WorldWideScience

Sample records for anterior parietal cortex

  1. Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex.

    Science.gov (United States)

    Michalka, Samantha W; Rosen, Maya L; Kong, Lingqiang; Shinn-Cunningham, Barbara G; Somers, David C

    2016-03-01

    Audition and vision both convey spatial information about the environment, but much less is known about mechanisms of auditory spatial cognition than visual spatial cognition. Human cortex contains >20 visuospatial map representations but no reported auditory spatial maps. The intraparietal sulcus (IPS) contains several of these visuospatial maps, which support visuospatial attention and short-term memory (STM). Neuroimaging studies also demonstrate that parietal cortex is activated during auditory spatial attention and working memory tasks, but prior work has not demonstrated that auditory activation occurs within visual spatial maps in parietal cortex. Here, we report both cognitive and anatomical distinctions in the auditory recruitment of visuotopically mapped regions within the superior parietal lobule. An auditory spatial STM task recruited anterior visuotopic maps (IPS2-4, SPL1), but an auditory temporal STM task with equivalent stimuli failed to drive these regions significantly. Behavioral and eye-tracking measures rule out task difficulty and eye movement explanations. Neither auditory task recruited posterior regions IPS0 or IPS1, which appear to be exclusively visual. These findings support the hypothesis of multisensory spatial processing in the anterior, but not posterior, superior parietal lobule and demonstrate that recruitment of these maps depends on auditory task demands. PMID:26656996

  2. Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex

    OpenAIRE

    Michalka, Samantha W.; Rosen, Maya L.; Kong, Lingqiang; Shinn-Cunningham, Barbara G.; Somers, David C.

    2015-01-01

    Audition and vision both convey spatial information about the environment, but much less is known about mechanisms of auditory spatial cognition than visual spatial cognition. Human cortex contains >20 visuospatial map representations but no reported auditory spatial maps. The intraparietal sulcus (IPS) contains several of these visuospatial maps, which support visuospatial attention and short-term memory (STM). Neuroimaging studies also demonstrate that parietal cortex is activated during au...

  3. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  4. Parietal cortex and representation of the mental Self

    DEFF Research Database (Denmark)

    Lou, Hans C; Luber, Bruce; Crupain, Michael;

    2004-01-01

    Oneself, Best Friend, and the Danish Queen, activation increased in the left lateral temporal cortex and decreased in the right inferior parietal region with decreasing self-reference. Functionally, the former region was preferentially connected to medial prefrontal cortex, the latter to medial parietal....... The medial parietal region may, then, be conceived of as a nodal structure in self-representation, functionally connected to both the right parietal and the medial prefrontal cortices. To determine whether medial parietal cortex in this network is essential for episodic memory retrieval with self...

  5. Posterior parietal cortex dynamically ranks topographic signals via cholinergic influence

    Directory of Open Access Journals (Sweden)

    John Broussard

    2012-06-01

    Full Text Available The hypothesis to be discussed in this review is that posterior parietal cortex is directly involved in selecting relevant stimuli and filtering irrelevant distractors. The posterior parietal cortex receives input from several sensory modalities and integrates them in part to direct the allocation of resources to optimize gains. In conjunction with prefrontal cortex, nucleus accumbens, and basal forebrain cholinergic nuclei, it comprises a network mediating sustained attentional performance. Numerous anatomical, neurophysiological, and lesion studies have substantiated the notion that the basic functions of the posterior parietal cortex are conserved from rodents to humans. One such function is the detection and selection of relevant stimuli necessary for making optimal choices or responses. The issues to be addressed here are how behaviorally relevant targets recruit oscillatory potentials and spiking activity of posterior parietal neurons compared to similar yet irrelevant stimuli. Further, the influence of cortical cholinergic input to posterior parietal cortex in learning and decision-making is also discussed. I propose that these neurophysiological correlates of attention are transmitted to frontal cortical areas contributing to the top down selection of stimuli in a timely manner.

  6. Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex.

    Science.gov (United States)

    Rivera, S M; Reiss, A L; Eckert, M A; Menon, V

    2005-11-01

    Arithmetic reasoning is arguably one of the most important cognitive skills a child must master. Here we examine neurodevelopmental changes in mental arithmetic. Subjects (ages 8-19 years) viewed arithmetic equations and were asked to judge whether the results were correct or incorrect. During two-operand addition or subtraction trials, for which accuracy was comparable across age, older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. These age-related changes were not associated with alterations in gray matter density, and provide novel evidence for increased functional maturation with age. By contrast, younger subjects showed greater activation in the prefrontal cortex, including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex, suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of mental arithmetic performance. Younger subjects also showed greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems. Our findings provide evidence for a process of increased functional specialization of the left inferior parietal cortex in mental arithmetic, a process that is accompanied by decreased dependence on memory and attentional resources with development. PMID:15716474

  7. Heterogeneous and nonlinear development of human posterior parietal cortex function.

    Science.gov (United States)

    Chang, Ting-Ting; Metcalfe, Arron W S; Padmanabhan, Aarthi; Chen, Tianwen; Menon, Vinod

    2016-02-01

    Human cognitive problem solving skills undergo complex experience-dependent changes from childhood to adulthood, yet most neurodevelopmental research has focused on linear changes with age. Here we challenge this limited view, and investigate spatially heterogeneous and nonlinear neurodevelopmental profiles between childhood, adolescence, and young adulthood, focusing on three cytoarchitectonically distinct posterior parietal cortex (PPC) regions implicated in numerical problem solving: intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SMG). Adolescents demonstrated better behavioral performance relative to children, but their performance was equivalent to that of adults. However, all three groups differed significantly in their profile of activation and connectivity across the PPC subdivisions. Activation in bilateral ventral IPS subdivision IPS-hIP1, along with adjoining anterior AG subdivision, AG-PGa, and the posterior SMG subdivision, SMG-PFm, increased linearly with age, whereas the posterior AG subdivision, AG-PGp, was equally deactivated in all three groups. In contrast, the left anterior SMG subdivision, SMG-PF, showed an inverted U-shaped profile across age groups such that adolescents exhibited greater activation than both children and young adults. Critically, greater SMG-PF activation was correlated with task performance only in adolescents. Furthermore, adolescents showed greater task-related functional connectivity of the SMG-PF with ventro-temporal, anterior temporal and prefrontal cortices, relative to both children and adults. These results suggest that nonlinear up-regulation of SMG-PF and its interconnected functional circuits facilitate adult-level performance in adolescents. Our study provides novel insights into heterogeneous age-related maturation of the PPC underlying cognitive skill acquisition, and further demonstrates how anatomically precise analysis of both linear and nonlinear neurofunctional changes with age is

  8. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    Science.gov (United States)

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate. PMID:26975554

  9. Uncertain relational reasoning in the parietal cortex.

    Science.gov (United States)

    Ragni, Marco; Franzmeier, Imke; Maier, Simon; Knauff, Markus

    2016-04-01

    The psychology of reasoning is currently transitioning from the study of deductive inferences under certainty to inferences that have degrees of uncertainty in both their premises and conclusions; however, only a few studies have explored the cortical basis of uncertain reasoning. Using transcranial magnetic stimulation (TMS), we show that areas in the right superior parietal lobe (rSPL) are necessary for solving spatial relational reasoning problems under conditions of uncertainty. Twenty-four participants had to decide whether a single presented order of objects agreed with a given set of indeterminate premises that could be interpreted in more than one way. During the presentation of the order, 10-Hz TMS was applied over the rSPL or a sham control site. Right SPL TMS during the inference phase disrupted performance in uncertain relational reasoning. Moreover, we found differences in the error rates between preferred mental models, alternative models, and inconsistent models. Our results suggest that different mechanisms are involved when people reason spatially and evaluate different kinds of uncertain conclusions. PMID:26970943

  10. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    Science.gov (United States)

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  11. Transient contribution of left posterior parietal cortex to cognitive restructuring.

