WorldWideScience

Sample records for anterior prefrontal involvement

  1. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  2. Hierarchical Error Representation: A Computational Model of Anterior Cingulate and Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Alexander, William H; Brown, Joshua W

    2015-11-01

    Anterior cingulate and dorsolateral prefrontal cortex (ACC and dlPFC, respectively) are core components of the cognitive control network. Activation of these regions is routinely observed in tasks that involve monitoring the external environment and maintaining information in order to generate appropriate responses. Despite the ubiquity of studies reporting coactivation of these two regions, a consensus on how they interact to support cognitive control has yet to emerge. In this letter, we present a new hypothesis and computational model of ACC and dlPFC. The error representation hypothesis states that multidimensional error signals generated by ACC in response to surprising outcomes are used to train representations of expected error in dlPFC, which are then associated with relevant task stimuli. Error representations maintained in dlPFC are in turn used to modulate predictive activity in ACC in order to generate better estimates of the likely outcomes of actions. We formalize the error representation hypothesis in a new computational model based on our previous model of ACC. The hierarchical error representation (HER) model of ACC/dlPFC suggests a mechanism by which hierarchically organized layers within ACC and dlPFC interact in order to solve sophisticated cognitive tasks. In a series of simulations, we demonstrate the ability of the HER model to autonomously learn to perform structured tasks in a manner comparable to human performance, and we show that the HER model outperforms current deep learning networks by an order of magnitude. PMID:26378874

  3. Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.

    Science.gov (United States)

    Reid, Andrew T; Bzdok, Danilo; Langner, Robert; Fox, Peter T; Laird, Angela R; Amunts, Katrin; Eickhoff, Simon B; Eickhoff, Claudia R

    2016-06-01

    Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of

  4. Concrescent triplets involving primary anterior teeth

    Directory of Open Access Journals (Sweden)

    Urvashi Sharma

    2013-01-01

    Full Text Available Odontogenesis is a complex process wherein more than 200 genes are known to play a significant role in tooth development. An imbalance can lead to an abnormality in the number, size, shape or structure of the developing tooth/teeth. The presence of an extra dental lamina forms a supernumerary tooth. The supernumerary teeth are of two types: A rudimentary tooth where the supernumerary tooth does not resemble any tooth in the normal series or a supplemental tooth in which this anomalous tooth resembles one in the normal series. It is also very rare to encounter triple teeth in primary dentition. The union of these teeth may be through fusion, gemination, concrescence or a combination of fusion and gemination. Presented is a rare case of concrescence involving maxillary deciduous incisors and a supplemental tooth in a 7-year-old boy. The differential diagnosis, etiology, and complications of primary anterior triple teeth are discussed.

  5. Involvement of the prefrontal cortex in problem solving.

    Science.gov (United States)

    Mushiake, Hajime; Sakamoto, Kazuhiro; Saito, Naohiro; Inui, Toshiro; Aihara, Kazuyuki; Tanji, Jun

    2009-01-01

    To achieve a behavioral goal in a complex environment, such as problem-solving situations, we must plan multiple steps of action. On planning a series of actions, we anticipate future events that will occur as a result of each action, and mentally organize the temporal sequence of events. To investigate the involvement of the lateral prefrontal cortex (PFC) in such multistep planning, we examined neuronal activity in the PFC while monkeys performed a maze path-finding task. In this task, we set monkeys the job of capturing a goal in the maze by moving a cursor on the screen. Cursor movement was linked to movements of each wrist. To dissociate the outcomes of the intended action from the motor commands, we trained the monkeys to use three different hand-cursor assignments. We found that monkeys were able to perform this task in a flexible manner. This report first introduces a problem-solving framework for studying the function of the PFC, from the view point of cognitive science. Then, this chapter will cover the neuronal representation of a series of actions, goal subgoal transformation, and synchrony of PFC neurons. We reported PFC neurons reflected final goals and immediate goals during the preparatory period. We also found some PFC neurons reflected each of all forthcoming steps of actions during the preparatory period and increased their activity step by step during the execution period. Recently, we found that the transient increase in synchronous activity of PFC neurons was involved in goal subgoal transformations. Our data suggest that the PFC is involved primarily in the dynamic representation of multiple future events that occur as a consequence of behavioral actions in problem-solving situations. PMID:19607957

  6. Cross-modal sensory processing in the anterior cingulate and medial prefrontal cortices.

    Science.gov (United States)

    Laurienti, Paul J; Wallace, Mark T; Maldjian, Joseph A; Susi, Christina M; Stein, Barry E; Burdette, Jonathan H

    2003-08-01

    One of the principal functions of the nervous system is to synthesize information from multiple sensory channels into a coherent behavioral and perceptual gestalt. A critical feature of this multisensory synthesis is the sorting and coupling of information derived from the same event. One of the singular features of stimuli conveying such information is their contextual or semantic congruence. Illustrating this fact, subjects are typically faster and more accurate when performing tasks that include congruent compared to incongruent cross-modal stimuli. Using functional magnetic resonance imaging, we demonstrate that activity in select brain areas is sensitive to the contextual congruence among cross-modal cues and to task difficulty. The anterior cingulate gyrus and adjacent medial prefrontal cortices showed significantly greater activity when visual and auditory stimuli were contextually congruent (i.e., matching) than when they were nonmatching. Although activity in these regions was also dependent on task difficulty, showing decreased activity with decreasing task difficulty, the activity changes associated with stimulus congruence predominated.

  7. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  8. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Directory of Open Access Journals (Sweden)

    Anders C. Green

    2012-01-01

    Full Text Available We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  9. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Science.gov (United States)

    Green, Anders C.; Bærentsen, Klaus B.; Stødkilde-Jørgensen, Hans; Roepstorff, Andreas; Vuust, Peter

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen. PMID:22548168

  10. Disturbed anterior prefrontal control of the mesolimbic reward system and increased impulsivity in bipolar disorder.

    Science.gov (United States)

    Trost, Sarah; Diekhof, Esther Kristina; Zvonik, Kerstin; Lewandowski, Mirjana; Usher, Juliana; Keil, Maria; Zilles, David; Falkai, Peter; Dechent, Peter; Gruber, Oliver

    2014-07-01

    Bipolar disorder (BD) is characterized by recurrent mood episodes ranging from severe depression to acute full-blown mania. Both states of this severe psychiatric disorder have been associated with alterations of reward processing in the brain. Here, we present results of a functional magnetic resonance imaging (fMRI) study on the neural correlates and functional interactions underlying reward gain processing and reward dismissal in favor of a long-term goal in bipolar patients. Sixteen medicated patients diagnosed with bipolar I disorder, euthymic to mildly depressed, and sixteen matched healthy controls performed the 'desire-reason dilemma' (DRD) paradigm demanding rejection of priorly conditioned reward stimuli to successfully pursue a superordinate goal. Both groups exhibited significant activations in reward-related brain regions, particularly in the mesolimbic reward system. However, bipolar patients showed reduced neural responses of the ventral striatum (vStr) when exploiting a reward stimulus, and exhibited a decreased suppression of the reward-related activation of the mesolimbic reward system while having to reject immediate reward in favor of the long-term goal. Further, functional interaction between the anteroventral prefrontal cortex and the vStr in the 'DRD' was significantly impaired in the bipolar group. These findings provide evidence for a reduced responsivity of the vStr to reward stimuli in BD, possibly related to clinical features like anhedonia. The disturbed top-down control of mesolimbic reward signals by prefrontal brain regions in BD can be interpreted in terms of a disease-related enhanced impulsivity, a trait marker of BD. PMID:24535101

  11. Choosing the lesser of two evils, the better of two goods: Specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice

    OpenAIRE

    Blair, K.S.; Marsh, A. A.; Morton, J.; Vythilingam, M.; Jones, M M; K, P.; D C, D.; W C, B. R. J.

    2006-01-01

    The ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortices (ACd) are considered important for reward-based decision making. However, work distinguishing their individual functional contributions has only begun. One aspect of decision making that has received little attention is that making the right choice often translates to making the better choice. Thus, response choice often occurs in situations where both options are desirable (e.g., choosing between mousse au choc...

  12. Testing the involvement of the prefrontal cortex in lucid dreaming: a tDCS study.

    Science.gov (United States)

    Stumbrys, Tadas; Erlacher, Daniel; Schredl, Michael

    2013-12-01

    Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to increase dream lucidity. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed.

  13. Testing the involvement of the prefrontal cortex in lucid dreaming: a tDCS study.

    Science.gov (United States)

    Stumbrys, Tadas; Erlacher, Daniel; Schredl, Michael

    2013-12-01

    Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to increase dream lucidity. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed. PMID:24021850

  14. Right Ventricular Involvement in either Anterior or Inferior Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Firoozeh Abtahi

    2016-06-01

    Full Text Available Background: Unlike left ventricular function, less attention has been paid to Right Ventricular (RV function after Myocardial Infarction (MI. Objectives: The current study aimed to compare RV function in patients with inferior and anterior MI. Patients and Methods: During the study period, 60 patients consecutively presented to the Emergency Department with chest pain were divided into two groups based on their electrocardiographic findings. Accordingly, 25 patients had inferior MI (IMI group and 35 ones had anterior MI (AMI group. Echocardiography was performed 48 hours after starting the standard therapy. Conventional echocardiographic parameters and Tissue Doppler Imaging (TDI measurements were acquired from the standard views. Student t-test and the chi-square test were respectively used for comparisons of the normally distributed continuous and categorical variables in the two groups. Besides, P < 0.05 was considered to be statistically significant.

  15. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  16. Medial Prefrontal Cortex Is Selectively Involved in Response Selection Using Visual Context in the Background

    Science.gov (United States)

    Lee, Inah; Shin, Ji Yun

    2012-01-01

    The exact roles of the medial prefrontal cortex (mPFC) in conditional choice behavior are unknown and a visual contextual response selection task was used for examining the issue. Inactivation of the mPFC severely disrupted performance in the task. mPFC inactivations, however, did not disrupt the capability of perceptual discrimination for visual…

  17. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  18. Medial prefrontal depressor response: involvement of the rostral and caudal ventrolateral medulla in the rat.

    Science.gov (United States)

    Owens, N C; Verberne, A J

    2000-01-14

    The importance of neurones of the caudal and rostral ventrolateral medulla (CVLM and RVLM, respectively) in mediation of the medial prefrontal cortex depressor response was studied in halothane-anaesthetised rats. Blockade of GABA(A) receptors in the RVLM produced by microinjection of bicuculline (50 nl, 2 mM, n = 6) resulted in reversal of the depressor (-9.5 +/- 1.2 mm Hg) and lumbar sympathetic (-6.5 +/- 5.7 units) responses to pressor (+7.8 +/- 3.5 mm Hg) and sympathoexcitatory (+19.3 +/- 12.5 units) responses and simultaneous blockade of baroreceptor reflex-mediated sympathoinhibition. Baroreflex blockade was reflected by a significant reduction in the gain (slope of the blood pressure vs. lumbar sympathetic nerve discharge regression line) of the reflex. Microinjection of the excitatory amino acid antagonist kynurenic acid (100 nl, 50 mM, n = 6) into the CVLM blocked the baroreflex and significantly reduced the depressor (-9.6 +/- 0.4 to -6.9 +/- 0.6 mm Hg) and lumbar sympathetic (-4.0 +/- 2.1 to 2.9 +/- 1.9 units) responses to medial prefrontal cortex stimulation. These results support the hypothesis that the medial prefrontal cortex depressor response is mediated by a pathway which converges at the level of the RVLM and which is only partly dependent on an excitatory input to caudal ventrolateral medullary neurones.

  19. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music

    DEFF Research Database (Denmark)

    Green, Anders Christian; Bærentsen, Klaus B.; Stødkilde-Jørgensen, Hans;

    2012-01-01

    exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory......We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning...

  20. Differential Involvement of the Anterior Temporal Lobes in Famous People Semantics.

    Science.gov (United States)

    Chedid, Georges; Wilson, Maximiliano A; Provost, Jean-Sebastien; Joubert, Sven; Rouleau, Isabelle; Brambati, Simona M

    2016-01-01

    The ability to recognize a famous person occurs through semantic memory. Previous neuroimaging studies have shown that the anterior temporal lobes (ATLs) are involved in the recognition of famous people. However, it is still a matter of debate whether the semantic processing of names or pictures of famous people has an impact on the activation of ATLs. The aim of this study was to explore the pattern of activation associated with a semantic processing of famous people based on face and written name stimuli. Fifteen healthy young individuals participated in our fMRI study, in which they were asked to perform a semantic categorization judgment task, based on profession, of visually presented pictures, and names of famous people. Neuroimaging findings showed a common pattern of activation for faces and names mainly involving the inferior frontal regions, the posterior temporal lobe, the visual cortex, and the ATLs. We found that the comparison names vs. pictures lead to significant activation in the anterior superior temporal gyrus. On the other hand, faces vs. names seemed associated with increased activation in the medial ATL. Moreover, our results demonstrated that the functional connectivity network anchored to the medial ATL, compared to the anterior STG, is more connected to the bilateral occipital lobe and fusiform gyrus that are regions implicated in the visual system and visual processing of faces. This study provides critical evidence of the differential involvement of ATL regions in semantics of famous people. PMID:27625630

  1. Differential Involvement of the Anterior Temporal Lobes in Famous People Semantics

    Science.gov (United States)

    Chedid, Georges; Wilson, Maximiliano A.; Provost, Jean-Sebastien; Joubert, Sven; Rouleau, Isabelle; Brambati, Simona M.

    2016-01-01

    The ability to recognize a famous person occurs through semantic memory. Previous neuroimaging studies have shown that the anterior temporal lobes (ATLs) are involved in the recognition of famous people. However, it is still a matter of debate whether the semantic processing of names or pictures of famous people has an impact on the activation of ATLs. The aim of this study was to explore the pattern of activation associated with a semantic processing of famous people based on face and written name stimuli. Fifteen healthy young individuals participated in our fMRI study, in which they were asked to perform a semantic categorization judgment task, based on profession, of visually presented pictures, and names of famous people. Neuroimaging findings showed a common pattern of activation for faces and names mainly involving the inferior frontal regions, the posterior temporal lobe, the visual cortex, and the ATLs. We found that the comparison names vs. pictures lead to significant activation in the anterior superior temporal gyrus. On the other hand, faces vs. names seemed associated with increased activation in the medial ATL. Moreover, our results demonstrated that the functional connectivity network anchored to the medial ATL, compared to the anterior STG, is more connected to the bilateral occipital lobe and fusiform gyrus that are regions implicated in the visual system and visual processing of faces. This study provides critical evidence of the differential involvement of ATL regions in semantics of famous people. PMID:27625630

  2. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Juan Carlos López-Ramos

    2015-01-01

    Full Text Available Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex is identified in rodents by its dense connectivity with the mediodorsal thalamus, and because of its inputs from other sites, such as hippocampus and amygdala. The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the mediodorsal thalamus, the hippocampal CA1 area, or the basolateral amygdala, and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. Field postsynaptic potentials evoked at the medial prefrontal cortex from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. Field postsynaptic potentials collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations.

  3. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  4. Choosing the lesser of two evils, the better of two goods: specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice.

    Science.gov (United States)

    Blair, Karina; Marsh, Abigail A; Morton, John; Vythilingam, Meena; Jones, Matthew; Mondillo, Krystal; Pine, Daniel C; Drevets, Wayne C; Blair, James R

    2006-11-01

    The ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortices (ACd) are considered important for reward-based decision making. However, work distinguishing their individual functional contributions has only begun. One aspect of decision making that has received little attention is that making the right choice often translates to making the better choice. Thus, response choice often occurs in situations where both options are desirable (e.g., choosing between mousse au chocolat or crème caramel cheesecake from a menu) or, alternatively, in situations where both options are undesirable. Moreover, response choice is easier when the reinforcements associated with the objects are far apart, rather than close together, in value. We used functional magnetic resonance imaging to delineate the functional roles of the vmPFC and ACd by investigating these two aspects of decision making: (1) decision form (i.e., choosing between two objects to gain the greater reward or the lesser punishment), and (2) between-object reinforcement distance (i.e., the difference in reinforcements associated with the two objects). Blood oxygen level-dependent (BOLD) responses within the ACd and vmPFC were both related to decision form but differentially. Whereas ACd showed greater responses when deciding between objects to gain the lesser punishment, vmPFC showed greater responses when deciding between objects to gain the greater reward. Moreover, vmPFC was sensitive to reinforcement expectations associated with both the chosen and the forgone choice. In contrast, BOLD responses within ACd, but not vmPFC, related to between-object reinforcement distance, increasing as the distance between the reinforcements of the two objects decreased. These data are interpreted with reference to models of ACd and vmPFC functioning.

  5. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Directory of Open Access Journals (Sweden)

    Garreth Prendergast

    Full Text Available The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG. Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  6. Extranodal Rosai-Dorfman Disease involving paranasal sinuses, orbits and anterior cranial fossa

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Rosai-Dorfman disease (RDD is a rare, benign pseudolymphatous condition, predominantly involving lymph nodes. Although several cases of extra-nodal involvement have been reported previously, central nervous system involvement, particularly in the absence of nodal disease is extremely rare. Extranodal large RDD presenting as a single lesion involving sino-orbital and anterior cranial fossa has rarely been described previously. We report a case of incisional biopsy proved RDD in a young lady who presented with nasal obstruction and subsequent proptosis with visual diminution. Radiography of head and paranasal sinus demonstrated a strongly enhanced, diffuse polypoid lesion filling the bilateral sinonasal cavity and orbit with extension to the anterior cranial fossa by way of splaying the bony foramina. Pre-operative low dose steroid therapy had resulted in decreased size of the mass which facilitate gross-total surgical resection. RDD was confirmed by histopathology (emperipolesis and immuno-histochemistry (S-100 positivity. The follow-up computed tomography 3 months later showed minimal tumor residue in left parasellar region with complete sinonasal decompression.

  7. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy

    OpenAIRE

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In Experiment 1, rats were trained on a cost-benefit T-maze task in which they could either choose to climb a barrier to obtain a high reward (four pellet...

  8. Age-Related Differences in the Involvement of the Prefrontal Cortex in Attentional Control

    Science.gov (United States)

    Prakash, Ruchika Shaurya; Erickson, Kirk I.; Colcombe, Stanley J.; Kim, Jennifer S.; Voss, Michelle W.; Kramer, Arthur F.

    2009-01-01

    We investigated the relative involvement of cortical regions supporting attentional control in older and younger adults during performance on a modified version of the Stroop task. Participants were exposed to two different types of incongruent trials. One of these, an incongruent-ineligible condition, produces conflict at the non-response level,…

  9. Comparison of CT and MRI in Diagnosis of Laryngeal Carcinoma with Anterior Vocal Commissure Involvement

    Science.gov (United States)

    Wu, Jian-hui; Zhao, Jing; Li, Zeng-hong; Yang, Wei-qiang; Liu, Qi-hong; Yang, Zhi-yun; Liao, Bing; Li, Xiao-ling; Wang, Bin; Qin, Hao; Luo, Jie; Lv, Ke-xing; Wen, Wei-ping; Lei, Wen-bin

    2016-01-01

    This study aimed to compare the accuracy of CT and MRI in determining the invasion of thyroid cartilage by and the T staging of laryngeal carcinoma with anterior vocal commissure (AVC) involvement. A total of 26 cases of laryngeal carcinomas with AVC involvement from May 2012 to January 2014 underwent enhanced CT and MRI scan, out of whom 6 patients also underwent diffusion-weighted magnetic resonance imaging(DWI). T staging and thyroid cartilage involvement were evaluated. All the surgical specimens underwent serial section and were reviewed by two senior pathologists independently. When compared with pathologic staging, the accuracy was 88.46% (23/26) of MRI scan (with a 95% confidence interval 37~77%) and 57.69% (15/26) of CT scan (with a 95% confidence interval 70~98%), respectively (P < 0.01). We also reported three cases who were misdiagnosed on CT or MRI about either the thyroid cartilage was involved or not, and one case of preliminary study of DWI. Compared to CT, MRI exhibited a higher accuracy rate on T staging of laryngeal carcinomas with AVC involvement. Combined utility of CT and MRI could help improve the accuracy of assessment of thyroid cartilage involvement and T staging of laryngeal carcinomas with AVC involvement. PMID:27480073

  10. Gap Junctions in the Ventral Hippocampal-Medial Prefrontal Pathway Are Involved in Anxiety Regulation

    Science.gov (United States)

    Schoenfeld, Timothy J.; Kloth, Alexander D.; Hsueh, Brian; Runkle, Matthew B.; Kane, Gary A.; Wang, Samuel S.-H.

    2014-01-01

    Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP–mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety. PMID:25411496

  11. MODIFIED TRANSCRANIAL APPROACH FOR RESECTION OF TUMORS INVOLVING THE ANTERIOR CRANIAL FOSSA

    Institute of Scientific and Technical Information of China (English)

    赵素萍; 陶正德; 肖健云

    2001-01-01

    Objective: To introduce the method of a modified transcranial approach for resection of paranasal sinuses tumors involving the anterior skull base and to address our experience with the approach. Patients and Methods: Ten cases were operated by the approach. Among them, 4 suffered from benign meningeomas, 6 with malignant tumors included one chondrosarcoma, two malignant meningeomas, two olfactory neuroblastomas, and one squamous sarcoma. Of the patients, 4 cases had primary tumor and 6 cases had recurrent tumors. Result: All of the ten cases underwent operation and no postopertion complication occurred. 7 cases have survived for one to four years without tumor recurrence. 3 cases with malignant tumor died of tumor relapse in one to two years. Conclusion: This method significantly has helped to reduce the persistence and recurrence of the disease.

  12. Effects of adult exposure to bisphenol a on genes involved in the physiopathology of rat prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Beatriz Castro

    Full Text Available Several neurological and behavioral dysfunctions have been reported in animals exposed to bisphenol A (BPA. However, little is known about the impact of adult exposure to BPA on brain physiopathology. Here, we focused on prefrontal cortex (PFC of rats, because it is an important area for cognitive control, complex behaviors and is altered in many psychopathologies. Gamma-aminobutyric acid (GABA and serotonin (5-HT systems are essential for PFC function. Therefore, we examined the effects of adult exposure to BPA on 5α-Reductase (5α-R and cytochrome P450 aromatase (P450arom, enzymes that synthesize GABAA receptor modulators, and tryptophan hydroxylase (Tph, the rate-limiting enzyme in 5-HT biosynthesis. To gain better understanding of BPA's action in the adult PFC, 84 genes involved in neurotoxicity were also analysed. Adult male and female rats were subcutaneously injected for 4 days with 50 µg/kg/day, the current reference safe dose for BPA. mRNA and protein levels of 5α-R, P450arom and Tph were quantified by real-time RT-PCR and Western blot. Genes linked to neurotoxicity were analyzed by PCR-Array technology. Adult exposure to BPA increased both P450arom and Tph2 expression in PFC of male and female, but decreased 5α-R1 expression in female. Moreover, we identified 17 genes related to PFC functions such as synaptic plasticity and memory, as potential targets of BPA. Our results provided new insights on the molecular mechanisms underlying BPA action in the physiopathology of PFC, but also raise the question about the safety of short-term exposure to it in the adulthood.

  13. Reversible antisocial behavior in ventromedial prefrontal lobe epilepsy.

    Science.gov (United States)

    Trebuchon, Agnès; Bartolomei, Fabrice; McGonigal, Aileen; Laguitton, Virginie; Chauvel, Patrick

    2013-11-01

    Frontal lobe dysfunction is known to be associated with impairment in social behavior. We investigated the link between severe pharmacoresistant frontal lobe epilepsy and antisocial trait. We studied four patients with pharmacoresistant epilepsy involving the prefrontal cortex, presenting abnormal interictal social behavior. Noninvasive investigations (video-EEG, PET, MRI) and intracerebral recording (stereoelectroencephalography (SEEG)) were performed as part of a presurgical assessment. Comprehensive psychiatric and cognitive evaluation was performed pre- and postoperatively for frontal lobe epilepsy, with at least 7years of follow-up. All patients shared a characteristic epilepsy pattern: (1) chronic severe prefrontal epilepsy with daily seizures and (2) an epileptogenic zone as defined by intracerebral recording involving the anterior cingulate cortex, ventromedial PFC, and the posterior part of the orbitofrontal cortex, with early propagation to contralateral prefrontal and ipsilateral medial temporal structures. All patients fulfilled the diagnostic criteria (DSM-IV) of antisocial personality disorder, which proved to be reversible following seizure control. Pharmacoresistant epilepsy involving a prefrontal network is associated with antisocial personality. We hypothesize that the occurrence of frequent seizures in this region over a prolonged period produces functional damage leading to impaired prefrontal control of social behavior. This functional damage is reversible since successful epilepsy surgery markedly improved antisocial behavior in these patients. The results are in line with previous reports of impairment of social and moral behavior following ventromedial frontal lobe injury.

  14. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    Science.gov (United States)

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training.

  15. Oxytocin in the medial prefrontal cortex is involved in maternal care, maternal aggression and anxiolysis during the postpartum period

    OpenAIRE

    Sara eSabihi; Shirley eDong; Nicole eDurosko; Benedetta eLeuner

    2014-01-01

    The neuropeptide oxytocin (OT) acts on a widespread network of brain regions to regulate numerous behavioral adaptations during the postpartum period including maternal care, maternal aggression, and anxiolysis. In the present study, we examined whether this network also includes the medial prefrontal cortex (mPFC). We found that bilateral infusion of a highly specific oxytocin receptor antagonist (OTR-A) into the prelimbic (PL) region of the mPFC increased anxiety-like behavior in postpartum...

  16. Long-term expression of human contextual fear and extinction memories involves amygdala, hippocampus and ventromedial prefrontal cortex: a reinstatement study in two independent samples.

    Science.gov (United States)

    Lonsdorf, Tina B; Haaker, Jan; Kalisch, Raffael

    2014-12-01

    Human context conditioning studies have focused on acquisition and extinction. Subsequent long-term changes in fear behaviors not only depend on associative learning processes during those phases but also on memory consolidation processes and the later ability to retrieve and express fear and extinction memories. Clinical theories explain relapse after successful exposure-based treatment with return of fear memories and remission with stable extinction memory expression. We probed contextual fear and extinction memories 1 week (Day8) after conditioning (Day1) and subsequent extinction (Day2) by presenting conditioned contexts before (Test1) and after (Test2) a reinstatement manipulation. We find consistent activation patterns in two independent samples: activation of a subgenual part of the ventromedial prefrontal cortex before reinstatement (Test1) and (albeit with different temporal profiles between samples) of the amygdala after reinstatement (Test2) as well as up-regulation of anterior hippocampus activity after reinstatement (Test2 > Test1). These areas have earlier been implicated in the expression of cued extinction and fear memories. The present results suggest a general role for these structures in defining the balance between fear and extinction memories, independent of the conditioning mode. The results are discussed in the light of hypotheses implicating the anterior hippocampus in the processing of situational ambiguity.

  17. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.

    Science.gov (United States)

    Eddy, Meghan C; Todd, Travis P; Bouton, Mark E; Green, John T

    2016-02-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  18. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues.

    Science.gov (United States)

    Dumont, Julie R; Amin, Eman; Aggleton, John P

    2014-01-01

    To test potential parallels between hippocampal and anterior thalamic function, rats with anterior thalamic lesions were trained on a series of biconditional learning tasks. The anterior thalamic lesions did not disrupt learning two biconditional associations in operant chambers where a specific auditory stimulus (tone or click) had a differential outcome depending on whether it was paired with a particular visual context (spot or checkered wall-paper) or a particular thermal context (warm or cool). Likewise, rats with anterior thalamic lesions successfully learnt a biconditional task when they were reinforced for digging in one of two distinct cups (containing either beads or shredded paper), depending on the particular appearance of the local context on which the cup was placed (one of two textured floors). In contrast, the same rats were severely impaired at learning the biconditional rule to select a specific cup when in a particular location within the test room. Place learning was then tested with a series of go/no-go discriminations. Rats with anterior thalamic nuclei lesions could learn to discriminate between two locations when they were approached from a constant direction. They could not, however, use this acquired location information to solve a subsequent spatial biconditional task where those same places dictated the correct choice of digging cup. Anterior thalamic lesions produced a selective, but severe, biconditional learning deficit when the task incorporated distal spatial cues. This deficit mirrors that seen in rats with hippocampal lesions, so extending potential interdependencies between the two sites.

  19. Loss of anterior concavity of the first sacrum can predict spinal involvement in ankylosing spondylitis.

    Science.gov (United States)

    Kim, Ji Young; Lee, Seunghun; Joo, Kyung Bin; Song, Yoonah; Joo, Young Bin; Kim, Tae-Hwan

    2016-01-01

    In this study, we evaluated the frequency of squaring of the first sacrum (S1), defined as the loss of anterior concavity, in patients with ankylosing spondylitis (AS). We also determined the interobserver reliability in the assessment of S1 squaring and the relationships of S1 squaring with MRI findings and the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). To this end, we performed a retrospective study of 100 patients with AS (mean age 33.2 years; range 19-57 years) and 100 control patients (mean age 35.6 years; range 19-50 years). Four experienced radiologists independently assessed the presence of S1 squaring in the AS and control groups. The frequencies of S1 squaring as scored by the four observers were 47, 48, 46, and 42 in the AS group and 3, 6, 4, and 6 in the control group. The interobserver agreement among the four observers with respect to S1 squaring was excellent (κ value 0.80) in the AS group and fair to good (κ value 0.61) in the control group. In patients with AS, the presence of S1 squaring showed fair to good agreement with the MRI changes (κ value 0.74). Moreover, the mSASSSs of patients with versus without S1 squaring were significantly different (mean 23.9 vs 7.0, p < 0.001). In conclusion, S1 squaring is relatively common in patients with AS. Moreover, S1 squaring is closely correlated with MRI changes and significantly associated with the mSASSS. Assessment of S1 squaring could be a simple method that is potentially useful for predicting early spinal structural involvement in patients with AS.

  20. Segond fracture: involvement of the iliotibial band, anterolateral ligament, and anterior arm of the biceps femoris in knee trauma

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, Michel de; Boulet, Cedric; Willekens, Inneke; Mey, Johan de; Shahabpour, Maryam [Universitair Ziekenhuis Brussel, Department of Radiology, Brussels (Belgium); Lenchik, Leon [Wake Forest University, Department of Radiology, Winston Salem, NC (United States); Cattrysse, Erik [Vrije Universiteit Brussel, Department of Experimental Anatomy, Brussels (Belgium)

    2014-12-04

    To evaluate the involvement of the iliotibial band (ITB), the anterolateral ligament (ALL), and the anterior arm of the biceps femoris in MRI-diagnosed Segond fracture and to evaluate other associated findings of Segond fracture. We retrospectively reviewed the MRI of 13 cases of Segond fracture. The studies included proton density-weighted, T2-weighted, and proton density-weighted with fat saturation images in the three planes. We studied 2 cadaveric specimens with emphasis on the ALL. One cadaveric specimen was dissected while the other was sectioned in the sagittal plane. The mean age of the patients was 36 years (range, 17-52). There were 7 men and 6 women. The mean size of the Segond bone fragment was 8 x 10 x 2 mm. The distance from the tibia varied from 2 to 6 mm. Associated findings included anterior cruciate ligament (ACL) tear (n = 13), medial collateral ligament (MCL) tear (n = 8), meniscocapsular tear of the posterior horn of the medial meniscus (n = 5), and posterolateral corner involvement (n = 4). Bone marrow edema involved the mid-lateral femoral condyle and the posterior tibial plateau on both the medial and the lateral side. Edema at the Segond area was seen, but was limited. Fibular head edema was also seen. The ITB (11 out of 13) and ALL (10 out of 13) inserted on the Segond bone fragment. The anterior arm of the biceps tendon did not insert on the Segond fracture. Associated findings of Segond fracture include ACL tear, MCL tear, medial meniscus tear, and posterolateral corner injury. Both the ITB and the ALL may be involved in the Segond avulsion. The anterior arm of the biceps femoris tendon is not involved. (orig.)

  1. Bilateral macular thickening in mild unilateral anterior uveitis: is HLA-B27 involved?

    Directory of Open Access Journals (Sweden)

    Wexler Alexandra

    2012-07-01

    Full Text Available Abstract Background Macular thickening (MT without clinically recognized macular edema has been described in anterior uveitis (AU. Although fellow-eyes of patients have been used as controls in several studies, little is known about macular thickness in these eyes. We studied the rate and extent of MT in both AU-affected and quiescent fellow-eyes of phakic AU patients with good visual acuity (VA. We also assessed macular thickness related to HLA-B27 presence and to recurrence, since these issues have been almost unexplored by previous optical coherence tomography (OCT studies. Methods Patients with AU were prospectively included and macular thickness was measured with OCT initially and on follow up. Macular thickness in patients’ affected eyes (n = 30 as well as in their quiet fellow-eyes (n = 28 was compared with eyes of age- and gender matched controls. Inter-ocular differences in macular thickness between AU affected eyes and their fellow-eyes were assessed in patients (n = 28, also in a subgroup with visual acuity ≥ 0.8 (n = 23 by one-sample Student’s t-tests. Inter-ocular differences were also assessed related to HLA-B27 presence and related to the status of current AU episode (initial or relapse. Results Subclinical MT is present in both quiet fellow-eyes and AU-affected eyes of patients. MT was found in most cases of AU, even in phakic eyes with good VA. There was a larger increase in macular thickness in HLA-B27-positive than in HLA-B27-negative patients. No differences in macular thickness were found between patients with their first AU episode and patients with recurrent episodes. Conclusions MT probably reflects systemic immune-mediated response to the inflammatory disorder in AU, and it is possible that HLA-B27-related factors are involved in the pathogenesis of AU. These observations are in line with and extend the current understanding of the mechanisms behind MT in AU.

  2. Involvement of the Rostral Anterior Cingulate Cortex in Consolidation of Inhibitory Avoidance Memory: Interaction with the Basolateral Amygdala

    OpenAIRE

    Malin, Emily L.; Ibrahim, Deena Y.; Tu, Jessica W.; McGaugh, James L.

    2006-01-01

    Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigat...

  3. Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis

    OpenAIRE

    Charmaine Demanuele; Peter Kirsch; Christine Esslinger; Mathias Zink; Andreas Meyer-Lindenberg; Daniel Durstewitz

    2015-01-01

    Introduction Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To invest...

  4. Prefrontal-hippocampal pathways underlying inhibitory control over memory.

    Science.gov (United States)

    Anderson, Michael C; Bunce, Jamie G; Barbas, Helen

    2016-10-01

    A key function of the prefrontal cortex is to support inhibitory control over behavior. It is widely believed that this function extends to stopping cognitive processes as well. Consistent with this, mounting evidence establishes the role of the right lateral prefrontal cortex in a clear case of cognitive control: retrieval suppression. Retrieval suppression refers to the ability to intentionally stop the retrieval process that arises when a reminder to a memory appears. Functional imaging data indicate that retrieval suppression involves top-down modulation of hippocampal activity by the dorsolateral prefrontal cortex, but the anatomical pathways supporting this inhibitory modulation remain unclear. Here we bridge this gap by integrating key findings about retrieval suppression observed through functional imaging with a detailed consideration of relevant anatomical pathways observed in non-human primates. Focusing selectively on the potential role of the anterior cingulate cortex, we develop two hypotheses about the pathways mediating interactions between lateral prefrontal cortex and the medial temporal lobes during suppression, and their cellular targets: the entorhinal gating hypothesis, and thalamo-hippocampal modulation via the nucleus reuniens. We hypothesize that whereas entorhinal gating is well situated to stop retrieval proactively, thalamo-hippocampal modulation may interrupt an ongoing act of retrieval reactively. Isolating the pathways that underlie retrieval suppression holds the potential to advance our understanding of a range of psychiatric disorders characterized by persistent intrusive thoughts. More broadly, an anatomical account of retrieval suppression would provide a key model system for understanding inhibitory control over cognition.

  5. Determining Monkey Free Choice Long before the Choice Is Made: The Principal Role of Prefrontal Neurons Involved in Both Decision and Motor Processes

    Science.gov (United States)

    Marcos, Encarni; Genovesio, Aldo

    2016-01-01

    When choices are made freely, they might emerge from pre-existing neural activity. However, whether neurons in the prefrontal cortex (PF) show this anticipatory effect and, if so, in which part of the process they are involved is still debated. To answer this question, we studied PF activity in monkeys while they performed a strategy task. In this task when the stimulus changed from the previous trial, the monkeys had to shift their response to one of two spatial goals, excluding the one that had been previously selected. Under this free-choice condition, the prestimulus activity of the same neurons that are involved in decision and motor processes predicted future choices. These neurons developed the same goal preferences during the prestimulus presentation as they did later in the decision phase. In contrast, the same effect was not observed in motor-only neurons and it was present but weaker in decision-only neurons. Overall, our results suggest that the PF neuronal activity predicts upcoming actions mainly through the decision-making network that integrate in time decision and motor task aspects.

  6. Fractionated stereotactic radiosurgery for patients with skull base metastases from systemic cancer involving the anterior visual pathway

    International Nuclear Information System (INIS)

    To analyze the tumor control, survival outcomes, and toxicity after stereotactic radiosurgery (SRS) for skull base metastases from systemic cancer involving the anterior visual pathway. We have analyzed 34 patients (23 females and 11 males, median age 59 years) who underwent multi-fraction SRS for a skull base metastasis compressing or in close proximity of optic nerves and chiasm. All metastases were treated with frameless LINAC-based multi-fraction SRS in 5 daily fractions of 5 Gy each. Local control, distant failure, and overall survival were estimated using the Kaplan-Meier method calculated from the time of SRS. Prognostic variables were assessed using log-rank and Cox regression analyses. At a median follow-up of 13 months (range, 2–36.5 months), twenty-five patients had died and 9 were alive. The 1-year and 2-year local control rates were 89% and 72%, and respective actuarial survival rates were 63% and 30%. Four patients recurred with a median time to progression of 12 months (range, 6–27 months), and 17 patients had new brain metastases at distant brain sites. The 1-year and 2-year distant failure rates were 50% and 77%, respectively. On multivariate analysis, a Karnofsky performance status (KPS) >70 and the absence of extracranial metastases were prognostic factors associated with lower distant failure rates and longer survival. After multi-fraction SRS, 15 (51%) out of 29 patients had a clinical improvement of their preexisting cranial deficits. No patients developed radiation-induced optic neuropathy during the follow-up. Multi-fraction SRS (5 x 5 Gy) is a safe treatment option associated with good local control and improved cranial nerve symptoms for patients with a skull base metastasis involving the anterior visual pathway

  7. Anterior Crossbite and Crowding Correction with a Series of Clear Aligners Involving Lower Incisor Extraction: "The Clear Way" Case Report.

    Science.gov (United States)

    Bawaskar, Naval Suresh

    2015-01-01

    The Clear Aligner can be used to correct tooth movement without involving extraction, surgery, and other adjunct orthopaedic appliances. Some forms ofattachments are required with clear aligners to achieve all major types of orthodontic tooth movements. The Clear Aligner is a procedure that can be performed by a clinician with computer simulation/calculation. Since the Clear Aligner can be fabricated in steps, it is readily available to change the treatment sequence throughout the course of the treatment in cases of complex malocclusions. The patient can receive any necessary dental procedures with ease during the course of the treatment. The treatment can also be easily resumed even if the patient has not worn the aligners for a period of time. The purpose of this article is to report dental anterior crossbite correction with a series of Clear Aligners without the use of any forms of attachments. The Clear Aligner could be used as an alternative in appropriate cases for those who are reluctant with conventional appliances. PMID:27029089

  8. Expression analysis of genes involved in collagen cross-linking and its regulation in traumatic anterior shoulder instability.

    Science.gov (United States)

    Belangero, Paulo Santoro; Leal, Mariana Ferreira; Cohen, Carina; Figueiredo, Eduardo Antônio; Smith, Marília Cardoso; Andreoli, Carlos Vicente; de Castro Pochini, Alberto; Ejnisman, Benno; Cohen, Moises

    2016-03-01

    The molecular alterations involved in the capsule deformation presented in shoulder instability patients are poorly understood. Increased TGFβ1 acts as a signal for production of matrix macromolecules by fibrogenic cells at joint injury sites. TGFβ1, through its receptor TGFβR1, regulates genes involved in collagen cross-linking, such as LOX, PLOD1, and PLOD2. We evaluated TGFβ1, TGFβR1, LOX, PLOD1, and PLOD2 gene expression in the antero-inferior (macroscopically injured region), antero-superior and posterior regions of the glenohumeral capsule of 29 shoulder instability patients and eight controls. We observed that PLOD2 expression was increased in the anterior-inferior capsule region of the patients compared to controls. LOX expression tended to be increased in the posterior portion of patients. Patients with recurrent shoulder dislocation presented upregulation of TGFβR1 in the antero-inferior capsule portion and of PLOD2 in the posterior region. Conversely, LOX was increased in the posterior portion of the capsule of patients with a single shoulder dislocation episode. In the antero-inferior, LOX expression was inversely correlated and TGFβR1 was directly correlated with the duration of symptoms. In the posterior region, PLOD2, TGFβ1, and TGFβR1 were directly correlated with the duration of symptoms. In conclusion, PLOD2 expression was increased in the macroscopically injured region of the capsule of patients. Upregulation of TGFβ1, TGFβR1, and PLOD2 seems to be related with the maintenance of disease symptoms, especially in the posterior region. LOX upregulation seems to occur only in the initial phase of the affection. Therefore, TGFβ1, TGFβR1, LOX, and PLOD2 may play a role in shoulder instability. PMID:26185036

  9. Overlapping prefrontal systems involved in cognitive and emotional processing in euthymic bipolar disorder and following sleep deprivation: A review of functional neuroimaging studies

    OpenAIRE

    McKenna, Benjamin S.; Eyler, Lisa T.

    2012-01-01

    Prefrontal cortex (PFC) mediated cognitive and emotional processing deficits in bipolar disorder lead to functional limitations even during periods of mood stability. Alterations of sleep and circadian functioning are well-documented in bipolar disorder, but there is little research directly examining the mechanistic role of sleep and/or circadian rhythms in the observed cognitive and emotional processing deficits. We systematically review the cognitive and emotional processing deficits relia...

  10. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  11. Single- vs. double-bundle anterior cruciate ligament reconstruction: a new aspect of knee assessment during activities involving dynamic knee rotation.

    Science.gov (United States)

    Czamara, Andrzej; Królikowska, Aleksandra; Szuba, Łukasz; Widuchowski, Wojciech; Kentel, Maciej

    2015-02-01

    Few studies have compared single-bundle (SB) and double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) in the knee joint during activities involving change-of-direction maneuvers and knee rotation. This study examined whether the type of ACLR contributes to postphysiotherapy outcomes, with an emphasis on knee function assessment during activities involving dynamic knee rotation. Fifteen male patients after SB ACLR and 15 male patients after DB ACLR took part in the same physiotherapy program. Twenty-four weeks after ACLR, both groups underwent anterior laxity measurement, pivot shift tests, range of movement and joint circumference measurements, subjective assessment of pain and stability levels in the knee joint, peak torque measurement of the muscles rotating the tibia toward the femur, and a run test with maximal speed and change-of-direction maneuvers. Comparative analysis did not show any differences between the results of anterior tibial translation, pivot shift test, range of movement and joint circumference, and subjective assessment of pain and knee joint stability levels. No differences were noted between the groups in peak torque values obtained from the muscles responsible for internal and external tibial rotation or results of the run test. The data obtained from this study can be used by research teams to monitor and compare the effectiveness of various study protocols involving surgical and physiotherapy treatment. The data are especially useful when combined with the clinical assessment of patients who would like to return to sport.

  12. Difference in temporal lobe dose between two radiotherapy techniques in the treatment of NPC with anterior nasal involvement

    Energy Technology Data Exchange (ETDEWEB)

    Wu, V.W.C.; Luk, J.H.Y.; Wong, S.F.T.; Lam, E.C.H.; Fung, M.C.Y.; Tong, S.M.; Ku, I.K.M. [Hong Kong Polytechnic University, Hong Kong, (Hong Kong). Department of Radiography and Optometry

    1997-04-01

    Nasopharyngeal carcinoma with anterior extension are treated with special radiotherapy techniques. The purpose of this study is to investigate the difference of temporal lobe dose between two radiotherapy techniques (A and B) which are commonly used in the treatment of such condition in Hong Kong. The study is carried out by performing radiation treatments to a humanoid phantom under simulated conditions of the two techniques. The dose measurement is done by thermoluminescent dosimeters (TLD) which are placed inside the phantom. Both techniques employ a `3-field` arrangement: a heavy-weighted anterior facial fields with two lateral opposing facial fields. The main difference lies in the anterior facial field in which technique A uses electron beam throughout while technique B uses a mixture of photon and electron beams. The results demonstrates that technique A delivers higher dose to temporal lobe than technique B. In a course of radical external beam radiotherapy (66 Gy), the mean dose to inferior temporal lobe are 59.29 Gy in technique A and 34.06 Gy in technique B respectively (p < 0.0001). Furthermore, it is found that the temporal lobe dose difference between the two techniques is mainly due to their phase I treatment. (p < 0.0001 for phase I and p = 0.078 for phase II). (authors). 14 refs., 3 tabs., 6 figs.

  13. Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data

    Directory of Open Access Journals (Sweden)

    Gil eGonen-Yaacovi

    2013-08-01

    Full Text Available Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC, the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks, although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas.

  14. [The role of the prefrontal cortex in the sensory problems of children with autism spectrum disorder and its involvement in social aspects].

    Science.gov (United States)

    Martínez-Sanchis, Sonia

    2015-02-25

    Introduccion. En las personas con trastornos del espectro autista (TEA), las percepciones sensoriales aberrantes podrian ser tan caracteristicas y disruptivas como la presencia de anomalias en la comunicacion e interaccion social, asi como de intereses restringidos y repetitivos. La mayoria presenta trastornos de la modulacion sensorial (hiper o hiporresponsividad) en varios canales sensoriales. Ademas, muestra un deficit en la integracion de la informacion procedente de varios sistemas sensoriales (por ejemplo, auditivo y visual). Todo ello agravaria los sintomas nucleares relacionados con la comunicacion y aumentaria la aparicion de problemas conductuales. Objetivo. Revisar la evidencia experimental que aborda el papel de la corteza prefrontal en las experiencias sensoriales inusuales en los TEA y su implicacion en los aspectos sociales. Hay evidencia de hipoactivacion y disfuncion en redes neurales, que incluyen la corteza prefrontal y participan en la cognicion social, como la red por defecto y el sistema de neuronas espejo en niños con TEA. Conclusiones. Los problemas sensoriomotores a edad temprana suponen una disrupcion de la organizacion y regulacion no solo de la percepcion y la accion, sino tambien del lenguaje, el pensamiento, la emocion e incluso la memoria.

  15. Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion.

    Science.gov (United States)

    Urry, Heather L; van Reekum, Carien M; Johnstone, Tom; Davidson, Richard J

    2009-09-01

    The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64-66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease>maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease>maintain) and monotonic changes in EDA (increase>maintain>decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal. PMID:19486944

  16. Muscle involvement in leprosy: study of the anterior tibial muscle in 40 patients Alterações musculares na lepra: estudo do músculo tibial anterior em 40 pacientes

    Directory of Open Access Journals (Sweden)

    LINEU CESAR WERNECK

    1999-09-01

    Full Text Available The involvement of skeletal striated muscle in leprosy is considered secondary due to peripheral neuropathy, but some studies point it to a primary muscle lesion. In order to investigate the muscle involvement in leprosy, we studied 40 patients (lepromatous 23, tuberculoid 13, borderline 2 and indeterminate 2. The motor nerve conduction of the peroneal nerves had a reduction of the velocity, decreased compound muscle action potential and sometimes absence of potentials. The electromyographic study of the anterior tibial muscle showed signs of recent and chronic denervation in 77.5% of the cases and no myopathic potentials. The anterior tibial muscle biopsy revealed denervation in 45% of the cases, interstitial inflammatory myopathy in 30% and mixed (myopathic and neuropathic pattern in 12.5%. Acid fast bacillus was detected in 25% of the cases, always in the interstitial tissue. Inflammatory reaction was present in the interstitial space and in patients with the lepromatous type. The histological findings clearly defined the presence of the so-called "Leprous Interstitial Myositis" on the top of denervation signs.O envolvimento do músculo estriado na lepra é considerado secundário à lesão dos nervos periféricos, mas alguns estudos relataram acometimento muscular primário. A fim de verificar esta controvérsia estudamos 40 pacientes com lepra, sendo 23 da forma lepromatosa, 13 da tuberculoide, 2 borderline e 2 indeterminada. Realizamos a neurocondução do nervo peroneiro, junto com eletromiografia e biópsia do músculo tibial anterior. Encontramos redução de velocidade de condução, da amplitude e algumas vezes ausência de potenciais no nervo peroneiro. A eletromiografia do tibial anterior mostrou sinais de desinervação recente e crônica em 77,5% dos casos e não foi encontrada evidência de padrão "miopático". A biópsia do músculo tibial anterior revelou desinervação em 45% dos casos, miopatia inflamatória intersticial em

  17. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  18. Suppressing emotions impairs subsequent stroop performance and reduces prefrontal brain activation.

    Directory of Open Access Journals (Sweden)

    Malte Friese

    Full Text Available Abundant behavioral evidence suggests that the ability to self-control is limited, and that any exertion of self-control will increase the likelihood of subsequent self-control failures. Here we investigated the neural correlates underlying the aftereffects of self-control on future control processes using functional magnetic resonance imaging (fMRI. An initial act of self-control (suppressing emotions impaired subsequent performance in a second task requiring control (Stroop task. On the neural level, increased activity during emotion suppression was followed by a relative decrease in activity during the Stroop task in a cluster in the right lateral prefrontal cortex (PFC including the dorsolateral prefrontal cortex (DLPFC, an area engaged in the effortful implementation of control. There was no reliable evidence for reduced activity in the medial frontal cortex (MFC including the anterior cingulate cortex (ACC, which is involved in conflict detection processes and has previously also been implicated in self-control. Follow-up analyses showed that the detected cluster in the right lateral PFC and an area in the MFC were involved in both the emotion suppression task and the Stroop task, but only the cluster in the right lateral PFC showed reduced activation after emotion suppression during the Stroop task. Reduced activity in lateral prefrontal areas relevant for the implementation of control may be a critical consequence of prior self-control exertion if the respective areas are involved in both self-control tasks.

