constructs of memory, perception, and diverse cognitive processes. Human neuropsychologic studies also support the notion of different funct...

  17. Is the prefrontal cortex necessary for establishing cognitive sets?

    DEFF Research Database (Denmark)

    Rowe, James B; Sakai, Katsuyuki; Lund, Torben E;

    2007-01-01

    There is evidence from neuroimaging that the prefrontal cortex may be involved in establishing task set activity in advance of presentation of the task itself. To find out whether it plays an essential role, we examined patients with unilateral lesions of the rostral prefrontal cortex. They were...... regions, as evidenced by reduced correlations between them during instruction delays. The results suggest that the left rostral prefrontal cortex is indeed required for establishing a cognitive set but that the essential function is to support the functional connectivity among the task-related regions....

  18. Differential involvement of medial prefrontal cortex and basolateral amygdala extracellular signal-regulated kinase in extinction of conditioned taste aversion is dependent on different intervals of extinction following conditioning.

    Science.gov (United States)

    Lin, P-Y; Wang, S-P; Tai, M-Y; Tsai, Y-F

    2010-11-24

    Extinction reflects a decrease in the conditioned response (CR) following non-reinforcement of a conditioned stimulus. Behavioral evidence indicates that extinction involves an inhibitory learning mechanism in which the extinguished CR reappears with presentation of an unconditioned stimulus. However, recent studies on fear conditioning suggest that extinction erases the original conditioning if the time interval between fear acquisition and extinction is short. The present study examined the effects of different intervals between acquisition and extinction of the original memory in conditioned taste aversion (CTA). Male Long-Evans rats acquired CTA by associating a 0.2% sucrose solution with malaise induced by i.p. injection of 4 ml/kg 0.15 M LiCl. Two different time intervals, 5 and 24 h, between CTA acquisition and extinction were used. Five or 24 h after CTA acquisition, extinction trials were performed, in which a bottle containing 20 ml of a 0.2% sucrose solution was provided for 10 min without subsequent LiCl injection. If sucrose consumption during the extinction trials was greater than the average water consumption, then rats were considered to have reached CTA extinction. Rats subjected to extinction trials lasting 24 h, but not 5 h, after acquisition re-exhibited the extinguished CR following injection of 0.15 M LiCl alone 7 days after acquisition. Extracellular signal-regulated kinase (ERK) in the medial prefrontal cortex (mPFC) and basolateral nucleus of the amygdala (BLA) was examined by Western blot after the first extinction trial. ERK activation in the mPFC was induced after the extinction trial beginning 5 h after acquisition, whereas the extinction trial performed 24 h after acquisition induced ERK activation in the BLA. These data suggest that the original conditioning can be inhibited or retained by CTA extinction depending on the time interval between acquisition and extinction and that the ERK transduction pathway in the mPFC and BLA is

  19. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  20. Effects of functional connectivity between anterior cingulate cortex and dorsolateral prefrontal cortex on executive control of attention in healthy individuals%前扣带回与背外侧额前皮质的功能连接影响执行控制

    Institute of Scientific and Technical Information of China (English)

    韩燕; 徐君海; 尹训涛; 张栋; 徐文坚; 逄增昌; 葛海涛; 刘树伟

    2013-01-01

    目的 探讨执行控制过程中健康人大脑前扣带回(ACC)与背外侧额前皮质(DLPFC)之间的功能连接及其与行为学表现之间的关系.方法 2011年1至5月25名17~20岁的健康志愿者在青岛大学医学院附属医院放射科进行3.0T功能磁共振扫描,采用注意网络测试(ANT)作为试验范式,计算ACC和DLPFC之间的功能连接,并与ANT的行为学得分做相关分析.结果 在执行控制过程中,背侧ACC(dACC)与两侧的DLPFC之间存在显著的功能连接,其中左侧的dACC和DLPFC之间的功能连接系数与执行控制的行为学得分存在显著负相关(r=-0.63;P <0.01).结论 ACC与DLPFC之间存在功能连接,并对注意的执行控制功能存在有利的影响,这有助于我们理解注意功能中相关脑区的功能整合作用.%Objective To explore the presence of functional connectivity between anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) during the manipulation of attentional network test (ANT) and its relationship with behavioral performance.Methods Functional magnetic resonance imaging was performed on 25 healthy subjects aged 17-20 years.And ANT was used as a paradigm.Functional connectivity between ACC-DLPFC was tested and correlation analysis conducted between functional connectivity coefficients and behavioral scores of ANT.Results Significant functional connectivity between the dorsal ACC (dACC) with bilateral DLPFC was found.Furthermore,event-related functional connectivity coefficients between left dACC and lefi DLPFC were negatively associated with the behavioral scores of executive control (r =-0.63 ; P < 0.01).Conclusion Our findings provide new evidence that ACC and DLPFC are functionally connected and such functional connectivity has advantageous influence on executive control function of attention so as to contribute to our understanding of the integrated role of these brain regions in attentional network.

  1. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  2. Anterior insula coordinates hierarchical processing of tactile mismatch responses.

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J; Hillebrandt, Hauke; Friston, Karl J; Rees, Geraint; Roepstorff, Andreas

    2016-02-15

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace.

  3. Anterior insula coordinates hierarchical processing of tactile mismatch responses

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J.; Hillebrandt, Hauke; Friston, Karl J.; Rees, Geraint; Roepstorff, Andreas

    2016-01-01

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy—projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace. PMID:26584870

  4. Compromised Prefrontal Cognitive Control Over Emotional Interference in Adolescents with Internet Gaming Disorder.

    Science.gov (United States)

    Lee, Junghan; Lee, Seojung; Chun, Ji Won; Cho, Hyun; Kim, Dai-jin; Jung, Young-Chul

    2015-11-01

    Increased reports of impulsivity and aggression in male adolescents with Internet gaming might reflect their dysfunction in emotion regulation, particularly in suppression of negative emotions, which should affect the various stages of Internet gaming disorder. This study tested the hypothesis that adolescents with Internet gaming disorder would be more disturbed by the emotional interference and demonstrate compromised dorsal anterior cingulate cortex (dACC) activation during a Stroop Match-to-Sample task. In addition, functional connectivity analysis was conducted to examine the interplays between neural correlates involved in emotional processing and how they were altered in adolescents with Internet gaming disorder. The Internet gaming disorder group demonstrated weaker dACC activation and stronger insular activations to interfering angry facial stimuli compared with the healthy control group. Negative functional connectivity between stronger insular activation and weaker dorsolateral prefrontal activation correlated with higher cognitive impulsivity in adolescents with Internet gaming disorder. These findings provide evidence of the compromised prefrontal cognitive control over emotional interference in adolescents with Internet gaming disorder.

  5. Capacity-speed relationships in prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Vivek Prabhakaran

    Full Text Available Working memory (WM capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.

  6. 1 Hz rTMS over the right prefrontal cortex reduces vigilant attention to unmasked but not to masked fearful faces

    NARCIS (Netherlands)

    Honk, E.J. van; Schutter, D.J.L.G.; d'Alfonso, A.A.L.; Kessels, R.P.C.; Haan, E.H.F. de

    2002-01-01

    Background: Recent repetitive transcranial magnetic stimulation (rTMS) research in healthy subjects suggests that the emotions anger and anxiety are lateralized in the prefrontal cortex. Low-frequency rTMS over the right prefrontal cortex (PFC) shifts the anterior asymmetry in brain activation to th

  7. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response.

  8. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  9. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression.

    Science.gov (United States)

    Courtin, Julien; Chaudun, Fabrice; Rozeske, Robert R; Karalis, Nikolaos; Gonzalez-Campo, Cecilia; Wurtz, Hélène; Abdi, Azzedine; Baufreton, Jerome; Bienvenu, Thomas C M; Herry, Cyril

    2014-01-02

    Synchronization of spiking activity in neuronal networks is a fundamental process that enables the precise transmission of information to drive behavioural responses. In cortical areas, synchronization of principal-neuron spiking activity is an effective mechanism for information coding that is regulated by GABA (γ-aminobutyric acid)-ergic interneurons through the generation of neuronal oscillations. Although neuronal synchrony has been demonstrated to be crucial for sensory, motor and cognitive processing, it has not been investigated at the level of defined circuits involved in the control of emotional behaviour. Converging evidence indicates that fear behaviour is regulated by the dorsomedial prefrontal cortex (dmPFC). This control over fear behaviour relies on the activation of specific prefrontal projections to the basolateral complex of the amygdala (BLA), a structure that encodes associative fear memories. However, it remains to be established how the precise temporal control of fear behaviour is achieved at the level of prefrontal circuits. Here we use single-unit recordings and optogenetic manipulations in behaving mice to show that fear expression is causally related to the phasic inhibition of prefrontal parvalbumin interneurons (PVINs). Inhibition of PVIN activity disinhibits prefrontal projection neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. Our results identify two complementary neuronal mechanisms mediated by PVINs that precisely coordinate and enhance the neuronal activity of prefrontal projection neurons to drive fear expression.

  10. Blockade of stress-induced increase of glutamate release in the rat prefrontal/frontal cortex by agomelatine involves synergy between melatonergic and 5-HT2C receptor-dependent pathways

    Directory of Open Access Journals (Sweden)

    Racagni Giorgio

    2010-06-01

    Full Text Available Abstract Background Agomelatine is a melatonergic receptor agonist and a 5HT2C receptor antagonist that has shown antidepressant efficacy. In order to analyze separately the effect of the two receptorial components, rats were chronically treated with agomelatine, melatonin (endogenous melatonergic agonist, or S32006 (5-HT2C antagonist, and then subjected to acute footshock-stress. Results Only chronic agomelatine, but not melatonin or S32006, completely prevented the stress-induced increase of glutamate release in the rat prefrontal/frontal cortex. Conclusions These results suggest a potential synergy between melatonergic and serotonergic pathways in the action of agomelatine.

  11. Two principles of organization in the prefrontal cortex are cognitive hierarchy and degree of automaticity.

    Science.gov (United States)

    Jeon, Hyeon-Ae; Friederici, Angela D

    2013-01-01

    The lateral prefrontal cortex is known to be organized by cognitive hierarchies following a posterior-to-anterior gradient. Here we test whether this model applies across different cognitive domains by varying levels of cognitive hierarchy in first language, second language and non-language domains. These domains vary in their degree of automaticity with first language being the most automatic. For second language/non-language a clear gradient pattern of activation depending on the level of hierarchy is observed in the prefrontal cortex with the highest level of hierarchy recruiting its most anterior region, whereas for first language the highest level of hierarchy recruits its most posterior region. Moreover, second language/non-language and first language differ in the structural connectivity of their underlying networks. The current data strongly suggest that functional segregation of the prefrontal cortex is determined by cognitive hierarchy and the degree of automaticity.

  12. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    Energy Technology Data Exchange (ETDEWEB)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi [Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000, Ghent (Belgium); Audenaert, Kurt [Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent (Belgium)

    2004-03-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  13. Williams Syndrome Hypersociability: A Neuropsychological Study of the Amygdala and Prefrontal Cortex Hypotheses

    Science.gov (United States)

    Capitao, Liliana; Sampaio, Adriana; Fernandez, Montse; Sousa, Nuno; Pinheiro, Ana; Goncalves, Oscar F.

    2011-01-01

    Individuals with Williams syndrome display indiscriminate approach towards strangers. Neuroimaging studies conducted so far have linked this social profile to structural and/or functional abnormalities in WS amygdala and prefrontal cortex. In this study, the neuropsychological hypotheses of amygdala and prefrontal cortex involvement in WS…

  14. Pyramidal neurons of the prefrontal cortex in post-stroke, vascular and other ageing-related dementias.

    Science.gov (United States)

    Foster, Vincent; Oakley, Arthur E; Slade, Janet Y; Hall, Roslyn; Polvikoski, Tuomo M; Burke, Matthew; Thomas, Alan J; Khundakar, Ahmad; Allan, Louise M; Kalaria, Raj N

    2014-09-01

    Dementia associated with cerebrovascular disease is common. It has been reported that ∼30% of elderly patients who survive stroke develop delayed dementia (post-stroke dementia), with most cases being diagnosed as vascular dementia. The pathological substrates associated with post-stroke or vascular dementia are poorly understood, particularly those associated with executive dysfunction. Three separate yet interconnecting circuits control executive function within the frontal lobe involving the dorsolateral prefrontal cortex, anterior cingulate cortex and the orbitofrontal cortex. We used stereological methods, along with immunohistological and related cell morphometric analysis, to examine densities and volumes of pyramidal neurons of the dorsolateral prefrontal cortex, anterior cingulate cortex and orbitofrontal cortex in the frontal lobe from a total of 90 elderly subjects (age range 71-98 years). Post-mortem brain tissues from post-stroke dementia and post-stroke patients with no dementia were derived from our prospective Cognitive Function After Stroke study. We also examined, in parallel, samples from ageing controls and similar age subjects pathologically diagnosed with Alzheimer's disease, mixed Alzheimer's disease and vascular dementia, and vascular dementia. We found pyramidal cell volumes in layers III and V in the dorsolateral prefrontal cortex of post-stroke and vascular dementia and, of mixed and Alzheimer's disease subjects to be reduced by 30-40% compared to post-stroke patients with no dementia and controls. There were no significant changes in neuronal volumes in either the anterior cingulate or orbitofrontal cortices. Remarkably, pyramidal neurons within the orbitofrontal cortex were also found to be smaller in size when compared to those in the other two neocortical regions. To relate the cell changes to cognitive function, we noted significant correlations between neuronal volumes and total CAMCOG, orientation and memory scores and clinical

  15. A dorsolateral prefrontal cortex semi-automatic segmenter

    Science.gov (United States)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  16. Differences in insula and pre-/frontal responses during reappraisal of food in lean and obese humans

    Directory of Open Access Journals (Sweden)

    Saurabh eKumar

    2016-05-01

    Full Text Available Brain regions involved in the reappraisal of tasty but unhealthy foods are of special interest for the development of new therapeutic interventions for obesity, such as non-invasive brain stimulation or neurofeedback. Here, we visually presented food items (i.e., high/low caloric to obese and lean individuals during EEG recordings, while they either admitted or regulated their food desire. During admitting the desire for low and high calorie foods, obese as well as lean individuals showed higher activity in the left dorsolateral prefrontal cortex (DLPFC, whereas the right frontal operculum was involved in the reappraisal of the same foods, suggesting interplay between executive control and gustatory regions. Only in lean participants, we found an interaction between calorie content and the regulate/admit conditions in bilateral anterior insular cortices, suggesting that the anterior insula, assumed to primarily host gustatory processes, also underpins higher cognitive processes involved in food choices, such as evaluating the foods’ calorie content for its reappraisal.

  17. Anterior hippocampus and goal-directed spatial decision making.

    Science.gov (United States)

    Viard, Armelle; Doeller, Christian F; Hartley, Tom; Bird, Chris M; Burgess, Neil

    2011-03-23

    Planning spatial paths through our environment is an important part of everyday life and is supported by a neural system including the hippocampus and prefrontal cortex. Here we investigated the precise functional roles of the components of this system in humans by using fMRI as participants performed a simple goal-directed route-planning task. Participants had to choose the shorter of two routes to a goal in a visual scene that might contain a barrier blocking the most direct route, requiring a detour, or might be obscured by a curtain, requiring memory for the scene. The participant's start position was varied to parametrically manipulate their proximity to the goal and the difference in length of the two routes. Activity in medial prefrontal cortex, precuneus, and left posterior parietal cortex was associated with detour planning, regardless of difficulty, whereas activity in parahippocampal gyrus was associated with remembering the spatial layout of the visual scene. Activity in bilateral anterior hippocampal formation showed a strong increase the closer the start position was to the goal, together with medial prefrontal, medial and posterior parietal cortices. Our results are consistent with computational models in which goal proximity is used to guide subsequent navigation and with the association of anterior hippocampal areas with nonspatial functions such as arousal and reward expectancy. They illustrate how spatial and nonspatial functions combine within the anterior hippocampus, and how these functions interact with parahippocampal, parietal, and prefrontal areas in decision making and mnemonic function.

  18. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.

    Science.gov (United States)

    Dahmani, Louisa; Bohbot, Véronique D

    2015-01-01

    The hippocampus and the caudate nucleus are critical to spatial- and stimulus-response-based navigation strategies, respectively. The hippocampus and caudate nucleus are also known to be anatomically connected to various areas of the prefrontal cortex. However, little is known about the involvement of the prefrontal cortex in these processes. In the current study, we sought to identify the prefrontal areas involved in spatial and response learning. We used functional magnetic resonance imaging (fMRI) and voxel-based morphometry to compare the neural activity and grey matter density of spatial and response strategy users. Twenty-three healthy young adults were scanned in a 1.5 T MRI scanner while they engaged in the Concurrent Spatial Discrimination Learning Task, a virtual navigation task in which either a spatial or response strategy can be used. In addition to increased BOLD activity in the hippocampus, spatial strategy users showed increased BOLD activity and grey matter density in the ventral area of the medial prefrontal cortex, especially in the orbitofrontal cortex. On the other hand, response strategy users exhibited increased BOLD activity and grey matter density in the dorsal area of the medial prefrontal cortex. Given the prefrontal cortex's role in reward-guided decision-making, we discuss the possibility that the ventromedial prefrontal cortex, including the orbitofrontal cortex, supports spatial learning by encoding stimulus-reward associations, while the dorsomedial prefrontal cortex supports response learning by encoding action-reward associations.

  19. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence.

  20. [Is the prefrontal cortex the center of the universe?].

    Science.gov (United States)

    Garcia-Molina, A; Ensenat, A

    2015-10-16

    Introduccion. Actualmente, cuando reflexionamos sobre cual es la estructura mas relevante del encefalo humano invariablemente pensamos en las regiones anteriores de la corteza cerebral, concretamente en la corteza prefrontal. Si bien este ha sido el dogma predominante a lo largo de mas de 150 años, investigadores de reconocido prestigio han cuestionado abiertamente tal supuesto. Desarrollo. A caballo entre los siglos XIX y XX, diversos investigadores consideraron que las regiones corticales posteriores son la sede neuroanatomica de las mas altas facultades intelectuales. Entre todos ellos destaco, por la elaboracion de sus propuestas e impacto en la comunidad cientifica, el neuroanatomista aleman Paul Emil Flechsig (1847-1929). Wilder Graves Penfield (1891-1976) fue otro detractor del dogma que considera la corteza prefrontal el sustrato anatomico de los procesos mentales mas complejos y sublimes del ser humano. A mediados del siglo XX, Penfield mantuvo la hipotesis de la existencia de lo que denomino el sistema de integracion centrencefalico, responsable del nivel mas elevado de integracion del sistema nervioso central. Conclusiones. Las concepciones corticocentricas otorgan el preciado cetro de 'estructura mas importante del encefalo' a la corteza prefrontal. Sin embargo, no han faltado propuestas alternativas que, con mayor o menor exito, han intentado arrebatarselo en favor de otras estructuras encefalicas.

  1. Incidental Anterior Cruciate Ligament Calcification: Case Report.

    Science.gov (United States)

    Hayashi, Hisami; Fischer, Hans

    2016-03-01

    The calcification of knee ligaments is a finding noted only in a handful of case reports. The finding of an anterior cruciate ligament calcification has been reported once in the literature. Comparable studies involving the posterior cruciate ligament, medial collateral ligament and an ossicle within the anterior cruciate ligament are likewise discussed in reports of symptomatic patients. We report a case of incidentally discovered anterior cruciate ligament calcification. We discuss the likely etiology and clinical implications of this finding.

  2. PET neuroimaging of extrastriatal dopamine receptors and prefrontal cortex functions.

    Science.gov (United States)

    Takahashi, Hidehiko

    2013-12-01

    The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.

  3. Atrophy of the left dorsolateral prefrontal cortex is associated with poor performance in verbal fluency in elderly poststroke women

    Institute of Scientific and Technical Information of China (English)

    Yang-Kun Chen; Wei-Min Xiao; Defeng Wang; Lin Shi; Winnie CW Chu; Vincent CT Mok; Ka Sing Wong; Gabor S Ungvari; Wai Kwong Tang

    2013-01-01

    This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged ≥ 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.

  4. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory.

    Science.gov (United States)

    Hales, J B; Brewer, J B

    2011-04-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance.

  5. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis

    Directory of Open Access Journals (Sweden)

    Jue Wang

    2015-10-01

    Full Text Available We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6–16 years, 42 boys. We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right in its superior part, rightward (left < right in its inferior part. Intrinsic connectivity analysis of these regions further revealed region-specific asymmetric connectivity profiles in dACC as well as their sex and age differences. Specifically, the superior dACC connectivity with frontoparietal network and the inferior dACC connectivity with visual network are rightward. The superior dACC connectivity with the default network (lateral temporal cortex was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure–function relationships during the development.

  6. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis.

    Science.gov (United States)

    Wang, Jue; Yang, Ning; Liao, Wei; Zhang, Han; Yan, Chao-Gan; Zang, Yu-Feng; Zuo, Xi-Nian

    2015-10-01

    We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6-16 years, 42 boys). We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right) in its superior part, rightward (left lateral temporal cortex) was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex) was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure-function relationships during the development.

  7. Area-specific information processing in prefrontal cortex during a probabilistic inference task: a multivariate fMRI BOLD time series analysis.

    Directory of Open Access Journals (Sweden)

    Charmaine Demanuele

    Full Text Available Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC, anterior cingulate (ACC and orbitofrontal (OFC cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a "Jumping to Conclusions" probabilistic reasoning task.We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information, while for prefrontal areas a wider multivariate pattern of activity was maximally informative.We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable

  8. Hierarchical processing in the prefrontal cortex in a variety of cognitive domains

    Directory of Open Access Journals (Sweden)

    Hyeon-Ae eJeon

    2014-11-01

    Full Text Available This review scrutinizes several findings on human hierarchical processing within the prefrontal cortex (PFC in diverse cognitive domains. Converging evidence from previous studies has shown that the PFC, specifically Brodmann area (BA 44, may function as the essential region for hierarchical processing across the domains. In language fMRI studies, BA 44 was significantly activated for the hierarchical processing of center-embedded sentences and this pattern of activations was also observed in artificial grammar. The same pattern was observed in the visuo-spatial domain where BA44 was actively involved in the processing of hierarchy for the visual symbol. Musical syntax, which is the rule-based arrangement of musical sets, has also been construed as hierarchical processing as in the language domain such that the activation in BA44 was observed in a chord sequence paradigm. P600 ERP was also engendered during the processing of musical hierarchy. Along with a longstanding idea that a human’s number faculty is developed as a by-product of language faculty, BA44 was closely involved in hierarchical processing in mental arithmetic. This review extended its discussion of hierarchical processing to hierarchical behavior, that is, human action which has been referred to as being hierarchically composed. Several lesion and TMS studies supported the involvement of BA44 for hierarchical processing in the action domain. Lastly, the hierarchical organization of cognitive controls was discussed within the PFC, forming a cascade of top-down hierarchical processes operating along a posterior-to-anterior axis of the lateral PFC including BA44 within the network. It is proposed that PFC is actively involved in different forms of hierarchical processing and specifically BA44 may play an integral role in the process. Taking levels of proficiency and subcortical areas into consideration may provide further insight into the functional role of BA44 for hierarchical

  9. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  10. Compulsive Sexual Behavior: Prefrontal and Limbic Volume and Interactions

    DEFF Research Database (Denmark)

    Schmidt, Casper; Morris, Laurel S.; Kvamme, Timo L.

    2017-01-01

    prefrontal cortex (whole brain, cluster corrected FWE P motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions...

  11. Amphetamines modulate prefrontal γ oscillations during attention processing.

    Science.gov (United States)

    Franzen, John D; Wilson, Tony W

    2012-08-22

    Amphetamine-based medications robustly suppress symptoms of attention-deficit/hyperactivity disorder (ADHD), but their exact mechanisms remain poorly understood. Recent hemodynamic imaging studies have suggested that amphetamines may modulate the prefrontal and anterior cingulate brain regions, although few studies have been published and the results have not been entirely consistent. Meanwhile, several electrophysiological studies have shown that abnormal fast oscillations (in the γ range) may be closely linked to inattention and other cardinal symptoms of ADHD. In this study, we utilized magnetoencephalography to examine how amphetamines modulate high-frequency brain activity in adults with ADHD. Participants performed an auditory attention task, which required sustained attention in one block and passive listening in a separate block. Participants completed the task twice in the on-medication and off-medication states. All data were analyzed using beamforming techniques to resolve cortical regions showing event-related synchronizations and desynchronizations. Our primary findings indicated that oral administration of amphetamine decreased γ-band event-related desynchronization activity significantly in the medial prefrontal area and decreased event-related synchronization in bilateral superior parietal areas, left inferior parietal, and the left inferior frontal gyrus. These results suggest that psychostimulants strongly modulate γ activity in frontal and parietal cortical areas, which are known to be central to the brain's core attentional networks.

  12. CONGENITAL ANTERIOR TIBIOFEMURAL SUBLUXATION

    Directory of Open Access Journals (Sweden)

    A. Shahla

    2008-06-01

    Full Text Available Congenital anterior tibiofemoral subluxation is an extremely rare disorder. All reported cases accompanied by other abnormalities and syndromes. A 16-year-old high school girl referred to us with bilateral anterior tibiofemoral subluxation as the knees were extended and reduced at more than 30 degrees flexion. Deformities were due to tightness of the iliotibial band and biceps femuris muscles and corrected by surgical release. Associated disorders included bilateral anterior shoulders dislocation, short metacarpals and metatarsals, and right calcaneuvalgus deformity.

  13. Current approach in diagnosis and management of anterior uveitis

    Directory of Open Access Journals (Sweden)

    Agrawal Rupesh

    2010-01-01

    Full Text Available Uveitis is composed of a diverse group of disease entities, which in total has been estimated to cause approximately 10% of blindness. Uveitis is broadly classified into anterior, intermediate, posterior and panuveitis based on the anatomical involvement of the eye. Anterior uveitis is, however, the commonest form of uveitis with varying incidences reported in worldwide literature. Anterior uveitis can be very benign to present with but often can lead to severe morbidity if not treated appropriately. The present article will assist ophthalmologists in accurately diagnosing anterior uveitis, improving the quality of care rendered to patients with anterior uveitis, minimizing the adverse effects of anterior uveitis, developing a decision-making strategy for management of patients at risk of permanent visual loss from anterior uveitis, informing and educating patients and other healthcare practitioners about the visual complications, risk factors, and treatment options associated with anterior uveitis.

  14. Differences between a single session and repeated sessions of 1 Hz TMS by double-cone coil prefrontal stimulation for the improvement of tinnitus.

    Science.gov (United States)

    Vanneste, Sven; De Ridder, Dirk

    2013-03-01

    Tinnitus related distress is associated with increased activity in the anterior cingulate cortex (ACC). In a recent study, it was demonstrated that a single session of low frequency prefrontal TMS using a double-cone coil (DCC) modulating the ACC (AC/DC TMS, anterior cingulate cortex targeted modulation by Double-Cone coil) yields a transient improvement in subjects with chronic tinnitus. An increasing number of studies demonstrated that repeated sessions of low frequency TMS to the temporoparietal area can significantly improve tinnitus complaints. Our aim is to determine the extent to which repeated sessions of AC/DC TMS can modulate tinnitus in comparison to a single session. Seventy-three tinnitus patients received a single (N = 46) or repetitive (N = 27) session(s) of TMS using a DCC placed over the prefrontal cortex. Our results indicate that both single sessions as well as multiple sessions (i.e. 8 sessions) of AC/DC TMS suppress both tinnitus distress (respectively 7.60% vs. 26.19%) and tinnitus intensity (respectively 7.12% vs. 19.60%) transiently. It was further shown that multiple sessions of AC/DC TMS generate a higher suppression effect in comparison to a single session of AC/DC TMS and that more patients responded to repeated sessions of 1 Hz stimulation in comparison to a single session. Our findings give further support to the fact that non-auditory areas are involved in tinnitus intensity and tinnitus distress and that more patients respond to repeated sessions with a higher suppression effect in comparison to patients who received a single session, suggesting that the approach of daily TMS sessions is relevant.

  15. Neuroanatomical substrates of executive functions: Beyond prefrontal structures.

    Science.gov (United States)

    Bettcher, Brianne M; Mungas, Dan; Patel, Nihar; Elofson, Jonathan; Dutt, Shubir; Wynn, Matthew; Watson, Christa L; Stephens, Melanie; Walsh, Christine M; Kramer, Joel H

    2016-05-01

    Executive functions are often considered lynchpin "frontal lobe tasks", despite accumulating evidence that a broad network of anterior and posterior brain structures supports them. Using a latent variable modelling approach, we assessed whether prefrontal grey matter volumes independently predict executive function performance when statistically differentiated from global atrophy and individual non-frontal lobar volume contributions. We further examined whether fronto-parietal white matter microstructure underlies and independently contributes to executive functions. We developed a latent variable model to decompose lobar grey matter volumes into a global grey matter factor and specific lobar volumes (i.e. prefrontal, parietal, temporal, occipital) that were independent of global grey matter. We then added mean fractional anisotropy (FA) for the superior longitudinal fasciculus (dorsal portion), corpus callosum, and cingulum bundle (dorsal portion) to models that included grey matter volumes related to cognitive variables in previous analyses. Results suggested that the 2-factor model (shifting/inhibition, updating/working memory) plus an information processing speed factor best explained our executive function data in a sample of 202 community dwelling older adults, and was selected as the base measurement model for further analyses. Global grey matter was related to the executive function and speed variables in all four lobar models, but independent contributions of the frontal lobes were not significant. In contrast, when assessing the effect of white matter microstructure, cingulum FA made significant independent contributions to all three executive function and speed variables and corpus callosum FA was independently related to shifting/inhibition and speed. Findings from the current study indicate that while prefrontal grey matter volumes are significantly associated with cognitive neuroscience measures of shifting/inhibition and working memory in healthy

  16. I find you more attractive … after (prefrontal cortex) stimulation.

    Science.gov (United States)

    Ferrari, Chiara; Lega, Carlotta; Tamietto, Marco; Nadal, Marcos; Cattaneo, Zaira

    2015-06-01

    Facial attractiveness seems to be perceived immediately. Neuroimaging evidence suggests that the appraisal of facial attractiveness is mediated by a network of cortical and subcortical regions, mainly encompassing the reward circuit, but also including prefrontal cortices. The prefrontal cortex is involved in high-level processes, so how does its activity relate to beauty appreciation? To shed light on this, we asked male and female participants to evaluate the attractiveness of faces of the same and other sex prior and after transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC). We found that increasing excitability via anodal tDCS in the right but not in the left DLPFC increased perceived attractiveness of the faces, irrespective of the sex of the faces or the sex of the viewers. Identical stimulation over the same site did not affect estimation of other facial characteristics, such as age, thereby suggesting that the effects of anodal tDCS over the right DLPFC might be selective for facial attractiveness, and might not generalize to decisions concerning other facial attributes. Overall, our data suggest that the right DLPFC plays a causal role in explicit judgment of facial attractiveness. The mechanisms mediating such effect are discussed.

  17. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity.

    Science.gov (United States)

    Yamamuro, Kazuhiko; Kimoto, Sohei; Iida, Junzo; Kishimoto, Naoko; Nakanishi, Yoko; Tanaka, Shohei; Ota, Toyosaku; Makinodan, Manabu; Kishimoto, Toshifumi

    2016-01-01

    Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS) is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP). Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11) to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP.

  18. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamamuro

    Full Text Available Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP. Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11 to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP.

  19. Optogenetic dissection of medial prefrontal cortex circuitry.

    Science.gov (United States)

    Riga, Danai; Matos, Mariana R; Glas, Annet; Smit, August B; Spijker, Sabine; Van den Oever, Michel C

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  20. Optogenetic dissection of medial prefrontal cortex circuitry

    Directory of Open Access Journals (Sweden)

    Danai eRiga

    2014-12-01

    Full Text Available The medial prefrontal cortex (mPFC is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g. thalamus, striatum, amygdala and hippocampus, the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  1. Dorsal lesions of the prefrontal cortex: effects on alcohol consumption and subcortical monoaminergic systems.

    Science.gov (United States)

    Deckel, A W; Shoemaker, W J; Arky, L

    1996-06-03

    Male Wistar rats were subjected to either bilateral aspiration lesions of the dorsal regions of the prefrontal cortex (PFC) or sham lesions and placed on a 6-week, modified sucrose-fading procedure. At the time of sacrifice, the size of the lesion, both in anterior-posterior and medial-lateral dimensions, was measured. Following sacrifice, levels of dopamine (DA), serotonin (5-HT), norepinephrine (NE), and their metabolites were measured in the midbrain (raphe) and nucleus accumbens (NA). Lesioned animals had reductions in 5-HT in the NA, and DA and NE in the raphe. The lesioned group drank more of a solution of 5% alcohol than controls early in the sucrose fading, and less during the later stages. In the lesioned group, the size of the left- and right-hemisphere lesions predicted 5-HIAA levels in the NA, and 5-HT and 5-HIAA levels in the raphe. A laterality effect was noted, such that the size of left-hemisphere lesions were positively associated with raphe 5-HT and 5-HIAA levels, and negatively associated with 5-HT levels in the NA, while right-hemisphere lesions showed the opposite relationships. In addition, the width of the left-hemisphere lesion predicted some measures of alcohol intake. These results suggest that, in the rat, the dorsal PFC is involved in the regulation of monoamines in subcortical regions known to be important in the regulation of reinforced behaviors, and that this regulation differs between hemispheres and shows a laterality effect. In addition, the dorsal PFC appears to have a subtle involvement in the regulation of alcohol intake.

  2. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex.

    Science.gov (United States)

    Goulas, Alexandros; Uylings, Harry B M; Stiers, Peter

    2014-05-01

    A consensus on the prefrontal cortex (PFC) holds that it is pivotal for flexible behavior and the integration of the cognitive, affective, and motivational domains. Certain models have been put forth and a dominant model postulates a hierarchical anterior-posterior gradient. The structural connectivity principles of this model dictate that increasingly anterior PFC regions exhibit more efferent connections toward posterior ones than vice versa. Such hierarchical asymmetry principles are thought to pertain to the macaque PFC. Additionally, the laminar patterns of the connectivity of PFC regions can be used for defining hierarchies. In the current study, we formally tested the asymmetry-based hierarchical principles of the anterior-posterior model by employing an exhaustive dataset on macaque PFC connectivity and tools from network science. On the one hand, the asymmetry-based principles and predictions of the hierarchical anterior-posterior model were not confirmed. The wiring of the macaque PFC does not fully correspond to the principles of the model, and its asymmetry-based hierarchical layout does not follow a strict anterior-posterior gradient. On the other hand, our results suggest that the laminar-based hierarchy seems a more tenable working hypothesis for models advocating an anterior-posterior gradient. Our results can inform models of the human PFC.

  3. Differential Involvement of Left Prefrontal Cortexin Inductive and Deductive Reasoning

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J.

    2004-01-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by…

  4. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy

    NARCIS (Netherlands)

    Raaphorst, Joost; van Tol, Marie-José; Groot, Paul F C; Altena, Ellemarije; van der Werf, Ysbrand D; Majoie, Charles B; van der Kooi, Anneke J; van den Berg, Leonard H; Schmand, Ben; de Visser, Marianne; Veltman, Dick J

    2014-01-01

    OBJECTIVE: To examine brain activation patterns during verbal fluency performance in patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS). METHODS: fMRI was used to examine the blood oxygen level-dependent response during letter and category fluency performance in

  5. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy

    NARCIS (Netherlands)

    J. Raaphorst; M.J. van Tol; P.F.C. Groot; E. Altena; Y.D. van der Werf; C.B. Majoie; A.J. van der Kooi; L.H. van den Berg; B. Schmand; M. de Visser; D.J. Veltman

    2014-01-01

    Objective: To examine brain activation patterns during verbal fluency performance in patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS). Methods: fMRI was used to examine the blood oxygen level-dependent response during letter and category fluency performance in

  6. A boost of confidence: The role of the ventromedial prefrontal cortex in memory, decision-making, and schemas.

    Science.gov (United States)

    Hebscher, Melissa; Gilboa, Asaf

    2016-09-01

    The ventromedial prefrontal cortex (vmPFC) has been implicated in a wide array of functions across multiple domains. In this review, we focus on the vmPFC's involvement in mediating strategic aspects of memory retrieval, memory-related schema functions, and decision-making. We suggest that vmPFC generates a confidence signal that informs decisions and memory-guided behaviour. Confidence is central to these seemingly diverse functions: (1) Strategic retrieval: lesions to the vmPFC impair an early, automatic, and intuitive monitoring process ("feeling of rightness"; FOR) often associated with confabulation (spontaneous reporting of erroneous memories). Critically, confabulators typically demonstrate high levels of confidence in their false memories, suggesting that faulty monitoring following vmPFC damage may lead to indiscriminate confidence signals. (2) Memory schemas: the vmPFC is critically involved in instantiating and maintaining contextually relevant schemas, broadly defined as higher level knowledge structures that encapsulate lower level representational elements. The correspondence between memory retrieval cues and these activated schemas leads to FOR monitoring. Stronger, more elaborate schemas produce stronger FOR and influence confidence in the veracity of memory candidates. (3) Finally, we review evidence on the vmPFC's role in decision-making, extending this role to decision-making during memory retrieval. During non-mnemonic and mnemonic decision-making the vmPFC automatically encodes confidence. Confidence signal in the vmPFC is revealed as a non-linear relationship between a first-order monitoring assessment and second-order action or choice. Attempting to integrate the multiple functions of the vmPFC, we propose a posterior-anterior organizational principle for this region. More posterior vmPFC regions are involved in earlier, automatic, subjective, and contextually sensitive functions, while more anterior regions are involved in controlled actions

  7. Anterior Cruciate Ligament (ACL) Injuries

    Science.gov (United States)

    ... Week of Healthy Breakfasts Shyness Anterior Cruciate Ligament (ACL) Injuries KidsHealth > For Teens > Anterior Cruciate Ligament (ACL) ... and Recovery Coping With an ACL Injury About ACL Injuries A torn anterior cruciate ligament (ACL) is ...

  8. Lower "N"-Acetyl-Aspartate Levels in Prefrontal Cortices in Pediatric Bipolar Disorder: A (Superscript 1]H Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    Caetano, Sheila C.; Olvera, Rene L.; Hatch, John P.; Sanches, Marsal; Chen, Hua Hsuan; Nicoletti, Mark; Stanley, Jeffrey A.; Fonseca, Manoela; Hunter, Kristina; Lafer, Beny; Pliszka, Steven R.; Soares, Jair C.

    2011-01-01

    Objective: The few studies applying single-voxel [superscript 1]H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low "N"-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol/phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study…

  9. Prefrontal cortex glutamate and extraversion.

    Science.gov (United States)

    Grimm, Simone; Schubert, Florian; Jaedke, Maren; Gallinat, Jürgen; Bajbouj, Malek

    2012-10-01

    Extraversion is considered one of the core traits of personality. Low extraversion has been associated with increased vulnerability to affective and anxiety disorders. Brain imaging studies have linked extraversion, approach behaviour and the production of positive emotional states to the dorsolateral prefrontal cortex (DLPFC) and glutamatergic neurotransmission. However, the relationship between extraversion and glutamate in the DLPFC has not been investigated so far. In order to address this issue, absolute glutamate concentrations in the DLPFC and the visual cortex as a control region were measured by 3-Tesla proton magnetic resonance spectroscopy (1H-MRS) in 29 subjects with high and low extraversion. We found increased glutamate levels in the DLPFC of introverts as compared with extraverts. The increased glutamate concentration was specific for the DLPFC and negatively associated with state anxiety. Although preliminary, results indicate altered top-down control of DLPFC due to reduced glutamate concentration as a function of extraversion. Glutamate measurement with 1H-MRS may facilitate the understanding of biological underpinnings of personality traits and psychiatric diseases associated with dysfunctions in approach behaviour and the production of positive emotional states.

  10. Anterior cervical plating

    Directory of Open Access Journals (Sweden)

    Gonugunta V

    2005-01-01

    Full Text Available Although anterior cervical instrumentation was initially used in cervical trauma, because of obvious benefits, indications for its use have been expanded over time to degenerative cases as well as tumor and infection of the cervical spine. Along with a threefold increase in incidence of cervical fusion surgery, implant designs have evolved over the last three decades. Observation of graft subsidence and phenomenon of stress shielding led to the development of the new generation dynamic anterior cervical plating systems. Anterior cervical plating does not conclusively improve clinical outcome of the patients, but certainly enhances the efficacy of autograft and allograft fusion and lessens the rate of pseudoarthrosis and kyphosis after multilevel discectomy and fusions. A review of biomechanics, surgical technique, indications, complications and results of various anterior cervical plating systems is presented here to enable clinicians to select the appropriate construct design.

  11. Lesions to polar/orbital prefrontal cortex selectively impair reasoning about emotional material.

    Science.gov (United States)

    Goel, Vinod; Lam, Elaine; Smith, Kathleen W; Goel, Amit; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan

    2017-03-03

    While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers.

  12. The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation

    OpenAIRE

    Radley, Jason J.; Anderson, Rachel M.; Cosme, Caitlin V.; Glanz, Ryan M.; Miller, Mary C.; Romig-Martin, Sara A.; LaLumiere, Ryan T.

    2015-01-01

    The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation ...

  13. Prefrontal cortex white matter tracts in prodromal Huntington disease

    Science.gov (United States)

    Matsui, Joy T.; Vaidya, Jatin G.; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A.; Johnson, Hans J.; Paulsen, Jane S.

    2015-01-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e. prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATR), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. PMID:26179962

  14. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    Science.gov (United States)

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc.