    Science.gov (United States)

    Sutoh, Chihiro; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yamada, Makiko; Nagaoka, Sawako; Chakraborty, Sudesna; Ishii, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Ito, Hiroshi; Tsuji, Hiroshi; Obata, Takayuki; Shimizu, Eiji

    2015-01-01

    Cognitive restructuring is a fundamental method within cognitive behavioural therapy of changing dysfunctional beliefs into flexible beliefs and learning to react appropriately to the reality of an anxiety-causing situation. To clarify the neural mechanisms of cognitive restructuring, we designed a unique task that replicated psychotherapy during a brain scan. The brain activities of healthy male participants were analysed using functional magnetic resonance imaging. During the brain scan, participants underwent Socratic questioning aimed at cognitive restructuring regarding the necessity of handwashing after using the restroom. The behavioural result indicated that the Socratic questioning effectively decreased the participants' degree of belief (DOB) that they must wash their hands. Alterations in the DOB showed a positive correlation with activity in the left posterior parietal cortex (PPC) while the subject thought about and rated own belief. The involvement of the left PPC not only in planning and decision-making but also in conceptualization may play a pivotal role in cognitive restructuring. PMID:25775998

  12. Measurements of evoked electroencephalograph by transcranial magnetic stimulation applied to motor cortex and posterior parietal cortex

    Science.gov (United States)

    Iwahashi, Masakuni; Koyama, Yohei; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji

    2009-04-01

    To investigate the functional connectivity, the evoked potentials by stimulating at the motor cortex, the posterior parietal cortex, and the cerebellum by transcranial magnetic stimulation (TMS) were measured. It is difficult to measure the evoked electroencephalograph (EEG) by the magnetic stimulation because of the large artifact induced by the magnetic pulse. We used an EEG measurement system with sample-and-hold circuit and an independent component analysis to eliminate the electromagnetic interaction emitted from TMS. It was possible to measure EEG signals from all electrodes over the head within 10 ms after applying the TMS. When the motor area was stimulated by TMS, the spread of evoked electrical activity to the contralateral hemisphere was observed at 20 ms after stimulation. However, when the posterior parietal cortex was stimulated, the evoked electrical activity to the contralateral hemisphere was not observed. When the cerebellum was stimulated, the cortical activity propagated from the stimulated point to the frontal area and the contralateral hemisphere at around 20 ms after stimulation. These results suggest that the motor area has a strong interhemispheric connection and the posterior parietal cortex has no interhemispheric connection.

  13. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer;

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right...

  14. Preferential Encoding of Visual Categories in Parietal Cortex Compared to Prefrontal Cortex

    OpenAIRE

    Swaminathan, Sruthi K.; Freedman, David J

    2012-01-01

    The ability to recognize the behavioral significance, or category membership, of sensory stimuli is critical for interpreting the meaning of events in our environment. Prior neurophysiological studies of visual categorization found categorical representations of stimuli in prefrontal cortex (PFC), an area closely associated with cognitive and executive functions. Recent studies have also identified neuronal category signals in parietal areas typically associated with visual-spatial processing...

  15. Individual attentional selection capacities are reflected in interhemispheric connectivity of the parietal cortex.

    Science.gov (United States)

    Vossel, Simone; Weidner, Ralph; Moos, Katharina; Fink, Gereon R

    2016-04-01

    Modelling psychophysical data using the Theory of Visual Attention (TVA) allows for a quantification of attentional sub-processes, such as the resolution of competition amongst multiple stimuli by top-down control signals for target selection (TVA-parameter α). This fMRI study investigated the neural correlates of α by comparing activity differences and changes of effective connectivity between conditions where a target was accompanied by a distractor or by a second target. Twenty-five participants performed a partial report task inside the MRI scanner. The left angular gyrus (ANG), medial frontal, and posterior cingulate cortex showed higher activity when a target was accompanied by a distractor as opposed to a second target. The reverse contrast yielded activation of a bilateral fronto-parietal network, the anterior insula, anterior cingulate cortex, and left inferior occipital gyrus. A psychophysiological interaction analysis revealed that the connectivity between left ANG and the left and right supramarginal gyrus (SMG), left anterior insula, and right putamen was enhanced in the target-distractor condition in participants with worse attentional top-down control. Dynamic causal modelling suggested that the connection from left ANG to right SMG during distractor presence was modulated by α. Our data show that interindividual differences in attentional processing are reflected in changes of effective connectivity without significant differences in activation strength of network nodes. PMID:26827815

  16. Cognitive Functions of the Posterior Parietal Cortex: Top-down and bottom-up attentional control

    Directory of Open Access Journals (Sweden)

    Sarah Shomstein

    2012-07-01

    Full Text Available Although much less is known about human parietal cortex than that of homologous monkey cortex, recent studies, employing neuroimaging and neuropsychological methods, have begun to elucidate increasingly fine-grained functional and structural distinctions.\tThis review is focused on recent neuroimaging and neuropsychological studies elucidating the cognitive roles of dorsal and ventral regions of parietal cortex in top-down and bottom-up attentional orienting, and on the interaction between the two attentional allocation mechanisms. Evidence is reviewed arguing that regions along the dorsal areas of the parietal cortex, including the superior parietal lobule (SPL are involved in top-down attentional orienting, while ventral regions including the temporo-parietal junction (TPJ are involved in bottom-up attentional orienting.

  17. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex.

    Science.gov (United States)

    Swaminathan, Sruthi K; Freedman, David J

    2012-02-01

    The ability to recognize the behavioral relevance, or category membership, of sensory stimuli is critical for interpreting the meaning of events in our environment. Neurophysiological studies of visual categorization have found categorical representations of stimuli in prefrontal cortex (PFC), an area that is closely associated with cognitive and executive functions. Recent studies have also identified neuronal category signals in parietal areas that are typically associated with visual-spatial processing. It has been proposed that category-related signals in parietal cortex and other visual areas may result from 'top-down' feedback from PFC. We directly compared neuronal activity in the lateral intraparietal (LIP) area and PFC in monkeys performing a visual motion categorization task. We found that LIP showed stronger, more reliable and shorter latency category signals than PFC. These findings suggest that LIP is strongly involved in visual categorization and argue against the idea that parietal category signals arise as a result of feedback from PFC during this task. PMID:22246435

  18. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements

    DEFF Research Database (Denmark)

    Reichenbach, Alexandra; Thielscher, Axel; Peer, Angelika;

    2014-01-01

    neuroimaging studies have focused mainly on identifying the parts of the posterior parietal cortex (PPC) that contribute to visually guided movements. We used event-related TMS and force perturbations of the reaching hand to test whether the same sub-regions of the left PPC contribute to the processing of...... proprioceptive-only and of multi-sensory information about hand position when reaching for a visual target. TMS over two distinct stimulation sites elicited differential effects: TMS applied over the posterior part of the medial intraparietal sulcus (mIPS) compromised reaching accuracy when proprioception was...... the only sensory information available for correcting the reaching error. When visual feedback of the hand was available, TMS over the anterior intraparietal sulcus (aIPS) prolonged reaching time. Our results show for the first time the causal involvement of the posterior mIPS in processing...

  19. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    DEFF Research Database (Denmark)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe;

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalog...... evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex....

  20. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools.