  19. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David;

    2009-01-01

    was measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35...

  20. Cervicoplastia anterior Anterior cervicoplasty

    Directory of Open Access Journals (Sweden)

    Lucas Gomes Patrocínio

    2004-10-01

    Full Text Available Muitos pacientes buscam correção estética da frouxidão da pele do pescoço, depósito de gordura na região submentoneana ou bandas de platisma. Em grande parte dos casos a ação medial, via cervicoplastia anterior é necessária. OBJETIVO: Demonstrar a casuística e avaliar os resultados e complicações com a técnica de cervicoplastia anterior no Serviço de Otorrinolaringologia da Universidade Federal de Uberlândia. FORMA DE ESTUDO: Relato de série. PACIENTES E MÉTODOS: Quarenta e dois pacientes, entre 39 e 65 anos de idade, sendo 40 (95,2% do sexo feminino e 2 (4,8% do masculino, foram submetidos a cervicoplastia anterior. Retrospectivamente foram avaliados resultados e complicações. RESULTADOS: Destes, 34 apresentaram resultados satisfatórios, 4 apresentaram déficit estético notado somente pelo cirurgião, 3 apresentaram déficit estético notado somente pelo paciente e 1 apresentou déficit estético necessitando cirurgia revisional. Ao estudo fotográfico, todos os pacientes apresentaram melhora do perfil cervical, redução das bandas de platisma e da frouxidão da pele, estabilização da musculatura cervical e acentuação do ângulo cervicomental, em graus variados. Houve complicação em 2 casos (discreto serohematoma e cicatriz um pouco alargada. CONCLUSÃO: A cervicoplastia, associada ou não à tração lateral pela ritidoplastia, é uma técnica que produz resultados satisfatórios na grande maioria dos casos.Many patients look for aesthetic correction of the laxity of neck skin, submandibular fat deposit or platisma bands. In a large part of the cases, medial action, through anterior cervicoplasty is necessary. AIM: To demonstrate the casuistic and to evaluate the results and complications with anterior cervicoplasty technique in the Otorhinolaryngology Service of the Federal University of Uberlândia. STUDY DESIGN: Serie report. PATIENTS AND METHODS: Forty-two patients, between 39 and 65 years of age, being 40 (95

  1. Reconstrução tridimensional da face nos tumores avançados com invasão da fossa craniana anterior Tridimensional facial reconstruction following major resection of tumors involving the anterior cranial fossa

    Directory of Open Access Journals (Sweden)

    Mario Sergio Lomba Galvão

    2004-04-01

    Full Text Available OBJETIVO: Analisar as indicações cirúrgicas e o seguimento pós operatório, ressaltando as complicações e efetividade da abordagem multidisciplinar, para os tumores avançados da base do crânio. MÉTODO: Análise retrospectiva de 46 prontuários de pacientes submetidos à ressecção de tumores invadindo a fossa craniana anterior e reconstruídos com retalhos microcirúrgicos, operados entre março de 1990 e julho de 2002. Todos os pacientes foram operados pelo núcleo de cirurgia de base do crânio do INCA. RESULTADOS: As estruturas mais envolvidas na ressecção foram por ordem: a órbita (76,5%, seio maxilar (76,5%, seio esfenoidal (63,8%, paredes da cavidade nasal (59,5% e palato (42,5%. A dura-máter estava acometida em 32,6% dos casos. A reconstrução microcirúrgica utilizando os retalhos do músculo reto abdominal foi empregada em 93,5 % dos casos. A taxa de sucesso dos transplantes livres foi de 97,8%. As complicações ocorreram em 58,6% dos pacientes e as mais freqüentes foram: infecções locais (21,7%, fístulas liquóricas (15,2%, meningite (6,5% e hematoma (6,5%. CONCLUSÕES: A reconstrução com técnica microcirúrgica permite que se realizem ressecções alargadas destes tumores com limites seguros e índices de complicações aceitáveis, permitindo a estes pacientes uma melhoria da qualidade de vida e da sobrevida, com baixo índice de recidiva.BACKGROUND: The analysis of the surgical indications and the follow-up, stressing the surgical complications and efficiency of a team approach for the advanced tumors involving the anterior skull base are the purpose of the present study. METHODS: The authors present a retrospective evaluation of 46 patients who underwent resections of advanced tumors involving the anterior skull base, which were reconstructed with free flaps from May, 1990 to July, 2002. Those patients have been treated by the skull base surgical team of INCA. RESULTS: The commonest resected structures were

  2. Nitric oxide in the prelimbic medial prefrontal cortex is involved in the anxiogenic-like effect induced by acute restraint stress in rats.

    Science.gov (United States)

    Vila-Verde, C; Marinho, A L Z; Lisboa, S F; Guimarães, F S

    2016-04-21

    Neurons containing the neuronal nitric oxide synthase (nNOS) enzyme are located in brain areas related to defensive behavior, such as the ventromedial prefrontal cortex (vMPFC). Rats exposed to a live predator (a cat) present anxiety-like behavior and an increased number of nNOS-positive neurons in this brain area one-week later. Moreover, stress-related behavioral changes in rodents can be prevented by systemic or local vMPFC nNOS inhibition. In the present study we investigated if acute restraint stress (RS)-induced delayed (one-week) anxiogenic-like effect was associated with increased nNOS expression or activity in the vMPFC. Furthermore, we also tested if local pharmacological nNOS inhibition would prevent stress-induced behavioral changes. Male Wistar rats were submitted to RS for 3h and tested in the elevated plus maze (EPM) 24h or 7 days later. Two hours after the EPM test, their brains were removed, processed and nNOS expression in the vMPFC was evaluated by immunohistochemistry. Another group of animals was used for measuring NO metabolites (NOx; an indirect measure of NOS activity) immediately after the EPM test, 24h after RS. Independent groups had guide cannula implanted bilaterally into the prelimbic (PL) portion of vMPFC. Five to six days after surgery, the animals were submitted to RS and 24h later received local administration of the nNOS inhibitor, N-propyl-l-arginine (NPLA; 0.04 nmol). They were tested in the EPM 10 min later. RS-induced anxiogenic-like effect was accompanied by increased nNOS expression in the PL (p<0.05), but not in the infralimbic (IL) vMPFC, both 24h and 7 days after RS. Moreover, open-arm exploration of the EPM was negatively correlated with nNOS expression (p<0.05) and NOx levels (p<0.05) in the PL. The anxiogenic-like effect observed 24h after RS was prevented by NPLA (p<0.05). Our results suggest that RS-induced anxiogenic-like effect might depend on increased nNOS-mediated signaling in the PL MPFC. PMID:26812037

  3. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  4. Bilinearity, rules, and prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Peter Dayan

    2007-11-01

    Full Text Available Humans can be instructed verbally to perform computationally complex cognitive tasks; their performance then improves relatively slowly over the course of practice. Many skills underlie these abilities; in this paper, we focus on the particular question of a uniform architecture for the instantiation of habitual performance and the storage, recall, and execution of simple rules. Our account builds on models of gated working memory, and involves a bilinear architecture for representing conditional input-output maps and for matching rules to the state of the input and working memory. We demonstrate the performance of our model on two paradigmatic tasks used to investigate prefrontal and basal ganglia function.

  5. Distinct regions of prefrontal cortex are associated with the controlled retrieval and selection of social information.

    Science.gov (United States)

    Satpute, Ajay B; Badre, David; Ochsner, Kevin N

    2014-05-01

    Research in social neuroscience has uncovered a social knowledge network that is particularly attuned to making social judgments. However, the processes that are being performed by both regions within this network and those outside of this network that are nevertheless engaged in the service of making a social judgment remain unclear. To help address this, we drew upon research in semantic memory, which suggests that making a semantic judgment engages 2 distinct control processes: A controlled retrieval process, which aids in bringing goal-relevant information to mind from long-term stores, and a selection process, which aids in selecting the information that is goal-relevant from the information retrieved. In a neuroimaging study, we investigated whether controlled retrieval and selection for social information engage distinct portions of both the social knowledge network and regions outside this network. Controlled retrieval for social information engaged an anterior ventrolateral portion of the prefrontal cortex, whereas selection engaged both the dorsomedial prefrontal cortex and temporoparietal junction within the social knowledge network. These results suggest that the social knowledge network may be more involved with the selection of social information than the controlled retrieval of it and incorporates lateral prefrontal regions in accessing memory for making social judgments.

  6. Prefrontal Dynamics Underlying Rapid Instructed Task Learning Reverse with Practice

    Science.gov (United States)

    Cole, Michael W.; Bagic, Anto; Kass, Robert; Schneider, Walter

    2011-01-01

    The ability to rapidly reconfigure our minds to perform novel tasks is important for adapting to an ever-changing world, yet little is understood about its basis in the brain. Furthermore, it is unclear how this kind of task preparation changes with practice. Previous research suggests that prefrontal cortex (PFC) is essential when preparing to perform either novel or practiced tasks. Building upon recent evidence that PFC is organized in an anterior-to-posterior hierarchy, we postulated that novel and practiced task preparation would differentiate hierarchically distinct regions within PFC across time. Specifically, we hypothesized and confirmed using functional magnetic resonance imaging and magnetoencephalography with humans that novel task preparation is a bottom-up process that involves lower-level rule representations in dorsolateral PFC (DLPFC) before a higher-level rule-integrating task representation in anterior PFC (aPFC). In contrast, we identified a complete reversal of this activity pattern during practiced task preparation. Specifically, we found that practiced task preparation is a top-down process that involves a higher-level rule-integrating task representation (recalled from long-term memory) in aPFC before lower-level rule representations in DLPFC. These findings reveal two distinct yet highly inter-related mechanisms for task preparation, one involving task set formation from instructions during rapid instructed task learning and the other involving task set retrieval from long-term memory to facilitate familiar task performance. These two mechanisms demonstrate the exceptional flexibility of human PFC as it rapidly reconfigures cognitive brain networks to implement a wide variety of possible tasks. PMID:20962245

  7. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.

  8. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion. PMID:20693390

  9. Anterior ventral tegmental area dopaminergic neurons are not involved in the motivational effects of bromocriptine, pramipexole and cocaine in drug-free rats.

    Science.gov (United States)

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2014-04-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. Dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease, by acting on the neuronal reward circuitry. We previously demonstrated that the posterior (p) VTA, which projects to the nucleus accumbens (NAc), is implicated in the motivational effect of dopamine receptor agonists in 6-OHDA bilateral pVTA-lesioned drug-free animals. In the present study we investigated the implication of the anterior (a) VTA in the potential reinforcement effect of dopamine receptor agonists. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists (bromocriptine and pramipexole), and cocaine in rats with a 6-OHDA bilateral lesion of the aVTA. Bromocriptine and pramipexole did not induce a significant CPP at 1mg/kg in both sham and bilateral 6-OHDA-lesioned rats. However bromocriptine induced CPP only at a dose of 3mg/kg in both animal groups. Moreover cocaine, which is known to increase dopamine release, induced reinforcing effects in both 6-OHDA-lesioned and sham rats. Our data show a lack of involvement of aVTA dopamine neurons in the motivational effects of bromocriptine, pramipexole and cocaine.

  10. Acute Ischemic Stroke Involving Both Anterior and Posterior Circulation Treated by Endovascular Revascularization for Acute Basilar Artery Occlusion via Persistent Primitive Trigeminal Artery

    Science.gov (United States)

    Fujita, Atsushi; Hosoda, Kohkichi; Kohmura, Eiji

    2016-01-01

    We report a case of acute ischemic stroke involving both the anterior and posterior circulation associated with a persistent primitive trigeminal artery (PPTA), treated by endovascular revascularization for acute basilar artery (BA) occlusion via the PPTA. An otherwise healthy 67-year-old man experienced sudden loss of consciousness and quadriplegia. Magnetic resonance imaging showed an extensive acute infarction in the right cerebral hemisphere, and magnetic resonance angiography showed occlusion of the right middle cerebral artery (MCA) and BA. Because the volume of infarction in the territory of the right MCA was extensive, we judged the use of intravenous tissue plasminogen activator to be contraindicated. Cerebral angiography revealed hypoplasia of both vertebral arteries and the presence of a PPTA from the right internal carotid artery. A microcatheter was introduced into the BA via the PPTA and revascularization was successfully performed using a Merci Retriever with adjuvant low-dose intraarterial urokinase. After treatment, his consciousness level and right motor weakness improved. Although persistent carotid-vertebrobasilar anastomoses such as a PPTA are relatively rare vascular anomalies, if the persistent primitive artery is present, it can be an access route for mechanical thrombectomy for acute ischemic stroke. PMID:27446523

  11. Acute Ischemic Stroke Involving Both Anterior and Posterior Circulation Treated by Endovascular Revascularization for Acute Basilar Artery Occlusion via Persistent Primitive Trigeminal Artery.

    Science.gov (United States)

    Imahori, Taichiro; Fujita, Atsushi; Hosoda, Kohkichi; Kohmura, Eiji

    2016-07-01

    We report a case of acute ischemic stroke involving both the anterior and posterior circulation associated with a persistent primitive trigeminal artery (PPTA), treated by endovascular revascularization for acute basilar artery (BA) occlusion via the PPTA. An otherwise healthy 67-year-old man experienced sudden loss of consciousness and quadriplegia. Magnetic resonance imaging showed an extensive acute infarction in the right cerebral hemisphere, and magnetic resonance angiography showed occlusion of the right middle cerebral artery (MCA) and BA. Because the volume of infarction in the territory of the right MCA was extensive, we judged the use of intravenous tissue plasminogen activator to be contraindicated. Cerebral angiography revealed hypoplasia of both vertebral arteries and the presence of a PPTA from the right internal carotid artery. A microcatheter was introduced into the BA via the PPTA and revascularization was successfully performed using a Merci Retriever with adjuvant low-dose intraarterial urokinase. After treatment, his consciousness level and right motor weakness improved. Although persistent carotid-vertebrobasilar anastomoses such as a PPTA are relatively rare vascular anomalies, if the persistent primitive artery is present, it can be an access route for mechanical thrombectomy for acute ischemic stroke. PMID:27446523

  12. Dopaminergic dysregulation in prefrontal cortex of rhesus monkeys following cocaine self-administration

    Directory of Open Access Journals (Sweden)

    Scot eMcIntosh

    2013-08-01

    Full Text Available Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v. under limited (n=4 and extended access conditions (n=6. The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC, orbitofrontal cortex (OFC and anterior cingulate cortex (ACC were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport, tyrosine hydroxylase (TH; marker of dopamine synthesis and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity, extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2 and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity, and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine. Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTHSer31 in all regions. In addition, a slight but significant reduction in phosphorylated pTHSer40 was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex.

  13. Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor.

    Science.gov (United States)

    Freitas, Renato Leonardo de; Salgado-Rohner, Carlos José; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-09-01

    It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline. PMID:23521775

  14. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    Science.gov (United States)

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  15. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    Science.gov (United States)

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. PMID:26720411

  16. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    Science.gov (United States)

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering.

  17. Dissociable prefrontal brain systems for attention and emotion

    Science.gov (United States)

    Yamasaki, Hiroshi; Labar, Kevin S.; McCarthy, Gregory

    2002-08-01

    The prefrontal cortex has been implicated in a variety of attentional, executive, and mnemonic mental operations, yet its functional organization is still highly debated. The present study used functional MRI to determine whether attentional and emotional functions are segregated into dissociable prefrontal networks in the human brain. Subjects discriminated infrequent and irregularly presented attentional targets (circles) from frequent standards (squares) while novel distracting scenes, parametrically varied for emotional arousal, were intermittently presented. Targets differentially activated middle frontal gyrus, posterior parietal cortex, and posterior cingulate gyrus. Novel distracters activated inferior frontal gyrus, amygdala, and fusiform gyrus, with significantly stronger activation evoked by the emotional scenes. The anterior cingulate gyrus was the only brain region with equivalent responses to attentional and emotional stimuli. These results show that attentional and emotional functions are segregated into parallel dorsal and ventral streams that extend into prefrontal cortex and are integrated in the anterior cingulate. These findings may have implications for understanding the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders. novelty | prefrontal cortex | amygdala | cingulate gyrus

  18. Changes in prefrontal axons may disrupt the network in autism

    OpenAIRE

    Zikopoulos, Basilis; Barbas, Helen

    2010-01-01

    Neural communication is disrupted in autism by unknown mechanisms. Here we examined whether in autism there are changes in axons, which are the conduit for neural communication. We investigated single axons and their ultrastructure in the white matter of post-mortem human brain tissue below the anterior cingulate cortex (ACC), orbitofrontal (OFC), and lateral (LPFC) prefrontal cortices, which are associated with attention, social interactions, and emotions and have been consistently implicate...

  19. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  20. Ventromedial prefrontal neurokinin 1 receptor availability is reduced in chronic pain.

    Science.gov (United States)

    Linnman, Clas; Appel, Lieuwe; Furmark, Tomas; Söderlund, Anne; Gordh, Torsten; Långström, Bengt; Fredrikson, Mats

    2010-04-01

    Neurokinin 1 (NK1) receptors are involved in pain and anxiety behaviors in animals, but little is known about central alterations in this receptor system in human pain. With positron emission tomography, using a [11]-Carbon labeled NK1 receptor antagonist, we demonstrate attenuated NK1 receptor availability in frontal, insular and cingulate cortex, as well as the hippocampus, amygdala and the periaqueductal gray area in patients with chronic pain. The reduced availability was most pronounced in the ventromedial prefrontal cortex (vmPFC), where attenuations correlated to measures of fear and avoidance of movement. Further, vmPFC NK1 levels also displayed opposing influences in patients as compared to controls on regional cerebral blood flow in the anterior cingulate. We conclude that the central NK1 receptor system is altered in human chronic pain. The results suggest that NK1 receptors in the vmPFC modulate motor inhibition, and contribute to fear and avoidance of movement. PMID:20137858

  1. Effects of functional connectivity between anterior cingulate cortex and dorsolateral prefrontal cortex on executive control of attention in healthy individuals%前扣带回与背外侧额前皮质的功能连接影响执行控制

    Institute of Scientific and Technical Information of China (English)

    韩燕; 徐君海; 尹训涛; 张栋; 徐文坚; 逄增昌; 葛海涛; 刘树伟

    2013-01-01

    目的 探讨执行控制过程中健康人大脑前扣带回(ACC)与背外侧额前皮质(DLPFC)之间的功能连接及其与行为学表现之间的关系.方法 2011年1至5月25名17~20岁的健康志愿者在青岛大学医学院附属医院放射科进行3.0T功能磁共振扫描,采用注意网络测试(ANT)作为试验范式,计算ACC和DLPFC之间的功能连接,并与ANT的行为学得分做相关分析.结果 在执行控制过程中,背侧ACC(dACC)与两侧的DLPFC之间存在显著的功能连接,其中左侧的dACC和DLPFC之间的功能连接系数与执行控制的行为学得分存在显著负相关(r=-0.63;P <0.01).结论 ACC与DLPFC之间存在功能连接,并对注意的执行控制功能存在有利的影响,这有助于我们理解注意功能中相关脑区的功能整合作用.%Objective To explore the presence of functional connectivity between anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) during the manipulation of attentional network test (ANT) and its relationship with behavioral performance.Methods Functional magnetic resonance imaging was performed on 25 healthy subjects aged 17-20 years.And ANT was used as a paradigm.Functional connectivity between ACC-DLPFC was tested and correlation analysis conducted between functional connectivity coefficients and behavioral scores of ANT.Results Significant functional connectivity between the dorsal ACC (dACC) with bilateral DLPFC was found.Furthermore,event-related functional connectivity coefficients between left dACC and lefi DLPFC were negatively associated with the behavioral scores of executive control (r =-0.63 ; P < 0.01).Conclusion Our findings provide new evidence that ACC and DLPFC are functionally connected and such functional connectivity has advantageous influence on executive control function of attention so as to contribute to our understanding of the integrated role of these brain regions in attentional network.

  2. Anterior insula coordinates hierarchical processing of tactile mismatch responses.

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J; Hillebrandt, Hauke; Friston, Karl J; Rees, Geraint; Roepstorff, Andreas

    2016-02-15

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace. PMID:26584870

  3. Anterior insula coordinates hierarchical processing of tactile mismatch responses.

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J; Hillebrandt, Hauke; Friston, Karl J; Rees, Geraint; Roepstorff, Andreas

    2016-02-15

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace.

  4. Anterior insula coordinates hierarchical processing of tactile mismatch responses

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J.; Hillebrandt, Hauke; Friston, Karl J.; Rees, Geraint; Roepstorff, Andreas

    2016-01-01

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy—projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace. PMID:26584870

  5. Compromised Prefrontal Cognitive Control Over Emotional Interference in Adolescents with Internet Gaming Disorder.

    Science.gov (United States)

    Lee, Junghan; Lee, Seojung; Chun, Ji Won; Cho, Hyun; Kim, Dai-jin; Jung, Young-Chul

    2015-11-01

    Increased reports of impulsivity and aggression in male adolescents with Internet gaming might reflect their dysfunction in emotion regulation, particularly in suppression of negative emotions, which should affect the various stages of Internet gaming disorder. This study tested the hypothesis that adolescents with Internet gaming disorder would be more disturbed by the emotional interference and demonstrate compromised dorsal anterior cingulate cortex (dACC) activation during a Stroop Match-to-Sample task. In addition, functional connectivity analysis was conducted to examine the interplays between neural correlates involved in emotional processing and how they were altered in adolescents with Internet gaming disorder. The Internet gaming disorder group demonstrated weaker dACC activation and stronger insular activations to interfering angry facial stimuli compared with the healthy control group. Negative functional connectivity between stronger insular activation and weaker dorsolateral prefrontal activation correlated with higher cognitive impulsivity in adolescents with Internet gaming disorder. These findings provide evidence of the compromised prefrontal cognitive control over emotional interference in adolescents with Internet gaming disorder.

  6. Compromised Prefrontal Cognitive Control Over Emotional Interference in Adolescents with Internet Gaming Disorder.

    Science.gov (United States)

    Lee, Junghan; Lee, Seojung; Chun, Ji Won; Cho, Hyun; Kim, Dai-jin; Jung, Young-Chul

    2015-11-01

    Increased reports of impulsivity and aggression in male adolescents with Internet gaming might reflect their dysfunction in emotion regulation, particularly in suppression of negative emotions, which should affect the various stages of Internet gaming disorder. This study tested the hypothesis that adolescents with Internet gaming disorder would be more disturbed by the emotional interference and demonstrate compromised dorsal anterior cingulate cortex (dACC) activation during a Stroop Match-to-Sample task. In addition, functional connectivity analysis was conducted to examine the interplays between neural correlates involved in emotional processing and how they were altered in adolescents with Internet gaming disorder. The Internet gaming disorder group demonstrated weaker dACC activation and stronger insular activations to interfering angry facial stimuli compared with the healthy control group. Negative functional connectivity between stronger insular activation and weaker dorsolateral prefrontal activation correlated with higher cognitive impulsivity in adolescents with Internet gaming disorder. These findings provide evidence of the compromised prefrontal cognitive control over emotional interference in adolescents with Internet gaming disorder. PMID:26430731

  7. Capacity-speed relationships in prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Vivek Prabhakaran

    Full Text Available Working memory (WM capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.

  8. Diminished medial prefrontal activity behind autistic social judgments of incongruent information.

    Directory of Open Access Journals (Sweden)

    Takamitsu Watanabe

    Full Text Available Individuals with autism spectrum disorders (ASD tend to make inadequate social judgments, particularly when the nonverbal and verbal emotional expressions of other people are incongruent. Although previous behavioral studies have suggested that ASD individuals have difficulty in using nonverbal cues when presented with incongruent verbal-nonverbal information, the neural mechanisms underlying this symptom of ASD remain unclear. In the present functional magnetic resonance imaging study, we compared brain activity in 15 non-medicated adult males with high-functioning ASD to that of 17 age-, parental-background-, socioeconomic-, and intelligence-quotient-matched typically-developed (TD male participants. Brain activity was measured while each participant made friend or foe judgments of realistic movies in which professional actors spoke with conflicting nonverbal facial expressions and voice prosody. We found that the ASD group made significantly less judgments primarily based on the nonverbal information than the TD group, and they exhibited significantly less brain activity in the right inferior frontal gyrus, bilateral anterior insula, anterior cingulate cortex/ventral medial prefrontal cortex (ACC/vmPFC, and dorsal medial prefrontal cortex (dmPFC than the TD group. Among these five regions, the ACC/vmPFC and dmPFC were most involved in nonverbal-information-biased judgments in the TD group. Furthermore, the degree of decrease of the brain activity in these two brain regions predicted the severity of autistic communication deficits. The findings indicate that diminished activity in the ACC/vmPFC and dmPFC underlies the impaired abilities of individuals with ASD to use nonverbal content when making judgments regarding other people based on incongruent social information.

  9. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response. PMID:19562631

  10. Intracellular mechanisms involved in copper-gonadotropin-releasing hormone (Cu-GnRH) complex-induced cAMP/PKA signaling in female rat anterior pituitary cells in vitro.

    Science.gov (United States)

    Gajewska, Alina; Zielinska-Gorska, Marlena; Wolinska-Witort, Ewa; Siawrys, Gabriela; Baran, Marta; Kotarba, Grzegorz; Biernacka, Katarzyna

    2016-01-01

    The copper-gonadotropin-releasing hormone molecule (Cu-GnRH) is a GnRH analog, which preserves its amino acid sequence, but which contains a Cu(2+) ion stably bound to the nitrogen atoms including that of the imidazole ring of Histidine(2). A previous report indicated that Cu-GnRH was able to activate cAMP/PKA signaling in anterior pituitary cells in vitro, but raised the question of which intracellular mechanism(s) mediated the Cu-GnRH-induced cAMP synthesis in gonadotropes. To investigate this mechanism, in the present study, female rat anterior pituitary cells in vitro were pretreated with 0.1 μM antide, a GnRH antagonist; 0.1 μM cetrorelix, a GnRH receptor antagonist; 0.1 μM PACAP6-38, a PAC-1 receptor antagonist; 2 μM GF109203X, a protein kinase C inhibitor; 50 mM PMA, a protein kinase C activator; the protein kinase A inhibitors H89 (30 μM) and KT5720 (60 nM); factors affecting intracellular calcium activity: 2.5 mM EGTA; 2 μM thapsigargin; 5 μM A23187, a Ca(2+) ionophore; or 10 μg/ml cycloheximide, a protein synthesis inhibitor. After one of the above pretreatments, cells were incubated in the presence of 0.1 μM Cu-GnRH for 0.5, 1, and 3 h. Radioimmunoassay analysis of cAMP confirmed the functional link between Cu-GnRH stimulation and cAMP/PKA signal transduction in rat anterior pituitary cells, demonstrating increased intracellular cAMP, which was reduced in the presence of specific PKA inhibitors. The stimulatory effect of Cu-GnRH on cAMP production was partly dependent on GnRH receptor activation. In addition, an indirect and Ca(2+)-dependent mechanism might be involved in intracellular adenylate cyclase stimulation. Neither activation of protein kinase C nor new protein synthesis was involved in the Cu-GnRH-induced increase of cAMP in the rat anterior pituitary primary cultures. Presented data indicate that conformational changes of GnRH molecule resulting from cooper ion coordination affect specific pharmacological properties of Cu

  11. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  12. Prefrontal korteks asimetrisinin kantitatif EEG ile Değerlendirilmesi

    OpenAIRE

    ÇİÇEK, Metehan

    1998-01-01

      İman bilişiminde önemli role sahip olan prefrontal korteksin işlevleri henüz tam olarak aydınktılamamıştır. Posterior kortikal alanların asimetrik aktivasyonu hakkında daha çok bilgimiz olmasına rağmen anterior kortikal alanların asimetrik işlevleri araştırmaya açıktır. Özellikle prefrontal korteksin işleyen bellek işlevi sırasındaki asimetrik aktivasyonuna el tercihi ve cinsiyetin etkisi açıklık kazanmamıştır. Araştırmada EEG alfa asimetrisi kullanılarak, pref...

  13. The topology of connections between rat prefrontal, motor and sensory cortices

    Directory of Open Access Journals (Sweden)

    Stacey eBedwell

    2014-09-01

    Full Text Available The connections of prefrontal cortex (PFC were investigated in the rat brain to determine the order and location of input and output connections to motor and somatosensory cortex. Retrograde (100nl Fluoro-Gold and anterograde (100nl Biotinylated Dextran Amines; Fluorescein and Texas Red neuronanatomical tracers were injected into the subdivisions of the prefrontal cortex (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital and their projections studied. We found clear evidence for organised input projections from the motor and somatosensory cortices to the prefrontal cortex, with distinct areas of motor and cingulate cortex projecting in an ordered arrangement to the subdivisions of prefrontal cortex. As injection location of retrograde tracer was moved from medial to lateral in PFC, we observed an ordered arrangement of projections occurring in sensory-motor cortex. There was a significant effect of retrograde injection location on the position of labelled cells occurring in sensory-motor cortex (dorsoventral, anterior-posterior and mediolateral axes p<.001. The arrangement of output projections from prefrontal cortex also displayed a significant ordered projection to sensory-motor cortex (dorsoventral p<.001, anterior-posterior p=.002 and mediolateral axes p<.001. Statistical analysis also showed that the locations of input and output labels vary with respect to one another (in the dorsal-ventral and medial-lateral axes, p<.001. Taken together, the findings show that regions of prefrontal cortex display an ordered arrangement of connections with sensory-motor cortex, with clear laminar organisation of input connections. These results also show that input and output connections to prefrontal cortex are not located in exactly the same sites and reveal a circuit between sensory-motor and prefrontal cortex.

  14. A dorsolateral prefrontal cortex semi-automatic segmenter

    Science.gov (United States)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  15. Differences in Insula and Pre-/Frontal Responses during Reappraisal of Food in Lean and Obese Humans.

    Science.gov (United States)

    Kumar, Saurabh; Grundeis, Felicitas; Brand, Cristin; Hwang, Han-Jeong; Mehnert, Jan; Pleger, Burkhard

    2016-01-01

    Brain regions involved in the reappraisal of tasty but unhealthy foods are of special interest for the development of new therapeutic interventions for obesity, such as non-invasive brain stimulation or neurofeedback. Here, we visually presented food items (i.e., high/low caloric) to obese and lean individuals during electroencephalogram (EEG) recordings, while they either admitted or regulated their food desire. During admitting the desire for low and high calorie foods, obese as well as lean individuals showed higher activity in the left dorsolateral prefrontal cortex (DLPFC), whereas the right frontal operculum was involved in the reappraisal of the same foods, suggesting interplay between executive control and gustatory regions. Only in lean participants, we found an interaction between calorie content and the regulate/admit conditions in bilateral anterior insular cortices, suggesting that the anterior insula, assumed to primarily host gustatory processes, also underpins higher cognitive processes involved in food choices, such as evaluating the foods' calorie content for its reappraisal. PMID:27458355

  16. The Behavioral Relevance of Task Information in Human Prefrontal Cortex.

    Science.gov (United States)

    Cole, Michael W; Ito, Takuya; Braver, Todd S

    2016-06-01

    Human lateral prefrontal cortex (LPFC) is thought to play a critical role in enabling cognitive flexibility, particularly when performing novel tasks. However, it remains to be established whether LPFC representation of task-relevant information in such situations actually contributes to successful performance. We utilized pattern classification analyses of functional MRI activity to identify novelty-sensitive brain regions as participants rapidly switched between performance of 64 complex tasks, 60 of which were novel. In three of these novelty-sensitive regions-located within distinct areas of left anterior LPFC-trial-evoked activity patterns discriminated correct from error trials. Further, these regions also contained information regarding the task-relevant decision rule, but only for successfully performed trials. This suggests that left anterior LPFC may be particularly important for representing task information that contributes to the cognitive flexibility needed to perform successfully in novel task situations. PMID:25870233

  17. [Is the prefrontal cortex the center of the universe?].

    Science.gov (United States)

    Garcia-Molina, A; Ensenat, A

    2015-10-16

    Introduccion. Actualmente, cuando reflexionamos sobre cual es la estructura mas relevante del encefalo humano invariablemente pensamos en las regiones anteriores de la corteza cerebral, concretamente en la corteza prefrontal. Si bien este ha sido el dogma predominante a lo largo de mas de 150 años, investigadores de reconocido prestigio han cuestionado abiertamente tal supuesto. Desarrollo. A caballo entre los siglos XIX y XX, diversos investigadores consideraron que las regiones corticales posteriores son la sede neuroanatomica de las mas altas facultades intelectuales. Entre todos ellos destaco, por la elaboracion de sus propuestas e impacto en la comunidad cientifica, el neuroanatomista aleman Paul Emil Flechsig (1847-1929). Wilder Graves Penfield (1891-1976) fue otro detractor del dogma que considera la corteza prefrontal el sustrato anatomico de los procesos mentales mas complejos y sublimes del ser humano. A mediados del siglo XX, Penfield mantuvo la hipotesis de la existencia de lo que denomino el sistema de integracion centrencefalico, responsable del nivel mas elevado de integracion del sistema nervioso central. Conclusiones. Las concepciones corticocentricas otorgan el preciado cetro de 'estructura mas importante del encefalo' a la corteza prefrontal. Sin embargo, no han faltado propuestas alternativas que, con mayor o menor exito, han intentado arrebatarselo en favor de otras estructuras encefalicas.

  18. Incidental Anterior Cruciate Ligament Calcification: Case Report.

    Science.gov (United States)

    Hayashi, Hisami; Fischer, Hans

    2016-03-01

    The calcification of knee ligaments is a finding noted only in a handful of case reports. The finding of an anterior cruciate ligament calcification has been reported once in the literature. Comparable studies involving the posterior cruciate ligament, medial collateral ligament and an ossicle within the anterior cruciate ligament are likewise discussed in reports of symptomatic patients. We report a case of incidentally discovered anterior cruciate ligament calcification. We discuss the likely etiology and clinical implications of this finding.

  19. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Maren Strenziok

    Full Text Available Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the

  20. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor...... of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings...... of a regulatory effect of the PFC on the emotional control of our actions....

  1. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    Science.gov (United States)

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  2. Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory.

    Science.gov (United States)

    Hanson, Jamie L; Chung, Moo K; Avants, Brian B; Rudolph, Karen D; Shirtcliff, Elizabeth A; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2012-06-01

    A large corpus of research indicates that exposure to stress impairs cognitive abilities, specifically executive functioning dependent on the prefrontal cortex (PFC). We collected structural MRI scans (n = 61), well-validated assessments of executive functioning, and detailed interviews assessing stress exposure in humans to examine whether cumulative life stress affected brain morphometry and one type of executive functioning, spatial working memory, during adolescence-a critical time of brain development and reorganization. Analysis of variations in brain structure revealed that cumulative life stress and spatial working memory were related to smaller volumes in the PFC, specifically prefrontal gray and white matter between the anterior cingulate and the frontal poles. Mediation analyses revealed that individual differences in prefrontal volumes accounted for the association between cumulative life stress and spatial working memory. These results suggest that structural changes in the PFC may serve as a mediating mechanism through which greater cumulative life stress engenders decrements in cognitive functioning. PMID:22674267

  3. Atrophy of the left dorsolateral prefrontal cortex is associated with poor performance in verbal fluency in elderly poststroke women

    Institute of Scientific and Technical Information of China (English)

    Yang-Kun Chen; Wei-Min Xiao; Defeng Wang; Lin Shi; Winnie CW Chu; Vincent CT Mok; Ka Sing Wong; Gabor S Ungvari; Wai Kwong Tang

    2013-01-01

    This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged ≥ 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.

  4. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    Science.gov (United States)

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. PMID:26166620

  5. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    OpenAIRE

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R.; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate ...

  6. Prefrontal neuronal integrity predicts symptoms and cognition in schizophrenia and is sensitive to genetic heterogeneity

    OpenAIRE

    Malaspina, Dolores; Kranz, Thorsten M.; Heguy, Adriana; Harroch, Sheila; Mazgaj, Robert; Rothman, Karen; Berns, Adam; Hasan, Sumya; Antonius, Daniel; Goetz, Raymond; Lazar, Mariana; Chao, Moses V.; Gonen, Oded

    2016-01-01

    Schizophrenia is a genetically complex syndrome with substantial inter-subject variability in multiple domains. Person-specific measures to resolve its heterogeneity could focus on the variability in prefrontal integrity, which this study indexed as relative rostralization within the anterior cingulate cortex (ACC). Twenty-two schizophrenia cases and 11 controls underwent rigorous diagnostic procedures, symptom assessments (PANSS, Deficit Syndrome Scale) and intelligence testing. All underwen...

  7. Concrescent triplets involving primary anterior teeth

    OpenAIRE

    Urvashi Sharma; Anubha Gulati; Namrata C Gill

    2013-01-01

    Odontogenesis is a complex process wherein more than 200 genes are known to play a significant role in tooth development. An imbalance can lead to an abnormality in the number, size, shape or structure of the developing tooth/teeth. The presence of an extra dental lamina forms a supernumerary tooth. The supernumerary teeth are of two types: A rudimentary tooth where the supernumerary tooth does not resemble any tooth in the normal series or a supplemental tooth in which this anomalous tooth r...

  8. Area-specific information processing in prefrontal cortex during a probabilistic inference task: a multivariate fMRI BOLD time series analysis.

    Directory of Open Access Journals (Sweden)

    Charmaine Demanuele

    Full Text Available Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC, anterior cingulate (ACC and orbitofrontal (OFC cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a "Jumping to Conclusions" probabilistic reasoning task.We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information, while for prefrontal areas a wider multivariate pattern of activity was maximally informative.We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable

  9. Damage To Dorsolateral Prefrontal Cortex Affects Tradeoffs Between Honesty And Self-Interest

    OpenAIRE

    Lusha ZHU; Jenkins, Adrianna C.; Set, Eric; Scabini, Donatella; Robert T Knight; Chiu, Pearl H; King-Casas, Brooks; Hsu, Ming

    2014-01-01

    Substantial correlational evidence exists suggesting a critical role for prefrontal regions in honest and dishonest behavior, but causal evidence specifying the nature of this involvement remains absent. Here we show using the lesion method that damage to the human dorsolateral prefrontal cortex (DLPFC) decreased the effect of honesty concerns on behavior in economic games that pit honesty motives against self-interest, but did not affect decisions where honesty concerns were absent. These re...

  10. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    OpenAIRE

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animal...

  11. Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood

    OpenAIRE

    Huib eMansvelder; Natalia eGoriounova

    2012-01-01

    The majority of adolescents report to have smoked a cigarette at least once. Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC), is still ongoing. Tobacco smoking during this age may compromise the normal course of prefrontal development and lead to cognitive impairments in later life. In addition, adolescent smokers suffer from attention deficits, which progress with the years o...

  12. Theta synchronizes the activity of medial prefrontal neurons during learning

    OpenAIRE

    Paz, Rony; Bauer, Elizabeth P.; Paré, Denis

    2008-01-01

    Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony remain unclear. Because the hippocampus projects to the mPFC, we tested whether theta oscillations contribute to synchronize mPFC neurons during learni...

  13. Hierarchical processing in the prefrontal cortex in a variety of cognitive domains

    Directory of Open Access Journals (Sweden)

    Hyeon-Ae eJeon

    2014-11-01

    Full Text Available This review scrutinizes several findings on human hierarchical processing within the prefrontal cortex (PFC in diverse cognitive domains. Converging evidence from previous studies has shown that the PFC, specifically Brodmann area (BA 44, may function as the essential region for hierarchical processing across the domains. In language fMRI studies, BA 44 was significantly activated for the hierarchical processing of center-embedded sentences and this pattern of activations was also observed in artificial grammar. The same pattern was observed in the visuo-spatial domain where BA44 was actively involved in the processing of hierarchy for the visual symbol. Musical syntax, which is the rule-based arrangement of musical sets, has also been construed as hierarchical processing as in the language domain such that the activation in BA44 was observed in a chord sequence paradigm. P600 ERP was also engendered during the processing of musical hierarchy. Along with a longstanding idea that a human’s number faculty is developed as a by-product of language faculty, BA44 was closely involved in hierarchical processing in mental arithmetic. This review extended its discussion of hierarchical processing to hierarchical behavior, that is, human action which has been referred to as being hierarchically composed. Several lesion and TMS studies supported the involvement of BA44 for hierarchical processing in the action domain. Lastly, the hierarchical organization of cognitive controls was discussed within the PFC, forming a cascade of top-down hierarchical processes operating along a posterior-to-anterior axis of the lateral PFC including BA44 within the network. It is proposed that PFC is actively involved in different forms of hierarchical processing and specifically BA44 may play an integral role in the process. Taking levels of proficiency and subcortical areas into consideration may provide further insight into the functional role of BA44 for hierarchical

  14. Compulsive Sexual Behavior: Prefrontal and Limbic Volumes and Interactions

    DEFF Research Database (Denmark)

    Schmidt, Casper; Kvamme, Timo L.

    2016-01-01

    prefrontal cortex (whole brain, cluster corrected FWE P motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions...

  15. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings. PMID:23366983

  16. CONGENITAL ANTERIOR TIBIOFEMURAL SUBLUXATION

    Directory of Open Access Journals (Sweden)

    A. Shahla

    2008-06-01

    Full Text Available Congenital anterior tibiofemoral subluxation is an extremely rare disorder. All reported cases accompanied by other abnormalities and syndromes. A 16-year-old high school girl referred to us with bilateral anterior tibiofemoral subluxation as the knees were extended and reduced at more than 30 degrees flexion. Deformities were due to tightness of the iliotibial band and biceps femuris muscles and corrected by surgical release. Associated disorders included bilateral anterior shoulders dislocation, short metacarpals and metatarsals, and right calcaneuvalgus deformity.

  17. Bilateral anterior shoulder dislocation

    OpenAIRE

    Meena, Sanjay; Saini, Pramod; Singh, Vivek; Kumar, Ramakant; Trikha, Vivek

    2013-01-01

    Shoulder dislocations are the most common major joint dislocations encountered in the emergency departments. Bilateral shoulder dislocations are rare and of these, bilateral posterior shoulder dislocations are more prevalent than bilateral anterior shoulder dislocations. Bilateral anterior shoulder dislocation is very rare. We present a case of 24-year-old male who sustained bilateral anterior shoulder dislocation following minor trauma, with associated greater tuberosity fracture on one side...

  18. Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: An fMRI investigation of the Balloon Analogue Risk Task

    Directory of Open Access Journals (Sweden)

    Tom eSchonberg

    2012-06-01

    Full Text Available Functional imaging studies examining the neural correlates of risk have mainly relied on paradigms involving exposure to simple chance gambles and an economic definition of risk as variance in the probability distribution over possible outcomes. However, there is little evidence that choices made during gambling tasks predict naturalistic risk-taking behaviors such as drug use, extreme sports, or even equity investing. To better understand the neural basis of naturalistic risk-taking, we scanned participants using fMRI while they completed the Balloon Analog Risk Task (BART, an experimental measure that includes an active decision/choice component and that has been found to correlate with a number of naturalistic risk taking behaviors. In the task, as in many naturalistic settings, escalating risk-taking occurs under uncertainty and might be experienced either as the accumulation of greater potential rewards, or as exposure to increasing possible losses (and decreasing expected value. We found that areas previously linked to risk and risk-taking (bilateral anterior insula, anterior cingulate cortex (ACC and right dorsolateral prefrontal cortex (DLPFC were activated as participants continued to inflate balloons. Interestingly, we found that ventromedial prefrontal cortex (vmPFC activity decreased as participants further expanded balloons. In light of previous findings implicating the vmPFC in value calculation, this result suggests that escalating risk-taking in the task might be perceived as exposure to increasing possible losses (and decreasing expected value rather than the increasing potential total reward relative to the starting point of the trial. A better understanding of how neural activity changes with risk-taking behavior in the task offers insight into the potential neural mechanisms driving naturalistic risk-taking.

  19. Differences between a single session and repeated sessions of 1 Hz TMS by double-cone coil prefrontal stimulation for the improvement of tinnitus.

    Science.gov (United States)

    Vanneste, Sven; De Ridder, Dirk

    2013-03-01

    Tinnitus related distress is associated with increased activity in the anterior cingulate cortex (ACC). In a recent study, it was demonstrated that a single session of low frequency prefrontal TMS using a double-cone coil (DCC) modulating the ACC (AC/DC TMS, anterior cingulate cortex targeted modulation by Double-Cone coil) yields a transient improvement in subjects with chronic tinnitus. An increasing number of studies demonstrated that repeated sessions of low frequency TMS to the temporoparietal area can significantly improve tinnitus complaints. Our aim is to determine the extent to which repeated sessions of AC/DC TMS can modulate tinnitus in comparison to a single session. Seventy-three tinnitus patients received a single (N = 46) or repetitive (N = 27) session(s) of TMS using a DCC placed over the prefrontal cortex. Our results indicate that both single sessions as well as multiple sessions (i.e. 8 sessions) of AC/DC TMS suppress both tinnitus distress (respectively 7.60% vs. 26.19%) and tinnitus intensity (respectively 7.12% vs. 19.60%) transiently. It was further shown that multiple sessions of AC/DC TMS generate a higher suppression effect in comparison to a single session of AC/DC TMS and that more patients responded to repeated sessions of 1 Hz stimulation in comparison to a single session. Our findings give further support to the fact that non-auditory areas are involved in tinnitus intensity and tinnitus distress and that more patients respond to repeated sessions with a higher suppression effect in comparison to patients who received a single session, suggesting that the approach of daily TMS sessions is relevant.

  20. Neuroanatomical substrates of executive functions: Beyond prefrontal structures.

    Science.gov (United States)

    Bettcher, Brianne M; Mungas, Dan; Patel, Nihar; Elofson, Jonathan; Dutt, Shubir; Wynn, Matthew; Watson, Christa L; Stephens, Melanie; Walsh, Christine M; Kramer, Joel H

    2016-05-01

    Executive functions are often considered lynchpin "frontal lobe tasks", despite accumulating evidence that a broad network of anterior and posterior brain structures supports them. Using a latent variable modelling approach, we assessed whether prefrontal grey matter volumes independently predict executive function performance when statistically differentiated from global atrophy and individual non-frontal lobar volume contributions. We further examined whether fronto-parietal white matter microstructure underlies and independently contributes to executive functions. We developed a latent variable model to decompose lobar grey matter volumes into a global grey matter factor and specific lobar volumes (i.e. prefrontal, parietal, temporal, occipital) that were independent of global grey matter. We then added mean fractional anisotropy (FA) for the superior longitudinal fasciculus (dorsal portion), corpus callosum, and cingulum bundle (dorsal portion) to models that included grey matter volumes related to cognitive variables in previous analyses. Results suggested that the 2-factor model (shifting/inhibition, updating/working memory) plus an information processing speed factor best explained our executive function data in a sample of 202 community dwelling older adults, and was selected as the base measurement model for further analyses. Global grey matter was related to the executive function and speed variables in all four lobar models, but independent contributions of the frontal lobes were not significant. In contrast, when assessing the effect of white matter microstructure, cingulum FA made significant independent contributions to all three executive function and speed variables and corpus callosum FA was independently related to shifting/inhibition and speed. Findings from the current study indicate that while prefrontal grey matter volumes are significantly associated with cognitive neuroscience measures of shifting/inhibition and working memory in healthy

  1. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex.

    Science.gov (United States)

    Goulas, Alexandros; Uylings, Harry B M; Stiers, Peter

    2014-05-01

    A consensus on the prefrontal cortex (PFC) holds that it is pivotal for flexible behavior and the integration of the cognitive, affective, and motivational domains. Certain models have been put forth and a dominant model postulates a hierarchical anterior-posterior gradient. The structural connectivity principles of this model dictate that increasingly anterior PFC regions exhibit more efferent connections toward posterior ones than vice versa. Such hierarchical asymmetry principles are thought to pertain to the macaque PFC. Additionally, the laminar patterns of the connectivity of PFC regions can be used for defining hierarchies. In the current study, we formally tested the asymmetry-based hierarchical principles of the anterior-posterior model by employing an exhaustive dataset on macaque PFC connectivity and tools from network science. On the one hand, the asymmetry-based principles and predictions of the hierarchical anterior-posterior model were not confirmed. The wiring of the macaque PFC does not fully correspond to the principles of the model, and its asymmetry-based hierarchical layout does not follow a strict anterior-posterior gradient. On the other hand, our results suggest that the laminar-based hierarchy seems a more tenable working hypothesis for models advocating an anterior-posterior gradient. Our results can inform models of the human PFC.

  2. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamamuro

    Full Text Available Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP. Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11 to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP.

  3. The topology of connections between rat prefrontal and temporal cortices

    Directory of Open Access Journals (Sweden)

    Stacey eBedwell

    2015-05-01

    Full Text Available Understanding the structural organisation of the prefrontal cortex (PFC is an important step towards determining its functional organisation. Here we investigated the organisation of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100nl and anterograde (Biotinylated dextran amine (BDA or Fluoro-Ruby, 100nl tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labelled neurons and anterogradely labelled axon terminals were then analysed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral and medial-lateral axes: p<0.001 and retrograde (anterior-posterior, dorsal-ventral and medial-lateral axes: p<0.001 connections of PFC. We observed that anterograde and retrograde labelling in ipsilateral temporal cortex (i.e. PFC inputs and outputs often occurred reciprocally (i.e. the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labelling. However, often the same specific columnar temporal cortex regions contained only either labelling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched.