  15. Oxytocin blurs the self-other distinction during trait judgments and reduces medial prefrontal cortex responses.

    Science.gov (United States)

    Zhao, Weihua; Yao, Shuxia; Li, Qin; Geng, Yayuan; Ma, Xiaole; Luo, Lizhu; Xu, Lei; Kendrick, Keith M

    2016-07-01

    The neuropeptide oxytocin (OXT) may act either to increase or blur the distinction between self and other and thereby promote either more selfish or altruistic behaviors. To attempt to distinguish between these two possibilities we performed a double-blind, between-subject, placebo-controlled design study to investigate the effect of intranasal OXT on self and other (mother, classmate, or stranger) trait judgments in conjunction with functional magnetic resonance imaging. Results showed that OXT reduced response times for making both self and other judgments, but also reduced the accuracy of their subsequent recall, thereby abolishing the normal self-bias observed in this task. OXT also abolished the positive correlation between response and self-esteem scale scores seen in the PLC group, suggesting that its effects were strongest in individuals with higher levels of self-esteem. A whole-brain functional magnetic resonance imaging analysis revealed that OXT also reduced responses during both self and other trait judgments in the dorsal (dmPFC) and ventral (vmPFC) medial prefrontal cortex. A subsequent region of interest analysis revealed that behavioral performance and self-esteem scale scores were associated with dmPFC activation and its functional connectivity with the anterior cingulate and between the vmPFC and posterior cingulate. Thus overall, while OXT may improve speed of decision making in self -vs. other trait judgments it also blunts the normal bias towards remembering self-attributes and reduces mPFC responses and connectivity with other cortical midline regions involved in self-processing. This is consistent with the view that OXT can reduce self-centered behavior. Hum Brain Mapp 37:2512-2527, 2016. © 2016 Wiley Periodicals, Inc.

  16. Increased number of TH-immunoreactive cells in the ventral tegmental area after deep brain stimulation of the anterior nucleus of the thalamus.

    Science.gov (United States)

    Dela Cruz, J A D; Hescham, S; Adriaanse, B; Campos, F L; Steinbusch, H W M; Rutten, B P F; Temel, Y; Jahanshahi, A

    2015-09-01

    Dopamine (DA) has been long implicated with the processes of memory. In long-term memory, the hippocampus and ventral tegmental area (VTA) use DA to enhance long-term potentiation, while prefrontal DA D1 receptors are involved in working memory. Deep brain stimulation (DBS) of specific brain areas have been shown to affect memory impairments in animal models. Here, we tested the hypothesis that DBS could reverse memory impairments by increasing the number of dopaminergic cells in the VTA. Rats received DBS at the level of the mammillothalamic tract, the anterior nucleus of the thalamus, and entorhinal cortex before euthanasia. These regions are part of the so-called memory circuit. Brain sections were processed for c-Fos and tyrosine hydroxylase (TH) immunocytochemistry in the VTA and the substantia nigra pars compacta (SNc). c-Fos, TH and c-Fos/TH immunoreactive cells were analyzed by means of stereology and confocal microscopy. Our results showed that DBS of the anterior nucleus of the thalamus induced substantial higher numbers of TH-immunoreactive cells in the VTA, while there were no significant differences between the experimental groups in the number of TH immunoreactive cells in the SNc, c-Fos immunoreactive cells and c-Fos/TH double-labeled cells in both the SNc and VTA. Our findings suggest a phenotypic switch, or neurotransmitter respecification, of DAergic cells specifically in the VTA which may be induced by DBS in the anterior nucleus of the thalamus.

  17. Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior

    Directory of Open Access Journals (Sweden)

    Ronald P Gaykema

    2014-07-01

    Full Text Available The medial prefrontal cortex (mPFC is implicated in aspects of executive function, that include the modulation of attentional and memory processes involved in goal selection. Food-seeking behavior has been shown to involve activation of the mPFC, both during the execution of strategies designed to obtain food and during the consumption of food itself. As these behaviors likely require differential engagement of the prefrontal cortex, we hypothesized that the pattern of neuronal activation would also be behavior dependent. In this study we describe, for the first time, the expression of Fos in different layers and cell types of the infralimbic/dorsal peduncular (IL/DP and prelimbic/anterior cingulate (PL/AC subdivisions of mouse mPFC following both the consumption of palatable food and following exploratory activity of the animal directed at obtaining food reward. While both manipulations led to increases of Fos expression in principal excitatory neurons relative to control, food-directed exploratory activity produced a significantly greater increase in Fos expression than observed in the food intake condition. Consequently, we hypothesized that mPFC interneuron activation would also be differentially engaged by these manipulations. Interestingly, Fos expression patterns differed substantially between treatments and interneuron subtype, illustrating how the differential engagement of subsets of mPFC interneurons depends on the behavioral state. In our experiments, both vasoactive intestinal peptide- and parvalbumin-expressing neurons showed enhanced Fos expression only during the food-dependent exploratory task and not during food intake. Conversely, elevations in arcuate and paraventricular hypothalamic fos expression were only observed following food intake and not following food driven exploration. Our data suggest that activation of select mPFC interneurons may be required to support high cognitive demand states while being dispensable during

  18. Abnormal retinoid and TrkB signaling in the prefrontal cortex in mood disorders

    NARCIS (Netherlands)

    Qi, Xin-Rui; Zhao, Juan; Liu, Ji; Fang, Hui; Swaab, Dick F; Zhou, Jiang-Ning

    2015-01-01

    The prefrontal cortex shows structural and functional alterations in mood disorders. Retinoid signaling, brain-derived neurotrophic factor (BDNF), and its receptor TrkB are reported to be involved in depression. Here, we found that mRNA levels of key elements of retinoid signaling were significantly

  19. A Model of Amygdala-Hippocampal-Prefrontal Interaction in Fear Conditioning and Extinction in Animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2013-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…

  20. Anterior chest wall examination reviewed

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.

  1. A case involving an Ahmed™ glaucoma valve transferred from the vitreous into the anterior chamber of the eye with a silicone oil tamponade for the treatment of neovascular glaucoma

    Directory of Open Access Journals (Sweden)

    Miki M

    2013-02-01

    Full Text Available Michiko Miki, Mari Ueki, Tetsuya Sugiyama, Shota Kojima, Tsunehiko IkedaDepartment of Ophthalmology, Osaka Medical College, Takatsuki, JapanPurpose: To report the short-term efficacy and safety of the transfer of an Ahmed™ glaucoma valve (AGV™ tube from the vitreous into the anterior chamber, in a patient with neovascular glaucoma who had undergone pars plana AGV™ implantation and ultimately needed a silicone oil tamponade.Case: A 41-year-old male with proliferative diabetic retinopathy in both eyes was referred to us for treatment in December 2009. Although the patient previously underwent several surgeries, he ultimately lost vision in his right eye. His left eye suffered from neovascular glaucoma after undergoing a pars plana vitrectomy for tractional retinal detachment. After several vitreous and glaucoma surgeries, the patient underwent implantation of a pars plana AGV™. Postoperatively, although his intraocular pressure was stabilized at approximately 10 mmHg, he had repeated vitreous hemorrhage and hyphema without improvement. He ultimately underwent PPV with a silicone oil tamponade and at the same time, the AGV™ tube was pulled out from the vitreous and inserted into the anterior chamber in order to avoid complications caused by the silicone oil.Results: At 19 months postoperative, the patient’s intraocular pressure had stabilized at 10 mmHg with no recurrence of vitreous hemorrhage and hyphema. Eventually, he lost vision in his left eye because of cerebral hemorrhage.Conclusion: The findings show that insertion of a pars plana AGV™ tube into the anterior chamber in a patient undergoing a silicone oil tamponade is both effective and safe in the short-term.Keyword: tube implantation, glaucoma surgery, tube transfer, pars plana, proliferative diabetic retinopathy, intraocular pressure

  2. Chronic infusions of GABA into the medial prefrontal cortex induce spatial alternation deficits in aged rats.

    Science.gov (United States)

    Meneses, S; Galicia, O; Brailowsky, S

    1993-10-21

    It has been proposed that functions associated with the prefrontal cortex could change as a consequence of aging. Previous experiments in young rats have demonstrated that anatomical lesions or chronic GABA infusions into this area produce deficits in spatial delayed alternation tasks. The present study examines the effect of chronic (7 days) GABA or saline infusion into the prefrontal cortex on the performance of delayed alternation task in old rats (24 months). The results suggested that aged rats needed more sessions to acquire the delayed alternation task. GABA infusions into the prefrontal cortex produced deficits in spatial alternation tasks similar to those previously observed in young rats. Performance rapidly recovered after the infusion period. Histological analysis showed similar lesion size in both groups. The results suggest that aged prefrontal cortex and/or related areas participating in the acquisition of the delayed alternation task are more sensitive to aging processes. Furthermore, the prefrontal cortex is important for the retention of a previously learned spatial delayed alternation task. The structures involved in functional recovery from these deficits appear to be fully functional in aged rats.

  3. Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus.

    Science.gov (United States)

    Mejia-Carmona, G E; Gosselink, K L; Pérez-Ishiwara, G; Martínez-Martínez, A

    2015-08-01

    The incidence of anxiety-related diseases is increasing these days, hence there is a need to understand the mechanisms that underlie its nature and consequences. It is known that limbic structures, mainly the prefrontal cortex and amygdala, are involved in the processing of anxiety, and that projections from prefrontal cortex and amygdala can induce activity of the hypothalamic-pituitary-adrenal axis with consequent cardiovascular changes, increase in oxygen consumption, and ROS production. The compensatory reaction can include increased antioxidant enzymes activities, overexpression of antioxidant enzymes, and genetic shifts that could include the activation of antioxidant genes. The main objective of this study was to evaluate the oxidant/antioxidant effect that chronic anxiogenic stress exposure can have in prefrontal cortex, amygdala, and hypothalamus by exposition to predator odor. Results showed (a) sensitization of the HPA axis response, (b) an enzymatic phase 1 and 2 antioxidant response to oxidative stress in amygdala, (c) an antioxidant stability without elevation of oxidative markers in prefrontal cortex, (d) an elevation in phase 1 antioxidant response in hypothalamus. Chronic exposure to predator odor has an impact in the metabolic REDOX state in amygdala, prefrontal cortex, and hypothalamus, with oxidative stress being prevalent in amygdala as this is the principal structure responsible for the management of anxiety.

  4. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction.

    Science.gov (United States)

    Vieira, Philip A; Corches, Alex; Lovelace, Jonathan W; Westbrook, Kevin B; Mendoza, Michael; Korzus, Edward

    2015-03-01

    N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior.

  5. Human prefrontal cortex: evolution, development, and pathology.

    Science.gov (United States)

    Teffer, Kate; Semendeferi, Katerina

    2012-01-01

    The prefrontal cortex is critical to many cognitive abilities that are considered particularly human, and forms a large part of a neural system crucial for normal socio-emotional and executive functioning in humans and other primates. In this chapter, we survey the literature regarding prefrontal development and pathology in humans as well as comparative studies of the region in humans and closely related primate species. The prefrontal cortex matures later in development than more caudal regions, and some of its neuronal subpopulations exhibit more complex dendritic arborizations. Comparative work suggests that the human prefrontal cortex differs from that of closely related primate species less in relative size than it does in organization. Specific reorganizational events in neural circuitry may have taken place either as a consequence of adjusting to increases in size or as adaptive responses to specific selection pressures. Living in complex environments has been recognized as a considerable factor in the evolution of primate cognition. Normal frontal lobe development and function are also compromised in several neurological and psychiatric disorders. A phylogenetically recent reorganization of frontal cortical circuitry may have been critical to the emergence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric and neurological disorders, including autism and schizophrenia.

  6. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  7. Parallel driving and modulatory pathways link the prefrontal cortex and thalamus.

    Directory of Open Access Journals (Sweden)

    Basilis Zikopoulos

    Full Text Available Pathways linking the thalamus and cortex mediate our daily shifts from states of attention to quiet rest, or sleep, yet little is known about their architecture in high-order neural systems associated with cognition, emotion and action. We provide novel evidence for neurochemical and synaptic specificity of two complementary circuits linking one such system, the prefrontal cortex with the ventral anterior thalamic nucleus in primates. One circuit originated from the neurochemical group of parvalbumin-positive thalamic neurons and projected focally through large terminals to the middle cortical layers, resembling 'drivers' in sensory pathways. Parvalbumin thalamic neurons, in turn, were innervated by small 'modulatory' type cortical terminals, forming asymmetric (presumed excitatory synapses at thalamic sites enriched with the specialized metabotropic glutamate receptors. A second circuit had a complementary organization: it originated from the neurochemical group of calbindin-positive thalamic neurons and terminated through small 'modulatory' terminals over long distances in the superficial prefrontal layers. Calbindin thalamic neurons, in turn, were innervated by prefrontal axons through small and large terminals that formed asymmetric synapses preferentially at sites with ionotropic glutamate receptors, consistent with a driving pathway. The largely parallel thalamo-cortical pathways terminated among distinct and laminar-specific neurochemical classes of inhibitory neurons that differ markedly in inhibitory control. The balance of activation of these parallel circuits that link a high-order association cortex with the thalamus may allow shifts to different states of consciousness, in processes that are disrupted in psychiatric diseases.

  8. Prefrontal-hippocampal interactions in memory and emotion

    Directory of Open Access Journals (Sweden)

    Jingji eJin

    2015-12-01

    Full Text Available The hippocampal formation (HPC and medial prefrontal cortex (mPFC have well-established roles in memory encoding and retrieval. However, the mechanisms underlying interactions between the HPC and mPFC in achieving these functions is not fully understood. Considerable research supports the idea that a direct pathway from the HPC and subiculum to the mPFC is critically involved in cognitive and emotional regulation of mnemonic processes. More recently, evidence has emerged that an indirect pathway from the HPC to the mPFC via midline thalamic nucleus reuniens (RE may plays a role in spatial and emotional memory processing. Here we will consider how bidirectional interactions between the HPC and mPFC are involved in working memory, episodic memory and emotional memory in animals and humans. We will also consider how dysfunctions in bidirectional HPC-mPFC pathways contribute to psychiatric disorders.

  9. Stress Assessment by Prefrontal Relative Gamma

    Science.gov (United States)

    Minguillon, Jesus; Lopez-Gordo, Miguel A.; Pelayo, Francisco

    2016-01-01

    Stress assessment has been under study in the last years. Both biochemical and physiological markers have been used to measure stress level. In neuroscience, several studies have related modification of stress level to brain activity changes in limbic system and frontal regions, by using non-invasive techniques such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). In particular, previous studies suggested that the exhibition or inhibition of certain brain rhythms in frontal cortical areas indicates stress. However, there is no established marker to measure stress level by EEG. In this work, we aimed to prove the usefulness of the prefrontal relative gamma power (RG) for stress assessment. We conducted a study based on stress and relaxation periods. Six healthy subjects performed the Montreal Imaging Stress Task (MIST) followed by a stay within a relaxation room while EEG and electrocardiographic signals were recorded. Our results showed that the prefrontal RG correlated with the expected stress level and with the heart rate (HR; 0.8). In addition, the difference in prefrontal RG between time periods of different stress level was statistically significant (p < 0.01). Moreover, the RG was more discriminative between stress levels than alpha asymmetry, theta, alpha, beta, and gamma power in prefrontal cortex. We propose the prefrontal RG as a marker for stress assessment. Compared with other established markers such as the HR or the cortisol, it has higher temporal resolution. Additionally, it needs few electrodes located at non-hairy head positions, thus facilitating the use of non-invasive dry wearable real-time devices for ubiquitous assessment of stress. PMID:27713698

  10. Anterior crucate ligament (ACL) injury

    Science.gov (United States)

    ... An anterior cruciate ligament injury is the over-stretching or tearing of the anterior cruciate ligament (ACL) ... may be injured. This is a medical emergency. Prevention Use proper techniques when playing sports or exercising. ...

  11. Prefrontal /accumbal catecholamine system processes high motivational salience.

    Directory of Open Access Journals (Sweden)

    Stefano ePuglisi-Allegra

    2012-06-01

    Full Text Available Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. Highly motivational experiences promote highly persistent memories. Although this phenomenon is adaptive in normal conditions, experiences with extremely high levels of motivational salience can promote development of memories that can be re-experienced intrusively for long time resulting in maladaptive outcomes.Neural mechanisms mediating motivational salience attribution are, therefore, very important for individual and species survival and for well-being. However, these neural mechanisms could be implicated in attribution of abnormal motivational salience to different stimuli leading to maladaptive compulsive seeking or avoidance. We have offered the first evidence that prefrontal cortical norepinephrine transmission is a necessary condition for motivational salience attribution to highly salient stimuli, through modulation of dopamine in the nucleus accumbens, a brain area involved in all motivated behaviors. Moreover, we have shown that prefrontal-accumbal catecholamine system determines approach or avoidance responses to both reward- and aversion-related stimuli only when the salience of the unconditioned stimulus is high enough to induce sustained catecholamine activation, thus affirming that this system processes motivational salience attribution selectively to highly salient events.

  12. Multiple effects of prefrontal lesions on task-switching

    Directory of Open Access Journals (Sweden)

    Tim Shallice

    2008-03-01

    Full Text Available This study examined the performance of 41 patients with focal prefrontal cortical lesions and 38 healthy controls on a task-switching procedure. Three different conditions were evaluated: single tasks without switches and two switching tasks with the currently relevant task signalled either 1500 ms (Long Cue or 200 ms (Short Cue before the stimulus. Patients with Superior Medial lesions showed both a general slowing of reaction time (RT and a signifi cantly increased switch cost as measured by RT. No other prefrontal group showed this increased reaction time switch cost. Increased error rates in the switching conditions, on the other hand, were observed in patients with Inferior Medial lesions and, to a lesser extent, ones with Superior Medial lesions. Patients with left dorsolateral lesions (9/46v showed slower learning of the task as indicated by a high error rate early on. Several different processes are involved in task-switching and these are selectively disrupted by lesions to specifi c areas of the frontal lobes.

  13. Dissociable mechanisms of cognitive control in prefrontal and premotor cortex.

    Science.gov (United States)

    Chambers, Christopher D; Bellgrove, Mark A; Gould, Ian C; English, Therese; Garavan, Hugh; McNaught, Elizabeth; Kamke, Marc; Mattingley, Jason B

    2007-12-01

    Intelligent behavior depends on the ability to suppress inappropriate actions and resolve interference between competing responses. Recent clinical and neuroimaging evidence has demonstrated the involvement of prefrontal, parietal, and premotor areas during behaviors that emphasize conflict and inhibition. It remains unclear, however, whether discrete subregions within this network are crucial for overseeing more specific inhibitory demands. Here we probed the functional specialization of human prefrontal cortex by combining repetitive transcranial magnetic stimulation (rTMS) with integrated behavioral measures of response inhibition (stop-signal task) and response competition (flanker task). Participants undertook a combined stop-signal/flanker task after rTMS of the inferior frontal gyrus (IFG) or dorsal premotor cortex (dPM) in each hemisphere. Stimulation of the right IFG impaired stop-signal inhibition under conditions of heightened response competition but did not influence the ability to suppress a competing response. In contrast, stimulation of the right dPM facilitated execution but had no effect on inhibition. Neither of these results was observed during rTMS of corresponding left-hemisphere regions. Overall, our findings are consistent with existing evidence that the right IFG is crucial for inhibitory control. The observed double dissociation of neurodisruptive effects between the right IFG and right dPM further implies that response inhibition and execution rely on distinct neural processes despite activating a common cortical network.

  14. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination

    Directory of Open Access Journals (Sweden)

    Weniger Dorothea

    2009-12-01

    Full Text Available Abstract Objective To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD with deficient haptic perception. Methods Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. Results We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. Conclusion PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  15. Facetas em dentes anteriores

    OpenAIRE

    Veloso, Helena Rafaela Lourenço Martins

    2015-01-01

    Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária A presente revisão bibliográfica aborda as facetas estéticas em dentes anteriores, pela crescente valorização de um sorriso esteticamente agradável, facto que faz com que as pessoas procurem cada vez mais alternativas de tratamento para melhorar a aparência do seu sorriso. Os dentes anteriores são decisivos na aparência estética e, c...

  16. Intradural anterior transpetrosal approach.

    Science.gov (United States)

    Ichimura, Shinya; Hori, Satoshi; Hecht, Nils; Czabanka, Marcus; Vajkoczy, Peter

    2016-10-01

    The standard anterior transpetrosal approach (ATPA) for petroclival lesions is fundamentally an epidural approach and has been practiced for many decades quite successfully. However, this approach has some disadvantages, such as epidural venous bleeding around foramen ovale. We describe here our experience with a modified technique for anterior petrosectomy via an intradural approach that overcomes these disadvantages. Five patients with petroclival lesions underwent surgery via the intradural ATPA. The intraoperative hallmarks are detailed, and surgical results are reported. Total removal of the lesions was achieved in two patients with petroclival meningioma and two patients with pontine cavernoma, whereas subtotal removal was achieved in one patient with petroclival meningioma without significant morbidity. No patient experienced cerebrospinal fluid leakage. The intradural approach is allowed to tailor the extent of anterior petrosectomy to the individually required exposure, and the surgical procedure appeared to be more straightforward than via the epidural route. Caveats encountered with the approach were the temporal basal veins that could be spared as well as identification of the petrous apex due to the lack of familial epidural landmarks. The risk of injury to the temporal bridging veins is higher in this approach than in the epidural approach. Intradural approach is recommended in patients with a large epidural venous route, such as sphenobasal and sphenopetrosal vein. Navigation via bone-window computed tomography is useful to identify the petrous apex.

  17. Increased CD40 ligand in patients with acute anterior uveitis

    DEFF Research Database (Denmark)

    Øgard, Carsten; Sørensen, Torben Lykke; Krogh, Erik

    2005-01-01

    The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis.......The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis....

  18. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  19. Germ cell tumor located in the midline of the anterior neck.

    Science.gov (United States)

    Pirdopska, Tatyana; Terziev, Ivan; Hristova, Sv; Mladenovsky, W; Petkov, R

    2011-01-01

    Primary germ cell tumors involving midline of the anterior neck are extremely rare. Here we report a 68-year-old male who was operated due to a mass lesion in the anterior neck with infiltration of the isthmus of the thyroid gland. Histopathological examination revealed a germ cell tumor with extragonadal localization in the anterior neck infiltrating the isthmus of the thyroid gland.

  20. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  1. Longitudinal development of prefrontal function during early childhood.

    Science.gov (United States)

    Moriguchi, Yusuke; Hiraki, Kazuo

    2011-04-01

    This is a longitudinal study on development of prefrontal function in young children. Prefrontal areas have been observed to develop dramatically during early childhood. To elucidate this development, we gave children cognitive shifting tasks related to prefrontal function at 3 years of age (Time 1) and 4 years of age (Time 2). We then monitored developmental changes in behavioral performance and examined prefrontal activation using near infrared spectroscopy. We found that children showed better behavioral performance and significantly stronger inferior prefrontal activation at Time 2 than they did at Time 1. Moreover, we demonstrated individual differences in prefrontal activation for the same behavioral tasks. Children who performed better in tasks at Time 1 showed significant activation of the right inferior prefrontal regions at Time 1 and significant activation of the bilateral inferior prefrontal regions at Time 2. Children who showed poorer performance at Time 1 exhibited no significant inferior prefrontal activation at Time 1 but significant left inferior prefrontal activation at Time 2. These results indicate the importance of the longitudinal method to address the link between cognitive and neural development.

  2. Distraction decreases prefrontal oxygenation: A NIRS study.

    Science.gov (United States)

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks.

  3. Nonnecrotizing anterior scleritis mimicking orbital inflammatory disease

    Directory of Open Access Journals (Sweden)

    Lynch MC

    2013-08-01

    Full Text Available Michelle Chen Lynch,1 Andrew B Mick21Optometry Clinic, Ocala West Veterans Affairs Specialty Clinic, Ocala, FL, USA; 2Eye Clinic, San Francisco VA Medical Center, San Francisco, CA, USABackground: Anterior scleritis is an uncommon form of ocular inflammation, often associated with coexisting autoimmune disease. With early recognition and aggressive systemic therapy, prognosis for resolution is good. The diagnosis of underlying autoimmune disease involves a multidisciplinary approach.Case report: A 42-year-old African American female presented to the Eye Clinic at the San Francisco Veteran Affairs Medical Center, with a tremendously painful left eye, worse on eye movement, with marked injection of conjunctiva. There was mild swelling of the upper eyelid. Visual acuity was unaffected, but there was a mild red cap desaturation. The posterior segment was unremarkable. The initial differential diagnoses included anterior scleritis and orbital inflammatory disease. Oral steroid treatment was initiated with rapid resolution over a few days. Orbital imaging was unremarkable, and extensive laboratory work-up was positive only for antinuclear antibodies. The patient was diagnosed with idiopathic diffuse, nonnecrotizing anterior scleritis and has been followed for over 5 years without recurrence. The rheumatology clinic monitors the patient closely, as suspicion remains for potential arthralgias including human leukocyte antigen-B27-associated arthritis, lupus-associated arthritis, seronegative rheumatoid arthritis, recurrent juvenile idiopathic arthritis, and scleroderma, based on her constitutional symptoms and clinical presentation, along with a positive anti-nuclear antibody lab result.Conclusion: Untreated anterior scleritis can progress to formation of cataracts, glaucoma, uveitis, corneal melting, and posterior segment disease with significant risk of vision loss. Patients with anterior scleritis must be aggressively treated with systemic anti

  4. Functional connectivity of prefrontal cortex in chronic heroin addicts:a resting-state functional MRI study%长期海洛因成瘾者前额叶功能连接的静息态fMRI研究

    Institute of Scientific and Technical Information of China (English)

    齐印宝; 傅先明; 钱若兵; 魏祥品; 牛朝诗; 王昌新; 曾飞雁; 汪业汉

    2011-01-01

    目的 利用静息态fMRI探讨长期海洛因成瘾者前额叶功能连接的变化情况.方法 13例长期海洛因成瘾者和14例正常者接受静息态fMRI检查,对数据进行相关的预处理后,以前额叶为种子点与全脑每个体素进行相关分析,比较海洛因成瘾组与正常对照组前额叶功能连接的变化情况.结果 以左侧前额叶为种子点进行功能连接分析,海洛因成瘾组左侧前额叶与左侧海马、右侧前扣带回、左侧额中回、右侧额中回、右侧楔前叶功能连接明显低于正常对照组:以右侧前额叶为种子点进行功能连接分析,海洛因成瘾组右侧前额叶与左侧眶额叶、左侧额中回功能连接明显低于正常对照组.结论 长期海洛因成瘾者前额叶与相关脑区的功能连接减弱,前额叶可能参与了海洛因成瘾的维持与戒断后复吸.%Objective To explore the changes of functional connectivity of the prefrontal cortex in chronic heroin addicts under resting-state functional MRI (fMRI). Methods Resting fMRI examination was performed on 13 chronic heroin addicts and 14 healthy volunteers. After pre-processing the resting-state fMRI data, the prefrontal cortex was selected as the seed region, with which a whole-brain voxel temporal correlation in Iow frequency fMRI fluctuations was analyzed and the changes of functional connectivity of the prefrontal lobe in both chronic heroin addicts and healthy volunteers were calculated with SPM5 software. Results Compared with that in the control group, the functional connectivity between the left prefrontal cortex and the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus, right precuneus in the heroin addiction group was significantly decreased. The functional connectivity between the right prefrontal cortex and the left orbital frontal cortex, left middle frontal gyrus in thc heroin addiction group was also significantly decreased as compared

  5. Watching cartoons activates the medial prefrontal cortex in children

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The medial prefrontal cortex (MPFC) of human adults is involved in attributing mental states to real human agents but not to virtual artificial characters. This study examined whether such differential MPFC activity can be observed in children who are more fascinated by cartoons than adults. We measured brain activity using functional magnetic resonance imaging (fMRI) while 10-year-old children watched movie and cartoon clips, simulating real and virtual visual worlds, respectively. We showed neuroimaging evidence that, in contrast to adults, the MPFC of children was activated when perceiving both human agents and artificial characters in coherent visual events. Our findings suggest that, around the age of 10 years, the MPFC activity in children is different from that in adults in that it can be spontaneously activated by non-human agents in a virtual visual world.

  6. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    Science.gov (United States)

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  7. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  8. Anterior knee pain

    Energy Technology Data Exchange (ETDEWEB)

    LLopis, Eva [Hospital de la Ribera, Alzira, Valencia (Spain) and Carretera de Corbera km 1, 46600 Alzira Valencia (Spain)]. E-mail: ellopis@hospital-ribera.com; Padron, Mario [Clinica Cemtro, Ventisquero de la Condesa no. 42, 28035 Madrid (Spain)]. E-mail: mario.padron@clinicacemtro.com

    2007-04-15

    Anterior knee pain is a common complain in all ages athletes. It may be caused by a large variety of injuries. There is a continuum of diagnoses and most of the disorders are closely related. Repeated minor trauma and overuse play an important role for the development of lesions in Hoffa's pad, extensor mechanism, lateral and medial restrain structures or cartilage surface, however usually an increase or change of activity is referred. Although the direct relation of cartilage lesions, especially chondral, and pain is a subject of debate these lesions may be responsible of early osteoarthrosis and can determine athlete's prognosis. The anatomy and biomechanics of patellofemoral joint is complex and symptoms are often unspecific. Transient patellar dislocation has MR distinct features that provide evidence of prior dislocation and rules our complication. However, anterior knee pain more often is related to overuse and repeated minor trauma. Patella and quadriceps tendon have been also implicated in anterior knee pain, as well as lateral or medial restraint structures and Hoffa's pad. US and MR are excellent tools for the diagnosis of superficial tendons, the advantage of MR is that permits to rule out other sources of intraarticular derangements. Due to the complex anatomy and biomechanic of patellofemoral joint maltracking is not fully understood; plain films and CT allow the study of malalignment, new CT and MR kinematic studies have promising results but further studies are needed. Our purpose here is to describe how imaging techniques can be helpful in precisely defining the origin of the patient's complaint and thus improve understanding and management of these injuries.

  9. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  10. Primary treatment of the anterior vocal commissure squamous carcinoma

    NARCIS (Netherlands)

    Bradley, Patrick J.; Rinaldo, Alessandra; Suarez, Carlos; Shaha, Ashok R.; Leemans, C. Rene; Langendijk, Johannes A.; Patel, Snehal G.; Ferlito, Alfio

    2006-01-01

    Squamous cell carcinoma may involve the anterior commissure (AC) area of the laryngeal glottis, and can be grouped morphologically into four groups; (1) tumor confined to the AC, (2) tumor involving one cord and the AC, (3) tumor involving the AC and a portion of both vocal cords, and (4) tumor invo

  11. Higher volume of ventral striatum and right prefrontal cortex in pathological gambling.

    Science.gov (United States)

    Koehler, Saskia; Hasselmann, Eva; Wüstenberg, Torsten; Heinz, Andreas; Romanczuk-Seiferth, Nina

    2015-01-01

    Functional neuroimaging studies have implicated an involvement of the prefrontal cortex and mesolimbic reward system (i.e., ventral striatum) in pathological gambling (PG). However, there is a lack of studies focusing on structural changes in frontostriatal brain regions in adult subjects with PG. In order to study differences in local grey matter volume, 20 male subjects with PG and 21 matched controls underwent structural magnetic resonance imaging. Structural brain data were analysed via voxel-based morphometry with a focus on prefrontal areas and ventral striatum. By comparing grey matter volumes in brain regions highly relevant for brain functional changes in PG, the present study found a higher volume in right ventral striatum and right prefrontal cortex by means of voxel-wise morphometry in PG subjects as compared to controls. Our findings demonstrate local grey matter changes in brain areas that have previously been associated with functional changes in PG. Hypertrophy in the prefrontal cortex might be an adaptation at least partly induced by the higher grey matter volume in the ventral striatum and may help to increase cognitive control over gambling impulses. Future research should explore the relationship between functional and structural alterations as well as the course of changes in PG.

  12. Prefrontal connections express individual differences in intrinsic resistance to trading off honesty values against economic benefits.

    Science.gov (United States)

    Dogan, Azade; Morishima, Yosuke; Heise, Felix; Tanner, Carmen; Gibson, Rajna; Wagner, Alexander F; Tobler, Philippe N

    2016-09-20

    Individuals differ profoundly when they decide whether to tell the truth or to be dishonest, particularly in situations where moral motives clash with economic motives, i.e., when truthfulness comes at a monetary cost. These differences should be expressed in the decision network, particularly in prefrontal cortex. However, the interactions between the core players of the decision network during honesty-related decisions involving trade-offs with economic costs remain poorly understood. To investigate brain connectivity patterns associated with individual differences in responding to economic costs of truthfulness, we used functional magnetic resonance imaging and measured brain activations, while participants made decisions concerning honesty. We found that in participants who valued honesty highly, dorsolateral and dorsomedial parts of prefrontal cortex were more tightly coupled with the inferior frontal cortex when economic costs were high compared to when they were low. Finer-grained analysis revealed that information flow from the inferior frontal cortex to the dorsolateral prefrontal cortex and bidirectional information flow between the inferior frontal cortex and dorsomedial prefrontal cortex was associated with a reduced tendency to trade off honesty for economic benefits. Our findings provide a novel account of the neural circuitry that underlies honest decisions in the face of economic temptations.

  13. Transcranial direct current stimulation over prefrontal cortex diminishes degree of risk aversion.

    Science.gov (United States)

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Jia, Yongmin; Luo, Jun

    2015-06-26

    Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks.

  14. Closing the loop in primate prefrontal cortex: Inter-laminar processing

    Directory of Open Access Journals (Sweden)

    Ioan eOpris

    2012-11-01

    Full Text Available Prefrontal cortical activity in the primate brain emerging from minicolumnar microcircuits plays a critical role in cognitive processes dealing with executive control of behavior. However, the specific operations of columnar laminar processing in prefrontal cortex are not completely understood. Here we show via implementation of unique microanatomical recording and stimulating arrays, that minicolumns in prefrontal cortex are involved in the executive control of behavior in rhesus macaque nonhuman primates performing a delayed match-to-sample (DMS task. Prefrontal cortical (PFC neurons demonstrate functional interactions between pairs of putative pyramidal cells within specified cortical layers via anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing between inter-laminar (layer 2/3 and layer 5 pairs of neurons participating in the gating of information during the decision making phase of the task with differential correlations between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific information for correct task performance. Such inter-laminar processing was exploited by the interfacing of an online model which delivered stimulation to layer 5 locations in a pattern associated with successful performance thereby closing the columnar loop externally in a manner that mimicked normal processing in the same task. These unique technologies demonstrate that PFC neurons encode and process information via minicolumns which provides a closed loop form of executive function, hence disruption of such inter-laminar processing could form the bases for cognitive dysfunction in primate brain.

  15. Prefrontal connections express individual differences in intrinsic resistance to trading off honesty values against economic benefits

    Science.gov (United States)

    Dogan, Azade; Morishima, Yosuke; Heise, Felix; Tanner, Carmen; Gibson, Rajna; Wagner, Alexander F.; Tobler, Philippe N.

    2016-01-01

    Individuals differ profoundly when they decide whether to tell the truth or to be dishonest, particularly in situations where moral motives clash with economic motives, i.e., when truthfulness comes at a monetary cost. These differences should be expressed in the decision network, particularly in prefrontal cortex. However, the interactions between the core players of the decision network during honesty-related decisions involving trade-offs with economic costs remain poorly understood. To investigate brain connectivity patterns associated with individual differences in responding to economic costs of truthfulness, we used functional magnetic resonance imaging and measured brain activations, while participants made decisions concerning honesty. We found that in participants who valued honesty highly, dorsolateral and dorsomedial parts of prefrontal cortex were more tightly coupled with the inferior frontal cortex when economic costs were high compared to when they were low. Finer-grained analysis revealed that information flow from the inferior frontal cortex to the dorsolateral prefrontal cortex and bidirectional information flow between the inferior frontal cortex and dorsomedial prefrontal cortex was associated with a reduced tendency to trade off honesty for economic benefits. Our findings provide a novel account of the neural circuitry that underlies honest decisions in the face of economic temptations. PMID:27646044

  16. Anterior endoderm and head induction in early vertebrate embryos.

    Science.gov (United States)

    de Souza, F S; Niehrs, C

    2000-05-01

    Early work on the formation of the vertebrate body axis indicated the existence of separate head- and trunk-inducing regions in Spemann's organizer of the amphibian gastrula. In mammals some head-organizing activity may be located in anterior visceral (extraembryonic) endoderm (AVE). By analogy, the equivalent structure in the Xenopus laevis gastrula, the anterior endoderm, has been proposed to be the amphibian head organizer. Here we review recent data that challenge this notion and indicate that the involvement of AVE in head induction seems to be an exclusively mammalian characteristic. In X. laevis and chick, it is the prechordal endomesoderm that is the dominant source of head-inducing signals during early gastrulation. Furthermore, head induction in mammals needs a combination of signals from anterior primitive endoderm, prechordal plate, and anterior ectoderm. Thus, despite the homology of vertebrate anterior primitive endoderm, a role in head induction seems not to be conserved.

  17. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Shalini, Suku-Maran; Herr, Deron R; Ong, Wei-Yi

    2016-10-01

    Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid's activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.

  18. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex.

    Science.gov (United States)

    Hutcherson, Cendri A; Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-09-09

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. Significance statement: Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  19. Is dorsal anterior cingulate cortex activation in response to social exclusion due to expectancy violation? An fMRI study.

    Science.gov (United States)

    Kawamoto, Taishi; Onoda, Keiichi; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2012-01-01

    People are typically quite sensitive about being accepted or excluded by others. Previous studies have suggested that the dorsal anterior cingulate cortex (dACC) is a key brain region involved in the detection of social exclusion. However, this region has also been shown to be sensitive to non-social expectancy violations. We often expect other people to follow an unwritten rule in which they include us as they would expect to be included, such that social exclusion likely involves some degree of expectancy violation. The present event-related functional magnetic resonance imaging (fMRI) study sought to separate the effects of expectancy violation from those of social exclusion, such that we employed an "overinclusion" condition in which a player was unexpectedly overincluded in the game by the other players. With this modification, we found that the dACC and right ventrolateral prefrontal cortex (rVLPFC) were activated by exclusion, relative to overinclusion. In addition, we identified a negative correlation between exclusion-evoked brain activity and self-rated social pain in the rVLPFC, but not in the dACC. These findings suggest that the rVLPFC is critical for regulating social pain, whereas the dACC plays an important role in the detection of exclusion. The neurobiological basis of social exclusion is different from that of mere expectancy violation.

  20. Multidisciplinary management of anterior diastemata

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; Herkrath, Fernando José; Franco, Eduardo Jacomino

    2007-01-01

    Anterior diastemata may compromise the harmony of a patient's smile. Consideration of etiologic factors, previous gingival conditioning, and individual treatment planning are essential in the proper management of anterior diastemata. An integrated orthodontic-restorative approach may enhance...... the aesthetic results when orthodontic therapy itself is not feasible. This article presents integrated orthodonticrestorative solutions of anterior diastemata, associated with the conditioning of the gingival tissue with composite resin, and discusses the most relevant aspects related to their etiology...

  1. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  2. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    OpenAIRE

    María Carolina Gonzalez; Cecilia Paula Kramar; Micol eTomaiuolo; Cynthia eKatche; Noelia eWeisstaub; Martín eCammarota; Jorge Horacio Medina

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC imme...

  3. Curcumin and sertraline prevent the reduction of the number of neurons and glial cells and the volume of rats' medial prefrontal cortex induced by stress.

    Science.gov (United States)

    Noorafshan, Ali; Abdollahifar, Mohammad-Amin; Asadi-Golshan, Reza; Rashidian-Rashidabadi, Ali; Karbalay-Doust, Saied

    2014-01-01

    Chronic stress induces morphological changes in the neurons of several brain regions, including medial prefrontal cortex (mPFC). This region is involved in variety of behavioral tasks, including learning and memory. Our previous work showed that stress impaired function. The present work extends the earlier work to study mPFC in stressed and non-stressed rats with or without sertraline or curcumin treatments using stereological methods. Sertraline is a selective serotonin reuptake inhibitor and curcumin is the main ingredient of turmeric with neuroprotective effects. In this study, 42 male rats were randomly assigned to seven groups: stress + distilled water, stress + olive oil, stress + curcumin (100 mg/kg/day), stress + sertraline (10 mg/kg/day), curcumin, sertraline, and control groups. After 56 days, the right mPFC was removed. The volume of mPFC and its subdivisions and the total number of neurons and glia were estimated. The results showed ~8%, ~8%, and 24% decrease in the volume of the mPFC and its prelimbic and infralimbic subdivisions, respectively. However, the anterior cingulated cortex remained unchanged. Also, the total number of the neurons and glial cells was significantly reduced (11% and 5%, respectively) in stress (+distilled water or olive oil) group in comparison to the non-stressed rats (Psertraline and stress + curcumin groups in comparison to the non-treated stressed rats (Psertraline could prevent the stress-induced changes in mPFC.

  4. Management of anterior dental crossbite with removable appliances

    Directory of Open Access Journals (Sweden)

    Ayca Tuba Ulusoy

    2013-01-01

    Full Text Available This case report describes the treatment of an 8-year-old girl with anterior dental crossbite using a series of removable appliances to bring the teeth into a normal position. Clinical presentation and intervention: A removable acrylic appliance with a bite plate incorporating a screw was used to correct the anterior dental crossbite and align the incisors. The subsequent eruption of the maxillary left lateral incisor on the palatinal side was treated with a second acrylic plate incorporating a labiolingual spring. After an 8-month period, the anterior crossbite involving multiple incisors was corrected.

  5. File list: Pol.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  6. File list: Pol.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  7. File list: Pol.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  8. Implicitly perceived vocal attractiveness modulates prefrontal cortex activity.

    Science.gov (United States)

    Bestelmeyer, Patricia E G; Latinus, Marianne; Bruckert, Laetitia; Rouger, Julien; Crabbe, Frances; Belin, Pascal

    2012-06-01

    Social interactions involve more than "just" language. As important is a more primitive nonlinguistic mode of communication acting in parallel with linguistic processes and driving our decisions to a much higher degree than is generally suspected. Amongst the "honest signals" that influence our behavior is perceived vocal attractiveness. Not only does vocal attractiveness reflect important biological characteristics of the speaker, it also influences our social perceptions according to the "what sounds beautiful is good" phenomenon. Despite the widespread influence of vocal attractiveness on social interactions revealed by behavioral studies, its neural underpinnings are yet unknown. We measured brain activity while participants listened to a series of vocal sounds ("ah") and performed an unrelated task. We found that voice-sensitive auditory and inferior frontal regions were strongly correlated with implicitly perceived vocal attractiveness. While the involvement of auditory areas reflected the processing of acoustic contributors to vocal attractiveness ("distance to mean" and spectrotemporal regularity), activity in inferior prefrontal regions (traditionally involved in speech processes) reflected the overall perceived attractiveness of the voices despite their lack of linguistic content. These results suggest the strong influence of hidden nonlinguistic aspects of communication signals on cerebral activity and provide an objective measure of this influence.

  9. [Anterior cervical hypertrichosis: case report].