    Science.gov (United States)

    Macuga, Kristen L; Frey, Scott H

    2014-05-15

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). PMID:24473100

  1. The predictive value of white matter organization in posterior parietal cortex for spatial visualization ability.

    Science.gov (United States)

    Wolbers, Thomas; Schoell, Eszter D; Büchel, Christian

    2006-09-01

    Humans differ substantially in their ability to imagine spatial transformations of novel stimuli (i.e., mental rotation). Whereas "high-spatial" individuals are able to maintain high-quality representations even after complex mental transformations, "low-spatial" individuals often experience substantial degradation of the initial representation. Even though subdivisions of the posterior parietal cortex are known to instantiate the necessary spatial transformations, a direct demonstration of neuroanatomical differences predicting this behavioral variability is currently missing. Because recent evidence suggests that interindividual differences on the behavioral level might be related to regionally specific white matter organization, we addressed this question using diffusion tensor imaging in combination with well-established psychometric tests. As expected, behavioral results revealed a substantial disparity in mental rotation performance. Most importantly, despite controlling for differences in spatial short-term memory capacity, we observed a tight relationship between mental rotation proficiency and white matter organization near the anterior part of the intraparietal sulcus. Whereas high-level proficiency was paralleled by high fractional anisotropy (FA) values, the opposite pattern was observed in "low spatials". The present results strongly indicate that the efficiency of information transfer between posterior parietal regions involved in the mental transformation process could be one decisive factor in individual spatial visualization proficiency. PMID:16793288

  2. Cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex.

    Science.gov (United States)

    Bakola, Sophia; Passarelli, Lauretta; Gamberini, Michela; Fattori, Patrizia; Galletti, Claudio

    2013-04-10

    In macaques, superior parietal lobule area 5 has been described as occupying an extensive region, which includes the caudal half of the postcentral convexity as well as the medial bank of the intraparietal sulcus. Modern neuroanatomical methods have allowed the identification of various areas within this region. In the present study, we investigated the corticocortical afferent projections of one of these subdivisions, area PE. Our results demonstrate that PE, defined as a single architectonic area that contains a topographic map of the body, forms specific connections with somatic and motor fields. Thus, PE receives major afferents from parietal areas, mainly area 2, PEc, several areas in the medial bank of the intraparietal sulcus, opercular areas PGop/PFop, and the retroinsular area, frontal afferents from the primary motor cortex, the supplementary motor area, and the caudal subdivision of dorsal premotor cortex, as well as afferents from cingulate areas PEci, 23, and 24. The presence and relative strength of these connections depend on the location of injection sites, so that lateral PE receives preferential input from anterior sectors of the medial bank of intraparietal sulcus and from the ventral premotor cortex, whereas medial PE forms denser connections with area PEc and motor fields. In contrast with other posterior parietal areas, there are no projections to PE from occipital or prefrontal cortices. Overall, the sensory and motor afferents to PE are consistent with functions in goal-directed movement but also hint at a wider variety of motor coordination roles. PMID:23575861

  3. Evolution of mammalian sensorimotor cortex: Thalamic projections to parietal cortical areas in Monodelphis domestica

    Directory of Open Access Journals (Sweden)

    James Clinton Dooley

    2015-01-01

    Full Text Available The current experiments build upon previous studies designed to reveal the network of parietal cortical areas present in the common mammalian ancestor. Understanding this ancestral network is essential for highlighting the basic somatosensory circuitry present in all mammals, and how this basic plan was modified to generate species specific behaviors. Our animal model, the short-tailed opossum (Monodelphis domestica, is a South American marsupial that has been proposed to have a similar ecological niche and morphology to the earliest common mammalian ancestor. In this investigation, we injected retrograde neuroanatomical tracers into the face and body representations of primary somatosensory cortex (S1, the rostral and caudal somatosensory fields (SR and SC, as well as a multimodal region (MM. Projections from different architectonically defined thalamic nuclei were then quantified. Our results provide further evidence to support the hypothesized basic mammalian plan of thalamic projections to S1, with the lateral and medial ventral posterior thalamic nuclei (VPl and VPm projecting to S1 body and S1 face, respectively. Additional strong projections are from the medial division of posterior nucleus (Pom. SR receives projections from several midline nuclei, including the medial dorsal, ventral medial nucleus, and Pom. SC and MM show similar patterns of connectivity, with projections from the ventral anterior and ventral lateral nuclei, VPm and VPl, and the entire posterior nucleus (medial and lateral. Notably, MM is distinguished from SC by relatively dense projections from the dorsal division of the lateral geniculate nucleus and pulvinar. We discuss the finding that S1 of the short-tailed opossum has a similar pattern of projections as other marsupials and mammals, but also some distinct projections not present in other mammals. Further we provide additional support for a primitive posterior parietal cortex which receives input from multiple

  4. Visual and eye movement functions of the posterior parietal cortex

    OpenAIRE

    Andersen, Richard A.

    1989-01-01

    Lesions of the posterior parietal area in humans produce interesting spatial-perceptual and spatial-behavioral deficits. Among the more important deficits observed are loss of spatial memories, problems representing spatial relations in models or drawings, disturbances in the spatial distribution of attention, and the inability to localize visual targets. Posterior parietal lesions in nonhuman primates also produce visual spatial deficits not unlike those found in humans. Mountcastle and his ...

  5. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  6. The parietal cortex and saccade planning: lessons from human lesion studies

    Directory of Open Access Journals (Sweden)

    Radek Ptak

    2013-06-01

    Full Text Available The parietal cortex is considered a critical interface for attention and integration of multiple sensory signals that can be used for the implementation of motor plans. Many neurons in these regions exhibit strong attention-, reach-, grasp- or saccade-related activity. Here, we review human lesion studies supporting the critical role of the parietal cortex in saccade programming planning. Studies of patients with unilateral parietal damage and spatial neglect reveal characteristic spatially lateralized deficits of saccade programming when multiple stimuli compete for attention. However, these patients also show bilateral impairments of saccade initiation and control that are difficult to explain in the context of their lateralized deficits of visual attention. These findings are reminiscent of the deficits of oculomotor control observed in patients with Bálint’s syndrome consecutive to bilateral parietal damage. We propose that some oculomotor deficits following parietal damage are compatible with a decisive role of the parietal cortex in saccade planning under conditions of sensory competition, while other deficits reflect disinhibition of low-level structures of the oculomotor network in the absence of top-down parietal modulation.

  7. Human posterior parietal cortex plans where to reach and what to avoid.

    Science.gov (United States)

    Lindner, Axel; Iyer, Asha; Kagan, Igor; Andersen, Richard A

    2010-09-01

    In this time-resolved functional magnetic resonance imaging (fMRI) study, we aimed to trace the neuronal correlates of covert planning processes that precede visually guided motor behavior. Specifically, we asked whether human posterior parietal cortex has prospective planning activity that can be distinguished from activity related to retrospective visual memory and attention. Although various electrophysiological studies in monkeys have demonstrated such motor planning at the level of parietal neurons, comparatively little support is provided by recent human imaging experiments. Rather, a majority of experiments highlights a role of human posterior parietal cortex in visual working memory and attention. We thus sought to establish a clear separation of visual memory and attention from processes related to the planning of goal-directed motor behaviors. To this end, we compared delayed-response tasks with identical mnemonic and attentional demands but varying degrees of motor planning. Subjects memorized multiple target locations, and in a random subset of trials targets additionally instructed (1) desired goals or (2) undesired goals for upcoming finger reaches. Compared with the memory/attention-only conditions, both latter situations led to a specific increase of preparatory fMRI activity in posterior parietal and dorsal premotor cortex. Thus, posterior parietal cortex has prospective plans for upcoming behaviors while considering both types of targets relevant for action: those to be acquired and those to be avoided. PMID:20810892

  8. Right parietal cortex mediates recognition memory for melodies.

    Science.gov (United States)

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task. PMID:25959620

  9. Parcellation in Left Lateral Parietal Cortex Is Similar in Adults and Children

    OpenAIRE

    Barnes, Kelly Anne; Nelson, Steven M.; Cohen, Alexander L.; Power, Jonathan D.; Coalson, Rebecca S.; Miezin, Francis M.; Vogel, Alecia C.; Dubis, Joseph W.; Church, Jessica A.; Petersen, Steven E.; Schlaggar, Bradley L.