  4. Anterior hypothalamic area: a neural site involved in the effects of meIatonin on blood pressure%下丘脑前核:参与褪黑素对血压影响的中枢部位

    Institute of Scientific and Technical Information of China (English)

    丁超南; 曹银祥; 周莉; 沈仲元; 费民毅; 余平; 朱大年

    2002-01-01

    The cardiovascular effects of melatonin in the anterior hypothalamic area (AHA) have been examined by using microinjection technique and the projections of the AHA which may by involved in the sympathetic output for the cardiovascular activity have been examined by using the horseradish peroxidase (HRP) tract-tracing method in the rat.The results indicated that microinjection of melatonin produced a dose-dependent fall in mean arterial pressure (MAP),and the AHA supplied substantial inputs to the periventricular nucleus ( Pe), median eminence ( ME), ventromedial hypothalamic nucleus (VMH), arcuate nucleus(ARC) and periaqueductal gray (PAG). Moreover, a small amount of projections from the AHA to the ventrolateral medulla (VLM) and the nucleus raphe obscurus (NRO) were also found .Thus, melatonin may act as a hypotensive factor, and the AHA may be one of the important central areas where melatonin can exert modulatory effects on cardiovascular activities. Thus, the AHA is in a position to control the sympathetic outflow through such potential routes as the VMH, ARC, PAG, VLM and NRO.%在大鼠用微量注射技术研究褪黑素在下丘脑前核对心血管活动的作用,以及用辣根过氧化物酶神经传导通路追踪技术研究下丘脑前核参与心血管活动交感传出的纤维投射.结果表明,下丘脑前核微量注射褪黑素可使血压呈剂量依赖性降低,下丘脑前核有大量纤维投射到室旁核、正中隆起、下丘脑腹内侧核、弓状核、中脑导水管周围灰质,有少量纤维投射到延髓腹外侧区、中缝隐核.因此,褪黑素可能为一种降压因子,下丘脑前核是褪黑素调节心血管活动的重要中枢部位之一,而且下丘脑前核可能通过下丘脑腹内侧核、弓状核、中脑导水管周围灰质、延髓腹外侧区和中缝隐核来影响心血管交感传出活动.

  5. Optogenetic dissection of medial prefrontal cortex circuitry

    Directory of Open Access Journals (Sweden)

    Danai eRiga

    2014-12-01

    Full Text Available The medial prefrontal cortex (mPFC is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g. thalamus, striatum, amygdala and hippocampus, the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  6. Lower "N"-Acetyl-Aspartate Levels in Prefrontal Cortices in Pediatric Bipolar Disorder: A (Superscript 1]H Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    Caetano, Sheila C.; Olvera, Rene L.; Hatch, John P.; Sanches, Marsal; Chen, Hua Hsuan; Nicoletti, Mark; Stanley, Jeffrey A.; Fonseca, Manoela; Hunter, Kristina; Lafer, Beny; Pliszka, Steven R.; Soares, Jair C.

    2011-01-01

    Objective: The few studies applying single-voxel [superscript 1]H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low "N"-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol/phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study…

  7. Differential Involvement of Left Prefrontal Cortexin Inductive and Deductive Reasoning

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J.

    2004-01-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by…

  8. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy

    NARCIS (Netherlands)

    Raaphorst, Joost; van Tol, Marie-José; Groot, Paul F C; Altena, Ellemarije; van der Werf, Ysbrand D; Majoie, Charles B; van der Kooi, Anneke J; van den Berg, Leonard H; Schmand, Ben; de Visser, Marianne; Veltman, Dick J

    2014-01-01

    OBJECTIVE: To examine brain activation patterns during verbal fluency performance in patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS). METHODS: fMRI was used to examine the blood oxygen level-dependent response during letter and category fluency performance in

  9. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy

    NARCIS (Netherlands)

    J. Raaphorst; M.J. van Tol; P.F.C. Groot; E. Altena; Y.D. van der Werf; C.B. Majoie; A.J. van der Kooi; L.H. van den Berg; B. Schmand; M. de Visser; D.J. Veltman

    2014-01-01

    Objective: To examine brain activation patterns during verbal fluency performance in patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS). Methods: fMRI was used to examine the blood oxygen level-dependent response during letter and category fluency performance in

  10. Anterior cruciate ligament (ACL) injury

    Science.gov (United States)

    Cruciate ligament injury - anterior; ACL injury; Knee injury - anterior cruciate ligament (ACL) ... knee. It prevents the knee from bending out. Anterior cruciate ligament (ACL) is in the middle of the knee. ...

  11. Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS

    Directory of Open Access Journals (Sweden)

    Christian J. Hartmann

    2016-01-01

    Full Text Available Background: Medication resistant obsessive-compulsive disorder (OCD patients can be successfully treated with Deep Brain Stimulation (DBS which targets the anterior limb of the internal capsule (ALIC and the nucleus accumbens (NA. Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating clinical effects of ALIC-NA DBS.Methods: We created computational models of ALIC-NA DBS to simulate the activation of fiber tracts and to identify connected cerebral regions. The pattern of activated axons and their cortical targets was investigated in six OCD patients who underwent ALIC-NA DBS. Results: Modulation of the right anterior middle frontal gyrus (dorsolateral prefrontal cortex was associated with an excellent response. In contrast, non-responders showed high activation in the orbital part of the right inferior frontal gyrus (lateral orbitofrontal cortex/anterior ventrolateral prefrontal cortex. Factor analysis followed by step-wise linear regression indicated that YBOCS improvement was inversely associated with factors that were predominantly determined by gray matter activation results.Discussion: Our findings support the hypothesis that optimal therapeutic results are associated with the activation of distinct fiber pathways. This suggests that in DBS for OCD, focused stimulation of specific fiber pathways, which would allow for stimulation with lower amplitudes, may be superior to activation of a wide array of pathways, typically associated with higher stimulation amplitudes.

  12. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim;

    2006-01-01

    the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  13. Lower neuronal variability in the monkey dorsolateral prefrontal than posterior parietal cortex.

    Science.gov (United States)

    Qi, Xue-Lian; Constantinidis, Christos

    2015-10-01

    The dorsolateral prefrontal and posterior parietal cortex are two brain areas involved in cognitive functions such as spatial attention and working memory. When tested with identical tasks, only subtle differences in firing rate are present between neurons recorded in the two areas. In this article we report that major differences in neuronal variability characterize the two areas during working memory. The Fano factors of spike counts in dorsolateral prefrontal neurons were consistently lower than those of the posterior parietal cortex across a range of tasks, epochs, and conditions in the same monkeys. Variability differences were observed despite minor differences in firing rates between the two areas in the tasks tested and higher overall firing rate in the prefrontal than in the posterior parietal sample. Other measures of neuronal discharge variability, such as the coefficient of variation of the interspike interval, displayed the same pattern of lower prefrontal variability. Fano factor values were negatively correlated with performance in the working memory task, suggesting that higher neuronal variability was associated with diminished task performance. The results indicate that information involving remembered stimuli is more reliably represented in the prefrontal than the posterior parietal cortex based on the variability of neuronal responses, and suggest functional differentiation between the two areas beyond differences in firing rate. PMID:26269556

  14. Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli

    OpenAIRE

    Ventura, Rossella; Morrone, Cristina; Puglisi-Allegra, Stefano

    2007-01-01

    Recent evidence suggests that rewarding and aversive stimuli affect the same brain areas, including medial prefrontal cortex and nucleus accumbens. Although nucleus accumbens is known to respond to salient stimuli, regardless of their hedonic valence, with selective increased dopamine release, little is known about the role of prefrontal cortex in reward- and aversion-related motivation or about the neurotransmitters involved. Here we find that selective norepinephrine depletion in medial pre...

  15. Prefrontal cortex white matter tracts in prodromal Huntington disease

    Science.gov (United States)

    Matsui, Joy T.; Vaidya, Jatin G.; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A.; Johnson, Hans J.; Paulsen, Jane S.

    2015-01-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e. prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATR), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. PMID:26179962

  16. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    Science.gov (United States)

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc.

  17. Current approach in diagnosis and management of anterior uveitis

    OpenAIRE

    Agrawal Rupesh; Murthy Somasheila; Sangwan Virender; Biswas Jyotirmay

    2010-01-01

    Uveitis is composed of a diverse group of disease entities, which in total has been estimated to cause approximately 10% of blindness. Uveitis is broadly classified into anterior, intermediate, posterior and panuveitis based on the anatomical involvement of the eye. Anterior uveitis is, however, the commonest form of uveitis with varying incidences reported in worldwide literature. Anterior uveitis can be very benign to present with but often can lead to severe morbidity if not treated...

  18. Increased number of TH-immunoreactive cells in the ventral tegmental area after deep brain stimulation of the anterior nucleus of the thalamus.

    Science.gov (United States)

    Dela Cruz, J A D; Hescham, S; Adriaanse, B; Campos, F L; Steinbusch, H W M; Rutten, B P F; Temel, Y; Jahanshahi, A

    2015-09-01

    Dopamine (DA) has been long implicated with the processes of memory. In long-term memory, the hippocampus and ventral tegmental area (VTA) use DA to enhance long-term potentiation, while prefrontal DA D1 receptors are involved in working memory. Deep brain stimulation (DBS) of specific brain areas have been shown to affect memory impairments in animal models. Here, we tested the hypothesis that DBS could reverse memory impairments by increasing the number of dopaminergic cells in the VTA. Rats received DBS at the level of the mammillothalamic tract, the anterior nucleus of the thalamus, and entorhinal cortex before euthanasia. These regions are part of the so-called memory circuit. Brain sections were processed for c-Fos and tyrosine hydroxylase (TH) immunocytochemistry in the VTA and the substantia nigra pars compacta (SNc). c-Fos, TH and c-Fos/TH immunoreactive cells were analyzed by means of stereology and confocal microscopy. Our results showed that DBS of the anterior nucleus of the thalamus induced substantial higher numbers of TH-immunoreactive cells in the VTA, while there were no significant differences between the experimental groups in the number of TH immunoreactive cells in the SNc, c-Fos immunoreactive cells and c-Fos/TH double-labeled cells in both the SNc and VTA. Our findings suggest a phenotypic switch, or neurotransmitter respecification, of DAergic cells specifically in the VTA which may be induced by DBS in the anterior nucleus of the thalamus.

  19. Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies.

    Directory of Open Access Journals (Sweden)

    Samantha J Brooks

    Full Text Available BACKGROUND AND OBJECTIVES: Obesity is emerging as the most significant health concern of the twenty-first century. A wealth of neuroimaging data suggest that weight gain might be related to aberrant brain function, particularly in prefrontal cortical regions modulating mesolimbic addictive responses to food. Nevertheless, food addiction is currently a model hotly debated. Here, we conduct a meta-analysis of neuroimaging data, examining the most common functional differences between normal-weight and obese participants in response to food stimuli. DATA SOURCE: We conducted a search using several journal databases and adhered to the 'Preferred Reporting Items for Systematic Reviews and Meta-analyses' (PRISMA method. To this aim, 10 studies were found with a total of 126 obese participants, 129 healthy controls, equaling 184 foci (146 increased, 38 decreased activation using the Activation Likelihood Estimation (ALE technique. Out of the 10 studies, 7 investigated neural responses to food versus non-food images. RESULTS: In response to food images, obese in comparison to healthy weight subjects had increased activation in the left dorsomedial prefrontal cortex, right parahippocampal gyrus, right precentral gyrus and right anterior cingulate cortex, and reduced activation in the left dorsolateral prefrontal cortex and left insular cortex. CONCLUSIONS: Prefrontal cortex areas linked to cognitive evaluation processes, such as evaluation of rewarding stimuli, as well as explicit memory regions, appear most consistently activated in response to images of food in those who are obese. Conversely, a reduced activation in brain regions associated with cognitive control and interoceptive awareness of sensations in the body might indicate a weakened control system, combined with hypo-sensitivity to satiety and discomfort signals after eating in those who are prone to overeat.

  20. Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior

    Directory of Open Access Journals (Sweden)

    Ronald P Gaykema

    2014-07-01

    Full Text Available The medial prefrontal cortex (mPFC is implicated in aspects of executive function, that include the modulation of attentional and memory processes involved in goal selection. Food-seeking behavior has been shown to involve activation of the mPFC, both during the execution of strategies designed to obtain food and during the consumption of food itself. As these behaviors likely require differential engagement of the prefrontal cortex, we hypothesized that the pattern of neuronal activation would also be behavior dependent. In this study we describe, for the first time, the expression of Fos in different layers and cell types of the infralimbic/dorsal peduncular (IL/DP and prelimbic/anterior cingulate (PL/AC subdivisions of mouse mPFC following both the consumption of palatable food and following exploratory activity of the animal directed at obtaining food reward. While both manipulations led to increases of Fos expression in principal excitatory neurons relative to control, food-directed exploratory activity produced a significantly greater increase in Fos expression than observed in the food intake condition. Consequently, we hypothesized that mPFC interneuron activation would also be differentially engaged by these manipulations. Interestingly, Fos expression patterns differed substantially between treatments and interneuron subtype, illustrating how the differential engagement of subsets of mPFC interneurons depends on the behavioral state. In our experiments, both vasoactive intestinal peptide- and parvalbumin-expressing neurons showed enhanced Fos expression only during the food-dependent exploratory task and not during food intake. Conversely, elevations in arcuate and paraventricular hypothalamic fos expression were only observed following food intake and not following food driven exploration. Our data suggest that activation of select mPFC interneurons may be required to support high cognitive demand states while being dispensable during

  1. A Model of Amygdala-Hippocampal-Prefrontal Interaction in Fear Conditioning and Extinction in Animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2013-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…

  2. Anterior cingulate cortico-hippocampal dysconnectivity in unaffected relatives of schizophrenia patients: a stochastic dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Yi-Bin Xi

    2016-07-01

    Full Text Available Familial risk plays a significant role in the etiology of schizophrenia (SZ. Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC, caudate, dorsolateral prefrontal cortex (DLPFC, and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients — according to the DSM-IV — were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI. We used stochastic dynamic causal modeling (sDCM to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ.

  3. Anterior Cingulate Cortico-Hippocampal Dysconnectivity in Unaffected Relatives of Schizophrenia Patients: A Stochastic Dynamic Causal Modeling Study.

    Science.gov (United States)

    Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong

    2016-01-01

    Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients-according to the DSM-IV-were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370

  4. Anterior chest wall examination reviewed

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.

  5. A case involving an Ahmed™ glaucoma valve transferred from the vitreous into the anterior chamber of the eye with a silicone oil tamponade for the treatment of neovascular glaucoma

    Directory of Open Access Journals (Sweden)

    Miki M

    2013-02-01

    Full Text Available Michiko Miki, Mari Ueki, Tetsuya Sugiyama, Shota Kojima, Tsunehiko IkedaDepartment of Ophthalmology, Osaka Medical College, Takatsuki, JapanPurpose: To report the short-term efficacy and safety of the transfer of an Ahmed™ glaucoma valve (AGV™ tube from the vitreous into the anterior chamber, in a patient with neovascular glaucoma who had undergone pars plana AGV™ implantation and ultimately needed a silicone oil tamponade.Case: A 41-year-old male with proliferative diabetic retinopathy in both eyes was referred to us for treatment in December 2009. Although the patient previously underwent several surgeries, he ultimately lost vision in his right eye. His left eye suffered from neovascular glaucoma after undergoing a pars plana vitrectomy for tractional retinal detachment. After several vitreous and glaucoma surgeries, the patient underwent implantation of a pars plana AGV™. Postoperatively, although his intraocular pressure was stabilized at approximately 10 mmHg, he had repeated vitreous hemorrhage and hyphema without improvement. He ultimately underwent PPV with a silicone oil tamponade and at the same time, the AGV™ tube was pulled out from the vitreous and inserted into the anterior chamber in order to avoid complications caused by the silicone oil.Results: At 19 months postoperative, the patient’s intraocular pressure had stabilized at 10 mmHg with no recurrence of vitreous hemorrhage and hyphema. Eventually, he lost vision in his left eye because of cerebral hemorrhage.Conclusion: The findings show that insertion of a pars plana AGV™ tube into the anterior chamber in a patient undergoing a silicone oil tamponade is both effective and safe in the short-term.Keyword: tube implantation, glaucoma surgery, tube transfer, pars plana, proliferative diabetic retinopathy, intraocular pressure

  6. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K/sup +/, however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with (/sup 3/H)-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K/sup +/-evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis.

  7. Congenital anterior urethral diverticulum.

    Science.gov (United States)

    Singh, Sanjeet Kumar; Ansari, Ms

    2014-09-01

    Congenital anterior urethral diverticulum (CAUD) may be found all along the anterior urethra and may present itself at any age, from infant to adult. Most children with this condition present with difficulty in initiating micturition, dribbling of urine, poor urinary stream, or urinary tract infection. A careful history will reveal that these children never had a good urinary stream since birth, and the telltale sign is a cystic swelling of the penile urethra. In this paper, we present two cases of CAUD that were managed by excision of the diverticulum with primary repair. PMID:26328174

  8. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction.

    Science.gov (United States)

    Vieira, Philip A; Corches, Alex; Lovelace, Jonathan W; Westbrook, Kevin B; Mendoza, Michael; Korzus, Edward

    2015-03-01

    N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior.

  9. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  10. Parallel driving and modulatory pathways link the prefrontal cortex and thalamus.

    Directory of Open Access Journals (Sweden)

    Basilis Zikopoulos

    Full Text Available Pathways linking the thalamus and cortex mediate our daily shifts from states of attention to quiet rest, or sleep, yet little is known about their architecture in high-order neural systems associated with cognition, emotion and action. We provide novel evidence for neurochemical and synaptic specificity of two complementary circuits linking one such system, the prefrontal cortex with the ventral anterior thalamic nucleus in primates. One circuit originated from the neurochemical group of parvalbumin-positive thalamic neurons and projected focally through large terminals to the middle cortical layers, resembling 'drivers' in sensory pathways. Parvalbumin thalamic neurons, in turn, were innervated by small 'modulatory' type cortical terminals, forming asymmetric (presumed excitatory synapses at thalamic sites enriched with the specialized metabotropic glutamate receptors. A second circuit had a complementary organization: it originated from the neurochemical group of calbindin-positive thalamic neurons and terminated through small 'modulatory' terminals over long distances in the superficial prefrontal layers. Calbindin thalamic neurons, in turn, were innervated by prefrontal axons through small and large terminals that formed asymmetric synapses preferentially at sites with ionotropic glutamate receptors, consistent with a driving pathway. The largely parallel thalamo-cortical pathways terminated among distinct and laminar-specific neurochemical classes of inhibitory neurons that differ markedly in inhibitory control. The balance of activation of these parallel circuits that link a high-order association cortex with the thalamus may allow shifts to different states of consciousness, in processes that are disrupted in psychiatric diseases.

  11. Prefrontal-hippocampal interactions in memory and emotion

    Directory of Open Access Journals (Sweden)

    Jingji eJin

    2015-12-01

    Full Text Available The hippocampal formation (HPC and medial prefrontal cortex (mPFC have well-established roles in memory encoding and retrieval. However, the mechanisms underlying interactions between the HPC and mPFC in achieving these functions is not fully understood. Considerable research supports the idea that a direct pathway from the HPC and subiculum to the mPFC is critically involved in cognitive and emotional regulation of mnemonic processes. More recently, evidence has emerged that an indirect pathway from the HPC to the mPFC via midline thalamic nucleus reuniens (RE may plays a role in spatial and emotional memory processing. Here we will consider how bidirectional interactions between the HPC and mPFC are involved in working memory, episodic memory and emotional memory in animals and humans. We will also consider how dysfunctions in bidirectional HPC-mPFC pathways contribute to psychiatric disorders.

  12. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    Science.gov (United States)

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. PMID:26970142

  13. Stress Assessment by Prefrontal Relative Gamma

    Science.gov (United States)

    Minguillon, Jesus; Lopez-Gordo, Miguel A.; Pelayo, Francisco

    2016-01-01

    Stress assessment has been under study in the last years. Both biochemical and physiological markers have been used to measure stress level. In neuroscience, several studies have related modification of stress level to brain activity changes in limbic system and frontal regions, by using non-invasive techniques such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). In particular, previous studies suggested that the exhibition or inhibition of certain brain rhythms in frontal cortical areas indicates stress. However, there is no established marker to measure stress level by EEG. In this work, we aimed to prove the usefulness of the prefrontal relative gamma power (RG) for stress assessment. We conducted a study based on stress and relaxation periods. Six healthy subjects performed the Montreal Imaging Stress Task (MIST) followed by a stay within a relaxation room while EEG and electrocardiographic signals were recorded. Our results showed that the prefrontal RG correlated with the expected stress level and with the heart rate (HR; 0.8). In addition, the difference in prefrontal RG between time periods of different stress level was statistically significant (p < 0.01). Moreover, the RG was more discriminative between stress levels than alpha asymmetry, theta, alpha, beta, and gamma power in prefrontal cortex. We propose the prefrontal RG as a marker for stress assessment. Compared with other established markers such as the HR or the cortisol, it has higher temporal resolution. Additionally, it needs few electrodes located at non-hairy head positions, thus facilitating the use of non-invasive dry wearable real-time devices for ubiquitous assessment of stress. PMID:27713698

  14. Prefrontal /accumbal catecholamine system processes high motivational salience.

    Directory of Open Access Journals (Sweden)

    Stefano ePuglisi-Allegra

    2012-06-01

    Full Text Available Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. Highly motivational experiences promote highly persistent memories. Although this phenomenon is adaptive in normal conditions, experiences with extremely high levels of motivational salience can promote development of memories that can be re-experienced intrusively for long time resulting in maladaptive outcomes.Neural mechanisms mediating motivational salience attribution are, therefore, very important for individual and species survival and for well-being. However, these neural mechanisms could be implicated in attribution of abnormal motivational salience to different stimuli leading to maladaptive compulsive seeking or avoidance. We have offered the first evidence that prefrontal cortical norepinephrine transmission is a necessary condition for motivational salience attribution to highly salient stimuli, through modulation of dopamine in the nucleus accumbens, a brain area involved in all motivated behaviors. Moreover, we have shown that prefrontal-accumbal catecholamine system determines approach or avoidance responses to both reward- and aversion-related stimuli only when the salience of the unconditioned stimulus is high enough to induce sustained catecholamine activation, thus affirming that this system processes motivational salience attribution selectively to highly salient events.

  15. Ventromedial prefrontal cortex, adding value to autobiographical memories.

    Science.gov (United States)

    Lin, Wen-Jing; Horner, Aidan J; Burgess, Neil

    2016-01-01

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found that the blood oxygen level dependent (BOLD) signal in ventromedial prefrontal cortex (vmPFC) was parametrically modulated by the affective values of items in participants' memories when they were recalling and evaluating these items. An unrelated modulation by the participant's familiarity with the items was also observed. During retrieval of the event, the BOLD signal in the same region was modulated by the personal significance and emotional intensity of the memory, which was correlated with the values of the items within them. These results support the idea that vmPFC processes self-relevant information, and suggest that it is involved in representing the personal emotional values of the elements comprising autobiographical memories. PMID:27338616

  16. Multiple effects of prefrontal lesions on task-switching

    Directory of Open Access Journals (Sweden)

    Tim Shallice

    2008-03-01

    Full Text Available This study examined the performance of 41 patients with focal prefrontal cortical lesions and 38 healthy controls on a task-switching procedure. Three different conditions were evaluated: single tasks without switches and two switching tasks with the currently relevant task signalled either 1500 ms (Long Cue or 200 ms (Short Cue before the stimulus. Patients with Superior Medial lesions showed both a general slowing of reaction time (RT and a signifi cantly increased switch cost as measured by RT. No other prefrontal group showed this increased reaction time switch cost. Increased error rates in the switching conditions, on the other hand, were observed in patients with Inferior Medial lesions and, to a lesser extent, ones with Superior Medial lesions. Patients with left dorsolateral lesions (9/46v showed slower learning of the task as indicated by a high error rate early on. Several different processes are involved in task-switching and these are selectively disrupted by lesions to specifi c areas of the frontal lobes.

  17. Prefrontal Engagement by Cognitive Reappraisal of Negative Faces

    Science.gov (United States)

    Nelson, Brady D.; Fitzgerald, Daniel A.; Klumpp, Heide; Shankman, Stewart A.; Phan, K. Luan

    2014-01-01

    Cognitive reappraisal has been associated with increased activation in prefrontal cortex (PFC) and cingulate regions implicated in cognitive control and affect regulation. To date, neuroimaging studies of reappraisal have primarily used emotionally evocative scenes, and it remains unclear whether the same cognitive strategy applied to emotional facial expressions would involve similar or different neural underpinnings. The present study used fMRI to examine brain activation during cognitive reappraisal of negatively valenced facial expressions relative to passive viewing of negative and neutral facial expressions. Twenty-two healthy adults completed a cognitive reappraisal task comprised of three different conditions (Look-Neutral, Maintain-Negative, Reappraise-Negative). Results indicated that reappraisal was associated with a decrease in negative affect and engagement of PFC brain regions implicated in cognitive control and affect regulation (DLPFC, mPFC, and VLPFC). Furthermore, individual differences in habitual reappraisal use were associated with greater DLPFC and mPFC activation, while suppression use was associated with greater amygdala activation. The present study provides preliminary evidence that facial expressions are effective alternative ‘targets’ of prefrontal engagement during cognitive reappraisal. These findings are particularly relevant for future research probing the neural bases of emotion regulation in populations for whom aversive scenes may be less appropriate (e.g., children) and illnesses in which aberrant responses to social signals of threat and negative feedback are cardinal phenotypes. PMID:25433095

  18. Surgical Tutorial of a Robotic-Assisted Anterior Pelvic Exenteration

    Medline Plus

    Full Text Available ... no transfusion of blood or blood products. Therefore, we had to be absolutely meticulous and be able ... this case, since the rectum is not involved, we would surgically remove the bladder, the anterior part ...

  19. Aversive Learning in Adolescents: Modulation by Amygdala–Prefrontal and Amygdala–Hippocampal Connectivity and Neuroticism

    OpenAIRE

    Garavan, Hugh

    2013-01-01

    PUBLISHED Neuroticism involves a tendency for enhanced emotional and cognitive processing of negative affective stimuli and a propensity to worry and be anxious. It is known that this trait modulates fear learning and the activation of brain regions involved in it such as the amygdala, hippocampus, and prefrontal cortex and their connectivity. Thirty-nine (21 female) 14-year-old healthy adolescents participated in functional magnetic resonance imaging (fMRI) of aversive pavlovian different...

  20. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications

    OpenAIRE

    Goldstein, Rita Z.; Volkow, Nora D

    2011-01-01

    The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in...

  1. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination

    Directory of Open Access Journals (Sweden)

    Weniger Dorothea

    2009-12-01

    Full Text Available Abstract Objective To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD with deficient haptic perception. Methods Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. Results We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. Conclusion PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  2. Increased CD40 ligand in patients with acute anterior uveitis

    DEFF Research Database (Denmark)

    Øgard, Carsten; Sørensen, Torben Lykke; Krogh, Erik

    2005-01-01

    The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis.......The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis....

  3. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.

    Science.gov (United States)

    Chadderdon, George L; Sporns, Olaf

    2006-02-01

    The prefrontal cortex (PFC) is crucially involved in the executive component of working memory, representation of task state, and behavior selection. This article presents a large-scale computational model of the PFC and associated brain regions designed to investigate the mechanisms by which working memory and task state interact to select adaptive behaviors from a behavioral repertoire. The model consists of multiple brain regions containing neuronal populations with realistic physiological and anatomical properties, including extrastriate visual cortical regions, the inferotemporal cortex, the PFC, the striatum, and midbrain dopamine (DA) neurons. The onset of a delayed match-to-sample or delayed nonmatch-to-sample task triggers tonic DA release in the PFC causing a switch into a persistent, stimulus-insensitive dynamic state that promotes the maintenance of stimulus representations within prefrontal networks. Other modeled prefrontal and striatal units select cognitive acceptance or rejection behaviors according to which task is active and whether prefrontal working memory representations match the current stimulus. Working memory task performance and memory fields of prefrontal delay units are degraded by extreme elevation or depletion of tonic DA levels. Analyses of cellular and synaptic activity suggest that hyponormal DA levels result in increased prefrontal activation, whereas hypernormal DA levels lead to decreased activation. Our simulation results suggest a range of predictions for behavioral, single-cell, and neuroimaging response data under the proposed task set and under manipulations of DA concentration. PMID:16494684

  4. Germ cell tumor located in the midline of the anterior neck.

    Science.gov (United States)

    Pirdopska, Tatyana; Terziev, Ivan; Hristova, Sv; Mladenovsky, W; Petkov, R

    2011-01-01

    Primary germ cell tumors involving midline of the anterior neck are extremely rare. Here we report a 68-year-old male who was operated due to a mass lesion in the anterior neck with infiltration of the isthmus of the thyroid gland. Histopathological examination revealed a germ cell tumor with extragonadal localization in the anterior neck infiltrating the isthmus of the thyroid gland.

  5. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  6. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry.

    Directory of Open Access Journals (Sweden)

    Sonia Doallo

    Full Text Available Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory, processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9, less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years binge drinking pattern of alcohol use (n = 11; age 22.43 ± 1.03 and control subjects (n = 21; age 22.18 ± 1.08 to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9 in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol -that does not meet criteria for alcohol dependence- throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory.

  7. Nonnecrotizing anterior scleritis mimicking orbital inflammatory disease

    Directory of Open Access Journals (Sweden)

    Lynch MC

    2013-08-01

    Full Text Available Michelle Chen Lynch,1 Andrew B Mick21Optometry Clinic, Ocala West Veterans Affairs Specialty Clinic, Ocala, FL, USA; 2Eye Clinic, San Francisco VA Medical Center, San Francisco, CA, USABackground: Anterior scleritis is an uncommon form of ocular inflammation, often associated with coexisting autoimmune disease. With early recognition and aggressive systemic therapy, prognosis for resolution is good. The diagnosis of underlying autoimmune disease involves a multidisciplinary approach.Case report: A 42-year-old African American female presented to the Eye Clinic at the San Francisco Veteran Affairs Medical Center, with a tremendously painful left eye, worse on eye movement, with marked injection of conjunctiva. There was mild swelling of the upper eyelid. Visual acuity was unaffected, but there was a mild red cap desaturation. The posterior segment was unremarkable. The initial differential diagnoses included anterior scleritis and orbital inflammatory disease. Oral steroid treatment was initiated with rapid resolution over a few days. Orbital imaging was unremarkable, and extensive laboratory work-up was positive only for antinuclear antibodies. The patient was diagnosed with idiopathic diffuse, nonnecrotizing anterior scleritis and has been followed for over 5 years without recurrence. The rheumatology clinic monitors the patient closely, as suspicion remains for potential arthralgias including human leukocyte antigen-B27-associated arthritis, lupus-associated arthritis, seronegative rheumatoid arthritis, recurrent juvenile idiopathic arthritis, and scleroderma, based on her constitutional symptoms and clinical presentation, along with a positive anti-nuclear antibody lab result.Conclusion: Untreated anterior scleritis can progress to formation of cataracts, glaucoma, uveitis, corneal melting, and posterior segment disease with significant risk of vision loss. Patients with anterior scleritis must be aggressively treated with systemic anti

  8. The role of prefrontal catecholamines in attention and working memory

    Directory of Open Access Journals (Sweden)

    Behrad eNoudoost

    2014-04-01

    Full Text Available While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, To date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.

  9. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    Science.gov (United States)

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  10. Unilateral Ibotenic Acid Lesions of the Prefrontal Cortex Reduce

    Directory of Open Access Journals (Sweden)

    Kuriyama,Shigeki

    2006-12-01

    Full Text Available Rats with 6-hydroxydopamine (6-OHDA-induced lesions of the substantia nigra are used as a model of Parkinson’s disease (PD, and these “lesioned” rats exhibit a rotational behavior when further injected with apomorphine (APO. We examined whether lesions in the prefrontal cortex (PFC could modify the rotational behavior in PD model rats. Rats initially received unilateral lesions of the substantia nigra by 6-OHDA injection, and then their rotational behavior was measured. Two PFC lesions were achieved by intracerebral infusions of ibotenic acid, followed by measurement of APOinduced rotation. Rotation was reduced by approximately 30オ after PFC injury. The PFC may have functional infl uences on the basal ganglia and may be involved in the pathophysiology of the rotational behavior of PD model rats.

  11. Watching cartoons activates the medial prefrontal cortex in children

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The medial prefrontal cortex (MPFC) of human adults is involved in attributing mental states to real human agents but not to virtual artificial characters. This study examined whether such differential MPFC activity can be observed in children who are more fascinated by cartoons than adults. We measured brain activity using functional magnetic resonance imaging (fMRI) while 10-year-old children watched movie and cartoon clips, simulating real and virtual visual worlds, respectively. We showed neuroimaging evidence that, in contrast to adults, the MPFC of children was activated when perceiving both human agents and artificial characters in coherent visual events. Our findings suggest that, around the age of 10 years, the MPFC activity in children is different from that in adults in that it can be spontaneously activated by non-human agents in a virtual visual world.

  12. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  13. Functional Genetic Variation in Dopamine Signaling Moderates Prefrontal Cortical Activity During Risky Decision Making.

    Science.gov (United States)

    Kohno, Milky; Nurmi, Erika L; Laughlin, Christopher P; Morales, Angelica M; Gail, Emma H; Hellemann, Gerhard S; London, Edythe D

    2016-02-01

    Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity. PMID:26119471

  14. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  15. Prefrontal connections express individual differences in intrinsic resistance to trading off honesty values against economic benefits

    Science.gov (United States)

    Dogan, Azade; Morishima, Yosuke; Heise, Felix; Tanner, Carmen; Gibson, Rajna; Wagner, Alexander F.; Tobler, Philippe N.

    2016-01-01

    Individuals differ profoundly when they decide whether to tell the truth or to be dishonest, particularly in situations where moral motives clash with economic motives, i.e., when truthfulness comes at a monetary cost. These differences should be expressed in the decision network, particularly in prefrontal cortex. However, the interactions between the core players of the decision network during honesty-related decisions involving trade-offs with economic costs remain poorly understood. To investigate brain connectivity patterns associated with individual differences in responding to economic costs of truthfulness, we used functional magnetic resonance imaging and measured brain activations, while participants made decisions concerning honesty. We found that in participants who valued honesty highly, dorsolateral and dorsomedial parts of prefrontal cortex were more tightly coupled with the inferior frontal cortex when economic costs were high compared to when they were low. Finer-grained analysis revealed that information flow from the inferior frontal cortex to the dorsolateral prefrontal cortex and bidirectional information flow between the inferior frontal cortex and dorsomedial prefrontal cortex was associated with a reduced tendency to trade off honesty for economic benefits. Our findings provide a novel account of the neural circuitry that underlies honest decisions in the face of economic temptations. PMID:27646044

  16. Prefrontal connections express individual differences in intrinsic resistance to trading off honesty values against economic benefits.

    Science.gov (United States)

    Dogan, Azade; Morishima, Yosuke; Heise, Felix; Tanner, Carmen; Gibson, Rajna; Wagner, Alexander F; Tobler, Philippe N

    2016-01-01

    Individuals differ profoundly when they decide whether to tell the truth or to be dishonest, particularly in situations where moral motives clash with economic motives, i.e., when truthfulness comes at a monetary cost. These differences should be expressed in the decision network, particularly in prefrontal cortex. However, the interactions between the core players of the decision network during honesty-related decisions involving trade-offs with economic costs remain poorly understood. To investigate brain connectivity patterns associated with individual differences in responding to economic costs of truthfulness, we used functional magnetic resonance imaging and measured brain activations, while participants made decisions concerning honesty. We found that in participants who valued honesty highly, dorsolateral and dorsomedial parts of prefrontal cortex were more tightly coupled with the inferior frontal cortex when economic costs were high compared to when they were low. Finer-grained analysis revealed that information flow from the inferior frontal cortex to the dorsolateral prefrontal cortex and bidirectional information flow between the inferior frontal cortex and dorsomedial prefrontal cortex was associated with a reduced tendency to trade off honesty for economic benefits. Our findings provide a novel account of the neural circuitry that underlies honest decisions in the face of economic temptations. PMID:27646044

  17. Closing the loop in primate prefrontal cortex: Inter-laminar processing

    Directory of Open Access Journals (Sweden)

    Ioan eOpris

    2012-11-01

    Full Text Available Prefrontal cortical activity in the primate brain emerging from minicolumnar microcircuits plays a critical role in cognitive processes dealing with executive control of behavior. However, the specific operations of columnar laminar processing in prefrontal cortex are not completely understood. Here we show via implementation of unique microanatomical recording and stimulating arrays, that minicolumns in prefrontal cortex are involved in the executive control of behavior in rhesus macaque nonhuman primates performing a delayed match-to-sample (DMS task. Prefrontal cortical (PFC neurons demonstrate functional interactions between pairs of putative pyramidal cells within specified cortical layers via anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing between inter-laminar (layer 2/3 and layer 5 pairs of neurons participating in the gating of information during the decision making phase of the task with differential correlations between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific information for correct task performance. Such inter-laminar processing was exploited by the interfacing of an online model which delivered stimulation to layer 5 locations in a pattern associated with successful performance thereby closing the columnar loop externally in a manner that mimicked normal processing in the same task. These unique technologies demonstrate that PFC neurons encode and process information via minicolumns which provides a closed loop form of executive function, hence disruption of such inter-laminar processing could form the bases for cognitive dysfunction in primate brain.

  18. Higher volume of ventral striatum and right prefrontal cortex in pathological gambling.

    Science.gov (United States)

    Koehler, Saskia; Hasselmann, Eva; Wüstenberg, Torsten; Heinz, Andreas; Romanczuk-Seiferth, Nina

    2015-01-01

    Functional neuroimaging studies have implicated an involvement of the prefrontal cortex and mesolimbic reward system (i.e., ventral striatum) in pathological gambling (PG). However, there is a lack of studies focusing on structural changes in frontostriatal brain regions in adult subjects with PG. In order to study differences in local grey matter volume, 20 male subjects with PG and 21 matched controls underwent structural magnetic resonance imaging. Structural brain data were analysed via voxel-based morphometry with a focus on prefrontal areas and ventral striatum. By comparing grey matter volumes in brain regions highly relevant for brain functional changes in PG, the present study found a higher volume in right ventral striatum and right prefrontal cortex by means of voxel-wise morphometry in PG subjects as compared to controls. Our findings demonstrate local grey matter changes in brain areas that have previously been associated with functional changes in PG. Hypertrophy in the prefrontal cortex might be an adaptation at least partly induced by the higher grey matter volume in the ventral striatum and may help to increase cognitive control over gambling impulses. Future research should explore the relationship between functional and structural alterations as well as the course of changes in PG.

  19. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex.

    Science.gov (United States)

    Hutcherson, Cendri A; Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-09-01

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. Significance statement: Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  20. Multimodal emotion perception after anterior temporal lobectomy

    OpenAIRE

    Valérie Milesi; Chiara Cristinzio; Margitta Seeck

    2014-01-01

    In the context of emotion information processing, several studies have demonstrated the involvement of the amygdala in emotion perception, for unimodal and multimodal stimuli. However, it seems that not only the amygdala, but several regions around it, may also play a major role in multimodal emotional integration. In order to investigate the contribution of these regions to multimodal emotion perception, five patients who had undergone unilateral anterior temporal lobe resection were exposed...

  1. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  2. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  3. From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations.

    Science.gov (United States)

    Cassaday, Helen J; Nelson, Andrew J D; Pezze, Marie A

    2014-01-01

    Distinctions along the dorsal-ventral axis of medial prefrontal cortex (mPFC), between anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) sub-regions, have been proposed on a variety of neuroanatomical and neurophysiological grounds. Conventional lesion approaches (as well as some electrophysiological studies) have shown that these distinctions relate to function in that a number behavioral dissociations have been demonstrated, particularly using rodent models of attention, learning, and memory. For example, there is evidence to suggest that AC has a relatively greater role in attention, whereas IL is more involved in executive function. However, the well-established methods of behavioral neuroscience have the limitation that neuromodulation is not addressed. The neurotoxin 6-hydroxydopamine has been used to deplete dopamine (DA) in mPFC sub-regions, but these lesions are not selective anatomically and noradrenalin is typically also depleted. Microinfusion of drugs through indwelling cannulae provides an alternative approach, to address the role of neuromodulation and moreover that of specific receptor subtypes within mPFC sub-regions, but the effects of such treatments cannot be assumed to be anatomically restricted either. New methodological approaches to the functional delineation of the role of mPFC in attention, learning and memory will also be considered. Taken in isolation, the conventional lesion methods which have been a first line of approach may suggest that a particular mPFC sub-region is not necessary for a particular aspect of function. However, this does not exclude a neuromodulatory role and more neuropsychopharmacological approaches are needed to explain some of the apparent inconsistencies in the results. PMID:25249948

  4. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1

    OpenAIRE

    Vollbrecht, Peter J.; Simmler, Linda D.; Blakely, Randy D.; Deutch, Ariel Y.

    2014-01-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for >90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) is unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate ...

  5. Molecular Components and Functions of the Endocannabinoid System in Mouse Prefrontal Cortex

    OpenAIRE

    Mathieu Lafourcade; Izaskun Elezgarai; Susana Mato; Yamina Bakiri; Pedro Grandes; Manzoni, Olivier J.

    2007-01-01

    BACKGROUND: Cannabinoids have deleterious effects on prefrontal cortex (PFC)-mediated functions and multiple evidences link the endogenous cannabinoid (endocannabinoid) system, cannabis use and schizophrenia, a disease in which PFC functions are altered. Nonetheless, the molecular composition and the physiological functions of the endocannabinoid system in the PFC are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here, using electron microscopy we found that key proteins involved in endocannabinoi...

  6. Integration of Auditory and Visual Communication Information in the Primate Ventrolateral Prefrontal Cortex

    OpenAIRE

    Sugihara, T.; Diltz, M. D.; Averbeck, B. B.; Romanski, L. M.

    2006-01-01

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The mul...

  7. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans

    OpenAIRE

    Rabinak, Christine A.; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K. Luan

    2013-01-01

    Pre-extinction administration of ∆9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely involves via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a fu...

  8. Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history

    OpenAIRE

    Anticevic, A; Brumbaugh, MS; Winkler, AM; Lombardo, LE; Barrett, J; Corlett, PR; Kober, H; Gruber, J.; REPOVS, G; Cole, MW; Krystal, JH; Pearlson, GD; Glahn, DC

    2013-01-01

    Background: Pathophysiological models of bipolar disorder postulate that mood dysregulation arises from fronto-limbic dysfunction, marked by reduced prefrontal cortex (PFC) inhibitory control. This might occur due to both disruptions within PFC networks and abnormal inhibition over subcortical structures involved in emotional processing. However, no study has examined global PFC dysconnectivity in bipolar disorder and tested whether regions with within-PFC dysconnectivity also exhibit fronto-...

  9. Anterior hip pain.

    Science.gov (United States)

    O'Kane, J W

    1999-10-15

    Anterior hip pain is a common complaint with many possible causes. Apophyseal avulsion and slipped capital femoral epiphysis should not be overlooked in adolescents. Muscle and tendon strains are common in adults. Subsequent to accurate diagnosis, strains should improve with rest and directed conservative treatment. Osteoarthritis, which is diagnosed radiographically, generally occurs in middle-aged and older adults. Arthritis in younger adults should prompt consideration of an inflammatory cause. A possible femoral neck stress fracture should be evaluated urgently to prevent the potentially significant complications associated with displacement. Patients with osteitis pubis should be educated about the natural history of the condition and should undergo physical therapy to correct abnormal pelvic mechanics. "Sports hernias," nerve entrapments and labral pathologic conditions should be considered in athletic adults with characteristic presentations and chronic symptoms. Surgical intervention may allow resumption of pain-free athletic activity. PMID:10537384

  10. File list: Pol.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  11. File list: Pol.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  12. File list: Pol.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  13. Implicitly perceived vocal attractiveness modulates prefrontal cortex activity.

    Science.gov (United States)

    Bestelmeyer, Patricia E G; Latinus, Marianne; Bruckert, Laetitia; Rouger, Julien; Crabbe, Frances; Belin, Pascal

    2012-06-01

    Social interactions involve more than "just" language. As important is a more primitive nonlinguistic mode of communication acting in parallel with linguistic processes and driving our decisions to a much higher degree than is generally suspected. Amongst the "honest signals" that influence our behavior is perceived vocal attractiveness. Not only does vocal attractiveness reflect important biological characteristics of the speaker, it also influences our social perceptions according to the "what sounds beautiful is good" phenomenon. Despite the widespread influence of vocal attractiveness on social interactions revealed by behavioral studies, its neural underpinnings are yet unknown. We measured brain activity while participants listened to a series of vocal sounds ("ah") and performed an unrelated task. We found that voice-sensitive auditory and inferior frontal regions were strongly correlated with implicitly perceived vocal attractiveness. While the involvement of auditory areas reflected the processing of acoustic contributors to vocal attractiveness ("distance to mean" and spectrotemporal regularity), activity in inferior prefrontal regions (traditionally involved in speech processes) reflected the overall perceived attractiveness of the voices despite their lack of linguistic content. These results suggest the strong influence of hidden nonlinguistic aspects of communication signals on cerebral activity and provide an objective measure of this influence.

  14. Implicitly perceived vocal attractiveness modulates prefrontal cortex activity.

    Science.gov (United States)

    Bestelmeyer, Patricia E G; Latinus, Marianne; Bruckert, Laetitia; Rouger, Julien; Crabbe, Frances; Belin, Pascal

    2012-06-01

    Social interactions involve more than "just" language. As important is a more primitive nonlinguistic mode of communication acting in parallel with linguistic processes and driving our decisions to a much higher degree than is generally suspected. Amongst the "honest signals" that influence our behavior is perceived vocal attractiveness. Not only does vocal attractiveness reflect important biological characteristics of the speaker, it also influences our social perceptions according to the "what sounds beautiful is good" phenomenon. Despite the widespread influence of vocal attractiveness on social interactions revealed by behavioral studies, its neural underpinnings are yet unknown. We measured brain activity while participants listened to a series of vocal sounds ("ah") and performed an unrelated task. We found that voice-sensitive auditory and inferior frontal regions were strongly correlated with implicitly perceived vocal attractiveness. While the involvement of auditory areas reflected the processing of acoustic contributors to vocal attractiveness ("distance to mean" and spectrotemporal regularity), activity in inferior prefrontal regions (traditionally involved in speech processes) reflected the overall perceived attractiveness of the voices despite their lack of linguistic content. These results suggest the strong influence of hidden nonlinguistic aspects of communication signals on cerebral activity and provide an objective measure of this influence. PMID:21828348

  15. The Role of Prefrontal Inhibition in Regulating Facial Expressions of Pain : A Repetitive Transcranial Magnetic Stimulation Study

    NARCIS (Netherlands)

    Karmann, Anna Julia; Maihoefner, Christian; Lautenbacher, Stefan; Sperling, Wolfgang; Kornhuber, Johannes; Kunz, Miriam

    2016-01-01

    Although research on facial expressions of pain has a long history, little is known about the cerebral mechanisms regulating these expressions. It has been suggested that the medial prefrontal cortex (mPFC) might be involved in regulating/inhibiting the degree to which-pain is facially displayed. To

  16. Effect on development of proportional reasoning skill of physical experience and cognitive abilities associated with prefrontal lobe activity

    Science.gov (United States)

    Kwon, Yong-Ju; Lawson, Anton E.; Chung, Wan-Ho; Kim, Young-Shin

    2000-12-01

    The present study tested the hypothesis that maturing prefrontal lobes play a role in the development of proportional reasoning skill because the prefrontal lobes are involved in the inhibition of task-irrelevant information and the representation of task-relevant information. The hypothesis that reasoning development is in part dependent upon physical experience was also tested. Students (all males) who failed to solve a diagnostic proportions task were administered several tests of prefrontal lobe functions. The students were then randomly assigned to manipulative or verbal tutoring groups. Both groups received a series of individual testing, tutoring and testing sessions on proportional reasoning. As predicted, performance on the prefrontal lobe tasks (measures of inhibiting ability, planning ability, dissembedding ability, and working memory capacity) significantly predicted performance on proportional reasoning tasks following tutoring. Students' computational skills were not a significant predictor. Also, the manipulative group's proportional reasoning performance was significantly higher than that of the verbal tutoring group. Therefore, the present results provide support for the hypothesis that maturing prefrontal lobes and physical experience play roles in the development of proportional reasoning skill.

  17. Saccades and prefrontal hemodynamics in basketball players.

    Science.gov (United States)

    Fujiwara, K; Kiyota, N; Maekawa, M; Kunita, K; Kiyota, T; Maeda, K

    2009-09-01

    We investigated saccade performance and prefrontal hemodynamics in basketball players with different skill levels. Subjects were 27 undergraduate basketball players and 13 non-athlete undergraduates (control group: CON). The players were divided into two groups: those who had played in the National Athletic Meet during high school or played regularly (n=13, elite group: ELI) and those who were bench warmers (n=14, skilled group: SKI). Horizontal eye movement and oxy-, deoxy-, and total-hemoglobin (Hb) concentration in the prefrontal cortex during pro- and anti-saccade were measured using electro-oculography and near-infrared spectroscopy, respectively. Only error rate in anti-saccade was less in ELI (4.8+/-4.0%) than SKI (13.7+/-12.6%) and CON (13.9+/-8.3%) (p<0.05). In ELI alone, oxy- (-0.15+/-0.18 mmol*mm) and total-Hb (-0.12+/-0.15 mmol*mm) during anti-saccade decreased significantly compared with that during rest (p<0.05), while those in CON significantly increased (oxy-Hb: 0.17+/-0.15 mmol*mm, total-Hb: 0.14+/-0.14 mmol*mm) (p<0.05). These results suggest that inhibition of eye movement to a visual target changes from voluntary to automatic through the motor learning of basketball. PMID:19569008

  18. Anterior uveitis in juvenile rheumatoid arthritis.

    Science.gov (United States)

    Kanski, J J

    1977-10-01

    The ocular and systemic characteristics of 160 patients with anterior uveitis and seronegative juvenile rheumatoid arthritis are reviewed. Chronic uveitis occurred in 131 patients, 76% of whom were girls. Both eyes were involved in 70% of the cases. Band keratopathy occurred in 41% of the eyes, cataract in 42%, and secondary glaucoma in 19%. Only 11 patients had uveitis before the onset of arthritis. Notable correlations included a pauciarticular onset of arthritis in 95% of the patients, and positive tests for antinuclear antibody in 82%. Of 29 patients with acute anterior uveitis, 27 were boys. The inflammation responded well to therapy, and serious complications did not occur. At follow-up 21 patients had typical ankylosing spondylitis, and five had sacroiliitis. The incidence of positive results of tests for HLA-B27 antigen was 94%.