    Science.gov (United States)

    Orozco-Gutiérrez, Mario H; Sánchez-Corona, José; García-Ortiz, José E; Castañeda-Cisneros, Gema; Dávalos-Rodríguez, Nory O; Corona-Rivera, Jorge R; García-Cruz, Diana

    2016-10-01

    The non-syndromic anterior cervical hypertrichosis (OMIM N° 600457) is a genetic disorder characterized by a patch of hair at the level of the laryngeal prominence. We present a 12-year-old boy with anterior cervical hypertrichosis and mild generalized hypertrichosis. He has no neurological, ophthalmological or skeletal anomalies. The clinical follow up is 10 years.

  10. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  11. Discourse Production Following Injury to the Dorsolateral Prefrontal Cortex

    Science.gov (United States)

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC…

  12. Anterior uveitis in juvenile rheumatoid arthritis.

    Science.gov (United States)

    Kanski, J J

    1977-10-01

    The ocular and systemic characteristics of 160 patients with anterior uveitis and seronegative juvenile rheumatoid arthritis are reviewed. Chronic uveitis occurred in 131 patients, 76% of whom were girls. Both eyes were involved in 70% of the cases. Band keratopathy occurred in 41% of the eyes, cataract in 42%, and secondary glaucoma in 19%. Only 11 patients had uveitis before the onset of arthritis. Notable correlations included a pauciarticular onset of arthritis in 95% of the patients, and positive tests for antinuclear antibody in 82%. Of 29 patients with acute anterior uveitis, 27 were boys. The inflammation responded well to therapy, and serious complications did not occur. At follow-up 21 patients had typical ankylosing spondylitis, and five had sacroiliitis. The incidence of positive results of tests for HLA-B27 antigen was 94%.

  13. Inestabilidad Anterior de Hombro

    Directory of Open Access Journals (Sweden)

    Pablo David Flint Kuran

    2013-11-01

    Full Text Available In­tro­duc­ción La luxación recidivante de hombro es una patología frecuente en pacientes jóvenes, laboralmente activos. Existen numerosas técnicas quirúrgicas para la inestabilidad glenohumeral. La técnica de Bristow, discutida por no ser anatómica y por sus complicaciones, continúa vigente debido al bajo índice de reluxaciones. Los objetivos fueron determinar el índice de recidiva, alteraciones funcionales e índice de consolidación del injerto. Materiales­ y­ Métodos Se evaluaron 24 pacientes del sexo masculino, de entre 19 y 40 años, operados por luxación anterior recidivante de hombro según la técnica de Bristow, entre enero de 2003 y agosto de 2011. Se evaluó la tasa de reluxación, la función articular según el puntaje de Constant y el posicionamiento del injerto con respecto a la superficie articular con tomografía y radiografías para evaluar la consolidación del injerto. Se registraron las complicaciones quirúrgicas. Resultados ­Todos los pacientes eran hombres, con rango de edad de 19 a 40 años. La causa fue traumática en 24 pacientes. Dieciséis pacientes presentaron más de 3 episodios de luxación prequirúrgicos. Según la escala de Constant, 21 obtuvieron entre 96 y 100 puntos, y los restantes, entre 90 y 95 puntos. No hubo nuevos episodios de luxaciones. La tomografía mostró la consolidación en todos los casos. Un paciente tuvo una imagen osteolítica alrededor del tornillo, sin compromiso funcional del hombro. Conclusión La técnica de Bristow para tratar la luxación anterior recidivante de hombro provocó un bajo índice de complicaciones, con resultados funcionales entre excelentes y buenos. No hubo episodios de reluxación y se logró la consolidación del injerto óseo en todos los casos.

  14. Functional and structural amygdala - anterior cingulate connectivity correlates with attentional bias to masked fearful faces.

    Science.gov (United States)

    Carlson, Joshua M; Cha, Jiook; Mujica-Parodi, Lilianne R

    2013-10-01

    An attentional bias to threat has been causally related to anxiety. Recent research has linked nonconscious attentional bias to threat with variability in the integrity of the amygdala - anterior cingulate pathway, which sheds light on the neuroanatomical basis for a behavioral precursor to anxiety. However, the extent to which structural variability in amygdala - anterior cingulate integrity relates to the functional connectivity within this pathway and how such functional connectivity may relate to attention bias behavior, remain critical missing pieces of the puzzle. In 15 individuals we measured the structural integrity of the amygdala - prefrontal pathway with diffusion tensor-weighted MRI (magnetic resonance imaging), amygdala-seeded intrinsic functional connectivity to the anterior cingulate, and attentional bias toward backward masked fearful faces with a dot-probe task. We found that greater biases in attention to threat predicted greater levels of uncinate fasciculus integrity, greater positive amygdala - anterior cingulate functional connectivity, and greater amygdala coupling with a broader social perception network including the superior temporal sulcus, tempoparietal junction (TPJ), and somatosensory cortex. Additionally, greater levels of uncinate fasciculus integrity correlated with greater levels of amygdala - anterior cingulate intrinsic functional connectivity. Thus, high bias individuals displayed a heightened degree of amygdala - anterior cingulate connectivity during basal conditions, which we believe predisposes these individuals to focus their attention on signals of threat within their environment.

  15. Alcohol binge drinking during adolescence or dependence during adulthood reduces prefrontal myelin in male rats.

    Science.gov (United States)

    Vargas, Wanette M; Bengston, Lynn; Gilpin, Nicholas W; Whitcomb, Brian W; Richardson, Heather N

    2014-10-29

    Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism.

  16. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.

    Science.gov (United States)

    Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2014-06-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion.

  17. Lucid dreaming and ventromedial versus dorsolateral prefrontal task performance.

    Science.gov (United States)

    Neider, Michelle; Pace-Schott, Edward F; Forselius, Erica; Pittman, Brian; Morgan, Peter T

    2011-06-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for 1 week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function.

  18. Medial prefrontal D1 dopamine neurons control food intake.

    Science.gov (United States)

    Land, Benjamin B; Narayanan, Nandakumar S; Liu, Rong-Jian; Gianessi, Carol A; Brayton, Catherine E; Grimaldi, David M; Sarhan, Maysa; Guarnieri, Douglas J; Deisseroth, Karl; Aghajanian, George K; DiLeone, Ralph J

    2014-02-01

    Although the prefrontal cortex influences motivated behavior, its role in food intake remains unclear. Here, we demonstrate a role for D1-type dopamine receptor-expressing neurons in the medial prefrontal cortex (mPFC) in the regulation of feeding. Food intake increases activity in D1 neurons of the mPFC in mice, and optogenetic photostimulation of D1 neurons increases feeding. Conversely, inhibition of D1 neurons decreases intake. Stimulation-based mapping of prefrontal D1 neuron projections implicates the medial basolateral amygdala (mBLA) as a downstream target of these afferents. mBLA neurons activated by prefrontal D1 stimulation are CaMKII positive and closely juxtaposed to prefrontal D1 axon terminals. Finally, photostimulating these axons in the mBLA is sufficient to increase feeding, recapitulating the effects of mPFC D1 stimulation. These data describe a new circuit for top-down control of food intake.

  19. Morphine decreases extracellular levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats

    Institute of Scientific and Technical Information of China (English)

    YueHAO; Jing-yuYANG; MingGUO; Chun-fuWU; Ming-fanWU

    2004-01-01

    AIM: The anterior cingulate cortex (ACC), an important region of prefrontal cortex for cognitive functions, has been implicated in drug abuse and addiction. In the present study, we intended to investigate the effect of morphine on the extracellular levels of glutamate in the ACC in freely moving rats. METHODS: In vivo microdialysis coupled to high performance liquid chromatography and electrochemical detection had been used for the

  20. Von Economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans.

    Science.gov (United States)

    Fajardo, C; Escobar, M I; Buriticá, E; Arteaga, G; Umbarila, J; Casanova, M F; Pimienta, H

    2008-04-25

    Von Economo neurons (VENs), also known as spindle cells, have been described in layer V of the anterior cingulate (BA 24) and frontoinsular cortex (FI) of humans and other great apes. In the present study we used immunohistochemistry against two specific neuronal markers (NeuN and MAP2) in order to establish the presence of these cell types in Brodmann area 9 (BA 9) of the human prefrontal cortex. We evaluated tissue samples of eight human postmortem brains (age range 26-50) from BAs 9, 24, 4, 46, 45, 10 and 17. We identified a group of cells with similar morphology to that previously described for VENs in all specimens of BA 9 examined, albeit less frequently than in BA 24. This is the first description of this cell type in a human brain area with well developed granular layers (BA 9).

  1. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats.

    Science.gov (United States)

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Damsteegt, Ruth; Trezza, Viviana; Vanderschuren, Louk J M J

    2015-01-07

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD.

  2. Demand on verbal working memory delays haemodynamic response in the inferior prefrontal cortex.

    Science.gov (United States)

    Thierry, Guillaume; Ibarrola, Danielle; Démonet, Jean-François; Cardebat, Dominique

    2003-05-01

    Event-related functional magnetic resonance imaging was used to test the involvement of the inferior prefrontal cortex in verbal working memory. Pairs of French nouns were presented to ten native French speakers who had to make semantic or grammatical gender decisions. Verbal working memory involvement was manipulated by making the categorization of the second noun optional. Decisions could be made after processing the first noun only (RELEASE condition) or after processing the two nouns (HOLD condition). Reaction times suggested faster processing for gender than for semantic category in RELEASE. Despite the absence of anatomical difference across tasks and conditions in the wide activated network, the haemodynamic response peak latencies of the inferior prefrontal cortex were significantly delayed in HOLD versus RELEASE while no such peak delay was observed in the superior temporal gyrus. Interestingly, this pattern did not interact with language tasks. This study shows that cognitive manipulation can influence haemodynamic time-course and suggests that the main cognitive process determining inferior prefrontal activation is verbal working memory rather than specific linguistic processes such as grammatical or semantic analysis.

  3. Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood

    Directory of Open Access Journals (Sweden)

    Huib eMansvelder

    2012-08-01

    Full Text Available The majority of adolescents report to have smoked a cigarette at least once. Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC, is still ongoing. Tobacco smoking during this age may compromise the normal course of prefrontal development and lead to cognitive impairments in later life. In addition, adolescent smokers suffer from attention deficits, which progress with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and underlie the lasting effects on cognitive function. In particular, the expression and function of metabotropic glutamate receptors (mGluRs are changed and this has an impact on short- and long-term plasticity of glutamatergic synapses in the PFC and ultimately on the attention performance. Here, we review and discuss these recent findings.

  4. Altered proteomic expression in the prefrontal cortex of morphine-addicted rats

    Institute of Scientific and Technical Information of China (English)

    Ye Yang; Chunyan Zhang; Han Liu; Bin Wang; Haiying Lin; Lisha Wu

    2011-01-01

    The prefrontal cortex is involved in the regulation and control of substance addiction-related cognitive, behavioral, and emotional changes. The present study identified prefrontal cortex protein profiles in morphine-addicted rats; these were subsequently compared with normal rats. Results showed 87 protein spots with differentially expressed levels in the morphine addiction group, with the majority located in meta acid zones at pH 4.2–6.8 and having a molecular weight of 30–110 kDa. In addition, 2 protein spots were identified as being associated with neurotoxicity (Snap25 isoform β-Snap25 of synaptosomal-associated protein 25 and β-actin).

  5. Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer's disease.

    Science.gov (United States)

    Luchetti, Sabina; Bossers, Koen; Van de Bilt, Saskia; Agrapart, Vincent; Morales, Rafael Ramirez; Frajese, Giovanni Vanni; Swaab, Dick F

    2011-11-01

    Expression of the genes for enzymes involved in neurosteroid biosynthesis was studied in human prefrontal cortex (PFC) in the course of Alzheimer's disease (AD) (n=49). Quantitative RT-PCR (qPCR) revealed that mRNA levels of diazepam binding inhibitor (DBI), which is involved in the first step of steroidogenesis and in GABAergic transmission, were increased, as were mRNA levels for several neurosteroid biosynthetic enzymes. Aromatase, 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) and aldo-keto reductase 1C2 (AKR1C2), were all increased in the late stages of AD. Several GABA-A subunits were significantly reduced in AD. Increased expression of aromatase in the PFC was confirmed by immunohistochemistry and was found to be localized predominantly in astrocytes. These data suggest a role for estrogens and allopregnanolone produced by astrocytes in the PFC in AD, possibly as part of a rescue program. The reduced gene expression of some synaptic and extra-synaptic GABA-A subunits may indicate a deficit of modulation of GABA-A receptors by neuroactive steroids, which may contribute to the neuropsychiatric characteristics of this disease.

  6. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  7. Movement-related activity during goal-directed hand actions in the monkey ventrolateral prefrontal cortex.

    Science.gov (United States)

    Simone, Luciano; Rozzi, Stefano; Bimbi, Marco; Fogassi, Leonardo

    2015-12-01

    Grasping actions require the integration of two neural processes, one enabling the transformation of object properties into corresponding motor acts, and the other involved in planning and controlling action execution on the basis of contextual information. The first process relies on parieto-premotor circuits, whereas the second is considered to be a prefrontal function. Up to now, the prefrontal cortex has been mainly investigated with conditional visuomotor tasks requiring a learned association between cues and behavioural output. To clarify the functional role of the prefrontal cortex in grasping actions, we recorded the activity of ventrolateral prefrontal (VLPF) neurons while monkeys (Macaca mulatta) performed tasks requiring reaching-grasping actions in different contextual conditions (in light and darkness, memory-guided, and in the absence of abstract learned rules). The results showed that the VLPF cortex contains neurons that are active during action execution (movement-related neurons). Some of them showed grip selectivity, and some also responded to object presentation. Most movement-related neurons discharged during action execution both with and without visual feedback, and this discharge typically did not change when the action was performed with object mnemonic information and in the absence of abstract rules. The findings of this study indicate that a population of VLPF neurons play a role in controlling goal-directed grasping actions in several contexts. This control is probably exerted within a wider network, involving parietal and premotor regions, where the role of VLPF movement-related neurons would be that of activating, on the basis of contextual information, the representation of the motor goal of the intended action (taking possession of an object) during action planning and execution.

  8. Long-Term Effects of Acute Stress on the Prefrontal-Limbic System in the Healthy Adult

    Science.gov (United States)

    Wei, Dongtao; Du, Xue; Zhang, Qinglin; Liu, Guangyuan; Qiu, Jiang

    2017-01-01

    Most people are exposed to at least one traumatic event during the course of their lives, but large numbers of people do not develop posttraumatic stress disorders. Although previous studies have shown that repeated and chronic stress change the brain’s structure and function, few studies have focused on the long-term effects of acute stressful exposure in a nonclinical sample, especially the morphology and functional connectivity changes in brain regions implicated in emotional reactivity and emotion regulation. Forty-one months after the 5/12 Wenchuan earthquake, we investigated the effects of trauma exposure on the structure and functional connectivity of the brains of trauma-exposed healthy individuals compared with healthy controls matched for age, sex, and education. We then used machine-learning algorithms with the brain structural features to distinguish between the two groups at an individual level. In the trauma-exposed healthy individuals, our results showed greater gray matter density in prefrontal-limbic brain systems, including the dorsal anterior cingulate cortex, medial prefrontal cortex, amygdala and hippocampus, than in the controls. Further analysis showed stronger amygdala-hippocampus functional connectivity in the trauma-exposed healthy compared to the controls. Our findings revealed that survival of traumatic experiences, without developing PTSD, was associated with greater gray matter density in the prefrontal-limbic systems related to emotional regulation. PMID:28045980

  9. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation

    CERN Document Server

    Zotev, Vadim; Young, Kymberly D; Drevets, Wayne C; Bodurka, Jerzy

    2013-01-01

    We observed in a previous study (PLoS ONE 6:e24522) that the self-regulation of amygdala activity via real-time fMRI neurofeedback (rtfMRI-nf) with positive emotion induction was associated, in healthy participants, with an enhancement in the functional connectivity between the left amygdala (LA) and six regions of the prefrontal cortex. These regions included the left rostral anterior cingulate cortex (rACC), bilateral dorsomedial prefrontal cortex (DMPFC), bilateral superior frontal gyrus (SFG), and right medial frontopolar cortex (MFPC). Together with the LA, these six prefrontal regions thus formed the functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector autoregression (SVAR) analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to the analysis, the rtfMRI-nf training leads to a signi...

  10. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  11. Diffuse anterior retinoblastoma: current concepts

    Directory of Open Access Journals (Sweden)

    Yang J

    2015-07-01

    Full Text Available Jing Yang,1–3 Yalong Dang,1–3 Yu Zhu,1 Chun Zhang2,3 1Department of Ophthalmology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou City, Henan Province, 2Department of Ophthalmology, Peking University Third Hospital, 3Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People’s Republic of China Abstract: Diffuse anterior retinoblastoma is a rare variant of retinoblastoma seeding in the area of the vitreous base and anterior chamber. Patients with diffuse anterior retinoblastoma are older than those with the classical types, with the mean age being 6.1 years. The original cells of diffuse anterior retinoblastoma are supposed to be cone precursor. Patients most commonly present with pseudouveitis, pseudohypopyon, and increased intraocular pressure. The retina under fundus examination is likely to be normal, and the clinical features mimic the inflammation progress, which can often lead to misdiagnosis. The published diffuse anterior retinoblastoma cases were diagnosed after fine-needle aspiration biopsy running the potential risk of inducing metastasis. The most common treatment for diffuse anterior retinoblastoma is enucleation followed by systematic chemotherapy according to the patient’s presentation and clinical course. This review summarizes the recent advances in etiology (including tumorigenesis and cell origin, pathology, diagnosis, differential diagnosis, and new treatment. The challenges of early diagnosis and prospects are also discussed. Keywords: pathology, microenvironment, treatment, diagnosis 

  12. The Anterior Cingulate Cortex and Pain Processing

    Directory of Open Access Journals (Sweden)

    Perry Neil Fuchs

    2014-05-01

    Full Text Available The neural network that contributes to the suffering which accompanies persistent pain states involves a number of brain regions. Of primary interest is the contribution of the cingulate cortex in processing the affective component of pain. The purpose of this review is to summarize recent data obtained using novel behavioral paradigms in animals based on measuring escape and/or avoidance of a noxious stimulus. These paradigms have successfully been used to study the nature of the neuroanatomical and neurochemical contributions of the anterior cingulate cortex to higher order pain processing in rodents.

  13. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    Science.gov (United States)

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  14. Identifying a network of brain regions involved in aversion-related processing: a cross-species translational investigation

    Directory of Open Access Journals (Sweden)

    Dave J Hayes

    2011-10-01

    Full Text Available The ability to detect and respond appropriately to aversive stimuli is essential for all organisms, from fruit flies to humans. This suggests the existence of a core neural network which mediates aversion-related processing. Human imaging studies on aversion have highlighted the involvement of various cortical regions, such as the prefrontal cortex, while animal studies have focused largely on subcortical regions like the periaqueductal gray and hypothalamus. However, whether and how these regions form a core neural network of aversion remains unclear. To help determine this, a translational cross-species investigation in humans (i.e. meta-analysis and other animals (i.e. systematic review of functional neuroanatomy was performed. Our results highlighted the recruitment of the anterior cingulate cortex, the anterior insula, and the amygdala as well as other subcortical (e.g. thalalmus, midbrain and cortical (e.g. orbitofrontal regions in both animals and humans. Importantly, involvement of these regions remained independent of sensory modality. This study provides evidence for a core neural network mediating aversion in both animals and humans. This not only contributes to our understanding of the trans-species neural correlates of aversion but may also carry important implications for psychiatric disorders where abnormal aversive behaviour can often be observed.

  15. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  16. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.

    Science.gov (United States)

    Minamoto, Takehiro; Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2015-10-01

    Neuroimaging and behavioral evidence has suggested that the lateral prefrontal cortex is involved in individual differences in working memory capacity (WMC). However, few studies have localized the neural structures that differentiate high and low WMC individuals, considering the functional architecture of the prefrontal cortex. The present study aimed to identify a frontal region that underlies individual differences from the perspective of the hierarchical architecture of the frontal cortex. By manipulating an episodic factor of cognitive control (control in selecting an appropriate task set according to a temporal context) and using a parametric modulation analysis, we found that both high- and low- WMC individuals have similar activation patterns in the premotor cortex (BA6, 8), caudal prefrontal cortex (BA44, 45), and frontopolar cortex (BA10, 11), but differed in the rostral part of the prefrontal cortex (BA46/47); high WMC individuals showed greater activation in the higher episodic control condition, whereas low WMC individuals showed reduced activation when episodic control was required. Similar patterns of activation were found in the right inferior parietal and middle/inferior temporal cortices. These results indicate that the rostral prefrontal cortex, which supports episodic cognitive control, possibly by sending a weighting signal toward the inferior parietal and middle/inferior temporal cortices that modulate saliency and sensory processing, underlies individual differences in WMC. Episodic control account, which considers the organization of the prefrontal cortex, fits well with previous findings of individual differences in WMC.

  17. On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes.

    Science.gov (United States)

    Marmarelis, V Z; Shin, D C; Song, D; Hampson, R E; Deadwyler, S A; Berger, T W

    2014-06-01

    Nonlinear modeling of multi-input multi-output (MIMO) neuronal systems using Principal Dynamic Modes (PDMs) provides a novel method for analyzing the functional connectivity between neuronal groups. This paper presents the PDM-based modeling methodology and initial results from actual multi-unit recordings in the prefrontal cortex of non-human primates. We used the PDMs to analyze the dynamic transformations of spike train activity from Layer 2 (input) to Layer 5 (output) of the prefrontal cortex in primates performing a Delayed-Match-to-Sample task. The PDM-based models reduce the complexity of representing large-scale neural MIMO systems that involve large numbers of neurons, and also offer the prospect of improved biological/physiological interpretation of the obtained models. PDM analysis of neuronal connectivity in this system revealed "input-output channels of communication" corresponding to specific bands of neural rhythms that quantify the relative importance of these frequency-specific PDMs across a variety of different tasks. We found that behavioral performance during the Delayed-Match-to-Sample task (correct vs. incorrect outcome) was associated with differential activation of frequency-specific PDMs in the prefrontal cortex.

  18. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  19. Interactions of the hippocampal system and the prefrontal cortex in learning language-like rules.

    Science.gov (United States)

    Opitz, Bertram; Friederici, Angela D

    2003-08-01

    One of the most influential views on the hippocampal function suggests that this brain region is critically involved in relational memory processing, that is, binding converging inputs to mediate the representation of relationships among the constituents of episodes. It has been proposed that this binding is automatic and obligatory during learning and remembering In addition, neuroimaging studies have highlighted the importance of the prefrontal cortex, in learning, memory, and language processing. However, the posited importance of hippocampal-prefrontal interaction remains to be empirically tested. In the present study we used functional magnetic resonance imaging to examine in detail this interaction by assessing learning-related changes in hemodynamic activity during artificial language acquisition. It has been shown previously that artificial grammar systems might be learned by evaluating pattern-based relations in word sequences and generalizing beyond specific word order, that is, rule abstraction. During scanning, participants learned an artificial language whose miniature grammar meets the universal principles of a natural language. Increased proficiency level of the artificial language is associated with decreased left hippocampal activity. In contrast, we observed an increased recruitment of the left inferior frontal gyrus (Broca's area), a region that contributes to syntax processing in natural language. The present results, therefore, indicate a learning-related change in brain circuitry underlying relational processes of language learning, with a transition from a similarity-based learning system in the medial temporal lobes to a language-related processing system in the left prefrontal cortex.

  20. Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia.

    Science.gov (United States)

    Ansoleaga, Belén; Garcia-Esparcia, Paula; Pinacho, Raquel; Haro, Josep Maria; Ramos, Belén; Ferrer, Isidre

    2015-01-01

    We have recently identified up- or down-regulation of the olfactory (OR) and taste (TASR) chemoreceptors in the human cortex in several neurodegenerative diseases, raising the possibility of a general deregulation of these genes in neuropsychiatric disorders. In this study, we explore the possible deregulation of OR and TASR gene expression in the dorsolateral prefrontal cortex in schizophrenia. We used quantitative polymerase chain reaction on extracts from postmortem dorsolateral prefrontal cortex of subjects with chronic schizophrenia (n = 15) compared to control individuals (n = 14). Negative symptoms were evaluated premortem by the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia Scales. We report that ORs and TASRs are deregulated in the dorsolateral prefrontal cortex in schizophrenia. Seven out of eleven ORs and four out of six TASRs were down-regulated in schizophrenia, the most prominent changes of which were found in genes from the 11p15.4 locus. The expression did not associate with negative symptom clinical scores or the duration of the illness. However, most ORs and all TASRs inversely associated with the daily chlorpromazine dose. This study identifies for the first time a decrease in brain ORs and TASRs in schizophrenia, a neuropsychiatric disease not linked to abnormal protein aggregates, suggesting that the deregulation of these receptors is associated with altered cognition of these disorders. In addition, the influence of antipsychotics on the expression of ORs and TASRs in schizophrenia suggests that these receptors could be involved in the mechanism of action or side effects of antipsychotics.

  1. Task-Specific Facilitation of Cognition by Anodal Transcranial Direct Current Stimulation of the Prefrontal Cortex.

    Science.gov (United States)

    Pope, Paul A; Brenton, Jonathan W; Miall, R Chris

    2015-11-01

    We previously speculated that depression of cerebellar excitability using cathodal transcranial direct current stimulation (tDCS) might release extra cognitive resources via the disinhibition of activity in prefrontal cortex. The objective of the present study was to investigate whether anodal tDCS over the prefrontal cortex could similarly improve performance when cognitive demands are high. Sixty-three right-handed participants in 3 separate groups performed the Paced Auditory Serial Addition Task (PASAT) and the more difficult Paced Auditory Serial Subtraction Task (PASST), before and after 20 min of anodal, cathodal, or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC). Performance was assessed in terms of the accuracy, latency, and variability of correct verbal responses. All behavioral measures significantly improved for the PASST after anodal DLPFC stimulation, but not the PASAT. There were smaller practice effects after cathodal and sham stimulation. Subjective ratings of attention and mental fatigue were unchanged by tDCS over time. We conclude that anodal stimulation over the left DLPFC can selectively improve performance on a difficult cognitive task involving arithmetic processing, verbal working memory, and attention. This result might be achieved by focally improving executive functions and/or cognitive capacity when tasks are difficult, rather than by improving levels of arousal/alertness.

  2. Development of temperamental effortful control mediates the relationship between maturation of the prefrontal cortex and psychopathology during adolescence: a 4-year longitudinal study.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Dennison, Meg; Yücel, Murat; Simmons, Julian; Allen, Nicholas B

    2014-07-01

    This study investigated the relationship between the development of effortful control (EC), a temperamental measure of self-regulation, and concurrent development of three regions of the prefrontal cortex (anterior cingulate cortex, ACC; dorsolateral prefrontal cortex, dlPFC; ventrolateral prefrontal cortex, vlPFC) between early- and mid-adolescence. It also examined whether development of EC mediated the relationship between cortical maturation and emotional and behavioral symptoms. Ninety-two adolescents underwent baseline assessments when they were approximately 12 years old and follow-up assessments approximately 4 years later. At each assessment, participants had MRI scans and completed the Early Adolescent Temperament Questionnaire-Revised, as well as measures of depressive and anxious symptoms, and aggressive and risk taking behavior. Cortical thicknesses of the ACC, dlPFC and vlPFC, estimated using the FreeSurfer software, were found to decrease over time. EC also decreased over time in females. Greater thinning of the left ACC was associated with less reduction in EC. Furthermore, change in effortful control mediated the relationship between greater thinning of the left ACC and improvements in socioemotional functioning, including reductions in psychopathological symptoms. These findings highlight the dynamic association between EC and the maturation of the anterior cingulate cortex, and the importance of this relationship for socioemotional functioning during adolescence.

  3. Human Choice Strategy Varies with Anatomical Projections from Ventromedial Prefrontal Cortex to Medial Striatum.

    Science.gov (United States)

    Piray, Payam; Toni, Ivan; Cools, Roshan

    2016-03-09

    Two distinct systems, goal-directed and habitual, support decision making. It has recently been hypothesized that this distinction may arise from two computational mechanisms, model-based and model-free reinforcement learning, neuronally implemented in frontostriatal circuits involved in learning and behavioral control. Here, we test whether the relative strength of anatomical connectivity within frontostriatal circuits accounts for variation in human individuals' reliance on model-based and model-free control. This hypothesis was tested by combining diffusion tensor imaging with a multistep decision task known to distinguish model-based and model-free control in humans. We found large interindividual differences in the degree of model-based control, and those differences are predicted by the structural integrity of white-matter tracts from the ventromedial prefrontal cortex to the medial striatum. Furthermore, an analysis based on masking out of bottom-up tracts suggests that this effect is driven by top-down influences from ventromedial prefrontal cortex to medial striatum. Our findings indicate that individuals with stronger afferences from the ventromedial prefrontal cortex to the medial striatum are more likely to rely on a model-based strategy to control their instrumental actions. These findings suggest a mechanism for instrumental action control through which medial striatum determines, at least partly, the relative contribution of model-based and model-free systems during decision-making according to top-down model-based information from the ventromedial prefrontal cortex. These findings have important implications for understanding the neural circuitry that might be susceptible to pathological computational processes in impulsive/compulsive psychiatric disorders.

  4. Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention

    Directory of Open Access Journals (Sweden)

    Paul eSauseng

    2011-10-01

    Full Text Available Visual attention can be shifted in space without moving the eyes. Amplitude decrease of rhythmical brain activity around 10 Hz (so called alpha activity at contralateral posterior sites has been reported during covert shifts of visuospatial attention to one visual hemifield. Alpha amplitude increase, on the other hand, can be found at ipsilateral visual cortex. There is some evidence suggesting an involvement of prefrontal brain areas during the control of attention-related anticipatory alpha amplitude asymmetry. However, the exact neural mechanism by which prefrontal cortex influences visual processing has not been completely clear yet. This open question has been studied in detail using a multimodal approach combining transcranial magnetic stimulation (TMS and multichannel electroencephalography (EEG in healthy humans. Slow (1 Hz repetitive TMS inducing an inhibitory effect at the stimulation site was delivered either to right frontal eye field or a control site (vertex. Subsequently, participants had to perform a spatial cueing task in which covert shifts of attention were required to either the left or the right visual hemi-field. After stimulation at the vertex (control condition a pattern of anticipatory, attention-related ipsilateral alpha increase / contralateral alpha decrease over posterior recording sites could be obtained. Additionally, there was pronounced coupling between (in particular right FEF and posterior brain sites. When, however, the right prefrontal cortex had been virtually lesioned preceding the task, these EEG correlates of visuospatial attention were attenuated. Notably, the effect of TMS at the right FEF on interregional fronto-parietal alpha coupling predicted the effect on response times. This suggests that visual attention processes associated with posterior EEG alpha activity are at least partly top-down controlled by the prefrontal cortex.

  5. Regulation of prefrontal cortex myelination by the microbiota.

    Science.gov (United States)

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-04-05

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC.

  6. Prefrontal Cortical Kappa Opioid Receptors Attenuate Responses to Amygdala Inputs.

    Science.gov (United States)

    Tejeda, Hugo A; Hanks, Ashley N; Scott, Liam; Mejias-Aponte, Carlos; Hughes, Zoë A; O'Donnell, Patricio

    2015-12-01

    Kappa opioid receptors (KORs) have been implicated in anxiety and stress, conditions that involve activation of projections from the basolateral amygdala (BLA) to the medial prefrontal cortex (mPFC). Although KORs have been studied in several brain regions, their role on mPFC physiology and on BLA projections to the mPFC remains unclear. Here, we explored whether KORs modify synaptic inputs from the BLA to the mPFC using in vivo electrophysiological recordings with electrical and optogenetic stimulation. Systemic administration of the KOR agonist U69,593 inhibited BLA-evoked synaptic responses in the mPFC without altering hippocampus-evoked responses. Intra-mPFC U69,593 inhibited electrical and optogenetic BLA-evoked synaptic responses, an effect blocked by the KOR antagonist nor-BNI. Bilateral intra-mPFC injection of the KOR antagonist nor-BNI increased center time in the open field test, suggesting an anxiolytic effect. The data demonstrate that mPFC KORs negatively regulate glutamatergic synaptic transmission in the BLA-mPFC pathway and anxiety-like behavior. These findings provide a framework whereby KOR signaling during stress and anxiety can regulate the flow of emotional state information from the BLA to the mPFC.

  7. Germ Cell Tumor Located in the Midline of the Anterior Neck

    Directory of Open Access Journals (Sweden)

    Tatyana PIRDOPSKA

    2011-09-01

    Full Text Available Primary germ cell tumors involving midline of the anterior neck are extremely rare. Here we report a 68-year-old male who was operated due to a mass lesion in the anterior neck with infiltration of the isthmus of the thyroid gland. Histopathological examination revealed a germ cell tumor with extragonadal localization in the anterior neck infiltrating the isthmus of the thyroid gland.

  8. Dysphagia Secondary to Anterior Osteophytes of the Cervical Spine.

    Science.gov (United States)

    Egerter, Alexander C; Kim, Eric S; Lee, Darrin J; Liu, Jonathan J; Cadena, Gilbert; Panchal, Ripul R; Kim, Kee D

    2015-10-01

    Study Design Retrospective case series. Objective Diffuse idiopathic skeletal hyperostosis (DISH) or Forestier disease involves hyperostosis of the spinal column. Hyperostosis involving the anterior margin of the cervical vertebrae can cause dysphonia, dyspnea, and/or dysphagia. However, the natural history pertaining to the risk factors remain unknown. We present the surgical management of two cases of dysphagia secondary to cervical hyperostosis and discuss the etiology and management of DISH based on the literature review. Methods This is a retrospective review of two patients with DISH and anterior cervical osteophytes. We reviewed the preoperative and postoperative images and clinical history. Results Two patients underwent anterior cervical osteophytectomies due to severe dysphagia. At more than a year follow-up, both patients noted improvement in swallowing as well as their associated pain. Conclusion The surgical removal of cervical osteophytes can be highly successful in treating dysphagia if refractory to prolonged conservative therapy.

  9. Differential prefrontal white matter development in chimpanzees and humans.

    Science.gov (United States)

    Sakai, Tomoko; Mikami, Akichika; Tomonaga, Masaki; Matsui, Mie; Suzuki, Juri; Hamada, Yuzuru; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2011-08-23

    A comparison of developmental patterns of white matter (WM) within the prefrontal region between humans and nonhuman primates is key to understanding human brain evolution. WM mediates complex cognitive processes and has reciprocal connections with posterior processing regions [1, 2]. Although the developmental pattern of prefrontal WM in macaques differs markedly from that in humans [3], this has not been explored in our closest evolutionary relative, the chimpanzee. The present longitudinal study of magnetic resonance imaging scans demonstrated that the prefrontal WM volume in chimpanzees was immature and had not reached the adult value during prepuberty, as observed in humans but not in macaques. However, the rate of prefrontal WM volume increase during infancy was slower in chimpanzees than in humans. These results suggest that a less mature and more protracted elaboration of neuronal connections in the prefrontal portion of the developing brain existed in the last common ancestor of chimpanzees and humans, and that this served to enhance the impact of postnatal experiences on neuronal connectivity. Furthermore, the rapid development of the human prefrontal WM during infancy may help the development of complex social interactions, as well as the acquisition of experience-dependent knowledge and skills to shape neuronal connectivity.

  10. Inhibitory transcranial magnetic theta burst stimulation attenuates prefrontal cortex oxygenation.

    Science.gov (United States)

    Tupak, Sara V; Dresler, Thomas; Badewien, Meike; Hahn, Tim; Ernst, Lena H; Herrmann, Martin J; Deckert, Jürgen; Ehlis, Ann-Christine; Fallgatter, Andreas J

    2013-01-01

    Recent studies highlighted the great potential of newly established theta burst stimulation (TBS) protocols for non-invasive human brain stimulation studies using transcranial magnetic stimulation (TMS). While intermittent TBS over the primary motor cortex was found to potentiate motor evoked potentials, continuous TBS led to profound attenuations. Although numerous studies investigated the impact of TBS on motor cortex function, yet, only few imaging studies focused on its effects in other brain areas. Particularly for the prefrontal cortex, it is unclear whether TBS has similar effects compared to application over motor areas. In the current study continuous TBS was applied to either the left or right dorsolateral prefrontal cortex in a sample of healthy subjects. Changes in prefrontal oxygenation were measured during an emotional Stroop task by means of functional multi-channel near-infrared spectroscopy (fNIRS) before and after stimulation. Results showed bilaterally decreased prefrontal oxygenation following inhibitory stimulation of the left prefrontal cortex but no behavioral effect. No such alterations were observed following right-hemispheric or sham stimulation. The results of the current study are in line with earlier findings and additionally demonstrate that also prefrontal oxygenation can be impaired by continuous TBS.

  11. Prefrontal D1 dopamine signaling is required for temporal control.

    Science.gov (United States)

    Narayanan, Nandakumar S; Land, Benjamin B; Solder, John E; Deisseroth, Karl; DiLeone, Ralph J

    2012-12-11

    Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.

  12. Prefrontal control of attention to threat.

    Science.gov (United States)

    Peers, Polly V; Simons, Jon S; Lawrence, Andrew D

    2013-01-01

    Attentional control refers to the regulatory processes that ensure that our actions are in accordance with our goals. Dual-system accounts view temperament as consisting of both individual variation in emotionality (e.g., trait anxiety) and variation in regulatory attentional mechanisms that act to modulate emotionality. Increasing evidence links trait variation in attentional control to clinical mood and anxiety disorder symptoms, independent of trait emotionality. Attentional biases to threat have been robustly linked to mood and anxiety disorders. However, the role of variation in attentional control in influencing such biases, and the neural underpinnings of trait variation in attentional control, are unknown. Here, we show that individual differences in trait attentional control, even when accounting for trait and state anxiety, are related to the magnitude of an attentional blink (AB) following threat-related targets. Moreover, we demonstrate that activity in dorso-lateral prefrontal cortex (DLPFC), is observed specifically in relation to control of attention over threatening stimuli, in line with neural theories of attentional control, such as guided activation theory. These results have key implications for neurocognitive theories of attentional bias and emotional resilience.

  13. Prefrontal control of attention to threat

    Directory of Open Access Journals (Sweden)

    Polly V Peers

    2013-02-01

    Full Text Available Attentional control refers to the regulatory processes that ensure that our actions are in accordance with our goals. Dual-system accounts view temperament as consisting of both individual variation in emotionality (e.g. trait anxiety and variation in regulatory attentional mechanisms that act to modulate emotionality. Increasing evidence links trait variation in attentional control to clinical mood and anxiety disorder symptoms, independent of trait emotionality. Attentional biases to threat have been robustly linked to mood and anxiety disorders. However, the role of variation in attentional control in influencing such biases, and the neural underpinnings of trait variation in attentional control, are unknown. Here, we show, that individual differences in trait attentional control, even when accounting for trait and state anxiety, are related to the magnitude of an attentional blink following threat-related targets. Moreover, we demonstrate that activity in dorsolateral prefrontal cortex, is observed specifically in relation to control of attention over threatening stimuli, in line with neural theories of attentional control, such as guided activation theory. These results have key implications for neurocognitive theories of attentional bias and emotional resilience.

  14. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation.

    Science.gov (United States)

    Sperling, Reisa; Chua, Elizabeth; Cocchiarella, Andrew; Rand-Giovannetti, Erin; Poldrack, Russell; Schacter, Daniel L; Albert, Marilyn

    2003-10-01

    The ability to form associations between previously unrelated items of information, such as names and faces, is an essential aspect of episodic memory function. The neural substrate that determines success vs. failure in learning these associations remains to be elucidated. Using event-related functional MRI during the encoding of novel face-name associations, we found that successfully remembered face-name pairs showed significantly greater activation in the anterior hippocampal formation bilaterally and left inferior prefrontal cortex, compared to pairs that were forgotten. Functional connectivity analyses revealed significant correlated activity between the right and left hippocampus and neocortical regions during successful, but not attempted, encoding. These findings suggest that anterior regions of the hippocampal formation, in particular, are crucial for successful associative encoding and that the degree of coordination between hippocampal and neocortical activity may predict the likelihood of subsequent memory.

  15. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  16. Attentional set-shifting deficit in Parkinson's disease is associated with prefrontal dysfunction: an FDG-PET study.

    Directory of Open Access Journals (Sweden)

    Yoichi Sawada

    Full Text Available The attentional set-shifting deficit that has been observed in Parkinson's disease (PD has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients.

  17. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    Science.gov (United States)

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions.

  18. The Outcomes of Anterior Spinal Fusion for Cervical Compressive Myelopathy—A Retrospective Review

    Directory of Open Access Journals (Sweden)

    Tsz-King Suen

    2011-12-01

    Conclusion: Anterior cervical decompression with bone fusion is a viable surgical option for patients with one level of anterior cervical cord compression, especially for patients with kyphosis or straight canal spine. For patients with two- to three-level involvement, anterior cervical decompression with bone fusion provides good functional result in proper selection of cases. We also identified some prognostic factors (male sex, symptoms less than 1 year, and age less than 70 years in predicting a favourable outcome of anterior spinal fusion for CCM.

  19. Prefrontal cortex and neural mechanisms of executive function.

    Science.gov (United States)

    Funahashi, Shintaro; Andreau, Jorge Mario

    2013-12-01

    Executive function is a product of the coordinated operation of multiple neural systems and an essential prerequisite for a variety of cognitive functions. The prefrontal cortex is known to be a key structure for the performance of executive functions. To accomplish the coordinated operations of multiple neural systems, the prefrontal cortex must monitor the activities in other cortical and subcortical structures and control and supervise their operations by sending command signals, which is called top-down signaling. Although neurophysiological and neuroimaging studies have provided evidence that the prefrontal cortex sends top-down signals to the posterior cortices to control information processing, the neural correlate of these top-down signals is not yet known. Through use of the paired association task, it has been demonstrated that top-down signals are used to retrieve specific information stored in long-term memory. Therefore, we used a paired association task to examine the neural correlates of top-down signals in the prefrontal cortex. The preliminary results indicate that 32% of visual neurons exhibit pair-selectivity, which is similar to the characteristics of pair-coding activities in temporal neurons. The latency of visual responses in prefrontal neurons was longer than bottom-up signals but faster than top-down signals in inferior temporal neurons. These results suggest that pair-selective visual responses may be top-down signals that the prefrontal cortex provides to the temporal cortex, although further studies are needed to elucidate the neural correlates of top-down signals and their characteristics to understand the neural mechanism of executive control by the prefrontal cortex.

  20. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  1. Anterior cruciate ligament - updating article.