    2011-01-01

    A key question in developmental neuroscience involves understanding how and when the cerebral cortex is partitioned into distinct functional areas. The present study used functional connectivity MRI mapping and graph theory to identify putative cortical areas and generate a parcellation scheme of left lateral parietal cortex (LLPC) in 7 to 10-year-old children and adults. Results indicated that a majority of putative LLPC areas could be matched across groups (mean distance between matched are...

  10. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    International Nuclear Information System (INIS)

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer

  11. Time Adaptation Shows Duration Selectivity in the Human Parietal Cortex.

    Directory of Open Access Journals (Sweden)

    Masamichi J Hayashi

    Full Text Available Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI adaptation paradigm, we show that the inferior parietal lobule (IPL (corresponding to the supramarginal gyrus exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject's attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain.

  12. Lower neuronal variability in the monkey dorsolateral prefrontal than posterior parietal cortex.

    Science.gov (United States)

    Qi, Xue-Lian; Constantinidis, Christos

    2015-10-01

    The dorsolateral prefrontal and posterior parietal cortex are two brain areas involved in cognitive functions such as spatial attention and working memory. When tested with identical tasks, only subtle differences in firing rate are present between neurons recorded in the two areas. In this article we report that major differences in neuronal variability characterize the two areas during working memory. The Fano factors of spike counts in dorsolateral prefrontal neurons were consistently lower than those of the posterior parietal cortex across a range of tasks, epochs, and conditions in the same monkeys. Variability differences were observed despite minor differences in firing rates between the two areas in the tasks tested and higher overall firing rate in the prefrontal than in the posterior parietal sample. Other measures of neuronal discharge variability, such as the coefficient of variation of the interspike interval, displayed the same pattern of lower prefrontal variability. Fano factor values were negatively correlated with performance in the working memory task, suggesting that higher neuronal variability was associated with diminished task performance. The results indicate that information involving remembered stimuli is more reliably represented in the prefrontal than the posterior parietal cortex based on the variability of neuronal responses, and suggest functional differentiation between the two areas beyond differences in firing rate. PMID:26269556

  13. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  14. Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex.

    Directory of Open Access Journals (Sweden)

    Peter J Fried

    Full Text Available Phosphenes are commonly evoked by transcranial magnetic stimulation (TMS to study the functional organization, connectivity, and excitability of the human visual brain. For years, phosphenes have been documented only from stimulating early visual areas (V1-V3 and a handful of specialized visual regions (V4, V5/MT+ in occipital cortex. Recently, phosphenes were reported after applying TMS to a region of posterior parietal cortex involved in the top-down modulation of visuo-spatial processing. In the present study, we systematically characterized parietal phosphenes to determine if they are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Using technology developed in-house to record the subjective features of phosphenes, we found no systematic differences in the size, shape, location, or frame-of-reference of parietal phosphenes when compared to their occipital counterparts. In a second experiment, discrete deactivation by 1 Hz repetitive TMS yielded a double dissociation: phosphene thresholds increased at the deactivated site without producing a corresponding change at the non-deactivated location. Overall, the commonalities of parietal and occipital phosphenes, and our ability to independently modulate their excitability thresholds, lead us to conclude that they share a common neural basis that is separate from either of the stimulated regions.

  15. Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task

    OpenAIRE

    Gertz, Hanna; Fiehler, Katja

    2015-01-01

    Previous research on reach planning in humans has implicated a frontoparietal network, including the precuneus (PCu), a putative human homolog of the monkey parietal reach region (PRR), and the dorsal premotor cortex (PMd). Using a pro-/anti-reach task, electrophysiological studies in monkeys have demonstrated that the movement goal rather than the location of the visual cue is encoded in PRR and PMd. However, if only the effector but not the movement goal is specified (underspecified conditi...

  16. Human Posterior Parietal Cortex Plans Where to Reach and What to Avoid

    OpenAIRE

    Lindner, Axel; Iyer, Asha; Kagan, Igor; Andersen, Richard A.

    2010-01-01

    In this time-resolved functional magnetic resonance imaging (fMRI) study, we aimed to trace the neuronal correlates of covert planning processes that precede visually guided motor behavior. Specifically, we asked whether human posterior parietal cortex has prospective planning activity that can be distinguished from activity related to retrospective visual memory and attention. Although various electrophysiological studies in monkeys have demonstrated such motor planning at the level of parie...

  17. The posterior parietal cortex and long-term memory representation of spatial information

    OpenAIRE

    Kesner, Raymond P.

    2008-01-01

    The hypothesis to be explored in this chapter is based on the assumption that the posterior parietal cortex (PPC) is directly involved in representing a subset of the spatial features associated with spatial information processing and plays an important role in perceptual memory as well as long-term memory encoding, consolidation, and retrieval of spatial information. After presentation of the anatomical location of the PPC in rats, the nature of PPC representation based on single spatial fea...

  18. Aberrant functional network recruitment of posterior parietal cortex in Turner syndrome

    OpenAIRE

    Bray, Signe; Hoeft, Fumiko; Hong, David S.; Reiss, Allan

    2012-01-01

    Turner syndrome is a genetic disorder caused by the complete or partial absence of an X chromosome in affected females. Individuals with TS show characteristic difficulties with executive functions, visual-spatial and mathematical cognition, with relatively intact verbal skills, and congruent abnormalities in structural development of the posterior parietal cortex (PPC). The functionally heterogeneous PPC has recently been investigated using connectivity-based clustering methods, which sub-di...

  19. Meta-analysis: how does posterior parietal cortex contribute to reasoning?

    OpenAIRE

    Wendelken, Carter

    2015-01-01

    Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations—including spatial attention, mathematical cognition, working memory, long-term memory, and language—and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform t...

  20. Meta-analysis: How does posterior parietal cortex contribute to reasoning?

    OpenAIRE

    Carter Wendelken

    2015-01-01

    Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations -- including spatial attention, mathematical cognition, working memory, long-term memory, and language -- and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to in...

  1. Dynamic social adaptation of motion-related neurons in primate parietal cortex.

    Directory of Open Access Journals (Sweden)

    Naotaka Fujii

    Full Text Available Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys-specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network.

  2. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  3. Stimulation of the rat dorsal raphe in vivo releases labeled serotonin from the parietal cortex

    International Nuclear Information System (INIS)

    In vivo release of labeled serotonin ([3H]5-HT) from the parietal cortex was investigated by cortical cup technique and electrical stimulation of midbrain raphe in rats anesthetized with pentobarbital sodium. The spontaneous efflux of tritium from the parietal cortex preloaded with [3H]5-HT followed a multiphasic exponential course. After 120 min, the rate of efflux appeared to fit the single exponential function (slow phase). Imipramine (10-6-10-3M) produced a dose-dependent increase in the spontaneous release. When pargyline in concentrations ranging from 10-4 to 10-3 M were added to the medium in the cup, the unchanged [3H]5-HT signficantly increased in a dose-dependent manner and the slow declining coefficient of tritium efflux significantly decreased in the presence of 10-4 pargyline. Stimulation of the rostral two-thirds of the dorsal raphe and the lateral 5-HT bundle originating from the dorsal raphe significantly increased the release of [3H]5-HT and its metabolites while stimulation of the caudal one-third of the dorsal raphe did not produce a significant increase in the release of [3H]5-HT and its metabolites. Stimulation of the median raphe produced no or only a slight increase in the release of [3H]5-HT and its metabolites. These findings are a direct demonstration of the in vivo release of [3H]5-HT from the parietal cortex with stimulation of the dorsal raphe, particularly the rostral two-thirds of the nucleus and provide the neurochemical evidence for the dorsal raphe-cortical 5-HT pathway via the lateral 5-HT bundle. (Auth.)