  19. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition

    OpenAIRE

    Wolf, Richard C.; Philippi, Carissa L.; Motzkin, Julian C.; Baskaya, Mustafa K.; Koenigs, Michael

    2014-01-01

    The ventromedial prefrontal cortex plays a crucial role in regulating emotion and social behavior, yet the precise mechanisms underlying this function remain unclear. Using eye-tracking in patients with brain lesions, Wolf et al. show that ventromedial prefrontal cortex is critical for directing visual attention during facial emotion recognition.

  20. Alcohol binge drinking during adolescence or dependence during adulthood reduces prefrontal myelin in male rats.

    Science.gov (United States)

    Vargas, Wanette M; Bengston, Lynn; Gilpin, Nicholas W; Whitcomb, Brian W; Richardson, Heather N

    2014-10-29

    Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism.

  1. Morphine decreases extracellular levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats

    Institute of Scientific and Technical Information of China (English)

    YueHAO; Jing-yuYANG; MingGUO; Chun-fuWU; Ming-fanWU

    2004-01-01

    AIM: The anterior cingulate cortex (ACC), an important region of prefrontal cortex for cognitive functions, has been implicated in drug abuse and addiction. In the present study, we intended to investigate the effect of morphine on the extracellular levels of glutamate in the ACC in freely moving rats. METHODS: In vivo microdialysis coupled to high performance liquid chromatography and electrochemical detection had been used for the

  2. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex.

    Science.gov (United States)

    Schlichting, Margaret L; Mumford, Jeanette A; Preston, Alison R

    2015-01-01

    The episodic memory system enables accurate retrieval while maintaining flexibility by representing both specific episodes and generalizations across events. Although theories suggest that the hippocampus (HPC) is dedicated to represent specific episodes while the medial prefrontal cortex (MPFC) generalizes, other accounts posit that HPC can also integrate related memories. Here we use high-resolution functional magnetic resonance imaging in humans to examine how representations of memory elements change to either differentiate or generalize across related events. We show that while posterior HPC and anterior MPFC maintain distinct memories for individual events, anterior HPC and posterior MPFC integrate across memories. Integration is particularly likely for established memories versus those encoded simultaneously, highlighting the greater impact of prior knowledge on new encoding. We also show dissociable coding signatures in ventrolateral PFC, a region previously implicated in interference resolution. These data highlight how memory elements are represented to simultaneously promote generalization across memories and protect from interference. PMID:26303198

  3. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    Directory of Open Access Journals (Sweden)

    Claudia Perez-Cruz

    2007-01-01

    Full Text Available The prefrontal cortex (PFC plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx.

  4. Lucid dreaming and ventromedial versus dorsolateral prefrontal task performance.

    Science.gov (United States)

    Neider, Michelle; Pace-Schott, Edward F; Forselius, Erica; Pittman, Brian; Morgan, Peter T

    2011-06-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for 1 week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function.

  5. Lucid dreaming and ventromedial versus dorsolateral prefrontal task performance.

    Science.gov (United States)

    Neider, Michelle; Pace-Schott, Edward F; Forselius, Erica; Pittman, Brian; Morgan, Peter T

    2011-06-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for 1 week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function. PMID:20829072

  6. Medial prefrontal D1 dopamine neurons control food intake.

    Science.gov (United States)

    Land, Benjamin B; Narayanan, Nandakumar S; Liu, Rong-Jian; Gianessi, Carol A; Brayton, Catherine E; Grimaldi, David M; Sarhan, Maysa; Guarnieri, Douglas J; Deisseroth, Karl; Aghajanian, George K; DiLeone, Ralph J

    2014-02-01

    Although the prefrontal cortex influences motivated behavior, its role in food intake remains unclear. Here, we demonstrate a role for D1-type dopamine receptor-expressing neurons in the medial prefrontal cortex (mPFC) in the regulation of feeding. Food intake increases activity in D1 neurons of the mPFC in mice, and optogenetic photostimulation of D1 neurons increases feeding. Conversely, inhibition of D1 neurons decreases intake. Stimulation-based mapping of prefrontal D1 neuron projections implicates the medial basolateral amygdala (mBLA) as a downstream target of these afferents. mBLA neurons activated by prefrontal D1 stimulation are CaMKII positive and closely juxtaposed to prefrontal D1 axon terminals. Finally, photostimulating these axons in the mBLA is sufficient to increase feeding, recapitulating the effects of mPFC D1 stimulation. These data describe a new circuit for top-down control of food intake.

  7. Anterior Decompression and Anterior Instrumentation of Tuberculosis of Cervicothoracic Spine by Cervicomanubrial Approach

    Directory of Open Access Journals (Sweden)

    Anant Kumar Garg

    2012-04-01

    Full Text Available Background: Evaluation of result of anterior cervical approach with manubriotomy and anterior instrumentation in tuberculosis of cervicothoracic spine in terms of the neurological recovery, reconstruction of spine and prevention of deformity along with relief of pain. Materials and Methods: All five patients with cervicothoracic caries spine had surgery through anterior cervical approach with manubriotomy in our hospital and underwent excision of the involved vertebrae and intervertebral discs followed by anterior spinal reconstruction with titanium spacer cage filled with cancellous iliac crest bone graft and Orion plate with locking screw. Antitubercular drugs were administered for 12 months. The follow-up period ranged from 12 to 36 months. Results: Analysis of result was done on the basis of clinical and radiological criteria. Clinical assessment based on Frankel grade and modified JOA score showed significant improvement from preoperative findings. Radiological assessment showed osteointegration, no spinal instability and no progression of the deformity. The pain control, based on visual analog scale changed from a pre-operative average of 7.5 to 2 at the last follow-up thereby indicating significant improvement and all patients returned to preoperative functional status. One patient had transient hoarseness of voice. No other complication had been encountered in the immediate post operative and during the follow-up period. Conclusions: Our study showed that anterior cervical approach with manubriotomy and anterior insertion of titanium cage, filled with autogenous bone graft, secured with locking plate instrumentation has a successful role in the eradication of infection, neurological recovery, segmental spinal reconstruction and it also reduces surgical time, blood loss, and surgical complications and approach related comorbidity in follow up period. Level of Evidence- Level 4, Case series

  8. 声门型喉癌CO2激光手术治疗后局部复发与前联合受侵犯的关系%Relationship between Local Recurrence and Anterior Commissure Involvement after CO2 Laser Endoscopic Resection

    Institute of Scientific and Technical Information of China (English)

    刘学奎; 曾宗渊; 刘志民; 刘巍巍; 李秋梨; 李浩; 欧阳电; 李铨; 张欣睿; 郭朱明

    2012-01-01

    目的:分析CO2激光手术治疗声门型喉癌局部复发与前联合受侵犯的关系.方法:回顾性分析2008年1月至2010年12月中山大学肿瘤防治中心中133例激光手术治疗的早期声门型喉癌患者资料.其中包括侵犯前联合患者48例和前联合未受侵85例.133例中原位癌(Tis)40例,T1a58例,T1b19例,T25例,T31例.术后随诊6~42个月.比较前联合受累组与前联合未受累组的局部复发率.结果:133例支撑喉镜下CO2激光手术后21例局部复发,局部复发率为15.79% (21/133).其中Tis复发率为17.50%(7/40)、T1a为8.62% (5/58)、T1b为36.84%(7/19)、T2为13.33%(2/15),T3 1例无复发,各组间复发率无显著性差异(P>0.05).病变侵犯前联合复发率为25.00%(12/48),病变未侵犯前联合复发率为10.59%(9/85),两组间有显著性差异(P<0.05).133例激光手术治疗患者中死亡4例.结论:激光手术治疗侵犯前联合的早期声门型喉癌复发率高,其治疗价值值得进一步研究.%Objective: This work aims to analyze the relationship between local recurrence and location of the tumor in early glottic carcinoma after CO2 laser endoscopic resection. Methods: Data of 133 early glottic carcinoma cases, which were treated with laser surgery and were hospitalized at the cancer center of Sun Yan-Sen University from 2008 to 2010, were reviewed retrospectively. Of the 133 cases, 48 involved the anterior commissure and the other 85 did not. Of the total cases, Tis stage lesion (tumor in situ) was found in 58 cases, T1a stage in 58, T1b stage in 19, T2 stage in 15, and T3 stage in only 1. The follow-up period ranged from 6 to 42 months. The local recurrence rate between the involvement and non-involvement of anterior commissure was compared. Results: Local recurrence was detected in 21 of the 133 cases with early glottic laryngeal carcinoma after CO2 laser surgery. The local recurrence rate was 15.79% (21/133). The recurrence rates of T1a, T1b, T2, and T3

  9. Altered proteomic expression in the prefrontal cortex of morphine-addicted rats

    Institute of Scientific and Technical Information of China (English)

    Ye Yang; Chunyan Zhang; Han Liu; Bin Wang; Haiying Lin; Lisha Wu

    2011-01-01

    The prefrontal cortex is involved in the regulation and control of substance addiction-related cognitive, behavioral, and emotional changes. The present study identified prefrontal cortex protein profiles in morphine-addicted rats; these were subsequently compared with normal rats. Results showed 87 protein spots with differentially expressed levels in the morphine addiction group, with the majority located in meta acid zones at pH 4.2–6.8 and having a molecular weight of 30–110 kDa. In addition, 2 protein spots were identified as being associated with neurotoxicity (Snap25 isoform β-Snap25 of synaptosomal-associated protein 25 and β-actin).

  10. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  11. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation

    CERN Document Server

    Zotev, Vadim; Young, Kymberly D; Drevets, Wayne C; Bodurka, Jerzy

    2013-01-01

    We observed in a previous study (PLoS ONE 6:e24522) that the self-regulation of amygdala activity via real-time fMRI neurofeedback (rtfMRI-nf) with positive emotion induction was associated, in healthy participants, with an enhancement in the functional connectivity between the left amygdala (LA) and six regions of the prefrontal cortex. These regions included the left rostral anterior cingulate cortex (rACC), bilateral dorsomedial prefrontal cortex (DMPFC), bilateral superior frontal gyrus (SFG), and right medial frontopolar cortex (MFPC). Together with the LA, these six prefrontal regions thus formed the functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector autoregression (SVAR) analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to the analysis, the rtfMRI-nf training leads to a signi...

  12. Dirofilaria in the anterior chamber: A rare occurrence

    Directory of Open Access Journals (Sweden)

    Rupali Chopra

    2012-01-01

    Full Text Available Dirofilariasis is a parasitic infection of the carvivores that may present as a zoonotic infestation in humans. Systemic involvement in man is subcutaneous, pulmonary, or ocular. We report a rare occurrence of ocular dirofilariasis in a 25-year-old male patient who presented with pain and redness in the eye. A live, white, coiled, and highly motile worm was present in the anterior chamber. The worm, however, could not be detected in the anterior chamber, posterior segment, or the angle of the anterior chamber when the patient was taken to the operating room for surgical removal of the worm. The patient was made to lie prone till the worm reappeared in the anterior chamber and was removed by paracentesis. The worm was identified as Dirofilaria repens on the basis of microscopic and histopathological examination.

  13. Anomalous right coronary artery arising from left anterior descending artery

    Directory of Open Access Journals (Sweden)

    M.L. Sreenivas Kumar

    2012-07-01

    Full Text Available A 54-year-old male patient presented with acute myocardial infarction involving left anterior descending and right coronary artery territories. Coronary angiogram showed a single coronary artery with right coronary artery arising from left anterior descending artery (LAD, which coursed anterior to right ventricular outflow tract and thrombotic lesion in mid left anterior descending artery before origin of right coronary artery. The patient was treated with thrombolytic therapy and glycoprotein IIb/IIIa inhibitors. Anomalous origin of right coronary artery as a branch of LAD is a very rare type of congenital coronary artery anomalies. It is important to recognize this anomaly as it can be associated with extensive myocardial ischemia and sudden cardiac death in young persons even without atherosclerosis.

  14. Multidisciplinary management of anterior diastemata

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; Herkrath, Fernando José; Franco, Eduardo Jacomino;

    2007-01-01

    the aesthetic results when orthodontic therapy itself is not feasible. This article presents integrated orthodonticrestorative solutions of anterior diastemata, associated with the conditioning of the gingival tissue with composite resin, and discusses the most relevant aspects related to their etiology...

  15. Anterior approach for knee arthrography

    International Nuclear Information System (INIS)

    Objective. To develop a new method of magnetic resonance arthrography (MRA) of the knee using an anterior approach analogous to the portals used for knee arthroscopy.Design. An anterior approach to the knee joint was devised mimicking anterior portals used for knee arthroscopy. Seven patients scheduled for routine knee MRA were placed in a decubitus position and under fluoroscopic guidance a needle was advanced from a position adjacent to the patellar tendon into the knee joint. After confirmation of the needle tip location, a dilute gadolinium solution was injected.Results and conclusion. All the arthrograms were technically successful. The anterior approach to knee MRA has greater technical ease than the traditional approach with little patient discomfort. (orig.)

  16. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... Taperloc Microplasty stem and E-poly antioxidant-infused technology during a hip replacement through the anterior supine ... renewed interest at this time due to several advantages that it brings. The approach that is performed ...

  17. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... it to have any real negative or deleterious effect by removing the anterior capsule. Now I would ... is what happens with one of the competitive designs. Like I told you, I just take a ...

  18. Update on anterior ankle impingement

    OpenAIRE

    Vaseenon, Tanawat; Amendola, Annunziato

    2012-01-01

    Anterior ankle impingement results from an impingement of the ankle joint by a soft tissue or osteophyte formation at the anterior aspect of the distal tibia and talar neck. It often occurs secondary to direct trauma (impaction force) or repetitive ankle dorsiflexion (repetitive impaction and traction force). Chronic ankle pain, swelling, and limitation of ankle dorsiflexion are common complaints. Imaging is valuable for diagnosis of the bony impingement but not for the soft tissue impingemen...

  19. Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search

    OpenAIRE

    Monosov, Ilya E.; David L Sheinberg; Thompson, Kirk G.

    2010-01-01

    We addressed the question of how we locate and identify objects in complex natural environments by simultaneously recording single neurons from two brain regions that play different roles in this familiar activity—the frontal eye field (FEF), an area in the prefrontal cortex that is involved in visual spatial selection, and the inferotemporal cortex (IT), which is involved in object recognition—in monkeys performing a covert visual search task. Although the monkeys reported object identity, n...

  20. The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search

    OpenAIRE

    Monosov, Ilya E.; David L Sheinberg; Thompson, Kirk G.

    2011-01-01

    Inferotemporal cortex (IT) is believed to be directly involved in object processing and necessary for accurate and efficient object recognition. The frontal eye field (FEF) is an area in the primate prefrontal cortex that is involved in visual spatial selection and is thought to guide spatial attention and eye movements. We show that object selective responses of IT neurons and behavioral performance are affected by changes in frontal eye field activity. This was found in monkeys performing a...

  1. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  2. The Anterior Cingulate Cortex and Pain Processing

    Directory of Open Access Journals (Sweden)

    Perry Neil Fuchs

    2014-05-01

    Full Text Available The neural network that contributes to the suffering which accompanies persistent pain states involves a number of brain regions. Of primary interest is the contribution of the cingulate cortex in processing the affective component of pain. The purpose of this review is to summarize recent data obtained using novel behavioral paradigms in animals based on measuring escape and/or avoidance of a noxious stimulus. These paradigms have successfully been used to study the nature of the neuroanatomical and neurochemical contributions of the anterior cingulate cortex to higher order pain processing in rodents.

  3. Development of temperamental effortful control mediates the relationship between maturation of the prefrontal cortex and psychopathology during adolescence: a 4-year longitudinal study.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Dennison, Meg; Yücel, Murat; Simmons, Julian; Allen, Nicholas B

    2014-07-01

    This study investigated the relationship between the development of effortful control (EC), a temperamental measure of self-regulation, and concurrent development of three regions of the prefrontal cortex (anterior cingulate cortex, ACC; dorsolateral prefrontal cortex, dlPFC; ventrolateral prefrontal cortex, vlPFC) between early- and mid-adolescence. It also examined whether development of EC mediated the relationship between cortical maturation and emotional and behavioral symptoms. Ninety-two adolescents underwent baseline assessments when they were approximately 12 years old and follow-up assessments approximately 4 years later. At each assessment, participants had MRI scans and completed the Early Adolescent Temperament Questionnaire-Revised, as well as measures of depressive and anxious symptoms, and aggressive and risk taking behavior. Cortical thicknesses of the ACC, dlPFC and vlPFC, estimated using the FreeSurfer software, were found to decrease over time. EC also decreased over time in females. Greater thinning of the left ACC was associated with less reduction in EC. Furthermore, change in effortful control mediated the relationship between greater thinning of the left ACC and improvements in socioemotional functioning, including reductions in psychopathological symptoms. These findings highlight the dynamic association between EC and the maturation of the anterior cingulate cortex, and the importance of this relationship for socioemotional functioning during adolescence.

  4. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.

    Science.gov (United States)

    Minamoto, Takehiro; Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2015-10-01

    Neuroimaging and behavioral evidence has suggested that the lateral prefrontal cortex is involved in individual differences in working memory capacity (WMC). However, few studies have localized the neural structures that differentiate high and low WMC individuals, considering the functional architecture of the prefrontal cortex. The present study aimed to identify a frontal region that underlies individual differences from the perspective of the hierarchical architecture of the frontal cortex. By manipulating an episodic factor of cognitive control (control in selecting an appropriate task set according to a temporal context) and using a parametric modulation analysis, we found that both high- and low- WMC individuals have similar activation patterns in the premotor cortex (BA6, 8), caudal prefrontal cortex (BA44, 45), and frontopolar cortex (BA10, 11), but differed in the rostral part of the prefrontal cortex (BA46/47); high WMC individuals showed greater activation in the higher episodic control condition, whereas low WMC individuals showed reduced activation when episodic control was required. Similar patterns of activation were found in the right inferior parietal and middle/inferior temporal cortices. These results indicate that the rostral prefrontal cortex, which supports episodic cognitive control, possibly by sending a weighting signal toward the inferior parietal and middle/inferior temporal cortices that modulate saliency and sensory processing, underlies individual differences in WMC. Episodic control account, which considers the organization of the prefrontal cortex, fits well with previous findings of individual differences in WMC. PMID:26280275

  5. A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation.

    Science.gov (United States)

    McKee, Sherry A; Potenza, Marc N; Kober, Hedy; Sofuoglu, Mehmet; Arnsten, Amy F T; Picciotto, Marina R; Weinberger, Andrea H; Ashare, Rebecca; Sinha, Rajita

    2015-03-01

    Stress and prefrontal cognitive dysfunction have key roles in driving smoking; however, there are no therapeutics for smoking cessation that attenuate the effects of stress on smoking and enhance cognition. Central noradrenergic pathways are involved in stress-induced reinstatement to nicotine and in the prefrontal executive control of adaptive behaviors. We used a novel translational approach employing a validated laboratory analogue of stress-precipitated smoking, functional magnetic resonance imaging (fMRI), and a proof-of-concept treatment period to evaluate whether the noradrenergic α2a agonist guanfacine (3 mg/day) versus placebo (0 mg/day) reduced stress-precipitated smoking in the laboratory, altered cortico-striatal activation during the Stroop cognitive-control task, and reduced smoking following a quit attempt. In nicotine-deprived smokers (n=33), stress versus a neutral condition significantly decreased the latency to smoke, and increased tobacco craving, ad-libitum smoking, and systolic blood pressure in placebo-treated subjects, and these effects were absent or reduced in guanfacine-treated subjects. Following stress, placebo-treated subjects demonstrated decreased cortisol levels whereas guanfacine-treated subjects demonstrated increased levels. Guanfacine, compared with placebo, altered prefrontal activity during a cognitive-control task, and reduced cigarette use but did not increase complete abstinence during treatment. These preliminary laboratory, neuroimaging, and clinical outcome data were consistent and complementary and support further development of guanfacine for smoking cessation. PMID:25516371

  6. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  7. On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes.

    Science.gov (United States)

    Marmarelis, V Z; Shin, D C; Song, D; Hampson, R E; Deadwyler, S A; Berger, T W

    2014-06-01

    Nonlinear modeling of multi-input multi-output (MIMO) neuronal systems using Principal Dynamic Modes (PDMs) provides a novel method for analyzing the functional connectivity between neuronal groups. This paper presents the PDM-based modeling methodology and initial results from actual multi-unit recordings in the prefrontal cortex of non-human primates. We used the PDMs to analyze the dynamic transformations of spike train activity from Layer 2 (input) to Layer 5 (output) of the prefrontal cortex in primates performing a Delayed-Match-to-Sample task. The PDM-based models reduce the complexity of representing large-scale neural MIMO systems that involve large numbers of neurons, and also offer the prospect of improved biological/physiological interpretation of the obtained models. PDM analysis of neuronal connectivity in this system revealed "input-output channels of communication" corresponding to specific bands of neural rhythms that quantify the relative importance of these frequency-specific PDMs across a variety of different tasks. We found that behavioral performance during the Delayed-Match-to-Sample task (correct vs. incorrect outcome) was associated with differential activation of frequency-specific PDMs in the prefrontal cortex.

  8. Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia.

    Science.gov (United States)

    Richter, Anja; Petrovic, Aleksandra; Diekhof, Esther K; Trost, Sarah; Wolter, Sarah; Gruber, Oliver

    2015-12-01

    Schizophrenia is characterized by substantial dysfunctions of reward processing, leading to detrimental consequences for decision-making. The neurotransmitter dopamine is responsible for the transmission of reward signals and also known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), sixteen medicated patients with schizophrenia and sixteen healthy controls performed the 'desire-reason dilemma' (DRD) paradigm. This paradigm allowed us to directly investigate reward-related brain activations depending on the interaction of bottom-up and top-down mechanisms, when a previously conditioned reward stimulus had to be rejected to achieve a superordinate long-term goal. Both patients and controls showed significant activations in the mesolimbic reward system. In patients with schizophrenia, however, we found a significant hyperactivation of the left ventral striatum (vStr) when they were allowed to accept the conditioned reward stimuli, and a reduced top-down regulation of activation in the ventral striatum (vStr) and ventral tegmental area (VTA) while having to reject the immediate reward to pursue the superordinate task-goal. Moreover, while healthy subjects exhibited a negative functional coupling of the vStr with both the anteroventral prefrontal cortex (avPFC) and the ventromedial prefrontal cortex (VMPFC) in the dilemma situation, this functional coupling was significantly impaired in the patient group. These findings provide evidence for an increased ventral striatal activation to reward stimuli and an impaired top-down control of reward signals by prefrontal brain regions in schizophrenia. PMID:26522867

  9. Under-air staining of the anterior capsule using Trypan blue with a 30 G needle

    OpenAIRE

    Giammaria D; Giannotti M; Scopelliti A; Pellegrini G; Giannotti B

    2013-01-01

    Daniele Giammaria,1 Michele Giannotti,2 Angelo Scopelliti,1 Giacomo Pellegrini,1 Bruno Giannotti11Azienda Ospedaliera Ospedali Riuniti Marche Nord, Fano, Italy; 2Catholic University of Rome, Rome, ItalyAbstract: The original technique of staining the anterior capsule of the lens with Trypan blue involves the injection of an air bubble in the anterior chamber. A drawback of this technique is the possible instability of the anterior chamber caused by the sudden exit of air when the dye is injec...

  10. Germ Cell Tumor Located in the Midline of the Anterior Neck

    Directory of Open Access Journals (Sweden)

    Tatyana PIRDOPSKA

    2011-09-01

    Full Text Available Primary germ cell tumors involving midline of the anterior neck are extremely rare. Here we report a 68-year-old male who was operated due to a mass lesion in the anterior neck with infiltration of the isthmus of the thyroid gland. Histopathological examination revealed a germ cell tumor with extragonadal localization in the anterior neck infiltrating the isthmus of the thyroid gland.

  11. Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention

    Directory of Open Access Journals (Sweden)

    Paul eSauseng

    2011-10-01

    Full Text Available Visual attention can be shifted in space without moving the eyes. Amplitude decrease of rhythmical brain activity around 10 Hz (so called alpha activity at contralateral posterior sites has been reported during covert shifts of visuospatial attention to one visual hemifield. Alpha amplitude increase, on the other hand, can be found at ipsilateral visual cortex. There is some evidence suggesting an involvement of prefrontal brain areas during the control of attention-related anticipatory alpha amplitude asymmetry. However, the exact neural mechanism by which prefrontal cortex influences visual processing has not been completely clear yet. This open question has been studied in detail using a multimodal approach combining transcranial magnetic stimulation (TMS and multichannel electroencephalography (EEG in healthy humans. Slow (1 Hz repetitive TMS inducing an inhibitory effect at the stimulation site was delivered either to right frontal eye field or a control site (vertex. Subsequently, participants had to perform a spatial cueing task in which covert shifts of attention were required to either the left or the right visual hemi-field. After stimulation at the vertex (control condition a pattern of anticipatory, attention-related ipsilateral alpha increase / contralateral alpha decrease over posterior recording sites could be obtained. Additionally, there was pronounced coupling between (in particular right FEF and posterior brain sites. When, however, the right prefrontal cortex had been virtually lesioned preceding the task, these EEG correlates of visuospatial attention were attenuated. Notably, the effect of TMS at the right FEF on interregional fronto-parietal alpha coupling predicted the effect on response times. This suggests that visual attention processes associated with posterior EEG alpha activity are at least partly top-down controlled by the prefrontal cortex.

  12. Four year experience with the AO Anterior Thoracolumbar Locking Plate.

    Science.gov (United States)

    Thalgott, J S; Kabins, M B; Timlin, M; Fritts, K; Giuffre, J M

    1997-05-01

    For decades spinal surgeons have attempted to design simple, single stage anterior internal fixation systems for the thoracic and lumbar spine. Early devices presented both biomechanical and technical problems. The AO Anterior Thoracolumbar Locking Plate (ATLP) was designed to solve some of the problems encountered with early anterior instrumentation. The ATLP system is constructed in Commercially Pure titanium. It is a low profile device indicated for use for unstable burst fractures in the anterior column; metastatic tumor management; and degenerative diseases of the thoracolumbar spine between levels T10 and L5. Implantation of the device involves direct anterior decompression with sagittal reduction and corpectomy. This is followed by grafting reconstruction, and plate fixation. This device has been implanted in 25 patients with an average follow-up of 38 months. There were five (5) broken screws in three (3) patients, and no broken plates. Implant related postoperative complications included two misplaced screws. Preliminary results indicate that the ATLP system seems to be a safe, low profile, MRI/CT compatible device that provides definitive single stage fixation of the anterior spinal column. PMID:9160452

  13. Coding of Vocalizations by Single Neurons in Ventrolateral Prefrontal Cortex

    OpenAIRE

    Plakke, Bethany; Diltz, Mark D.; Romanski, Lizabeth M.

    2013-01-01

    Neuronal activity in single prefrontal neurons has been correlated with behavioral responses, rules, task variables and stimulus features. In the non-human primate, neurons recorded in ventrolateral prefrontal cortex (VLPFC) have been found to respond to species-specific vocalizations. Previous studies have found multisensory neurons which respond to simultaneously presented faces and vocalizations in this region. Behavioral data suggests that face and vocal information are inextricably linke...

  14. Inhibitory transcranial magnetic theta burst stimulation attenuates prefrontal cortex oxygenation.

    Science.gov (United States)

    Tupak, Sara V; Dresler, Thomas; Badewien, Meike; Hahn, Tim; Ernst, Lena H; Herrmann, Martin J; Deckert, Jürgen; Ehlis, Ann-Christine; Fallgatter, Andreas J

    2013-01-01

    Recent studies highlighted the great potential of newly established theta burst stimulation (TBS) protocols for non-invasive human brain stimulation studies using transcranial magnetic stimulation (TMS). While intermittent TBS over the primary motor cortex was found to potentiate motor evoked potentials, continuous TBS led to profound attenuations. Although numerous studies investigated the impact of TBS on motor cortex function, yet, only few imaging studies focused on its effects in other brain areas. Particularly for the prefrontal cortex, it is unclear whether TBS has similar effects compared to application over motor areas. In the current study continuous TBS was applied to either the left or right dorsolateral prefrontal cortex in a sample of healthy subjects. Changes in prefrontal oxygenation were measured during an emotional Stroop task by means of functional multi-channel near-infrared spectroscopy (fNIRS) before and after stimulation. Results showed bilaterally decreased prefrontal oxygenation following inhibitory stimulation of the left prefrontal cortex but no behavioral effect. No such alterations were observed following right-hemispheric or sham stimulation. The results of the current study are in line with earlier findings and additionally demonstrate that also prefrontal oxygenation can be impaired by continuous TBS.

  15. Prefrontal D1 dopamine signaling is required for temporal control.

    Science.gov (United States)

    Narayanan, Nandakumar S; Land, Benjamin B; Solder, John E; Deisseroth, Karl; DiLeone, Ralph J

    2012-12-11

    Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.

  16. Prefrontal dopamine in associative learning and memory.

    Science.gov (United States)

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. PMID:25241063

  17. Disconnection Between Amygdala and Medial Prefrontal Cortex in Psychotic Disorders.

    Science.gov (United States)

    Mukherjee, Prerona; Sabharwal, Amri; Kotov, Roman; Szekely, Akos; Parsey, Ramin; Barch, Deanna M; Mohanty, Aprajita

    2016-07-01

    Distracting emotional information impairs attention more in schizophrenia (SCZ) than in never-psychotic individuals. However, it is unclear whether this impairment and its neural circuitry is indicative generally of psychosis, or specifically of SCZ, and whether it is even more specific to certain SCZ symptoms (eg, deficit syndrome). It is also unclear if this abnormality contributes to impaired behavioral performance and real-world functioning. Functional imaging data were recorded while individuals with SCZ, bipolar disorder with psychosis (BDP) and no history of psychotic disorders (CON) attended to identity of faces while ignoring their emotional expressions. We examined group differences in functional connectivity between amygdala, involved in emotional evaluation, and sub-regions of medial prefrontal cortex (MPFC), involved in emotion regulation and cognitive control. Additionally, we examined correlation of this connectivity with deficit syndrome and real-world functioning. Behaviorally, SCZ showed the worst accuracy when matching the identity of emotional vs neutral faces. Neurally, SCZ showed lower amygdala-MPFC connectivity than BDP and CON. BPD did not differ from CON, neurally or behaviorally. In patients, reduced amygdala-MPFC connectivity during emotional distractors was related to worse emotional vs neutral accuracy, greater deficit syndrome severity, and unemployment. Thus, reduced amygdala-MPFC functional connectivity during emotional distractors reflects a deficit that is specific to SCZ. This reduction in connectivity is associated with worse clinical and real-world functioning. Overall, these findings provide support for the specificity and clinical utility of amygdala-MPFC functional connectivity as a potential neural marker of SCZ. PMID:26908926

  18. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  19. Attentional set-shifting deficit in Parkinson's disease is associated with prefrontal dysfunction: an FDG-PET study.

    Directory of Open Access Journals (Sweden)

    Yoichi Sawada

    Full Text Available The attentional set-shifting deficit that has been observed in Parkinson's disease (PD has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients.

  20. A quantitative cytochrome oxidase mapping study, cross-regional and neurobehavioural correlations in the anterior forebrain of an animal model of Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Papa, M; Berger, D F; Sagvolden, T; Sergeant, J A; Sadile, A G

    1998-07-01

    The aim of this study was to trace by molecular imaging techniques the neural substrates of attention deficit hyperactivity disorder (ADHD) using the spontaneously hypertensive rat (SHR) as animal model. Adult SHR and Wistar-Kyoto (WKY) controls were used throughout this study. In experiment 1, naive male SHR and WKY were used, whereas in experiment 2 SHR and WKY rats of both genders were trained on a multiple fixed interval (FI (120 s for water, 5-min extinction)) paradigm and sacrificed 6 months later. In both experiments coronal sections of the anterior forebrain were processed for quantitative cytochrome oxidase (COase) histochemistry by the method of Gonzalez-Lima. Optical density values were transformed into actual enzyme activity units by using tissue-calibrated standards. In experiment 1, non-trained male rats of the SHR line showed lower COase activity in the medial and lateral prefrontal cortices, compared with WKY controls. In experiment 2, there was a line x treatment interaction effect in the pole of the nucleus accumbens (ACB). Regional correlative analyses revealed that: (i) under basal conditions, SHR are more synchronized than WKY rats in the COase level of different brain regions; and (ii) the training desynchronizes COase activity in the WKY, further synchronizes it and increases the cross-talk between hemispheres in male SHR only. Neurobehavioral covariations between behavioural scores and metabolic capacity in the medial and lateral prefrontal/frontal cortices, the caudate-putamen complex (CPU), the pole, core, and shell of the accumbal complex (ACB), and the ventral pallidum (VP), indicated that, in the WKY rats, the frequency of lever pressing covaried positively with the COase activity in the CPU, whereas in the SHR covaried with both medial and lateral prefrontal/frontal cortices. The bursts of activity during the 1-1.33-s segment was positively correlated, in the WKY rats only, with the core and shell of the ACB, and with the VP. Finally

  1. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    Science.gov (United States)

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions.

  2. Under-air staining of the anterior capsule using Trypan blue with a 30 G needle

    Science.gov (United States)

    Giammaria, Daniele; Giannotti, Michele; Scopelliti, Angelo; Pellegrini, Giacomo; Giannotti, Bruno

    2013-01-01

    The original technique of staining the anterior capsule of the lens with Trypan blue involves the injection of an air bubble in the anterior chamber. A drawback of this technique is the possible instability of the anterior chamber caused by the sudden exit of air when the dye is injected with the cannula through the side-port incision. Other staining techniques that use viscoelastic substances to increase the stability of the anterior chamber and to dose the injected dye have been described. The authors present an under-air staining technique of the anterior capsule using one drop of Trypan blue injected with a 30 G needle through the peripheral cornea. This procedure prevents the air bubble from escaping the anterior chamber and allows fast and selective staining of the capsule. PMID:23386783

  3. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  4. Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder.

    Science.gov (United States)

    Feng, Zhan; Xu, Shunliang; Huang, Manli; Shi, Yushu; Xiong, Bing; Yang, Hong

    2016-01-01

    In recent years, major depressive disorder (MDD) has been demonstrated to be associated with abnormalities in neural networks, particularly the prefrontal-limbic network (PLN). However, there are few current studies that have examined information flow in the PLN. In this study, Granger causality analysis (GCA), based on signed regression coefficient, was used to explore changes in causal connectivity in resting-state PLNs of MDD patients. A total of 23 first-episode medication-naïve MDD patients and 20 normal control participants were subjected to resting-state functional magnetic resonance imaging (RS-fMRI) scans. Increased causal effects of the right insular cortex, right putamen and right caudate on the rostral anterior cingulate cortex (rACC) and reduced causal effects of bilateral dorsolateral prefrontal cortex (DLPFC) and left orbitofrontal cortex (OFC) on the rACC were found in MDD patients compared to normal controls. The extensive reduction in the causal effect of the prefrontal cortex (PFC) demonstrates impaired top-down cognitive control in MDD patients. Changes in the causal relationship between the right insula and rACC suggest problems in coordination of the default mode network by the right anterior insular cortex (rAI). These findings provide valuable insight into MDD-related neural network disorders reported in previous RS-fMRI studies and may potentially guide clinical treatment of MDD in the future. PMID:26234517

  5. Prefrontal neuronal assemblies temporally control fear behaviour.

    Science.gov (United States)

    Dejean, Cyril; Courtin, Julien; Karalis, Nikolaos; Chaudun, Fabrice; Wurtz, Hélène; Bienvenu, Thomas C M; Herry, Cyril

    2016-07-21

    Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses. PMID:27409809

  6. Endovascular treatment of axillary artery dissection following anterior shoulder dislocation.

    Science.gov (United States)

    Fass, G; Barchiche, M Reda; Lemaitre, J; De Quin, I; Goffin, C; Bricart, R; Bellens, B

    2008-01-01

    Injury to the axillary artery is a rare complication of anterior shoulder dislocation. Open surgical repair is technically demanding because of the anatomical position of the vessel and the propensity for concomitant injuries. Standard surgical exposure techniques involve extensive dissection, including a combination of supraclavicular or infraclavicular incision, median sternotomy, and thoracotomy causing significant morbidity and mortality rates. Endovascular techniques may offer an alternative to these surgically demanding procedures. We present a patient with a traumatic dissection of the axillary artery following anterior shoulder dislocation who was successfully managed with an endovascular stent. PMID:18411587

  7. Anterior cruciate ligament - updating article.

    Science.gov (United States)

    Luzo, Marcus Vinicius Malheiros; Franciozi, Carlos Eduardo da Silveira; Rezende, Fernando Cury; Gracitelli, Guilherme Conforto; Debieux, Pedro; Cohen, Moisés

    2016-01-01

    This updating article on the anterior cruciate ligament (ACL) has the aim of addressing some of the most interesting current topics in this field. Within this stratified approach, it contains the following sections: ACL remnant; anterolateral ligament and combined intra and extra-articular reconstruction; fixation devices; and ACL femoral tunnel creation techniques.

  8. Anterior cruciate ligament - updating article.

    Science.gov (United States)

    Luzo, Marcus Vinicius Malheiros; Franciozi, Carlos Eduardo da Silveira; Rezende, Fernando Cury; Gracitelli, Guilherme Conforto; Debieux, Pedro; Cohen, Moisés

    2016-01-01

    This updating article on the anterior cruciate ligament (ACL) has the aim of addressing some of the most interesting current topics in this field. Within this stratified approach, it contains the following sections: ACL remnant; anterolateral ligament and combined intra and extra-articular reconstruction; fixation devices; and ACL femoral tunnel creation techniques. PMID:27517015

  9. A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory.

    Science.gov (United States)

    Bor, Daniel; Owen, Adrian M

    2007-04-01

    Previous studies have indicated that the lateral prefrontal cortex (LPFC) is closely involved in strategic recoding, even when such processes lessen task demands. For example, 2 studies presented, in the spatial and verbal domains, sequences of stimuli for participants to retain during a short interval and then retrieve. Stimuli were either randomly arranged or structured (forming symmetries and regular shapes for the spatial task and mathematical patterns for the verbal task). Although participants performed the structured tasks better by reorganizing or "chunking" them into more efficient forms, LPFC activity was greater for the structured compared with the random sequences. However, although these results demonstrate that LPFC is involved in strategic recoding, regardless of the type of modality, it remains to be seen whether such a result generalizes to different types of strategic recoding processes. To test this, we presented digit sequence trials that separately emphasized mnemonic or mathematical recoding strategies. While participants were able to gain a performance benefit from either type of recoding strategy, increased LPFC activity was observed for both mathematical and mnemonic recoding trials, compared with either unstructured sequences or control conditions matched for mathematical or mnemonic processes. However, mathematically structured trials activated the LPFC significantly more than mnemonic recoding trials. In addition, lateral posterior parietal cortex was consistently coactivated with LPFC for strategic recoding trials, both in the current experiments and in previous related studies. We conclude that a prefrontal-parietal network is involved in strategic recoding in working memory, regardless of the type of recoding process. PMID:16707737

  10. [Large distal anterior cerebral artery aneurysm associated with azygos anterior cerebral artery: case report].

    Science.gov (United States)

    Suzuki, Y; Kawamata, T; Matsumoto, H; Kunii, N; Matsumoto, K

    1998-10-01

    A 51-year-old woman presented with a distal anterior cerebral artery aneurysm (DACAA) manifesting as severe headache and monoparesis of the left lower limb. Computed tomography revealed subarachnoid hemorrhage in the interhemispheric fissure, bilateral sylvian fissures, and basal cistern, and a hematoma in the supracallosal region. Angiography showed a large aneurysm (23 x 18 mm) located on the distal end of the azygos anterior cerebral artery (azygos ACA) at the supracallosal portion. T2-weighted magnetic resonance imaging demonstrated the hematoma as a mixed intensity mass, compressing the corpus callosum downward, and the aneurysm as a flow void anterior to the hematoma. Unilateral frontoparietal parasagittal craniotomy was performed with a horse-shoe shaped incision. The aneurysm was clipped via the interhemispheric approach, and the hematoma was aspirated. Postoperative angiography showed disappearance of the aneurysm and intact azygos ACA. The patient was discharged with mild monoparesis, paresthesia of the left lower limb and diagnostic dyspraxia. DACAA almost always arises at or near the genu of the corpus callosum and is often associated with vascular anomaly. In the literature, 22 of 26 cases of large and giant DACAA were located at or near the genu, but only 3 cases, including ours, in the supracallosal area. 11 cases were associated with azygos ACA. Therefore, hemodynamic stress caused by vascular anomaly may be involved in the formation of large or giant DACAA in contrast with cases of normal DACAA. PMID:9789300

  11. Cocaine cue–induced dopamine release in the human prefrontal cortex

    Science.gov (United States)

    Milella, Michele S.; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F.; Larcher, Kevin; Verhaeghe, Jeroen A.J.; Cox, Sylvia M.L.; Reader, Andrew J.; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-01-01

    Background Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. Methods We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Results Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. Conclusion In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms. PMID:26900792

  12. Válvula de uretra anterior Anterior urethral valves

    Directory of Open Access Journals (Sweden)

    Silvio Tucci Jr.

    2003-02-01

    Full Text Available Objetivo: apresentar os aspectos clínicos, diagnósticos e terapêuticos de pacientes portadores de válvula da uretra anterior. Descrição: em dois neonatos, o diagnóstico presuntivo de patologia obstrutiva do trato urinário foi sugerido pela ultra-sonografia realizada no período pré-natal, confirmando-se o diagnóstico de válvula de uretra anterior pela avaliação pós-natal. Os pacientes foram submetidos a tratamento cirúrgico paliativo, com vesicostomia temporária e, posteriormente, definitivo, pela fulguração endoscópica das válvulas. Ambos evoluíram com função renal normal. Comentários: a válvula da uretra anterior é anomalia rara que deve ser considerada em meninos com quadro radiológico pré-natal sugestivo de obstrução infravesical, secundariamente à hipótese mais comum de válvula da uretra posterior. Ressaltamos a utilização da vesicostomia como derivação urinária temporária nestes casos, prevenindo potenciais complicações pela manipulação da uretra do recém-nascido.Objective: to discuss clinical signs, diagnostic tools and therapeutics of anterior urethral valves, an obstructive anomaly of the urinary system in males. Description: signs of urinary tract obstruction were identified on pre-natal ultrasound in two male fetuses and the diagnosis of anterior urethral valves was made through post-natal evaluation. As an initial treatment, vesicostomy was performed in both patients. Later, the valves were fulgurated using an endoscopic procedure. During the follow-up period both patients presented normal renal function. Comments: anterior urethral valves are a rare form of urethral anomaly that must be ruled out in boys with pre-natal ultrasound indicating infravesical obstruction. Vesicostomy used as an initial treatment rather than transurethral fulguration may prevent potential complications that can occur due to the small size of the neonatal urethra.

  13. Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental Octodon degus.

    Science.gov (United States)

    Seidel, K; Poeggel, G; Holetschka, R; Helmeke, C; Braun, K

    2011-11-01

    Although the critical role of maternal care on the development of brain and behaviour of the offspring has been extensively studied, knowledge about the importance of paternal care is comparatively scarce. In biparental species, paternal care significantly contributes to a stimulating socio-emotional family environment, which most likely also includes protection from stressful events. In the biparental caviomorph rodent Octodon degus, we analysed the impact of paternal care on the development of neurones in prefrontal-limbic brain regions, which express corticotrophin-releasing factor (CRF). CRF is a polypeptidergic hormone that is expressed and released by a neuronal subpopulation in the brain, and which not only is essential for regulating stress and emotionality, but also is critically involved in cognitive functions. At weaning age [postnatal day (P)21], paternal deprivation resulted in an elevated density of CRF-containing neurones in the orbitofrontal cortex and in the basolateral amygdala of male degus, whereas a reduced density of CRF-expressing neurones was measured in the dentate gyrus and stratum pyramidale of the hippocampal CA1 region at this age. With the exception of the CA1 region, the deprivation-induced changes were no longer evident in adulthood (P90), which suggests a transient change that, in later life, might be normalised by other socio-emotional experience. The central amygdala, characterised by dense clusters of CRF-immunopositive neuropil, and the precentral medial, anterior cingulate, infralimbic and prelimbic cortices, were not affected by paternal deprivation. Taken together, this is the first evidence that paternal care interferes with the developmental expression pattern of CRF-expressing interneurones in an age- and region-specific manner.

  14. Structural covariance networks of the dorsal anterior insula predict females' individual differences in empathic responding.

    Science.gov (United States)

    Bernhardt, Boris C; Klimecki, Olga M; Leiberg, Susanne; Singer, Tania

    2014-08-01

    Previous functional imaging studies have shown key roles of the dorsal anterior insula (dAI) and anterior midcingulate cortex (aMCC) in empathy for the suffering of others. The current study mapped structural covariance networks of these regions and assessed the relationship between networks and individual differences in empathic responding in 94 females. Individual differences in empathy were assessed through average state measures in response to a video task showing others' suffering, and through questionnaire-based trait measures of empathic concern. Overall, covariance patterns indicated that dAI and aMCC are principal hubs within prefrontal, temporolimbic, and midline structural covariance networks. Importantly, participants with high empathy state ratings showed increased covariance of dAI, but not aMCC, to prefrontal and limbic brain regions. This relationship was specific for empathy and could not be explained by individual differences in negative affect ratings. Regarding questionnaire-based empathic trait measures, we observed a similar, albeit weaker modulation of dAI covariance, confirming the robustness of our findings. Our analysis, thus, provides novel evidence for a specific contribution of frontolimbic structural covariance networks to individual differences in social emotions beyond negative affect.

  15. Synaptic impairment in layer 1 of the prefrontal cortex induced by repeated stress during adolescence is reversed in adulthood

    OpenAIRE

    Ignacio Negron-Oyarzo; Pablo Munoz

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven ...

  16. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood

    OpenAIRE

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven ...

  17. Prefrontal Hemodynamic Changes Associated with Subjective Sense of Occlusal Discomfort

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available We used functional near-infrared spectroscopy to measure prefrontal brain activity accompanying the physical sensation of oral discomfort that arose when healthy young-adult volunteers performed a grinding motion with mild occlusal elevation (96 μm. We simultaneously evaluated various forms of occlusal discomfort using the visual analogue scale (VAS and hemodynamic responses to identify the specific prefrontal activity that occurs with increased occlusal discomfort. The Oxy-Hb responses of selected channels in the bilateral frontopolar and dorsolateral prefrontal cortices increased in participants who reported increased severity of occlusal discomfort, while they decreased in those who reported no change or decreased occlusal discomfort during grinding. Moreover, the cumulative values of Oxy-Hb response in some of these channels were statistically significant predictive factors for the VAS scores. A generalized linear model analysis of Oxy-Hb signals in a group of participants who reported increased discomfort further indicated significant cerebral activation in the right frontopolar and dorsolateral prefrontal cortices that overlapped with the results of correlation analyses. Our results suggest that the increased hemodynamic responses in the prefrontal area reflect the top-down control of attention and/or self-regulation against the uncomfortable somatosensory input, which could be a possible marker to detect the subjective sense of occlusal discomfort.

  18. Ophthalmohelioses and peripheral light focusing by the anterior eye

    Science.gov (United States)

    Coroneo, Minas T.

    1994-07-01

    A coincidence of the locations of foci of scattered light in the anterior eye with the usual locations of common sun-related eye conditions has been observed. These phenomena may explain the pathogenesis of pterygium and the initial location of certain cortical lens opacities and eyelid malignancies. Human and bovine eyes were used to demonstrate that the anterior eye acts as a side-on lens system. Light incident at the temporal limbus can be concentrated at the nasal limbus or beyond or at the nasal crystalline lens equator. The main pathways of light are transcameral and this is demonstrated by the use of baffles. Although this phenomenon is obvious with visible light, focusing of light at 308nm can be demonstrated. Computer-assisted optical ray tracing in a standard human anterior segment model showed that the peak intensity at the distal limbus is approximately twenty times that of the incident light intensity. The degree of limbal focusing is determined by corneal shape and anterior chamber depth. Such light focusing may be particularly injurious to corneal and lenticular epithelial stem cells. These observations provide circumstantial evidence that peripheral refraction phenomena are involved in the pathogenesis of the anterior ophthalmohelioses. Adequate lateral protection of the eye from increasing ultraviolet insolation may be prudent.

  19. Sandwich-like Reconstruction of Anterior Skull Base Defects

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-min; Wang De-hui

    2001-01-01

    Objective: To evaluate the safety and efficacy of new modality of anterior skull base repair,namely sandwich-like reconstruction of anterior skull base defects. Methods: A retrospective analysis of patients who underwent transcranial or transcranial-facial resections of malignant or benign aggressive tumors involving the anterior skull base was conducted in our department. We used the sandwich-like reconstruction, using pedicled pericranial flap, frontal muscle flap and free abdominal adipose tissue between them, to separate of cranial cavity and aerodigest tract and keep the frontal lobes in place following resections of anterior skull base tumors. Results: From October, 1984 to October, 1998, 116 patients underwent transcranial or transcranialfacial approach for the resection of malignant or aggressive benign tumor, and sandwich-like repairs were performed for the anterior skull base defect. 54 (46.6 % ) patients had previous operation, with a maximum of 5 surgeries. The average age of patients was 35.9 years old, ranging form 6 to 73 years old. Forty-eight (41.4%)patients had malignant neoplasmas, and sixty-eight (58.6%) patients had benign aggressive tumors. In our series, with the maximal follow-ups for as long as 14 years, NO one had early failure of the one-stage reconstruction. CSF fluid leakage was not encountered, nor was ascending bacterial meningitis observed. No immediate or delayed prolapse of dura or frontal lobes was observed. Conclusion: We conclude that the sandwich-like reconstruction, using pericranial flap, frontal muscle flap and free abdominal adipose between them, is an extremely safe and effective procedure for the repair of skull base defect, even when tumor extensively involves anterior skull base.