    Science.gov (United States)

    Luzo, Marcus Vinicius Malheiros; Franciozi, Carlos Eduardo da Silveira; Rezende, Fernando Cury; Gracitelli, Guilherme Conforto; Debieux, Pedro; Cohen, Moisés

    2016-01-01

    This updating article on the anterior cruciate ligament (ACL) has the aim of addressing some of the most interesting current topics in this field. Within this stratified approach, it contains the following sections: ACL remnant; anterolateral ligament and combined intra and extra-articular reconstruction; fixation devices; and ACL femoral tunnel creation techniques.

  2. Anterior cruciate ligament - updating article

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Malheiros Luzo

    2016-08-01

    Full Text Available ABSTRACT This updating article on the anterior cruciate ligament (ACL has the aim of addressing some of the most interesting current topics in this field. Within this stratified approach, it contains the following sections: ACL remnant; anterolateral ligament and combined intra and extra-articular reconstruction; fixation devices; and ACL femoral tunnel creation techniques.

  3. Válvula de uretra anterior Anterior urethral valves

    Directory of Open Access Journals (Sweden)

    Silvio Tucci Jr.

    2003-02-01

    Full Text Available Objetivo: apresentar os aspectos clínicos, diagnósticos e terapêuticos de pacientes portadores de válvula da uretra anterior. Descrição: em dois neonatos, o diagnóstico presuntivo de patologia obstrutiva do trato urinário foi sugerido pela ultra-sonografia realizada no período pré-natal, confirmando-se o diagnóstico de válvula de uretra anterior pela avaliação pós-natal. Os pacientes foram submetidos a tratamento cirúrgico paliativo, com vesicostomia temporária e, posteriormente, definitivo, pela fulguração endoscópica das válvulas. Ambos evoluíram com função renal normal. Comentários: a válvula da uretra anterior é anomalia rara que deve ser considerada em meninos com quadro radiológico pré-natal sugestivo de obstrução infravesical, secundariamente à hipótese mais comum de válvula da uretra posterior. Ressaltamos a utilização da vesicostomia como derivação urinária temporária nestes casos, prevenindo potenciais complicações pela manipulação da uretra do recém-nascido.Objective: to discuss clinical signs, diagnostic tools and therapeutics of anterior urethral valves, an obstructive anomaly of the urinary system in males. Description: signs of urinary tract obstruction were identified on pre-natal ultrasound in two male fetuses and the diagnosis of anterior urethral valves was made through post-natal evaluation. As an initial treatment, vesicostomy was performed in both patients. Later, the valves were fulgurated using an endoscopic procedure. During the follow-up period both patients presented normal renal function. Comments: anterior urethral valves are a rare form of urethral anomaly that must be ruled out in boys with pre-natal ultrasound indicating infravesical obstruction. Vesicostomy used as an initial treatment rather than transurethral fulguration may prevent potential complications that can occur due to the small size of the neonatal urethra.

  4. Neurodynamics of the prefrontal cortex during conditional visuomotor associations.

    Science.gov (United States)

    Loh, Marco; Pasupathy, Anitha; Miller, Earl K; Deco, Gustavo

    2008-03-01

    The prefrontal cortex is believed to be important for cognitive control, working memory, and learning. It is known to play an important role in the learning and execution of conditional visuomotor associations, a cognitive task in which stimuli have to be associated with actions by trial-and-error learning. In our modeling study, we sought to integrate several hypotheses on the function of the prefrontal cortex using a computational model, and compare the results to experimental data. We constructed a module of prefrontal cortex neurons exposed to two different inputs, which we envision to originate from the inferotemporal cortex and the basal ganglia. We found that working memory properties do not describe the dominant dynamics in the prefrontal cortex, but the activation seems to be transient, probably progressing along a pathway from sensory to motor areas. During the presentation of the cue, the dynamics of the prefrontal cortex is bistable, yielding a distinct activation for correct and error trails. We find that a linear change in network parameters relates to the changes in neural activity in consecutive correct trials during learning, which is important evidence for the underlying learning mechanisms.

  5. Organization of prefrontal network activity by respiration-related oscillations

    Science.gov (United States)

    Biskamp, Jonatan; Bartos, Marlene; Sauer, Jonas-Frederic

    2017-01-01

    The medial prefrontal cortex (mPFC) integrates information from cortical and sub-cortical areas and contributes to the planning and initiation of behaviour. A potential mechanism for signal integration in the mPFC lies in the synchronization of neuronal discharges by theta (6–12 Hz) activity patterns. Here we show, using in vivo local field potential (LFP) and single-unit recordings from awake mice, that prominent oscillations in the sub-theta frequency band (1–5 Hz) emerge during awake immobility in the mPFC. These oscillation patterns are distinct from but phase-locked to hippocampal theta activity and occur synchronized with nasal respiration (hence termed prefrontal respiration rhythm [PRR]). PRR activity modulates the amplitude of prefrontal gamma rhythms with greater efficacy than theta oscillations. Furthermore, single-unit discharges of putative pyramidal cells and GABAergic interneurons are entrained by prefrontal PRR and nasal respiration. Our data thus suggest that PRR activity contributes to information processing in the prefrontal neuronal network. PMID:28349959

  6. Prefrontal Hemodynamic Changes Associated with Subjective Sense of Occlusal Discomfort

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available We used functional near-infrared spectroscopy to measure prefrontal brain activity accompanying the physical sensation of oral discomfort that arose when healthy young-adult volunteers performed a grinding motion with mild occlusal elevation (96 μm. We simultaneously evaluated various forms of occlusal discomfort using the visual analogue scale (VAS and hemodynamic responses to identify the specific prefrontal activity that occurs with increased occlusal discomfort. The Oxy-Hb responses of selected channels in the bilateral frontopolar and dorsolateral prefrontal cortices increased in participants who reported increased severity of occlusal discomfort, while they decreased in those who reported no change or decreased occlusal discomfort during grinding. Moreover, the cumulative values of Oxy-Hb response in some of these channels were statistically significant predictive factors for the VAS scores. A generalized linear model analysis of Oxy-Hb signals in a group of participants who reported increased discomfort further indicated significant cerebral activation in the right frontopolar and dorsolateral prefrontal cortices that overlapped with the results of correlation analyses. Our results suggest that the increased hemodynamic responses in the prefrontal area reflect the top-down control of attention and/or self-regulation against the uncomfortable somatosensory input, which could be a possible marker to detect the subjective sense of occlusal discomfort.

  7. Prefrontal Dopaminergic Mechanisms of Extinction in Adolescence Compared to Adulthood in Rats

    Science.gov (United States)

    Zbukvic, Isabel C.; Park, Chun Hui J.; Ganella, Despina E.; Lawrence, Andrew J.; Kim, Jee Hyun

    2017-01-01

    Adolescents with anxiety disorders attain poorer outcomes following extinction-based treatment compared to adults. Extinction deficit during adolescence has been identified to involve immaturity in the medial prefrontal cortex (mPFC). Findings from adult rodents suggest extinction involves dopamine signaling in the mPFC. This system changes dramatically during adolescence, but its role in adolescent extinction is unknown. Therefore, we investigated the role of prefrontal dopamine in extinction using Pavlovian fear conditioning in adolescent and adult rats. Using quantitative PCR (qPCR) analyses, we measured changes in dopamine receptor gene expression in the mPFC before and after extinction. We then enhanced dopamine 1 receptor (D1R) or dopamine 2 receptor (D2R) signaling in the infralimbic cortex (IL) of the mPFC using agonists at the time of extinction. Adolescent rats displayed a deficit in extinction retention compared to adults. Extinction induced a reduction in D1R compared to D2R gene expression in adolescent rats, whereas an increase of D1R compared to D2R gene expression was observed in adult rats. Acutely enhancing IL D1R signaling using SKF-81297 had no effect on extinction at either age. In contrast, acutely enhancing IL D2R signaling with quinpirole significantly enhanced long-term extinction in adolescents, and impaired within-session extinction in adults. Our results suggest a dissociated role for prefrontal dopamine in fear extinction during adolescence compared to adulthood. Findings highlight the dopamine system as a potential pharmacological target to improve extinction-based treatments for adolescents. PMID:28275342

  8. Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental Octodon degus.

    Science.gov (United States)

    Seidel, K; Poeggel, G; Holetschka, R; Helmeke, C; Braun, K

    2011-11-01

    Although the critical role of maternal care on the development of brain and behaviour of the offspring has been extensively studied, knowledge about the importance of paternal care is comparatively scarce. In biparental species, paternal care significantly contributes to a stimulating socio-emotional family environment, which most likely also includes protection from stressful events. In the biparental caviomorph rodent Octodon degus, we analysed the impact of paternal care on the development of neurones in prefrontal-limbic brain regions, which express corticotrophin-releasing factor (CRF). CRF is a polypeptidergic hormone that is expressed and released by a neuronal subpopulation in the brain, and which not only is essential for regulating stress and emotionality, but also is critically involved in cognitive functions. At weaning age [postnatal day (P)21], paternal deprivation resulted in an elevated density of CRF-containing neurones in the orbitofrontal cortex and in the basolateral amygdala of male degus, whereas a reduced density of CRF-expressing neurones was measured in the dentate gyrus and stratum pyramidale of the hippocampal CA1 region at this age. With the exception of the CA1 region, the deprivation-induced changes were no longer evident in adulthood (P90), which suggests a transient change that, in later life, might be normalised by other socio-emotional experience. The central amygdala, characterised by dense clusters of CRF-immunopositive neuropil, and the precentral medial, anterior cingulate, infralimbic and prelimbic cortices, were not affected by paternal deprivation. Taken together, this is the first evidence that paternal care interferes with the developmental expression pattern of CRF-expressing interneurones in an age- and region-specific manner.

  9. Lipopolysaccharide increases degradation of central monoamines: an in vivo microdialysis study in the nucleus accumbens and medial prefrontal cortex of mice.

    Science.gov (United States)

    van Heesch, Floor; Prins, Jolanda; Konsman, Jan Pieter; Korte-Bouws, Gerdien A H; Westphal, Koen G C; Rybka, Joanna; Olivier, Berend; Kraneveld, Aletta D; Korte, S Mechiel

    2014-02-15

    Peripheral administration of lipopolysaccharide (LPS) in rodents induces anhedonia, i.e. the inability to experience pleasure. Recently, we reported that serotonin transporter (SERT) function is required for LPS-induced anhedonia. Less is known about the effect of LPS on the biological activity of dopamine transporters (DAT) and norepinephrine transporters (NET). Therefore, in vivo microdialysis was performed in the nucleus accumbens and medial prefrontal cortex of C57BL6/J mice exposed to saline or LPS (133 µg/kg i.p.). To investigate the possible involvement of different monoamine transporters, the triple reuptake inhibitor DOV 216,303 or saline was i.p. injected 30 min before the saline/LPS injection. The dose of LPS, shown to decrease responding for brain stimulation reward in mice, significantly increased extracellular levels of monoamine metabolites (5-HIAA, DOPAC and HVA) in the nucleus accumbens and medial prefrontal cortex. Remarkably, DOV 216,303 abolished LPS-induced DOPAC and HVA formation in the nucleus accumbens, suggesting that LPS increases DAT activity in this brain area. DOV 216,303 also inhibited LPS-induced DOPAC and HVA formation in the medial prefrontal cortex. Since DAT density is very low in this brain structure, reuptake of DA predominantly takes place via NET, suggesting that LPS increases DAT and NET activity in the medial prefrontal cortex. Furthermore, DOV 216,303 pretreatment prevented LPS-induced 5-HIAA formation only in the medial prefrontal cortex, indicating that LPS increases prefrontal SERT activity. In conclusion, the present findings suggest that peripheral LPS increases DAT activity in the nucleus accumbens and increases NET and SERT activity in the medial prefrontal cortex of mice.

  10. Experimental Study on the Prevention of Anterior Segment Ischemia by Preservation of Anterior Ciliary Vessels

    Institute of Scientific and Technical Information of China (English)

    Yanna Li; Guanghuan Mai; Zhijian Wang; Xinping Yu; Huanyun Yu; Yan Guo; Xiaoming Lin; Daming Deng; Ying Kang

    2003-01-01

    Purpose: To observe the effect of preserving anterior ciliary vessels (ACVs) on anteriorsegments of rabbit eyes undergoing tenotomy of extraocular muscles.Methods: Thirty-two adult New Zealand white rabbits were divided into four groups.Same procedures were done in both eyes in each group except that left eyes underwentpreservation of ACVs. In the first group medial and lateral recti, in the second group,superior and inferior recti, in the third group, medial, lateral and superior or inferior rectiand in the fourth group, all four recti, underwent tenotomy. Slit-lamp examination,intraocular pressure (IOP) measurement, total protein and lactic acid quantification inaqueous humor were done in all eyes pre- and post-operatively. By four weeks afteroperation, the eyes were enucleated for histological examination and electron microscopy.All data were analyzed using SPSS version 10.Results: In the left eyes of both group 1 and group 2, no inflammatory response wasobserved. In the left eyes of group 3 and 4, we observed mild inflammatory response withslit-lamp examination, which disappeared in one wk. However, we did not findsignificant changes in IOP, total protein and lactic acid of aqueous humor, histology andelectron microscopic examination in these groups. In the right eyes in group 2, 3 and 4,we observed moderate to severe inflammatory changes, a few even developed anteriorsegment ischemia, appeared as decreased IOP, increased total protein and lactic acid inaqueous humor, along with pathological and electron-microscopic changes.Conclusion: Simultaneous tenotomy of three or four recti or two vertical recti on one eyemay decrease anterior segment blood flow even lead to ischemia. ACVs preservation mayprotect the blood circulation in anterior segment. Our study suggests that ACVspreservation in strabismus surgeries especially those involving multi-recti tenotomies mayprevent potential anterior segment ischemia.

  11. The role of prefrontal cortex during postural control in Parkinsonian syndromes a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Mahoney, Jeannette R; Holtzer, Roee; Izzetoglu, Meltem; Zemon, Vance; Verghese, Joe; Allali, Gilles

    2016-02-15

    Postural instability represents a main source of disability in Parkinsonian syndromes and its pathophysiology is poorly understood. Indirect probes (i.e., mental imagery) of brain involvement support the role of prefrontal cortex as a key cortical region for postural control in older adults with and without Parkinsonian syndromes. Using functional near infrared spectroscopy (fNIRs) as a direct online cortical probe, this study aimed to compare neural activation patterns in prefrontal cortex, postural stability, and their respective interactions, in (1) patients with Parkinsonian syndromes; (2) those with mild parkinsonian signs; (3) and healthy older adults. Among 269 non-demented older adults (76.41 ± 6.70 years, 56% women), 26 individuals presented with Parkinsonian syndromes (Unified Parkinson's disease rating scale (UPDRS): 11.08 ± 3.60), 117 had mild parkinsonian signs (UPDRS: 3.21 ± 2.49), and 126 individuals were included as a healthy control group. Participants were asked to stand upright and count silently for ten seconds while changes in oxygenated hemoglobin levels over prefrontal cortex were measured using fNIRs. We simultaneously evaluated postural stability with center of pressure velocity data recorded on an instrumented walkway. Compared to healthy controls and patients with mild parkinsonian signs, patients with Parkinsonian syndromes demonstrated significantly higher prefrontal oxygenation levels to maintain postural stability. The pattern of brain activation and postural control of participants with mild parkinsonian signs were similar to that of normal controls. These findings highlight the online role of the prefrontal cortex in postural control in patients with Parkinsonian syndromes and afford the opportunity to improve therapeutic options for postural instability.

  12. Complex aesthetic treatment on anterior maxillary teeth with malposition

    Directory of Open Access Journals (Sweden)

    Febriastuti Febriastuti

    2008-12-01

    Full Text Available Background: Complex aesthetic treatment on anterior teeth involves more than one caries tooth with malformed shape and malposition. Purpose: The purpose of this paper is to find the alternative treatment for anterior maxillary teeth with malposition. Case: In this case, a 25 year-old man with a peg shaped teeth and caries on several teeth and malposition can be treated with complex aesthetic treatment. Case management: Endodontic pulpectomy treatment on anterior maxillary teeth and post construction with splint porcelain fused to metal crowns on 11, 12, and 21, 22 to correct the shape and position into normal position. Conclusion: Malformed and malpositioned teeth with caries can be treated with complex aesthetic treatment.

  13. Dissociable regulation of instrumental action within mouse prefrontal cortex.

    Science.gov (United States)

    Gourley, Shannon L; Lee, Anni S; Howell, Jessica L; Pittenger, Christopher; Taylor, Jane R

    2010-11-01

    Evaluation of the behavioral 'costs', such as effort expenditure relative to the benefits of obtaining reward, is a major determinant of goal-directed action. Neuroimaging evidence suggests that the human medial orbitofrontal cortex (mOFC) is involved in this calculation and thereby guides goal-directed and choice behavior, but this region's functional significance in rodents is unknown despite extensive work characterizing the role of the lateral OFC in cue-related response inhibition processes. We first tested mice with mOFC lesions in an instrumental reversal task lacking discrete cues signaling reinforcement; here, animals were required to shift responding based on the location of the reinforced aperture within the chamber. Mice with mOFC lesions acquired the reversal but failed to inhibit responding on the previously reinforced aperture, while mice with prelimbic prefrontal cortex lesions were unaffected. When tested on a progressive ratio schedule of reinforcement, mice with prelimbic cortical lesions were unable to maintain responding, resulting in declining response levels. Mice with mOFC lesions, by contrast, escalated responding. Neither lesion affected sensitivity to satiety-specific outcome devaluation or non-reinforcement (i.e. extinction), and neither had effects when placed after animals were trained on a progressive ratio response schedule. Lesions of the ventral hippocampus, which projects to the mOFC, resulted in similar response patterns, while lateral OFC and dorsal hippocampus lesions resulted in response acquisition, though not inhibition, deficits in an instrumental reversal. Our findings thus selectively implicate the rodent mOFC in braking reinforced goal-directed action when reinforcement requires the acquisition of novel response contingencies.

  14. Sandwich-like Reconstruction of Anterior Skull Base Defects

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-min; Wang De-hui

    2001-01-01

    Objective: To evaluate the safety and efficacy of new modality of anterior skull base repair,namely sandwich-like reconstruction of anterior skull base defects. Methods: A retrospective analysis of patients who underwent transcranial or transcranial-facial resections of malignant or benign aggressive tumors involving the anterior skull base was conducted in our department. We used the sandwich-like reconstruction, using pedicled pericranial flap, frontal muscle flap and free abdominal adipose tissue between them, to separate of cranial cavity and aerodigest tract and keep the frontal lobes in place following resections of anterior skull base tumors. Results: From October, 1984 to October, 1998, 116 patients underwent transcranial or transcranialfacial approach for the resection of malignant or aggressive benign tumor, and sandwich-like repairs were performed for the anterior skull base defect. 54 (46.6 % ) patients had previous operation, with a maximum of 5 surgeries. The average age of patients was 35.9 years old, ranging form 6 to 73 years old. Forty-eight (41.4%)patients had malignant neoplasmas, and sixty-eight (58.6%) patients had benign aggressive tumors. In our series, with the maximal follow-ups for as long as 14 years, NO one had early failure of the one-stage reconstruction. CSF fluid leakage was not encountered, nor was ascending bacterial meningitis observed. No immediate or delayed prolapse of dura or frontal lobes was observed. Conclusion: We conclude that the sandwich-like reconstruction, using pericranial flap, frontal muscle flap and free abdominal adipose between them, is an extremely safe and effective procedure for the repair of skull base defect, even when tumor extensively involves anterior skull base.

  15. Sandwich-like Reconstruction of Anterior Skull Base Defects

    Institute of Scientific and Technical Information of China (English)

    WangZheng-min,MD; WangDe-hui,MD

    2001-01-01

    Objective:To evaluate the safety and efficacy of new modality of anterior skull base repair,namely sandwich-like reconstruction of anterior skull base defects. Methods : A retrospective analysis of patients who underwent wanscranial or wanscranial-facial resections of malignant or benign aggressive tumors involving the anterior skull base was conducted in our department. We used the sandwich-like reconstruction, using pedicled pericranial flap, frontal muscle flap and free abdominal adipose tissue between them, to separate of cranial cavity and aerodigest tract and keep the frontal lobes in place following resections of anterior skull base tumors. Results: From October, 1984 to October, 1998, 116 patients underwent tmnscranial or tmnscranial-facial approach for the resection of malignant or aggressive benign tumor, and sandwich-like repairs were performed for the anterior skull base defect.54 (46.6%) patients had previous operation, with a maximum of 5 surgeries. The average age of patients was 35.9 years old, ranging form 6 to 73 years old. Forty-eight (41.4%) patients had malignant neoplasmas, and sixty-eight (58.6%) patients had benign aggressive tumors. In our series, with the maximal follow-ups for as long as 14 years, NO one had early failure of the one-stage reconstruction. CSF fluid leakage was not encountered, nor was ascending bacterial meningitis observed. No immediate or delayed prolapse of dura or frontal lobes was observed. Conclusion: We conclude that the sandwich-like reconstruction, using pericranial flap, frontal muscle flap and free abdominal adipose between them, is an extremely safe and effective procedure for the repair of skull base defect, even when tumor extensively involves anterior skull base.

  16. Dopamine D1 Receptors Regulate Protein Synthesis-Dependent Long-Term Recognition Memory via Extracellular Signal-Regulated Kinase 1/2 in the Prefrontal Cortex

    Science.gov (United States)

    Nagai, Taku; Takuma, Kazuhiro; Kamei, Hiroyuki; Ito, Yukio; Nakamichi, Noritaka; Ibi, Daisuke; Nakanishi, Yutaka; Murai, Masaaki; Mizoguchi, Hiroyuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2007-01-01

    Several lines of evidence suggest that extracellular signal-regulated kinase1/2 (ERK1/2) and dopaminergic system is involved in learning and memory. However, it remains to be determined if the dopaminergic system and ERK1/2 pathway contribute to cognitive function in the prefrontal cortex (PFC). The amount of phosphorylated ERK1/2 was increased in…

  17. Oncologic Outcomes after Anterior Exenteration for Muscle Invasive Bladder Cancer in Women

    DEFF Research Database (Denmark)

    Gregg, Justin R; Emeruwa, Curran; Wong, Johnson;

    2016-01-01

    PURPOSE: We investigated oncologic and urinary outcomes after anterior exenteration for urothelial cell carcinoma in females, identifying tumor characteristics associated with female pelvic organ involvement. We hypothesized that a lack of trigonal or bladder floor tumor, intraoperative palpable ...

  18. Fenestration of the anterior cerebral artery

    Energy Technology Data Exchange (ETDEWEB)

    Ito, J.; Washiyama, K.; Hong, K.C.; Ibuchi, Y.

    1981-08-01

    Three cases of angiographically demonstrated fenestration of the anterior cerebral artery are reported. Fenestration occurred at the medial half of the horizontal segment of the anterior cerebral artery in all cases. Its embryology and clinical significance are briefly discussed, and the anatomical and radiological literature on fenestration of the anterior cerebral artery is reviewed.

  19. 38 CFR 3.379 - Anterior poliomyelitis.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Anterior poliomyelitis. 3... Specific Diseases § 3.379 Anterior poliomyelitis. If the first manifestations of acute anterior poliomyelitis present themselves in a veteran within 35 days of termination of active military service, it...

  20. Epidermoid cyst in Anterior, Middle

    Directory of Open Access Journals (Sweden)

    Kankane Vivek Kumar

    2016-09-01

    Full Text Available Epidermoid cysts are benign slow growing more often extra-axial tumors that insinuate between brain structures, we present the clinical, imaging, and pathological findings in 35 years old female patients with atypical epidermoid cysts which was situated anterior, middle & posterior cranial fossa. NCCT head revealed hypodense lesion over right temporal and perisylvian region with extension in prepontine cistern with mass effect & midline shift and MRI findings revealed a non-enhancing heterogeneous signal intensity cystic lesion in right frontal & temporal region extending into prepontine cistern with restricted diffusion. Patient was detoriated in night of same day of admission, emergency Fronto-temporal craniotomy with anterior peterousectomy and subtotal resection was done. The histological examination confirms the epidermoid cyst. The timing of ectodermal tissue sequestration during fetal development may account for the occurrence of atypical epidermoid cysts.

  1. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia.

    Science.gov (United States)

    Radhu, Natasha; Garcia Dominguez, Luis; Farzan, Faranak; Richter, Margaret A; Semeralul, Mawahib O; Chen, Robert; Fitzgerald, Paul B; Daskalakis, Zafiris J

    2015-02-01

    Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). There were no significant differences in long-interval cortical inhibition across all three groups in the motor cortex. These results demonstrate that long-interval cortical inhibition deficits in the

  2. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD: A functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Fenghua Tian

    2014-01-01

    Full Text Available Neuroimaging studies of post-traumatic stress disorder (PTSD-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.

  3. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study.

    Science.gov (United States)

    Tian, Fenghua; Yennu, Amarnath; Smith-Osborne, Alexa; Gonzalez-Lima, F; North, Carol S; Liu, Hanli

    2014-01-01

    Neuroimaging studies of post-traumatic stress disorder (PTSD)-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS) was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related) forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval) of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.

  4. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex.

  5. Prefrontal dysfunction and a monkey model of schizophrenia.

    Science.gov (United States)

    Mao, Ping; Cui, Ding; Zhao, Xu-Dong; Ma, Yuan-Ye

    2015-04-01

    The prefrontal cortex is implicated in cognitive functioning and schizophrenia. Prefrontal dysfunction is closely associated with the symptoms of schizophrenia. In addition to the features typical of schizophrenia, patients also present with aspects of cognitive disorders. Based on these relationships, a monkey model mimicking the cognitive symptoms of schizophrenia has been made using treatment with the non-specific competitive N-methyl-D-aspartate receptor antagonist, phencyclidine. The symptoms are ameliorated by atypical antipsychotic drugs such as clozapine. The beneficial effects of clozapine on behavioral impairment might be a specific indicator of schizophrenia-related cognitive impairment.

  6. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex

    Science.gov (United States)

    Ianov, Lara; Rani, Asha; Beas, Blanca S.; Kumar, Ashok; Foster, Thomas C.

    2016-01-01

    Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function. PMID:27242522

  7. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation.

    Directory of Open Access Journals (Sweden)

    Vadim Zotev

    Full Text Available We observed in a previous study (PLoS ONE 6:e24522 that the self-regulation of amygdala activity via real-time fMRI neurofeedback (rtfMRI-nf with positive emotion induction was associated, in healthy participants, with an enhancement in the functional connectivity between the left amygdala (LA and six regions of the prefrontal cortex. These regions included the left rostral anterior cingulate cortex (rACC, bilateral dorsomedial prefrontal cortex (DMPFC, bilateral superior frontal gyrus (SFG, and right medial frontopolar cortex (MFPC. Together with the LA, these six prefrontal regions thus formed the functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector autoregression (SVAR analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to the analysis, the rtfMRI-nf training leads to a significant enhancement in the time-lagged effect of the left rACC on the LA, potentially consistent with the ipsilateral distribution of the monosynaptic projections between these regions. The training is also accompanied by significant increases in the instantaneous (contemporaneous effects of the left rACC on four other regions - the bilateral DMPFC, the right MFPC, and the left SFG. The instantaneous effects of the LA on the bilateral DMPFC are also significantly enhanced. Our results are consistent with a broad literature supporting the role of the rACC in emotion processing and regulation. Our exploratory analysis provides, for the first time, insights into the causal relationships within the network of regions engaged during the rtfMRI-nf procedure targeting the amygdala. It suggests that the rACC may constitute a promising target for rtfMRI-nf training along with the amygdala in patients with affective disorders, particularly posttraumatic stress

  8. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation.

    Science.gov (United States)

    Zotev, Vadim; Phillips, Raquel; Young, Kymberly D; Drevets, Wayne C; Bodurka, Jerzy

    2013-01-01

    We observed in a previous study (PLoS ONE 6:e24522) that the self-regulation of amygdala activity via real-time fMRI neurofeedback (rtfMRI-nf) with positive emotion induction was associated, in healthy participants, with an enhancement in the functional connectivity between the left amygdala (LA) and six regions of the prefrontal cortex. These regions included the left rostral anterior cingulate cortex (rACC), bilateral dorsomedial prefrontal cortex (DMPFC), bilateral superior frontal gyrus (SFG), and right medial frontopolar cortex (MFPC). Together with the LA, these six prefrontal regions thus formed the functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector autoregression (SVAR) analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to the analysis, the rtfMRI-nf training leads to a significant enhancement in the time-lagged effect of the left rACC on the LA, potentially consistent with the ipsilateral distribution of the monosynaptic projections between these regions. The training is also accompanied by significant increases in the instantaneous (contemporaneous) effects of the left rACC on four other regions - the bilateral DMPFC, the right MFPC, and the left SFG. The instantaneous effects of the LA on the bilateral DMPFC are also significantly enhanced. Our results are consistent with a broad literature supporting the role of the rACC in emotion processing and regulation. Our exploratory analysis provides, for the first time, insights into the causal relationships within the network of regions engaged during the rtfMRI-nf procedure targeting the amygdala. It suggests that the rACC may constitute a promising target for rtfMRI-nf training along with the amygdala in patients with affective disorders, particularly posttraumatic stress disorder

  9. Developmental changes of prefrontal activation in humans: a near-infrared spectroscopy study of preschool children and adults.

    Directory of Open Access Journals (Sweden)

    Yuki Kawakubo

    Full Text Available Previous morphological studies indicated that development of the human prefrontal cortex (PFC appears to continue into late adolescence. Although functional brain imaging studies have sought to determine the time course of functional development of the PFC, it is unclear whether the developmental change occurs after adolescence to adulthood and when it achieves a peak because of the narrow or discontinuous range in the participant's age. Moreover, previous functional studies have not focused on the anterior frontal region, that is, the frontopolar regions (BA9/10. Thus, the present study investigated the developmental change in frontopolar PFC activation associated with letter fluency task by using near-infrared spectroscopy (NIRS, in subjects from preschool children to adults. We analyzed the relative concentration of hemoglobin (ΔHb in the prefrontal cortex measured during the activation task in 48 typically-developing children and adolescents and 22 healthy adults. Consistent with prior morphological studies, we found developmental change with age in the children/adolescents. Moreover, the average Δoxy-Hb in adult males was significantly larger than that in child/adolescent males, but was not true for females. These data suggested that functional development of the PFC continues into late adolescence. Although the developmental change of the frontopolar PFC was independent of gender from childhood to adolescence, in adulthood a gender difference was shown.

  10. Verbal fluency as a prefrontal activation probe: a validation study using {sup 99m}Tc-ECD brain SPET

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Department of Psychiatry and Medical Psychology, Ghent University Hospital and Ghent University (Belgium); Brans, B.; Laere, K. van; Versijpt, J.; Dierckx, R. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Lahorte, P. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Laboratory of Subatomic and Radiation Physics, Ghent University (Belgium); Heeringen, K. van [Department of Psychiatry and Medical Psychology, Ghent University Hospital and Ghent University (Belgium)

    2000-12-01

    This study aimed to investigate the feasibility of brain single-photon emission tomography (SPET) in the letter and category fluency paradigm of the Controlled Oral Word Association (COWA) test in healthy volunteers. Two groups each comprising ten right-handed healthy volunteers were injected twice with 370 MBq technetium-99m ethyl cysteinate dimer following a split-dose paradigm (resting and activation condition). Statistical parametric mapping (SPM96) was used to determine voxelwise significant changes. The letter fluency and the category fluency activation paradigm had a differential brain activation pattern. The posterior part of the left inferior prefrontal cortex (LIPC) was activated in both paradigms, with the category fluency task having an extra activation in the anterior LIPC. In the category fluency task, but not the letter fluency task, an activation in the right inferior prefrontal cortex was found. These findings confirm to a large extent the results of previous functional magnetic resonance imaging and positron emission tomography studies in semantic and phonological activation paradigms. The choice and validity of various methodological characteristics of the experimental design leading to these results are critically discussed. It is concluded that brain SPET activation with the letter fluency and category fluency paradigm under standard neuropsychological conditions in healthy volunteers is both technically and practically feasible. (orig.)

  11. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress

    Directory of Open Access Journals (Sweden)

    Laura eMusazzi

    2015-04-01

    Full Text Available Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress.Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes -including those consequent to chronic stress- induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.

  12. Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress.

    Science.gov (United States)

    Vecchiarelli, Haley A; Gandhi, Chaitanya P; Gray, J Megan; Morena, Maria; Hassan, Kowther I; Hill, Matthew N

    2016-01-01

    There is now a growing body of literature that indicates that stress can initiate inflammatory processes, both in the periphery and brain; however, the spatiotemporal nature of this response is not well characterized. The aim of this study was to examine the effects of an acute psychological stress on changes in mRNA and protein levels of a wide range of inflammatory mediators across a broad temporal range, in key corticolimbic brain regions involved in the regulation of the stress response (amygdala, hippocampus, hypothalamus, medial prefrontal cortex). mRNA levels of inflammatory mediators were analyzed immediately following 30min or 120min of acute restraint stress and protein levels were examined 0h through 24h post-termination of 120min of acute restraint stress using both multiplex and ELISA methods. Our data demonstrate, for the first time, that exposure to acute psychological stress results in an increase in the protein level of several inflammatory mediators in the amygdala while concomitantly producing a decrease in the protein level of multiple inflammatory mediators within the medial prefrontal cortex. This pattern of changes seemed largely restricted to the amygdala and medial prefrontal cortex, with stress producing few changes in the mRNA or protein levels of inflammatory mediators within the hippocampus or hypothalamus. Consistent with previous research, stress resulted in a general elevation in multiple inflammatory mediators within the circulation. These data indicate that neuroinflammatory responses to stress do not appear to be generalized across brain structures and exhibit a high degree of spatiotemporal specificity. Given the impact of inflammatory signaling on neural excitability and emotional behavior, these data may provide a platform with which to explore the importance of inflammatory signaling within the prefrontocortical-amygdala circuit in the regulation of the neurobehavioral responses to stress.

  13. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations.

  14. File list: NoD.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Prefrontal_Cortex hg19 No description Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  15. File list: NoD.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Prefrontal_Cortex hg19 No description Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  16. File list: ALL.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Prefrontal_Cortex hg19 All antigens Neural Prefrontal Cortex SRX11...3,SRX733655,SRX733653,SRX189396,SRX1029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  17. File list: DNS.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Prefrontal_Cortex hg19 DNase-seq Neural Prefrontal Cortex SRX18939...6 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  18. File list: Unc.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Prefrontal_Cortex hg19 Unclassified Neural Prefrontal Cortex SRX11...77279,SRX733655,SRX1177281,SRX1177280,SRX733654,SRX733653 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  19. File list: NoD.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Prefrontal_Cortex hg19 No description Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  20. File list: Oth.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Prefrontal_Cortex hg19 TFs and others Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  1. File list: ALL.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Prefrontal_Cortex hg19 All antigens Neural Prefrontal Cortex SRX11...53,SRX019342,SRX019341,SRX019332,SRX189396 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  2. File list: DNS.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Prefrontal_Cortex hg19 DNase-seq Neural Prefrontal Cortex SRX18939...6 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  3. File list: InP.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Prefrontal_Cortex hg19 Input control Neural Prefrontal Cortex SRX1...029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  4. File list: ALL.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Prefrontal_Cortex hg19 All antigens Neural Prefrontal Cortex SRX11...5,SRX733653,SRX1029465,SRX019341,SRX189396 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  5. File list: Oth.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Prefrontal_Cortex hg19 TFs and others Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  6. File list: DNS.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Prefrontal_Cortex hg19 DNase-seq Neural Prefrontal Cortex SRX18939...6 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  7. File list: His.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Prefrontal_Cortex hg19 Histone Neural Prefrontal Cortex SRX1029473...332,SRX019343,SRX1029465,SRX019341 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  8. File list: NoD.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Prefrontal_Cortex hg19 No description Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  9. File list: Unc.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Prefrontal_Cortex hg19 Unclassified Neural Prefrontal Cortex SRX11...77279,SRX1177281,SRX1177280,SRX733654,SRX733655,SRX733653 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  10. File list: Oth.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Prefrontal_Cortex hg19 TFs and others Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  11. File list: ALL.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Prefrontal_Cortex hg19 All antigens Neural Prefrontal Cortex SRX11...1,SRX019342,SRX019332,SRX189396,SRX1029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  12. File list: Oth.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Prefrontal_Cortex hg19 TFs and others Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  13. File list: Unc.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Prefrontal_Cortex hg19 Unclassified Neural Prefrontal Cortex SRX11...77279,SRX1177281,SRX1177280,SRX733654,SRX733655,SRX733653 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  14. File list: Unc.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Prefrontal_Cortex hg19 Unclassified Neural Prefrontal Cortex SRX11...77279,SRX1177281,SRX1177280,SRX733654,SRX733655,SRX733653 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  15. File list: InP.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Prefrontal_Cortex hg19 Input control Neural Prefrontal Cortex SRX1...029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  16. File list: InP.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Prefrontal_Cortex hg19 Input control Neural Prefrontal Cortex SRX1...029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  17. File list: DNS.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Prefrontal_Cortex hg19 DNase-seq Neural Prefrontal Cortex SRX18939...6 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  18. File list: His.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Prefrontal_Cortex hg19 Histone Neural Prefrontal Cortex SRX019343,...9333,SRX019342,SRX019341,SRX019332 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  19. The impact of social disparity on prefrontal function in childhood.

    Directory of Open Access Journals (Sweden)

    Margaret A Sheridan

    Full Text Available The prefrontal cortex (PFC develops from birth through late adolescence. This extended developmental trajectory provides many opportunities for experience to shape the structure and function of the PFC. To date, a few studies have reported links between parental socioeconomic status (SES and prefrontal function in childhood, raising the possibility that aspects of environment associated with SES impact prefrontal function. Considering that behavioral measures of prefrontal function are associated with learning across multiple domains, this is an important area of investigation. In this study, we used fMRI to replicate previous findings, demonstrating an association between parental SES and PFC function during childhood. In addition, we present two hypothetical mechanisms by which SES could come to affect PFC function of this association: language environment and stress reactivity. We measured language use in the home environment and change in salivary cortisol before and after fMRI scanning. Complexity of family language, but not the child's own language use, was associated with both parental SES and PFC activation. Change in salivary cortisol was also associated with both SES and PFC activation. These observed associations emphasize the importance of both enrichment and adversity-reduction interventions in creating good developmental environments for all children.

  20. Prefrontal cortex and social cognition in mouse and man

    Directory of Open Access Journals (Sweden)

    Lucy King Bicks

    2015-11-01

    Full Text Available Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD and Schizophrenia (SCZ. Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain

  1. Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia

    NARCIS (Netherlands)

    Bonilha, Leonardo; de Vries, Paulien M.; Hurd, Mark W.; Rorden, Chris; Morgan, Paul S.; Besenski, Nada; Bergmann, Kenneth J.; Hinson, Vanessa K.

    2009-01-01

    There are quantifiable abnormalities in water diffusion properties of the white matter in thalamic and prefrontal areas in patients with idiopathic dystonia (ID). However, it is unclear which pathways are disrupted in these patients. Using probabilistic tractography of high resolution DTI, we recons

  2. The role of the anterior insula in adolescent decision making.

    Science.gov (United States)

    Smith, Ashley R; Steinberg, Laurence; Chein, Jason

    2014-01-01

    Much recent research on adolescent decision making has sought to characterize the neurobiological mechanisms that underlie the proclivity of adolescents to engage in risky behavior. One class of influential neurodevelopmental models focuses on the asynchronous development of neural systems, particularly those responsible for self-regulation and reward seeking. While this work has largely focused on the development of prefrontal (self-regulation) and striatal (reward processing) circuitry, the present article explores the significance of a different region, the anterior insular cortex (AIC), in adolescent decision making. Although the AIC is known for its role as a cognitive-emotional hub, and is included in some models of adult self-regulation and reward seeking, the importance of the AIC and its maturation in adolescent risk taking has not been extensively explored. In this article we discuss evidence on AIC development, and consider how age-related differences in AIC engagement may contribute to heightened risk taking during adolescence. Based on this review, we propose a model in which the engagement of adolescents in risk taking may be linked in part to the maturation of the AIC and its connectivity to the broader brain networks in which it participates.

  3. Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor.

    Science.gov (United States)

    Kern, Simone; Oakes, Terrence R; Stone, Charles K; McAuliff, Emelia M; Kirschbaum, Clemens; Davidson, Richard J

    2008-05-01

    The prefrontal cortex (PFC) has been well known for its role in higher order cognition, affect regulation and social reasoning. Although the precise underpinnings have not been sufficiently described, increasing evidence also supports a prefrontal involvement in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis. Here we investigate the PFC's role in HPA axis regulation during a psychosocial stress exposure in 14 healthy humans. Regional brain metabolism was assessed using positron emission tomography (PET) and injection of fluoro-18-deoxyglucose (FDG). Depending on the exact location within the PFC, increased glucose metabolic rate was associated with lower or higher salivary cortisol concentration in response to a psychosocial stress condition. Metabolic glucose rate in the rostral medial PFC (mPFC) (Brodman area (BA) 9 and BA 10) was negatively associated with stress-induced salivary cortisol increases. Furthermore, metabolic glucose rate in these regions was inversely coupled with changes in glucose metabolic rate in other areas, known to be involved in HPA axis regulation such as the amygdala/hippocampal region. In contrast, metabolic glucose rate in areas more lateral to the mPFC was positively associated with saliva cortisol. Subjective ratings on task stressfulness, task controllability and self-reported dispositional mood states also showed positive and negative associations with the glucose metabolic rate in prefrontal regions. These findings suggest that in humans, the PFC is activated in response to psychosocial stress and distinct prefrontal metabolic glucose patterns are linked to endocrine stress measures as well as subjective ratings on task stressfulness, controllability as well as dispositional mood states.

  4. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Saba Moghimi

    Full Text Available Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  5. Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: a dynamic causal modeling study on MEG.