  4. Role of parietal cortex and hippocampus during avoidance of a moving object in rats

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Telenský, Petr; Blahna, Karel; Bureš, Jan

    Fyziologický ústav AV ČR, v. v. i.. Roč. 56, č. 3 (2007), 34P-34P ISSN 0862-8408. [Fyziologické dny /83./. 06.02.2007-08.02.2007, Brno] R&D Projects: GA ČR(CZ) GA309/06/1231; GA ČR(CZ) GD206/05/H012; GA MŠk(CZ) 1M0517; GA ČR(CZ) GA309/07/0341 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * hippocampus * parietal cortex * rat Subject RIV: FH - Neurology

  5. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  6. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  7. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.

    Science.gov (United States)

    Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-04-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854

  8. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.

    Directory of Open Access Journals (Sweden)

    Ilse C Van Dromme

    2016-04-01

    Full Text Available The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP during functional magnetic resonance imaging (fMRI reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.

  9. Distributed Representation of Curvilinear Self-Motion in the Macaque Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Zhixian Cheng

    2016-05-01

    Full Text Available Information about translations and rotations of the body is critical for complex self-motion perception during spatial navigation. However, little is known about the nature and function of their convergence in the cortex. We measured neural activity in multiple areas in the macaque parietal cortex in response to three different types of body motion applied through a motion platform: translation, rotation, and combined stimuli, i.e., curvilinear motion. We found a continuous representation of motion types in each area. In contrast to single-modality cells preferring either translation-only or rotation-only stimuli, convergent cells tend to be optimally tuned to curvilinear motion. A weighted summation model captured the data well, suggesting that translation and rotation signals are integrated subadditively in the cortex. Interestingly, variation in the activity of convergent cells parallels behavioral outputs reported in human psychophysical experiments. We conclude that representation of curvilinear self-motion perception is widely distributed in the primate sensory cortex.

  10. Motor preparatory activity in posterior parietal cortex is modulated by subjective absolute value.

    Directory of Open Access Journals (Sweden)

    Asha Iyer

    Full Text Available For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high "absolute value" (high gain or loss conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance.

  11. Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps.

    Science.gov (United States)

    Wu, S S; Chang, T T; Majid, A; Caspers, S; Eickhoff, S B; Menon, V

    2009-12-01

    Although the inferior parietal cortex (IPC) has been consistently implicated in mathematical cognition, the functional roles of its subdivisions are poorly understood. We address this problem using probabilistic cytoarchitectonic maps of IPC subdivisions intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus. We quantified IPC responses relative to task difficulty and individual differences in task proficiency during mental arithmetic (MA) tasks performed with Arabic (MA-A) and Roman (MA-R) numerals. The 2 tasks showed similar levels of activation in 3 distinct IPS areas, hIP1, hIP2, and hIP3, suggesting their obligatory role in MA. Both AG areas, PGa and PGp, were strongly deactivated in both tasks, with stronger deactivations in posterior area PGp. Compared with the more difficult MA-R task, the MA-A task showed greater responses in both AG areas, but this effect was driven by less deactivation in the MA-A task. AG deactivations showed prominent overlap with lateral parietal nodes of the default mode network, suggesting a nonspecific role in MA. In both tasks, greater bilateral AG deactivation was associated with poorer performance. Our findings suggest a close link between IPC structure and function and they provide new evidence for behaviorally salient functional heterogeneity within the IPC during mathematical cognition. PMID:19406903

  12. Motor and parietal cortex stimulation for phantom limb pain and sensations.

    Science.gov (United States)

    Bolognini, Nadia; Olgiati, Elena; Maravita, Angelo; Ferraro, Francesco; Fregni, Felipe

    2013-08-01

    Limb amputation may lead to chronic painful sensations referred to the absent limb, ie phantom limb pain (PLP), which is likely subtended by maladaptive plasticity. The present study investigated whether transcranial direct current stimulation (tDCS), a noninvasive technique of brain stimulation that can modulate neuroplasticity, can reduce PLP. In 2 double-blind, sham-controlled experiments in subjects with unilateral lower or upper limb amputation, we measured the effects of a single session of tDCS (2 mA, 15 min) of the primary motor cortex (M1) and of the posterior parietal cortex (PPC) on PLP, stump pain, nonpainful phantom limb sensations and telescoping. Anodal tDCS of M1 induced a selective short-lasting decrease of PLP, whereas cathodal tDCS of PPC induced a selective short-lasting decrease of nonpainful phantom sensations; stump pain and telescoping were not affected by parietal or by motor tDCS. These findings demonstrate that painful and nonpainful phantom limb sensations are dissociable phenomena. PLP is associated primarily with cortical excitability shifts in the sensorimotor network; increasing excitability in this system by anodal tDCS has an antalgic effect on PLP. Conversely, nonpainful phantom sensations are associated to a hyperexcitation of PPC that can be normalized by cathodal tDCS. This evidence highlights the relationship between the level of excitability of different cortical areas, which underpins maladaptive plasticity following limb amputation and the phenomenology of phantom limb, and it opens up new opportunities for the use of tDCS in the treatment of PLP. PMID:23707312

  13. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Walker, John A.; George, Mark S.; Leenders, Klaus L.

    2009-01-01

    The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic resonan

  14. TMS stimulation over the inferior parietal cortex disrupts prospective sense of agency.

    Science.gov (United States)

    Chambon, Valérian; Moore, James W; Haggard, Patrick

    2015-11-01

    Sense of agency refers to the feeling of controlling an external event through one's own action. On one influential view, sense of agency is inferred after an action, by "retrospectively" comparing actual effects of actions against their intended effects. However, it has been recently shown that earlier processes, linked to action selection, may also contribute to sense of agency, in advance of the action itself, and independently of action effects. The inferior parietal cortex (IPC) may underpin this "prospective" contribution to agency, by monitoring signals relating to fluency of action selection in dorsolateral prefrontal cortex (DLPFC). Here, we combined transcranial stimulation (TMS) with subliminal priming of action selection to investigate the causal role of these regions in the prospective coding of agency. In a first experiment, we showed that TMS over left IPC at the time of action selection disrupts perceived control over subsequent effects of action. In a second experiment, we exploited the temporal specificity of single-pulse TMS to pinpoint the exact timing of IPC contribution to sense of agency. We replicated the reduction in perceived control at the point of action selection, while observing no effect of TMS-induced disruption of IPC at the time of action outcomes. PMID:25134684

  15. Cortical Connections of the Caudal Portion of Posterior Parietal Cortex in Prosimian Galagos.

    Science.gov (United States)

    Stepniewska, Iwona; Cerkevich, Christina M; Kaas, Jon H

    2016-06-01

    Posterior parietal cortex (PPC) of prosimian galagos includes a rostral portion (PPCr) where electrical stimulation evokes different classes of complex movements from different subregions, and a caudal portion (PPCc) where such stimulation fails to evoke movements in anesthetized preparations ( Stepniewska, Fang et al. 2009). We placed tracer injections into PPCc to reveal patterns of its cortical connections. There were widespread connections within PPCc as well as connections with PPCr and extrastriate visual areas, including V2 and V3. Weaker connections were with dorsal premotor cortex, and the frontal eye field. The connections of different parts of PPCc with visual areas were roughly retinotopic such that injections to dorsal PPCc labeled more neurons in the dorsal portions of visual areas, representing lower visual quadrant, and injections to ventral PPCc labeled more neurons in ventral portions of these visual areas, representing the upper visual quadrant. We conclude that much of the PPCc contains a crude representation of the contralateral visual hemifield, with inputs largely, but not exclusively, from higher-order visual areas that are considered part of the dorsal visuomotor processing stream. As in galagos, the caudal half of PPC was likely visual in early primates, with the rostral PPC half mediating sensorimotor functions. PMID:26088972