  20. Sandwich-like Reconstruction of Anterior Skull Base Defects

    Institute of Scientific and Technical Information of China (English)

    WangZheng-min,MD; WangDe-hui,MD

    2001-01-01

    Objective:To evaluate the safety and efficacy of new modality of anterior skull base repair,namely sandwich-like reconstruction of anterior skull base defects. Methods : A retrospective analysis of patients who underwent wanscranial or wanscranial-facial resections of malignant or benign aggressive tumors involving the anterior skull base was conducted in our department. We used the sandwich-like reconstruction, using pedicled pericranial flap, frontal muscle flap and free abdominal adipose tissue between them, to separate of cranial cavity and aerodigest tract and keep the frontal lobes in place following resections of anterior skull base tumors. Results: From October, 1984 to October, 1998, 116 patients underwent tmnscranial or tmnscranial-facial approach for the resection of malignant or aggressive benign tumor, and sandwich-like repairs were performed for the anterior skull base defect.54 (46.6%) patients had previous operation, with a maximum of 5 surgeries. The average age of patients was 35.9 years old, ranging form 6 to 73 years old. Forty-eight (41.4%) patients had malignant neoplasmas, and sixty-eight (58.6%) patients had benign aggressive tumors. In our series, with the maximal follow-ups for as long as 14 years, NO one had early failure of the one-stage reconstruction. CSF fluid leakage was not encountered, nor was ascending bacterial meningitis observed. No immediate or delayed prolapse of dura or frontal lobes was observed. Conclusion: We conclude that the sandwich-like reconstruction, using pericranial flap, frontal muscle flap and free abdominal adipose between them, is an extremely safe and effective procedure for the repair of skull base defect, even when tumor extensively involves anterior skull base.

  1. Dissociable regulation of instrumental action within mouse prefrontal cortex.

    Science.gov (United States)

    Gourley, Shannon L; Lee, Anni S; Howell, Jessica L; Pittenger, Christopher; Taylor, Jane R

    2010-11-01

    Evaluation of the behavioral 'costs', such as effort expenditure relative to the benefits of obtaining reward, is a major determinant of goal-directed action. Neuroimaging evidence suggests that the human medial orbitofrontal cortex (mOFC) is involved in this calculation and thereby guides goal-directed and choice behavior, but this region's functional significance in rodents is unknown despite extensive work characterizing the role of the lateral OFC in cue-related response inhibition processes. We first tested mice with mOFC lesions in an instrumental reversal task lacking discrete cues signaling reinforcement; here, animals were required to shift responding based on the location of the reinforced aperture within the chamber. Mice with mOFC lesions acquired the reversal but failed to inhibit responding on the previously reinforced aperture, while mice with prelimbic prefrontal cortex lesions were unaffected. When tested on a progressive ratio schedule of reinforcement, mice with prelimbic cortical lesions were unable to maintain responding, resulting in declining response levels. Mice with mOFC lesions, by contrast, escalated responding. Neither lesion affected sensitivity to satiety-specific outcome devaluation or non-reinforcement (i.e. extinction), and neither had effects when placed after animals were trained on a progressive ratio response schedule. Lesions of the ventral hippocampus, which projects to the mOFC, resulted in similar response patterns, while lateral OFC and dorsal hippocampus lesions resulted in response acquisition, though not inhibition, deficits in an instrumental reversal. Our findings thus selectively implicate the rodent mOFC in braking reinforced goal-directed action when reinforcement requires the acquisition of novel response contingencies.

  2. Dopamine D1 Receptors Regulate Protein Synthesis-Dependent Long-Term Recognition Memory via Extracellular Signal-Regulated Kinase 1/2 in the Prefrontal Cortex

    Science.gov (United States)

    Nagai, Taku; Takuma, Kazuhiro; Kamei, Hiroyuki; Ito, Yukio; Nakamichi, Noritaka; Ibi, Daisuke; Nakanishi, Yutaka; Murai, Masaaki; Mizoguchi, Hiroyuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2007-01-01

    Several lines of evidence suggest that extracellular signal-regulated kinase1/2 (ERK1/2) and dopaminergic system is involved in learning and memory. However, it remains to be determined if the dopaminergic system and ERK1/2 pathway contribute to cognitive function in the prefrontal cortex (PFC). The amount of phosphorylated ERK1/2 was increased in…

  3. 38 CFR 3.379 - Anterior poliomyelitis.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Anterior poliomyelitis. 3... Specific Diseases § 3.379 Anterior poliomyelitis. If the first manifestations of acute anterior poliomyelitis present themselves in a veteran within 35 days of termination of active military service, it...

  4. Epidermoid cyst in Anterior, Middle

    Directory of Open Access Journals (Sweden)

    Kankane Vivek Kumar

    2016-09-01

    Full Text Available Epidermoid cysts are benign slow growing more often extra-axial tumors that insinuate between brain structures, we present the clinical, imaging, and pathological findings in 35 years old female patients with atypical epidermoid cysts which was situated anterior, middle & posterior cranial fossa. NCCT head revealed hypodense lesion over right temporal and perisylvian region with extension in prepontine cistern with mass effect & midline shift and MRI findings revealed a non-enhancing heterogeneous signal intensity cystic lesion in right frontal & temporal region extending into prepontine cistern with restricted diffusion. Patient was detoriated in night of same day of admission, emergency Fronto-temporal craniotomy with anterior peterousectomy and subtotal resection was done. The histological examination confirms the epidermoid cyst. The timing of ectodermal tissue sequestration during fetal development may account for the occurrence of atypical epidermoid cysts.

  5. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD: A functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Fenghua Tian

    2014-01-01

    Full Text Available Neuroimaging studies of post-traumatic stress disorder (PTSD-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.

  6. Prefrontal dysfunction and a monkey model of schizophrenia.

    Science.gov (United States)

    Mao, Ping; Cui, Ding; Zhao, Xu-Dong; Ma, Yuan-Ye

    2015-04-01

    The prefrontal cortex is implicated in cognitive functioning and schizophrenia. Prefrontal dysfunction is closely associated with the symptoms of schizophrenia. In addition to the features typical of schizophrenia, patients also present with aspects of cognitive disorders. Based on these relationships, a monkey model mimicking the cognitive symptoms of schizophrenia has been made using treatment with the non-specific competitive N-methyl-D-aspartate receptor antagonist, phencyclidine. The symptoms are ameliorated by atypical antipsychotic drugs such as clozapine. The beneficial effects of clozapine on behavioral impairment might be a specific indicator of schizophrenia-related cognitive impairment.

  7. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex

    Science.gov (United States)

    Ianov, Lara; Rani, Asha; Beas, Blanca S.; Kumar, Ashok; Foster, Thomas C.

    2016-01-01

    Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function. PMID:27242522

  8. Anterior impingement syndrome in dancers

    OpenAIRE

    O’Kane, John William; Kadel, Nancy

    2007-01-01

    Anterior impingement is a common problem in dancers occurring primarily secondary to the repetitive forced ankle dorsiflexion inherent in ballet. Symptoms generally occur progressively and may respond to conservative treatment including addressing biomechanical faults that contribute to the problem. As impingement progresses, movements essential to ballet may become impossible and arthroscopic ankle surgery is often effective for both diagnosis and treatment, allowing athletes to return to da...

  9. Prefrontal cortex markers of suicidal vulnerability in mood disorders: a model-based structural neuroimaging study with a translational perspective.

    Science.gov (United States)

    Ding, Y; Lawrence, N; Olié, E; Cyprien, F; le Bars, E; Bonafé, A; Phillips, M L; Courtet, P; Jollant, F

    2015-01-01

    The vulnerability to suicidal behavior has been modeled in deficits in both valuation and cognitive control processes, mediated by ventral and dorsal prefrontal cortices. To uncover potential markers of suicidality based on this model, we measured several brain morphometric parameters using 1.5T magnetic resonance imaging in a large sample and in a specifically designed study. We then tested their classificatory properties. Three groups were compared: euthymic suicide attempters with a past history of mood disorders and suicidal behavior (N=67); patient controls with a past history of mood disorders but not suicidal behavior (N=82); healthy controls without any history of mental disorder (N=82). A hypothesis-driven region-of-interest approach was applied targeting the orbitofrontal cortex (OFC), ventrolateral (VLPFC), dorsal (DPFC) and medial (including anterior cingulate cortex; MPFC) prefrontal cortices. Both voxel-based (SPM8) and surface-based morphometry (Freesurfer) analyses were used to comprehensively evaluate cortical gray matter measure, volume, surface area and thickness. Reduced left VLPFC volume in attempters vs both patient groups was found (P=0.001, surviving multiple comparison correction, Cohen's d=0.65 95% (0.33-0.99) between attempters and healthy controls). In addition, reduced measures in OFC and DPFC, but not MPFC, were found with moderate effect sizes in suicide attempters vs healthy controls (Cohen's d between 0.34 and 0.52). Several of these measures were correlated with suicidal variables. When added to mood disorder history, left VLPFC volume increased within-sample specificity in identifying attempters in a significant but limited way. Our study, therefore, confirms structural prefrontal alterations in individuals with histories of suicide attempts. A future clinical application of these markers will, however, necessitate further research. PMID:25710122

  10. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation.

    Directory of Open Access Journals (Sweden)

    Vadim Zotev

    Full Text Available We observed in a previous study (PLoS ONE 6:e24522 that the self-regulation of amygdala activity via real-time fMRI neurofeedback (rtfMRI-nf with positive emotion induction was associated, in healthy participants, with an enhancement in the functional connectivity between the left amygdala (LA and six regions of the prefrontal cortex. These regions included the left rostral anterior cingulate cortex (rACC, bilateral dorsomedial prefrontal cortex (DMPFC, bilateral superior frontal gyrus (SFG, and right medial frontopolar cortex (MFPC. Together with the LA, these six prefrontal regions thus formed the functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector autoregression (SVAR analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to the analysis, the rtfMRI-nf training leads to a significant enhancement in the time-lagged effect of the left rACC on the LA, potentially consistent with the ipsilateral distribution of the monosynaptic projections between these regions. The training is also accompanied by significant increases in the instantaneous (contemporaneous effects of the left rACC on four other regions - the bilateral DMPFC, the right MFPC, and the left SFG. The instantaneous effects of the LA on the bilateral DMPFC are also significantly enhanced. Our results are consistent with a broad literature supporting the role of the rACC in emotion processing and regulation. Our exploratory analysis provides, for the first time, insights into the causal relationships within the network of regions engaged during the rtfMRI-nf procedure targeting the amygdala. It suggests that the rACC may constitute a promising target for rtfMRI-nf training along with the amygdala in patients with affective disorders, particularly posttraumatic stress

  11. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation.

    Science.gov (United States)

    Zotev, Vadim; Phillips, Raquel; Young, Kymberly D; Drevets, Wayne C; Bodurka, Jerzy

    2013-01-01

    We observed in a previous study (PLoS ONE 6:e24522) that the self-regulation of amygdala activity via real-time fMRI neurofeedback (rtfMRI-nf) with positive emotion induction was associated, in healthy participants, with an enhancement in the functional connectivity between the left amygdala (LA) and six regions of the prefrontal cortex. These regions included the left rostral anterior cingulate cortex (rACC), bilateral dorsomedial prefrontal cortex (DMPFC), bilateral superior frontal gyrus (SFG), and right medial frontopolar cortex (MFPC). Together with the LA, these six prefrontal regions thus formed the functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector autoregression (SVAR) analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to the analysis, the rtfMRI-nf training leads to a significant enhancement in the time-lagged effect of the left rACC on the LA, potentially consistent with the ipsilateral distribution of the monosynaptic projections between these regions. The training is also accompanied by significant increases in the instantaneous (contemporaneous) effects of the left rACC on four other regions - the bilateral DMPFC, the right MFPC, and the left SFG. The instantaneous effects of the LA on the bilateral DMPFC are also significantly enhanced. Our results are consistent with a broad literature supporting the role of the rACC in emotion processing and regulation. Our exploratory analysis provides, for the first time, insights into the causal relationships within the network of regions engaged during the rtfMRI-nf procedure targeting the amygdala. It suggests that the rACC may constitute a promising target for rtfMRI-nf training along with the amygdala in patients with affective disorders, particularly posttraumatic stress disorder

  12. Individual differences in the effects of perceived controllability on pain perception: critical role of the prefrontal cortex.

    Science.gov (United States)

    Salomons, Tim V; Johnstone, Tom; Backonja, Misha-Miroslav; Shackman, Alexander J; Davidson, Richard J

    2007-06-01

    The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267-283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation. PMID:17536969

  13. Developmental changes of prefrontal activation in humans: a near-infrared spectroscopy study of preschool children and adults.

    Directory of Open Access Journals (Sweden)

    Yuki Kawakubo

    Full Text Available Previous morphological studies indicated that development of the human prefrontal cortex (PFC appears to continue into late adolescence. Although functional brain imaging studies have sought to determine the time course of functional development of the PFC, it is unclear whether the developmental change occurs after adolescence to adulthood and when it achieves a peak because of the narrow or discontinuous range in the participant's age. Moreover, previous functional studies have not focused on the anterior frontal region, that is, the frontopolar regions (BA9/10. Thus, the present study investigated the developmental change in frontopolar PFC activation associated with letter fluency task by using near-infrared spectroscopy (NIRS, in subjects from preschool children to adults. We analyzed the relative concentration of hemoglobin (ΔHb in the prefrontal cortex measured during the activation task in 48 typically-developing children and adolescents and 22 healthy adults. Consistent with prior morphological studies, we found developmental change with age in the children/adolescents. Moreover, the average Δoxy-Hb in adult males was significantly larger than that in child/adolescent males, but was not true for females. These data suggested that functional development of the PFC continues into late adolescence. Although the developmental change of the frontopolar PFC was independent of gender from childhood to adolescence, in adulthood a gender difference was shown.

  14. Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress.

    Science.gov (United States)

    Vecchiarelli, Haley A; Gandhi, Chaitanya P; Gray, J Megan; Morena, Maria; Hassan, Kowther I; Hill, Matthew N

    2016-01-01

    There is now a growing body of literature that indicates that stress can initiate inflammatory processes, both in the periphery and brain; however, the spatiotemporal nature of this response is not well characterized. The aim of this study was to examine the effects of an acute psychological stress on changes in mRNA and protein levels of a wide range of inflammatory mediators across a broad temporal range, in key corticolimbic brain regions involved in the regulation of the stress response (amygdala, hippocampus, hypothalamus, medial prefrontal cortex). mRNA levels of inflammatory mediators were analyzed immediately following 30min or 120min of acute restraint stress and protein levels were examined 0h through 24h post-termination of 120min of acute restraint stress using both multiplex and ELISA methods. Our data demonstrate, for the first time, that exposure to acute psychological stress results in an increase in the protein level of several inflammatory mediators in the amygdala while concomitantly producing a decrease in the protein level of multiple inflammatory mediators within the medial prefrontal cortex. This pattern of changes seemed largely restricted to the amygdala and medial prefrontal cortex, with stress producing few changes in the mRNA or protein levels of inflammatory mediators within the hippocampus or hypothalamus. Consistent with previous research, stress resulted in a general elevation in multiple inflammatory mediators within the circulation. These data indicate that neuroinflammatory responses to stress do not appear to be generalized across brain structures and exhibit a high degree of spatiotemporal specificity. Given the impact of inflammatory signaling on neural excitability and emotional behavior, these data may provide a platform with which to explore the importance of inflammatory signaling within the prefrontocortical-amygdala circuit in the regulation of the neurobehavioral responses to stress.

  15. Reduced prefrontal cortex activation using the Trail Making Test in schizophrenia

    Directory of Open Access Journals (Sweden)

    Fujiki R

    2013-05-01

    Full Text Available Ryo Fujiki,1,2 Kiichiro Morita,1,2 Mamoru Sato,1,2 Yuji Kamada,1,2 Yusuke Kato,1,2 Masayuki Inoue,2 Yoshihisa Shoji,1,2 Naohisa Uchimura1 1Department of Neuropsychiatry, Kurume University School of Medicine, Kurume-City, Japan; 2Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume-City, Japan Abstract: Schizophrenia has been associated with a deficit of the prefrontal cortex, which is involved in attention, executive processes, and working memory. The Trail Making Test (TMT is administered in two parts, TMT-A and TMT-B. It is suggested that the difference in performance between part A and part B reflects executive processes. In this study, we compared the characteristics of hemodynamic changes during TMT tasks between 14 outpatients with schizophrenia and 14 age- and gender-matched healthy control subjects. Using multichannel near-infrared spectroscopy, we measured relative changes in oxygenated hemoglobin concentration, which reflects brain activity of the prefrontal cortex during this task. In both tasks, patients showed significantly smaller activation than controls and, in an assessment of executive functions, a subtraction of oxygenated hemoglobin (oxy-Hb changes during TMT-A from those of TMT-B showed a decrease in cerebral lateralization and hypoactivity in patients. There was a significant negative correlation between oxy-Hb changes and the severity of psychiatric symptoms. These findings may characterize disease-related features, suggesting the usefulness of oxy-Hb change measurement during TMT tasks for assessing functional outcomes in schizophrenic patients. Keywords: Trail Making Test, multichannel near-infrared spectroscopy, schizophrenia, prefrontal cortex, executive function

  16. Prefrontal Reactivity to Social Signals of Threat as a Predictor of Treatment Response in Anxious Youth.

    Science.gov (United States)

    Kujawa, Autumn; Swain, James E; Hanna, Gregory L; Koschmann, Elizabeth; Simpson, David; Connolly, Sucheta; Fitzgerald, Kate D; Monk, Christopher S; Phan, K Luan

    2016-07-01

    Neuroimaging has shown promise as a tool to predict likelihood of treatment response in adult anxiety disorders, with potential implications for clinical decision-making. Despite the relatively high prevalence and emergence of anxiety disorders in youth, very little work has evaluated neural predictors of response to treatment. The goal of the current study was to examine brain function during emotional face processing as a predictor of response to treatment in children and adolescents (age 7-19 years; N=41) with generalized, social, and/or separation anxiety disorder. Prior to beginning treatment with the selective serotonin reuptake inhibitor (SSRI) sertraline or cognitive behavior therapy (CBT), participants completed an emotional faces matching task during functional magnetic resonance imaging (fMRI). Whole brain responses to threatening (ie, angry and fearful) and happy faces were examined as predictors of change in anxiety severity following treatment. Greater activation in inferior and superior frontal gyri, including dorsolateral prefrontal cortex and ventrolateral prefrontal cortex, as well as precentral/postcentral gyri during processing of threatening faces predicted greater response to CBT and SSRI treatment. For processing of happy faces, activation in postcentral gyrus was a significant predictor of treatment response. Post-hoc analyses indicated that effects were not significantly moderated by type of treatment. Findings suggest that greater activation in prefrontal regions involved in appraising and regulating responses to social signals of threat predict better response to SSRI and CBT treatment in anxious youth and that neuroimaging may be a useful tool for predicting how youth will respond to treatment. PMID:26708107

  17. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations.

  18. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress

    Directory of Open Access Journals (Sweden)

    Laura eMusazzi

    2015-04-01

    Full Text Available Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress.Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes -including those consequent to chronic stress- induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.

  19. File list: NoD.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Prefrontal_Cortex hg19 No description Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  20. File list: NoD.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Prefrontal_Cortex hg19 No description Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  1. File list: ALL.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Prefrontal_Cortex hg19 All antigens Neural Prefrontal Cortex SRX11...3,SRX733655,SRX733653,SRX189396,SRX1029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  2. File list: DNS.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Prefrontal_Cortex hg19 DNase-seq Neural Prefrontal Cortex SRX18939...6 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  3. File list: Unc.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Prefrontal_Cortex hg19 Unclassified Neural Prefrontal Cortex SRX11...77279,SRX733655,SRX1177281,SRX1177280,SRX733654,SRX733653 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  4. File list: NoD.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Prefrontal_Cortex hg19 No description Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  5. File list: Oth.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Prefrontal_Cortex hg19 TFs and others Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  6. File list: ALL.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Prefrontal_Cortex hg19 All antigens Neural Prefrontal Cortex SRX11...53,SRX019342,SRX019341,SRX019332,SRX189396 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  7. File list: DNS.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Prefrontal_Cortex hg19 DNase-seq Neural Prefrontal Cortex SRX18939...6 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  8. File list: InP.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Prefrontal_Cortex hg19 Input control Neural Prefrontal Cortex SRX1...029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  9. File list: ALL.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Prefrontal_Cortex hg19 All antigens Neural Prefrontal Cortex SRX11...5,SRX733653,SRX1029465,SRX019341,SRX189396 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  10. File list: Oth.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Prefrontal_Cortex hg19 TFs and others Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  11. File list: DNS.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Prefrontal_Cortex hg19 DNase-seq Neural Prefrontal Cortex SRX18939...6 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  12. File list: His.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Prefrontal_Cortex hg19 Histone Neural Prefrontal Cortex SRX1029473...332,SRX019343,SRX1029465,SRX019341 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  13. File list: NoD.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Prefrontal_Cortex hg19 No description Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  14. File list: Unc.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Prefrontal_Cortex hg19 Unclassified Neural Prefrontal Cortex SRX11...77279,SRX1177281,SRX1177280,SRX733654,SRX733655,SRX733653 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  15. File list: Oth.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Prefrontal_Cortex hg19 TFs and others Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  16. File list: ALL.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Prefrontal_Cortex hg19 All antigens Neural Prefrontal Cortex SRX11...1,SRX019342,SRX019332,SRX189396,SRX1029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  17. File list: Oth.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Prefrontal_Cortex hg19 TFs and others Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  18. File list: Unc.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Prefrontal_Cortex hg19 Unclassified Neural Prefrontal Cortex SRX11...77279,SRX1177281,SRX1177280,SRX733654,SRX733655,SRX733653 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  19. File list: Unc.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Prefrontal_Cortex hg19 Unclassified Neural Prefrontal Cortex SRX11...77279,SRX1177281,SRX1177280,SRX733654,SRX733655,SRX733653 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.50.AllAg.Prefrontal_Cortex.bed ...

  20. File list: InP.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Prefrontal_Cortex hg19 Input control Neural Prefrontal Cortex SRX1...029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  1. File list: InP.Neu.10.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Prefrontal_Cortex hg19 Input control Neural Prefrontal Cortex SRX1...029468 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Prefrontal_Cortex.bed ...

  2. File list: DNS.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Prefrontal_Cortex hg19 DNase-seq Neural Prefrontal Cortex SRX18939...6 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  3. File list: His.Neu.05.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Prefrontal_Cortex hg19 Histone Neural Prefrontal Cortex SRX019343,...9333,SRX019342,SRX019341,SRX019332 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Prefrontal_Cortex.bed ...

  4. Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Virtual reality (VR is a powerful tool for simulating aspects of the real world. The success of VR is thought to depend on its ability to evoke a sense of "being there", that is, the feeling of "Presence". In view of the rapid progress in the development of increasingly more sophisticated virtual environments (VE, the importance of understanding the neural underpinnings of presence is growing. To date however, the neural correlates of this phenomenon have received very scant attention. An fMRI-based study with 52 adults and 25 children was therefore conducted using a highly immersive VE. The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures. Whereas the right DLPFC controlled the sense of presence by down-regulating the activation in the egocentric dorsal visual processing stream, the left DLPFC up-regulated widespread areas of the medial prefrontal cortex known to be involved in self-reflective and stimulus-independent thoughts. In contrast, there was no evidence of these two strategies in children. In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children. Taken together, this study presents the first findings that show activation of a highly specific neural network orchestrating the experience of presence in adult subjects, and that the absence of activity in this neural network might contribute to the generally increased susceptibility of children for the experience of presence in VEs.

  5. Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia

    NARCIS (Netherlands)

    Bonilha, Leonardo; de Vries, Paulien M.; Hurd, Mark W.; Rorden, Chris; Morgan, Paul S.; Besenski, Nada; Bergmann, Kenneth J.; Hinson, Vanessa K.

    2009-01-01

    There are quantifiable abnormalities in water diffusion properties of the white matter in thalamic and prefrontal areas in patients with idiopathic dystonia (ID). However, it is unclear which pathways are disrupted in these patients. Using probabilistic tractography of high resolution DTI, we recons

  6. Unconscious errors enhance prefrontal-occipital oscillatory synchrony

    NARCIS (Netherlands)

    M.X. Cohen; S. van Gaal; K.R. Ridderinkhof; V.A.F. Lamme

    2009-01-01

    The medial prefrontal cortex (MFC) is critical for our ability to learn from previous mistakes. Here we provide evidence that neurophysiological oscillatory long-range synchrony is a mechanism of post-error adaptation that occurs even without conscious awareness of the error. During a visually signa

  7. Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders

    Science.gov (United States)

    Dumontheil, Iroise; Burgess, Paul W.; Blakemore, Sarah-Jayne

    2008-01-01

    Information on the development and functions of rostral prefrontal cortex (PFC), or Brodmann area 10, has been gathered from different fields, from anatomical development to functional neuroimaging in adults, and put forward in relation to three particular cognitive and behavioural disorders. Rostral PFC is larger and has a lower cell density in…

  8. The impact of social disparity on prefrontal function in childhood.

    Directory of Open Access Journals (Sweden)

    Margaret A Sheridan

    Full Text Available The prefrontal cortex (PFC develops from birth through late adolescence. This extended developmental trajectory provides many opportunities for experience to shape the structure and function of the PFC. To date, a few studies have reported links between parental socioeconomic status (SES and prefrontal function in childhood, raising the possibility that aspects of environment associated with SES impact prefrontal function. Considering that behavioral measures of prefrontal function are associated with learning across multiple domains, this is an important area of investigation. In this study, we used fMRI to replicate previous findings, demonstrating an association between parental SES and PFC function during childhood. In addition, we present two hypothetical mechanisms by which SES could come to affect PFC function of this association: language environment and stress reactivity. We measured language use in the home environment and change in salivary cortisol before and after fMRI scanning. Complexity of family language, but not the child's own language use, was associated with both parental SES and PFC activation. Change in salivary cortisol was also associated with both SES and PFC activation. These observed associations emphasize the importance of both enrichment and adversity-reduction interventions in creating good developmental environments for all children.

  9. Prefrontal cortex and social cognition in mouse and man

    Directory of Open Access Journals (Sweden)

    Lucy King Bicks

    2015-11-01

    Full Text Available Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD and Schizophrenia (SCZ. Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain

  10. The role of the ventromedial prefrontal cortex in memory consolidation

    NARCIS (Netherlands)

    Nieuwenhuis, I.L.C.; Takashima, A.

    2011-01-01

    System-level memory consolidation theory posits that the hippocampus initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has re

  11. Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/hyperactivity disorder: a (1)H magnetic resonance spectroscopy study.

    Science.gov (United States)

    Husarova, Veronika; Bittsansky, Michal; Ondrejka, Igor; Dobrota, Dusan

    2014-04-30

    Attention deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral childhood disorder. Dysfunction of prefrontal neural circuits which are responsible for executive and attentional functions has been previously shown in ADHD. We investigated the neurometablite changes in areas included in dorsolateral prefrontal neural circuits after 2 months of long-acting methylphenidate or atomoxetine medication in children with ADHD who were responders to treatment. Twenty-one ADHD children were examined by single voxel (1)H-magnetic resonance spectroscopy (MRS) before and after 2 months of medication with OROS methylphenidate (n=10) or atomoxetine (n=11). The spectra were taken from the dorsolateral prefrontal cortex (DLPFC, 8ml) and white matter behind the DLPFC (anterior semioval center, 7.5ml), bilaterally. NAA and NAA/Cr (N-acetylaspartate/creatine) decreased in the left DLPFC and Cho/Cr (choline/creatine) increased in the right DLPFC after atomoxetine medication. Glu+Gln and Glu+Gln/Cr (glutamate/glutamine) increased in the left white matter after methylphenidate medication. We hypothesize that atomoxetine could decrease hyperactivation of DLPFC neurons and methylphenidate could lead to increased activation of cortical glutamatergic projections with the consequences of increased tonic dopamine release in the mesocortical system.

  12. Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: a dynamic causal modeling study on MEG.

    Science.gov (United States)

    Lu, Qing; Li, Haoran; Luo, Guoping; Wang, Yi; Tang, Hao; Han, Li; Yao, Zhijian

    2012-08-15

    Depression is proved to be associated with the dysfunction of prefrontal-limbic neural circuit, especially during emotion processing procedure. Related explorations have been undertaken from the aspects of abnormal activation and functional connectivity. However, the mechanism of the dysfunction of coordinated interactions remains unknown and is still a matter of debate. The present study gave direct evidence of this issue from the aspect of effective connectivity via dynamic causal modeling (DCM). 20 major depressive disorder (MDD) patients and 20 healthy controls were recruited to attend facial emotional stimulus during MEG recording. Bayesian model selection (BMS) was applied to choose the best model. Results under the optimal model showed that top-down endogenous effective connectivity from the dorsolateral prefrontal cortex (DLPFC) to the amygdala was greatly impaired in patients relative to health controls; while bottom-up endogenous effective connectivity from the amygdala to the anterior cingulate cortex (ACC) as well as modulatory effective connectivity from ACC to DLPFC was significantly increased. We inferred the incapable DLPFC failed to exert influence on amygdala, and finally lead to enhanced amygdala-ACC and ACC-DLPFC bottom-up effects. Such impaired prefrontal-amygdala connectivity was supposed to be responsible for the dysfunction in MDD when dealing with emotional stimuli.

  13. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Saba Moghimi

    Full Text Available Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  14. An increase in tobacco craving is associated with enhanced medial prefrontal cortex network coupling.

    Directory of Open Access Journals (Sweden)

    Amy C Janes

    Full Text Available Craving is a key aspect of drug dependence that is thought to motivate continued drug use. Numerous brain regions have been associated with craving, suggesting that craving is mediated by a distributed brain network. Whether an increase in subjective craving is associated with enhanced interactions among brain regions was evaluated using resting state functional magnetic imaging (fMRI in nicotine dependent participants. We focused on craving-related changes in the orbital and medial prefrontal cortex (OMPFC network, which also included the subgenual anterior cingulate cortex (sgACC extending into the ventral striatum. Brain regions in the OMPFC network are not only implicated in addiction and reward, but, due to their rich anatomic interconnections, may serve as the site of integration across craving-related brain regions. Subjective craving and resting state fMRI were evaluated twice with an ∼1 hour delay between the scans. Cigarette craving was significantly increased at the end, relative to the beginning of the scan session. Enhanced craving was associated with heightened coupling between the OMPFC network and other cortical, limbic, striatal, and visceromotor brain regions that are both anatomically interconnected with the OMPFC, and have been implicated in addiction and craving. This is the first demonstration confirming that an increase in craving is associated with enhanced brain region interactions, which may play a role in the experience of craving.

  15. Sensory Deprivation during Early Postnatal Period Alters the Density of Interneurons in the Mouse Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Hiroshi Ueno

    2015-01-01

    Full Text Available Early loss of one sensory system can cause improved function of other sensory systems. However, both the time course and neuronal mechanism of cross-modal plasticity remain elusive. Recent study using functional MRI in humans suggests a role of the prefrontal cortex (PFC in cross-modal plasticity. Since this phenomenon is assumed to be associated with altered GABAergic inhibition in the PFC, we have tested the hypothesis that early postnatal sensory deprivation causes the changes of inhibitory neuronal circuit in different regions of the PFC of the mice. We determined the effects of sensory deprivation from birth to postnatal day 28 (P28 or P58 on the density of parvalbumin (PV, calbindin (CB, and calretinin (CR neurons in the prelimbic, infralimbic, and dorsal anterior cingulate cortices. The density of PV and CB neurons was significantly increased in layer 5/6 (L5/6. Moreover, the density of CR neurons was higher in L2/3 in sensory deprived mice compared to intact mice. These changes were more prominent at P56 than at P28. These results suggest that long-term sensory deprivation causes the changes of intracortical inhibitory networks in the PFC and the changes of inhibitory networks in the PFC may contribute to cross-modal plasticity.

  16. On the Effect of Sex on Prefrontal and Cerebellar Neurometabolites in Healthy Adults: An MRS Study

    Science.gov (United States)

    Endres, Dominique; Tebartz van Elst, Ludger; Feige, Bernd; Backenecker, Stephan; Nickel, Kathrin; Bubl, Anna; Lange, Thomas; Mader, Irina; Maier, Simon; Perlov, Evgeniy

    2016-01-01

    In neuropsychiatric research, the aspects of sex have received increasing attention over the past decade. With regard to the neurometabolic differences in the prefrontal cortex and the cerebellum of both men and women, we performed a magnetic resonance spectroscopic (MRS) study of a large group of healthy subjects. For neurometabolic measurements, we used single-voxel proton MRS. The voxels of interest (VOI) were placed in the pregenual anterior cingulate cortex (pACC) and the left cerebellar hemisphere. Absolute quantification of creatine (Cre), total choline (t-Cho), glutamate and glutamine (Glx), N-acetylaspartate, and myo-inositol (mI) was performed. Thirty-three automatically matched ACCs and 31 cerebellar male–female pairs were statistically analyzed. We found no significant neurometabolic differences in the pACC region (Wilks' lambda: p = 0.657). In the left cerebellar region, we detected significant variations between the male and female groups (p = 0.001). Specifically, we detected significantly higher Cre (p = 0.005) and t-Cho (p = 0.000) levels in men. Additionally, males tended to have higher Glx and mI concentrations. This is the first study to report neurometabolic sex differences in the cerebellum. The effects of sexual hormones might have influenced our findings. Our data indicates the importance of adjusting for the confounding effects of sex in MRS studies. PMID:27531975

  17. Altered Value Coding in the Ventromedial Prefrontal Cortex in Healthy Older Adults

    Science.gov (United States)

    Yu, Jing; Mamerow, Loreen; Lei, Xu; Fang, Lei; Mata, Rui

    2016-01-01

    Previous work suggests that aging is associated with changes in risk taking but less is known about their underlying neural basis, such as the potential age differences in the neural processing of value and risk. The goal of the present study was to investigate adult age differences in functional neural responses in a naturalistic risk-taking task. Twenty-six young adults and 27 healthy older adults completed the Balloon Analogue Risk Task while undergoing functional magnetic resonance imaging. Young and older adults showed similar overt risk-taking behavior. Group comparison of neural activity in response to risky vs. control stimuli revealed similar patterns of activation in the bilateral striatum, anterior insula (AI) and ventromedial prefrontal cortex (vmPFC). Group comparison of parametrically modulated activity in response to continued pumping similarly revealed comparable results for both age groups in the AI and, potentially, the striatum, yet differences emerged for regional activity in the vmPFC. At whole brain level, insular, striatal and vmPFC activation was predictive of behavioral risk taking for young but not older adults. The current results are interpreted and discussed as preserved neural tracking of risk and reward in the AI and striatum, respectively, but altered value coding in the vmPFC in the two age groups. The latter finding points toward older adults exhibiting differential vmPFC-related integration and value coding. Furthermore, neural activation holds differential predictive validity for behavioral risk taking in young and older adults.

  18. The world according to me: Personal relevance and the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Anna eAbraham

    2013-07-01

    Full Text Available More than a decade of neuroimaging research has established that anterior and posterior cortical midline regions are consistently recruited during self-referential thinking. These regions are engaged under conditions of directed cognition, such as during explicit self-reference tasks, as well as during spontaneous cognition, such as under conditions of rest. One of the many issues that remain to be clarified regarding the relationship between self-referential thinking and cortical midline activity is the functional specificity of these regions with regard to the nature of self-representation and processing. The functional profile associated with the medial prefrontal cortex (mPFC is the focus of the current article. What is specifically explored is the idea that personal relevance or personal significance is a central factor that impacts how brain activity is modulated within this cortical midline region. The proactive, imaginative and predictive nature of function in the mPFC is examined by evaluating studies of spontaneously-directed cognition, which is triggered by stimulus associated personal relevance.

  19. Altered Value Coding in the Ventromedial Prefrontal Cortex in Healthy Older Adults.

    Science.gov (United States)

    Yu, Jing; Mamerow, Loreen; Lei, Xu; Fang, Lei; Mata, Rui

    2016-01-01

    Previous work suggests that aging is associated with changes in risk taking but less is known about their underlying neural basis, such as the potential age differences in the neural processing of value and risk. The goal of the present study was to investigate adult age differences in functional neural responses in a naturalistic risk-taking task. Twenty-six young adults and 27 healthy older adults completed the Balloon Analogue Risk Task while undergoing functional magnetic resonance imaging. Young and older adults showed similar overt risk-taking behavior. Group comparison of neural activity in response to risky vs. control stimuli revealed similar patterns of activation in the bilateral striatum, anterior insula (AI) and ventromedial prefrontal cortex (vmPFC). Group comparison of parametrically modulated activity in response to continued pumping similarly revealed comparable results for both age groups in the AI and, potentially, the striatum, yet differences emerged for regional activity in the vmPFC. At whole brain level, insular, striatal and vmPFC activation was predictive of behavioral risk taking for young but not older adults. The current results are interpreted and discussed as preserved neural tracking of risk and reward in the AI and striatum, respectively, but altered value coding in the vmPFC in the two age groups. The latter finding points toward older adults exhibiting differential vmPFC-related integration and value coding. Furthermore, neural activation holds differential predictive validity for behavioral risk taking in young and older adults. PMID:27630561

  20. 青少年抑郁症前额叶的磁共振波谱研究%Detections of brain biochemical changes in prefrontal lobes of the adolescents with depression using magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    毛宁; 刘泉源; 王静; 代彩云; 张迪; 王倩; 王滨

    2014-01-01

    Objective To explore the brain biochemical changes in the frontal lobe of adolescents with depression using proton magnetic resonance spectroscopy (1H-MRS). Methods Twenty-four patients and twenty-three healthy subjects matched for age, sex and education level were enrolled in the study. All the subjects underwent multivoxel 1H MRS to measure the bilateral metabolic levels of N-acetylaspartate (NAA), choline (Cho), creatine (Cr) in the prefrontal lobes. Results The NAA/Cr and Cho/Cr ratios in the left dorsolateral prefrontal white matter of the depressive adolescents were significantly lower than those of the healthy subjects [NAA/Cr: 1.67 ± 0.32, t = 3.126, P = 0.004; Cho/Cr: 1.28 ± 0.30, t = 2.362, P = 0.024], and the ratios of NAA/Cr in the right dorsolateral prefrontal white matter of the depressive adolescents was also significantly lower than that of the healthy subjects [NAA/Cr:1.65 ± 0.26, t=2.969, P=0.006]. There was no significant difference in the metabolic ratios in the bilateral anterior cingulate gray matter between the depressive adolescents and the healthy controls. Conclusions Biochemical abnormalities in prefrontal white matter are involved in the pathophysiology of depression. Importantly , these abnormalities are already present early in the course of the disorder.%目的:利用磁共振波谱(1H-MRS )分析研究青少年抑郁症患者前额叶的代谢改变。方法:收集年龄、性别及教育程度匹配的24例青少年抑郁症患者(抑郁症组)和23例健康青少年(对照组),应用多体素1H-MRS 技术测量前额叶白质和灰质内 N-乙酰天门冬氨酸盐( NAA )、胆碱复合物( Cho )、肌酸(Cr)等代谢物的水平。结果:抑郁症组左背外侧前额叶白质 NAA/Cr、Cho/Cr 较对照组显著减低[NAA/Cr:1.67±0.32, t =3.126, P =0.004; Cho/Cr:1.28±0.30, t =2.362, P =0.024],抑郁症组右背外侧前额叶白质 NAA/Cr

  1. Replacement of Missing Anterior Teeth in a Patient with Temporomandibular Disorder

    Directory of Open Access Journals (Sweden)

    Satheesh B. Haralur

    2014-01-01

    Full Text Available The loss of anterior teeth leads to extreme psychological trauma, along with functional and esthetic debilitations. Healthy anterior teeth play an important role of protecting the posterior teeth during excursive mandibular movement. Loss of anterior teeth induces posterior interference with extended disocclusion time. Posterior disocclusion is critical to remove the harmful force on the teeth temporomandibular joint and eliminate muscle hypertonicity. Occlusal interference is considered as contributing factor to temporomandibular disorder (TMD symptoms. Prosthesis design should eliminate deleterious tooth contacts. Establishing optimum anterior guidance is a key to establishing harmonious functional occlusion in addition to the correction of the esthetic and phonetic disabilities. This case report explains the steps involved in the rehabilitation of the TMD patient with loss of maxillary anterior teeth.

  2. Replacement of missing anterior teeth in a patient with temporomandibular disorder.

    Science.gov (United States)

    Haralur, Satheesh B; Saeed Al-Shahrani, Omar

    2014-01-01

    The loss of anterior teeth leads to extreme psychological trauma, along with functional and esthetic debilitations. Healthy anterior teeth play an important role of protecting the posterior teeth during excursive mandibular movement. Loss of anterior teeth induces posterior interference with extended disocclusion time. Posterior disocclusion is critical to remove the harmful force on the teeth temporomandibular joint and eliminate muscle hypertonicity. Occlusal interference is considered as contributing factor to temporomandibular disorder (TMD) symptoms. Prosthesis design should eliminate deleterious tooth contacts. Establishing optimum anterior guidance is a key to establishing harmonious functional occlusion in addition to the correction of the esthetic and phonetic disabilities. This case report explains the steps involved in the rehabilitation of the TMD patient with loss of maxillary anterior teeth. PMID:24715993

  3. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation

    Directory of Open Access Journals (Sweden)

    Josefine Storm Witteveen

    2013-10-01

    Full Text Available Besides its ‘classical’ neurotransmitter function, serotonin (5-HT has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC, an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known however about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT, an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster and a target (mPFC of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT-/-. While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT-/- pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for further research in this largely

  4. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation

    Science.gov (United States)

    Witteveen, Josefine S.; Middelman, Anthonieke; van Hulten, Josephus A.; Martens, Gerard J. M.; Homberg, Judith R.; Kolk, Sharon M.

    2013-01-01

    Besides its “classical” neurotransmitter function, serotonin (5-HT) has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system, besides an external placental source, represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC), an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known, however, about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT), an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster) and a target (mPFC) of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT−/−). While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT−/− pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for

  5. An anatomical evaluation of the serratus anterior plane block.

    Science.gov (United States)

    Mayes, J; Davison, E; Panahi, P; Patten, D; Eljelani, F; Womack, J; Varma, M

    2016-09-01

    The serratus anterior plane block has been described for analgesia of the hemithorax. This study was conducted to determine the spread of injectate and investigate the anatomical basis of the block. Ultrasound-guided serratus anterior plane block was performed on six soft-fix embalmed cadavers. All cadavers received bilateral injections, on one side performed with 20 ml latex and on the other with 20 ml methylene blue. Subsequent dissection explored the extent of spread and nerve involvement. Photographs were taken throughout dissection. The intercostal nerves were involved on three occasions with dye, but not with latex. The lateral cutaneous branches of the intercostal nerve contained dye and latex on all occasions. The serratus plane block appears to be mediated through blockade of the lateral cutaneous branches of the intercostal nerves. Anatomically, serratus plane block does not appear to be equivalent to paravertebral block for rib fracture analgesia. PMID:27440171

  6. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    Science.gov (United States)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  7. Multimodal emotion perception after anterior temporal lobectomy (ATL)

    OpenAIRE

    Milesi, Valérie; Cekic, Sezen; Péron, Julie; Frühholz, Sascha; Cristinzio, Chiara; Seeck, Margitta; Grandjean, Didier

    2014-01-01

    In the context of emotion information processing, several studies have demonstrated the involvement of the amygdala in emotion perception, for unimodal and multimodal stimuli. However, it seems that not only the amygdala, but several regions around it, may also play a major role in multimodal emotional integration. In order to investigate the contribution of these regions to multimodal emotion perception, five patients who had undergone unilateral anterior temporal lobe resection were exposed...

  8. Apolipoprotein E ε4 allele modulates the immediate impact of acute exercise on prefrontal function.

    Science.gov (United States)

    De Marco, Matteo; Clough, Peter J; Dyer, Charlotte E; Vince, Rebecca V; Waby, Jennifer S; Midgley, Adrian W; Venneri, Annalena

    2015-01-01

    The difference between Apolipoprotein E ε4 carriers and non-carriers in response to single exercise sessions was tested. Stroop and Posner tasks were administered to young untrained women immediately after walking sessions or moderately heavy exercise. Exercise had a significantly more profound impact on the Stroop effect than on the Posner effect, suggesting selective involvement of prefrontal function. A significant genotype-by-exercise interaction indicated differences in response to exercise between ε4 carriers and non-carriers. Carriers showed facilitation triggered by exercise. The transient executive down-regulation was construed as due to exercise-dependent hypofrontality. The facilitation observed in carriers was interpreted as better management of prefrontal metabolic resources, and explained within the antagonistic pleiotropy hypothesis framework. The findings have implications for the interpretation of differences between ε4 carriers and non-carriers in the benefits triggered by long-term exercise that might depend, at least partially, on mechanisms of metabolic response to physical activity. PMID:25218559

  9. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex

    DEFF Research Database (Denmark)

    Littlefield, Melissa M; Dietz, Martin; Fitzgerald, Des;

    2015-01-01

    “Truth” has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person’s mental state, a phenomenon known as Theory of ...... that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning....

  10. Decreased prefrontal, anterior cingulate, insula, and ventral striatal metabolism in medication-free depressed outpatients with bipolar disorder

    OpenAIRE

    Brooks, John O.; Wang, Po W.; Bonner, Julie C.; Rosen, Allyson C.; Hoblyn, Jennifer C.; Hill, Shelley J.; Ketter, Terence A.

    2008-01-01

    This study explored whether cerebral metabolic changes seen in treatment resistant and rapid cycling bipolar depression inpatients are also found in an outpatient sample not specifically selected for treatment resistance or rapid cycling. We assessed 15 depressed outpatients with bipolar disorder (six type I and nine type II) who were medication-free for at least 2 weeks and were not predominantly rapid cycling. The average 28-item Hamilton Depression Scale (HAM-D) total score was 33.9. The h...

  11. Positioning of anterior teeth in removable dentures

    Directory of Open Access Journals (Sweden)

    Strajnić Ljiljana

    2002-01-01

    Full Text Available Introduction The aim of this paper was to present methods of placement of artificial anterior teeth in edentulous individuals. The following review takes account of the majority of papers published during the last 100 years. The review has been divided into sections regarding the method used to determine the position of artificial anterior teeth. Geometric aspect Gysi (1895-1920 produced the first scientific theory about the position of artificial anterior teeth. Physiognomic theory The aim of this theory is to find the most natural position for artificial anterior teeth for each individual. Camper's "face angle" as a physiognomic criterion, has been introduced in papers of Wehrli (1961, Marxhors (1966, Tanzer (1968, Lombardi (1973. Esthetic aspect Important names in the field of dental esthetics are: Schön and Singer (1961, Arnheim (1965, Krajiček (1969, Tanzer (1968, Lombardi (1973, Goldstein (1976. They have introduced principles of visual aspects for selection of contours, dimension and position of artificial anterior teeth. Constitution aspect Flagg (1880, Williams (1913 and Hrauf (1957, 1958, have considered body constitution and individual characteristics regarding position of artificial anterior teeth. Physiological theory In 1971, Marxhors pointed to the fact that the position of artificial teeth corresponds with the function of the surrounding soft tissue and from the aspect of physiognomy as well. Phonetic aspect According to Silverman (1962 artificial anterior teeth are nearest when we pronounce the sound "S". Cephalometrical research Rayson (1970, Watson (1989, Strajnić Lj. (1999, Bassi F. (2001 have presented cephalometric radiographic analyses of natural anterior teeth compared with cephalometric radiographic analyses of artificial anterior teeth. A review of dental literature shows several factors suggesting modalities which should determine the position of artificial anterior teeth. Numerous methods have been designed for

  12. Pharyngocutaneous fistula after anterior cervical spine surgery

    OpenAIRE

    Sansur, Charles A.; Early, Stephen; Reibel, James; Arlet, Vincent

    2009-01-01

    Pharyngocutaneous fistulae are rare complications of anterior spine surgery occurring in less than 0.1% of all anterior surgery cases. We report a case of a 19 year old female who sustained a C6 burst fracture with complete quadriplegia. She was treated urgently with a C6 corpectomy with anterior cage and plating followed by posterior cervical stabilization at another institution. Post operatively she developed a pharyngocutaneous fistula that failed to heal despite several attempts of closu...

  13. Herniation of the anterior lens capsule

    Directory of Open Access Journals (Sweden)

    Pereira Nolette

    2007-01-01

    Full Text Available Herniation of the anterior lens capsule is a rare abnormality in which the capsule bulges forward in the pupillary area. This herniation can be mistaken for an anterior lenticonus where both the capsule and the cortex bulge forward. The exact pathology behind this finding is still unclear. We report the clinical, ultrasound biomicroscopy (UBM and histopathological findings of a case of herniation of the anterior lens capsule. UBM helped to differentiate this entity from anterior lenticonus. Light microscopy revealed capsular splitting suggestive of capsular delamination and collection of fluid (aqueous in the area of herniation giving it a characteristic appearance.

  14. Perseveration in the presence of punishment: the effects of chronic cocaine exposure and lesions to the prefrontal cortex.

    Science.gov (United States)

    Allen, Craig P; Leri, Francesco

    2014-03-15

    Perseveration is the repetition of a previously appropriate response in a manner, or context, which is detrimental to the individual. Although both cocaine exposure and prefrontal cortex (PFC) dysfunctions have been implicated in perseverative-like behaviours, the underlying nature of the impairments has been debated. The current study tested whether chronic cocaine exposure and PFC lesions induce perseverative-like behaviours by causing insensitivity to punishment. Food-restricted male Sprague-Dawley rats were trained to respond for sucrose on concurrent schedules of reinforcement. After initial training, rats received either a sensitizing regimen of cocaine exposure, or excitotoxic lesions to subregions of the PFC. The test of perseveration involved a choice of responding between two levers associated with fixed ratio and progressive ratio (PR) schedules. Responding on the PR lever was punished by a 1 min timeout period. It was found that, unlike control subjects, those exposed to chronic cocaine, or with lesions to the medial prefrontal cortex, were significantly slower in adapting their responding to avoid punishment. The current study provides evidence that both cocaine exposure and lesions to the prefrontal cortex can increase perseverative-like responding, although the magnitude and permanence of these effects are contingent on the nature of the task.