    Science.gov (United States)

    Lu, Qing; Li, Haoran; Luo, Guoping; Wang, Yi; Tang, Hao; Han, Li; Yao, Zhijian

    2012-08-15

    Depression is proved to be associated with the dysfunction of prefrontal-limbic neural circuit, especially during emotion processing procedure. Related explorations have been undertaken from the aspects of abnormal activation and functional connectivity. However, the mechanism of the dysfunction of coordinated interactions remains unknown and is still a matter of debate. The present study gave direct evidence of this issue from the aspect of effective connectivity via dynamic causal modeling (DCM). 20 major depressive disorder (MDD) patients and 20 healthy controls were recruited to attend facial emotional stimulus during MEG recording. Bayesian model selection (BMS) was applied to choose the best model. Results under the optimal model showed that top-down endogenous effective connectivity from the dorsolateral prefrontal cortex (DLPFC) to the amygdala was greatly impaired in patients relative to health controls; while bottom-up endogenous effective connectivity from the amygdala to the anterior cingulate cortex (ACC) as well as modulatory effective connectivity from ACC to DLPFC was significantly increased. We inferred the incapable DLPFC failed to exert influence on amygdala, and finally lead to enhanced amygdala-ACC and ACC-DLPFC bottom-up effects. Such impaired prefrontal-amygdala connectivity was supposed to be responsible for the dysfunction in MDD when dealing with emotional stimuli.

  6. Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/hyperactivity disorder: a (1)H magnetic resonance spectroscopy study.

    Science.gov (United States)

    Husarova, Veronika; Bittsansky, Michal; Ondrejka, Igor; Dobrota, Dusan

    2014-04-30

    Attention deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral childhood disorder. Dysfunction of prefrontal neural circuits which are responsible for executive and attentional functions has been previously shown in ADHD. We investigated the neurometablite changes in areas included in dorsolateral prefrontal neural circuits after 2 months of long-acting methylphenidate or atomoxetine medication in children with ADHD who were responders to treatment. Twenty-one ADHD children were examined by single voxel (1)H-magnetic resonance spectroscopy (MRS) before and after 2 months of medication with OROS methylphenidate (n=10) or atomoxetine (n=11). The spectra were taken from the dorsolateral prefrontal cortex (DLPFC, 8ml) and white matter behind the DLPFC (anterior semioval center, 7.5ml), bilaterally. NAA and NAA/Cr (N-acetylaspartate/creatine) decreased in the left DLPFC and Cho/Cr (choline/creatine) increased in the right DLPFC after atomoxetine medication. Glu+Gln and Glu+Gln/Cr (glutamate/glutamine) increased in the left white matter after methylphenidate medication. We hypothesize that atomoxetine could decrease hyperactivation of DLPFC neurons and methylphenidate could lead to increased activation of cortical glutamatergic projections with the consequences of increased tonic dopamine release in the mesocortical system.

  7. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation

    Directory of Open Access Journals (Sweden)

    Josefine Storm Witteveen

    2013-10-01

    Full Text Available Besides its ‘classical’ neurotransmitter function, serotonin (5-HT has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC, an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known however about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT, an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster and a target (mPFC of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT-/-. While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT-/- pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for further research in this largely

  8. Adolescent earthquake survivors' show increased prefrontal cortex activation to masked earthquake images as adults.

    Science.gov (United States)

    Du, Xue; Wei, Dongtao; Ganzel, Barbara L; Kim, Pilyoung; Zhang, Qinglin; Qiu, Jiang

    2015-03-01

    The great Sichuan earthquake in China on May 12, 2008 was a traumatic event to many who live near the earthquake area. However, at present, there are few studies that explore the long-term impact of the adolescent trauma exposure on adults' brain function. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the brain activation evoked by masked trauma-related stimuli (earthquake versus neutral images) in 14 adults who lived near the epicenter of the great Sichuan earthquake when they were adolescents (trauma-exposed group) and 14 adults who lived farther from the epicenter of the earthquake when they were adolescents (control group). Compared with the control group, the trauma-exposed group showed significant elevation of activation in the right anterior cingulate cortex (ACC) and the medial prefrontal cortex (MPFC) in response to masked earthquake-related images. In the trauma-exposed group, the right ACC activation was negatively correlated with the frequency of symptoms of post-traumatic stress disorder (PTSD). These findings differ markedly from the long-term effects of trauma exposure in adults. This suggests that trauma exposure during adolescence may have a unique long-term impact on ACC/MPFC function, top-down modulation of trauma-related information, and subsequent symptoms of PTSD.

  9. Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function.

    Science.gov (United States)

    Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L; Rajah, M Natasha

    2016-06-01

    The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife.

  10. Sensory Deprivation during Early Postnatal Period Alters the Density of Interneurons in the Mouse Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Hiroshi Ueno

    2015-01-01

    Full Text Available Early loss of one sensory system can cause improved function of other sensory systems. However, both the time course and neuronal mechanism of cross-modal plasticity remain elusive. Recent study using functional MRI in humans suggests a role of the prefrontal cortex (PFC in cross-modal plasticity. Since this phenomenon is assumed to be associated with altered GABAergic inhibition in the PFC, we have tested the hypothesis that early postnatal sensory deprivation causes the changes of inhibitory neuronal circuit in different regions of the PFC of the mice. We determined the effects of sensory deprivation from birth to postnatal day 28 (P28 or P58 on the density of parvalbumin (PV, calbindin (CB, and calretinin (CR neurons in the prelimbic, infralimbic, and dorsal anterior cingulate cortices. The density of PV and CB neurons was significantly increased in layer 5/6 (L5/6. Moreover, the density of CR neurons was higher in L2/3 in sensory deprived mice compared to intact mice. These changes were more prominent at P56 than at P28. These results suggest that long-term sensory deprivation causes the changes of intracortical inhibitory networks in the PFC and the changes of inhibitory networks in the PFC may contribute to cross-modal plasticity.

  11. Sensory Deprivation during Early Postnatal Period Alters the Density of Interneurons in the Mouse Prefrontal Cortex.

    Science.gov (United States)

    Ueno, Hiroshi; Suemitsu, Shunsuke; Matsumoto, Yosuke; Okamoto, Motoi

    2015-01-01

    Early loss of one sensory system can cause improved function of other sensory systems. However, both the time course and neuronal mechanism of cross-modal plasticity remain elusive. Recent study using functional MRI in humans suggests a role of the prefrontal cortex (PFC) in cross-modal plasticity. Since this phenomenon is assumed to be associated with altered GABAergic inhibition in the PFC, we have tested the hypothesis that early postnatal sensory deprivation causes the changes of inhibitory neuronal circuit in different regions of the PFC of the mice. We determined the effects of sensory deprivation from birth to postnatal day 28 (P28) or P58 on the density of parvalbumin (PV), calbindin (CB), and calretinin (CR) neurons in the prelimbic, infralimbic, and dorsal anterior cingulate cortices. The density of PV and CB neurons was significantly increased in layer 5/6 (L5/6). Moreover, the density of CR neurons was higher in L2/3 in sensory deprived mice compared to intact mice. These changes were more prominent at P56 than at P28. These results suggest that long-term sensory deprivation causes the changes of intracortical inhibitory networks in the PFC and the changes of inhibitory networks in the PFC may contribute to cross-modal plasticity.

  12. 青少年抑郁症前额叶的磁共振波谱研究%Detections of brain biochemical changes in prefrontal lobes of the adolescents with depression using magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    毛宁; 刘泉源; 王静; 代彩云; 张迪; 王倩; 王滨

    2014-01-01

    Objective To explore the brain biochemical changes in the frontal lobe of adolescents with depression using proton magnetic resonance spectroscopy (1H-MRS). Methods Twenty-four patients and twenty-three healthy subjects matched for age, sex and education level were enrolled in the study. All the subjects underwent multivoxel 1H MRS to measure the bilateral metabolic levels of N-acetylaspartate (NAA), choline (Cho), creatine (Cr) in the prefrontal lobes. Results The NAA/Cr and Cho/Cr ratios in the left dorsolateral prefrontal white matter of the depressive adolescents were significantly lower than those of the healthy subjects [NAA/Cr: 1.67 ± 0.32, t = 3.126, P = 0.004; Cho/Cr: 1.28 ± 0.30, t = 2.362, P = 0.024], and the ratios of NAA/Cr in the right dorsolateral prefrontal white matter of the depressive adolescents was also significantly lower than that of the healthy subjects [NAA/Cr:1.65 ± 0.26, t=2.969, P=0.006]. There was no significant difference in the metabolic ratios in the bilateral anterior cingulate gray matter between the depressive adolescents and the healthy controls. Conclusions Biochemical abnormalities in prefrontal white matter are involved in the pathophysiology of depression. Importantly , these abnormalities are already present early in the course of the disorder.%目的:利用磁共振波谱(1H-MRS )分析研究青少年抑郁症患者前额叶的代谢改变。方法:收集年龄、性别及教育程度匹配的24例青少年抑郁症患者(抑郁症组)和23例健康青少年(对照组),应用多体素1H-MRS 技术测量前额叶白质和灰质内 N-乙酰天门冬氨酸盐( NAA )、胆碱复合物( Cho )、肌酸(Cr)等代谢物的水平。结果:抑郁症组左背外侧前额叶白质 NAA/Cr、Cho/Cr 较对照组显著减低[NAA/Cr:1.67±0.32, t =3.126, P =0.004; Cho/Cr:1.28±0.30, t =2.362, P =0.024],抑郁症组右背外侧前额叶白质 NAA/Cr

  13. Anterior and posterior centers jointly regulate Bombyx embryo body segmentation.

    Science.gov (United States)

    Nakao, Hajime

    2012-11-15

    Insect embryo segmentation is largely divided into long and short germ types. In the long germ type, each segment primordium is represented on a large embryonic rudiment of the blastoderm, and segmental patterning occurs nearly simultaneously in the syncytium. In the short germ type, however, only anterior segments are represented in the small embryonic rudiment, usually located on the egg posterior, and the rest of the segments are added sequentially from the posterior growth zone in a cellular context. The long germ type is thought to have evolved from the short germ type. It is proposed that this transition, which appears to have occurred multiple times over the course of evolution, was realized through the acquisition of a localized anterior instruction center. Here, I examined the early segmentation process in the silkmoth Bombyx mori, a lepidopteran insect, in which the mechanisms of anterior-posterior (AP) axis formation have not been well analyzed. In this insect, both the long germ and short germ features have been reported. The mRNAs for two key genes involved in insect AP axis formation, orthodenticle (Bm-otd) and caudal (Bm-cad), are localized maternally in the germ anlage, where they act as anterior and posterior instruction centers, respectively. RNAi studies indicate that, while Bm-cad affects the formation of all the even skipped (Bm-eve) stripes, there is also anterior Bm-eve stripe formation activity that involves Bm-otd. Thus, there is redundancy in Bm-eve stripe formation activity that must be coordinated. Some genetic interactions, identified either experimentally or hypothetically, are also introduced, which might enable robust AP formation in this organism.

  14. Replacement of Missing Anterior Teeth in a Patient with Temporomandibular Disorder

    Directory of Open Access Journals (Sweden)

    Satheesh B. Haralur

    2014-01-01

    Full Text Available The loss of anterior teeth leads to extreme psychological trauma, along with functional and esthetic debilitations. Healthy anterior teeth play an important role of protecting the posterior teeth during excursive mandibular movement. Loss of anterior teeth induces posterior interference with extended disocclusion time. Posterior disocclusion is critical to remove the harmful force on the teeth temporomandibular joint and eliminate muscle hypertonicity. Occlusal interference is considered as contributing factor to temporomandibular disorder (TMD symptoms. Prosthesis design should eliminate deleterious tooth contacts. Establishing optimum anterior guidance is a key to establishing harmonious functional occlusion in addition to the correction of the esthetic and phonetic disabilities. This case report explains the steps involved in the rehabilitation of the TMD patient with loss of maxillary anterior teeth.

  15. The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation

    Science.gov (United States)

    Anderson, Rachel M.; Cosme, Caitlin V.; Glanz, Ryan M.; Miller, Mary C.; Romig-Martin, Sara A.; LaLumiere, Ryan T.

    2015-01-01

    The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation of the stress-responsive hypothalamo-pituitary-adrenal axis raises the possibility that cocaine-related impairments in mPFC functioning may be manifested by similar changes in neuronal architecture in mPFC. Nevertheless, previous studies have generally identified increases, rather than decreases, in structural plasticity in mPFC after cocaine self-administration. Here, we use 3D imaging and analysis of dendritic spine morphometry to show that chronic cocaine self-administration leads to mild decreases of apical dendritic branching, prominent dendritic spine attrition in PL pyramidal neurons, and working memory deficits. Importantly, these impairments were largely accounted for in groups of rats that self-administered cocaine compared with yoked-cocaine- and saline-matched counterparts. Follow-up experiments failed to demonstrate any effects of either experimenter-administered cocaine or food self-administration on structural alterations in PL neurons. Finally, we verified that the cocaine self-administration group was distinguished by more protracted increases in adrenocortical activity compared with yoked-cocaine- and saline-matched controls. These studies suggest a mechanism whereby increased adrenocortical activity resulting from chronic cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity. SIGNIFICANCE STATEMENT Stress, aging, and mental illness are each linked to decreased prefrontal plasticity. Here, we show that chronic

  16. Dorsomedial prefrontal cortex mediates rapid evaluations predicting the outcome of romantic interactions.

    Science.gov (United States)

    Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P

    2012-11-07

    Humans frequently make real-world decisions based on rapid evaluations of minimal information; for example, should we talk to an attractive stranger at a party? Little is known, however, about how the brain makes rapid evaluations with real and immediate social consequences. To address this question, we scanned participants with functional magnetic resonance imaging (fMRI) while they viewed photos of individuals that they subsequently met at real-life "speed-dating" events. Neural activity in two areas of dorsomedial prefrontal cortex (DMPFC), paracingulate cortex, and rostromedial prefrontal cortex (RMPFC) was predictive of whether each individual would be ultimately pursued for a romantic relationship or rejected. Activity in these areas was attributable to two distinct components of romantic evaluation: either consensus judgments about physical beauty (paracingulate cortex) or individualized preferences based on a partner's perceived personality (RMPFC). These data identify novel computational roles for these regions of the DMPFC in even very rapid social evaluations. Even a first glance, then, can accurately predict romantic desire, but that glance involves a mix of physical and psychological judgments that depend on specific regions of DMPFC.

  17. Effects of prefrontal rTMS on autonomic reactions to affective pictures.

    Science.gov (United States)

    Berger, Christoph; Domes, Gregor; Balschat, Johannes; Thome, Johannes; Höppner, Jacqueline

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate the excitability of stimulated cortical areas, such as prefrontal areas involved in emotion regulation. Low frequency (LF) rTMS is expected to have inhibitory effects on prefrontal regions, and thereby should disinhibit limbic activity, resulting in enhanced emotional and autonomic reactions. For high frequency (HF) rTMS, the opposite pattern might be assumed. The objective of this study was to determine the effects of different rTMS frequencies applied to the right dlPFC on autonomic functions and on emotional perception. In a crossover design, two groups of 20 healthy young women were either stimulated with one session of LF rTMS (1 Hz) or one session of HF rTMS (10 Hz), compared to sham stimulation. We assessed phasic cardiac responses (PCR), skin conductance reactions (SCR), and emotional appraisal of emotional pictures as well as recognition memory after each rTMS application. After LF rTMS, PCR (heart rate deceleration) during presentation of pictures with negative and neutral valence was significantly increased compared to the presentation of positive pictures. In contrast, the modulatory effect of picture valence and arousal on the cardiac orienting response was absent after HF rTMS. Our results suggest that frontal LF rTMS indirectly activates the ANS via inhibition of the right dlPFC activity, likely by enhancing the sensory processing or attention to aversive and neutral stimuli.

  18. Synergistic regulation of glutamatergic transmission by serotonin and norepinephrine reuptake inhibitors in prefrontal cortical neurons.

    Science.gov (United States)

    Yuen, Eunice Y; Qin, Luye; Wei, Jing; Liu, Wenhua; Liu, Aiyi; Yan, Zhen

    2014-09-05

    The monoamine system in the prefrontal cortex has been implicated in various mental disorders and has been the major target of anxiolytics and antidepressants. Clinical studies show that serotonin and norepinephrine reuptake inhibitors (SNRIs) produce better therapeutic effects than single selective reuptake inhibitors, but the underlying mechanisms are largely unknown. Here, we found that low dose SNRIs, by acting on 5-HT(1A) and α2-adrenergic receptors, synergistically reduced AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents and AMPAR surface expression in prefrontal cortex pyramidal neurons via a mechanism involving Rab5/dynamin-mediated endocytosis of AMPARs. The synergistic effect of SNRIs on AMPARs was blocked by inhibition of activator of G protein signaling 3, a G protein modulator that prevents reassociation of G(i) protein α subunit and prolongs the βγ-mediated signaling pathway. Moreover, the depression of AMPAR-mediated excitatory postsynaptic currents by SNRIs required p38 kinase activity, which was increased by 5-HT(1A) and α2-adrenergic receptor co-activation in an activator of G protein signaling 3-dependent manner. These results have revealed a potential mechanism for the synergy between the serotonin and norepinephrine systems in the regulation of glutamatergic transmission in cortical neurons.

  19. The role of the ventromedial prefrontal cortex in purchase intent among older adults

    Directory of Open Access Journals (Sweden)

    Bryan P Koestner

    2016-08-01

    Full Text Available Older adults are frequently the targets of scams and deception, with millions of individuals being affected each year in the United States alone. Previous research has shown that the ventromedial prefrontal cortex may play a role in vulnerability to fraud. The current study examined brain activation patterns in relation to susceptibility to scams and fraud using functional magnetic resonance imaging. Twenty-eight healthy, community-dwelling older adults were subdivided into groups of impaired and unimpaired decision makers as determined by their performance on the Iowa Gambling Task. While in the scanner, the participants viewed advertisements that were created directly from cases deemed deceptive by the Federal Trade Commission. We then obtained behavioral measures involving comprehension of claims and purchase intentions of the product in each advertisement. Contrasts show brain activity in the ventromedial prefrontal cortex was less correlated with purchase intention in impaired versus unimpaired older adult decision makers. Our results have important implications for both future research and recognizing the possible causes of fraud susceptibility among older adults.

  20. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex

    DEFF Research Database (Denmark)

    Littlefield, Melissa M; Dietz, Martin; Fitzgerald, Des

    2015-01-01

    of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in...

  1. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action

    OpenAIRE

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2013-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neur...

  2. Esthetic rehabilitation of crowded and protruded anterior dentition

    Directory of Open Access Journals (Sweden)

    Cecilia G. J. lunardhi

    2009-03-01

    Full Text Available Background: Recent trends put estheticrehabilitationas a demandingtreatmentin order to correct malpositionedanteriordentition. This is enhanced by the patient’s background, especially careers that require prime appearance for the public. Purpose: To describe that even though there are many treatment alternatives and procedures, esthetic rehabilitation on crowded and protruded anterior dentition using endodontic treatment, cast posts and all ceramic crowns, can improve patient’s appearance. Case: This article presents a case report on esthetic rehabilitation of crowded and protruded anterior dentition. Treatment was done due to patient’s refusal in receiving orthodontic treatment. The patient requested esthetic rehabilitation as an expectation for faster and instant esthetic result. Case management: Endodontic treatment was done to the involved dentition prior to the final restoration. Cast posts and all ceramic crowns were used as final restoration to correct the crowded and protruded anterior teeth. Conclusion: Esthetic rehabilitation can be done successfully on crowded and protruded anterior dentition. Instant result could be achieved by this treatment. This is supported by the fact that dentists should be aware of not only choosing the right treatment and materials but also patient’s expectations and conditions.

  3. Positioning of anterior teeth in removable dentures

    Directory of Open Access Journals (Sweden)

    Strajnić Ljiljana

    2002-01-01

    Full Text Available Introduction The aim of this paper was to present methods of placement of artificial anterior teeth in edentulous individuals. The following review takes account of the majority of papers published during the last 100 years. The review has been divided into sections regarding the method used to determine the position of artificial anterior teeth. Geometric aspect Gysi (1895-1920 produced the first scientific theory about the position of artificial anterior teeth. Physiognomic theory The aim of this theory is to find the most natural position for artificial anterior teeth for each individual. Camper's "face angle" as a physiognomic criterion, has been introduced in papers of Wehrli (1961, Marxhors (1966, Tanzer (1968, Lombardi (1973. Esthetic aspect Important names in the field of dental esthetics are: Schön and Singer (1961, Arnheim (1965, Krajiček (1969, Tanzer (1968, Lombardi (1973, Goldstein (1976. They have introduced principles of visual aspects for selection of contours, dimension and position of artificial anterior teeth. Constitution aspect Flagg (1880, Williams (1913 and Hrauf (1957, 1958, have considered body constitution and individual characteristics regarding position of artificial anterior teeth. Physiological theory In 1971, Marxhors pointed to the fact that the position of artificial teeth corresponds with the function of the surrounding soft tissue and from the aspect of physiognomy as well. Phonetic aspect According to Silverman (1962 artificial anterior teeth are nearest when we pronounce the sound "S". Cephalometrical research Rayson (1970, Watson (1989, Strajnić Lj. (1999, Bassi F. (2001 have presented cephalometric radiographic analyses of natural anterior teeth compared with cephalometric radiographic analyses of artificial anterior teeth. A review of dental literature shows several factors suggesting modalities which should determine the position of artificial anterior teeth. Numerous methods have been designed for

  4. Dissociable effects of anterior and mediodorsal thalamic lesions on spatial goal-directed behavior.

    Science.gov (United States)

    Alcaraz, Fabien; Naneix, Fabien; Desfosses, Emilie; Marchand, Alain R; Wolff, Mathieu; Coutureau, Etienne

    2016-01-01

    Goal-directed behaviors are thought to be supported by a neural circuit encompassing the prefrontal cortex, the dorsomedial striatum, the amygdala, and, as more recently suggested, the limbic thalamus. Since evidence indicates that the various thalamic nuclei contribute to dissociable functions, we directly compared the functional contribution of the mediodorsal thalamus (MD) and of the anterior thalamic nuclei (ATN) in a new task assessing spatial goal-directed behavior in a cross-maze. Rats sustaining lesions of the mediodorsal or the anterior thalamus were trained to associate each of the two goal arms with a distinctive food reward. Unlike control rats, both lesioned groups failed to express a bias for the goal arm corresponding to the non-devalued outcome following devaluation by sensory-specific satiety. In addition, MD rats were slower than the other groups to complete the trials. When tested for spatial working memory using a standard non-matching-to-place procedure in the same apparatus, ATN rats were severely impaired but MD rats performed as well as controls, even when spatial or temporal challenges were introduced. Finally, all groups displayed comparable breaking points in a progressive ratio test, indicating that the slower choice performance of MD rats did not result from motivational factors. Thus, a spatial task requiring the integration of instrumental and Pavlovian contingencies reveals a fundamental deficit of MD rats in adapting their choice according to goal value. By contrast, the deficit associated with anterior thalamic lesions appears to simply reflect the inability to process spatial information.

  5. A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity.

    Science.gov (United States)

    Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel

    2016-05-01

    The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition.

  6. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex.

    Science.gov (United States)

    Xu, Yang; Cao, Wenyu; Zhou, Ming; Li, Changqi; Luo, Yanwei; Wang, Heran; Zhao, Ran; Jiang, Shihe; Yang, Jing; Liu, Yukun; Wang, Xinye; Li, Xiayu; Xiong, Wei; Ma, Jian; Peng, Shuping; Zeng, Zhaoyang; Li, Xiaoling; Tan, Ming; Li, Guiyuan

    2015-06-01

    BRD7 is a bromodomain-containing protein (BCP), and recent evidence implicates the role of BCPs in the initiation and development of neurodevelopmental disorders. However, few studies have investigated the biological functions of BRD7 in the central nervous system. In our study, BRD7 was found to be widely expressed in various regions of the mouse brain, including the medial prefrontal cortex (mPFC), caudate putamen (CPu), hippocampus (Hip), midbrain (Mb), cerebellum (Cb), and mainly co-localized with neuron but not with glia. Using a BRD7 knockout mouse model and a battery of behavioral tests, we report that disruption of BRD7 results in impaired cognitive behavior leaving the emotional behavior unaffected. Moreover, a series of proteins involved in synaptic plasticity were decreased in the medial prefrontal cortex and there was a concomitant decrease in neuronal spine density and dendritic branching in the medial prefrontal cortex. However, no significant difference was found in the hippocampus compared to the wild-type mice. Thus, BRD7 might play a critical role in the regulation of synaptic plasticity and affect cognitive behavior.

  7. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    Science.gov (United States)

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism.

  8. Perseveration in the presence of punishment: the effects of chronic cocaine exposure and lesions to the prefrontal cortex.

    Science.gov (United States)

    Allen, Craig P; Leri, Francesco

    2014-03-15

    Perseveration is the repetition of a previously appropriate response in a manner, or context, which is detrimental to the individual. Although both cocaine exposure and prefrontal cortex (PFC) dysfunctions have been implicated in perseverative-like behaviours, the underlying nature of the impairments has been debated. The current study tested whether chronic cocaine exposure and PFC lesions induce perseverative-like behaviours by causing insensitivity to punishment. Food-restricted male Sprague-Dawley rats were trained to respond for sucrose on concurrent schedules of reinforcement. After initial training, rats received either a sensitizing regimen of cocaine exposure, or excitotoxic lesions to subregions of the PFC. The test of perseveration involved a choice of responding between two levers associated with fixed ratio and progressive ratio (PR) schedules. Responding on the PR lever was punished by a 1 min timeout period. It was found that, unlike control subjects, those exposed to chronic cocaine, or with lesions to the medial prefrontal cortex, were significantly slower in adapting their responding to avoid punishment. The current study provides evidence that both cocaine exposure and lesions to the prefrontal cortex can increase perseverative-like responding, although the magnitude and permanence of these effects are contingent on the nature of the task.

  9. Screening of key genes and inflammatory signalling pathway involved in the pathogenesis of HLA-B27-associated acute anterior uveitis by gene expression microarray%人类白细胞抗原-B27相关性前葡萄膜炎患者差异基因的表达特征

    Institute of Scientific and Technical Information of China (English)

    胡小凤; 卢弘; 王婧; 张孝生; 张晓龙; 刘旭辉; 许卓再; 胡俊敏; 卢清君

    2013-01-01

    Objective To investigate the genes and signalling pathways located upstream of the inflammatory processes in human leukocyte antigen (HLA)-B27-associated acute anterior uveitis by gene expression microarray.Methods Experimental study.HLA-B27-positive and-negative monocytes isolated from human peripheral blood were stimulated with Vibrio cholera lipopolysaccharide (LPS).Gene expression microarrays were used to identify the differentially expressed genes.Differentially expressed (DE) genes were testified by real-time PCR and analyzed by a series of bioinformatics-based techniques such as Gene Ontology,Kyoto Encyclopedia of Genes and Genomes.Results Gene expression microarray analysis revealed marked differences between HLA-B27-positive acute anterior uveitis(AAU) and HLA-B27-negative healthy control peripheral monocytes in the genes that were upregulated in response to LPS stimulation with 1105 genes and 25 genes respectively.Gene Ontology enrichment and pathway analysis indicated that genes participating in protein transport and folding were essential to the inflammatory process.The LPS receptorToll-like receptor(TLR)4 induced TLR signalling pathway and pathway related to Vibrio cholerae infection were located upstream of the network and contribute to the overall response.Among the DE genes,PIK3 CA,PIK3CB,AKT3,and MAPK1 might play critical roles in inflammation.Conclusions Equivalent LPS stimulation induces a different response in HLA-B27-positive peripheral monocytes compared to normal control,suggesting that the TLR pathway is involved in the pathogenesis of HLA-B27-associated AAU.%目的 研究人类白细胞抗原(HLA)-B27相关性前葡萄膜炎患者外周血单核细胞炎症通路差异基因的表达特征.方法 实验研究.抽取3例HLA-B27阳性前葡萄膜炎患者及2例健康对照者外周血,分离后获得的单核细胞经含霍乱弧菌的脂多糖刺激后提取RNA,使用基因表达谱芯片进行检测,实时荧光定

  10. Toxic Anterior Segment Syndrome (TASS

    Directory of Open Access Journals (Sweden)

    Özlem Öner

    2011-12-01

    Full Text Available Toxic anterior segment syndrome (TASS is a sterile intraocular inflammation caused by noninfectious substances, resulting in extensive toxic damage to the intraocular tissues. Possible etiologic factors of TASS include surgical trauma, bacterial endotoxin, intraocular solutions with inappropriate pH and osmolality, preservatives, denatured ophthalmic viscosurgical devices (OVD, inadequate sterilization, cleaning and rinsing of surgical devices, intraocular lenses, polishing and sterilizing compounds which are related to intraocular lenses. The characteristic signs and symptoms such as blurred vision, corneal edema, hypopyon and nonreactive pupil usually occur 24 hours after the cataract surgery. The differential diagnosis of TASS from infectious endophthalmitis is important. The main treatment for TASS formation is prevention. TASS is a cataract surgery complication that is more commonly seen nowadays. In this article, the possible underlying causes as well as treatment and prevention methods of TASS are summarized. (Turk J Oph thal mol 2011; 41: 407-13

  11. Histological observation of complete closure of anterior capsulotomy in 2 cases.

    Science.gov (United States)

    Tanaka, Sai-Ichi; Saika, Shizuya; Tamura, Manabu; Ohnishi, Yoshitaka

    2004-06-01

    We report the histological finding of complete closure of the anterior capsulotomy window in 2 cases. The cases were successfully treated with surgery after neodymium:YAG laser anterior capsulotomy failed. Histology and immunohistochemistry were performed to determine the pathogenesis. Histology revealed the presence of elongated, fibroblast-like lens epithelial cells in association with extracellular matrix accumulation, which were positive for collagen types, fibronectin, and osteopontin. The cells were labeled with anti-alpha-smooth muscle actin antibody. The finding indicates that phenotypic modulation in lens epithelial cell to contractile cell type and accumulation of matrix are involved in closure of the anterior capsulotomy window.

  12. Discourse production following injury to the dorsolateral prefrontal cortex.

    Science.gov (United States)

    Coelho, Carl; Lê, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-12-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC lesions. All participants were 30-35 years post-onset of injury and presented with persistent discourse impairments. The discourse performance of the R DLPFC group was not significantly different from either the L DLPFC group or the non-injured comparison group. Individuals from the L DLPFC group demonstrated specific difficulties with narrative coherence and inclusion of critical story components. Both measures were significantly different from the comparison group. The discourse ability of the DLPFC groups was significantly correlated with measures of working memory. Findings support the use of discourse analysis for examining language impairments in individuals with PFC lesions.

  13. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  14. Dopaminergic Activity in the Medial Prefrontal Cortex Modulates Fear Conditioning

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2011-07-01

    Full Text Available "nThe purpose of the present study was to determine the role of medial prefrontal cortex (mPFC dopaminergic system in fear conditioning response considering individual differences. Animals were initially counterbalanced and classified based on open field test, and then were given a single infusion of the dopamine agonist, amphetamine (AMPH and antagonist, clozapine (CLZ into the medial prefrontal cortex. Rats received tone-shock pairing in a classical fear conditioning test and then exposed to the tone alone. Freezing responses were measured as conditioned fear index. The results showed that both AMPH and CLZ infusion in mPFC reduced the expression of conditioned fear. This finding indicates that elevation or reduction in the dopaminergic activity is associated with the decrease of fear responses, despite preexisting individual-typological differences.

  15. Mild toxic anterior segment syndrome mimicking delayed onset toxic anterior segment syndrome after cataract surgery

    Directory of Open Access Journals (Sweden)

    Su-Na Lee

    2014-01-01

    Full Text Available Toxic anterior segment syndrome (TASS is an acute sterile postoperative anterior segment inflammation that may occur after anterior segment surgery. I report herein a case that developed mild TASS in one eye after bilateral uneventful cataract surgery, which was masked during early postoperative period under steroid eye drop and mimicking delayed onset TASS after switching to weaker steroid eye drop.

  16. Prefrontal cortex neurons reflect categorical decisions about ambiguous stimuli

    OpenAIRE

    Roy, Jefferson E.; Buschman, Timothy J.; Miller, Earl K

    2014-01-01

    We examined whether prefrontal cortex (PFC) neuron activity reflects categorical decisions in monkeys categorizing ambiguous stimuli. A morphing system was used to systematically vary stimulus shape and precisely define category boundaries. Ambiguous stimuli were centered on a category boundary, i.e., they were a mix of 50% of two prototypes and therefore had no category information, so monkeys guessed at their category membership. We found that the monkey's trial-by-trial decision about the ...

  17. Adjustable muscle plication: a new surgical technique for strabismic patients with high risk for anterior segment ischemia

    Institute of Scientific and Technical Information of China (English)

    Carlos; Laria; David; P.Pi?ero

    2015-01-01

    <正>INTRODUCTION Anterior ciliary arteries provide 70%of the vascular supply of the anterior segment.A significant interruption of the vascular flow of these arteries increases the risk for anterior ischemia.Although the frequency of this special condition is low after strabismus surgery(1:13 000)[1],its effects may involve substantial visual problems[2].We report the successful outcome of a new surgical approach for strabismus management in a case of high risk for anterior ischemia.Specifically,we show the correction of the horizontal ocular deviation by means of an adjustable muscle

  18. Smile design for the adolescent patient--interdisciplinary management of anterior tooth size discrepancies.

    Science.gov (United States)

    Waldman, Alexander B

    2008-05-01

    Adolescent patients often seek orthodontic treatment to correct spacing of the maxillary anterior teeth. If the spacing is caused by a tooth size discrepancy that affects one or more anterior teeth, an interdisciplinary treatment plan involving orthodontic, restorative, and periodontal treatment is recommended to achieve a harmonious esthetic result. This article describes a clinical approach for treatment of these complex cases, focusing on the importance of tooth form, gingival esthetics, and treatment sequencing.

  19. [Surgical treatment of patients with cancer of the larynx with lesions of the anterior commissure].

    Science.gov (United States)

    Bariliak, Iu R

    1990-01-01

    Eighty two patients with glottic tumors extending to the anterior commissure underwent surgical treatment: 11 patients for cordectomy in its classic form, 11 patients for fronto-lateral cordectomy, 59 patients for extended cordectomy, and 1 patient for hemilaryngectomy according to Otan. Analysis of the postoperative clinical state of the patients suggests that surgery for vocal cord carcinoma involving the anterior commissure should not necessarily include tracheostomy and laryngeal tamponade.

  20. Complementary Patterns of Direct Amygdala and Hippocampal Projections to the Macaque Prefrontal Cortex.

    Science.gov (United States)

    Aggleton, John P; Wright, Nicholas F; Rosene, Douglas L; Saunders, Richard C

    2015-11-01

    The projections from the amygdala and hippocampus (including subiculum and presubiculum) to prefrontal cortex were compared using anterograde tracers injected into macaque monkeys (Macaca fascicularis, Macaca mulatta). Almost all prefrontal areas were found to receive some amygdala inputs. These connections, which predominantly arose from the intermediate and magnocellular basal nucleus, were particularly dense in parts of the medial and orbital prefrontal cortex. Contralateral inputs were not, however, observed. The hippocampal projections to prefrontal areas were far more restricted, being confined to the ipsilateral medial and orbital prefrontal cortex (within areas 11, 13, 14, 24a, 32, and 25). These hippocampal projections principally arose from the subiculum, with the fornix providing the sole route. Thus, while the lateral prefrontal cortex essentially receives only amygdala inputs, the orbital prefrontal cortex receives both amygdala and hippocampal inputs, though these typically target different areas. Only in medial prefrontal cortex do direct inputs from both structures terminate in common sites. But, even when convergence occurs within an area, the projections predominantly terminate in different lamina (hippocampal inputs to layer III and amygdala inputs to layers I, II, and VI). The resulting segregation of prefrontal inputs could enable the parallel processing of different information types in prefrontal cortex.

  1. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  2. Action observation activates neurons of the monkey ventrolateral prefrontal cortex

    Science.gov (United States)

    Simone, Luciano; Bimbi, Marco; Rodà, Francesca; Fogassi, Leonardo; Rozzi, Stefano

    2017-01-01

    Prefrontal cortex is crucial for exploiting contextual information for the planning and guidance of behavioral responses. Among contextual cues, those provided by others’ behavior are particularly important, in primates, for selecting appropriate reactions and suppressing the inappropriate ones. These latter functions deeply rely on the ability to understand others’ actions. However, it is largely unknown whether prefrontal neurons are activated by action observation. To address this issue, we recorded the activity of ventrolateral prefrontal (VLPF) neurons of macaque monkeys during the observation of videos depicting biological movements performed by a monkey or a human agent, and object motion. Our results show that a population of VLPF neurons respond to the observation of biological movements, in particular those representing goal directed actions. Many of these neurons also show a preference for the agent performing the action. The neural response is present also when part of the observed movement is obscured, suggesting that these VLPF neurons code a high order representation of the observed action rather than a simple visual description of it. PMID:28290511

  3. Anterior urethral diverticulum: A rare presentation

    Directory of Open Access Journals (Sweden)

    Annavarupu Gopalkrishna

    2016-01-01

    Full Text Available Congenital anomalies of the urogenital tract are the most common anomalies found in the foetus, neonates and infants, but anterior urethral valves and diverticula are rare. Here, we present a case with congenital anterior urethral diverticulum associated with patent ductus arteriosus and polydactyly.

  4. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  5. Anterior segment complications of retinal photocoagulation.

    Science.gov (United States)

    Kanski, J J

    1975-03-01

    Seven patients had anterior segment complications following xenon arc retinal photocoagulation. Irreversible keratopathy was induced in two cases; all patients showed evidence of iris injury. The absorption of radiation by the iris was considered the main factor in producing overheating of the anterior segment.

  6. Anterior cervical hypertrichosis: a sporadic case.

    Science.gov (United States)

    Bostan, Sezen; Yaşar, Şirin; Serdar, Zehra Aşiran; Gizlenti, Sevda

    2016-03-01

    Anterior cervical hypertrichosis is a very rare form of primary localized hypertrichosis. It consists of a tuft of terminal hair on the anterior neck just above the laryngeal prominence. The etiology is still unknown. In this article, we reported a 15-year-old female patient who presented to our clinic with a complaint of hypertrichosis on the anterior aspect of the neck for the last five years. Her past medical history revealed no pathology except for vesicoureteral reflux. On the basis of clinical presentation, our patient was diagnosed with anterior cervical hypertrichosis and she was considered to be a sporadic case due to lack of other similar cases in familial history. To date, 33 patients with anterior cervical hypertrichosis have been reported. Anterior cervical hypertrichosis can be associated with other abnormalities, but it frequently presents as an isolated defect (70%). The association of vesicoureteral reflux and anterior cervical hypertrichosis which was observed in our patient might be coincidental. So far, no case of anterior cervical hypertrichosis associated with vesicoureteral reflux has been reported in the literature.

  7. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ignacio Negrón-Oyarzo

    2016-01-01

    Full Text Available Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.

  8. Gene expression profiling in postmortem prefrontal cortex of major depressive disorder.

    Science.gov (United States)

    Kang, Hyo Jung; Adams, David H; Simen, Arthur; Simen, Birgitte B; Rajkowska, Grazyna; Stockmeier, Craig A; Overholser, James C; Meltzer, Herbert Y; Jurjus, George J; Konick, Lisa C; Newton, Samuel S; Duman, Ronald S

    2007-11-28

    Investigations of the molecular mechanisms underlying major depressive disorder (MDD) have been hampered by the complexity of brain tissue and sensitivity of gene expression profiling approaches. To address these issues, we used discrete microdissections of postmortem dorsolateral prefrontal cortex (DLPFC) (area 9) and an oligonucleotide (60mer) microarray hybridization procedure that increases sensitivity without RNA amplification. Mixed-effects statistical methods were used to rigorously control for medication usage in the subset of medicated depressed subjects. These analyses yielded a rich profile of dysregulated genes. Two of the most highly dysregulated genes of interest were stresscopin, a neuropeptide involved in stress responses, and Forkhead box D3 (FOXD3), a transcription factor. Secondary cell-based analysis demonstrated that stresscopin and FoxD3 are increased in neurons of DLPFC gray matter of MDD subjects. These findings identify abnormal gene expression in a discrete region of MDD subjects and contribute to further elucidation of the molecular alterations of this complex mood disorder.

  9. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    Science.gov (United States)

    Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  10. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    Directory of Open Access Journals (Sweden)

    María Carolina Gonzalez

    2014-11-01

    Full Text Available Medial prefrontal cortex (mPFC is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-tem aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 hour later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus.

  11. Association of cannabis use during adolescence, prefrontal CB1 receptor signaling and schizophrenia

    Directory of Open Access Journals (Sweden)

    Adriana eCaballero

    2012-05-01

    Full Text Available The cannabinoid receptor 1 (CB1R is the G-protein coupled receptor responsible for the majority of the endocannabinoid signaling in the human brain. It is widely distributed in the limbic system, basal ganglia, and cerebellum, which are areas responsible for cognition, memory, and motor control. Because of this widespread distribution, it is not surprising that drugs that co-opt CB1R have expected behavioral outcomes consistent with dysregulated signaling from these areas (e.g. memory loss, cognitive deficits, etc. In the context of this review, we present evidence for the role of CB1R signaling in the prefrontal cortex (PFC, an area involved in executive functions, with emphasis on the developmental regulation of CB1R signaling in the acquisition of mature PFC function. We further hypothesize how alterations of CB1R signaling specifically during adolescent maturation might confer liability to psychiatric disorders.

  12. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  13. Specifying the role of the left prefrontal cortex in word selection.

    Science.gov (United States)

    Riès, S K; Karzmark, C R; Navarrete, E; Knight, R T; Dronkers, N F

    2015-10-01

    Word selection allows us to choose words during language production. This is often viewed as a competitive process wherein a lexical representation is retrieved among semantically-related alternatives. The left prefrontal cortex (LPFC) is thought to help overcome competition for word selection through top-down control. However, whether the LPFC is always necessary for word selection remains unclear. We tested 6 LPFC-injured patients and controls in two picture naming paradigms varying in terms of item repetition. Both paradigms elicited the expected semantic interference effects (SIE), reflecting interference caused by semantically-related representations in word selection. However, LPFC patients as a group showed a larger SIE than controls only in the paradigm involving item repetition. We argue that item repetition increases interference caused by semantically-related alternatives, resulting in increased LPFC-dependent cognitive control demands. The remaining network of brain regions associated with word selection appears to be sufficient when items are not repeated.

  14. Prefrontal cortex involvement in creative problem solving in middle adolescence and adulthood

    NARCIS (Netherlands)

    Kleibeuker, S.W.; Koolschijn, P.C.M.P.; Jolles, D.D.; Schel, M.A.; de Dreu, C.K.W.; Crone, E.A.