  16. Multiple reference frames for saccadic planning in the human parietal cortex.

    Science.gov (United States)

    Pertzov, Yoni; Avidan, Galia; Zohary, Ehud

    2011-01-19

    We apply functional magnetic resonance imaging and multivariate analysis methods to study the coordinate frame in which saccades are represented in the human cortex. Subjects performed a memory-guided saccade task in which equal-amplitude eye movements were executed from several starting points to various directions. Response patterns during the memory period for same-vector saccades were correlated in the frontal eye fields and the intraparietal sulcus (IPS), indicating a retinotopic representation. Interestingly, response patterns in the middle aspect of the IPS were also correlated for saccades made to the same destination point, even when their movement vector was different. Thus, this region also contains information about saccade destination in (at least) a head-centered coordinate frame. This finding may explain behavioral and neuropsychological studies demonstrating that eye movements are also anchored to an egocentric or an allocentric representation of space rather than strictly to the retinal visual input and that parietal cortex is involved in maintaining these representations of space. PMID:21248131

  17. Meta-analysis: How does posterior parietal cortex contribute to reasoning?

    Directory of Open Access Journals (Sweden)

    Carter eWendelken

    2015-01-01

    Full Text Available Reasoning depends on the contribution of posterior parietal cortex (PPC. But PPC is involved in many basic operations -- including spatial attention, mathematical cognition, working memory, long-term memory, and language -- and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: 1 reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing, 2 reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC, and 3 reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest. Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL. Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific

  18. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills.

    Science.gov (United States)

    Bolognini, Nadia; Fregni, Felipe; Casati, Carlotta; Olgiati, Elena; Vallar, Giuseppe

    2010-08-19

    Recent evidence suggests that behavioural gains induced by behavioural training are maximized when combined with techniques of cortical neuromodulation, such as transcranial Direct Current Stimulation (tDCS). Here we address the validity of this appealing approach by investigating the effect of coupling a multisensory visual field exploration training with tDCS of the posterior parietal cortex (PPC). The multisensory visual field exploration training consisted in the practice of visual search through the systematic audio-visual stimulation of the visual field. Neurologically unimpaired participants performed a bimodal exploration training for 30 min, while simultaneously receiving anodal-excitatory PPC tDCS or sham tDCS. In two different experiments, the left and the right hemisphere were stimulated. Outcome measures included visual exploration speed at different time intervals during the training, and the post-training effects on tests assessing visual scanning and visuo-spatial orienting. Results show that PPC tDCS applied to the right, but not to the left, hemisphere increases the training-induced behavioural improvement of visual exploration, as compared to sham tDCS. In addition, right PPC tDCS brings about an improvement of covert visual orienting, in a task different from the visual search practice. In an additional experiment, we confirm that right parietal tDCS by itself, even without the associated training, can lead to enhancement of visual search. Overall, anodal PPC tDCS is a promising technique to enhance visuo-spatial abilities, when combined to a visual field exploration training task. PMID:20599813

  19. Anterior insular cortex regulation in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Andrea Caria

    2015-03-01

    Full Text Available Autism spectrum disorders (ASDs comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findings of anterior insula cortex hypoactivation and dysconnectivity during tasks related to emotional and social processing indicates its dysfunctional role in ASD. In parallel, increasing evidence showed that successful control of anterior insula activity can be attained using real-time fMRI paradigms. More importantly, successful regulation of this region was associated with changes in behavior and brain connectivity in both healthy individuals and psychiatric patients. Building on these results we here propose and discuss the use of real-time fMRI neurofeedback in ASD aiming at improving emotional and social behavior.

  20. Anterior insular cortex regulation in autism spectrum disorders.

    Science.gov (United States)

    Caria, Andrea; de Falco, Simona

    2015-01-01

    Autism spectrum disorders (ASDs) comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findings of anterior insula cortex hypoactivation and dysconnectivity during tasks related to emotional and social processing indicates its dysfunctional role in ASD. In parallel, increasing evidence showed that successful control of anterior insula activity can be attained using real-time fMRI paradigms. More importantly, successful regulation of this region was associated with changes in behavior and brain connectivity in both healthy individuals and psychiatric patients. Building on these results we here propose and discuss the use of real-time fMRI neurofeedback in ASD aiming at improving emotional and social behavior. PMID:25798096

  1. Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.

    Science.gov (United States)

    Dunkley, Benjamin T; Sedge, Paul A; Doesburg, Sam M; Grodecki, Richard J; Jetly, Rakesh; Shek, Pang N; Taylor, Margot J; Pang, Elizabeth W

    2015-01-01

    Post-traumatic stress disorder (PTSD) is a mental health injury characterised by re-experiencing, avoidance, numbing and hyperarousal. Whilst the aetiology of the disorder is relatively well understood, there is debate about the prevalence of cognitive sequelae that manifest in PTSD. In particular, there are conflicting reports about deficits in executive function and mental flexibility. Even less is known about the neural changes that underlie such deficits. Here, we used magnetoencephalography to study differences in functional connectivity during a mental flexibility task in combat-related PTSD (all males, mean age = 37.4, n = 18) versus a military control (all males, mean age = 33.05, n = 19) group. We observed large-scale increases in theta connectivity in the PTSD group compared to controls. The PTSD group performance was compromised in the more attentionally-demanding task and this was characterised by 'late-stage' theta hyperconnectivity, concentrated in network connections involving right parietal cortex. Furthermore, we observed significant correlations with the connectivity strength in this region with a number of cognitive-behavioural outcomes, including measures of attention, depression and anxiety. These findings suggest atypical coordination of neural synchronisation in large scale networks contributes to deficits in mental flexibility for PTSD populations in timed, attentionally-demanding tasks, and this propensity toward network hyperconnectivity may play a more general role in the cognitive sequelae evident in this disorder. PMID:25909654

  2. Beyond natural numbers: Representation of negative numbers in the parietal cortex

    Directory of Open Access Journals (Sweden)

    Miriam Rosenberg-Lee

    2012-02-01

    Full Text Available Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related fMRI design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference < 4 or far apart (difference > 6. Reaction times for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS, middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster reaction times. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation.

  3. The role of the right posterior parietal cortex in letter migration between words.

    Science.gov (United States)

    Cazzoli, Dario; Müri, René M; Kennard, Christopher; Rosenthal, Clive R

    2015-02-01

    When briefly presented with pairs of words, skilled readers can sometimes report words with migrated letters (e.g., they report hunt when presented with the words hint and hurt). This and other letter migration phenomena have been often used to investigate factors that influence reading such as letter position coding. However, the neural basis of letter migration is poorly understood. Previous evidence has implicated the right posterior parietal cortex (PPC) in processing visuospatial attributes and lexical properties during word reading. The aim of this study was to assess this putative role by combining an inhibitory TMS protocol with a letter migration paradigm, which was designed to examine the contributions of visuospatial attributes and lexical factors. Temporary interference with the right PPC led to three specific effects on letter migration. First, the number of letter migrations was significantly increased only in the group with active stimulation (vs. a sham stimulation group or a control group without stimulation), and there was no significant effect on other error types. Second, this effect occurred only when letter migration could result in a meaningful word (migration vs. control context). Third, the effect of active stimulation on the number of letter migrations was lateralized to target words presented on the left. Our study thus demonstrates that the right PPC plays a specific and causal role in the phenomenon of letter migration. The nature of this role cannot be explained solely in terms of visuospatial attention, rather it involves an interplay between visuospatial attentional and word reading-specific factors. PMID:25203274

  4. Repetition Suppression for Speech Processing in the Associative Occipital and Parietal Cortex of Congenitally Blind Adults

    Science.gov (United States)

    Arnaud, Laureline; Sato, Marc; Ménard, Lucie; Gracco, Vincent L.