  15. Left Prefrontal Activity Reflects the Ability of Vicarious Fear Learning: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Qingguo Ma

    2013-01-01

    Full Text Available Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants’ hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being was receiving a classical fear conditioning. A neutral colored square paired with shocks (CSshock and another colored square paired with no shocks (CSno-shock were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CSshock compared with that exposed to CSno-shock. In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others’ mental state, is associated with social fear transmission.

  16. Perawatan Gigitan Terbalik Anterior Dengan Menggunakan Inclined Plane

    OpenAIRE

    Siregar, Wilda A.

    2008-01-01

    Gigitan terbalik anterior adalah suatu anomali posisi gigi anterior atas yang lebih ke lingual dibandingkan gigi anterior bawah. Anomali gigitan terbalik anterior dapat ditemui pada periode gigi sulung, gigi bercampur, dan gigi permanen. Faktor etiologi gigitan terbalik anterior dibedakan atas dental, fungsional atau skeletal. Untuk menentukan etiologi dari anomali gigitan terbalik anterior perlu dilakukan diagnosa yang tepat. Perawatan gigitan terbalik anterior ini dapat dilakukan de...

  17. Histological observation of complete closure of anterior capsulotomy in 2 cases.

    Science.gov (United States)

    Tanaka, Sai-Ichi; Saika, Shizuya; Tamura, Manabu; Ohnishi, Yoshitaka

    2004-06-01

    We report the histological finding of complete closure of the anterior capsulotomy window in 2 cases. The cases were successfully treated with surgery after neodymium:YAG laser anterior capsulotomy failed. Histology and immunohistochemistry were performed to determine the pathogenesis. Histology revealed the presence of elongated, fibroblast-like lens epithelial cells in association with extracellular matrix accumulation, which were positive for collagen types, fibronectin, and osteopontin. The cells were labeled with anti-alpha-smooth muscle actin antibody. The finding indicates that phenotypic modulation in lens epithelial cell to contractile cell type and accumulation of matrix are involved in closure of the anterior capsulotomy window.

  18. Adjustable muscle plication: a new surgical technique for strabismic patients with high risk for anterior segment ischemia

    Institute of Scientific and Technical Information of China (English)

    Carlos; Laria; David; P.Pi?ero

    2015-01-01

    <正>INTRODUCTION Anterior ciliary arteries provide 70%of the vascular supply of the anterior segment.A significant interruption of the vascular flow of these arteries increases the risk for anterior ischemia.Although the frequency of this special condition is low after strabismus surgery(1:13 000)[1],its effects may involve substantial visual problems[2].We report the successful outcome of a new surgical approach for strabismus management in a case of high risk for anterior ischemia.Specifically,we show the correction of the horizontal ocular deviation by means of an adjustable muscle

  19. Toxic Anterior Segment Syndrome (TASS

    Directory of Open Access Journals (Sweden)

    Özlem Öner

    2011-12-01

    Full Text Available Toxic anterior segment syndrome (TASS is a sterile intraocular inflammation caused by noninfectious substances, resulting in extensive toxic damage to the intraocular tissues. Possible etiologic factors of TASS include surgical trauma, bacterial endotoxin, intraocular solutions with inappropriate pH and osmolality, preservatives, denatured ophthalmic viscosurgical devices (OVD, inadequate sterilization, cleaning and rinsing of surgical devices, intraocular lenses, polishing and sterilizing compounds which are related to intraocular lenses. The characteristic signs and symptoms such as blurred vision, corneal edema, hypopyon and nonreactive pupil usually occur 24 hours after the cataract surgery. The differential diagnosis of TASS from infectious endophthalmitis is important. The main treatment for TASS formation is prevention. TASS is a cataract surgery complication that is more commonly seen nowadays. In this article, the possible underlying causes as well as treatment and prevention methods of TASS are summarized. (Turk J Oph thal mol 2011; 41: 407-13

  20. Dopaminergic Activity in the Medial Prefrontal Cortex Modulates Fear Conditioning

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2011-07-01

    Full Text Available "nThe purpose of the present study was to determine the role of medial prefrontal cortex (mPFC dopaminergic system in fear conditioning response considering individual differences. Animals were initially counterbalanced and classified based on open field test, and then were given a single infusion of the dopamine agonist, amphetamine (AMPH and antagonist, clozapine (CLZ into the medial prefrontal cortex. Rats received tone-shock pairing in a classical fear conditioning test and then exposed to the tone alone. Freezing responses were measured as conditioned fear index. The results showed that both AMPH and CLZ infusion in mPFC reduced the expression of conditioned fear. This finding indicates that elevation or reduction in the dopaminergic activity is associated with the decrease of fear responses, despite preexisting individual-typological differences.

  1. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  2. Smile design for the adolescent patient--interdisciplinary management of anterior tooth size discrepancies.

    Science.gov (United States)

    Waldman, Alexander B

    2008-05-01

    Adolescent patients often seek orthodontic treatment to correct spacing of the maxillary anterior teeth. If the spacing is caused by a tooth size discrepancy that affects one or more anterior teeth, an interdisciplinary treatment plan involving orthodontic, restorative, and periodontal treatment is recommended to achieve a harmonious esthetic result. This article describes a clinical approach for treatment of these complex cases, focusing on the importance of tooth form, gingival esthetics, and treatment sequencing.

  3. [Surgical treatment of patients with cancer of the larynx with lesions of the anterior commissure].

    Science.gov (United States)

    Bariliak, Iu R

    1990-01-01

    Eighty two patients with glottic tumors extending to the anterior commissure underwent surgical treatment: 11 patients for cordectomy in its classic form, 11 patients for fronto-lateral cordectomy, 59 patients for extended cordectomy, and 1 patient for hemilaryngectomy according to Otan. Analysis of the postoperative clinical state of the patients suggests that surgery for vocal cord carcinoma involving the anterior commissure should not necessarily include tracheostomy and laryngeal tamponade. PMID:2316118

  4. Mild toxic anterior segment syndrome mimicking delayed onset toxic anterior segment syndrome after cataract surgery

    Directory of Open Access Journals (Sweden)

    Su-Na Lee

    2014-01-01

    Full Text Available Toxic anterior segment syndrome (TASS is an acute sterile postoperative anterior segment inflammation that may occur after anterior segment surgery. I report herein a case that developed mild TASS in one eye after bilateral uneventful cataract surgery, which was masked during early postoperative period under steroid eye drop and mimicking delayed onset TASS after switching to weaker steroid eye drop.

  5. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks.

    Science.gov (United States)

    Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375

  6. Optogenetic stimulation of prefrontal glutamatergic neurons enhances recognition memory

    OpenAIRE

    Benn, Abi; Barker, Gareth R. I.; Stuart, Sarah A; Roloff, Eva v. L.; Teschemacher, Anja G; Warburton, Clea; Robinson, Emma S. J.

    2016-01-01

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specific...

  7. Stress-induced prefrontal reorganization and executive dysfunction in rodents

    OpenAIRE

    Holmes, Andrew; Wellman, Cara L.

    2008-01-01

    The prefrontal cortex (PFC) mediates a range of higher order ‘executive functions’ that subserve the selection and processing of information in such a way that behavior can be planned, controlled and directed according to shifting environmental demands. Impairment of executive functions typifies many forms of psychopathology, including schizophrenia, mood and anxiety disorders and addiction, that are often associated with a history of trauma and stress. Recent research in animal models demons...

  8. Cognitive Control, Goal Maintenance, and Prefrontal Function in Healthy Aging

    OpenAIRE

    Paxton, Jessica L.; Barch, Deanna M; Racine, Caroline A; Braver, Todd S.

    2007-01-01

    Cognitive control impairments in healthy older adults may partly reflect disturbances in the ability to actively maintain goal-relevant information, a function that depends on the engagement of lateral prefrontal cortex (PFC). In 2 functional magnetic resonance imaging studies, healthy young and older adults performed versions of a task in which contextual cues provide goal-relevant information used to bias processing of subsequent ambiguous probes. In Study 1, a blocked design and manipulati...

  9. Flexible neural mechanisms of cognitive control within human prefrontal cortex

    OpenAIRE

    Braver, Todd S.; Paxton, Jessica L.; Locke, Hannah S.; Barch, Deanna M

    2009-01-01

    A major challenge in research on executive control is to reveal its functional decomposition into underlying neural mechanisms. A typical assumption is that this decomposition occurs solely through anatomically based dissociations. Here we tested an alternative hypothesis that different cognitive control processes may be implemented within the same brain regions, with fractionation and dissociation occurring on the basis of temporal dynamics. Regions within lateral prefrontal cortex (PFC) wer...

  10. Prefrontal inputs to the amygdala instruct fear extinction memory formation

    OpenAIRE

    Bukalo, Olena; Pinard, Courtney R.; Silverstein, Shana; Brehm, Christina; Hartley, Nolan D.; Whittle, Nigel; Colacicco, Giovanni; Busch, Erica; Patel, Sachin; Singewald, Nicolas; Holmes, Andrew

    2015-01-01

    Persistent anxiety after a psychological trauma is a hallmark of many anxiety disorders. However, the neural circuits mediating the extinction of traumatic fear memories remain incompletely understood. We show that selective, in vivo stimulation of the ventromedial prefrontal cortex (vmPFC)–amygdala pathway facilitated extinction memory formation, but not retrieval. Conversely, silencing the vmPFC-amygdala pathway impaired extinction formation and reduced extinction-induced amygdala activity....

  11. Probing prefrontal function in schizophrenia with neuropsychological paradigms.

    Science.gov (United States)

    Goldberg, T E; Weinberger, D R

    1988-01-01

    In a recent series of studies we have attempted to clarify the nature of intellectual impairment in schizophrenia, and in particular, how patterns of dysfunction implicate specific neural systems. First, we found that acute psychotic adolescent patients displayed the same pattern of IQ scores (Performance less than Verbal) as adult chronic schizophrenic patients. We explored this deficit in problem solving by studying the performance of schizophrenic patients after receiving concrete and explicit instructions on how to do the Wisconsin Card Sorting Test, a task thought to be mediated by prefrontal cortex. We then studied the differential impact such a deficit in problem-solving strategies might have on a task thought to elicit both cognitive (prefrontal) and procedural or motor-skill (basal ganglia) processing. Procedural components appeared to be relatively more intact. We also addressed schizophrenic patients' ability to learn in other (extrafrontal) cognitive domains through verbal memory tasks and block design puzzles. Learning occurred under both conditions. We believe the overall pattern of deficit implicates primarily prefrontal neural systems, though a number of other neuropsychological functions are yet to be surveyed. PMID:3059467

  12. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  13. Anterior segment complications of retinal photocoagulation.

    Science.gov (United States)

    Kanski, J J

    1975-03-01

    Seven patients had anterior segment complications following xenon arc retinal photocoagulation. Irreversible keratopathy was induced in two cases; all patients showed evidence of iris injury. The absorption of radiation by the iris was considered the main factor in producing overheating of the anterior segment.

  14. Dentulous Appliance for Upper Anterior Edentulous Span

    OpenAIRE

    Chalakkal, Paul; Devi, Ramisetty Sabitha; Srinivas, G Vijay; Venkataramana, Pammi

    2013-01-01

    This article discusses about a fixed dentulous appliance that was constructed to replace the primary upper anterior edentulous span in a four year old girl. It constituted a design, whereby the maxillary primary second molars were used to support the appliance through bands and a wire that contained an acrylic flange bearing trimmed acrylic teeth, anteriorly. The appliance was functionally and aesthetically compliant.

  15. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  16. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ignacio Negrón-Oyarzo

    2016-01-01

    Full Text Available Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.

  17. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    Directory of Open Access Journals (Sweden)

    María Carolina Gonzalez

    2014-11-01

    Full Text Available Medial prefrontal cortex (mPFC is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-tem aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 hour later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus.

  18. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories.

    Science.gov (United States)

    Gonzalez, María C; Kramar, Cecilia P; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  19. Medial prefrontal cortical activity reflects dynamic re-evaluation during voluntary persistence.

    Science.gov (United States)

    McGuire, Joseph T; Kable, Joseph W

    2015-05-01

    Deciding how long to keep waiting for future rewards is a nontrivial problem, especially when the timing of rewards is uncertain. We carried out an experiment in which human decision makers waited for rewards in two environments in which reward-timing statistics favored either a greater or lesser degree of behavioral persistence. We found that decision makers adaptively calibrated their level of persistence for each environment. Functional neuroimaging revealed signals that evolved differently during physically identical delays in the two environments, consistent with a dynamic and context-sensitive reappraisal of subjective value. This effect was observed in a region of ventromedial prefrontal cortex that is sensitive to subjective value in other contexts, demonstrating continuity between valuation mechanisms involved in discrete choice and in temporally extended decisions analogous to foraging. Our findings support a model in which voluntary persistence emerges from dynamic cost/benefit evaluation rather than from a control process that overrides valuation mechanisms. PMID:25849988

  20. Association of cannabis use during adolescence, prefrontal CB1 receptor signaling and schizophrenia

    Directory of Open Access Journals (Sweden)

    Adriana eCaballero

    2012-05-01

    Full Text Available The cannabinoid receptor 1 (CB1R is the G-protein coupled receptor responsible for the majority of the endocannabinoid signaling in the human brain. It is widely distributed in the limbic system, basal ganglia, and cerebellum, which are areas responsible for cognition, memory, and motor control. Because of this widespread distribution, it is not surprising that drugs that co-opt CB1R have expected behavioral outcomes consistent with dysregulated signaling from these areas (e.g. memory loss, cognitive deficits, etc. In the context of this review, we present evidence for the role of CB1R signaling in the prefrontal cortex (PFC, an area involved in executive functions, with emphasis on the developmental regulation of CB1R signaling in the acquisition of mature PFC function. We further hypothesize how alterations of CB1R signaling specifically during adolescent maturation might confer liability to psychiatric disorders.

  1. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    Science.gov (United States)

    Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  2. Characterizing emotional response to music in the prefrontal cortex using near infrared spectroscopy.

    Science.gov (United States)

    Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom

    2012-09-01

    Known to be involved in emotional processing the human prefrontal cortex (PFC), can be non-invasively monitored using near-infrared spectroscopy (NIRS). As such, PFC NIRS can serve as a means for studying emotional processing by the PFC. Identifying patterns associated with emotions in PFC using NIRS may provide a means of bedside emotion identification for nonverbal children and youth with severe physical disabilities. In this study, NIRS was used to characterize the PFC hemodynamic response to emotional arousal and valence in a music-based emotion induction paradigm in 9 individuals without disabilities or known health conditions. In particular, a novel technique based on wavelet-based peak detection was used to characterize chromophore concentration patterns. The maximum wavelet coefficients extracted from oxygenated hemoglobin concentration waveforms from all nine recording locations on the PFC were significantly associated with emotional valence and arousal. Specifically, high arousal and negative emotions were associated with larger maximum wavelet coefficients. PMID:22842396

  3. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    OpenAIRE

    Anders C. Green; Bærentsen, Klaus B.; Hans Stødkilde-Jørgensen; Andreas Roepstorff; Peter Vuust

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were mos...

  4. Short-term meditation increases blood flow in anterior cingulate cortex and insula

    Directory of Open Access Journals (Sweden)

    Yi-Yuan eTang

    2015-02-01

    Full Text Available Asymmetry in frontal electrical activity has been reported to be associated with positive mood. One form of mindfulness meditation, integrative body-mind training (IBMT improves positive mood and neuroplasticity. The purpose of this study is to determine whether short-term IBMT improves mood and induces frontal asymmetry. This study showed that five-day (30-min per day IBMT significantly enhanced cerebral blood flow (CBF in subgenual/adjacent ventral anterior cingulate cortex (ACC, medial prefrontal cortex and insula. The results showed that both IBMT and relaxation training increased left laterality of CBF, but only IBMT improved CBF in left ACC and insula, critical brain areas in self-regulation.

  5. [Modern surgery of meningiomas affecting anterior visual pathways].

    Science.gov (United States)

    Grimm, F; Ebner, F H; Honegger, J

    2013-05-01

    Meningiomas are the most common form of primary intracranial tumors. If the anterior visual pathways are affected clinical visual compromise, visual field defects, oculomotor nerve disturbances or propotosis are predominant. Meningiomas of the anterior visual pathway remain therapeutically challenging due to the direct anatomical relationship to the circulus arteriosus cerebri, the cavernous sinus and cranial nerves. The therapy of choice is microsurgical resection. In many cases a curative approach can be achieved with modern surgical techniques and simultaneously maintaining patient quality of life. Problematic are cases in which resection would be associated with the risk of clinical impairment and in these cases radiotherapy is an important therapeutic option. In cases involving complex invasiveness an interdisciplinary treatment to control local clinical symptoms is favored. PMID:23604251

  6. Effect of bone loss in anterior shoulder instability

    Science.gov (United States)

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-01-01

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  7. Harming kin to save strangers: further evidence for abnormally utilitarian moral judgments after ventromedial prefrontal damage.

    Science.gov (United States)

    Thomas, Bradley C; Croft, Katie E; Tranel, Daniel

    2011-09-01

    The ventromedial PFC (vmPFC) has been implicated as a critical neural substrate mediating the influence of emotion on moral reasoning. It has been shown that the vmPFC is especially important for making moral judgments about "high-conflict" moral dilemmas involving direct personal actions, that is, scenarios that pit compelling utilitarian considerations of aggregate welfare against the highly emotionally aversive act of directly causing harm to others [Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., et al. Damage to the prefrontal cortex increases utilitarian moral judgments. Nature, 446, 908-911, 2007]. The current study was designed to elucidate further the role of the vmPFC in high-conflict moral judgments, including those that involve indirect personal actions, such as indirectly causing harm to one's kin to save a group of strangers. We found that patients with vmPFC lesions were more likely than brain-damaged and healthy comparison participants to endorse utilitarian outcomes on high-conflict dilemmas regardless of whether the dilemmas (1) entailed direct versus indirect personal harms and (2) were presented from the Self versus Other perspective. In addition, all groups were more likely to endorse utilitarian outcomes in the Other perspective as compared with the Self perspective. These results provide important extensions of previous work, and the findings align with the proposal that the vmPFC is critical for reasoning about moral dilemmas in which anticipating the social-emotional consequences of an action (e.g., guilt or remorse) is crucial for normal moral judgments [Greene, J. D. Why are VMPFC patients more utilitarian?: A dual-process theory of moral judgment explains. Trends in Cognitive Sciences, 11, 322-323, 2007; Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., et al. Damage to the prefrontal cortex increases utilitarian moral judgments. Nature, 446, 908-911, 2007]. PMID:20946057

  8. Harming kin to save strangers: further evidence for abnormally utilitarian moral judgments after ventromedial prefrontal damage.

    Science.gov (United States)

    Thomas, Bradley C; Croft, Katie E; Tranel, Daniel

    2011-09-01

    The ventromedial PFC (vmPFC) has been implicated as a critical neural substrate mediating the influence of emotion on moral reasoning. It has been shown that the vmPFC is especially important for making moral judgments about "high-conflict" moral dilemmas involving direct personal actions, that is, scenarios that pit compelling utilitarian considerations of aggregate welfare against the highly emotionally aversive act of directly causing harm to others [Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., et al. Damage to the prefrontal cortex increases utilitarian moral judgments. Nature, 446, 908-911, 2007]. The current study was designed to elucidate further the role of the vmPFC in high-conflict moral judgments, including those that involve indirect personal actions, such as indirectly causing harm to one's kin to save a group of strangers. We found that patients with vmPFC lesions were more likely than brain-damaged and healthy comparison participants to endorse utilitarian outcomes on high-conflict dilemmas regardless of whether the dilemmas (1) entailed direct versus indirect personal harms and (2) were presented from the Self versus Other perspective. In addition, all groups were more likely to endorse utilitarian outcomes in the Other perspective as compared with the Self perspective. These results provide important extensions of previous work, and the findings align with the proposal that the vmPFC is critical for reasoning about moral dilemmas in which anticipating the social-emotional consequences of an action (e.g., guilt or remorse) is crucial for normal moral judgments [Greene, J. D. Why are VMPFC patients more utilitarian?: A dual-process theory of moral judgment explains. Trends in Cognitive Sciences, 11, 322-323, 2007; Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., et al. Damage to the prefrontal cortex increases utilitarian moral judgments. Nature, 446, 908-911, 2007].

  9. Anterior Shoulder Instability with Concomitant Superior Labrum from Anterior to Posterior (SLAP) Lesion Compared to Anterior Instability without SLAP Lesion

    Science.gov (United States)

    Durban, Claire Marie C.; Kim, Je Kyun; Kim, Sae Hoon

    2016-01-01

    Background The aims of this study were to investigate the clinical characteristics of patients with combined anterior instability and superior labrum from anterior to posterior (SLAP) lesions, and to analyze the effect of concomitant SLAP repair on surgical outcomes. Methods We retrospectively reviewed patients who underwent arthroscopic stabilization for anterior shoulder instability between January 2004 and March 2013. A total of 120 patients were available for at least 1-year follow-up. Forty-four patients with reparable concomitant detached SLAP lesions (group I) underwent combined SLAP and anterior stabilization, and 76 patients without SLAP lesions (group II) underwent anterior stabilization alone. Patient characteristics, preoperative and postoperative pain scores, Rowe scores, and shoulder ranges of motion were compared between the 2 groups. Results Patients in group I had higher incidences of high-energy trauma (p = 0.03), worse preoperative pain visual analogue scale (VAS) (p = 0.02), and Rowe scores (p = 0.04). The postoperative pain VAS and Rowe scores improved equally in both groups without significant differences. Limitation in postoperative range of motion was similar between the groups (all p-value > 0.05). Conclusions Anterior instability with SLAP lesion may not be related to frequent episodes of dislocation but rather to a high-energy trauma. SLAP fixation with anterior stabilization procedures did not lead to poor functional outcomes if appropriate surgical techniques were followed. PMID:27247742

  10. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    Science.gov (United States)

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  11. Giant aneurysm of the left anterior descending coronary artery in a pediatric patient with Behcet's disease.

    Science.gov (United States)

    Cook, Amanda L; Rouster-Stevens, Kelly; Williams, Derek A; Hines, Michael H

    2010-07-01

    Behcet's disease is a rare autoimmune vasculitis characterized by oral aphthosis, genital ulcers, and ocular and cutaneous lesions. Vascular involvement usually affects the veins more commonly than the arteries, and coronary arterial involvement is extremely rare. We report an adolescent with Behcet's disease who developed a large pseudoaneurysm of the left anterior descending coronary artery requiring a coronary arterial bypass graft.

  12. Deep anterior lamellar keratoplasty in keratoconus

    Directory of Open Access Journals (Sweden)

    Nikolić Ljubiša

    2011-01-01

    Full Text Available Introduction. Deep anterior lamellar keratoplasty (DALK is intended for the surgical treatment of corneal pathology without the involvement of the endothelium. Sparing of the healthy host endothelium for lifetime is of utmost importance in young patients. Therefore, keratoconus is among the main indications for DALK. Outline of Cases. Two men, 22 and 28 years of age, underwent DALK for the treatment of progressive keratoconus, with low visual acuity, impossible to be corrected with gas-permeable contact lenses, due to the extreme conical protrusion of the cornea. Baring of Descemet’s membrane was achieved with lamellar dissection and peeling off the stroma. An 8.5 mm graft without the endothelium was sutured into an 8.0 mm bed. Both grafts remained clear and attached, without either ocular surface pathology or problems arising from sutures. The best corrected visual acuity was 20/25 and 20/40, with the astigmatism of 2.5 and 3.0 diopters, respectively. The follow-up was one year. Conclusion. This is the first presentation of DALK in our literature. The restoration of corneal transparency and stability, with sparing of the host endothelium, has put DALK among successful corneal tranplantation procedures. Together with Descemet stripping endothelial keratoplasty, which already accounts for almost a half of all our keratoplasties, it offers an alternative to penetrating keratoplasty.

  13. Protein kinase C activity is associated with prefrontal cortical decline in aging

    OpenAIRE

    Brennan, Avis R.; Yuan, Peixiong; Dickstein, Dara L; Rocher, Anne B.; Hof, Patrick R.; Manji, Husseini; Arnsten, Amy F.T.

    2007-01-01

    Aging is associated with deficiencies in the prefrontal cortex, including working memory impairment, and compromised integrity of neuronal dendrites. Although protein kinase C (PKC) is implicated in structural plasticity, and overactivation of PKC results in working memory impairments in young animals, the role of PKC in prefrontal cortical impairments in the aged has not been examined. This study provides the first evidence that PKC activity is associated with prefrontal cortical dysfunction...

  14. Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Siebner, Hartwig R; Hulme, Oliver J;

    2014-01-01

    Dopamine deficiency affects functional integration of activity in distributed neural regions. It has been suggested that lack of dopamine induces disruption of neural interactions between prefrontal and premotor areas, which might underlie impairment of motor control observed in patients...... to examine oscillatory coupling between prefrontal and premotor areas during respectively low and high levels of dopamine. In 10 patients and 12 control participants multiple source beamformer analysis yielded task-related activation of a contralateral cortical network comprising prefrontal cortex (PFC...

  15. Anterior retropharyngeal approach to the cervical spine.

    OpenAIRE

    Behari S; Banerji D; Trivedi P; Jain V; Chhabra D

    2001-01-01

    The anterior retropharyngeal approach (ARPA) accesses anteriorly situated lesions from the clivus to C3, in patients with a short neck, Klippel Feil anomaly or those in whom the C2-3 and C3-4 disc spaces are situated higher in relation to the hyoid bone and the angle of mandible where it is difficult to approach this region using the conventional anterior approach, due to the superomedial obliquity of the trajectory. The ARPA avoids the potentially contaminated oropharyngeal cavity providing ...

  16. Quadriceps muscle contraction protects the anterior cruciate ligament during anterior tibial translation.

    Science.gov (United States)

    Aune, A K; Cawley, P W; Ekeland, A

    1997-01-01

    The proposed skiing injury mechanism that suggests a quadriceps muscle contraction can contribute to anterior cruciate ligament rupture was biomechanically investigated. The effect of quadriceps muscle force on a knee specimen loaded to anterior cruciate ligament failure during anterior tibial translation was studied in a human cadaveric model. In both knees from six donors, average age 41 years (range, 31 to 65), the joint capsule and ligaments, except the anterior cruciate ligament, were cut. The quadriceps tendon, patella, patellar tendon, and menisci were left intact. One knee from each pair was randomly selected to undergo destructive testing of the anterior cruciate ligament by anterior tibial translation at a displacement rate of 30 mm/sec with a simultaneously applied 889 N quadriceps muscle force. The knee flexion during testing was 30 degrees. As a control, the contralateral knee was loaded correspondingly, but only 5 N of quadriceps muscle force was applied. The ultimate load for the knee to anterior cruciate ligament failure when tested with 889 N quadriceps muscle force was 22% +/- 18% higher than that of knees tested with 5 N of force. The linear stiffness increased by 43% +/- 30%. These results did not support the speculation that a quadriceps muscle contraction contributes to anterior cruciate ligament failure. In this model, the quadriceps muscle force protected the anterior cruciate ligament from injury during anterior tibial translation.

  17. Anterior horn syndrome: A rare manifestation of primary Sjögren's syndrome.

    Science.gov (United States)

    Zahlane, Safaa; Louhab, Nissrine; El Mellakh, Meriem; Kissani, Najib

    2016-07-01

    The authors report an exceptional case of an anterior horn syndrome associated with Sjögren's syndrome in a 58-year-old patient with a flaccid tetraparesis revealed by asymmetric atrophy and diffuse fasciculations associated with xerostomia and xerophthalmia. The electroneuromyography objectified a diffuse anterior horn syndrome. The brain MRI and spinal cord were normal. Laboratory tests revealed positive anti-SSA and anti-SSB antibody. The salivary glands biopsy objectified lymphocytic sialadenitis grade 3 of Chisholm. The Schirmer's test was abnormally low. Diagnosis of anterior horn syndrome as part of Sjögren's syndrome was retained. The methylprednisolone bolus allowed partial clinical improvement after 12 months of evolution. Therefore, in patients with isolated anterior horn involvement, a correct diagnosis of the underlying SS is often delayed or overlooked entirely; in these instances, standard clinicoserological assessment is recommendable. PMID:27118221

  18. Is the subcallosal medial prefrontal cortex a common site of atrophy in Alzheimer’s disease and frontotemporal lobar degeneration?

    Directory of Open Access Journals (Sweden)

    Olof eLindberg

    2012-11-01

    Full Text Available Regions affected late in neurodegenerative disease are thought to be anatomically connected to regions affected earlier. The subcallosal medial prefrontal cortex (SMPC has connections with the dorsolateral prefrontal cortex (DLPFC, orbitofrontal cortex (OFC and hippocampus (HC, which are regions that may become atrophic in frontotemporal lobar degeneration (FTLD and Alzheimer’s disease (AD. We hypothesized that the SMPC is a common site of frontal atrophy in the FTLD subtypes and in AD. The volume of the SMPC, DLPFC, OFC, HC and entorhinal cortex were manually delineated for 12 subjects with frontotemporal dementia (FTD, 13 with semantic dementia (SD, 9 with progressive nonfluent aphasia (PNFA, 10 AD cases and 13 controls. Results revealed significant volume loss in the left SMPC in FTD, SD and PNFA, while the right SMPC was also atrophied in SD and FTD. In AD a non significant tendency of volume loss in the left SMPC was found (p=0.08, with no volume loss on the right side. Results indicated that volume loss reflected the degree of brain connectivity. In SD and AD temporal regions displayed most atrophy. Among the frontal regions, the SMPC (which receives the strongest temporal projections demonstrated most volume loss, the OFC (which receives less temporal projections less volume loss, while the DLPFC (which is at multisynaptic distance from the temporal regions demonstrated no volume loss. In PNFA, the left SMPC was atrophic, possibly reflecting progression from the left anterior insula, while FTD patients may have had SMPC atrophy at the initial stages of the disease. Atrophy of the SMPC may thus be affected by either initial temporal or initial frontal atrophy, making it a common site of frontal atrophy in the dementia subtypes investigated.

  19. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem. PMID:20144945

  20. Prefrontal neuronal integrity predicts symptoms and cognition in schizophrenia and is sensitive to genetic heterogeneity.

    Science.gov (United States)

    Malaspina, Dolores; Kranz, Thorsten M; Heguy, Adriana; Harroch, Sheila; Mazgaj, Robert; Rothman, Karen; Berns, Adam; Hasan, Sumya; Antonius, Daniel; Goetz, Raymond; Lazar, Mariana; Chao, Moses V; Gonen, Oded

    2016-04-01

    Schizophrenia is a genetically complex syndrome with substantial inter-subject variability in multiple domains. Person-specific measures to resolve its heterogeneity could focus on the variability in prefrontal integrity, which this study indexed as relative rostralization within the anterior cingulate cortex (ACC). Twenty-two schizophrenia cases and 11 controls underwent rigorous diagnostic procedures, symptom assessments (PANSS, Deficit Syndrome Scale) and intelligence testing. All underwent multivoxel MRSI at 3T to measure concentrations of the neuronal-specific biomarker N-acetylaspartate (NAA) in all of the voxels of the ACC. The concentrations of NAA were separately calculated and then compared across the rostral and caudal subregions to generate a rostralization ratio, which was examined with respect to the study measures and to which cases carried a missense coding polymorphism in PTPRG, SCL39A13, TGM5, NTRK1 or ARMS/KIDINS220. Rostralization significantly differed between cases and controls (χ(2)=18.40, ppredicted verbal intelligence (r=.469, p=.043) and trait negative symptoms (diminished emotional range (r=-.624, p=.010); curbed interests, r=-.558, p=.025). Rostralization was similar to controls for missense coding variants in TGM5 and was significantly greater than controls for the PTPRG variant carrier. This is the first study examining the utility of MRS metrics in describing pathological features at both group and person-specific levels. Rostralization predicted core illness features and differed based on which signaling genes were disrupted. While future studies in larger populations are needed, ACC rostralization appears to be a promising measure to reduce the heterogeneity of schizophrenia for genetic research and selecting cases for treatment studies. PMID:26925801

  1. Affective and cognitive prefrontal cortex projections to the lateral habenula in humans.

    Directory of Open Access Journals (Sweden)

    Karin eVadovičová

    2014-10-01

    Full Text Available Anterior insula (AI and dorsal ACC (dACC are known to process information about pain, loss, adversities, bad, harmful or suboptimal choices and consequences that threaten survival or well-being. Also pregenual ACC (pgACC is linked to loss and pain, being activated by sad thoughts and regrets. Lateral habenula (LHb is stimulated by predicted and received pain, discomfort, aversive outcome, loss. Its chronic stimulation makes us feel worse/low and gradually stops us choosing and moving for the suboptimal or punished choices, by direct and indirect (via rostromedial tegmental nucleus RMTg inhibition of DRN and VTA/SNc. The response selectivity of LHb neurons suggests their cortical input from affective and cognitive evaluative regions that make expectations about bad, unpleasant or suboptimal outcomes. Based on these facts we predicted direct dACC, pgACC and AI projections to LHb, which form part of an adversity processing circuit that learns to avoid bad outcomes by suppressing dopamine and serotonin signal. To test this connectivity we used Diffusion Tensor Imaging (DTI. We found dACC, pgACC, AI and caudolateral OFC projections to LHb. We predicted no corticohabenular projections from the reward processing regions: medial OFC (mOFC and ventral ACC (vACC because both respond most strongly to good, high valued stimuli and outcomes, inducing dopamine and serotonin release. This lack of LHb projections was confirmed for vACC and likely for mOFC. The surprising findings were the corticohabenular projections from the cognitive prefrontal cortex regions, known for flexible reasoning, planning and combining whatever information are relevant for reaching current goals. We propose that the prefrontohabenular projections provide a teaching signal for value-based choice behaviour, to learn to deselect, avoid or inhibit the potentially harmful, low valued or wrong choices, goals, strategies, predictions and ways of doing things, to prevent bad or suboptimal

  2. Prefrontal neuronal integrity predicts symptoms and cognition in schizophrenia and is sensitive to genetic heterogeneity

    Science.gov (United States)

    Malaspina, Dolores; Kranz, Thorsten M.; Heguy, Adriana; Harroch, Sheila; Mazgaj, Robert; Rothman, Karen; Berns, Adam; Hasan, Sumya; Antonius, Daniel; Goetz, Raymond; Lazar, Mariana; Chao, Moses V.; Gonen, Oded

    2016-01-01

    Schizophrenia is a genetically complex syndrome with substantial inter-subject variability in multiple domains. Person-specific measures to resolve its heterogeneity could focus on the variability in prefrontal integrity, which this study indexed as relative rostralization within the anterior cingulate cortex (ACC). Twenty-two schizophrenia cases and 11 controls underwent rigorous diagnostic procedures, symptom assessments (PANSS, Deficit Syndrome Scale) and intelligence testing. All underwent multivoxel MRSI at 3 T to measure concentrations of the neuronal-specific biomarker N-acetylaspartate (NAA) in all of the voxels of the ACC. The concentrations of NAA were separately calculated and then compared across the rostral and caudal subregions to generate a rostralization ratio, which was examined with respect to the study measures and to which cases carried a missense coding polymorphism in PTPRG, SCL39A13, TGM5, NTRK1 or ARMS/KIDINS220. Rostralization significantly differed between cases and controls (χ2 = 18.40, p < .0001). In cases, it predicted verbal intelligence (r = .469, p = .043) and trait negative symptoms (diminished emotional range (r = −.624, p = .010); curbed interests, r = −.558, p = .025). Rostralization was similar to controls for missense coding variants in TGM5 and was significantly greater than controls for the PTPRG variant carrier. This is the first study examining the utility of MRS metrics in describing pathological features at both group and person-specific levels. Rostralization predicted core illness features and differed based on which signaling genes were disrupted. While future studies in larger populations are needed, ACC rostralization appears to be a promising measure to reduce the heterogeneity of schizophrenia for genetic research and selecting cases for treatment studies. PMID:26925801

  3. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact.

    Science.gov (United States)

    Yeow, C H; Lee, P V S; Goh, J C H

    2010-01-19

    Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70 degrees flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8 degrees . There was a moderate linear relationship (Y=0.16X; R(2)=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior-posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.

  4. Age-related decreases in SYN levels associated with increases in MAP-2, apoE, and GFAP levels in the rhesus macaque prefrontal cortex and hippocampus

    OpenAIRE

    Haley, Gwendolen E.; Kohama, Steven G.; Urbanski, Henryk F.; Raber, Jacob

    2010-01-01

    Loss of synaptic integrity in the hippocampus and prefrontal cortex (PFC) may play an integral role in age-related cognitive decline. Previously, we showed age-related increases in the dendritic marker microtubule associated protein 2 (MAP-2) and the synaptic marker synaptophysin (SYN) in mice. Similarly, apolipoprotein E (apoE), involved in lipid transport and metabolism, and glial fibrillary acidic protein (GFAP), a glia specific marker, increase with age in rodents. In this study, we asses...

  5. The Influence of Music on Prefrontal Cortex during Episodic Encoding and Retrieval of Verbal Information: A Multichannel fNIRS Study

    OpenAIRE

    Laura Ferreri; Emmanuel Bigand; Patrick Bard; Aurélia Bugaiska

    2015-01-01

    Music can be thought of as a complex stimulus able to enrich the encoding of an event thus boosting its subsequent retrieval. However, several findings suggest that music can also interfere with memory performance. A better understanding of the behavioral and neural processes involved can substantially improve knowledge and shed new light on the most efficient music-based interventions. Based on fNIRS studies on music, episodic encoding, and the dorsolateral prefrontal cortex (PFC), this work...

  6. Cocaine-Induced Behavioral Sensitization Is Associated With Changes in the Expression of Endocannabinoid and Glutamatergic Signaling Systems in the Mouse Prefrontal Cortex

    OpenAIRE

    Blanco Calvo, Eduardo; Pavón, Francisco Javier; Palomino, Ana; Luque-Rojas, María Jesús; Serrano, Antonia; Rivera, Patricia; Bilbao, Ainhoa; Alen, Francisco; Vida, Margarita; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2014-01-01

    Abstract Background: Endocannabinoids modulate the glutamatergic excitatory transmission by acting as retrograde messengers. A growing body of studies has reported that both signaling systems in the mesocorticolimbic neural circuitry are involved in the neurobiological mechanisms underlying drug addiction. Methods: We investigated whether the expression of both endocannabinoid and glutamatergic systems in the prefrontal cortex (PFC) were altered by an acute and/or repeated cocaine administrat...

  7. Changes in integrin αv, vinculin and connexin43 in the medial prefrontal cortex in rats under single-prolonged stress

    OpenAIRE

    Li, Yana; Han, Fang; Shi, Yuxiu

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a stress-accociated mental disorder that occurs as a result of exposure to a traumatic event, with characteristic symptoms, including intrusive memories, hyperarousal and avoidance. The medial prefrontal cortex (mPFC) is known to be significantly involved in emotional adjustment, particularly introspection, inhibition of the amygdala and emotional memory. Previous structural neuroimaging studies have revealed that the mPFC of PTSD patients was signific...

  8. In the eye of the beholder: internally driven uncertainty of danger recruits the amygdala and dorsomedial prefrontal cortex.

    Science.gov (United States)

    Zaretsky, Michal; Mendelsohn, Avi; Mintz, Matti; Hendler, Talma

    2010-10-01

    Interpretation of emotional context is a pivotal aspect of understanding social situations. A critical component of this process is assessment of danger levels in the surrounding, which may have a direct effect on the organism's survival. The limbic system has been implicated in mediating this assessment. In situations of uncertainty, the evaluation process may also call for greater involvement of prefrontal cortex for decision-making and planning of an appropriate behavioral response. In the following study, morphed face images depicting emotional expressions were used to examine brain correlates of subjective uncertainty and perceptual ambiguity regarding danger. Fear and neutral expressions of 20 faces were morphed, and each of the face videos was divided into three sequences of equal length representing three levels of objective certainty regarding the expressions neutral, fear, and ambiguous. Sixteen subjects were scanned in a 1.5-T scanner while viewing 60 x 6-sec video sequences and were asked to report their subjective certainty regarding the level of danger surrounding the face on a four-level scale combining definite/maybe and danger/no-danger values. The individual responses were recorded and used as the basis for a "subjective protocol" versus an "objective protocol." Significant activations of the amygdala, dorsomedial prefrontal cortex, and dorsolateral prefrontal cortex were observed under the subjective protocol of internally driven uncertainty, but not under objective stimuli-based ambiguity. We suggest that this brain network is involved in generating subjective assessment of social affective cues. This study provides further support to the "relevance detector" theory of the amygdala and implicates its importance to behavior relying heavily on subjective assessment of danger, such as in the security domain context.

  9. Cocaine mummies and the pre-frontal reality

    International Nuclear Information System (INIS)

    Full text: The scientific community frames its world with facts - facts which have been subjected to tests and apparently proven themselves and are therefore proffered by scientists to mankind as things upon which it can rely to steer it safely through life. However, facts are a moveable feast. Time and fresh minds often prove scientific 'facts' wrong. The cocaine mummies seem to indicate that 2000 years ago the Ancient Egyptians had access to both tobacco and cocaine - something previously believed impossible. One part of the German and British scientific community has proven in laboratory tests that the mummies are telling the truth. The rest of the scientific community disputes that truth'. But if the laboratory tests are right, then humanity has to rewrite its entire history. Nuclear communicators have very little credibility with the general public because they represent scientists, who not only are often proven wrong by time but also cannot agree on the truth. At the same time, there are fundamental facts about the human condition that nuclear communicators ignore - to the detriment of their message. Fact: thinking is a learned skill, not an instinct. Fact: language is a learned skill, not an instinct. For humans to follow the positive nuclear argument they must both think and also understand language. But thinking is not the brain's first choice of operation. Fact: the pre-frontal lobe of the brain is the seat of mankind's primitive emotions, including the instinct of fear and the instinct for life. The pre-frontal lobe dominates the way man thinks and speaks. Therefore, nuclear communicators have to learn the skill of mapping their messages to the pre-frontal human reality. This presentation provides practical points for that learning and message mapping exercise. (author)

  10. Monetary reward suppresses anterior insula activity during social pain.

    Science.gov (United States)

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion.

  11. Monetary reward suppresses anterior insula activity during social pain.

    Science.gov (United States)

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. PMID:25964499

  12. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions

    Science.gov (United States)

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana

    2016-01-01

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions

  13. Monoaminergic modulation of emotional impact in the inferomedial prefrontal cortex

    DEFF Research Database (Denmark)

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    of the standard Empathy Picture System on a scale from +3 to -3. We then used regression analysis to identify sites in the ventromedial prefrontal cortex at which the two separately acquired measures, blood flow change and emotional impact of images, correlated significantly. The regression analysis identified......People assess the impact of emotionally loaded images differently. We define this impact as the average difference between individual ratings of standardized "pleasant" and "unpleasant" images. To determine the neuroanatomical correlate of a hypothetical interaction between emotional impact...

  14. Precuneus-prefrontal activity during awareness of visual verbal stimuli

    DEFF Research Database (Denmark)

    Kjaer, T W; Nowak, M; Kjær, Klaus Wilbrandt;

    2001-01-01

    Awareness is a personal experience, which is only accessible to the rest of world through interpretation. We set out to identify a neural correlate of visual awareness, using brief subliminal and supraliminal verbal stimuli while measuring cerebral blood flow distribution with H(2)(15)O PET....... Awareness of visual verbal stimuli differentially activated medial parietal association cortex (precuneus), which is a polymodal sensory cortex, and dorsolateral prefrontal cortex, which is thought to be primarily executive. Our results suggest participation of these higher order perceptual and executive...

  15. Role of prefrontal cortical calcium independent phospholipase A₂ in antidepressant-like effect of maprotiline.

    Science.gov (United States)

    Lee, Lynette Hui-Wen; Tan, Chay-Hoon; Shui, Guanghou; Wenk, Markus R; Ong, Wei-Yi

    2012-09-01

    There is increasing interest in the pathophysiology and neurochemistry of the prefrontal cortex (PFC) in depression. Blood flow and metabolism are decreased in the PFC of patients with depression compared to controls. Changes in long-chain polyunsaturated fatty acids (PUFAs) are also associated with depression. This study was conducted to elucidate a possible role of PFC activity of an enzyme involved in the release of docosahexaenoic acid (DHA), i.e. calcium-independent phospholipase A2 (iPLA₂), in the effects of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline, in mice. Treatment of Balb/C mice with maprotiline for 4 wk resulted in reduction in the level of behavioural despair, as determined by decreased immobility and increased climbing during the forced swim test. In contrast, mice treated with maprotiline plus bilateral prefrontal cortical injections of antisense oligonucleotide to iPLA₂, showed significantly increased immobility and decreased climbing, to levels comparable to saline-treated controls, indicating abolishment of the antidepressant-like effect of maprotiline. Lipidomic analyses showed significant decreases in phosphatidylcholine species containing long-chain PUFAs and increases in lysophosphatidylcholine after maprotiline treatment, indicating increased PLA₂ activity and endogenous release of eicosapentaenoic acid (EPA) or DHA after maprotiline treatment. These changes in lipid profiles were absent in mice that received maprotiline and PFC injections of antisense oligonucleotide to iPLA₂. Together, the results indicate that PFC iPLA₂ activity plays an important role in the antidepressant-like effect of maprotiline, possibly through endogenous release of long-chain PUFAs.

  16. Decreased regional cerebral glucose metabolism in the prefrontal regions in adults' with internet game addiction

    International Nuclear Information System (INIS)

    Internet Game Addiction (IGA) is known to be associated with poor decision-making and diminished impulse control; however, the underlying neural substrates of IGA have not been identified. To investigate the neural substrates of IGA, we compared regional cerebral glucose metabolism between adults with and without IGA, primarily in the prefrontal brain regions, which have been implicated in inhibitory control. We studied 10 right-handed participants (5 controls: male, 23.8±0.75 y, 5 IGAs: male, 22.6±2.42 y) with FDG PET. A standardized questionnaire was used to assess the severity of IGA. Before scanning, all subjects carried out a computerized version of the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART), as measures of behavioral inhibitory control. Statistical Parametric Mapping 2 (SPM2) was used to analyze differences in regional brain glucose metabolism between adults with and without IGA. Consistent with our predictions, compared to controls, significant reductions in FDG uptake in individuals with IGA were found in the bilateral orbitofrontal gyrus (BA 11, 47), bilateral inferior frontal gyrus (BA 44, 48), cingulate cortex (BA 24), and bilateral supplementary motor area (SMA) (BA 6); whereas increases were found in the bilateral hippocampus. Correlation analyses within the IGA group further showed that the level of glucose metabolism in the right orbitofrontal gyrus was marginally positively correlated with task scores in BART. Our results showed that IGA is associated with reduced glucose metabolism in the prefrontal regions involved in inhibitory control. This finding highlights dysfunctional inhibitory brain systems in individuals with IGA and offers implications for the development for therapeutic paradigms for IGA

  17. Care of children with anterior uveitis.

    Science.gov (United States)

    Kanski, J J

    1981-09-01

    The clinical features of 290 children with anterior uveitis are presented. The vast majority suffered from chronic uveitis. Specific uveitis entities in children include the syndrome of 'chronic iridocyclitis' in girls, heterochromic cyclitis, and pars planitis. Systemic associations include sarcoidosis, the Vogt-Harada-Koyanagi syndrome, and the seronegative arthritides (juvenile chronic arthritis, juvenile ankylosing spondylitis, psoriatic arthritis, and rarely Reiter's and Beçet's syndromes). Children with a pauciarticular onset of juvenile chronic arthritis, especially when combined with positive findings for antinuclear antibody, are at particular risk of developing chronic anterior uveitis. Most cases of chronic anterior uveitis can be controlled with topical corticosteroids. Those that are resistant to both topical and systemic corticosteroids may have to be treated with chlorambucil. The operation of lensectomy is a great advance in the management of complicated cataract. Secondary glaucoma is the most devastating complication of chronic anterior uveitis in children and responds poorly to therapy.

  18. Guideline on anterior cruciate ligament injury

    NARCIS (Netherlands)

    D.E. Meuffels (Duncan); M.T. Poldervaart (Michelle T.); R.L. Diercks (Ron L.); A.W.F.M. Fievez (Alex W.F.M.); T.W. Patt (Thomas W.); C.P. van der Hart (Cor P.); E.R. Hammacher (Eric); F. van der Meer (Fred); E.A. Goedhart (Edwin A.); A.F. Lenssen (Anton F); S.B. Muller-Ploeger (Sabrina B); M.A. Pols (Margreet); D.B.F. Saris (Daniel)

    2012-01-01

    textabstractThe Dutch Orthopaedic Association has a long tradition of development of practical clinical guidelines. Here we present the recommendations from the multidisciplinary clinical guideline working group for anterior cruciate ligament injury. The following 8 clinical questions were formulate

  19. Anterior Cervical Discectomy and Fusion with Plating

    Medline Plus

    Full Text Available Anterior Cervical Discectomy and Fusion with Plating Broward Health Medical Center Fort Lauderdale, FL November 17, 2011 I'm Dr. Matthew Moore, head of the Spine Care Center here at North Broward Medical Center. And ...

  20. Erlotinib-related bilateral anterior uveitis

    Science.gov (United States)

    Ali, Kashif; Kumar, Indu; Usman-Saeed, Muniba; Usman Saeed, Muhammad

    2011-01-01

    The authors report the case of a 68-year-old woman with secondary adenocarcinoma of the lungs from an unknown primary. Erlotinib was started which produced symptoms suggestive of uveitis. Erlotinib was stopped and restarted a month later at a lower dose, which resulted in severe bilateral anterior uveitis. The uveitis settled after stopping erlotinib and treatment with topical steroids and cycloplegics. To the best of the authors’ knowledge, this is the first case of erlotinib-related anterior uveitis. PMID:22694887

  1. Anterior cingulate cortex mediates the relationship between O3PUFAs and executive functions in APOE e4 carriers

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2015-05-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between biomarkers of diet and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between omega-3 polyunsaturated fatty acids (O3PUFAs and executive functions in at-risk (APOE e4 carriers, cognitively intact older adults. We hypothesized that higher levels of O3PUFAs are associated with better performance in a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter volume of a specific region thought to be important for cognitive flexibility, the anterior cingulate cortex. Methods: We examined 40 cognitively intact adults between the ages of 65 and 75 with the APOE e4 polymorphism to investigate the relationship between biomarkers of O3PUFAs, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter volume within regions of the prefrontal cortex. Results: A mediation analysis revealed that gray matter volume within the left rostral anterior cingulate cortex partially mediates the relationship between O3PUFA biomarkers and cognitive flexibility. Conclusion: These results suggest that the anterior cingulate cortex acts as a mediator of the relationship between O3PUFAs and cognitive flexibility in cognitively intact adults thought to be at risk for cognitive decline. Through their link to executive functions and neuronal measures of prefrontal cortex volume, O3PUFAs show potential as a nutritional therapy to prevent dysfunction in the aging brain.