    2013-01-01

    Creative cognition, defined as the generation of new yet appropriate ideas and solutions, serves important adaptive purposes. Here, we tested whether and how middle adolescence, characterized by transformations toward life independency and individuality, is a more profitable phase than adulthood for

  15. Demographic, clinical, laboratory and treatment characteristics of spondyloarthritis patients with and without acute anterior uveitis

    Directory of Open Access Journals (Sweden)

    Marcelo Gehlen

    Full Text Available CONTEXT AND OBJECTIVE: Acute anterior uveitis is a common extra-articular manifestation in spondyloarthritis patients. The aim of this study was to compare demographic, clinical, laboratory and treatment data among spondyloarthritis patients with and without acute anterior uveitis. DESIGN AND SETTING: This was a cross-sectional analytical study at the Rheumatology Outpatient Clinic of the Evangelical University Hospital, Curitiba, Brazil. METHODS: Spondyloarthritis patients with without acute anterior uveitis were compared regarding demographic data, spondyloarthritis subtype, peripheral arthritis, enthesitis, disease activity, functional index, physical examination, radiological involvement, HLA-B27 and treatment. RESULTS: Presence of acute anterior uveitis was not found to have any relationship with functional index, degree of radiological involvement, peripheral arthritis or enthesitis. Acute anterior uveitis showed a negative association with skin manifestations (P = 0.04 and a trend towards higher disease activity (P = 0.06. CONCLUSION: In the study sample, it could not be shown that AAU had any association with the functional and radiological prognoses. The patients with spondyloarthritis with and without acute anterior uveitis did not differ clinically except for a higher proportion of ankylosing spondylitis and smaller presence of skin involvement in those with uveitis.

  16. Anterior superior instability with rotator cuff tearing: SLAC lesion.

    Science.gov (United States)

    Savoie, F H; Field, L D; Atchinson, S

    2001-07-01

    Anterosuperior instability of the shoulder may occur from a variety of pathologic lesions. We describe a specific entity, the SLAC (superior labrum, anterior cuff) lesion that involves an association of anterior-superior labral tear with a partial supraspinatus tear. We retrospectively isolated a group of 40 patients with this lesion. The presenting complaints, physical examination findings, surgical findings, and results were isolated. Overhead activities were the most common etiology; load and shift instability testing and whipple rotator cuff testing were the most common physical examination findings. Surgical repair was successful in 37 of the 40 patients. The SLAC lesion is a definable clinical entity with predictable history, examination, surgical pathology, and satisfactory results from surgery.

  17. Effect of bone loss in anterior shoulder instability

    Science.gov (United States)

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-01-01

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  18. Harming kin to save strangers: further evidence for abnormally utilitarian moral judgments after ventromedial prefrontal damage.

    Science.gov (United States)

    Thomas, Bradley C; Croft, Katie E; Tranel, Daniel

    2011-09-01

    The ventromedial PFC (vmPFC) has been implicated as a critical neural substrate mediating the influence of emotion on moral reasoning. It has been shown that the vmPFC is especially important for making moral judgments about "high-conflict" moral dilemmas involving direct personal actions, that is, scenarios that pit compelling utilitarian considerations of aggregate welfare against the highly emotionally aversive act of directly causing harm to others [Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., et al. Damage to the prefrontal cortex increases utilitarian moral judgments. Nature, 446, 908-911, 2007]. The current study was designed to elucidate further the role of the vmPFC in high-conflict moral judgments, including those that involve indirect personal actions, such as indirectly causing harm to one's kin to save a group of strangers. We found that patients with vmPFC lesions were more likely than brain-damaged and healthy comparison participants to endorse utilitarian outcomes on high-conflict dilemmas regardless of whether the dilemmas (1) entailed direct versus indirect personal harms and (2) were presented from the Self versus Other perspective. In addition, all groups were more likely to endorse utilitarian outcomes in the Other perspective as compared with the Self perspective. These results provide important extensions of previous work, and the findings align with the proposal that the vmPFC is critical for reasoning about moral dilemmas in which anticipating the social-emotional consequences of an action (e.g., guilt or remorse) is crucial for normal moral judgments [Greene, J. D. Why are VMPFC patients more utilitarian?: A dual-process theory of moral judgment explains. Trends in Cognitive Sciences, 11, 322-323, 2007; Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., et al. Damage to the prefrontal cortex increases utilitarian moral judgments. Nature, 446, 908-911, 2007].

  19. Activation of the prefrontal cortex by unilateral transcranial direct current stimulation leads to an asymmetrical effect on risk preference in frames of gain and loss.

    Science.gov (United States)

    Ye, Hang; Huang, Daqiang; Wang, Siqi; Zheng, Haoli; Luo, Jun; Chen, Shu

    2016-10-01

    Previous brain imaging and brain stimulation studies have suggested that the dorsolateral prefrontal cortex may be critical in regulating risk-taking behavior, although its specific causal effect on people's risk preference remains controversial. This paper studied the independent modulation of the activity of the right and left dorsolateral prefrontal cortex using various configurations of transcranial direct current stimulation. We designed a risk-measurement table and adopted a within-subject design to compare the same participant's risk preference before and after unilateral stimulation when presented with different frames of gain and loss. The results confirmed a hemispheric asymmetry and indicated that the right dorsolateral prefrontal cortex has an asymmetric effect on risk preference regarding frames of gain and loss. Enhancing the activity of the right dorsolateral prefrontal cortex significantly decreased the participants' degree of risk aversion in the gain frame, whereas it increased the participants' degree of risk aversion in the loss frame. Our findings provide important information regarding the impact of transcranial direct current stimulation on the risk preference of healthy participants. The effects observed in our experiment compared with those of previous studies provide further evidence of the effects of hemispheric and frame-dependent asymmetry. These findings may be helpful in understanding the neural basis of risk preference in humans, especially when faced with decisions involving possible gain or loss relative to the status quo.

  20. More is less: emotion induced prefrontal cortex activity habituates in aging.

    Science.gov (United States)

    Roalf, David R; Pruis, Trisha A; Stevens, Alexander A; Janowsky, Jeri S

    2011-09-01

    Several recent studies have documented age-related changes in brain activity--less amygdala activity and higher prefrontal activity in response to emotional stimuli. Using functional magnetic resonance imaging (fMRI), we examined whether aging also affects the maintenance of activity to emotional stimuli and whether maintenance differs by the valence (negative, neutral and positive) of the pictures. Younger participants had a larger volume of activity in the amygdala but less in the prefrontal cortex than the old. The old showed more habituation to highly arousing negative but not positive or neutral stimuli in prefrontal cortex as compared to younger participants. Thus prefrontal cortex activity indexes emotion in the elderly, but not the young. Amplified prefrontal activity suggests elderly increase cognitive control for negative, highly arousing emotional stimuli, but it is not maintained. Taken together, age-related increases in prefrontal activity and reduced amygdala activity may underlie observed affective changes in aging.

  1. Giant aneurysm of the left anterior descending coronary artery in a pediatric patient with Behcet's disease.

    Science.gov (United States)

    Cook, Amanda L; Rouster-Stevens, Kelly; Williams, Derek A; Hines, Michael H

    2010-07-01

    Behcet's disease is a rare autoimmune vasculitis characterized by oral aphthosis, genital ulcers, and ocular and cutaneous lesions. Vascular involvement usually affects the veins more commonly than the arteries, and coronary arterial involvement is extremely rare. We report an adolescent with Behcet's disease who developed a large pseudoaneurysm of the left anterior descending coronary artery requiring a coronary arterial bypass graft.

  2. Effects of bupropion SR on anterior paralimbic function during waking and REM sleep in depression: preliminary findings using.

    Science.gov (United States)

    Nofzinger, E A; Berman, S; Fasiczka, A; Miewald, J M; Meltzer, C C; Price, J C; Sembrat, R C; Wood, A; Thase, M E

    2001-04-10

    This study sought to clarify the effects of bupropion SR on anterior paralimbic function in depressed patients by studying changes in the activation of these structures from waking to REM sleep both before and after treatment. Twelve depressed patients underwent concurrent EEG sleep studies and [18F]fluoro-2-deoxy-D-glucose ([18F]-FDG) positron emission tomography (PET) scans during waking and during their second REM period of sleep before and after treatment with bupropion SR. Nine subjects completed pre- and post-treatment waking PET studies. Five subjects completed pre- and post-treatment waking and REM sleep PET studies. Bupropion SR treatment did not suppress electrophysiologic measures of REM sleep, nor did it alter an indirect measure of global metabolism during either waking or REM sleep. Bupropion SR treatment reversed the previously observed deficit in anterior cingulate, medial prefrontal cortex and right anterior insula activation from waking to REM sleep. In secondary analyses, this effect was related to a reduction in waking relative metabolism in these structures following treatment in the absence of a significant effect on REM sleep relative metabolism. The implications of these findings for the relative importance of anterior paralimbic function in REM sleep in depression and for the differential effects of anti-depressant treatment on brain function during waking vs. REM sleep are discussed.

  3. Anterior Cruciate Ligament Injuries in Wakeboarding

    Science.gov (United States)

    Starr, Harlan M.; Sanders, Brett

    2012-01-01

    Background: Wakeboarding is an increasingly popular sport that involves aggressive stunts with high risk for lower extremity injury, including anterior cruciate ligament (ACL) rupture. Little has been reported on prevalence or mechanism of ACL injury while wakeboarding. Hypothesis: The prevalence of ACL injury in wakeboarding approaches that of other high-risk sports. Analyzing the mechanism of ACL injury may aid in future efforts of prevention. Study Design: Descriptive epidemiology study. Methods: In sum, 1580 surveys were sent internationally to professional and amateur wakeboarders. The survey questioned the participants on their history of an ACL tear while wakeboarding and asked them to describe the mechanism of injury and treatment. Results: A total of 123 surveys were returned. Of this group, 52 (42.3%) acknowledged having had an ACL tear while wakeboarding. The majority described feeling a pop or buckle after attempting to land a high jump. Only 5 participants (13.5%) described a rotational mechanism created by catching the board edge in the water. Thirty-seven participants (71.15%) said that the injury ruined their ability to wakeboard before reconstruction, and 41 (78.85%) had the injury repaired surgically. Conclusion: The prevalence of ACL tears in this data set, 42.3%, is the highest reported in the literature for wakeboarding and one of the highest for any sport. The main mechanism of injury appears to involve axial compression while one lands in a provocative position; it is not related to a rotational force created by fixed bindings. The injury should be surgically repaired to effectively continue the sport. Further study is needed to determine if wakeboarding represents a high-risk sport for ACL injury. Clinical Significance: Wakeboarding may be a high-risk sport for ACL injury. Noncontact axial compression appears to be the main mechanism of injury. PMID:23016104

  4. Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Siebner, Hartwig R; Hulme, Oliver J

    2014-01-01

    Dopamine deficiency affects functional integration of activity in distributed neural regions. It has been suggested that lack of dopamine induces disruption of neural interactions between prefrontal and premotor areas, which might underlie impairment of motor control observed in patients...... to examine oscillatory coupling between prefrontal and premotor areas during respectively low and high levels of dopamine. In 10 patients and 12 control participants multiple source beamformer analysis yielded task-related activation of a contralateral cortical network comprising prefrontal cortex (PFC...

  5. Parental Involvement

    OpenAIRE

    Ezra S Simon

    2008-01-01

    This study was conducted in Ghana to investigate, (1) factors that predict parental involvement, (2) the relationship between parental home and school involvement and the educational achievement of adolescents, (3) the relationship between parental authoritativeness and the educational achievement of adolescent students, (4) parental involvement serving as a mediator between their authoritativeness and the educational achievement of the students, and (5) whether parental involvement decreases...

  6. Mini-open anterior lumbar interbody fusion.

    Science.gov (United States)

    Gandhoke, Gurpreet S; Ricks, Christian; Tempel, Zachary; Zuckerbraun, Brian; Hamilton, D Kojo; Okonkwo, David O; Kanter, Adam S

    2016-07-01

    In deformity surgery, anterior lumbar interbody fusion provides excellent biomechanical support, creates a broad surface area for arthrodesis, and induces lordosis in the lower lumbar spine. Preoperative MRI, plain radiographs, and, when available, CT scan should be carefully assessed for sacral slope as it relates to pubic symphysis, position of the great vessels (especially at L4/5), disc space height, or contraindication to an anterior approach. This video demonstrates the steps in an anterior surgical procedure with minimal open exposure. The video can be found here: https://youtu.be/r3bC4_vu1hQ .

  7. How I do it: Anterior pull-through tympanoplasty for anterior eardrum perforations.

    Science.gov (United States)

    Harris, Jeffrey P; Wong, Yu-Tung; Yang, Tzong-Hann; Miller, Mia

    2016-01-01

    Conclusions This technique is offered as a convenient and reliable method for cases with anterior TM perforation and inadequate anterior remnant. Objectives Chronic otitis media surgery is one of the most common procedures in otology. Anterior tympanic membrane (TM) perforation with inadequate anterior remnant is associated with higher rates of graft failure. It was the goal of this series to evaluate the anatomical and functional outcomes of a modified underlay myringoplasty technique-the anterior pull-through method. Materials and methods In a retrospective clinical study, 13 patients with anterior TM perforations with inadequate anterior remnants underwent tympanoplasty with anterior pull-through technique. The anterior tip of the temporalis fascia was pulled through and secured in a short incision lateral to the anterior part of the annulus. Data on graft take rate, pre-operative, and post-operative hearing status were analyzed. Results A graft success rate of 84.6% (11 out of 13) was achieved, without lateralization, blunting, atelectasia, or epithelial pearls. The air-bone gap was 21.5 ± 6.8 dB before intervention and 11.75 ± 5.7 dB after surgery (p = 0.003).

  8. Quadriceps muscle contraction protects the anterior cruciate ligament during anterior tibial translation.

    Science.gov (United States)

    Aune, A K; Cawley, P W; Ekeland, A

    1997-01-01

    The proposed skiing injury mechanism that suggests a quadriceps muscle contraction can contribute to anterior cruciate ligament rupture was biomechanically investigated. The effect of quadriceps muscle force on a knee specimen loaded to anterior cruciate ligament failure during anterior tibial translation was studied in a human cadaveric model. In both knees from six donors, average age 41 years (range, 31 to 65), the joint capsule and ligaments, except the anterior cruciate ligament, were cut. The quadriceps tendon, patella, patellar tendon, and menisci were left intact. One knee from each pair was randomly selected to undergo destructive testing of the anterior cruciate ligament by anterior tibial translation at a displacement rate of 30 mm/sec with a simultaneously applied 889 N quadriceps muscle force. The knee flexion during testing was 30 degrees. As a control, the contralateral knee was loaded correspondingly, but only 5 N of quadriceps muscle force was applied. The ultimate load for the knee to anterior cruciate ligament failure when tested with 889 N quadriceps muscle force was 22% +/- 18% higher than that of knees tested with 5 N of force. The linear stiffness increased by 43% +/- 30%. These results did not support the speculation that a quadriceps muscle contraction contributes to anterior cruciate ligament failure. In this model, the quadriceps muscle force protected the anterior cruciate ligament from injury during anterior tibial translation.

  9. Broadband neurophysiological abnormalities in the medial prefrontal region of the default-mode network in adults with ADHD.

    Science.gov (United States)

    Wilson, Tony W; Franzen, John D; Heinrichs-Graham, Elizabeth; White, Matthew L; Knott, Nichole L; Wetzel, Martin W

    2013-03-01

    Previous investigations of the default-mode network (DMN) in persons with attention-deficit/hyperactivity disorder (ADHD) have shown reduced functional connectivity between the anterior and posterior aspects. This finding was originally demonstrated in adults with ADHD, then in youth with ADHD, and has been tentatively linked to ultra low frequency oscillations within the DMN. The current study evaluates the specificity of DMN abnormalities to neuronal oscillations in the ultra low frequency range, and examines the regional specificity of these DMN aberrations in medicated and unmedicated adults with, and those without ADHD. An individually matched sample of adults with and without ADHD completed 6-minute sessions of resting-state magnetoencephalography (MEG). Participants with ADHD were known responders to stimulant medications and completed two sessions (predrug/postdrug). MEG data were coregistered to the participant's MRI, corrected for head motion, fitted to a regional-level source model, and subjected to spectral analyses to extract neuronal population activity in regions of the DMN. The unmedicated adults with ADHD exhibited broadband deficits in medial prefrontal cortices (MPFC), but not other DMN regions compared to adults without ADHD. Unmedicated patients also showed abnormal cross-frequency coupling in the gamma range between the MPFC and posterior cingulate areas, and disturbed balance within the DMN as activity in posterior regions was stronger than frontal regions at beta and lower frequencies, which dissipated at higher γ-frequencies. Administration of pharmacotherapy significantly increased prefrontal alpha activity (8-14 Hz) in adults with ADHD, and decreased the cross-frequency gamma coupling. These results indicate that neurophysiological aberrations in the DMN of patients with ADHD are not limited to ultra slow oscillations, and that they may be primarily attributable to abnormal broadband activity in the MPFC.

  10. Is the subcallosal medial prefrontal cortex a common site of atrophy in Alzheimer’s disease and frontotemporal lobar degeneration?

    Directory of Open Access Journals (Sweden)

    Olof eLindberg

    2012-11-01

    Full Text Available Regions affected late in neurodegenerative disease are thought to be anatomically connected to regions affected earlier. The subcallosal medial prefrontal cortex (SMPC has connections with the dorsolateral prefrontal cortex (DLPFC, orbitofrontal cortex (OFC and hippocampus (HC, which are regions that may become atrophic in frontotemporal lobar degeneration (FTLD and Alzheimer’s disease (AD. We hypothesized that the SMPC is a common site of frontal atrophy in the FTLD subtypes and in AD. The volume of the SMPC, DLPFC, OFC, HC and entorhinal cortex were manually delineated for 12 subjects with frontotemporal dementia (FTD, 13 with semantic dementia (SD, 9 with progressive nonfluent aphasia (PNFA, 10 AD cases and 13 controls. Results revealed significant volume loss in the left SMPC in FTD, SD and PNFA, while the right SMPC was also atrophied in SD and FTD. In AD a non significant tendency of volume loss in the left SMPC was found (p=0.08, with no volume loss on the right side. Results indicated that volume loss reflected the degree of brain connectivity. In SD and AD temporal regions displayed most atrophy. Among the frontal regions, the SMPC (which receives the strongest temporal projections demonstrated most volume loss, the OFC (which receives less temporal projections less volume loss, while the DLPFC (which is at multisynaptic distance from the temporal regions demonstrated no volume loss. In PNFA, the left SMPC was atrophic, possibly reflecting progression from the left anterior insula, while FTD patients may have had SMPC atrophy at the initial stages of the disease. Atrophy of the SMPC may thus be affected by either initial temporal or initial frontal atrophy, making it a common site of frontal atrophy in the dementia subtypes investigated.

  11. Hydropic degeneration of the anterior pituitary gland (adenohypophysis) in uremic rats.

    Science.gov (United States)

    Levine, Seymour; Saltzman, Arthur

    2004-03-01

    We observed hydropic degeneration of the anterior pituitary in rats made uremic by nephrotoxic chemicals, especially when the uremic rats were given a pure carbohydrate diet beforehand. The hydropic degeneration caused loss of nuclear and cytoplasmic content of many or most anterior pituitary cells. It was readily visible in paraffin sections by light microscopy. It was exaggerated when water was injected after the nephrotoxin and it was greatly reduced if saline was injected after the nephrotoxin. Low serum sodium levels in affected rats and the response to saline injection suggested that the mechanism for development of hydropic degeneration of the anterior pituitary gland involved hyponatremia. Depletion of total body sodium probably accounts for the enhancement of hydropic degeneration by the pure carbohydrate diet. Morphologic lesions of the anterior pituitary related to hyponatremia and uremia have not been described previously.

  12. In the eye of the beholder: internally driven uncertainty of danger recruits the amygdala and dorsomedial prefrontal cortex.

    Science.gov (United States)

    Zaretsky, Michal; Mendelsohn, Avi; Mintz, Matti; Hendler, Talma

    2010-10-01

    Interpretation of emotional context is a pivotal aspect of understanding social situations. A critical component of this process is assessment of danger levels in the surrounding, which may have a direct effect on the organism's survival. The limbic system has been implicated in mediating this assessment. In situations of uncertainty, the evaluation process may also call for greater involvement of prefrontal cortex for decision-making and planning of an appropriate behavioral response. In the following study, morphed face images depicting emotional expressions were used to examine brain correlates of subjective uncertainty and perceptual ambiguity regarding danger. Fear and neutral expressions of 20 faces were morphed, and each of the face videos was divided into three sequences of equal length representing three levels of objective certainty regarding the expressions neutral, fear, and ambiguous. Sixteen subjects were scanned in a 1.5-T scanner while viewing 60 x 6-sec video sequences and were asked to report their subjective certainty regarding the level of danger surrounding the face on a four-level scale combining definite/maybe and danger/no-danger values. The individual responses were recorded and used as the basis for a "subjective protocol" versus an "objective protocol." Significant activations of the amygdala, dorsomedial prefrontal cortex, and dorsolateral prefrontal cortex were observed under the subjective protocol of internally driven uncertainty, but not under objective stimuli-based ambiguity. We suggest that this brain network is involved in generating subjective assessment of social affective cues. This study provides further support to the "relevance detector" theory of the amygdala and implicates its importance to behavior relying heavily on subjective assessment of danger, such as in the security domain context.

  13. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem.

  14. Affective and cognitive prefrontal cortex projections to the lateral habenula in humans.

    Directory of Open Access Journals (Sweden)

    Karin eVadovičová

    2014-10-01

    Full Text Available Anterior insula (AI and dorsal ACC (dACC are known to process information about pain, loss, adversities, bad, harmful or suboptimal choices and consequences that threaten survival or well-being. Also pregenual ACC (pgACC is linked to loss and pain, being activated by sad thoughts and regrets. Lateral habenula (LHb is stimulated by predicted and received pain, discomfort, aversive outcome, loss. Its chronic stimulation makes us feel worse/low and gradually stops us choosing and moving for the suboptimal or punished choices, by direct and indirect (via rostromedial tegmental nucleus RMTg inhibition of DRN and VTA/SNc. The response selectivity of LHb neurons suggests their cortical input from affective and cognitive evaluative regions that make expectations about bad, unpleasant or suboptimal outcomes. Based on these facts we predicted direct dACC, pgACC and AI projections to LHb, which form part of an adversity processing circuit that learns to avoid bad outcomes by suppressing dopamine and serotonin signal. To test this connectivity we used Diffusion Tensor Imaging (DTI. We found dACC, pgACC, AI and caudolateral OFC projections to LHb. We predicted no corticohabenular projections from the reward processing regions: medial OFC (mOFC and ventral ACC (vACC because both respond most strongly to good, high valued stimuli and outcomes, inducing dopamine and serotonin release. This lack of LHb projections was confirmed for vACC and likely for mOFC. The surprising findings were the corticohabenular projections from the cognitive prefrontal cortex regions, known for flexible reasoning, planning and combining whatever information are relevant for reaching current goals. We propose that the prefrontohabenular projections provide a teaching signal for value-based choice behaviour, to learn to deselect, avoid or inhibit the potentially harmful, low valued or wrong choices, goals, strategies, predictions and ways of doing things, to prevent bad or suboptimal

  15. Naloxone-Reversible Modulation of Pain Circuitry by Left Prefrontal rTMS

    Science.gov (United States)

    Taylor, Joseph J; Borckardt, Jeffrey J; Canterberry, Melanie; Li, Xingbao; Hanlon, Colleen A; Brown, Truman R; George, Mark S

    2013-01-01

    A 20-minute session of 10 Hz repetitive transcranial magnetic stimulation (rTMS) of Brodmann Area (BA) nine of the left dorsolateral prefrontal cortex (DLPFC) can produce analgesic effects on postoperative and laboratory-induced pain. This analgesia is blocked by pretreatment with naloxone, a μ-opioid antagonist. The purpose of this sham-controlled, double-blind, crossover study was to identify the neural circuitry that underlies the analgesic effects of left DLPFC rTMS, and to examine how the function of this circuit, including midbrain and medulla, changes during opioid blockade. Fourteen healthy volunteers were randomized to receive intravenous saline or naloxone immediately before sham and real left DLPFC rTMS on the same experimental visit. One week later, each participant received the novel pretreatment but the same stimulation paradigm. Using short sessions of heat on capsaicin-sensitized skin, hot allodynia was assessed during 3 Tesla functional magnetic resonance imaging (fMRI) scanning at baseline, post-sham rTMS, and post-real rTMS. Data were analyzed using whole-brain voxel-based analysis, as well as time series extractions from anatomically-defined regions of interest representing midbrain and medulla. Consistent with previous findings, real rTMS significantly reduced hot allodynia pain ratings. This analgesia was associated with elevated blood oxygenation-level dependent (BOLD) signal in BAs 9 and 10, and diminished BOLD signal in the anterior cingulate, thalamus, midbrain, and medulla during pain. Naloxone pretreatment largely abolished rTMS-induced analgesia, as well as rTMS-induced attenuation of BOLD signal response to painful stimuli throughout pain processing regions, including midbrain and medulla. These preliminary results suggest that left DLPFC rTMS drives top-down opioidergic analgesia. PMID:23314221

  16. Anticoagulant-induced hemarthrosis presenting as anterior shoulder dislocation.

    Science.gov (United States)

    Davis, Christine B; Nowak, Richard M

    2014-12-01

    This is a case of nontraumatic shoulder pain initially diagnosed on x-ray as an anterior dislocation. The patient was on anticoagulants and, in actuality, had severe hemarthrosis that caused the subluxation. Attempts to reduce the dislocation in this situation might have resulted in worsening of the intra-articular bleed. There has been only 1 similar reported case in the European Journal of Emergency Medicine in 2013 of a 53-year-old woman who was thought to have a nontraumatic anterior shoulder dislocation, and attempts were unsuccessful at reduction. Definitive therapy involved hemarthrosis aspiration. Others have reported spontaneous hemarthrosis due to anticoagulants; however, only 1 has reported an initial mistaken joint dislocation diagnosis. Nontraumatic hemarthrosis do occur in patients on anticoagulant therapy, and it is important to recognize that this can be misdiagnosed as a joint dislocation requiring reduction. In a patient who is on anticoagulants presenting with nontraumatic joint pain and anterior shoulder or possibly other dislocations on plain radiographs, it is pertinent to consider hemarthrosis.

  17. Monetary reward suppresses anterior insula activity during social pain.

    Science.gov (United States)

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion.

  18. Approach to the active patient with chronic anterior knee pain.

    Science.gov (United States)

    Atanda, Alfred; Ruiz, Devin; Dodson, Christopher C; Frederick, Robert W

    2012-02-01

    The diagnosis and management of chronic anterior knee pain in the active individual can be frustrating for both the patient and physician. Pain may be a result of a single traumatic event or, more commonly, repetitive overuse. "Anterior knee pain," "patellofemoral pain syndrome," and "chondromalacia" are terms that are often used interchangeably to describe multiple conditions that occur in the same anatomic region but that can have significantly different etiologies. Potential pain sources include connective or soft tissue irritation, intra-articular cartilage damage, mechanical irritation, nerve-mediated abnormalities, systemic conditions, or psychosocial issues. Patients with anterior knee pain often report pain during weightbearing activities that involve significant knee flexion, such as squatting, running, jumping, and walking up stairs. A detailed history and thorough physical examination can improve the differential diagnosis. Plain radiographs (anteroposterior, anteroposterior flexion, lateral, and axial views) can be ordered in severe or recalcitrant cases. Treatment is typically nonoperative and includes activity modification, nonsteroidal anti-inflammatory drugs, supervised physical therapy, orthotics, and footwear adjustment. Patients should be informed that it may take several months for symptoms to resolve. It is important for patients to be aware of and avoid aggravating activities that can cause symptom recurrence. Patients who are unresponsive to conservative treatment, or those who have an underlying systemic condition, should be referred to an orthopedic surgeon or an appropriate medical specialist.

  19. Anterior dental evolution in the Australopithecus anamensis-afarensis lineage.

    Science.gov (United States)

    Ward, Carol V; Plavcan, J Michael; Manthi, Fredrick K

    2010-10-27

    Australopithecus anamensis is the earliest known species of the Australopithecus-human clade and is the likely ancestor of Australopithecus afarensis. Investigating possible selective pressures underlying these changes is key to understanding the patterns of selection shaping the origins and early evolution of the Australopithecus-human clade. During the course of the Au. anamensis-afarensis lineage, significant changes appear to occur particularly in the anterior dentition, but also in jaw structure and molar form, suggesting selection for altered diet and/or food processing. Specifically, canine tooth crown height does not change, but maxillary canines and P(3)s become shorter mesiodistally, canine tooth crowns become more symmetrical in profile and P(3)s less unicuspid. Canine roots diminish in size and dimorphism, especially relative to the size of the postcanine teeth. Molar crowns become higher. Tooth rows become more divergent and symphyseal form changes. Dietary change involving anterior dental use is also suggested by less intense anterior tooth wear in Au. afarensis. These dental changes signal selection for altered dietary behaviour and explain some differences in craniofacial form between these taxa. These data identify Au. anamensis not just as a more primitive version of Au. afarensis, but as a dynamic member of an evolving lineage leading to Au. afarensis, and raise intriguing questions about what other evolutionary changes occurred during the early evolution of the Australopithecus-human clade, and what characterized the origins of the group.

  20. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact.

    Science.gov (United States)

    Yeow, C H; Lee, P V S; Goh, J C H

    2010-01-19

    Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70 degrees flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8 degrees . There was a moderate linear relationship (Y=0.16X; R(2)=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior-posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.

  1. Guideline on anterior cruciate ligament injury

    NARCIS (Netherlands)

    D.E. Meuffels (Duncan); M.T. Poldervaart (Michelle T.); R.L. Diercks (Ron L.); A.W.F.M. Fievez (Alex W.F.M.); T.W. Patt (Thomas W.); C.P. van der Hart (Cor P.); E.R. Hammacher (Eric); F. van der Meer (Fred); E.A. Goedhart (Edwin A.); A.F. Lenssen (Anton F); S.B. Muller-Ploeger (Sabrina B); M.A. Pols (Margreet); D.B.F. Saris (Daniel)

    2012-01-01

    textabstractThe Dutch Orthopaedic Association has a long tradition of development of practical clinical guidelines. Here we present the recommendations from the multidisciplinary clinical guideline working group for anterior cruciate ligament injury. The following 8 clinical questions were formulate

  2. Care of children with anterior uveitis.

    Science.gov (United States)

    Kanski, J J

    1981-09-01

    The clinical features of 290 children with anterior uveitis are presented. The vast majority suffered from chronic uveitis. Specific uveitis entities in children include the syndrome of 'chronic iridocyclitis' in girls, heterochromic cyclitis, and pars planitis. Systemic associations include sarcoidosis, the Vogt-Harada-Koyanagi syndrome, and the seronegative arthritides (juvenile chronic arthritis, juvenile ankylosing spondylitis, psoriatic arthritis, and rarely Reiter's and Beçet's syndromes). Children with a pauciarticular onset of juvenile chronic arthritis, especially when combined with positive findings for antinuclear antibody, are at particular risk of developing chronic anterior uveitis. Most cases of chronic anterior uveitis can be controlled with topical corticosteroids. Those that are resistant to both topical and systemic corticosteroids may have to be treated with chlorambucil. The operation of lensectomy is a great advance in the management of complicated cataract. Secondary glaucoma is the most devastating complication of chronic anterior uveitis in children and responds poorly to therapy.

  3. Head positioning for anterior circulation aneurysms microsurgery

    Directory of Open Access Journals (Sweden)

    Feres Chaddad-Neto

    2014-11-01

    Full Text Available Objective To study the ideal patient's head positioning for the anterior circulation aneurysms microsurgery. Method We divided the study in two parts. Firstly, 10 fresh cadaveric heads were positioned and dissected in order to ideally expose the anterior circulation aneurysm sites. Afterwards, 110 patients were submitted to anterior circulation aneurysms microsurgery. During the surgery, the patient's head was positioned accordingly to the aneurysm location and the results from the cadaveric study. The effectiveness of the position was noted. Results We could determine mainly two patterns for head positioning for the anterior circulation aneurysms. Conclusion The best surgical exposure is related to specific head positions. The proper angle of microscopic view may minimize neurovascular injury and brain retraction.

  4. Role of prefrontal cortical calcium independent phospholipase A₂ in antidepressant-like effect of maprotiline.

    Science.gov (United States)

    Lee, Lynette Hui-Wen; Tan, Chay-Hoon; Shui, Guanghou; Wenk, Markus R; Ong, Wei-Yi

    2012-09-01

    There is increasing interest in the pathophysiology and neurochemistry of the prefrontal cortex (PFC) in depression. Blood flow and metabolism are decreased in the PFC of patients with depression compared to controls. Changes in long-chain polyunsaturated fatty acids (PUFAs) are also associated with depression. This study was conducted to elucidate a possible role of PFC activity of an enzyme involved in the release of docosahexaenoic acid (DHA), i.e. calcium-independent phospholipase A2 (iPLA₂), in the effects of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline, in mice. Treatment of Balb/C mice with maprotiline for 4 wk resulted in reduction in the level of behavioural despair, as determined by decreased immobility and increased climbing during the forced swim test. In contrast, mice treated with maprotiline plus bilateral prefrontal cortical injections of antisense oligonucleotide to iPLA₂, showed significantly increased immobility and decreased climbing, to levels comparable to saline-treated controls, indicating abolishment of the antidepressant-like effect of maprotiline. Lipidomic analyses showed significant decreases in phosphatidylcholine species containing long-chain PUFAs and increases in lysophosphatidylcholine after maprotiline treatment, indicating increased PLA₂ activity and endogenous release of eicosapentaenoic acid (EPA) or DHA after maprotiline treatment. These changes in lipid profiles were absent in mice that received maprotiline and PFC injections of antisense oligonucleotide to iPLA₂. Together, the results indicate that PFC iPLA₂ activity plays an important role in the antidepressant-like effect of maprotiline, possibly through endogenous release of long-chain PUFAs.

  5. Association of serum VEGF levels with prefrontal cortex volume in schizophrenia.

    Science.gov (United States)

    Pillai, A; Howell, K R; Ahmed, A O; Weinberg, D; Allen, K M; Bruggemann, J; Lenroot, R; Liu, D; Galletly, C; Weickert, C S; Weickert, T W

    2016-05-01

    A large body of evidence indicates alterations in brain regional cellular energy metabolism and blood flow in schizophrenia. Among the different molecules regulating blood flow, vascular endothelial growth factor (VEGF) is generally accepted as the major factor involved in the process of angiogenesis. In the present study, we examined whether peripheral VEGF levels correlate with changes in the prefrontal cortex (PFC) volume in patients with schizophrenia and in healthy controls. Whole-blood samples were obtained from 96 people with schizophrenia or schizoaffective disorder and 83 healthy controls. Serum VEGF protein levels were analyzed by enzyme-linked immunosorbent assay, whereas quantitative PCR was performed to measure interleukin-6 (IL-6, a pro-inflammatory marker implicated in schizophrenia) mRNA levels in the blood samples. Structural magnetic resonance imaging scans were obtained using a 3T Achieva scanner on a subset of 59 people with schizophrenia or schizoaffective disorder and 65 healthy controls, and prefrontal volumes were obtained using FreeSurfer software. As compared with healthy controls, individuals with schizophrenia had a significant increase in log-transformed mean serum VEGF levels (t(177)=2.9, P=0.005). A significant inverse correlation (r=-0.40, P=0.002) between serum VEGF and total frontal pole volume was found in patients with schizophrenia/schizoaffective disorder. Moreover, we observed a significant positive association (r=0.24, P=0.03) between serum VEGF and IL-6 mRNA levels in patients with schizophrenia. These findings suggest an association between serum VEGF and inflammation, and that serum VEGF levels are related to structural abnormalities in the PFC of people with schizophrenia.

  6. Opposite effects of dihydrotestosterone and estradiol on apoptosis in the anterior pituitary gland from male rats.

    Science.gov (United States)

    Magri, María Laura; Gottardo, María Florencia; Zárate, Sandra; Eijo, Guadalupe; Ferraris, Jimena; Jaita, Gabriela; Ayala, Mariela Moreno; Candolfi, Marianela; Pisera, Daniel; Seilicovich, Adriana

    2016-03-01

    Hormones locally synthesized in the anterior pituitary gland are involved in regulation of pituitary cell renewal. In the pituitary, testosterone (T) may exert its actions per se or by conversion to dihydrotestosterone (DHT) or 17β-estradiol (E2) by 5α-reductase and aromatase activity, which are expressed in this gland. Previous reports from our laboratory showed that estrogens modulate apoptosis of lactotropes and somatotropes from female rats. Now, we examined the in vitro and in vivo effects of gonadal steroids on apoptosis of anterior pituitary cells from adult male rats. T in vitro did not modify apoptosis in anterior pituitary cells from gonadectomized (GNX) male rats. DHT, a non-aromatizable androgen, exerted direct antiapoptotic action on total anterior pituitary cells and folliculo-stellate cells, but not on lactotropes, somatotropes, or gonadotropes. On the contrary, E2 exerted a rapid apoptotic effect on total cells as well as on lactotropes and somatotropes. Incubation of anterior pituitary cells with T in presence of Finasteride, an inhibitor of 5α-reductase, increased the percentage of TUNEL-positive cells. In vivo administration of DHT to GNX rats reduced apoptosis in the anterior pituitary whereas E2 exerted proapoptotic action and reduced cells in G2/M-phase of the cell cycle. In summary, our results indicate that DHT and E2 have opposite effects on apoptosis in the anterior pituitary gland suggesting that local metabolization of T to these steroids could be involved in pituitary cell turnover in males. Changes in expression and/or activity of 5α-reductase and aromatase may play a role in the development of anterior pituitary tumors.

  7. Upper anterior zone restoration with composites

    OpenAIRE

    Lamas Lara, César; CD, Docente del Área de Operatoria Dental y Endodoncia de la Facultad de Odontología de la UNMSM.; Angulo de la Vega, Giselle; CD, Alumna de la Especialidad de Rehabilitación Oral de la Facultad de Odontología de la UNMSM.

    2014-01-01

    The anterior sector problems are very common in our professional practice and became vital importance to make a suitable rehabilitation in these cases; we can not do a good rehabilitation if we do not know the basic characteristics, both aesthetic and functional. Today the composites are a valid alternative for the restoration of the anterior sector, since they offer to us a conservative and aesthetic possibility, but independently of the material to use we have to based on certain rules or p...

  8. Erlotinib-related bilateral anterior uveitis

    Science.gov (United States)

    Ali, Kashif; Kumar, Indu; Usman-Saeed, Muniba; Usman Saeed, Muhammad

    2011-01-01

    The authors report the case of a 68-year-old woman with secondary adenocarcinoma of the lungs from an unknown primary. Erlotinib was started which produced symptoms suggestive of uveitis. Erlotinib was stopped and restarted a month later at a lower dose, which resulted in severe bilateral anterior uveitis. The uveitis settled after stopping erlotinib and treatment with topical steroids and cycloplegics. To the best of the authors’ knowledge, this is the first case of erlotinib-related anterior uveitis. PMID:22694887

  9. Anterior Eye Imaging with Optical Coherence Tomography

    Science.gov (United States)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  10. Anterior cingulate cortex mediates the relationship between O3PUFAs and executive functions in APOE e4 carriers

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2015-05-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between biomarkers of diet and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between omega-3 polyunsaturated fatty acids (O3PUFAs and executive functions in at-risk (APOE e4 carriers, cognitively intact older adults. We hypothesized that higher levels of O3PUFAs are associated with better performance in a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter volume of a specific region thought to be important for cognitive flexibility, the anterior cingulate cortex. Methods: We examined 40 cognitively intact adults between the ages of 65 and 75 with the APOE e4 polymorphism to investigate the relationship between biomarkers of O3PUFAs, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter volume within regions of the prefrontal cortex. Results: A mediation analysis revealed that gray matter volume within the left rostral anterior cingulate cortex partially mediates the relationship between O3PUFA biomarkers and cognitive flexibility. Conclusion: These results suggest that the anterior cingulate cortex acts as a mediator of the relationship between O3PUFAs and cognitive flexibility in cognitively intact adults thought to be at risk for cognitive decline. Through their link to executive functions and neuronal measures of prefrontal cortex volume, O3PUFAs show potential as a nutritional therapy to prevent dysfunction in the aging brain.

  11. Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex.

    Science.gov (United States)

    Shiner, T; Symmonds, M; Guitart-Masip, M; Fleming, S M; Friston, K J; Dolan, R J

    2015-10-01

    Dopamine is implicated in multiple functions, including motor execution, action learning for hedonically salient outcomes, maintenance, and switching of behavioral response set. Here, we used a novel within-subject psychopharmacological and combined functional neuroimaging paradigm, investigating the interaction between hedonic salience, dopamine, and response set shifting, distinct from effects on action learning or motor execution. We asked whether behavioral performance in response set shifting depends on the hedonic salience of reversal cues, by presenting these as null (neutral) or salient (monetary loss) outcomes. We observed marked effects of reversal cue salience on set-switching, with more efficient reversals following salient loss outcomes. L-Dopa degraded this discrimination, leading to inappropriate perseveration. Generic activation in thalamus, insula, and striatum preceded response set switches, with an opposite pattern in ventromedial prefrontal cortex (vmPFC). However, the behavioral effect of hedonic salience was reflected in differential vmPFC deactivation following salient relative to null reversal cues. l-Dopa reversed this pattern in vmPFC, suggesting that its behavioral effects are due to disruption of the stability and switching of firing patterns in prefrontal cortex. Our findings provide a potential neurobiological explanation for paradoxical phenomena, including maintenance of behavioral set despite negative outcomes, seen in impulse control disorders in Parkinson's disease.

  12. The Role of the Medial Prefrontal Cortex-Amygdala Circuit in Stress Effects on the Extinction of Fear

    Directory of Open Access Journals (Sweden)

    Irit Akirav

    2007-01-01

    Full Text Available Stress exposure, depending on its intensity and duration, affects cognition and learning in an adaptive or maladaptive manner. Studies addressing the effects of stress on cognitive processes have mainly focused on conditioned fear, since it is suggested that fear-motivated learning lies at the root of affective and anxiety disorders. Inhibition of fear-motivated response can be accomplished by experimental extinction of the fearful response to the fear-inducing stimulus. Converging evidence indicates that extinction of fear memory requires plasticity in both the medial prefrontal cortex and the amygdala. These brain areas are also deeply involved in mediating the effects of exposure to stress on memory. Moreover, extensive evidence indicates that gamma-aminobutyric acid (GABA transmission plays a primary role in the modulation of behavioral sequelae resulting from a stressful experience, and may also partially mediate inhibitory learning during extinction. In this review, we present evidence that exposure to a stressful experience may impair fear extinction and the possible involvement of the GABA system. Impairment of fear extinction learning is particularly important as it may predispose some individuals to the development of posttraumatic stress disorder. We further discuss a possible dysfunction in the medial prefrontal cortex-amygdala circuit following a stressful experience that may explain the impaired extinction caused by exposure to a stressor.