    2013-01-01

    In the congenitally blind (CB), sensory deprivation results in cross-modal plasticity, with visual cortical activity observed for various auditory tasks. This reorganization has been associated with enhanced auditory abilities and the recruitment of visual brain areas during sound and language processing. The questions we addressed are whether visual cortical activity might also be observed in CB during passive listening to auditory speech and whether cross-modal plasticity is associated with adaptive differences in neuronal populations compared to sighted individuals (SI). We focused on the neural substrate of vowel processing in CB and SI adults using a repetition suppression (RS) paradigm. RS has been associated with enhanced or accelerated neural processing efficiency and synchronous activity between interacting brain regions. We evaluated whether cortical areas in CB were sensitive to RS during repeated vowel processing and whether there were differences across the two groups. In accordance with previous studies, both groups displayed a RS effect in the posterior temporal cortex. In the blind, however, additional occipital, temporal and parietal cortical regions were associated with predictive processing of repeated vowel sounds. The findings suggest a more expanded role for cross-modal compensatory effects in blind persons during sound and speech processing and a functional transfer of specific adaptive properties across neural regions as a consequence of sensory deprivation at birth. PMID:23717628

  5. Insights from Neuropsychology: Pinpointing the role of the Posterior Parietal Cortex in Episodic and Working Memory

    Directory of Open Access Journals (Sweden)

    Marian E. Berryhill

    2012-06-01

    Full Text Available The role of posterior parietal cortex (PPC in various forms of memory is a current topic of interest in the broader field of cognitive neuroscience. This large cortical region has been linked with a wide range of mnemonic functions affecting each stage of memory processing: encoding, maintenance and retrieval. Yet, the precise role of the PPC in memory remains mysterious and controversial. Progress in understanding PPC function will require researchers to incorporate findings in a convergent manner from multiple experimental techniques rather than emphasizing a particular type of data. To facilitate this process, here, we review findings from the human neuropsychological research and examine the consequences to memory following PPC damage. Recent patient-based research findings have investigated two typically disconnected fields: working memory and episodic memory. The findings from patient participants with unilateral and bilateral PPC lesions performing diverse experimental paradigms are summarized. These findings are then related to findings from other techniques including neurostimulation (TMS and tDCS and the influential and more abundant functional neuroimaging literature. We then review the strengths and weaknesses of hypotheses proposed to account for PPC function in these forms of memory. Finally, we address what missing evidence is needed to clarify the role(s of the PPC in memory.

  6. Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex.

    Directory of Open Access Journals (Sweden)

    Benjamin T Dunkley

    Full Text Available Post-traumatic stress disorder (PTSD is a mental health injury characterised by re-experiencing, avoidance, numbing and hyperarousal. Whilst the aetiology of the disorder is relatively well understood, there is debate about the prevalence of cognitive sequelae that manifest in PTSD. In particular, there are conflicting reports about deficits in executive function and mental flexibility. Even less is known about the neural changes that underlie such deficits. Here, we used magnetoencephalography to study differences in functional connectivity during a mental flexibility task in combat-related PTSD (all males, mean age = 37.4, n = 18 versus a military control (all males, mean age = 33.05, n = 19 group. We observed large-scale increases in theta connectivity in the PTSD group compared to controls. The PTSD group performance was compromised in the more attentionally-demanding task and this was characterised by 'late-stage' theta hyperconnectivity, concentrated in network connections involving right parietal cortex. Furthermore, we observed significant correlations with the connectivity strength in this region with a number of cognitive-behavioural outcomes, including measures of attention, depression and anxiety. These findings suggest atypical coordination of neural synchronisation in large scale networks contributes to deficits in mental flexibility for PTSD populations in timed, attentionally-demanding tasks, and this propensity toward network hyperconnectivity may play a more general role in the cognitive sequelae evident in this disorder.

  7. Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues

    Science.gov (United States)

    Leopold, David A.; Humphreys, Glyn W.; Welchman, Andrew E.

    2016-01-01

    The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269606

  8. Variation in left posterior parietal-motor cortex interhemispheric facilitation following right parietal continuous theta-burst stimulation in healthy adults.

    Science.gov (United States)

    Killington, Christopher; Barr, Christopher; Loetscher, Tobias; Bradnam, Lynley V

    2016-08-25

    Spatial neglect is modeled on an imbalance of interhemispheric inhibition (IHI); however evidence is emerging that it may not explain neglect in all cases. The aim of this study was to investigate the IHI imbalance model of visual neglect in healthy adults, using paired pulse transcranial magnetic stimulation to probe excitability of projections from posterior parietal cortex (PPC) to contralateral primary motor cortex (M1) bilaterally. Motor-evoked potentials (MEPs) were recorded from the first dorsal interossei and facilitation was determined as ratio of conditioned to non-conditioned MEP amplitude. A laterality index reflecting the balance of excitability between the two hemispheres was calculated. A temporal order judgment task (TOJ) assessed visual attention. Continuous theta-burst stimulation was used to transiently suppress right parietal cortex activity and the effect on laterality and judgment task measured, along with associations between baseline and post stimulation measures. Stimulation had conflicting results on laterality, with most participants demonstrating an effect in the negative direction with no decrement in the TOJ task. Correlation analysis suggests a strong association between laterality direction and degree of facilitation of left PPC-to right M1 following stimulation (r=.902), with larger MEP facilitation at baseline demonstrating greater reduction (r=-.908). Findings indicate there was relative balance between the cortices at baseline but right PPC suppression did not evoke left PPC facilitation in most participants, contrary to the IHI imbalance model. Left M1 facilitation prior to stimulation may predict an individual's response to continuous theta-burst stimulation of right PPC. PMID:27267243

  9. Attention and alcohol cues: a role for medial parietal cortex and shifting away from alcohol features?

    Directory of Open Access Journals (Sweden)

    ThomasEdwardGladwin

    2013-12-01

    Full Text Available Attention plays a central role in theories of alcohol dependence; however, its precise role in alcohol-related biases is not yet clear. In the current study, social drinkers performed a spatial cueing task designed to evoke conflict between automatic processes due to incentive salience and control exerted to follow task-related goals. Such conflict is a potentially important task feature from the perspective of dual-process models of addiction. Subjects received instructions either to direct their attention towards pictures of alcoholic beverages, and away from non-alcohol beverages; or to direct their attention towards pictures of non-alcoholic beverages, and away from alcohol beverages. A probe stimulus was likely to appear at the attended location, so that both spatial and non-spatial interference was possible. Activation in medial parietal cortex was found during “Approach Alcohol” versus “Avoid Alcohol” blocks. This region is associated with the, possibly automatic, shifting of attention between stimulus features, suggesting that subjects may have shifted attention away from certain features of alcoholic cues when attention had to be directed towards an upcoming stimulus at their location. Further, activation in voxels close to this region was negatively correlated with riskier drinking behavior. A tentative interpretation of the results is that risky drinking may be associated with a reduced tendency to shift attention away from potentially distracting task-irrelevant alcohol cues. The results suggest novel hypotheses and directions for future study, in particular towards the potential therapeutic use of training the ability to shifting attention away from alcohol-related stimulus features.

  10. Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning.