  2. Anterior Eye Imaging with Optical Coherence Tomography

    Science.gov (United States)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  3. Esthetic management of anterior dental anomalies: A clinical case.

    Science.gov (United States)

    Chafaie, Amir

    2016-09-01

    Many types of dental abnormality can be observed in the anterior sectors, where they can cause genuine esthetic problems for our patients. While conventional prosthetic treatments offer the best solutions in terms of esthetic result and durability, they involve the sacrifice of significant quantities of mineralized dental material and cannot be undertaken before the periodontal tissues are mature. Other less invasive alternatives should be envisaged as transitional, or sometimes even permanent, solutions for the management of these anomalies in children and adolescents. This article discusses these options and presents a clinical case where composite resin veneers and microabrasion of the enamel were used to treat dental agenesis and enamel dysplasia. PMID:27498052

  4. Acute anterior uveitis as the initial presentation of alkaptonuria

    Directory of Open Access Journals (Sweden)

    Padhan P

    2009-01-01

    Full Text Available Alkaptonuria is a rare autosomal recessive metabolic disorder that may present with multi-system involvement such as ochronotic arthropathy, renal, urethral and prostatic calculi, cardiac valvular lesions and pigmentation of the skin, sclera, cartilage and other connective tissues. An association of the disease with uveitis has never been reported. We report the first case of alkaptonuria with ochronotic arthropathy presenting with recurrent acute anterior uveitis as the initial manifestation. The possible common link with the HLA-B27 gene is discussed.

  5. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    Directory of Open Access Journals (Sweden)

    Anders H. Andersen

    2015-01-01

    Full Text Available Parkinson’s disease (PD is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD patients. Participants included 18 ndPD patients (11 men, 7 women and 10 dPD patients (7 men, 3 women. Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN. DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients.

  6. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression.

    Science.gov (United States)

    Andersen, Anders H; Smith, Charles D; Slevin, John T; Kryscio, Richard J; Martin, Catherine A; Schmitt, Frederick A; Blonder, Lee X

    2015-01-01

    Parkinson's disease (PD) is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD) patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD) patients. Participants included 18 ndPD patients (11 men, 7 women) and 10 dPD patients (7 men, 3 women). Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC) on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN). DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients. PMID:26793404

  7. Prefrontal cortex self-stimulation and energy balance.

    Science.gov (United States)

    McGregor, I S; Atrens, D M

    1991-12-01

    The relation between sulcal prefrontal cortex (SPC) and medial prefrontal cortex (MPC) self-stimulation and energy balance was investigated in rats. SPC but not MPC self-stimulation induced feeding but not the gnawing of wooden blocks. SPC but not MPC self-stimulation enhanced weight gain over several weeks of exposure to stimulation. Food deprivation (48 hr but not 24 hr) increased SPC self-stimulation rates under a 5-s fixed-interval reinforcement schedule and decreased current thresholds for SPC self-stimulation. MPC self-stimulation was unaffected by food deprivation. Insulin (4 U/kg) and 2-deoxy-D-glucose (300 mg/kg) inhibited both SPC and MPC self-stimulation, probably through interfering with performance. Satiety induced by prolonged intake of a sweetened solution or deprivation-induced feeding moderately facilitated SPC self-stimulation. Overall, it appears that SPC but not MPC self-stimulation modulates, and is modulated by, energy balance. PMID:1777106

  8. Multimodal emotion perception after anterior temporal lobectomy

    Directory of Open Access Journals (Sweden)

    Valérie eMilesi

    2014-05-01

    Full Text Available In the context of emotion information processing, several studies have demonstrated the involvement of the amygdala in emotion perception, for unimodal and multimodal stimuli. However, it seems that not only the amygdala, but several regions around it, may also play a major role in multimodal emotional integration. In order to investigate the contribution of these regions to multimodal emotion perception, five patients who had undergone unilateral anterior temporal lobe resection were exposed to both unimodal (vocal or visual and audiovisual emotional and neutral stimuli. In a classic paradigm, participants were asked to rate the emotional intensity of angry, fearful, joyful, and neutral stimuli on visual analog scales. Compared with matched controls, patients exhibited impaired categorization of joyful expressions, whether the stimuli were auditory, visual, or audiovisual. Patients confused joyful faces with neutral faces, and joyful prosody with surprise. In the case of fear, unlike matched controls, patients provided lower intensity ratings for visual stimuli than for vocal and audiovisual ones. Fearful faces were frequently confused with surprised ones. When we controlled for lesion size, we no longer observed any overall difference between patients and controls in their ratings of emotional intensity on the target scales. Lesion size had the greatest effect on intensity perceptions and accuracy in the visual modality, irrespective of the type of emotion. These new findings suggest that a damaged amygdala, or a disrupted bundle between the amygdala and the ventral part of the occipital lobe, has a greater impact on emotion perception in the visual modality than it does in either the vocal or audiovisual one. We can surmise that patients are able to use the auditory information contained in multimodal stimuli to compensate for difficulty processing visually conveyed emotion.

  9. Revisiting the Role of the Prefrontal Cortex in the Pathophysiology of Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Halperin, Jeffrey M.; Schulz, Kurt P.

    2006-01-01

    Most neural models for the pathophysiology of attention-deficit/hyperactivity disorder (ADHD) have centered on the prefrontal cortex and its interconnections with the striatum and other subcortical structures. However, research only partially supports these models, and they do not correspond with the development of the prefrontal cortex and its…

  10. Increased stress vulnerability after a prefrontal cortex lesion in female rats

    NARCIS (Netherlands)

    Gerrits, M; Westenbroek, C; Fokkema, DS; Jongsma, ME; Den Boer, JA; Ter Horst, GJ

    2003-01-01

    Neuroimaging studies in patients suffering from affective disorders have shown decreased volume and reduced regional cerebral blood flow in multiple areas of the prefrontal cortex, including the medial prefrontal cortex and the orbitofrontal cortex. This aberrant brain activity is among other things

  11. Extracting a large live freely floating cysticercosis cyst from the anterior chamber of the eye using visco expression technique: A case report.

    Science.gov (United States)

    Singh, Satya Prakash; Rana, Jagriti; Dukre, Jagdish; Singh, Premala Anthony

    2016-01-01

    Ocular involvement by cysticercosis is uncommon and rare in the anterior chamber. It can give rise to iridocyclitis which can be potentially blinding to the patient. The management is usually surgical. We report a case of 18-year-old girl with large cysticercosis cyst in the anterior chamber. The cyst was removed intact by viscoexpression technique from the anterior chamber of the eye and the patient achieved visual acuity of 6/9 post-operatively. PMID:26949361

  12. Neurochemical metabolites in the medial prefrontal cortex in bipolar disorder A proton magnetic resonance spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Osman (O)zdel; Demet Kalayci; Gülfizar S(o)zeri-Varma; Yilmaz Kiro(g)lu; Selim Tümkaya; Tu(g)(c)e Toker-U(g)urlu

    2012-01-01

    The aim of this study was to investigate proton magnetic resonance spectroscopy metabolite values in the medial prefrontal cortex of individuals with euthymic bipolar disorder. The subjects consisted of 15 patients with euthymic bipolar disorder type I and 15 healthy controls. We performed proton magnetic resonance spectroscopy of the bilateral medial prefrontal cortex and measured levels of N-acetyl aspartate, choline and creatine. Levels of these three metabolites in the medial prefrontal cortex were found to be lower in patients with bipolar disorder compared with healthy controls. A positive correlation was found between illness duration and choline levels in the right medial prefrontal cortex. Our study suggests that during the euthymic period, there are abnormalities in cellular energy and membrane phospholipid metabolism in the medial prefrontal cortex, and that this may impair neuronal activity and integrity.

  13. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  14. Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self-regulation

    Directory of Open Access Journals (Sweden)

    Stefon evan Noordt

    2012-07-01

    Full Text Available The medial prefrontal cortex (MPFC is central to self-regulation and has been implicated in generating a cluster of event-related potential components, collectively referred to as medial frontal negativities (MFNs. These MFNs are elicited while individuals monitor behavioural and environmental consequences, and include the error-related negativity, Nogo N2, and the feedback-related negativity. A growing cognitive and affective neuroscience literature indicates that the activation of the anterior cingulate cortex and surrounding medial prefrontal regions during performance monitoring is not only influenced by task context, but that these patterns of activity also vary as a function of individual differences (e.g., personality, temperament, clinical and non-clinical symptomatology, socio-political orientation, and genetic polymorphisms, as well as interactions between individual differences and task context. In this review we survey the neuroscience literature on the relations between performance monitoring, personality, task context, and brain functioning with a focus on the MPFC. We relate these issues to the role of affect in the paradigms used to elicit performance-monitoring neural responses and highlight some of the theoretical and clinical implications of this research. We conclude with a discussion of the complexity of these issues and how some of the basic assumptions required for their interpretation may be clarified with future research.

  15. Under-air staining of the anterior capsule using Trypan blue with a 30 G needle

    Directory of Open Access Journals (Sweden)

    Giammaria D

    2013-01-01

    Full Text Available Daniele Giammaria,1 Michele Giannotti,2 Angelo Scopelliti,1 Giacomo Pellegrini,1 Bruno Giannotti11Azienda Ospedaliera Ospedali Riuniti Marche Nord, Fano, Italy; 2Catholic University of Rome, Rome, ItalyAbstract: The original technique of staining the anterior capsule of the lens with Trypan blue involves the injection of an air bubble in the anterior chamber. A drawback of this technique is the possible instability of the anterior chamber caused by the sudden exit of air when the dye is injected with the cannula through the side-port incision. Other staining techniques that use viscoelastic substances to increase the stability of the anterior chamber and to dose the injected dye have been described. The authors present an under-air staining technique of the anterior capsule using one drop of Trypan blue injected with a 30 G needle through the peripheral cornea. This procedure prevents the air bubble from escaping the anterior chamber and allows fast and selective staining of the capsule.Keywords: Trypan blue, staining technique, dye, cataract surgery, capsulorhexis

  16. Treatment of anterior decompression, bone grafting and internal fixation combined with coblation neucleoplasty for patients with cervical spondylosis involved multilevel%前路减压植骨内固定联合髓核成形术治疗多节段受累颈椎病

    Institute of Scientific and Technical Information of China (English)

    张非; 李青; 张爱明; 梁道臣

    2013-01-01

    目的:探讨前路减压植骨内固定联合等离子髓核成形术治疗多节段受累颈椎病的临床效果。方法回顾性分析2012年3月至12月中山市人民医院采用前路减压植骨内固定结合等离子髓核成形术治疗的30例多节段受累颈椎病患者的临床资料,采用日本骨科学会(JOA)评分对术后临床症状改善情况进行评价。结果30例患者均获得有效随访,随访时间4~9个月(平均6.8个月)。患者术前不适症状均有不同程度改善,无神经功能加重及内固定松动、骨笼脱出等严重并发症发生。术后3个月JOA评分为(14±1)分,较术前的(10±2)分明显改善(t =8.143,P=0.000),JOA改善率为45%。结论前路减压植骨内固定结合等离子髓核成形术治疗多节段受累颈椎病近期效果稳定,并发症少。%Objective To explore clinical effect of anterior decompression, bone grafting and internal fixation combined with coblation neucleoplasty in the treatment of multilevel cervical spondylosis. Methods Clinical data of 30 patients with multilevel cervical spondylosis from March 2012 to December 2012 were retrospectively analyzed and all of them were treated by mono-segmented cervical anterior decompression, bone grafting and internal fixation combined with coblation neucleoplasty in Zhongshan People's Hospital. Clinical effects were evaluated by Japanese Orthopaedic Association (JOA) score. Results All patients obtained follow-up with the average time of 6.8 months (4-9 months). Discomfort symptoms were improved after the operation. No nerve function aggravation occurred, also, no serious complications such as internal fixation loosening or cage pull-out had happened. Compared to preoperative JOA score, JOA score at 3 months postoperatively was improved from (10 ± 2) to (14 ± 1) (t = 8.143,P = 0.000), JOA improvement rate was 45%. Conclusions Mono-segmented cervical anterior decompression, bone graft fusion

  17. Differences in time course activation of dorsolateral prefrontal cortex associated with low or high risk choicesin a gambling task

    Directory of Open Access Journals (Sweden)

    Stefano eBembich

    2014-06-01

    Full Text Available Prefrontal cortex plays an important role in decision making (DM, supporting choices in the ordinary uncertainty of everyday life. To assess DM in an unpredictable situation, a playing card task, such as the Iowa Gambling Task (IGT, has been proposed. This task is supposed to specifically test emotion-based learning, linked to the integrity of the ventromedial prefrontal cortex (VMPFC. However, the dorsolateral prefrontal cortex (DLPFC has demonstrated a role in IGT performance too. Our aim was to study, by multichannel near-infrared spectroscopy, the contribution of DLPFC to the IGT execution over time. We tested the hypothesis that low and high risk choices would differentially activate DLPFC, as IGT execution progressed. We enrolled 11 healthy adults. To identify DLPFC activation associated with IGT choices, we compared regional differences in oxy-haemoglobin variation, from baseline to the event. The time course of task execution was divided in four periods, each one consisting of 25 choices, and DLPFC activation was distinctly analyzed for low and high risk choices in each period. We found different time courses in DLPFC activation, associated with low or high risk choices. During the first period, a significant DLPFC activation emerged with low risk choices, whereas, during the second period, we found a cortical activation with high risk choices. Then, DLPFC activation decreased to non-significant levels during the third and fourth period. This study shows that DLPFC involvement in IGT execution is differentiated over time and according to choice risk level. DLPFC is activated only in the first half of the task, earlier by low risk and later by high risk choices. We speculate that DLPFC may sustain initial and more cognitive functions, such as attention shifting and response inhibition. The lack of DLPFC activation, as the task progresses, may be due to VMPFC activation, not detectable by fNIRS, which takes over the IGT execution in its

  18. Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy

    Science.gov (United States)

    Moghimi, Saba; Kushki, Azadeh; Power, Sarah; Guerguerian, Anne Marie; Chau, Tom

    2012-04-01

    Emotional responses can be induced by external sensory stimuli. For severely disabled nonverbal individuals who have no means of communication, the decoding of emotion may offer insight into an individual’s state of mind and his/her response to events taking place in the surrounding environment. Near-infrared spectroscopy (NIRS) provides an opportunity for bed-side monitoring of emotions via measurement of hemodynamic activity in the prefrontal cortex, a brain region known to be involved in emotion processing. In this paper, prefrontal cortex activity of ten able-bodied participants was monitored using NIRS as they listened to 78 music excerpts with different emotional content and a control acoustic stimuli consisting of the Brown noise. The participants rated their emotional state after listening to each excerpt along the dimensions of valence (positive versus negative) and arousal (intense versus neutral). These ratings were used to label the NIRS trial data. Using a linear discriminant analysis-based classifier and a two-dimensional time-domain feature set, trials with positive and negative emotions were discriminated with an average accuracy of 71.94% ± 8.19%. Trials with audible Brown noise representing a neutral response were differentiated from high arousal trials with an average accuracy of 71.93% ± 9.09% using a two-dimensional feature set. In nine out of the ten participants, response to the neutral Brown noise was differentiated from high arousal trials with accuracies exceeding chance level, and positive versus negative emotional differentiation accuracies exceeded the chance level in seven out of the ten participants. These results illustrate that NIRS recordings of the prefrontal cortex during presentation of music with emotional content can be automatically decoded in terms of both valence and arousal encouraging future investigation of NIRS-based emotion detection in individuals with severe disabilities.

  19. Ocular Coherence Tomography in the Evaluation of Anterior Eye Injuries in Space Flight

    Science.gov (United States)

    Fer, Dan M.; Law, Jennifer; Wells, Julia

    2017-01-01

    While Ocular Coherence Tomography (OCT) is not a first-line modality to evaluate anterior eye structures terrestrially, it is a resource already available on the International Space Station (ISS) that can be used in medical contingencies that involve the anterior eye. With remote guidance and subject matter expert (SME) support from the ground, a minimally trained crewmember can now use OCT to evaluate anterior eye pathologies on orbit. OCT utilizes low-coherence interferometry to produce detailed cross-sectional and 3D images of the eye in real time. Terrestrially, it has been used to evaluate macular pathologies and glaucoma. Since 2013, OCT has been used onboard the ISS as one part of a suite of hardware to evaluate the Visual Impairment/Intracranial Pressure risk faced by astronauts, specifically assessing changes in the retina and choroid during space flight. The Anterior Segment Module (ASM), an add-on lens, was also flown for research studies, providing an opportunity to evaluate the anterior eye in real time if clinically indicated. Anterior eye pathologies that could be evaluated using OCT were identified. These included corneal abrasions and ulcers, scleritis, and acute angle closure glaucoma. A remote guider script was written to provide ground specialists with step-by-step instructions to guide ISS crewmembers, who do not get trained on the ASM, to evaluate the anterior eye. The instructions were tested on novice subjects and/or operators, whose feedback was incorporated iteratively. The final remote guider script was reviewed by SME optometrists and NASA flight surgeons. The novel application of OCT technology to space flight allows for the acquisition of objective data to diagnose anterior eye pathologies when other modalities are not available. This demonstrates the versatility of OCT and highlights the advantages of using existing hardware and remote guidance skills to expand clinical capabilities in space flight.

  20. The impact of combined meniscus tear on quality of life after anterior cruciate ligament reconstruction

    Directory of Open Access Journals (Sweden)

    Harhaji Vladimir V.

    2016-01-01

    Full Text Available Introduction. An anterior cruciate ligament injury represents a significant epidemiological problem worldwide, especially due to involving young, sporty and active working-age population. This study has been conducted in order to compare the quality of life of patients who had isolated anterior cruciate ligament tear and of those who suffered from an associated meniscal injury. Material and Methods. This study included 185 patients who had undergone reconstruction of the anterior cruciate ligament at the Department of Orthopedic Surgery and Traumatology in Novi Sad from January 1st, 2012 to December 31st, 2012. The patients were divided into 2 groups: group A consisted of patients who had anterior cruciate ligament reconstruction only, and group B consisted of patients who had partial meniscectomy in addition to the anterior cruciate ligament reconstruction. The follow-up period was 12 months. Results. Distribution of patients by gender was significantly in favor of men. In our study, 146 patients were male and 39 patients were female. The average age of patients was 26.1 years overall (16-55 years, being 26.9 years for men, and 23.3 years for female patients. Out of 185 patients, 110 had an isolated anterior cruciate ligament injury, while 75 suffered both meniscus, internal or external, and anterior cruciate ligament injury. Conclusion. The comparison of the quality of life of patients in both groups showed no statistically significant difference. Therefore, we were not able to prove the hypothesis about the superior quality of life of those patients who had suffered from a ruptured anterior cruciate ligament only.

  1. Sex differences in volume and structural covariance of the anterior and posterior hippocampus.

    Science.gov (United States)

    Persson, Jonas; Spreng, R Nathan; Turner, Gary; Herlitz, Agneta; Morell, Arvid; Stening, Eva; Wahlund, Lars-Olof; Wikström, Johan; Söderlund, Hedvig

    2014-10-01

    Sex differences in episodic and spatial memory are frequently observed, suggesting that there may be sex-related structural differences in the hippocampus (HC). Earlier findings are inconsistent, possibly due to a known variability along the hippocampal longitudinal axis. Here, we assessed potential sex differences in hippocampal volume and structural covariance with the rest of the brain in young men and women (N=76), considering the anterior (aHC) and posterior (pHC) hippocampus separately. Women exhibited a larger pHC than men adjusted for brain size. Using partial least squares, we identified two significant patterns of structural covariance of the aHC and pHC. The first included brain areas that covaried positively and negatively in volume with both the aHC and pHC in men, but showed greater covariance with the aHC than pHC in women. The second pattern revealed distinct structural covariance of the aHC and pHC that showed a clear difference between men and women: in men the pHC showed reliable structural covariance with the medial and lateral parietal lobes and the prefrontal cortex, whereas in women the aHC showed reliable structural covariance with the anterior temporal lobe bilaterally. This pattern converges with resting state functional connectivity of the aHC and pHC and suggests that these hippocampal sections interact with different brain regions, consistent with a division of labor with regards to episodic and spatial memory. Our findings lend support to a division of the HC into an anterior and posterior part and identify sex as a potential moderating factor when investigating hippocampal structure and connectivity.

  2. [Surgical anatomy of the anterior mediastinum].

    Science.gov (United States)

    Biondi, Alberto; Rausei, Stefano; Cananzi, Ferdinando C M; Zoccali, Marco; D'Ugo, Stefano; Persiani, Roberto

    2007-01-01

    The mediastinum is located from the thoracic inlet to the diaphragm between the left and right pleural cavities and contains vital structures of the circulatory, respiratory, digestive, and nervous system. Over the years, since there are no fascial or anatomic planes, anatomists and radiologists have suggested various schemes for subdividing the mediastinum and several anatomical and radiological classifications of the mediastinum are reported in the literature. The most popular of these scheme divides medistinum, for purposes of description, into two parts: an upper portion, above the upper level of the pericardium, which is named the superior mediastinum; and a lower portion, below the upper level of the pericardium. For clinical purposes, the mediastinum may be subdivided into three major areas, i.e. anterior, middle, and posterior compartments. The anterior mediastinum is defined as the region posterior to the sternum and anterior to the heart and brachiocephalic vessels. It extends from the thoracic inlet to the diaphragm and contains the thymus gland, fat, and lymph nodes. This article will review surgical anatomy of the anterior mediastinum and will focus on the surgical approch to anterior mediastinum and thymic diseases.

  3. Prefrontal cortical neuregulin-ErbB modulation of inhibitory control in rats.

    Science.gov (United States)

    Loos, Maarten; Schetters, Dustin; Hoogeland, Myrthe; Spijker, Sabine; de Vries, Taco J; Pattij, Tommy

    2016-06-15

    Impulse control disturbances are key features of various neuropsychiatric and neurological disorders, such as attention-deficit/hyperactivity disorder, drug addiction, Parkinson disease and schizophrenia. Whereas over the last years accumulating evidence has highlighted monoaminergic modulation of the processes underlying impulse control, investigating novel mechanisms beyond monoamines may provide new intervention strategies to ameliorate impulse control disturbances. Recent work has associated the neuregulin (Nrg)-ErbB pathway with several neuropsychiatric diseases, as well as indicated its involvement in murine measures of impulse control. The aim of the present study was to investigate whether this Nrg-ErbB signaling pathway also modulates impulsive action in rats. To this end, a group of rats was trained in the 5-choice serial reaction time task (5-CSRTT), an operant paradigm that provides measures of visuospatial attention and inhibitory control processes. Upon stable baseline performance, the ErbB tyrosine kinase receptor inhibitor JNJ-28871063 (JNJ) was intracranially infused into the medioprefrontal cortex prior to test sessions. Results showed that JNJ dose-dependently improved measures of impulsive action. Importantly, other measures in the 5-CSRTT reflecting visuospatial attention or aspects of motivational behavior were not altered by JNJ. In conclusion, the present data strengthen a role for the Nrg-ErbB4 pathway in the prefrontal cortex in cognitive functioning, and in particular point towards involvement in the processes underlying impulse control. PMID:27079641

  4. Neuronal categorization and discrimination of social behaviors in primate prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Joji Tsunada

    Full Text Available It has been implied that primates have an ability to categorize social behaviors between other individuals for the execution of adequate social-interactions. Since the lateral prefrontal cortex (LPFC is involved in both the categorization and the processing of social information, the primate LPFC may be involved in the categorization of social behaviors. To test this hypothesis, we examined neuronal activity in the LPFC of monkeys during presentations of two types of movies of social behaviors (grooming, mounting and movies of plural monkeys without any eye- or body-contacts between them (no-contacts movies. Although the monkeys were not required to categorize and discriminate the movies in this task, a subset of neurons sampled from the LPFC showed a significantly different activity during the presentation of a specific type of social behaviors in comparison with the others. These neurons categorized social behaviors at the population level and, at the individual neuron level, the majority of the neurons discriminated each movie within the same category of social behaviors. Our findings suggest that a fraction of LPFC neurons process categorical and discriminative information of social behaviors, thereby contributing to the adaptation to social environments.

  5. Structural Variation within the Amygdala and Ventromedial Prefrontal Cortex Predict Memory for Impressions in Older Adults

    Directory of Open Access Journals (Sweden)

    Brittany Shane Cassidy

    2012-08-01

    Full Text Available Research has shown that lesions to regions involved in social and emotional cognition disrupt socioemotional processing and memory. We investigated how structural variation of regions involved in socioemotional memory (ventromedial prefrontal cortex [vmPFC], amygdala, as opposed to a region implicated in explicit memory (hippocampus, affected memory for impressions in young and older adults. Anatomical MRI scans for fifteen young and fifteen older adults were obtained and reconstructed to gather information about cortical thickness and subcortical volume. Young adults had greater amygdala and hippocampus volumes than old, and thicker left vmPFC than old, although right vmPFC thickness did not differ across the age groups. Participants formed behavior-based impressions and responded to interpersonally meaningful, social but interpersonally irrelevant, or non-social prompts, and completed a memory test. Results showed that greater left amygdala volume predicted enhanced overall memory for impressions in older but not younger adults. Increased right vmPFC thickness in older, but not younger, adults correlated with enhanced memory for impressions formed in the interpersonally meaningful context. Hippocampal volume was not predictive of social memory in young or older adults. These findings demonstrate the importance of structural variation in regions linked to socioemotional processing in the retention of impressions with age, and suggest that the amygdala and vmPFC play an integral role when encoding and retrieving social information.

  6. Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning

    Directory of Open Access Journals (Sweden)

    Dash Pramod K

    2006-10-01

    Full Text Available Abstract Background The extent of similarity between consolidation and reconsolidation is not yet fully understood. One of the differences noted is that not every brain region involved in consolidation exhibits reconsolidation. In trace fear conditioning, the hippocampus and the medial prefrontal cortex (mPFC are required for consolidation of long-term memory. We have previously demonstrated that trace fear memory is susceptible to infusion of the protein synthesis inhibitor anisomycin into the hippocampus following recall. In the present study, we examine whether protein synthesis inhibition in the mPFC following recall similarly results in the observation of reconsolidation of trace fear memory. Results Targeted intra-mPFC infusions of anisomycin or vehicle were performed immediately following recall of trace fear memory at 24 hours, or at 30 days, following training in a one-day or a two-day protocol. The present study demonstrates three key findings: 1 trace fear memory does not undergo protein synthesis dependent reconsolidation in the PFC, regardless of the intensity of the training, and 2 regardless of whether the memory is recent or remote, and 3 intra-mPFC inhibition of protein synthesis immediately following training impaired remote (30 days memory. Conclusion These results suggest that not all structures that participate in memory storage are involved in reconsolidation. Alternatively, certain types of memory-related information may reconsolidate, while other components of memory may not.

  7. [Does Prefrontal Noninvasive Brain Stimulation Alleviating Symptoms in Depression and Schizophrenia Impact Mood and Emotion Processing?].

    Science.gov (United States)

    Psomiades, Marion; Fonteneau, Clara; Suaud-Chagny, Marie-Françoise; Haesebaert, Frédéric; Brunelin, Jérôme

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are noninvasive brain stimulation techniques currently used as therapeutic tools in various psychiatric conditions. Applied over the dorsolateral prefrontal cortex (DLPFC), they showed their efficacy in reducing drug-resistant symptoms in patients with major depression and in patients with schizophrenia with predominantly negative symptoms. The DLPFC is a brain structure involved in the expression of these symptoms as well as in other dysfunctional functions observed in theses conditions such as emotional processes. The goal of this review is to establish whether or not a link exists between clinical improvements and modulation of emotional processes following the stimulation of the DLPFC in both conditions. The data collected show that improved emotional processes is not linked to a clinical improvement neither in patients with depression nor in patients with negative schizophrenia. Our results suggests that although sharing common brain structures, the brain networks involved in both symptoms and in emotional processes would be separate. PMID:27570958

  8. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study.

    Science.gov (United States)

    Yan, Yulong; Wei, Rizhen; Zhang, Qian; Jin, Zhenlan; Li, Ling

    2016-07-25

    Although previous studies have shown that fronto-parietal attentional networks play a crucial role in bottom-up and top-down processes, the relative contribution of the frontal and parietal cortices to these processes remains elusive. Here we used transcranial magnetic stimulation (TMS) to interfere with the activity of the right dorsal prefrontal cortex (DLPFC) or the right posterior parietal cortex (PPC), immediately prior to the onset of the visual search display. Participants searched a target defined by color and orientation in "pop-out" or "search" condition. Repetitive TMS was applied to either the right DLPFC or the right PPC on different days. Performance was evaluated at baseline (no TMS), during TMS, and after TMS (Post-session). RTs were prolonged when TMS was applied over the DLPFC in the search, but not in the pop-out condition, relative to the baseline session. In comparison, TMS over the PPC prolonged RTs in the pop-out condition, and when the target appeared in the left visual field for the search condition. Taken together these findings provide evidence for a differential role of DLPFC and PPC in the visual search, indicating that DLPFC has a specific involvement in the "search" condition, while PPC is mainly involved in detecting "pop-out" targets.

  9. Effects of selective REM sleep deprivation on prefrontal gamma activity and executive functions.

    Science.gov (United States)

    Corsi-Cabrera, M; Rosales-Lagarde, A; del Río-Portilla, Y; Sifuentes-Ortega, R; Alcántara-Quintero, B

    2015-05-01

    Given that the dorsolateral prefrontal cortex is involved in executive functions and is deactivated and decoupled from posterior associative regions during REM sleep, that Gamma temporal coupling involved in information processing is enhanced during REM sleep, and that adult humans spend about 90 min of every 24h in REM sleep, it might be expected that REM sleep deprivation would modify Gamma temporal coupling and have a deteriorating effect on executive functions. We analyzed EEG Gamma activity and temporal coupling during implementation of a rule-guided task before and after REM sleep deprivation and its effect on verbal fluency, flexible thinking and selective attention. After two nights in the laboratory for adaptation, on the third night subjects (n=18) were randomly assigned to either selective REM sleep deprivation effectuated by awakening them at each REM sleep onset or, the same number of NREM sleep awakenings as a control for unspecific effects of sleep interruptions. Implementation of abstract rules to guide behavior required greater activation and synchronization of Gamma activity in the frontopolar regions after REM sleep reduction from 20.6% at baseline to just 3.93% of total sleep time. However, contrary to our hypothesis, both groups showed an overall improvement in executive task performance and no effect on their capacity to sustain selective attention. These results suggest that after one night of selective REM sleep deprivation executive functions can be compensated by increasing frontal activation and they still require the participation of supervisory control by frontopolar regions.

  10. Prefrontal lobotomy on Evita was done for behavior/personality modification, not just for pain control.

    Science.gov (United States)

    Nijensohn, Daniel E

    2015-07-01

    Eva Perón, best known as Evita, underwent a prefrontal lobotomy in 1952. Although the procedure was said to have been performed to relieve the pain of metastatic cancer, the author carried out a search for evidence that suggests that the procedure was prescribed to decrease violence and to modify Evita's behavior and personality, and not just for pain control. To further elucidate the circumstances surrounding the treatment of this well-known historic figure, the author reviewed the development of the procedure known as prefrontal lobotomy and its three main indications: management of psychiatric illness, control of intractable pain from terminal cancer, and mind control and behavior/personality modification. The role of pioneering neurosurgeons in the development of prefrontal lobotomy, particularly in Connecticut and at Yale University, was also studied, and the political and historical conditions in Argentina in 1952 and to the present were analyzed. Evita was the wife of Juan Perón, who was the supreme leader of the Peronist party as well as president of Argentina. In 1952, however, the Peronist government in Argentina was bicephalic because Evita led the left wing of the party and ran the Female Peronist Party and the Eva Perón Foundation. She was followed by a group of hardcore loyalists interested in accelerating the revolution. Evita was also suffering from metastatic cervical cancer, and her illness increased her anxiety and moved her to purchase weapons to start training workers' militias. Although the apparent purpose was to fight her husband's enemies, this was done without his knowledge. She delivered fiery political speeches and wrote incendiary documents that would have led to a fierce clash in the country at that time. Notwithstanding the disreputable connotation of conspiracy theories, evidence was found of a potentially sinister political conspiracy, led by General Perón, to quiet down his wife Evita and modify her behavior/personality to

  11. Esthetic crown lengthening for maxillary anterior teeth.

    Science.gov (United States)

    Sonick, M

    1997-08-01

    In the maxillary anterior region, the gingival labial margin position is an important parameter in the achievement of an ideal smile. The relationship between the periodontium and the restoration is critical if gingival health and esthetics are to be achieved. Periodontal therapy is a necessary and useful adjunct when any anterior restoration is undertaken. Anterior surgical crown lengthening may be undertaken to avoid restorative margin impingement on the biologic width. Crown lengthening is also used to alter the gingival labial profiles. This article discusses the esthetic parameters of ideal gingival labial positions and presents a classification of crown-lengthening procedures and the procedure for a two-stage crown-lengthening technique. The two-stage crown-lengthening technique is surgically precise because healing is predictable.

  12. THYMOLIPOMA: A RARE, LARGE ANTERIOR MEDIASTINAL MASS

    Directory of Open Access Journals (Sweden)

    Premananth

    2015-07-01

    Full Text Available Thymolipoma is a rare benign tumor of anterior mediastinum, described by Lange in 1916. 1 Less than 200 cases have been reported worldwide. 2 It accounts for 2% to 9% of thymic tumours. 3 We report a case of thymolipoma in a 37 year s old male patient, who pre sented with cough, dys p nea, chest pain for 2 months. CT THORAX revealed a large anterior mediastinal mass extending in to right hemithorax arising from thymus gland, with multiple areas of fat density, no significant mediastinal adenopathy, complete collap se of right middle and lower lobe suggestive of thymolipoma. CT guided biopsy suggestive of thymic neoplasm. The tumour was removed enbloc through surgery. Histopathological examination of large mass lesion confirmed thymolipoma. We report this case to emp hasize the importance of considering thymolipoma as a differential diagnosis of anterior mediastinal mass, although rare.

  13. Not so "silent":The human prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Prakash Narain Tandon

    2013-01-01

    Full Text Available Little was known about the human prefrontal cortex till recently. It was thus labeled as the "silent area," "uncommitted cortex." It not only constitutes the largest component of the human brain but is the latest evolutionary addition to the mammalian brain. It endows the human beings with qualities that differentiate humans from all other animals. During the last couple of decades the advent of modern electrophysiological and imaging (functional magnetic resonance imaging, proton emission tomography, SPECT techniques have provided a wealth of insight into its role in memory, thought, emotions, moral judgment, social behavior, evaluating rewards, and assessing its fairness or otherwise and above all self-awareness. This brief review summarize the recent significant observations on its functions and connectivity which would interest the cognitive scientists and clinicians alike.

  14. Cognitive findings after transient global amnesia: role of prefrontal cortex.

    Science.gov (United States)

    Le Pira, Francesco; Giuffrida, Salvatore; Maci, Tiziana; Reggio, Ester; Zappalà, Giuseppe; Perciavalle, Vincenzo

    2005-01-01

    The aim of this study is to verify, after recovery, the presence of specific patterns of cognitive dysfunctions in Transient Global Amnesia (TGA). Fourteen patients with the diagnosis of TGA were submitted to a battery of neuropsychological tests and compared to a matched control group. We found significant qualitative and quantitative differences between TGA patients and controls in the California Verbal Learning Test (CLVT) and Rey-Osterrieth Complex Figure Test. Our data support the presence of selective cognitive dysfunctions after the clinical recovery. Moreover, for Verbal Fluency, Digit Span Backward, and Number of Clusters in the CVLT short-term memory test, the relation resulted as positively related with the temporal interval from the TGA episode. Reduction of categorical learning, attention, and qualitative alterations of spatial strategy seem to postulate a planning defect due to a prefrontal impairment. PMID:16422663

  15. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    Directory of Open Access Journals (Sweden)

    Boes Aaron D

    2011-12-01

    Full Text Available Abstract Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process.

  16. Sleep deprivation alters valuation signals in the ventromedial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Camilo eLibedinsky

    2011-10-01

    Full Text Available Even a single night of total sleep-deprivation (SD can have dramatic effects on economic decision making. Here we tested the novel hypothesis that SD influences economic decisions by altering the valuation process. Using functional magnetic resonance imaging (fMRI we identified value signals related to the anticipation and the experience of monetary and social rewards (attractive female faces. We then derived decision value signals that were predictive of each participant’s willingness to exchange money for brief views of attractive faces in an independent market task. Strikingly, SD altered decision value signals in ventromedial prefrontal cortex (VMPFC in proportion to the corresponding change in economic preferences. These changes in preference were independent of the effects of SD on attention and vigilance. Our results provide novel evidence that signals in VMPFC track the current state of the individual, and thus reflect not static but constructed preferences.

  17. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  18. Dimensional change card sort performance associated with age-related differences in functional connectivity of lateral prefrontal cortex.

    Science.gov (United States)

    Ezekiel, Fredrick; Bosma, Rachael; Morton, J Bruce

    2013-07-01

    The Dimensional Change Card Sort (DCCS) is a standard procedure for assessing executive functioning early in development. In the task, participants switch from sorting cards one way (e.g., by color) to sorting them a different way (e.g., by shape). Traditional accounts associate age-related changes in DCCS performance with circumscribed changes in lateral prefrontal cortex (lPFC) functioning, but evidence of age-related differences in the modulation of lPFC activity by switching is mixed. The current study therefore tested for possible age-related differences in functional connectivity of lPFC with regions that comprise a larger cognitive control network. Functional magnetic resonance imaging (fMRI) data collected from children and adults performing the DCCS were analyzed by means of independent components analysis (ICA). The analysis revealed several important age-related differences in functional connectivity of lPFC. In particular, lPFC was more strongly connected with the anterior cingulate, inferior parietal cortex, and the ventral tegmental area in adults than in children. Theoretical implications are discussed. PMID:23328350

  19. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  20. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex.

    Science.gov (United States)

    Smith, Elliot H; Banks, Garrett P; Mikell, Charles B; Cash, Syndey S; Patel, Shaun R; Eskandar, Emad N; Sheth, Sameer A

    2015-12-01

    The feedback-related negativity (FRN) is a commonly observed potential in scalp electroencephalography (EEG) studies related to the valence of feedback about a subject's performance. This potential classically manifests as a negative deflection in medial frontocentral EEG contacts following negative feedback. Recent work has shown prominence of theta power in the spectral composition of the FRN, placing it within the larger class of "frontal midline theta" cognitive control signals. Although the dorsal anterior cingulate cortex (dACC) is thought to be the cortical generator of the FRN, conclusive data regarding its origin and propagation are lacking. Here we examine intracranial electrophysiology from the human medial and lateral prefrontal cortex (PFC) to better understand the anatomical localization and communication patterns of the FRN. We show that the FRN is evident in both low- and high-frequency local field potentials (LFPs) recorded on electrocorticography. The FRN is larger in medial compared with lateral PFC, and coupling between theta band phase and high-frequency LFP power is also greater in medial PFC. Using Granger causality and conditional mutual information analyses, we provide evidence that feedback-related information propagates from medial to lateral PFC, and that this information transfer oscillates with theta-range periodicity. These results provide evidence for the dACC as the cortical source of the FRN, provide insight into the local computation of frontal midline theta, and have implications for reinforcement learning models of cognitive control. PMID:26631465

  1. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex.

    Science.gov (United States)

    Smith, Elliot H; Banks, Garrett P; Mikell, Charles B; Cash, Syndey S; Patel, Shaun R; Eskandar, Emad N; Sheth, Sameer A

    2015-12-01

    The feedback-related negativity (FRN) is a commonly observed potential in scalp electroencephalography (EEG) studies related to the valence of feedback about a subject's performance. This potential classically manifests as a negative deflection in medial frontocentral EEG contacts following negative feedback. Recent work has shown prominence of theta power in the spectral composition of the FRN, placing it within the larger class of "frontal midline theta" cognitive control signals. Although the dorsal anterior cingulate cortex (dACC) is thought to be the cortical generator of the FRN, conclusive data regarding its origin and propagation are lacking. Here we examine intracranial electrophysiology from the human medial and lateral prefrontal cortex (PFC) to better understand the anatomical localization and communication patterns of the FRN. We show that the FRN is evident in both low- and high-frequency local field potentials (LFPs) recorded on electrocorticography. The FRN is larger in medial compared with lateral PFC, and coupling between theta band phase and high-frequency LFP power is also greater in medial PFC. Using Granger causality and conditional mutual information analyses, we provide evidence that feedback-related information propagates from medial to lateral PFC, and that this information transfer oscillates with theta-range periodicity. These results provide evidence for the dACC as the cortical source of the FRN, provide insight into the local computation of frontal midline theta, and have implications for reinforcement learning models of cognitive control.

  2. Prenatal malnutrition leads to deficits in attentional set shifting and decreases metabolic activity in prefrontal subregions that control executive function.

    Science.gov (United States)

    McGaughy, Jill A; Amaral, Ana C; Rushmore, R Jarrett; Mokler, David J; Morgane, Peter J; Rosene, Douglas L; Galler, Janina R

    2014-01-01

    Globally, over 25% of all children under the age of 5 years experience malnutrition leading to cognitive and emotional impairments that can persist into adulthood and beyond. We use a rodent model to determine the impact of prenatal protein malnutrition on executive functions in an attentional set-shifting task and metabolic activity in prefrontal cortex (PFC) subregions critical to these behaviors. Long-Evans dams were provided with a low (6% casein) or adequate (25% casein) protein diet 5 weeks before mating and during pregnancy. At birth, the litters were culled to 8 pups and fostered to control dams on the 25% casein diet. At postnatal day 90, prenatally malnourished rats were less able to shift attentional set and reverse reward contingencies than controls, demonstrating cognitive rigidity. Naive same-sexed littermates were assessed for regional brain activity using the metabolic marker (14)C-2-deoxyglucose (2DG). The prenatally malnourished rats had lower metabolic activity than controls in prelimbic, infralimbic, anterior cingulate, and orbitofrontal cortices, but had comparable activity in the nearby piriform cortex and superior colliculus. This study demonstrates that prenatal protein malnutrition in a well-described animal model produces cognitive deficits in tests of attentional set shifting and reversal learning, similar to findings of cognitive inflexibility reported in humans exposed to early childhood malnutrition. PMID:25342495

  3. [Subjective memory complaints, personality and prefrontal symptomatology in young adults].

    Science.gov (United States)

    Pedrero-Pérez, Eduardo J; Ruiz-Sánchez de León, José M

    2013-10-01

    Introduccion. El presente trabajo explora dos cuestiones relacionadas con la aparicion de quejas subjetivas de memoria en adultos jovenes: la posibilidad de que dichas quejas sean resultado de deficits atencionales y ejecutivos, y, por otro lado, si determinadas caracteristicas de la personalidad propician y modulan la expresion clinica de las quejas. Sujetos y metodos. Se administro el Memory Everyday Failures, version española, el inventario de sintomas prefrontales y el inventario del temperamento y el caracter-revisado a una muestra de 1.132 participantes (900 de poblacion general y 232 en tratamiento por adiccion a drogas). Se exploro la correlacion entre variables de las quejas de memoria, del funcionamiento prefrontal en la vida diaria y de las dimensiones de la personalidad propuestas por Cloninger. Se estudiaron relaciones de causalidad entre las variables mediante metodos estructurales. Resultados. Se observa una fuerte correlacion entre las quejas cognitivas y la sintomatologia prefrontal, lo que sugiere que las quejas son, en realidad, resultado de una inadecuada gestion atencional y ejecutiva que propicia los errores cotidianos. Se aprecia tambien una relacion con gran tamaño del efecto entre las quejas cognitivas y la baja autodireccion. Esta dimension de la personalidad presenta una importante capacidad predictiva sobre la aparicion y la intensidad de las quejas, bien directamente, bien modulada por otras dimensiones, especialmente la evitacion del daño. Conclusiones. Los datos apoyan la idea de que las quejas de memoria son producto de la autopercepcion de fallos y errores cotidianos provocados a nivel atencional y ejecutivo –aunque son tenidos por olvidos mnesicos–, y que la expresion clinica de dichas quejas esta modulada por un perfil de la personalidad.

  4. Inferior Frontal Gyrus Activity Triggers Anterior Insula Response to Emotional Facial Expressions

    NARCIS (Netherlands)

    Jabbi, Mbemba; Keysers, Christian

    2008-01-01

    The observation of movies of facial expressions of others has been shown to recruit similar areas involved in experiencing one's own emotions: the inferior frontal gyrus (IFG). the anterior insula and adjacent frontal operculum (IFO). The Causal link bet between activity in these 2 regions, associat

  5. Multidisciplinary approach for a patient with dentinogenesis imperfecta and anterior trauma.

    Science.gov (United States)

    Roh, Won-Jong; Kang, Seung-Goo; Kim, Su-Jung

    2010-09-01

    Dentinogenesis imperfecta is an inherited dentinal dysplasia involving several risks for orthodontic treatment. This case report describes the multidisciplinary treatment of a 17-year-old girl whose Class II Division 1 malocclusion was complicated by dentinogenesis imperfecta type II and maxillary anterior trauma.

  6. The Role of the Dorsal Anterior Cingulate in Evaluating Behavior for Achieving Gains and Avoiding Losses

    Science.gov (United States)

    Magno, Elena; Simoes-Franklin, Cristina; Robertson, Ian H.; Garavan, Hugh

    2009-01-01

    Effective goal-directed behavior relies on a network of regions including anterior cingulate cortex and ventral striatum to learn from negative outcomes in order to improve performance. We employed fMRI to determine if this frontal-striatal system is also involved in instances of behavior that do not presume negative circumstances. Participants…

  7. A randomized trial of treatment for acute anterior cruciate ligament tears

    DEFF Research Database (Denmark)

    Frobell, Richard B; Roos, Ewa M; Roos, Harald P;

    2010-01-01

    BACKGROUND: The optimal management of a torn anterior cruciate ligament (ACL) of the knee is unknown. METHODS: We conducted a randomized, controlled trial involving 121 young, active adults with acute ACL injury in which we compared two strategies: structured rehabilitation plus early ACL...

  8. Anatomia microcirúgica da substâcia perfurada anterior basal humana Microsurgical anatomy of the human basal anterior perforated substance

    Directory of Open Access Journals (Sweden)

    Arlindo Alfredo Silveira D’Ávila

    2006-06-01

    mainly involving middle cerebral and anterior choroidal arteries. The precise understanding of these vessels has surgical and clinical implications in the management of vascular and tumoral maladies related to the anterior perforated substance.

  9. Dual (type IV left anterior descending artery

    Directory of Open Access Journals (Sweden)

    Ozdil Baskan

    2013-11-01

    Full Text Available Congenital coronary artery anomalies are uncommon. Dual left anterior descending coronary artery (LAD is defined as the presence of two LADs within the anterior interventricular sulcus (AIVS, and is classified into four types. Type IV is a rarely reported subtype and differs from the others, with a long LAD originating from the right coronary artery (RCA. Dual LAD is a benign coronary artery anomaly, but should be recognised especially before interventional procedures. With the increasing use of multidedector computed tomography (MDCT, it is essential for radiologists to be aware of this entity and the cross-sectional findings.

  10. ANTERIOR OSTEOPHYTE IDENTIFICATION IN CERVICAL VERTEBRAE

    Directory of Open Access Journals (Sweden)

    A. T. Chougale

    2011-06-01

    Full Text Available Radiologist always examines X-ray to determine abnormal changes in cervical, lumbar & thoracic vertebrae. Osteophyte (bony growth may appear at the corners of vertebrae so that vertebral shape becomes abnormal. This paper presents the idea from Image processing techniques such as customised Hough transform which will be used for segmentation which should be independent of rotation, scale, noise & shape. This segmented image will be then used for computing size invariant, convex hull based features to differentiate normal cervical vertebrae from cervical vertebrae containing anterior osteophyte. This approach effectively finds anterior osteophytes in cervical vertebrae.

  11. Changes in self-regulation-related prefrontal activities in eating disorders: a near infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Chihiro Sutoh

    Full Text Available OBJECTIVE: The aim of this study is to clarify the symptomatology of the eating disorders examining the prefrontal function and activity associated with self-regulation among participants with or without eating disorders. METHODS: Ten patients with anorexia nervosa, fourteen with bulimia nervosa, and fourteen healthy control participants performed two cognitive tasks assessing self-regulatory functions, an auditorily distracted word fluency task and a rock-paper-scissors task under the measurements on prefrontal oxyhemoglobin concentration with near infrared spectroscopy. The psychiatric symptoms of patient groups were assessed with several questionnaires. RESULTS: Patients with bulimia nervosa showed decreased performances and prefrontal hyper activation patterns. Prefrontal activities showed a moderate negative correlation with task performances not in the patient groups but only in the healthy participants. The prefrontal activities of the patient groups showed positive correlations with some symptom scale aspects. CONCLUSIONS: The decreased cognitive abilities and characteristic prefrontal activation patterns associated with self-regulatory functions were shown in patients with bulimia nervosa, which correlated with their symptoms. These findings suggest inefficient prefrontal self-regulatory function of bulimia nervosa that associate with its symptoms.

  12. How the brain predicts people's behavior in relation to rules and desires. Evidence of a medio-prefrontal dissociation.