  13. Is the prefrontal cortex especially enlarged in the human brain allometric relations and remapping factors.

    Science.gov (United States)

    Passingham, Richard E; Smaers, Jeroen B

    2014-01-01

    There has been no agreement as to whether the prefrontal cortex is especially enlarged in the human brain. To answer this question, we analyzed the only two datasets that provide information on total prefrontal cortex volume based on cytoarchitectonic criteria. One delineated the prefrontal cortex proper on the basis of cytoarchitectonic criteria; the other used a proxy of the prefrontal cortex based on a cytoarchitectonic delineation of the frontal lobe. To investigate whether all cortical association areas, including the prefrontal cortex, are enlarged in the human brain, we scaled the different areas to a common reference, the primary visual cortex. To investigate whether the prefrontal cortex is more enlarged than other association areas, we scaled it relative to its inputs from and outputs to other nonprimary areas. We carried out separate regression analyses using different data samples as a predictive baseline group: data for monkeys alone informs us on whether great apes are different from monkeys; data for all non-human anthropoids, including great apes, informs us on whether humans are different from all other primates. The analyses show that the value for the human prefrontal cortex is greater than expected, and that this is true even when data for the great apes are included in the analysis. They also show that the chimpanzee prefrontal cortex is greater than expected for a monkey with a similar sized cortex. We discuss possible functional consequences.

  14. Neurochemical metabolites in the medial prefrontal cortex in bipolar disorder A proton magnetic resonance spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Osman (O)zdel; Demet Kalayci; Gülfizar S(o)zeri-Varma; Yilmaz Kiro(g)lu; Selim Tümkaya; Tu(g)(c)e Toker-U(g)urlu

    2012-01-01

    The aim of this study was to investigate proton magnetic resonance spectroscopy metabolite values in the medial prefrontal cortex of individuals with euthymic bipolar disorder. The subjects consisted of 15 patients with euthymic bipolar disorder type I and 15 healthy controls. We performed proton magnetic resonance spectroscopy of the bilateral medial prefrontal cortex and measured levels of N-acetyl aspartate, choline and creatine. Levels of these three metabolites in the medial prefrontal cortex were found to be lower in patients with bipolar disorder compared with healthy controls. A positive correlation was found between illness duration and choline levels in the right medial prefrontal cortex. Our study suggests that during the euthymic period, there are abnormalities in cellular energy and membrane phospholipid metabolism in the medial prefrontal cortex, and that this may impair neuronal activity and integrity.

  15. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  16. Common polymorphisms in dopamine-related genes combine to produce a 'schizophrenia-like' prefrontal hypoactivity.

    Science.gov (United States)

    Vercammen, A; Weickert, C S; Skilleter, A J; Lenroot, R; Schofield, P R; Weickert, T W

    2014-02-04

    Individual changes in dopamine-related genes influence prefrontal activity during cognitive-affective processes; however, the extent to which common genetic variations combine to influence prefrontal activity is unknown. We assessed catechol-O-methyltransferase (COMT) Val108/158Met (rs4680) and dopamine D2 receptor (DRD2) G-T (rs2283265) single nucleotide polymorphisms and functional magnetic resonance imaging during an emotional response inhibition test in 43 healthy adults and 27 people with schizophrenia to determine the extent to which COMT Val108/158Met and DRD2 G-T polymorphisms combine to influence prefrontal response to cognitive-affective challenges. We found an increased number of cognitive-deficit risk alleles in these two dopamine-regulating genes predict reduced prefrontal activation during response inhibition in healthy adults, mimicking schizophrenia-like prefrontal hypoactivity. Our study provides evidence that functionally related genes can combine to produce a disease-like endophenotype.

  17. Treatment of anterior decompression, bone grafting and internal fixation combined with coblation neucleoplasty for patients with cervical spondylosis involved multilevel%前路减压植骨内固定联合髓核成形术治疗多节段受累颈椎病

    Institute of Scientific and Technical Information of China (English)

    张非; 李青; 张爱明; 梁道臣

    2013-01-01

    目的:探讨前路减压植骨内固定联合等离子髓核成形术治疗多节段受累颈椎病的临床效果。方法回顾性分析2012年3月至12月中山市人民医院采用前路减压植骨内固定结合等离子髓核成形术治疗的30例多节段受累颈椎病患者的临床资料,采用日本骨科学会(JOA)评分对术后临床症状改善情况进行评价。结果30例患者均获得有效随访,随访时间4~9个月(平均6.8个月)。患者术前不适症状均有不同程度改善,无神经功能加重及内固定松动、骨笼脱出等严重并发症发生。术后3个月JOA评分为(14±1)分,较术前的(10±2)分明显改善(t =8.143,P=0.000),JOA改善率为45%。结论前路减压植骨内固定结合等离子髓核成形术治疗多节段受累颈椎病近期效果稳定,并发症少。%Objective To explore clinical effect of anterior decompression, bone grafting and internal fixation combined with coblation neucleoplasty in the treatment of multilevel cervical spondylosis. Methods Clinical data of 30 patients with multilevel cervical spondylosis from March 2012 to December 2012 were retrospectively analyzed and all of them were treated by mono-segmented cervical anterior decompression, bone grafting and internal fixation combined with coblation neucleoplasty in Zhongshan People's Hospital. Clinical effects were evaluated by Japanese Orthopaedic Association (JOA) score. Results All patients obtained follow-up with the average time of 6.8 months (4-9 months). Discomfort symptoms were improved after the operation. No nerve function aggravation occurred, also, no serious complications such as internal fixation loosening or cage pull-out had happened. Compared to preoperative JOA score, JOA score at 3 months postoperatively was improved from (10 ± 2) to (14 ± 1) (t = 8.143,P = 0.000), JOA improvement rate was 45%. Conclusions Mono-segmented cervical anterior decompression, bone graft fusion

  18. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    Science.gov (United States)

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a short-arm human centrifuge as a countermeasure.

  19. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience.

    Science.gov (United States)

    Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J

    2015-01-01

    We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity.

  20. Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self-regulation

    Directory of Open Access Journals (Sweden)

    Stefon evan Noordt

    2012-07-01

    Full Text Available The medial prefrontal cortex (MPFC is central to self-regulation and has been implicated in generating a cluster of event-related potential components, collectively referred to as medial frontal negativities (MFNs. These MFNs are elicited while individuals monitor behavioural and environmental consequences, and include the error-related negativity, Nogo N2, and the feedback-related negativity. A growing cognitive and affective neuroscience literature indicates that the activation of the anterior cingulate cortex and surrounding medial prefrontal regions during performance monitoring is not only influenced by task context, but that these patterns of activity also vary as a function of individual differences (e.g., personality, temperament, clinical and non-clinical symptomatology, socio-political orientation, and genetic polymorphisms, as well as interactions between individual differences and task context. In this review we survey the neuroscience literature on the relations between performance monitoring, personality, task context, and brain functioning with a focus on the MPFC. We relate these issues to the role of affect in the paradigms used to elicit performance-monitoring neural responses and highlight some of the theoretical and clinical implications of this research. We conclude with a discussion of the complexity of these issues and how some of the basic assumptions required for their interpretation may be clarified with future research.

  1. Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy

    Science.gov (United States)

    Moghimi, Saba; Kushki, Azadeh; Power, Sarah; Guerguerian, Anne Marie; Chau, Tom

    2012-04-01

    Emotional responses can be induced by external sensory stimuli. For severely disabled nonverbal individuals who have no means of communication, the decoding of emotion may offer insight into an individual’s state of mind and his/her response to events taking place in the surrounding environment. Near-infrared spectroscopy (NIRS) provides an opportunity for bed-side monitoring of emotions via measurement of hemodynamic activity in the prefrontal cortex, a brain region known to be involved in emotion processing. In this paper, prefrontal cortex activity of ten able-bodied participants was monitored using NIRS as they listened to 78 music excerpts with different emotional content and a control acoustic stimuli consisting of the Brown noise. The participants rated their emotional state after listening to each excerpt along the dimensions of valence (positive versus negative) and arousal (intense versus neutral). These ratings were used to label the NIRS trial data. Using a linear discriminant analysis-based classifier and a two-dimensional time-domain feature set, trials with positive and negative emotions were discriminated with an average accuracy of 71.94% ± 8.19%. Trials with audible Brown noise representing a neutral response were differentiated from high arousal trials with an average accuracy of 71.93% ± 9.09% using a two-dimensional feature set. In nine out of the ten participants, response to the neutral Brown noise was differentiated from high arousal trials with accuracies exceeding chance level, and positive versus negative emotional differentiation accuracies exceeded the chance level in seven out of the ten participants. These results illustrate that NIRS recordings of the prefrontal cortex during presentation of music with emotional content can be automatically decoded in terms of both valence and arousal encouraging future investigation of NIRS-based emotion detection in individuals with severe disabilities.

  2. Characterization of electrically evoked field potentials in the medial prefrontal cortex and orbitofrontal cortex of the rat: modulation by monoamines.

    Science.gov (United States)

    Wallace, Joanne; Jackson, Rosanna K; Shotton, Tanya L; Munjal, Ishaana; McQuade, Richard; Gartside, Sarah E

    2014-02-01

    Medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) play critical roles in cognition and behavioural control. Glutamatergic, GABAergic, and monoaminergic dysfunction in the prefrontal cortex has been hypothesised to underlie symptoms in neuropsychiatric disorders. Here we characterised electrically-evoked field potentials in the mPFC and OFC. Electrical stimulation evoked field potentials in layer V/VI of the mPFC and layer V of the OFC. The earliest component (approximately 2 ms latency) was insensitive to glutamate receptor blockade and was presumed to be presynaptic. Later components were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX (20 µM)) and were assumed to reflect monosynaptic (latency 4-6 ms) and polysynaptic activity (latency 6-40 ms) mediated by glutamate via AMPA/kainate receptor. In the mPFC, but not the OFC, the monosynaptic component was also partly blocked by 2-amino-5-phosphonopentanoic acid (AP-5 (50-100µM)) indicating the involvement of NMDA receptors. Bicuculline (3-10 µM) enhanced the monosynaptic component suggesting electrically-evoked and/or glutamate induced GABA release inhibits the monosynaptic component via GABAA receptor activation. There were complex effects of bicuculline on polysynaptic components. In the mPFC both the mono- and polysynaptic components were attenuated by 5-HT (10-100 µM) and NA (30 and 60 µM) and the monosynaptic component was attenuated by DA (100 µM). In the OFC the mono- and polysynaptic components were also attenuated by 5-HT (100 µM), NA (10-100 µM) but DA (10-100 µM) had no effect. We propose that these pharmacologically characterised electrically-evoked field potentials in the mPFC and OFC are useful models for the study of prefrontal cortical physiology and pathophysiology.

  3. Medial Prefrontal Cortex and HPA Axis Roles in Generation of PTSD-Like Symptoms in SPS Model

    Science.gov (United States)

    2011-09-01

    AD_________________ Award Number: W81XWH-08-1-0661 TITLE: Medial Prefrontal Cortex and HPA Axis...August 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Medial Prefrontal Cortex and HPA Axis Roles In Generation of PTSD-Like Symptoms In SPS Model...emotional regulation (specific aim #3). 15. SUBJECT TERMS PTSD, SPS, anxiety, fear, conditioning, prefrontal cortex , hippocampus, amygdala 16

  4. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?

    Science.gov (United States)

    Aggleton, John P.; Nelson, Andrew J.D.

    2015-01-01

    Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions. PMID:25195980

  5. [Surgical anatomy of the anterior mediastinum].

    Science.gov (United States)

    Biondi, Alberto; Rausei, Stefano; Cananzi, Ferdinando C M; Zoccali, Marco; D'Ugo, Stefano; Persiani, Roberto

    2007-01-01

    The mediastinum is located from the thoracic inlet to the diaphragm between the left and right pleural cavities and contains vital structures of the circulatory, respiratory, digestive, and nervous system. Over the years, since there are no fascial or anatomic planes, anatomists and radiologists have suggested various schemes for subdividing the mediastinum and several anatomical and radiological classifications of the mediastinum are reported in the literature. The most popular of these scheme divides medistinum, for purposes of description, into two parts: an upper portion, above the upper level of the pericardium, which is named the superior mediastinum; and a lower portion, below the upper level of the pericardium. For clinical purposes, the mediastinum may be subdivided into three major areas, i.e. anterior, middle, and posterior compartments. The anterior mediastinum is defined as the region posterior to the sternum and anterior to the heart and brachiocephalic vessels. It extends from the thoracic inlet to the diaphragm and contains the thymus gland, fat, and lymph nodes. This article will review surgical anatomy of the anterior mediastinum and will focus on the surgical approch to anterior mediastinum and thymic diseases.

  6. Ocular Coherence Tomography in the Evaluation of Anterior Eye Injuries in Space Flight

    Science.gov (United States)

    Fer, Dan M.; Law, Jennifer; Wells, Julia

    2017-01-01

    While Ocular Coherence Tomography (OCT) is not a first-line modality to evaluate anterior eye structures terrestrially, it is a resource already available on the International Space Station (ISS) that can be used in medical contingencies that involve the anterior eye. With remote guidance and subject matter expert (SME) support from the ground, a minimally trained crewmember can now use OCT to evaluate anterior eye pathologies on orbit. OCT utilizes low-coherence interferometry to produce detailed cross-sectional and 3D images of the eye in real time. Terrestrially, it has been used to evaluate macular pathologies and glaucoma. Since 2013, OCT has been used onboard the ISS as one part of a suite of hardware to evaluate the Visual Impairment/Intracranial Pressure risk faced by astronauts, specifically assessing changes in the retina and choroid during space flight. The Anterior Segment Module (ASM), an add-on lens, was also flown for research studies, providing an opportunity to evaluate the anterior eye in real time if clinically indicated. Anterior eye pathologies that could be evaluated using OCT were identified. These included corneal abrasions and ulcers, scleritis, and acute angle closure glaucoma. A remote guider script was written to provide ground specialists with step-by-step instructions to guide ISS crewmembers, who do not get trained on the ASM, to evaluate the anterior eye. The instructions were tested on novice subjects and/or operators, whose feedback was incorporated iteratively. The final remote guider script was reviewed by SME optometrists and NASA flight surgeons. The novel application of OCT technology to space flight allows for the acquisition of objective data to diagnose anterior eye pathologies when other modalities are not available. This demonstrates the versatility of OCT and highlights the advantages of using existing hardware and remote guidance skills to expand clinical capabilities in space flight.

  7. The impact of combined meniscus tear on quality of life after anterior cruciate ligament reconstruction

    Directory of Open Access Journals (Sweden)

    Harhaji Vladimir V.

    2016-01-01

    Full Text Available Introduction. An anterior cruciate ligament injury represents a significant epidemiological problem worldwide, especially due to involving young, sporty and active working-age population. This study has been conducted in order to compare the quality of life of patients who had isolated anterior cruciate ligament tear and of those who suffered from an associated meniscal injury. Material and Methods. This study included 185 patients who had undergone reconstruction of the anterior cruciate ligament at the Department of Orthopedic Surgery and Traumatology in Novi Sad from January 1st, 2012 to December 31st, 2012. The patients were divided into 2 groups: group A consisted of patients who had anterior cruciate ligament reconstruction only, and group B consisted of patients who had partial meniscectomy in addition to the anterior cruciate ligament reconstruction. The follow-up period was 12 months. Results. Distribution of patients by gender was significantly in favor of men. In our study, 146 patients were male and 39 patients were female. The average age of patients was 26.1 years overall (16-55 years, being 26.9 years for men, and 23.3 years for female patients. Out of 185 patients, 110 had an isolated anterior cruciate ligament injury, while 75 suffered both meniscus, internal or external, and anterior cruciate ligament injury. Conclusion. The comparison of the quality of life of patients in both groups showed no statistically significant difference. Therefore, we were not able to prove the hypothesis about the superior quality of life of those patients who had suffered from a ruptured anterior cruciate ligament only.

  8. Tau Deletion Prevents Stress-Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria.

    Science.gov (United States)

    Lopes, Sofia; Teplytska, Larysa; Vaz-Silva, Joao; Dioli, Chrysoula; Trindade, Rita; Morais, Monica; Webhofer, Christian; Maccarrone, Giuseppina; Almeida, Osborne F X; Turck, Christoph W; Sousa, Nuno; Sotiropoulos, Ioannis; Filiou, Michaela D

    2016-04-12

    Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction. Chronic stress, a well-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive deficits. However, the cause-effect relationship between these events remains to be established. To test the involvement of Tau in stress-induced impairments of cognition, we investigated the impact of stress on cognitive behavior, neuronal structure, and the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for mitochondria in the regulation of the effects of stress. Specifically, chronically stressed animals exhibit Tau-dependent alterations in the levels of proteins involved in mitochondrial transport and oxidative phosphorylation as well as in the synaptic localization of mitochondria in PFC. These findings provide evidence for a causal role of Tau in mediating stress-elicited neuronal atrophy and cognitive impairment and indicate that Tau may exert its effects through synaptic mitochondria.

  9. Ventromedial prefrontal damage reduces mind-wandering and biases its temporal focus.

    Science.gov (United States)

    Bertossi, Elena; Ciaramelli, Elisa

    2016-11-01

    Mind-wandering, an ubiquitous expression of humans' mental life, reflects a drift of attention away from the current task towards self-generated thoughts, and has been associated with activity in the brain default network. To date, however, little is understood about the contribution of individual nodes of this network to mind-wandering. Here, we investigated whether the ventromedial prefrontal cortex (vmPFC) is critically involved in mind-wandering, by studying the propensity to mind-wander in patients with lesion to the vmPFC (vmPFC patients), control patients with lesions not involving the vmPFC, and healthy individuals. Participants performed three tasks varying in cognitive demands while their thoughts were periodically sampled, and a self-report scale of daydreaming in daily life. vmPFC patients exhibited reduced mind-wandering rates across tasks, and claimed less frequent daydreaming, than both healthy and brain-damaged controls. vmPFC damage reduced off-task thoughts related to the future, while it promoted those about the present. These results indicate that vmPFC critically supports mind-wandering, possibly by helping to construct future-related scenarios and thoughts that have the potential to draw attention inward, away from the ongoing tasks.

  10. Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning

    Directory of Open Access Journals (Sweden)

    Dash Pramod K

    2006-10-01

    Full Text Available Abstract Background The extent of similarity between consolidation and reconsolidation is not yet fully understood. One of the differences noted is that not every brain region involved in consolidation exhibits reconsolidation. In trace fear conditioning, the hippocampus and the medial prefrontal cortex (mPFC are required for consolidation of long-term memory. We have previously demonstrated that trace fear memory is susceptible to infusion of the protein synthesis inhibitor anisomycin into the hippocampus following recall. In the present study, we examine whether protein synthesis inhibition in the mPFC following recall similarly results in the observation of reconsolidation of trace fear memory. Results Targeted intra-mPFC infusions of anisomycin or vehicle were performed immediately following recall of trace fear memory at 24 hours, or at 30 days, following training in a one-day or a two-day protocol. The present study demonstrates three key findings: 1 trace fear memory does not undergo protein synthesis dependent reconsolidation in the PFC, regardless of the intensity of the training, and 2 regardless of whether the memory is recent or remote, and 3 intra-mPFC inhibition of protein synthesis immediately following training impaired remote (30 days memory. Conclusion These results suggest that not all structures that participate in memory storage are involved in reconsolidation. Alternatively, certain types of memory-related information may reconsolidate, while other components of memory may not.

  11. Neuronal categorization and discrimination of social behaviors in primate prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Joji Tsunada

    Full Text Available It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies. Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments.

  12. Effects of selective REM sleep deprivation on prefrontal gamma activity and executive functions.

    Science.gov (United States)

    Corsi-Cabrera, M; Rosales-Lagarde, A; del Río-Portilla, Y; Sifuentes-Ortega, R; Alcántara-Quintero, B

    2015-05-01

    Given that the dorsolateral prefrontal cortex is involved in executive functions and is deactivated and decoupled from posterior associative regions during REM sleep, that Gamma temporal coupling involved in information processing is enhanced during REM sleep, and that adult humans spend about 90 min of every 24h in REM sleep, it might be expected that REM sleep deprivation would modify Gamma temporal coupling and have a deteriorating effect on executive functions. We analyzed EEG Gamma activity and temporal coupling during implementation of a rule-guided task before and after REM sleep deprivation and its effect on verbal fluency, flexible thinking and selective attention. After two nights in the laboratory for adaptation, on the third night subjects (n=18) were randomly assigned to either selective REM sleep deprivation effectuated by awakening them at each REM sleep onset or, the same number of NREM sleep awakenings as a control for unspecific effects of sleep interruptions. Implementation of abstract rules to guide behavior required greater activation and synchronization of Gamma activity in the frontopolar regions after REM sleep reduction from 20.6% at baseline to just 3.93% of total sleep time. However, contrary to our hypothesis, both groups showed an overall improvement in executive task performance and no effect on their capacity to sustain selective attention. These results suggest that after one night of selective REM sleep deprivation executive functions can be compensated by increasing frontal activation and they still require the participation of supervisory control by frontopolar regions.

  13. Structural Variation within the Amygdala and Ventromedial Prefrontal Cortex Predict Memory for Impressions in Older Adults

    Directory of Open Access Journals (Sweden)

    Brittany Shane Cassidy

    2012-08-01

    Full Text Available Research has shown that lesions to regions involved in social and emotional cognition disrupt socioemotional processing and memory. We investigated how structural variation of regions involved in socioemotional memory (ventromedial prefrontal cortex [vmPFC], amygdala, as opposed to a region implicated in explicit memory (hippocampus, affected memory for impressions in young and older adults. Anatomical MRI scans for fifteen young and fifteen older adults were obtained and reconstructed to gather information about cortical thickness and subcortical volume. Young adults had greater amygdala and hippocampus volumes than old, and thicker left vmPFC than old, although right vmPFC thickness did not differ across the age groups. Participants formed behavior-based impressions and responded to interpersonally meaningful, social but interpersonally irrelevant, or non-social prompts, and completed a memory test. Results showed that greater left amygdala volume predicted enhanced overall memory for impressions in older but not younger adults. Increased right vmPFC thickness in older, but not younger, adults correlated with enhanced memory for impressions formed in the interpersonally meaningful context. Hippocampal volume was not predictive of social memory in young or older adults. These findings demonstrate the importance of structural variation in regions linked to socioemotional processing in the retention of impressions with age, and suggest that the amygdala and vmPFC play an integral role when encoding and retrieving social information.

  14. Transcranial magnetic stimulation of medial prefrontal cortex modulates face expressions processing in a priming task.

    Science.gov (United States)

    Mattavelli, G; Cattaneo, Z; Papagno, C

    2011-04-01

    The medial prefrontal cortex (mPFC) and the right somatosensory cortex (rSC) are known to be involved in emotion processing and face expression recognition, although the possibility of segregated circuits for specific emotions in these regions remains unclear. To investigate this issue, we used transcranial magnetic stimulation (TMS) together with a priming paradigm to modulate the activation state of the mPFC and the rSC during emotional expressions discrimination. This novel paradigm allows analyzing how TMS interacts with the ongoing activity of different neuronal populations following prime processing. Participants were asked to discriminate between angry and happy faces that were preceded by a congruent prime (a word expressing the same emotion), an incongruent prime (a word expressing the opposite emotion) or a neutral prime. In TMS trials, a single pulse was delivered over the mPFC, rSC or Vertex (control site) between prime and target presentation. TMS applied over the mPFC significantly affected the priming effect, by selectively increasing response latencies in congruent trials. This indicates that the mPFC contains different neural representations for angry and happy expressions. TMS over rSC did not significantly affect the priming effect, suggesting that rSC is not involved in processing verbal emotional stimuli.

  15. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study.

    Science.gov (United States)

    Yan, Yulong; Wei, Rizhen; Zhang, Qian; Jin, Zhenlan; Li, Ling

    2016-07-25

    Although previous studies have shown that fronto-parietal attentional networks play a crucial role in bottom-up and top-down processes, the relative contribution of the frontal and parietal cortices to these processes remains elusive. Here we used transcranial magnetic stimulation (TMS) to interfere with the activity of the right dorsal prefrontal cortex (DLPFC) or the right posterior parietal cortex (PPC), immediately prior to the onset of the visual search display. Participants searched a target defined by color and orientation in "pop-out" or "search" condition. Repetitive TMS was applied to either the right DLPFC or the right PPC on different days. Performance was evaluated at baseline (no TMS), during TMS, and after TMS (Post-session). RTs were prolonged when TMS was applied over the DLPFC in the search, but not in the pop-out condition, relative to the baseline session. In comparison, TMS over the PPC prolonged RTs in the pop-out condition, and when the target appeared in the left visual field for the search condition. Taken together these findings provide evidence for a differential role of DLPFC and PPC in the visual search, indicating that DLPFC has a specific involvement in the "search" condition, while PPC is mainly involved in detecting "pop-out" targets.

  16. Prefrontal lobotomy on Evita was done for behavior/personality modification, not just for pain control.

    Science.gov (United States)

    Nijensohn, Daniel E

    2015-07-01

    Eva Perón, best known as Evita, underwent a prefrontal lobotomy in 1952. Although the procedure was said to have been performed to relieve the pain of metastatic cancer, the author carried out a search for evidence that suggests that the procedure was prescribed to decrease violence and to modify Evita's behavior and personality, and not just for pain control. To further elucidate the circumstances surrounding the treatment of this well-known historic figure, the author reviewed the development of the procedure known as prefrontal lobotomy and its three main indications: management of psychiatric illness, control of intractable pain from terminal cancer, and mind control and behavior/personality modification. The role of pioneering neurosurgeons in the development of prefrontal lobotomy, particularly in Connecticut and at Yale University, was also studied, and the political and historical conditions in Argentina in 1952 and to the present were analyzed. Evita was the wife of Juan Perón, who was the supreme leader of the Peronist party as well as president of Argentina. In 1952, however, the Peronist government in Argentina was bicephalic because Evita led the left wing of the party and ran the Female Peronist Party and the Eva Perón Foundation. She was followed by a group of hardcore loyalists interested in accelerating the revolution. Evita was also suffering from metastatic cervical cancer, and her illness increased her anxiety and moved her to purchase weapons to start training workers' militias. Although the apparent purpose was to fight her husband's enemies, this was done without his knowledge. She delivered fiery political speeches and wrote incendiary documents that would have led to a fierce clash in the country at that time. Notwithstanding the disreputable connotation of conspiracy theories, evidence was found of a potentially sinister political conspiracy, led by General Perón, to quiet down his wife Evita and modify her behavior/personality to

  17. Peripheral nerve involvement in spinocerebellar ataxias

    NARCIS (Netherlands)

    van de Warrenburg, Bart P C; Notermans, Nicolette C; Schelhaas, Helenius J; van Alfen, Nens; Sinke, Richard J; Knoers, Nine V A M; Zwarts, Machiel J; Kremer, Berry P H

    2004-01-01

    BACKGROUND: In autosomal dominant cerebellar ataxias (ADCAs), it is unclear whether the associated peripheral nerve involvement is always a typical length-dependent axonopathy rather than primary neuronopathy due to neuronal degeneration in the spinal anterior horns and/or dorsal root ganglia. OBJEC

  18. THYMOLIPOMA: A RARE, LARGE ANTERIOR MEDIASTINAL MASS

    Directory of Open Access Journals (Sweden)

    Premananth

    2015-07-01

    Full Text Available Thymolipoma is a rare benign tumor of anterior mediastinum, described by Lange in 1916. 1 Less than 200 cases have been reported worldwide. 2 It accounts for 2% to 9% of thymic tumours. 3 We report a case of thymolipoma in a 37 year s old male patient, who pre sented with cough, dys p nea, chest pain for 2 months. CT THORAX revealed a large anterior mediastinal mass extending in to right hemithorax arising from thymus gland, with multiple areas of fat density, no significant mediastinal adenopathy, complete collap se of right middle and lower lobe suggestive of thymolipoma. CT guided biopsy suggestive of thymic neoplasm. The tumour was removed enbloc through surgery. Histopathological examination of large mass lesion confirmed thymolipoma. We report this case to emp hasize the importance of considering thymolipoma as a differential diagnosis of anterior mediastinal mass, although rare.

  19. Esthetic crown lengthening for maxillary anterior teeth.

    Science.gov (United States)

    Sonick, M

    1997-08-01

    In the maxillary anterior region, the gingival labial margin position is an important parameter in the achievement of an ideal smile. The relationship between the periodontium and the restoration is critical if gingival health and esthetics are to be achieved. Periodontal therapy is a necessary and useful adjunct when any anterior restoration is undertaken. Anterior surgical crown lengthening may be undertaken to avoid restorative margin impingement on the biologic width. Crown lengthening is also used to alter the gingival labial profiles. This article discusses the esthetic parameters of ideal gingival labial positions and presents a classification of crown-lengthening procedures and the procedure for a two-stage crown-lengthening technique. The two-stage crown-lengthening technique is surgically precise because healing is predictable.

  20. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates.

    Science.gov (United States)

    Clark, Kelsey; Squire, Ryan Fox; Merrikhi, Yaser; Noudoost, Behrad

    2015-09-01

    Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain.

  1. Sleep deprivation alters valuation signals in the ventromedial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Camilo eLibedinsky

    2011-10-01

    Full Text Available Even a single night of total sleep-deprivation (SD can have dramatic effects on economic decision making. Here we tested the novel hypothesis that SD influences economic decisions by altering the valuation process. Using functional magnetic resonance imaging (fMRI we identified value signals related to the anticipation and the experience of monetary and social rewards (attractive female faces. We then derived decision value signals that were predictive of each participant’s willingness to exchange money for brief views of attractive faces in an independent market task. Strikingly, SD altered decision value signals in ventromedial prefrontal cortex (VMPFC in proportion to the corresponding change in economic preferences. These changes in preference were independent of the effects of SD on attention and vigilance. Our results provide novel evidence that signals in VMPFC track the current state of the individual, and thus reflect not static but constructed preferences.

  2. Not so "silent":The human prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Prakash Narain Tandon

    2013-01-01

    Full Text Available Little was known about the human prefrontal cortex till recently. It was thus labeled as the "silent area," "uncommitted cortex." It not only constitutes the largest component of the human brain but is the latest evolutionary addition to the mammalian brain. It endows the human beings with qualities that differentiate humans from all other animals. During the last couple of decades the advent of modern electrophysiological and imaging (functional magnetic resonance imaging, proton emission tomography, SPECT techniques have provided a wealth of insight into its role in memory, thought, emotions, moral judgment, social behavior, evaluating rewards, and assessing its fairness or otherwise and above all self-awareness. This brief review summarize the recent significant observations on its functions and connectivity which would interest the cognitive scientists and clinicians alike.

  3. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    Directory of Open Access Journals (Sweden)

    Boes Aaron D

    2011-12-01

    Full Text Available Abstract Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process.

  4. Power spectrum scale invariance identifies prefrontal dysregulation in paranoid schizophrenia.

    Science.gov (United States)

    Radulescu, Anca R; Rubin, Denis; Strey, Helmut H; Mujica-Parodi, Lilianne R

    2012-07-01

    Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect-valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k(1) : Z = 4.3215, P = 0.00002 and k(2) : Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ -1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = -1.9437, P = 0.05 for k(1) ; Z = -2.5099, P = 0.01 for k(2) ). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region.

  5. [Subjective memory complaints, personality and prefrontal symptomatology in young adults].

    Science.gov (United States)

    Pedrero-Pérez, Eduardo J; Ruiz-Sánchez de León, José M

    2013-10-01

    Introduccion. El presente trabajo explora dos cuestiones relacionadas con la aparicion de quejas subjetivas de memoria en adultos jovenes: la posibilidad de que dichas quejas sean resultado de deficits atencionales y ejecutivos, y, por otro lado, si determinadas caracteristicas de la personalidad propician y modulan la expresion clinica de las quejas. Sujetos y metodos. Se administro el Memory Everyday Failures, version española, el inventario de sintomas prefrontales y el inventario del temperamento y el caracter-revisado a una muestra de 1.132 participantes (900 de poblacion general y 232 en tratamiento por adiccion a drogas). Se exploro la correlacion entre variables de las quejas de memoria, del funcionamiento prefrontal en la vida diaria y de las dimensiones de la personalidad propuestas por Cloninger. Se estudiaron relaciones de causalidad entre las variables mediante metodos estructurales. Resultados. Se observa una fuerte correlacion entre las quejas cognitivas y la sintomatologia prefrontal, lo que sugiere que las quejas son, en realidad, resultado de una inadecuada gestion atencional y ejecutiva que propicia los errores cotidianos. Se aprecia tambien una relacion con gran tamaño del efecto entre las quejas cognitivas y la baja autodireccion. Esta dimension de la personalidad presenta una importante capacidad predictiva sobre la aparicion y la intensidad de las quejas, bien directamente, bien modulada por otras dimensiones, especialmente la evitacion del daño. Conclusiones. Los datos apoyan la idea de que las quejas de memoria son producto de la autopercepcion de fallos y errores cotidianos provocados a nivel atencional y ejecutivo –aunque son tenidos por olvidos mnesicos–, y que la expresion clinica de dichas quejas esta modulada por un perfil de la personalidad.

  6. Anterior ischemic optic neuropathy following dengue fever.

    Science.gov (United States)

    Ramakrishnan, Reshma; Shrivastava, Saurabh; Deshpande, Shrikant; Patkar, Priyanka

    2016-01-01

    Dengue fever is caused by a flavivirus. This infection is endemic in the tropics and warm temperate regions of the world. Ocular manifestations of dengue fever include subconjunctival, vitreous, and retinal haemorrhages; posterior uveitis; optic neuritis; and maculopathies, haemorrhage, and oedema. However anterior ischemic optic neuropathy is a rare presentation. Optic nerve ischemia most frequently occurs at the optic nerve head, where structural crowding of nerve fibers and reduction of the vascular supply may combine to impair perfusion to a critical degree and produce optic disc oedema. Here we present a case of anterior ischemic optic neurapathy associated with dengue fever.

  7. Study of aqueous humour in anterior uveitis

    Directory of Open Access Journals (Sweden)

    Kalsy Jairaj

    1990-01-01

    Full Text Available Aetiological diagnosis of anterior uveitis was made clinically and substantiated with relevant investigations. Aqueous humour obtained under aseptic conditions, was analyzed for the cells study, culture and protein profile, using polyacrylamide gel electrophoresis. The results were analysed with the help of known clinical facts. Culture and smears were invariably negative, while the lymphocytes were present in varying numbers, polymorphs and macrophages afforded a useful clue for confirmatory diagnosis. The electrophoretic pattern of the proteins was related to the duration of the disease and was same in a group while it was distinctive among different groups of anterior uveitis.

  8. ANTERIOR OSTEOPHYTE IDENTIFICATION IN CERVICAL VERTEBRAE

    Directory of Open Access Journals (Sweden)

    A. T. Chougale

    2011-06-01

    Full Text Available Radiologist always examines X-ray to determine abnormal changes in cervical, lumbar & thoracic vertebrae. Osteophyte (bony growth may appear at the corners of vertebrae so that vertebral shape becomes abnormal. This paper presents the idea from Image processing techniques such as customised Hough transform which will be used for segmentation which should be independent of rotation, scale, noise & shape. This segmented image will be then used for computing size invariant, convex hull based features to differentiate normal cervical vertebrae from cervical vertebrae containing anterior osteophyte. This approach effectively finds anterior osteophytes in cervical vertebrae.

  9. Dual (type IV left anterior descending artery

    Directory of Open Access Journals (Sweden)

    Ozdil Baskan

    2013-11-01

    Full Text Available Congenital coronary artery anomalies are uncommon. Dual left anterior descending coronary artery (LAD is defined as the presence of two LADs within the anterior interventricular sulcus (AIVS, and is classified into four types. Type IV is a rarely reported subtype and differs from the others, with a long LAD originating from the right coronary artery (RCA. Dual LAD is a benign coronary artery anomaly, but should be recognised especially before interventional procedures. With the increasing use of multidedector computed tomography (MDCT, it is essential for radiologists to be aware of this entity and the cross-sectional findings.

  10. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  11. Prefrontal hypoactivity associated with impaired inhibition in stimulant-dependent individuals but evidence for hyperactivation in their unaffected siblings.

    Science.gov (United States)

    Morein-Zamir, Sharon; Simon Jones, P; Bullmore, Edward T; Robbins, Trevor W; Ersche, Karen D

    2013-09-01

    A neurocognitive endophenotype has been proposed for stimulant dependence, based on behavioral measures of inhibitory response control associated with white matter changes in the frontal cortex. This study investigated the functional neuroimaging correlates of inhibitory response control, as functional activity serves as a more dynamic measure than brain structure, allowing refinement of the suggested endophenotype. Stimulant-dependent individuals (SDIs), their unaffected siblings (SIBs), and healthy controls (CTs) performed the stop-signal task, including stop-signal reaction time (SSRT) as a measure of response inhibition, while undergoing functional magnetic resonance imaging. SDIs had impaired response inhibition accompanied by hypoactivation in the ventrolateral prefrontal cortex (PFC). In addition, they demonstrated hypoactivation in the anterior cingulate when failing to stop. In contrast, no hypoactivations were noted in their unaffected SIBs. Rather, they exhibited increased activation in the dorsomedial PFC relative to controls, together with inhibitory performance that was intermediate between that of the stimulant group and the healthy CT group. Such hyperactivations within the neurocircuitry underlying response inhibition and control are suggestive of compensatory mechanisms that could be protective in nature or could reflect coping with a pre-existing vulnerability, thus expressing potential aspects of resilience. The functional activation associated with response inhibition and error monitoring showed differential patterns of results between SDIs and their unaffected first-degree relatives, suggesting that the proposed endophenotype does not generalize to functional brain activity.

  12. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex.

    Science.gov (United States)

    Smith, Elliot H; Banks, Garrett P; Mikell, Charles B; Cash, Syndey S; Patel, Shaun R; Eskandar, Emad N; Sheth, Sameer A

    2015-12-01

    The feedback-related negativity (FRN) is a commonly observed potential in scalp electroencephalography (EEG) studies related to the valence of feedback about a subject's performance. This potential classically manifests as a negative deflection in medial frontocentral EEG contacts following negative feedback. Recent work has shown prominence of theta power in the spectral composition of the FRN, placing it within the larger class of "frontal midline theta" cognitive control signals. Although the dorsal anterior cingulate cortex (dACC) is thought to be the cortical generator of the FRN, conclusive data regarding its origin and propagation are lacking. Here we examine intracranial electrophysiology from the human medial and lateral prefrontal cortex (PFC) to better understand the anatomical localization and communication patterns of the FRN. We show that the FRN is evident in both low- and high-frequency local field potentials (LFPs) recorded on electrocorticography. The FRN is larger in medial compared with lateral PFC, and coupling between theta band phase and high-frequency LFP power is also greater in medial PFC. Using Granger causality and conditional mutual information analyses, we provide evidence that feedback-related information propagates from medial to lateral PFC, and that this information transfer oscillates with theta-range periodicity. These results provide evidence for the dACC as the cortical source of the FRN, provide insight into the local computation of frontal midline theta, and have implications for reinforcement learning models of cognitive control.

  13. Anxious/Depressed Symptoms are Linked to Right Ventromedial Prefrontal Cortical Thickness Maturation in Healthy Children and Young Adults

    Science.gov (United States)

    Ducharme, Simon; Albaugh, Matthew D.; Hudziak, James J.; Botteron, Kelly N.; Nguyen, Tuong-Vi; Truong, Catherine; Evans, Alan C.; Karama, Sherif; Ball, William S.; Byars, Anna Weber; Schapiro, Mark; Bommer, Wendy; Carr, April; German, April; Dunn, Scott; Rivkin, Michael J.; Waber, Deborah; Mulkern, Robert; Vajapeyam, Sridhar; Chiverton, Abigail; Davis, Peter; Koo, Julie; Marmor, Jacki; Mrakotsky, Christine; Robertson, Richard; McAnulty, Gloria; Brandt, Michael E.; Fletcher, Jack M.; Kramer, Larry A.; Yang, Grace; McCormack, Cara; Hebert, Kathleen M.; Volero, Hilda; Botteron, Kelly; McKinstry, Robert C.; Warren, William; Nishino, Tomoyuki; Almli, C. Robert; Todd, Richard; Constantino, John; McCracken, James T.; Levitt, Jennifer; Alger, Jeffrey; O'Neil, Joseph; Toga, Arthur; Asarnow, Robert; Fadale, David; Heinichen, Laura; Ireland, Cedric; Wang, Dah-Jyuu; Moss, Edward; Zimmerman, Robert A.; Bintliff, Brooke; Bradford, Ruth; Newman, Janice; Evans, Alan C.; Arnaoutelis, Rozalia; Pike, G. Bruce; Collins, D. Louis; Leonard, Gabriel; Paus, Tomas; Zijdenbos, Alex; Das, Samir; Fonov, Vladimir; Fu, Luke; Harlap, Jonathan; Leppert, Ilana; Milovan, Denise; Vins, Dario; Zeffiro, Thomas; Van Meter, John; Lange, Nicholas; Froimowitz, Michael P.; Botteron, Kelly; Almli, C. Robert; Rainey, Cheryl; Henderson, Stan; Nishino, Tomoyuki; Warren, William; Edwards, Jennifer L.; Dubois, Diane; Smith, Karla; Singer, Tish; Wilber, Aaron A.; Pierpaoli, Carlo; Basser, Peter J.; Chang, Lin-Ching; Koay, Chen Guan; Walker, Lindsay; Freund, Lisa; Rumsey, Judith; Baskir, Lauren; Stanford, Laurence; Sirocco, Karen; Gwinn-Hardy, Katrina; Spinella, Giovanna; McCracken, James T.; Alger, Jeffry R.; Levitt, Jennifer; O'Neill, Joseph

    2014-01-01

    The relationship between anxious/depressed traits and neuromaturation remains largely unstudied. Characterizing this relationship during healthy neurodevelopment is critical to understanding processes associated with the emergence of child/adolescent onset mood/anxiety disorders. In this study, mixed-effects models were used to determine longitudinal cortical thickness correlates of Child Behavior Checklist (CBCL) and Young Adult Self Report Anxious/Depressed scores in healthy children. Analyses included 341 subjects from 4.9 to 22.3 year-old with repeated MRI at up to 3 time points, at 2-year intervals (586 MRI scans). There was a significant “CBCL Anxious/Depressed by Age” interaction on cortical thickness in the right ventromedial prefrontal cortex (vmPFC), including the medial orbito-frontal, gyrus rectus, and subgenual anterior cingulate areas. Anxious/Depressed scores were negatively associated with thickness at younger ages (<9 years), but positively associated with thickness at older ages (15–22 years), with the shift in polarity occurring around age 12. This was secondary to a slower rate of vmPFC cortical thinning in subjects with higher scores. In young adults (18–22 years), Anxious/Depressed scores were also positively associated with precuneus/posterior cingulate cortical thickness. Potential neurobiological mechanisms underlying this maturation pattern are proposed. These results demonstrate the dynamic impact of age on relations between vmPFC and negative affect in the developing brain. PMID:23749874

  14. Linking trait-based phenotypes to prefrontal cortex activation during inhibitory control.

    Science.gov (United States)

    Rodrigo, Achala H; Di Domenico, Stefano I; Graves, Bryanna; Lam, Jaeger; Ayaz, Hasan; Bagby, R Michael; Ruocco, Anthony C

    2016-01-01

    Inhibitory control is subserved in part by discrete regions of the prefrontal cortex whose functionality may be altered according to specific trait-based phenotypes. Using a unified model of normal range personality traits, we examined activation within lateral and medial aspects of the prefrontal cortex during a manual go/no-go task. Evoked hemodynamic oxygenation within the prefrontal cortex was measured in 106 adults using a 16-channel continuous-wave functional near-infrared spectroscopy system. Within lateral regions of the prefrontal cortex, greater activation was associated with higher trait levels of extraversion, agreeableness and conscientiousness, and lower neuroticism. Higher agreeableness was also related to more activation in the medial prefrontal cortex during inhibitory control. These results suggest that personality traits reflecting greater emotional stability, extraversion, agreeableness and conscientiousness may be associated with more efficient recruitment of control processes subserved by lateral regions of the prefrontal cortex. These findings highlight key links between trait-based phenotypes and neural activation patterns in the prefrontal cortex underlying inhibitory control.