    Science.gov (United States)

    Corradi-Dell'Acqua, Corrado; Turri, Francesco; Kaufmann, Laurence; Clément, Fabrice; Schwartz, Sophie

    2015-09-01

    Forming and updating impressions about others is critical in everyday life and engages portions of the dorsomedial prefrontal cortex (dMPFC), the posterior cingulate cortex (PCC) and the amygdala. Some of these activations are attributed to "mentalizing" functions necessary to represent people's mental states, such as beliefs or desires. Evolutionary psychology and developmental studies, however, suggest that interpersonal inferences can also be obtained through the aid of deontic heuristics, which dictate what must (or must not) be done in given circumstances. We used fMRI and asked 18 participants to predict whether unknown characters would follow their desires or obey external rules. Participants had no means, at the beginning, to make accurate predictions, but slowly learned (throughout the experiment) each character's behavioral profile. We isolated brain regions whose activity changed during the experiment, as a neural signature of impression updating: whereas dMPFC was progressively more involved in predicting characters' behavior in relation to their desires, the medial orbitofrontal cortex and the amygdala were progressively more recruited in predicting rule-based behavior. Our data provide evidence of a neural dissociation between deontic inference and theory-of-mind (ToM), and support a differentiation of orbital and dorsal prefrontal cortex in terms of low- and high-level social cognition.

  13. Monitoring of prefrontal cortex activation during verbal n-back task with 24-channel functional NIRS imager

    Science.gov (United States)

    Li, Chengjun; Gong, Hui; Gan, Zhuo; Luo, Qingming

    2005-01-01

    Human prefrontal cortex (PFC) helps mediate working memory (WM), a system that is used for temporary storage and manipulation of information and is involved with many higher-level cognitive functions. Here, we report a functional near-infrared spectroscopy (NIRS) study on the PFC activation caused by verbal WM task. For investigating the effect of memory load on brain activation, we adopted the "n-back" task in which subjects must decide for each present letter whether it matches the letter presented n items back in sequence. 27 subjects (ages 18-24, 13 females) participated in the work. Concentration changes in oxy-Hb (HbO2), deoxy-Hb (Hb), and total-Hb (HbT) in the subjects" prefrontal cortex were monitored by a 24-channel functional NIRS imager. The cortical activations and deactivations were found in left ventrolateral PFC and bilateral dorsolateral PFC. As memory load increased, subjects showed poorer behavioral performance as well as monotonically increasing magnitudes of the activations and deactivations in PFC.

  14. Plasticity in the rat prefrontal cortex: linking gene expression and an operant learning with a computational theory.

    Directory of Open Access Journals (Sweden)

    Maximiliano Rapanelli

    Full Text Available The plasticity in the medial Prefrontal Cortex (mPFC of rodents or lateral prefrontal cortex in non human primates (lPFC, plays a key role neural circuits involved in learning and memory. Several genes, like brain-derived neurotrophic factor (BDNF, cAMP response element binding (CREB, Synapsin I, Calcium/calmodulin-dependent protein kinase II (CamKII, activity-regulated cytoskeleton-associated protein (Arc, c-jun and c-fos have been related to plasticity processes. We analysed differential expression of related plasticity genes and immediate early genes in the mPFC of rats during learning an operant conditioning task. Incompletely and completely trained animals were studied because of the distinct events predicted by our computational model at different learning stages. During learning an operant conditioning task, we measured changes in the mRNA levels by Real-Time RT-PCR during learning; expression of these markers associated to plasticity was incremented while learning and such increments began to decline when the task was learned. The plasticity changes in the lPFC during learning predicted by the model matched up with those of the representative gene BDNF. Herein, we showed for the first time that plasticity in the mPFC in rats during learning of an operant conditioning is higher while learning than when the task is learned, using an integrative approach of a computational model and gene expression.

  15. TATA box-binding protein gene is associated with risk for schizophrenia, age at onset and prefrontal function.

    Science.gov (United States)

    Ohi, K; Hashimoto, R; Yasuda, Y; Kiribayashi, M; Iike, N; Yoshida, T; Azechi, M; Ikezawa, K; Takahashi, H; Morihara, T; Ishii, R; Tagami, S; Iwase, M; Okochi, M; Kamino, K; Kazui, H; Tanaka, T; Kudo, T; Takeda, M

    2009-06-01

    Schizophrenia is a common polygenic disease in distinct populations, while spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disorder. Both diseases involve psychotic symptoms. SCA17 is caused by an expanded polyglutamine tract in the TATA box-binding protein (TBP) gene. In the present study, we investigated the association between schizophrenia and CAG repeat length in common TBP alleles with fewer than 42 CAG repeats in a Japanese population (326 patients with schizophrenia and 116 healthy controls). We found that higher frequency of alleles with greater than 35 CAG repeats in patients with schizophrenia compared with that in controls (p = 0.042). We also examined the correlation between CAG repeats length and age at onset of schizophrenia. We observed a negative correlation between the number of CAG repeats in the chromosome with longer CAG repeats out of two chromosomes and age at onset of schizophrenia (p = 0.020). We further provided evidence that TBP genotypes with greater than 35 CAG repeats, which were enriched in patients with schizophrenia, were significantly associated with hypoactivation of the prefrontal cortex measured by near-infrared spectroscopy during the tower of Hanoi, a task of executive function (right PFC; p = 0.015, left PFC; p = 0.010). These findings suggest possible associations of the genetic variations of the TBP gene with risk for schizophrenia, age at onset and prefrontal function. PMID:19566714

  16. How the brain predicts people's behavior in relation to rules and desires. Evidence of a medio-prefrontal dissociation.

    Science.gov (United States)

    Corradi-Dell'Acqua, Corrado; Turri, Francesco; Kaufmann, Laurence; Clément, Fabrice; Schwartz, Sophie

    2015-09-01

    Forming and updating impressions about others is critical in everyday life and engages portions of the dorsomedial prefrontal cortex (dMPFC), the posterior cingulate cortex (PCC) and the amygdala. Some of these activations are attributed to "mentalizing" functions necessary to represent people's mental states, such as beliefs or desires. Evolutionary psychology and developmental studies, however, suggest that interpersonal inferences can also be obtained through the aid of deontic heuristics, which dictate what must (or must not) be done in given circumstances. We used fMRI and asked 18 participants to predict whether unknown characters would follow their desires or obey external rules. Participants had no means, at the beginning, to make accurate predictions, but slowly learned (throughout the experiment) each character's behavioral profile. We isolated brain regions whose activity changed during the experiment, as a neural signature of impression updating: whereas dMPFC was progressively more involved in predicting characters' behavior in relation to their desires, the medial orbitofrontal cortex and the amygdala were progressively more recruited in predicting rule-based behavior. Our data provide evidence of a neural dissociation between deontic inference and theory-of-mind (ToM), and support a differentiation of orbital and dorsal prefrontal cortex in terms of low- and high-level social cognition. PMID:25820129

  17. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Directory of Open Access Journals (Sweden)

    Stefania Balzarotti

    Full Text Available The dorsolateral prefrontal cortex (DLPFC is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  18. Parent Involvement.

    Science.gov (United States)

    LaCrosse, Ed

    The paper discusses the rationale and guidelines for parent involvement in HCEEP (Handicapped Children's Early Education Program) projects. Ways of assessing parents' needs are reviewed, as are four types of services to meet the identified needs: parent education, direct participation, parent counseling, and parent provided programs. Materials and…

  19. Tendinopatia do compartimento anterior do tornozelo Tendinopathy of the anterior compartment of the ankle

    Directory of Open Access Journals (Sweden)

    Antonio Egydio de Carvalho Junior

    2010-01-01

    Full Text Available OBJETIVO: Análise retrospectiva da etiopatogenia, diagnóstico e opções de tratamento nos casos de tendinopatias do compartimento anterior do tornozelo (TCAT. MÉTODO: No período de setembro de 1998 a fevereiro de 2009, 13 pacientes foram operados por tendinopatia do compartimento anterior do tornozelo. A casuística constou de 10 pacientes do sexo masculino e três do feminino. O lado direito foi acometido em 12 pés e um do esquerdo. A média de idade foi de 35 anos (15-67. A etiologia foi traumática em oito pacientes e em cinco, degenerativa (atraumática. O tempo médio do diagnóstico ao tratamento foi de 19 meses (1-60 e o seguimento foi de 34 meses (4-127. O diagnóstico foi feito através da história e exame clínico. A ressonância magnética foi realizada em nove pacientes para estadiamento e planejamento. O tratamento cirúrgico foi personalizado para cada caso (sinovectomia, ressecção de ventre muscular, solidarização com o tendão adjacente e enxerto livre de tendão semitendíneo. Para a avaliação dos resultados foram utilizadas as escalas: 1 graduação subjetiva de satisfação, 2 AOFAS e 3 Maryland. RESULTADO: Em relação à escala de graduação subjetiva de satisfação, 12 pacientes satisfeitos e um paciente insatisfeito. A média da escala AOFAS foi de 80 pontos, a média da escala Maryland foi de 86 pontos. CONCLUSÃO: O tratamento cirúrgico é eficaz para recuperação funcional. As técnicas cirúrgicas devem ser personalizadas. A opção do enxerto livre de tendão semitendíneo é eficiente nas falhas maiores que cinco centímetros.OBJECTIVE: To carry out a retrospective analysis of the etiopathogeny, diagnosis and therapeutic options in cases of tendinopathies of the anterior compartment of the ankle. METHOD: 13 patients underwent surgery between September 1998 and February 2009; ten men and three women. The right side was involved in twelve patients and the left in one. The averaging age was 35 years of

  20. Perawatan Ortodontik Gigi Anterior Berjejal dengan Tulang Alveolar yang Tipis

    Directory of Open Access Journals (Sweden)

    Miesje K. Purwanegara

    2015-09-01

    Full Text Available Anterior teeth movement in orthodontic treatment is limited to labiolingual direction by very thin alveolar bone. An uncontrolled anterior tooth movement to labiolingual direction can cause alveolar bone perforation at its root segment. This case report is to remind us that alveolar bone thickness limits orthodontc tooth movement. A case of crowded anterior teeth with thin alveolar bone in malocclusion I is reported. This case is treated using adgewise orthodontic appliance. Protraction of anterior teeth is anticipated due to thin alveolar bone on the anterior surface. The conclusion is although the alveolar bone surrounding the crowded anterior teeth is thin, by controlling the movement the teeth reposition is allowed.

  1. Management of Anterior Abdominal Wall Defect Using a Pedicled Tensor Fascia Lata Flap: A Case Report

    Directory of Open Access Journals (Sweden)

    K. D. Ojuka

    2012-01-01

    Full Text Available Degloving injuries to anterior abdominal wall are rare due to the mechanism of injury. Pedicled tensor fascia lata is known to be a versatile flap with ability to reach the lower anterior abdomen. A 34-year-old man who was involved in a road traffic accident presented with degloving injury and defect at the left inguinal region, sigmoid colon injury, and scrotal bruises. At investigation, he was found to have pelvic fracture. The management consisted of colostomy and tensor fascia lata to cover the defect at reversal. Though he developed burst abdomen on fifth postoperative day, the flap healed with no complications.

  2. Notching and anterior beveling on fossil horse incisors: Indicators of domestication?

    Science.gov (United States)

    Rogers, Richard A.; Rogers, Laurine A.

    1988-01-01

    One of the lines of evidence cited for possible late Pleistocene human control of horses has been the presence of notching and anterior beveling on horse incisor teeth recovered from upper and middle Paleolithic sites in Europe. Similar forms of wear have been found on the incisor teeth of wild horses from early and middle Pleistocene deposits in North America. Notching appears partly due to malocclusion and chipping. The causes of beveling are less certain but may involve the eating of bark. Therefore, the presence of notching and anterior beveling on horse incisor teeth may not be a reliable indicator of human control.

  3. Management of Anterior Abdominal Wall Defect Using a Pedicled Tensor Fascia Lata Flap: A Case Report

    OpenAIRE

    K. D. Ojuka; Nangole, F.; M. Ngugi

    2012-01-01

    Degloving injuries to anterior abdominal wall are rare due to the mechanism of injury. Pedicled tensor fascia lata is known to be a versatile flap with ability to reach the lower anterior abdomen. A 34-year-old man who was involved in a road traffic accident presented with degloving injury and defect at the left inguinal region, sigmoid colon injury, and scrotal bruises. At investigation, he was found to have pelvic fracture. The management consisted of colostomy and tensor fascia lata to cov...

  4. ANTERIOR COLUMN FRACTURES OF THE ACETABULUM

    NARCIS (Netherlands)

    HEEG, M; OTTER, N; KLASEN, HJ

    1992-01-01

    We retrospectively reviewed 20 patients at three to 19 years after displaced anterior fracture-dislocations of the hip. Eighteen of them were treated by traction, after ensuring that the femoral head was adequately reduced beneath the undisrupted part of the weight-bearing dome. Two required operati

  5. Anterior retropharyngeal approach to the cervical spine.

    Directory of Open Access Journals (Sweden)

    Behari S

    2001-10-01

    Full Text Available The anterior retropharyngeal approach (ARPA accesses anteriorly situated lesions from the clivus to C3, in patients with a short neck, Klippel Feil anomaly or those in whom the C2-3 and C3-4 disc spaces are situated higher in relation to the hyoid bone and the angle of mandible where it is difficult to approach this region using the conventional anterior approach, due to the superomedial obliquity of the trajectory. The ARPA avoids the potentially contaminated oropharyngeal cavity providing for a simultaneous arthrodesis and instrumentation during the primary surgical procedure. Experience of five patients with high cervical extradural compression, who underwent surgery using this approach between 1994 and 1999, is presented. The surgical procedures included excision of ossified posterior longitudinal ligament (n=2; excision of prolapsed disc and osteophytes (n=2; and excision of a vertebral body neoplasm (n=1. Following the procedure, vertebral arthrodesis was achieved using an iliac graft in all the patients. Only one patient with vertebral body neoplasm required an additional anterior cervical plating procedure for stabilisation the construct. The complications included transient respiratory insufficiency and neurological deterioration in two patients; and, pharyngeal fistula and donor site infection in one patient.

  6. Anterior process fractures of the calcaneus

    Energy Technology Data Exchange (ETDEWEB)

    Renfrew, D.L.; El-Khoury, G.Y.

    1985-07-01

    Fractures of the anterior process of the calcaneus are often missed. This error follows from the tendency to focus exclusively on the mortise and malleoli when a history of ankle trauma is supplied. Seven patients with this fracture are presented. The anatomy, mechanism of injury, clinical presentation, and the radiographic features of this injury are discussed.

  7. Anorgasmia in anterior spinal cord syndrome.

    OpenAIRE

    Berić, A; Light, J K

    1993-01-01

    Three male and two female patients with anorgasmia and dissociated sensory loss due to an anterior spinal cord syndrome are described. Clinical, neurophysiological and quantitative sensory evaluation revealed preservation of the large fibre dorsal column functions from the lumbosacral segments with concomitant severe dysfunction or absence of the small fibre neospinothalamic mediated functions. These findings indicate a role for the spinothalamic system in orgasm.

  8. Causes of anterior cruciate ligament injuries

    Directory of Open Access Journals (Sweden)

    Ristić Vladimir

    2010-01-01

    Full Text Available In order to prevent anterior cruciate ligament injuries it is necessary to define risk factors and to analyze the most frequent causes of injuries - that being the aim of this study. The study sample consisted of 451 surgically treated patients, including 400 sportsmen (65% of them being active and 35% recreational sportsmen, 29% female and 71% male; of whom 90% were younger than 35. Sports injuries, as the most frequent cause of anterior cruciate ligament injuries, were recorded in 88% of patients (non-contact ones in 78% and contact ones in 22%, injuries occurring in everyday activities in 11% and in traffic in 1%. Among sportsmen, reconstruction of the anterior cruciate ligament was most frequently performed in football players (48%, then in handball players (22%, basketball players (13%, volleyball players (8%, martial arts fighters (4%. However, the injury incidence was the highest among the active basketball players (1 injured among 91 active players. Type of footwear, warming up before the activity, genetic predisposition and everyday therapy did not have a significant influence on getting injured. Anterior cruciate ligament injuries happened three times more often during matches, in the middle and at the end of a match and training session (79%, at landing after the jump or when changing direction of movement (75% without a contact with other competitors, on dry surfaces (79%, among not so well prepared sportsmen.

  9. Anterior Chamber Live Loa loa: Case Report.

    Science.gov (United States)

    Kagmeni, G; Cheuteu, R; Bilong, Y; Wiedemann, P

    2016-01-01

    We reported a case of unusual intraocular Loa loa in a 27-year-old patient who presented with painful red eye. Biomicroscopy revealed a living and active adult worm in the anterior chamber of the right eye. After surgical extraction under local anesthesia, parasitological identification confirmed L. loa filariasis. PMID:27441005

  10. Anterior Chamber Live Loa loa: Case Report

    Science.gov (United States)

    Kagmeni, G.; Cheuteu, R.; Bilong, Y.; Wiedemann, P.

    2016-01-01

    We reported a case of unusual intraocular Loa loa in a 27-year-old patient who presented with painful red eye. Biomicroscopy revealed a living and active adult worm in the anterior chamber of the right eye. After surgical extraction under local anesthesia, parasitological identification confirmed L. loa filariasis. PMID:27441005

  11. Treatment for acute anterior cruciate ligament tear

    DEFF Research Database (Denmark)

    Frobell, Richard B; Roos, Harald P; Roos, Ewa M;

    2013-01-01

    To compare, in young active adults with an acute anterior cruciate ligament (ACL) tear, the mid-term (five year) patient reported and radiographic outcomes between those treated with rehabilitation plus early ACL reconstruction and those treated with rehabilitation and optional delayed ACL...

  12. Tunnel widening in anterior cruciate ligament reconstruction

    DEFF Research Database (Denmark)

    Clatworthy, M G; Annear, P; Bulow, J U;

    1999-01-01

    We report a prospective series evaluating the incidence and degree of tunnel widening in a well-matched series of patients receiving a hamstring or patella tendon graft for anterior cruciate ligament (ACL) deficiency. We correlated tunnel widening with clinical factors, knee scores, KT-1000...

  13. Guideline on anterior cruciate ligament injury

    NARCIS (Netherlands)

    Meuffels, Duncan E; Poldervaart, Michelle T; Diercks, Ronald; Fievez, Alex W F M; Patt, Thomas W; Hart, Cor P van der; Hammacher, Eric R; Meer, Fred van der; Goedhart, Edwin A; Lenssen, Anton F; Muller-Ploeger, Sabrina B; Pols, Margreet A; Saris, Daniel B F

    2012-01-01

    The Dutch Orthopaedic Association has a long tradition of development of practical clinical guidelines. Here we present the recommendations from the multidisciplinary clinical guideline working group for anterior cruciate ligament injury. The following 8 clinical questions were formulated by a steer

  14. Novel Insights into Anterior Cruciate Ligament Injury

    NARCIS (Netherlands)

    D.E. Meuffels (Duncan)

    2011-01-01

    textabstractAnterior cruciate ligament (ACL) injury is one of the most common sports injuries of the knee. ACL reconstruction has become, standard orthopaedic practice worldwide with an estimated 175,000 reconstructions per year in the United States.6 The ACL remains the most frequently studied liga

  15. Treatment for acute anterior cruciate ligament tear

    DEFF Research Database (Denmark)

    Frobell, Richard B; Roos, Harald P; Roos, Ewa M;

    2015-01-01

    STUDY QUESTION: In young active adults with an acute anterior cruciate ligament (ACL) rupture, do patient reported or radiographic outcomes after five years differ between those treated with rehabilitation plus early ACL reconstruction and those treated with rehabilitation and optional delayed ACL...

  16. Enhancing multiple object tracking performance with noninvasive brain stimulation: A causal role for the anterior intraparietal sulcus

    Directory of Open Access Journals (Sweden)

    Eric Joshua Blumberg

    2015-02-01

    Full Text Available Multiple object tracking (MOT is a complex task recruiting a distributed network of brain regions. There are also marked individual differences in MOT performance. A positive causal relationship between the anterior intraparietal sulcus (AIPS, an integral region in the MOT attention network and inter-individual variation in MOT performance has not been previously established. The present study used transcranial direction current stimulation (tDCS, a form of non-invasive brain stimulation, in order to examine such a causal link. Active anodal stimulation was applied to the right AIPS and the left dorsolateral prefrontal cortex (and sham stimulation, an area associated with working memory (but not MOT while participants completed a MOT task. Stimulation to the right AIPS significantly improved MOT accuracy more than the other two conditions. The results confirm a causal role of the AIPS in the MOT task and illustrate that transcranial direct current stimulation has the ability to improve MOT performance.

  17. Medial profrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study.

    Directory of Open Access Journals (Sweden)

    Yamamoto,Shin

    2006-02-01

    Full Text Available

    Previous EEG studies have shown that transcendental meditation (TM increases frontal and central alpha activity. The present study was aimed at identifying the source of this alpha activity using magnetoencephalography (MEG and electroencephalography (EEG simultaneously on eight TM practitioners before, during, and after TM. The magnetic field potentials corresponding to TM-induced alpha activities on EEG recordings were extracted, and we attempted to localize the dipole sources using the multiple signal classification (MUSIC algorithm, equivalent current dipole source analysis, and the multiple spatio-temporal dipole model. Since the dipoles were mapped to both the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC, it is suggested that the mPFC and ACC play an important role in brain activity induced by TM.

  18. Resting state fMRI reveals a default mode dissociation between retrosplenial and medial prefrontal subnetworks in ASD despite motion scrubbing

    Directory of Open Access Journals (Sweden)

    Tuomo eStarck

    2013-11-01

    Full Text Available In resting state fMRI studies of autism spectrum disorders (ASDs decreased frontal-posterior functional connectivity is a persistent finding. However, the picture of the default mode network hypoconnectivity remains incomplete. In addition, the functional connectivity analyses have been shown to be susceptible even to subtle motion. Default mode network (DMN hypoconnectivity in ASD has been specifically called for re-evaluation with stringent motion correction, which we aimed to conduct by so-called scrubbing. A rich set of default mode subnetworks can be obtained with high dimensional group independent component analysis (ICA which can potentially provide more detailed view of the connectivity alterations. We compared the DMN connectivity in high-functioning adolescents with ASDs to typically developing controls using ICA dual-regression with decompositions from typical to high dimensionality. Dual-regression analysis within DMN subnetworks did not reveal alterations but connectivity between anterior and posterior DMN subnetworks was decreased in ASD. The results were very similar with and without motion scrubbing thus indicating the efficacy of the conventional motion correction methods combined with ICA dual-regression. Specific dissociation between DMN subnetworks was revealed on high ICA dimensionality, where networks centered at the medial prefrontal cortex and retrosplenial cortex showed weakened coupling in adolescents with ASDs compared to typically developing control participants. Generally the results speak for disruption in the anterior-posterior DMN interplay on the network level whereas local functional connectivity in DMN seems relatively unaltered.

  19. Resting state fMRI reveals a default mode dissociation between retrosplenial and medial prefrontal subnetworks in ASD despite motion scrubbing

    Science.gov (United States)

    Starck, Tuomo; Nikkinen, Juha; Rahko, Jukka; Remes, Jukka; Hurtig, Tuula; Haapsamo, Helena; Jussila, Katja; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jansson-Verkasalo, Eira; Pauls, David L.; Ebeling, Hanna; Moilanen, Irma; Tervonen, Osmo; Kiviniemi, Vesa J.

    2013-01-01

    In resting state functional magnetic resonance imaging (fMRI) studies of autism spectrum disorders (ASDs) decreased frontal-posterior functional connectivity is a persistent finding. However, the picture of the default mode network (DMN) hypoconnectivity remains incomplete. In addition, the functional connectivity analyses have been shown to be susceptible even to subtle motion. DMN hypoconnectivity in ASD has been specifically called for re-evaluation with stringent motion correction, which we aimed to conduct by so-called scrubbing. A rich set of default mode subnetworks can be obtained with high dimensional group independent component analysis (ICA) which can potentially provide more detailed view of the connectivity alterations. We compared the DMN connectivity in high-functioning adolescents with ASDs to typically developing controls using ICA dual-regression with decompositions from typical to high dimensionality. Dual-regression analysis within DMN subnetworks did not reveal alterations but connectivity between anterior and posterior DMN subnetworks was decreased in ASD. The results were very similar with and without motion scrubbing thus indicating the efficacy of the conventional motion correction methods combined with ICA dual-regression. Specific dissociation between DMN subnetworks was revealed on high ICA dimensionality, where networks centered at the medial prefrontal cortex and retrosplenial cortex showed weakened coupling in adolescents with ASDs compared to typically developing control participants. Generally the results speak for disruption in the anterior-posterior DMN interplay on the network level whereas local functional connectivity in DMN seems relatively unaltered. PMID:24319422

  20. Comparing angiography features of inferior versus anterior myocardial infarction regarding severity and extension in a cohort of Iranian patients

    Directory of Open Access Journals (Sweden)

    Elham Hakki Kazazi

    2011-01-01

    Full Text Available Background: The location of acute myocardial infarction (MI is an important prognostic factor for risk stratification of patients with first ST-segment elevation MI (STEMI. The main goal of this study was to compare the severity and extension of coronary involvement in inferior and anterior MI. Methods: This study reviewed angiographic reports of 579 patients with a first anterior wall STEMI and 690 with a first inferior STEMI that were referred to Tehran Heart Center between March 2004 and September 2007. The number of coronary vessels involvement and the presence of left main lesion were determined based on angiography reports. The Gensini score was also calculated for each patient from the coronary arteriogram. Results: Incidence of left main lesion was similar between the two groups. Although coronary arteries involvement according to Gensini score was more severe in anterior wall MI group compared with inferior wall MI group, the number of involved coronary arteries was significantly higher in the inferior MI patients. Recommendation of coronary artery bypass grafting, percutaneous coronary intervention (PCI or medical treatment were the same for both groups; however, patients with anterior MI were treated more with primary PCI. Conclusions: According to our angiography database, despite anterior wall MI is associated with more severity of coronary artery disease; inferior wall MI is more extent with regard to the number of involved coronary vessels. Location of MI can predict the severity and extension of infarction.

  1. Perceptual decision-making difficulty modulates feedforward effective connectivity to the dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Bidhan eLamichhane

    2015-09-01

    Full Text Available Diverse cortical structures are known to coordinate activity as a network in relaying and processing of visual information to discriminate visual objects. However, how this discrimination is achieved is still largely unknown. To contribute to answering this question, we used face-house categorization tasks with three levels of noise in face and house images in functional magnetic resonance imaging (fMRI experiments involving thirty-three participants. The behavioral performance error and response time (RT were correlated with noise in face-house images. We then built dynamical causal models (DCM of fMRI blood-oxygenation level dependent (BOLD signals from the face and house category-specific regions in ventral temporal cortex, the fusiform face area (FFA and parahippocampal place area (PPA, and the dorsolateral prefrontal cortex (dlPFC. We found a strong feed-forward intrinsic connectivity pattern from FFA and PPA to dlPFC. Importantly, the feed-forward connectivity to dlPFC was significantly modulated by the perception of both faces and houses. The dlPFC-BOLD activity, the connectivity from FFA and PPA to the dlPFC all increased with noise level. These results suggest that the FFA-PPA-dlPFC network plays an important role for relaying and integrating competing sensory information to arrive at perceptual decisions.

  2. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities.

    Science.gov (United States)

    Santarnecchi, E; Muller, T; Rossi, S; Sarkar, A; Polizzotto, N R; Rossi, A; Cohen Kadosh, R

    2016-02-01

    Emerging evidence suggests that transcranial alternating current stimulation (tACS) is an effective, frequency-specific modulator of endogenous brain oscillations, with the potential to alter cognitive performance. Here, we show that reduction in response latencies to solve complex logic problem indexing fluid intelligence is obtained through 40 Hz-tACS (gamma band) applied to the prefrontal cortex. This improvement in human performance depends on individual ability, with slower performers at baseline receiving greater benefits. The effect could have not being explained by regression to the mean, and showed task and frequency specificity: it was not observed for trials not involving logical reasoning, as well as with the application of low frequency 5 Hz-tACS (theta band) or non-periodic high frequency random noise stimulation (101-640 Hz). Moreover, performance in a spatial working memory task was not affected by brain stimulation, excluding possible effects on fluid intelligence enhancement through an increase in memory performance. We suggest that such high-level cognitive functions are dissociable by frequency-specific neuromodulatory effects, possibly related to entrainment of specific brain rhythms. We conclude that individual differences in cognitive abilities, due to acquired or developmental origins, could be reduced during frequency-specific tACS, a finding that should be taken into account for future individual cognitive rehabilitation studies. PMID:26707084

  3. Improper activation of D1 and D2 receptors leads to excess noise in prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Michael eAvery

    2015-03-01

    Full Text Available The dopaminergic system has been shown to control the amount of noise in the prefrontal cortex (PFC and likely plays an important role in working memory and the pathophysiology of schizophrenia. We developed a model that takes into account the known receptor distributions of D1 and D2 receptors, the changes these receptors have on neuron response properties, as well as identified circuitry involved in working memory. Our model suggests that D1 receptor under-stimulation in supragranular layers gates internal noise into the PFC leading to cognitive symptoms as has been proposed in attention disorders, while D2 over-stimulation gates noise into the PFC by over-activation of cortico-striatal projecting neurons in infragranular layers. We apply this model in the context of a memory-guided saccade paradigm and show deficits similar to those observed in schizophrenic patients. We also show set-shifting impairments similar to those observed in rodents with D1 and D2 receptor manipulations. We discuss how the introduction of noise through changes in D1 and D2 receptor activation may account for many of the symptoms of schizophrenia depending on where this dysfunction occurs in the PFC.

  4. Investigating the role of the ventromedial prefrontal cortex (vmPFC in the assessment of brands

    Directory of Open Access Journals (Sweden)

    Jose Paulo eSantos

    2011-06-01

    Full Text Available The ventromedial prefrontal cortex (vmPFC is believed to be important in everyday preference judgments, processing emotions during decision-making. However, there is still controversy in the literature regarding the participation of the vmPFC. To further elucidate the contribution of the vmPFC in brand preference, we designed a functional magnetic resonance imaging (fMRI study where 18 subjects assessed positive, indifferent and fictitious brands. Also, both the period during and after the decision process were analyzed, hoping to unravel temporally the role of the vmPFC, using modeled and model-free fMRI analysis. Considering together the period before and after decision-making, there was activation of the vmPFC when comparing positive with indifferent or fictitious brands. However, when the decision-making period was separated from the moment after the response, and especially for positive brands, the vmPFC was more active after the choice than during the decision process itself, challenging some of the existing literature. The results of the present study support the notion that the vmPFC may be unimportant in the decision stage of brand preference, questioning theories that postulate that the vmPFC is in the origin of such a choice. Further studies are needed to investigate in detail why the vmPFC seems to be involved in brand preference only after the decision process.

  5. Modulating prefrontal control in humans reveals distinct pathways to competitive success and collective waste.

    Science.gov (United States)

    De Dreu, Carsten K W; Kret, Mariska E; Sligte, Ilja G

    2016-08-01

    Competitive decision making may require controlling and calculative mind-sets. We examined this possibility in repeated predator-prey contests by up- or down-regulating the individual's right inferior frontal gyrus (rIFG), a brain region involved in impulse inhibition and mentalizing. Following brain stimulation, subjects invested as predator or prey against a non-treated antagonist. Relative to sham-treatment (i) prey-defense was relatively frequent, strong and unaffected by stimulation, (ii) down-regulating predator rIFG produced a high-firing strategy-predators earned more because they attacked more frequently, while (iii) up-regulating predator rIFG produced a track-and-attack strategy-predators earned more because they attacked especially when their (non-stimulated) antagonist lowered its prey-defense. Results suggest that calculative mindsets are not needed to compete effectively, especially not when the goal is to survive. Enhanced prefrontal control enables individuals to appear less aggressive without sacrificing competitive effectiveness-it provides human predators with an iron fist in a velvet glove. PMID:27036875

  6. Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults.

    Science.gov (United States)

    Moisala, M; Salmela, V; Hietajärvi, L; Salo, E; Carlson, S; Salonen, O; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2016-07-01

    The current generation of young people indulges in more media multitasking behavior (e.g., instant messaging while watching videos) in their everyday lives than older generations. Concerns have been raised about how this might affect their attentional functioning, as previous studies have indicated that extensive media multitasking in everyday life may be associated with decreased attentional control. In the current study, 149 adolescents and young adults (aged 13-24years) performed speech-listening and reading tasks that required maintaining attention in the presence of distractor stimuli in the other modality or dividing attention between two concurrent tasks. Brain activity during task performance was measured using functional magnetic resonance imaging (fMRI). We studied the relationship between self-reported daily media multitasking (MMT), task performance and brain activity during task performance. The results showed that in the presence of distractor stimuli, a higher MMT score was associated with worse performance and increased brain activity in right prefrontal regions. The level of performance during divided attention did not depend on MMT. This suggests that daily media multitasking is associated with behavioral distractibility and increased recruitment of brain areas involved in attentional and inhibitory control, and that media multitasking in everyday life does not translate to performance benefits in multitasking in laboratory settings. PMID:27063068

  7. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities.

    Science.gov (United States)

    Santarnecchi, E; Muller, T; Rossi, S; Sarkar, A; Polizzotto, N R; Rossi, A; Cohen Kadosh, R

    2016-02-01

    Emerging evidence suggests that transcranial alternating current stimulation (tACS) is an effective, frequency-specific modulator of endogenous brain oscillations, with the potential to alter cognitive performance. Here, we show that reduction in response latencies to solve complex logic problem indexing fluid intelligence is obtained through 40 Hz-tACS (gamma band) applied to the prefrontal cortex. This improvement in human performance depends on individual ability, with slower performers at baseline receiving greater benefits. The effect could have not being explained by regression to the mean, and showed task and frequency specificity: it was not observed for trials not involving logical reasoning, as well as with the application of low frequency 5 Hz-tACS (theta band) or non-periodic high frequency random noise stimulation (101-640 Hz). Moreover, performance in a spatial working memory task was not affected by brain stimulation, excluding possible effects on fluid intelligence enhancement through an increase in memory performance. We suggest that such high-level cognitive functions are dissociable by frequency-specific neuromodulatory effects, possibly related to entrainment of specific brain rhythms. We conclude that individual differences in cognitive abilities, due to acquired or developmental origins, could be reduced during frequency-specific tACS, a finding that should be taken into account for future individual cognitive rehabilitation studies.

  8. Early Life Adversity Alters the Developmental Profiles of Addiction-Related Prefrontal Cortex Circuitry

    Directory of Open Access Journals (Sweden)

    Susan L. Andersen

    2013-02-01

    Full Text Available Early adverse experience is a well-known risk factor for addictive behaviors later in life. Drug addiction typically manifests during adolescence in parallel with the later-developing prefrontal cortex (PFC. While it has been shown that dopaminergic modulation within the PFC is involved in addiction-like behaviors, little is known about how early adversity modulates its development. Here, we report that maternal separation stress (4 h per day between postnatal days 2–20 alters the development of the prelimbic PFC. Immunofluorescence and confocal microscopy revealed differences between maternally-separated and control rats in dopamine D1 and D2 receptor expression during adolescence, and specifically the expression of these receptors on projection neurons. In control animals, D1 and D2 receptors were transiently increased on all glutamatergic projection neurons, as well as specifically on PFC→nucleus accumbens projection neurons (identified with retrograde tracer. Maternal separation exacerbated the adolescent peak in D1 expression and blunted the adolescent peak in D2 expression on projection neurons overall. However, neurons retrogradely traced from the accumbens expressed lower levels of D1 during adolescence after maternal separation, compared to controls. Our findings reveal microcircuitry-specific changes caused by early life adversity that could help explain heightened vulnerability to drug addiction during adolescence.

  9. The Role of the Ventromedial Prefrontal Cortex in Purchase Intent Among Older Adults

    Science.gov (United States)

    Koestner, Bryan P.; Hedgcock, William; Halfmann, Kameko; Denburg, Natalie L.

    2016-01-01

    Older adults are frequently the targets of scams and deception, with millions of individuals being affected each year in the United States alone. Previous research has shown that the ventromedial prefrontal cortex (vmPFC) may play a role in vulnerability to fraud. The current study examined brain activation patterns in relation to susceptibility to scams and fraud using functional magnetic resonance imaging (fMRI). Twenty-eight healthy, community-dwelling older adults were subdivided into groups of impaired and unimpaired decision makers as determined by their performance on the Iowa Gambling Task (IGT). While in the scanner, the participants viewed advertisements that were created directly from cases deemed deceptive by the Federal Trade Commission (FTC). We then obtained behavioral measures involving comprehension of claims and purchase intention of the product in each advertisement. Contrasts show brain activity in the vmPFC was less correlated with purchase intention in impaired vs. unimpaired older adult decision makers. Our results have important implications for both future research and recognizing the possible causes of fraud susceptibility among older adults. PMID:27536238

  10. The Role of the Ventromedial Prefrontal Cortex in Purchase Intent Among Older Adults.

    Science.gov (United States)

    Koestner, Bryan P; Hedgcock, William; Halfmann, Kameko; Denburg, Natalie L

    2016-01-01

    Older adults are frequently the targets of scams and deception, with millions of individuals being affected each year in the United States alone. Previous research has shown that the ventromedial prefrontal cortex (vmPFC) may play a role in vulnerability to fraud. The current study examined brain activation patterns in relation to susceptibility to scams and fraud using functional magnetic resonance imaging (fMRI). Twenty-eight healthy, community-dwelling older adults were subdivided into groups of impaired and unimpaired decision makers as determined by their performance on the Iowa Gambling Task (IGT). While in the scanner, the participants viewed advertisements that were created directly from cases deemed deceptive by the Federal Trade Commission (FTC). We then obtained behavioral measures involving comprehension of claims and purchase intention of the product in each advertisement. Contrasts show brain activity in the vmPFC was less correlated with purchase intention in impaired vs. unimpaired older adult decision makers. Our results have important implications for both future research and recognizing the possible causes of fraud susceptibility among older adults. PMID:27536238

  11. Astroglial Control of the Antidepressant-Like Effects of Prefrontal Cortex Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    A. Etiévant

    2015-08-01

    Full Text Available Although deep brain stimulation (DBS shows promising efficacy as a therapy for intractable depression, the neurobiological bases underlying its therapeutic action remain largely unknown. The present study was aimed at characterizing the effects of infralimbic prefrontal cortex (IL-PFC DBS on several pre-clinical markers of the antidepressant-like response and at investigating putative non-neuronal mechanism underlying DBS action. We found that DBS induced an antidepressant-like response that was prevented by IL-PFC neuronal lesion and by adenosine A1 receptor antagonists including caffeine. Moreover, high frequency DBS induced a rapid increase of hippocampal mitosis and reversed the effects of stress on hippocampal synaptic metaplasticity. In addition, DBS increased spontaneous IL-PFC low-frequency oscillations and both raphe 5-HT firing activity and synaptogenesis. Unambiguously, a local glial lesion counteracted all these neurobiological effects of DBS. Further in vivo electrophysiological results revealed that this astrocytic modulation of DBS involved adenosine A1 receptors and K+ buffering system. Finally, a glial lesion within the site of stimulation failed to counteract the beneficial effects of low frequency (30 Hz DBS. It is proposed that an unaltered neuronal–glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency could heighten antidepressant response of partial responders.

  12. Transitive inference: distinct contributions of rostrolateral prefrontal cortex and the hippocampus.

    Science.gov (United States)

    Wendelken, Carter; Bunge, Silvia A

    2010-05-01

    The capacity to reason about complex information is a central characteristic of human cognition. An important component of many reasoning tasks is the need to integrate multiple mental relations. Several researchers have argued that rostrolateral prefrontal cortex (RLPFC) plays a key role in relational integration. If this hypothesis is correct, then RLPFC should play a key role in transitive inference, which requires the integration of multiple relations to reach a conclusion. Thus far, however, neuroscientific research on transitive inference has focused primarily on the hippocampus. In this fMRI study, we sought to compare the roles of RLPFC and the hippocampus on a novel transitive inference paradigm. Four relations between colored balls were presented on the screen together with a target relation. Participants were asked to decide whether the target relation was correct, given the other indicated relations between balls. RLPFC, but not the hippocampus, exhibited stronger activation on trials that required relational integration as compared with trials that involved relational encoding without integration. In contrast, the hippocampus exhibited a pattern consistent with a role in relational encoding, with stronger activation on trials requiring encoding of relational predicate-argument structure as compared with trials requiring encoding of item-item associations. Functional connectivity analyses give rise to the hypothesis that RLPFC draws on hippocampal representations of mental relations during the process of relational integration. PMID:19320546

  13. Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants.

    Science.gov (United States)

    Steketee, Jeffery D

    2003-03-01

    The mesocorticolimbic dopamine system, which arises in the ventral tegmental area and innervates the nucleus accumbens, among numerous other regions, has been implicated in processes associated with drug addiction, including behavioral sensitization. Behavioral sensitization is the enhanced motor-stimulant response that occurs with repeated exposure to psychostimulants. The medial prefrontal cortex (mPFC), defined as the cortical region that has a reciprocal innervation with the mediodorsal nucleus of the thalamus, is also a terminal region of the mesocorticolimbic dopamine system. The mPFC contains pyramidal glutamatergic neurons that serve as the primary output of this region. These pyramidal neurons are modulated by numerous neurotransmitter systems, including gamma-aminobutyric acidergic interneurons and dopaminergic, noradrenergic, serotonergic, glutamatergic, cholinergic and peptidergic afferents. Changes in interactions between these various neurotransmitter systems in the mPFC may lead to alterations in behavioral responses. For example, recent studies have demonstrated a role for decreased mPFC dopaminergic transmission in the development of psychostimulant-induced behavioral sensitization. The present review will discuss the anatomical organization of the mPFC including descriptions of innervation patterns and receptor localization of the various neurotransmitter systems of this region. Data supporting or suggesting a role for each of these mPFC transmitter systems in the development of behavioral sensitization to cocaine and amphetamine will be presented. Finally a model of the mPFC that may be useful in directing future research efforts on the cortical mechanisms involved in the development of sensitization will be proposed. PMID:12663081

  14. Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults.

    Science.gov (United States)

    Moisala, M; Salmela, V; Hietajärvi, L; Salo, E; Carlson, S; Salonen, O; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2016-07-01

    The current generation of young people indulges in more media multitasking behavior (e.g., instant messaging while watching videos) in their everyday lives than older generations. Concerns have been raised about how this might affect their attentional functioning, as previous studies have indicated that extensive media multitasking in everyday life may be associated with decreased attentional control. In the current study, 149 adolescents and young adults (aged 13-24years) performed speech-listening and reading tasks that required maintaining attention in the presence of distractor stimuli in the other modality or dividing attention between two concurrent tasks. Brain activity during task performance was measured using functional magnetic resonance imaging (fMRI). We studied the relationship between self-reported daily media multitasking (MMT), task performance and brain activity during task performance. The results showed that in the presence of distractor stimuli, a higher MMT score was associated with worse performance and increased brain activity in right prefrontal regions. The level of performance during divided attention did not depend on MMT. This suggests that daily media multitasking is associated with behavioral distractibility and increased recruitment of brain areas involved in attentional and inhibitory control, and that media multitasking in everyday life does not translate to performance benefits in multitasking in laboratory settings.

  15. Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    John Paul Christianson

    2014-10-01

    Full Text Available Behaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed behavioral immunization. Recent data implicate neuroplasticity within the ventromedial prefrontal cortex (mPFC as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and one week later to uncontrollable tailshocks, followed 24h later by social exploration and shuttlebox escape tests. To test the involvement of N-methyl-D-aspartate receptors (NMDAR and the extracellular signal-regulated kinase (ERK cascade in behavioral immunization, either D-AP5 or the MEK inhibitor U0126 was injected to the prelimbic (PL or infralimbic (IL mPFC prior to controllable stress exposure. Phosphorylated ERK and P70S6K, regulators of transcription and translation, were quantified by Western blot or immunohistochemistry after controllable or uncontrollable tailshocks. Prior controllable stress prevented the social exploration and shuttlebox performance deficits caused by the later uncontrollable stressor, and this effect was blocked by injections of D-AP5 into mPFC. A significant increase in phosphorylated ERK1 and ERK2, but not P70S6K, occurred within the PL and IL in rats exposed to controllable stress, but not to uncontrollable stress. However, U0126 only prevented behavioral immunization when injected to the PL. We provide evidence that NMDAR and ERK dependent plasticity within the PL region is required for behavioral immunization, a learned form of stressor resistance.

  16. Interfering with activity in the dorsomedial prefrontal cortex via TMS affects social impressions updating.

    Science.gov (United States)

    Ferrari, Chiara; Vecchi, Tomaso; Todorov, Alexander; Cattaneo, Zaira

    2016-08-01

    In our everyday social interactions we often need to deal with others' unpredictable behaviors. Integrating unexpected information in a consistent representation of another agent is a cognitively demanding process. Several neuroimaging studies point to the medial prefrontal cortex (mPFC) as a critical structure in mediating social evaluations. Our aim here was to shed light on the possible causal role of the mPFC in the dynamic process of forming and updating social impressions about others. We addressed this issue by suppressing activity in the mPFC by means of 1 Hz offline transcranial magnetic stimulation (TMS) prior to a task requiring participants to evaluate other agents' trustworthiness after reading about their social behavior. In two different experiments, we found that inhibiting activity in the mPFC increased perceived trustworthiness when inconsistent information about one agent's behavior was provided. In turn, when only negative or positive behaviors of a person were described, TMS over the mPFC did not affect judgments. Our results indicate that the mPFC is causally involved in mediating social impressions updating-at least in cases in which judgment is uncertain due to conflicting information to be processed. PMID:27012713

  17. EphB2 in the Medial Prefrontal Cortex Regulates Vulnerability to Stress.

    Science.gov (United States)

    Zhang, Ruo-Xi; Han, Ying; Chen, Chen; Xu, Ling-Zhi; Li, Jia-Li; Chen, Na; Sun, Cheng-Yu; Chen, Wen-Hao; Zhu, Wei-Li; Shi, Jie; Lu, Lin

    2016-09-01

    The ephrin B2 (EphB2) receptor is a tyrosine kinase receptor that is associated with synaptic development and maturation. It has recently been implicated in cognitive deficits and anxiety. However, still unknown is the involvement of EphB2 in the vulnerability to stress. In the present study, we observed decreases in EphB2 levels and their downstream molecules in the medial prefrontal cortex (mPFC) but not in the orbitofrontal cortex (OFC) in mice that were susceptible to chronic social defeat stress. The activation of EphB2 receptors with EphrinB1-Fc in the mPFC produced stress-resistant and antidepressant-like behavioral effects in susceptible mice that lasted for at least 10 days. EphB2 receptor knockdown by short-hairpin RNA in the mPFC increased the susceptibility to stress and induced depressive-like behaviors in a subthreshold chronic social defeat stress paradigm. These behavioral effects were associated with changes in the phosphorylation of cofilin and membrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking and the expression of some synaptic proteins in the mPFC. We also found that EphB2 regulated stress-induced spine remodeling in the mPFC. Altogether, these results indicate that EphB2 is a critical regulator of stress vulnerability and might be a potential target for the treatment of depression. PMID:27103064

  18. Modulating prefrontal control in humans reveals distinct pathways to competitive success and collective waste.

    Science.gov (United States)

    De Dreu, Carsten K W; Kret, Mariska E; Sligte, Ilja G

    2016-08-01

    Competitive decision making may require controlling and calculative mind-sets. We examined this possibility in repeated predator-prey contests by up- or down-regulating the individual's right inferior frontal gyrus (rIFG), a brain region involved in impulse inhibition and mentalizing. Following brain stimulation, subjects invested as predator or prey against a non-treated antagonist. Relative to sham-treatment (i) prey-defense was relatively frequent, strong and unaffected by stimulation, (ii) down-regulating predator rIFG produced a high-firing strategy-predators earned more because they attacked more frequently, while (iii) up-regulating predator rIFG produced a track-and-attack strategy-predators earned more because they attacked especially when their (non-stimulated) antagonist lowered its prey-defense. Results suggest that calculative mindsets are not needed to compete effectively, especially not when the goal is to survive. Enhanced prefrontal control enables individuals to appear less aggressive without sacrificing competitive effectiveness-it provides human predators with an iron fist in a velvet glove.

  19. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex.

    Science.gov (United States)

    Swaminathan, Sruthi K; Freedman, David J

    2012-02-01

    The ability to recognize the behavioral relevance, or category membership, of sensory stimuli is critical for interpreting the meaning of events in our environment. Neurophysiological studies of visual categorization have found categorical representations of stimuli in prefrontal cortex (PFC), an area that is closely associated with cognitive and executive functions. Recent studies have also identified neuronal category signals in parietal areas that are typically associated with visual-spatial processing. It has been proposed that category-related signals in parietal cortex and other visual areas may result from 'top-down' feedback from PFC. We directly compared neuronal activity in the lateral intraparietal (LIP) area and PFC in monkeys performing a visual motion categorization task. We found that LIP showed stronger, more reliable and shorter latency category signals than PFC. These findings suggest that LIP is strongly involved in visual categorization and argue against the idea that parietal category signals arise as a result of feedback from PFC during this task. PMID:22246435

  20. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Stanley I Rapoport

    Full Text Available Phosphoinositides, lipid-signaling molecules, participate in diverse brain processes within a wide metabolic cascade.Gene transcriptional networks coordinately regulate the phosphoinositide cascade during human brain Development and Aging.We used the public BrainCloud database for human dorsolateral prefrontal cortex to examine age-related expression levels of 49 phosphoinositide metabolic genes during Development (0 to 20+ years and Aging (21+ years.We identified three groups of partially overlapping genes in each of the two intervals, with similar intergroup correlations despite marked phenotypic differences between Aging and Development. In each interval, ITPKB, PLCD1, PIK3R3, ISYNA1, IMPA2, INPPL1, PI4KB, and AKT1 are in Group 1, PIK3CB, PTEN, PIK3CA, and IMPA1 in Group 2, and SACM1L, PI3KR4, INPP5A, SYNJ1, and PLCB1 in Group 3. Ten of the genes change expression nonlinearly during Development, suggesting involvement in rapidly changing neuronal, glial and myelination events. Correlated transcription for some gene pairs likely is facilitated by colocalization on the same chromosome band.Stable coordinated gene transcriptional networks regulate brain phosphoinositide metabolic pathways during human Development and Aging.