  15. Changes in self-regulation-related prefrontal activities in eating disorders: a near infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Chihiro Sutoh

    Full Text Available OBJECTIVE: The aim of this study is to clarify the symptomatology of the eating disorders examining the prefrontal function and activity associated with self-regulation among participants with or without eating disorders. METHODS: Ten patients with anorexia nervosa, fourteen with bulimia nervosa, and fourteen healthy control participants performed two cognitive tasks assessing self-regulatory functions, an auditorily distracted word fluency task and a rock-paper-scissors task under the measurements on prefrontal oxyhemoglobin concentration with near infrared spectroscopy. The psychiatric symptoms of patient groups were assessed with several questionnaires. RESULTS: Patients with bulimia nervosa showed decreased performances and prefrontal hyper activation patterns. Prefrontal activities showed a moderate negative correlation with task performances not in the patient groups but only in the healthy participants. The prefrontal activities of the patient groups showed positive correlations with some symptom scale aspects. CONCLUSIONS: The decreased cognitive abilities and characteristic prefrontal activation patterns associated with self-regulatory functions were shown in patients with bulimia nervosa, which correlated with their symptoms. These findings suggest inefficient prefrontal self-regulatory function of bulimia nervosa that associate with its symptoms.

  16. Lesions to right prefrontal cortex impair real-world planning through premature commitments.

    Science.gov (United States)

    Goel, Vinod; Vartanian, Oshin; Bartolo, Angela; Hakim, Lila; Ferraro, Anna Maria; Isella, Valeria; Appollonio, Ildebrando; Drei, Silvia; Nichelli, Paolo

    2013-03-01

    While it is well accepted that the left prefrontal cortex plays a critical role in planning and problem-solving tasks, very little is known about the role of the right prefrontal cortex. We addressed this issue by testing five neurological patients with focal lesions to right prefrontal cortex on a real-world travel planning task, and compared their performance with the performance of five neurological patients with focal lesions to left prefrontal cortex, five neurological patients with posterior lesions, and five normal controls. Only patients with lesions to right prefrontal cortex generated substandard solutions compared to normal controls. Examination of the underlying cognitive processes and strategies revealed that patients with lesions to right prefrontal cortex approached the task at an excessively precise, concrete level compared to normal controls, and very early locked themselves into substandard solutions relative to the comparison group. In contrast, the behavior of normal controls was characterized by a judicious interplay of concrete and abstract levels/modes of representations. We suggest that damage to the right prefrontal system impairs the encoding and processing of more abstract and vague representations that facilitate lateral transformations, resulting in premature commitment to precise concrete patterns, and hasty albeit substandard conclusions (because the space of possibilities has not been properly explored).

  17. Multidisciplinary approach for a patient with dentinogenesis imperfecta and anterior trauma.

    Science.gov (United States)

    Roh, Won-Jong; Kang, Seung-Goo; Kim, Su-Jung

    2010-09-01

    Dentinogenesis imperfecta is an inherited dentinal dysplasia involving several risks for orthodontic treatment. This case report describes the multidisciplinary treatment of a 17-year-old girl whose Class II Division 1 malocclusion was complicated by dentinogenesis imperfecta type II and maxillary anterior trauma.

  18. Inferior Frontal Gyrus Activity Triggers Anterior Insula Response to Emotional Facial Expressions

    NARCIS (Netherlands)

    Jabbi, Mbemba; Keysers, Christian

    2008-01-01

    The observation of movies of facial expressions of others has been shown to recruit similar areas involved in experiencing one's own emotions: the inferior frontal gyrus (IFG). the anterior insula and adjacent frontal operculum (IFO). The Causal link bet between activity in these 2 regions, associat

  19. Community involvement

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1979-09-01

    Full Text Available Community involvement is the main theme of Health Year. Governments have a responsibility for the health of their people, and in this country under the present 3-tier system of government, the responsibility for the rendering of health services is divided between central, provincial and local government. However, under our democratic system, all people have the right to, and it is indeed their duty, to participate individually and collectively in the planning and implementation of services to meet their health needs. Ultimately, through involvement of individuals, families and communities, greater self-reliance is achieved leading to greater responsibility being assumed by people for their own health.

  20. Anatomia microcirúgica da substâcia perfurada anterior basal humana Microsurgical anatomy of the human basal anterior perforated substance

    Directory of Open Access Journals (Sweden)

    Arlindo Alfredo Silveira D’Ávila

    2006-06-01

    mainly involving middle cerebral and anterior choroidal arteries. The precise understanding of these vessels has surgical and clinical implications in the management of vascular and tumoral maladies related to the anterior perforated substance.

  1. Anterior Sectional Twin Bracket Appliance - Innovative Use for Correction of Single Tooth Crossbite: A Case Report with Biomechanics.

    Science.gov (United States)

    Verma, Raj Kumar; Raghav, Pradeep; Reddy, Munish C; Kanwal, Ritika

    2015-01-01

    Anterior sectional twin bracket appliance (ASTBA) is a sectional mechanism that involves two brackets on upper central incisors. This appliance is previously been used for correction of rotated incisors and midline spacing. But, detail biomechanics for single tooth crossbite correction is not previously explained. Here, in this article, we are presenting a detailed biomechanics of ASTBA for anterior single tooth crossbite correction along with case report. How to cite this article: Verma RK, Raghav P, Reddy MC, Kanwal R. Anterior Sectional Twin Bracket Appliance- Innovative Use for Correction of Single Tooth Crossbite: A Case Report with Biomechanics. Int J Clin Pediatr Dent 2015;8(1): 66-69.

  2. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Directory of Open Access Journals (Sweden)

    Stefania Balzarotti

    Full Text Available The dorsolateral prefrontal cortex (DLPFC is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  3. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing.

  4. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices.

    Science.gov (United States)

    Jocham, Gerhard; Klein, Tilmann A; Ullsperger, Markus

    2011-02-02

    A large body of evidence exists on the role of dopamine in reinforcement learning. Less is known about how dopamine shapes the relative impact of positive and negative outcomes to guide value-based choices. We combined administration of the dopamine D(2) receptor antagonist amisulpride with functional magnetic resonance imaging in healthy human volunteers. Amisulpride did not affect initial reinforcement learning. However, in a later transfer phase that involved novel choice situations requiring decisions between two symbols based on their previously learned values, amisulpride improved participants' ability to select the better of two highly rewarding options, while it had no effect on choices between two very poor options. During the learning phase, activity in the striatum encoded a reward prediction error. In the transfer phase, in the absence of any outcome, ventromedial prefrontal cortex (vmPFC) continually tracked the learned value of the available options on each trial. Both striatal prediction error coding and tracking of learned value in the vmPFC were predictive of subjects' choice performance in the transfer phase, and both were enhanced under amisulpride. These findings show that dopamine-dependent mechanisms enhance reinforcement learning signals in the striatum and sharpen representations of associative values in prefrontal cortex that are used to guide reinforcement-based decisions.

  5. β-Adrenergic receptor agonist increases voltage-gated Na(+) currents in medial prefrontal cortex pyramidal neurons.

    Science.gov (United States)

    Szulczyk, Bartlomiej

    2015-05-19

    The prefrontal cortex does not function properly in neuropsychiatric diseases and during chronic stress. The aim of this study was to test the effects of isoproterenol, a β-adrenergic receptor agonist, on the voltage-dependent fast-inactivating Na(+) currents in medial prefrontal cortex (mPFC) pyramidal neurons obtained from young rats. The recordings were performed in the cell-attached configuration. Isoproterenol (2μM) did not change the peak Na(+) current amplitude but shifted the IV curve of the Na(+) currents toward hyperpolarization. Pretreatment of the cells with the β-adrenergic antagonists propranolol and metoprolol abolished the effect of isoproterenol on the Na(+) currents, suggesting the involvement of β1-adrenergic receptors. The effect of β-adrenergic receptor stimulation on the sodium currents was dependent on kinase A and kinase C; the effect was diminished in the presence of the kinase A antagonist H-89 and the kinase C antagonist chelerythrine and abolished when the antagonists were coapplied. Moreover, isoproterenol depolarized the membrane potential recorded using the perforated-patch method, and this depolarization was abolished by cesium ions. Thus, in mPFC pyramidal neurons, stimulation of β-adrenergic receptors up-regulates the fast-inactivating voltage-gated Na(+) currents evoked by suprathreshold depolarizations.

  6. How the brain predicts people's behavior in relation to rules and desires. Evidence of a medio-prefrontal dissociation.

    Science.gov (United States)

    Corradi-Dell'Acqua, Corrado; Turri, Francesco; Kaufmann, Laurence; Clément, Fabrice; Schwartz, Sophie

    2015-09-01

    Forming and updating impressions about others is critical in everyday life and engages portions of the dorsomedial prefrontal cortex (dMPFC), the posterior cingulate cortex (PCC) and the amygdala. Some of these activations are attributed to "mentalizing" functions necessary to represent people's mental states, such as beliefs or desires. Evolutionary psychology and developmental studies, however, suggest that interpersonal inferences can also be obtained through the aid of deontic heuristics, which dictate what must (or must not) be done in given circumstances. We used fMRI and asked 18 participants to predict whether unknown characters would follow their desires or obey external rules. Participants had no means, at the beginning, to make accurate predictions, but slowly learned (throughout the experiment) each character's behavioral profile. We isolated brain regions whose activity changed during the experiment, as a neural signature of impression updating: whereas dMPFC was progressively more involved in predicting characters' behavior in relation to their desires, the medial orbitofrontal cortex and the amygdala were progressively more recruited in predicting rule-based behavior. Our data provide evidence of a neural dissociation between deontic inference and theory-of-mind (ToM), and support a differentiation of orbital and dorsal prefrontal cortex in terms of low- and high-level social cognition.

  7. Tendinopatia do compartimento anterior do tornozelo Tendinopathy of the anterior compartment of the ankle

    Directory of Open Access Journals (Sweden)

    Antonio Egydio de Carvalho Junior

    2010-01-01

    Full Text Available OBJETIVO: Análise retrospectiva da etiopatogenia, diagnóstico e opções de tratamento nos casos de tendinopatias do compartimento anterior do tornozelo (TCAT. MÉTODO: No período de setembro de 1998 a fevereiro de 2009, 13 pacientes foram operados por tendinopatia do compartimento anterior do tornozelo. A casuística constou de 10 pacientes do sexo masculino e três do feminino. O lado direito foi acometido em 12 pés e um do esquerdo. A média de idade foi de 35 anos (15-67. A etiologia foi traumática em oito pacientes e em cinco, degenerativa (atraumática. O tempo médio do diagnóstico ao tratamento foi de 19 meses (1-60 e o seguimento foi de 34 meses (4-127. O diagnóstico foi feito através da história e exame clínico. A ressonância magnética foi realizada em nove pacientes para estadiamento e planejamento. O tratamento cirúrgico foi personalizado para cada caso (sinovectomia, ressecção de ventre muscular, solidarização com o tendão adjacente e enxerto livre de tendão semitendíneo. Para a avaliação dos resultados foram utilizadas as escalas: 1 graduação subjetiva de satisfação, 2 AOFAS e 3 Maryland. RESULTADO: Em relação à escala de graduação subjetiva de satisfação, 12 pacientes satisfeitos e um paciente insatisfeito. A média da escala AOFAS foi de 80 pontos, a média da escala Maryland foi de 86 pontos. CONCLUSÃO: O tratamento cirúrgico é eficaz para recuperação funcional. As técnicas cirúrgicas devem ser personalizadas. A opção do enxerto livre de tendão semitendíneo é eficiente nas falhas maiores que cinco centímetros.OBJECTIVE: To carry out a retrospective analysis of the etiopathogeny, diagnosis and therapeutic options in cases of tendinopathies of the anterior compartment of the ankle. METHOD: 13 patients underwent surgery between September 1998 and February 2009; ten men and three women. The right side was involved in twelve patients and the left in one. The averaging age was 35 years of

  8. Prefrontal brain asymmetry and aggression in imprisoned violent offenders.

    Science.gov (United States)

    Keune, Philipp M; van der Heiden, Linda; Várkuti, Bálint; Konicar, Lilian; Veit, Ralf; Birbaumer, Niels

    2012-05-02

    Anterior brain asymmetry, assessed through the alpha and beta band in resting-state electroencephalogram (EEG) is associated with approach-related behavioral dispositions, particularly with aggression in the general population. To date, the association between frontal asymmetry and aggression has not been examined in highly aggressive groups. We examined the topographic characteristics of alpha and beta activity, the relation of both asymmetry metrics to trait aggression, and whether alpha asymmetry was extreme in anterior regions according to clinical standards in a group of imprisoned violent offenders. As expected, these individuals were characterized by stronger right than left-hemispheric alpha activity, which was putatively extreme in anterior regions in one third of the cases. We also report that in line with observations made in the general population, aggression was associated with stronger right-frontal alpha activity in these violent individuals. This suggests that frontal alpha asymmetry, as a correlate of trait aggression, might be utilizable as an outcome measure in studies which assess the effects of anti-aggressiveness training in violent offenders.

  9. Anterior Chamber Live Loa loa: Case Report.

    Science.gov (United States)

    Kagmeni, G; Cheuteu, R; Bilong, Y; Wiedemann, P

    2016-01-01

    We reported a case of unusual intraocular Loa loa in a 27-year-old patient who presented with painful red eye. Biomicroscopy revealed a living and active adult worm in the anterior chamber of the right eye. After surgical extraction under local anesthesia, parasitological identification confirmed L. loa filariasis.

  10. Causes of anterior cruciate ligament injuries

    Directory of Open Access Journals (Sweden)

    Ristić Vladimir

    2010-01-01

    Full Text Available In order to prevent anterior cruciate ligament injuries it is necessary to define risk factors and to analyze the most frequent causes of injuries - that being the aim of this study. The study sample consisted of 451 surgically treated patients, including 400 sportsmen (65% of them being active and 35% recreational sportsmen, 29% female and 71% male; of whom 90% were younger than 35. Sports injuries, as the most frequent cause of anterior cruciate ligament injuries, were recorded in 88% of patients (non-contact ones in 78% and contact ones in 22%, injuries occurring in everyday activities in 11% and in traffic in 1%. Among sportsmen, reconstruction of the anterior cruciate ligament was most frequently performed in football players (48%, then in handball players (22%, basketball players (13%, volleyball players (8%, martial arts fighters (4%. However, the injury incidence was the highest among the active basketball players (1 injured among 91 active players. Type of footwear, warming up before the activity, genetic predisposition and everyday therapy did not have a significant influence on getting injured. Anterior cruciate ligament injuries happened three times more often during matches, in the middle and at the end of a match and training session (79%, at landing after the jump or when changing direction of movement (75% without a contact with other competitors, on dry surfaces (79%, among not so well prepared sportsmen.

  11. ANTERIOR COLUMN FRACTURES OF THE ACETABULUM

    NARCIS (Netherlands)

    HEEG, M; OTTER, N; KLASEN, HJ

    1992-01-01

    We retrospectively reviewed 20 patients at three to 19 years after displaced anterior fracture-dislocations of the hip. Eighteen of them were treated by traction, after ensuring that the femoral head was adequately reduced beneath the undisrupted part of the weight-bearing dome. Two required operati

  12. Treatment for acute anterior cruciate ligament tear

    DEFF Research Database (Denmark)

    Frobell, Richard B; Roos, Harald P; Roos, Ewa M;

    2013-01-01

    To compare, in young active adults with an acute anterior cruciate ligament (ACL) tear, the mid-term (five year) patient reported and radiographic outcomes between those treated with rehabilitation plus early ACL reconstruction and those treated with rehabilitation and optional delayed ACL...

  13. Guideline on anterior cruciate ligament injury

    NARCIS (Netherlands)

    Meuffels, Duncan E; Poldervaart, Michelle T; Diercks, Ronald; Fievez, Alex W F M; Patt, Thomas W; Hart, Cor P van der; Hammacher, Eric R; Meer, Fred van der; Goedhart, Edwin A; Lenssen, Anton F; Muller-Ploeger, Sabrina B; Pols, Margreet A; Saris, Daniel B F

    2012-01-01

    The Dutch Orthopaedic Association has a long tradition of development of practical clinical guidelines. Here we present the recommendations from the multidisciplinary clinical guideline working group for anterior cruciate ligament injury. The following 8 clinical questions were formulated by a steer

  14. Novel Insights into Anterior Cruciate Ligament Injury

    NARCIS (Netherlands)

    D.E. Meuffels (Duncan)

    2011-01-01

    textabstractAnterior cruciate ligament (ACL) injury is one of the most common sports injuries of the knee. ACL reconstruction has become, standard orthopaedic practice worldwide with an estimated 175,000 reconstructions per year in the United States.6 The ACL remains the most frequently studied liga

  15. Treatment for acute anterior cruciate ligament tear

    DEFF Research Database (Denmark)

    Frobell, Richard B; Roos, Harald P; Roos, Ewa M;

    2015-01-01

    STUDY QUESTION: In young active adults with an acute anterior cruciate ligament (ACL) rupture, do patient reported or radiographic outcomes after five years differ between those treated with rehabilitation plus early ACL reconstruction and those treated with rehabilitation and optional delayed ACL...

  16. Perawatan Ortodontik Gigi Anterior Berjejal dengan Tulang Alveolar yang Tipis

    Directory of Open Access Journals (Sweden)

    Miesje K. Purwanegara

    2015-09-01

    Full Text Available Anterior teeth movement in orthodontic treatment is limited to labiolingual direction by very thin alveolar bone. An uncontrolled anterior tooth movement to labiolingual direction can cause alveolar bone perforation at its root segment. This case report is to remind us that alveolar bone thickness limits orthodontc tooth movement. A case of crowded anterior teeth with thin alveolar bone in malocclusion I is reported. This case is treated using adgewise orthodontic appliance. Protraction of anterior teeth is anticipated due to thin alveolar bone on the anterior surface. The conclusion is although the alveolar bone surrounding the crowded anterior teeth is thin, by controlling the movement the teeth reposition is allowed.

  17. Successful Treatment of Anterior Tracheal Necrosis after Total Thyroidectomy Using Vacuum-Assisted Closure Therapy

    Directory of Open Access Journals (Sweden)

    Grégory Philippe

    2012-01-01

    Full Text Available Total thyroidectomy involving the adjacent structures of the trachea can cause tracheal damage such as early tracheal necrosis. The authors describe the first case of anterior tracheal necrosis following total thyroidectomy treated using vacuum-assisted closure device. After two weeks of VAC  therapy, there was no evidence of ongoing infection and the trachea was partially closed around a tracheotomy cannula, removed after 3 months. The use of a VAC  therapy to reduce and close the tracheal rent and to create a rapid granulation tissue over tracheal structure appeared as a good opportunity after anterior tracheal necrosis.

  18. A simplified technique for the restoration of severely mutilated primary anterior teeth.

    Science.gov (United States)

    Mortada, A; King, N M

    2004-01-01

    The restoration of severely carious primary anterior teeth is a challenge to the pediatric dentist. The introduction of new materials and technologies makes re-evaluation of existing treatment philosophies necessary. A technique involving the placement of an omega shaped stainless steel wire extension into the entrance of the root canal prior to restoring the crown with a compomer material is described. 96 restorations were placed in 25 children. After 18 months 81.2% of the 96 restorations, which were available for evaluation, 60 (79.9%) were intact. The technique for restoring primary anterior teeth was simple, quick and effective.

  19. Management of Anterior Abdominal Wall Defect Using a Pedicled Tensor Fascia Lata Flap: A Case Report

    Directory of Open Access Journals (Sweden)

    K. D. Ojuka

    2012-01-01

    Full Text Available Degloving injuries to anterior abdominal wall are rare due to the mechanism of injury. Pedicled tensor fascia lata is known to be a versatile flap with ability to reach the lower anterior abdomen. A 34-year-old man who was involved in a road traffic accident presented with degloving injury and defect at the left inguinal region, sigmoid colon injury, and scrotal bruises. At investigation, he was found to have pelvic fracture. The management consisted of colostomy and tensor fascia lata to cover the defect at reversal. Though he developed burst abdomen on fifth postoperative day, the flap healed with no complications.

  20. Notching and anterior beveling on fossil horse incisors: Indicators of domestication?

    Science.gov (United States)

    Rogers, Richard A.; Rogers, Laurine A.

    1988-01-01

    One of the lines of evidence cited for possible late Pleistocene human control of horses has been the presence of notching and anterior beveling on horse incisor teeth recovered from upper and middle Paleolithic sites in Europe. Similar forms of wear have been found on the incisor teeth of wild horses from early and middle Pleistocene deposits in North America. Notching appears partly due to malocclusion and chipping. The causes of beveling are less certain but may involve the eating of bark. Therefore, the presence of notching and anterior beveling on horse incisor teeth may not be a reliable indicator of human control.

  1. The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition.

    Science.gov (United States)

    Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A

    2016-05-01

    The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory.

  2. Prefrontal cell firing in male rats during approach towards sexually receptive female: interactions with cocaine.

    Science.gov (United States)

    Febo, Marcelo

    2011-04-01

    The medial prefrontal cortex (mPFC) plays a role in anticipation of rewards and goal orientation, properties that are influenced by cocaine administration. Single-unit firing was measured in the mPFC of seven male rats during the expression of approach responses toward a sexually receptive female. Nose-poking in male rats was used as a measure of approach behavior during the following periods: a baseline, first exposure to a female, a second baseline 2 h later and a second exposure to female 10 min after cocaine (15 mg kg⁻¹ i.p.). Two types of excitatory responses were identified. First, a subset of cells (23%) showed increased firing activity during nose-poke behavior upon presentation of the female, but not before. Another subset of cells (12%) showed increased firing in the presence of the female only after cocaine was administered. The present results provide preliminary evidence for neurons in the mPFC that are involved in sexually motivated approach behavior and that are modulated by cocaine.

  3. Investigating the role of the ventromedial prefrontal cortex (vmPFC in the assessment of brands

    Directory of Open Access Journals (Sweden)

    Jose Paulo eSantos

    2011-06-01

    Full Text Available The ventromedial prefrontal cortex (vmPFC is believed to be important in everyday preference judgments, processing emotions during decision-making. However, there is still controversy in the literature regarding the participation of the vmPFC. To further elucidate the contribution of the vmPFC in brand preference, we designed a functional magnetic resonance imaging (fMRI study where 18 subjects assessed positive, indifferent and fictitious brands. Also, both the period during and after the decision process were analyzed, hoping to unravel temporally the role of the vmPFC, using modeled and model-free fMRI analysis. Considering together the period before and after decision-making, there was activation of the vmPFC when comparing positive with indifferent or fictitious brands. However, when the decision-making period was separated from the moment after the response, and especially for positive brands, the vmPFC was more active after the choice than during the decision process itself, challenging some of the existing literature. The results of the present study support the notion that the vmPFC may be unimportant in the decision stage of brand preference, questioning theories that postulate that the vmPFC is in the origin of such a choice. Further studies are needed to investigate in detail why the vmPFC seems to be involved in brand preference only after the decision process.

  4. Prefrontal cortex damage abolishes brand-cued changes in cola preference.

    Science.gov (United States)

    Koenigs, Michael; Tranel, Daniel

    2008-03-01

    Human decision-making is remarkably susceptible to commercial advertising, yet the neurobiological basis of this phenomenon remains largely unexplored. With a series of Coke and Pepsi taste tests we show that patients with damage specifically involving ventromedial prefrontal cortex (VMPC), an area important for emotion, did not demonstrate the normal preference bias when exposed to brand information. Both comparison groups (neurologically normal adults and lesion patients with intact VMPC) preferred Pepsi in a blind taste test, but in subsequent taste tests that featured brand information ('semi-blind' taste tests), both comparison groups' preferences were skewed toward Coke, illustrating the so-called 'Pepsi paradox'. Like comparison groups, the VMPC patients preferred Pepsi in the blind taste test, but unlike comparison groups, the VMPC patients maintained their Pepsi preference in the semi-blind test. The result that VMPC damage abolishes the 'Pepsi paradox' suggests that the VMPC is an important part of the neural substrate for translating commercial images into brand preferences.

  5. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities.

    Science.gov (United States)

    Santarnecchi, E; Muller, T; Rossi, S; Sarkar, A; Polizzotto, N R; Rossi, A; Cohen Kadosh, R

    2016-02-01

    Emerging evidence suggests that transcranial alternating current stimulation (tACS) is an effective, frequency-specific modulator of endogenous brain oscillations, with the potential to alter cognitive performance. Here, we show that reduction in response latencies to solve complex logic problem indexing fluid intelligence is obtained through 40 Hz-tACS (gamma band) applied to the prefrontal cortex. This improvement in human performance depends on individual ability, with slower performers at baseline receiving greater benefits. The effect could have not being explained by regression to the mean, and showed task and frequency specificity: it was not observed for trials not involving logical reasoning, as well as with the application of low frequency 5 Hz-tACS (theta band) or non-periodic high frequency random noise stimulation (101-640 Hz). Moreover, performance in a spatial working memory task was not affected by brain stimulation, excluding possible effects on fluid intelligence enhancement through an increase in memory performance. We suggest that such high-level cognitive functions are dissociable by frequency-specific neuromodulatory effects, possibly related to entrainment of specific brain rhythms. We conclude that individual differences in cognitive abilities, due to acquired or developmental origins, could be reduced during frequency-specific tACS, a finding that should be taken into account for future individual cognitive rehabilitation studies.

  6. Intracerebroventricular administration of ouabain alters synaptic plasticity and dopamine release in rat medial prefrontal cortex.

    Science.gov (United States)

    Sui, Li; Song, Xiao-Jin; Ren, Jie; Ju, Li-Hua; Wang, Yan

    2013-08-01

    Intracerebroventricular (ICV) administration of ouabain, a specific Na-K-ATPase inhibitor, in rats mimics the manic phenotypes of bipolar disorder and thus has been proposed as one of the best animal models of mania. Bipolar mania has been known to be associated with dysfunctions of medial prefrontal cortex (mPFC), a brain area critically involved in mental functions; however, the exact mechanism underlying these dysfunctions is not yet clear. The present study investigated synaptic transmission, synaptic plasticity, and dopamine release in Sprague-Dawley rat mPFC following ICV administration of ouabain (5 μl of 1 mM ouabain). The electrophysiological results demonstrated that ouabain depressed the short- and the long-term synaptic plasticity, represented by paired-pulse facilitation and long-term potentiation, respectively, in the mPFC. These ouabain-induced alterations in synaptic plasticity can be prevented by pre-treatment with lithium (intraperitoneal injection of 47.5 mg/kg lithium, twice a day, 7 days), which acts as an effective mood stabilizer in preventing mania. The electrochemical results demonstrated that ICV administration of ouabain enhanced dopamine release in the mPFC, which did not be affected by pre-treatment with lithium. These findings suggested that alterations in synaptic plasticity and dopamine release in the mPFC might underlie the dysfunctions of mPFC accompanied with ouabain administration-induced bipolar mania.

  7. The Role of the Ventromedial Prefrontal Cortex in Purchase Intent Among Older Adults

    Science.gov (United States)

    Koestner, Bryan P.; Hedgcock, William; Halfmann, Kameko; Denburg, Natalie L.

    2016-01-01

    Older adults are frequently the targets of scams and deception, with millions of individuals being affected each year in the United States alone. Previous research has shown that the ventromedial prefrontal cortex (vmPFC) may play a role in vulnerability to fraud. The current study examined brain activation patterns in relation to susceptibility to scams and fraud using functional magnetic resonance imaging (fMRI). Twenty-eight healthy, community-dwelling older adults were subdivided into groups of impaired and unimpaired decision makers as determined by their performance on the Iowa Gambling Task (IGT). While in the scanner, the participants viewed advertisements that were created directly from cases deemed deceptive by the Federal Trade Commission (FTC). We then obtained behavioral measures involving comprehension of claims and purchase intention of the product in each advertisement. Contrasts show brain activity in the vmPFC was less correlated with purchase intention in impaired vs. unimpaired older adult decision makers. Our results have important implications for both future research and recognizing the possible causes of fraud susceptibility among older adults. PMID:27536238

  8. Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    John Paul Christianson

    2014-10-01

    Full Text Available Behaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed behavioral immunization. Recent data implicate neuroplasticity within the ventromedial prefrontal cortex (mPFC as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and one week later to uncontrollable tailshocks, followed 24h later by social exploration and shuttlebox escape tests. To test the involvement of N-methyl-D-aspartate receptors (NMDAR and the extracellular signal-regulated kinase (ERK cascade in behavioral immunization, either D-AP5 or the MEK inhibitor U0126 was injected to the prelimbic (PL or infralimbic (IL mPFC prior to controllable stress exposure. Phosphorylated ERK and P70S6K, regulators of transcription and translation, were quantified by Western blot or immunohistochemistry after controllable or uncontrollable tailshocks. Prior controllable stress prevented the social exploration and shuttlebox performance deficits caused by the later uncontrollable stressor, and this effect was blocked by injections of D-AP5 into mPFC. A significant increase in phosphorylated ERK1 and ERK2, but not P70S6K, occurred within the PL and IL in rats exposed to controllable stress, but not to uncontrollable stress. However, U0126 only prevented behavioral immunization when injected to the PL. We provide evidence that NMDAR and ERK dependent plasticity within the PL region is required for behavioral immunization, a learned form of stressor resistance.

  9. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance?

    Science.gov (United States)

    Kim, Kyungmi; Johnson, Marcia K

    2015-04-01

    Well-being and subjective experience of a coherent world depend on our sense of 'self' and relations between the self and the environment (e.g. people, objects and ideas). The ventromedial prefrontal cortex (vMPFC) is involved in self-related processing, and disrupted vMPFC activity is associated with disruptions of emotional/social functioning (e.g. depression and autism). Clarifying precise function(s) of vMPFC in self-related processing is an area of active investigation. In this study, we sought to more specifically characterize the function of vMPFC in self-related processing, focusing on two alternative accounts: (i) assignment of positive subjective value to self-related information and (ii) assignment of personal significance to self-related information. During functional magnetic resonance imaging (fMRI), participants imagined owning objects associated with either their perceived ingroup or outgroup. We found that for ingroup-associated objects, vMPFC showed greater activity for objects with increased than decreased post-ownership preference. In contrast, for outgroup-associated objects, vMPFC showed greater activity for objects with decreased than increased post-ownership preference. Our findings support the idea that the function of vMPFC in self-related processing may not be to represent/evaluate the 'positivity' or absolute preference of self-related information but to assign personal significance to it based on its meaning/function for the self.

  10. dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients.

    Science.gov (United States)

    Manitt, C; Eng, C; Pokinko, M; Ryan, R T; Torres-Berrío, A; Lopez, J P; Yogendran, S V; Daubaras, M J J; Grant, A; Schmidt, E R E; Tronche, F; Krimpenfort, P; Cooper, H M; Pasterkamp, R J; Kolb, B; Turecki, G; Wong, T P; Nestler, E J; Giros, B; Flores, C

    2013-12-17

    Adolescence is a period of heightened susceptibility to psychiatric disorders of medial prefrontal cortex (mPFC) dysfunction and cognitive impairment. mPFC dopamine (DA) projections reach maturity only in early adulthood, when their control over cognition becomes fully functional. The mechanisms governing this protracted and unique development are unknown. Here we identify dcc as the first DA neuron gene to regulate mPFC connectivity during adolescence and dissect the mechanisms involved. Reduction or loss of dcc from DA neurons by Cre-lox recombination increased mPFC DA innervation. Underlying this was the presence of ectopic DA fibers that normally innervate non-cortical targets. Altered DA input changed the anatomy and electrophysiology of mPFC circuits, leading to enhanced cognitive flexibility. All phenotypes only emerged in adulthood. Using viral Cre, we demonstrated that dcc organizes mPFC wiring specifically during adolescence. Variations in DCC may determine differential predisposition to mPFC disorders in humans. Indeed, DCC expression is elevated in brains of antidepressant-free subjects who committed suicide.

  11. Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination.

    Science.gov (United States)

    Popescu, Andrei T; Zhou, Michael R; Poo, Mu-Ming

    2016-05-31

    Phasic dopamine (DA) release is believed to guide associative learning. Most studies have focused on projections from the ventral tegmental area (VTA) to the striatum, and the action of DA in other VTA target regions remains unclear. Using optogenetic activation of VTA projections, we examined DA function in the medial prefrontal cortex (mPFC). We found that mice perceived optogenetically induced DA release in mPFC as neither rewarding nor aversive, and did not change their previously learned behavior in response to DA transients. However, repetitive temporal pairing of an auditory conditioned stimulus (CS) with mPFC DA release resulted in faster learning of a subsequent task involving discrimination of the same CS against unpaired stimuli. Similar results were obtained using both appetitive and aversive unconditioned stimuli, supporting the notion that DA transients in mPFC do not represent valence. Using extracellular recordings, we found that CS-DA pairings increased firing of mPFC neurons in response to CSs, and administration of D1 or D2 DA-receptor antagonists in mPFC during learning impaired stimulus discrimination. We conclude that DA transients tune mPFC neurons for the recognition of behaviorally relevant events during learning.

  12. Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults.

    Science.gov (United States)

    Moisala, M; Salmela, V; Hietajärvi, L; Salo, E; Carlson, S; Salonen, O; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2016-07-01

    The current generation of young people indulges in more media multitasking behavior (e.g., instant messaging while watching videos) in their everyday lives than older generations. Concerns have been raised about how this might affect their attentional functioning, as previous studies have indicated that extensive media multitasking in everyday life may be associated with decreased attentional control. In the current study, 149 adolescents and young adults (aged 13-24years) performed speech-listening and reading tasks that required maintaining attention in the presence of distractor stimuli in the other modality or dividing attention between two concurrent tasks. Brain activity during task performance was measured using functional magnetic resonance imaging (fMRI). We studied the relationship between self-reported daily media multitasking (MMT), task performance and brain activity during task performance. The results showed that in the presence of distractor stimuli, a higher MMT score was associated with worse performance and increased brain activity in right prefrontal regions. The level of performance during divided attention did not depend on MMT. This suggests that daily media multitasking is associated with behavioral distractibility and increased recruitment of brain areas involved in attentional and inhibitory control, and that media multitasking in everyday life does not translate to performance benefits in multitasking in laboratory settings.

  13. Prefrontal dopamine and behavioral flexibility: shifting from an inverted-U towards a family of functions

    Directory of Open Access Journals (Sweden)

    Stan B Floresco

    2013-04-01

    Full Text Available Studies on prefrontal cortex (PFC dopamine (DA function have revealed its essential role in mediating a variety of cognitive and executive functions. A general principle that has emerged (primarily from studies on working memory is that PFC DA, acting on D1 receptors, regulates cognition in accordance to an inverted-U shaped function, so that too little or too much activity has detrimental effects on performance. However, contemporary studies have indicated that the receptor mechanisms through which mesocortical DA regulates different aspects of behavioral flexibility can vary considerably across different DA receptors and cognitive operations. This article will review psychopharmacological and neurochemical data comparing and contrasting the cognitive effects of antagonism and stimulation of different DA receptors in the medial PFC. Thus, set-shifting is dependent on a co-operative interaction between PFC D1 and D2 receptors, yet, supranormal stimulation of these receptors does not appear to have detrimental effects on this function. On the other hand, modification of cost/benefit decision biases in situations involving reward uncertainty is regulated in complex and sometimes opposing ways by PFC D1 versus D2 receptors. When viewed collectively, these findings suggest that the inverted-U shaped dose-response curve underlying D1 receptor modulation of working memory is not a one-size-fits-all function. Rather, it appears that mesocortical DA exerts its effects via a family of functions, wherein reduced or excessive DA activity can have a variety of effects across different cognitive domains.

  14. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Stanley I Rapoport

    Full Text Available Phosphoinositides, lipid-signaling molecules, participate in diverse brain processes within a wide metabolic cascade.Gene transcriptional networks coordinately regulate the phosphoinositide cascade during human brain Development and Aging.We used the public BrainCloud database for human dorsolateral prefrontal cortex to examine age-related expression levels of 49 phosphoinositide metabolic genes during Development (0 to 20+ years and Aging (21+ years.We identified three groups of partially overlapping genes in each of the two intervals, with similar intergroup correlations despite marked phenotypic differences between Aging and Development. In each interval, ITPKB, PLCD1, PIK3R3, ISYNA1, IMPA2, INPPL1, PI4KB, and AKT1 are in Group 1, PIK3CB, PTEN, PIK3CA, and IMPA1 in Group 2, and SACM1L, PI3KR4, INPP5A, SYNJ1, and PLCB1 in Group 3. Ten of the genes change expression nonlinearly during Development, suggesting involvement in rapidly changing neuronal, glial and myelination events. Correlated transcription for some gene pairs likely is facilitated by colocalization on the same chromosome band.Stable coordinated gene transcriptional networks regulate brain phosphoinositide metabolic pathways during human Development and Aging.

  15. Modulating prefrontal control in humans reveals distinct pathways to competitive success and collective waste.

    Science.gov (United States)

    De Dreu, Carsten K W; Kret, Mariska E; Sligte, Ilja G

    2016-08-01

    Competitive decision making may require controlling and calculative mind-sets. We examined this possibility in repeated predator-prey contests by up- or down-regulating the individual's right inferior frontal gyrus (rIFG), a brain region involved in impulse inhibition and mentalizing. Following brain stimulation, subjects invested as predator or prey against a non-treated antagonist. Relative to sham-treatment (i) prey-defense was relatively frequent, strong and unaffected by stimulation, (ii) down-regulating predator rIFG produced a high-firing strategy-predators earned more because they attacked more frequently, while (iii) up-regulating predator rIFG produced a track-and-attack strategy-predators earned more because they attacked especially when their (non-stimulated) antagonist lowered its prey-defense. Results suggest that calculative mindsets are not needed to compete effectively, especially not when the goal is to survive. Enhanced prefrontal control enables individuals to appear less aggressive without sacrificing competitive effectiveness-it provides human predators with an iron fist in a velvet glove.

  16. Impaired Facilitatory Mechanisms of Auditory Attention After Damage of the Lateral Prefrontal Cortex

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Buchanan, Kelly G.; Viswanath, Humsini; Black, Jessica; Scabini, Donatella; Bonnet-Brilhault, Frédérique; Knight, Robert T.

    2015-01-01

    There is growing evidence that auditory selective attention operates via distinct facilitatory and inhibitory mechanisms enabling selective enhancement and suppression of sound processing, respectively. The lateral prefrontal cortex (LPFC) plays a crucial role in the top-down control of selective attention. However, whether the LPFC controls facilitatory, inhibitory, or both attentional mechanisms is unclear. Facilitatory and inhibitory mechanisms were assessed, in patients with LPFC damage, by comparing event-related potentials (ERPs) to attended and ignored sounds with ERPs to these same sounds when attention was equally distributed to all sounds. In control subjects, we observed 2 late frontally distributed ERP components: a transient facilitatory component occurring from 150 to 250 ms after sound onset; and an inhibitory component onsetting at 250 ms. Only the facilitatory component was affected in patients with LPFC damage: this component was absent when attending to sounds delivered in the ear contralateral to the lesion, with the most prominent decreases observed over the damaged brain regions. These findings have 2 important implications: (i) they provide evidence for functionally distinct facilitatory and inhibitory mechanisms supporting late auditory selective attention; (ii) they show that the LPFC is involved in the control of the facilitatory mechanisms of auditory attention. PMID:24925773

  17. Perceptual decision-making difficulty modulates feedforward effective connectivity to the dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Bidhan eLamichhane

    2015-09-01

    Full Text Available Diverse cortical structures are known to coordinate activity as a network in relaying and processing of visual information to discriminate visual objects. However, how this discrimination is achieved is still largely unknown. To contribute to answering this question, we used face-house categorization tasks with three levels of noise in face and house images in functional magnetic resonance imaging (fMRI experiments involving thirty-three participants. The behavioral performance error and response time (RT were correlated with noise in face-house images. We then built dynamical causal models (DCM of fMRI blood-oxygenation level dependent (BOLD signals from the face and house category-specific regions in ventral temporal cortex, the fusiform face area (FFA and parahippocampal place area (PPA, and the dorsolateral prefrontal cortex (dlPFC. We found a strong feed-forward intrinsic connectivity pattern from FFA and PPA to dlPFC. Importantly, the feed-forward connectivity to dlPFC was significantly modulated by the perception of both faces and houses. The dlPFC-BOLD activity, th