    Science.gov (United States)

    Grabner, Roland H; Rütsche, Bruno; Ruff, Christian C; Hauser, Tobias U

    2015-07-01

    The successful acquisition of arithmetic skills is an essential step in the development of mathematical competencies and has been associated with neural activity in the left posterior parietal cortex (PPC). It is unclear, however, whether this brain region plays a causal role in arithmetic skill acquisition and whether arithmetic learning can be modulated by means of non-invasive brain stimulation of this key region. In the present study we addressed these questions by applying transcranial direct current stimulation (tDCS) over the left PPC during a short-term training that simulates the typical path of arithmetic skill acquisition (specifically the transition from effortful procedural to memory-based problem-solving strategies). Sixty participants received either anodal, cathodal or sham tDCS while practising complex multiplication and subtraction problems. The stability of the stimulation-induced learning effects was assessed in a follow-up test 24 h after the training. Learning progress was modulated by tDCS. Cathodal tDCS (compared with sham) decreased learning rates during training and resulted in poorer performance which lasted over 24 h after stimulation. Anodal tDCS showed an operation-specific improvement for subtraction learning. Our findings extend previous studies by demonstrating that the left PPC is causally involved in arithmetic learning (and not only in arithmetic performance) and that even a short-term tDCS application can modulate the success of arithmetic knowledge acquisition. Moreover, our finding of operation-specific anodal stimulation effects suggests that the enhancing effects of tDCS on learning can selectively affect just one of several cognitive processes mediated by the stimulated area. PMID:25970697

  11. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.

    Directory of Open Access Journals (Sweden)

    Derrik E Asher

    Full Text Available Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1 feedforward from sensory input to the PPC to a motor output area, 2 feedforward with the addition of an efference copy from the motor area, 3 feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4 feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.

  12. Simultaneous Reconstruction of Continuous Hand Movements from Primary Motor and Posterior Parietal Cortex

    Science.gov (United States)

    Philip, Benjamin A.; Rao, Naveen; Donoghue, John P.

    2013-01-01

    Primary motor cortex (MI) and parietal area PE both participate in cortical control of reaching actions, but few studies have been able to directly compare the form of kinematic encoding in the two areas simultaneously during hand tracking movements. To directly compare kinematic coding properties in these two areas under identical behavioral conditions, we recorded simultaneously from two chronically implanted multielectrode arrays in areas MI and PE (or areas 2/5) during performance of a continuous manual tracking task (CMTT). Monkeys manually pursued a continuously moving target that followed a series of straight-line movement segments, arranged in a sequence where the direction (but not length) of the upcoming segment varied unpredictably as each new segment appeared. Based on recordings from populations of MI (31–143 units) and PE (22–87 units), we compared hand position and velocity reconstructions based on linear filters. We successfully reconstructed hand position and velocity from area PE (mean r2 = 0.751 for position reconstruction, r2 = 0.614 for velocity), demonstrating trajectory reconstruction from each area. Combing these populations provided no reconstruction improvements, suggesting that kinematic representations in MI and PE encode overlapping hand movement information, rather than complementary or unique representations. These overlapping representations may reflect the areas’ common engagement in a sensorimotor feedback loop for error signals and movement goals, as required by a task with continuous, time-evolving demands and feedback. The similarity of information in both areas suggests that either area might provide a suitable target to obtain control signals for brain computer interface applications. PMID:23274645

  13. Anodal transcranial direct current stimulation of parietal cortex enhances action naming in Corticobasal Syndrome

    Directory of Open Access Journals (Sweden)

    Rosa eManenti

    2015-04-01

    Full Text Available Background: Corticobasal Syndrome (CBS is a neurodegenerative disorder that overlaps both clinically and neuropathologically with Frontotemporal dementia and is characterized by apraxia, alien limb phenomena, cortical sensory loss, cognitive impairment, behavioural changes and aphasia. It has been recently demonstrated that transcranial direct current stimulation (tDCS improves naming in healthy subjects and in subjects with language deficits.Objective: The aim of the present study was to explore the extent to which anodal transcranial direct current stimulation (anodal tDCS over the parietal cortex (PARC could facilitate naming performance in CBS subjects. Methods: Anodal tDCS was applied to the left and right PARC during object and action naming in seventeen patients with a diagnosis of possible CBS. Participants underwent two sessions of anodal tDCS (left and right and one session of placebo tDCS. Vocal responses were recorded and analyzed for accuracy and vocal Reaction Times (vRTs. Results: A shortening of naming latency for actions was observed only after active anodal stimulation over the left PARC, as compared to placebo and right stimulations. No effects have been reported for accuracy.Conclusions: Our preliminary finding demonstrated that tDCS decreased vocal reaction time during action naming in a sample of patients with CBS. A possible explanation of our results is that anodal tDCS over the left PARC effects the brain network implicated in action observation and representation. Further studies, based on larger patient samples, should be conducted to investigate the usefulness of tDCS as an additional treatment of linguistic deficits in CBS patients.

  14. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-05-01

    Full Text Available Abstract Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC, in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice.

  15. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  16. Glucose phosphorylation rate in rat parietal cortex during normoglycemia, hypoglycemia, acute hyperglycemia, and in diabetes-prone rats

    Energy Technology Data Exchange (ETDEWEB)

    Broendsted, H.E.; Gjedde, A. (Department of General Physiology and Biophysics, Panum Institute, University of Copenhagen (Denmark))

    1990-01-01

    Cerebral metabolic rate for glucose (CMRglc) was studied in rats using (6-{sup 14}C)glucose. After intravenous injection the radioactivity of the parietal cortex was corrected for loss of labeled CO{sub 2} and divided by the integral of the arterial plasma glucose concentration, determined during tracer circulation. Treatment with insulin, resulting in plasma glucose concentrations less than 2.6 mmol/l, reduced CMRglc to 64% of the values found in control animals. CMRglc did not change in animals with acute hyper-glycemia produced by intraperiotoneal injection of a glucose solution or in diabetes-prone rats with or withour insulin treatment. (author).

  17. Pleasant human touch is represented in pregenual anterior cingulate cortex.

    Science.gov (United States)

    Lindgren, Lenita; Westling, Göran; Brulin, Christine; Lehtipalo, Stefan; Andersson, Micael; Nyberg, Lars

    2012-02-15

    Touch massage (TM) is a form of pleasant touch stimulation used as treatment in clinical settings and found to improve well-being and decrease anxiety, stress, and pain. Emotional responses reported during and after TM have been studied, but the underlying mechanisms are still largely unexplored. In this study, we used functional magnetic resonance (fMRI) to test the hypothesis that the combination of human touch (i.e. skin-to-skin contact) with movement is eliciting a specific response in brain areas coding for pleasant sensations. The design included four different touch conditions; human touch with or without movement and rubber glove with or without movement. Force (2.5 N) and velocity (1.5 cm/s) were held constant across conditions. The pleasantness of the four different touch stimulations was rated on a visual analog scale (VAS-scale) and human touch was rated as most pleasant, particularly in combination with movement. The fMRI results revealed that TM stimulation most strongly activated the pregenual anterior cingulate cortex (pgACC). These results are consistent with findings showing pgACC activation during various rewarding pleasant stimulations. This area is also known to be activated by both opioid analgesia and placebo. Together with these prior results, our finding furthers the understanding of the basis for positive TM treatment effects. PMID:22100768

  18. Attentional effects of lesions to the anterior cingulate cortex: how prior reinforcement influences distractibility

    OpenAIRE

    Newman, Lori A.; McGaughy, Jill

    2011-01-01

    Morphological changes in the anterior cingulate cortex are found in subjects with schizophrenia, attention deficit hyperactivity disorder, and obsessive compulsive disorder. These changes are hypothesized to underlie the impairments these individuals show on tasks that require cognitive control. The anterior cingulate cortex has previously been shown to be active in situations involving high conflict, presentation of salient, distracting stimuli, and error processing, i.e. situations that occ...

  19. rTMS over bilateral inferior parietal cortex induces decrement of spatial sustained attention

    OpenAIRE

    Lee, Jeyeon; Ku, Jeonghun; Han, Kiwan; Park, Jinsick; Lee, Hyeongrae; Kim, Kyung Ran; Lee, Eun; Husain, Masud; Yoon, Kang Jun; Kim, In Young; Jang, Dong Pyo; Kim, Sun I.

    2013-01-01

    Sustained attention is an essential brain function that enables a subject to maintain attention level over the time of a task. In previous work, the right inferior parietal lobe (IPL) has been reported as one of the main brain regions related to sustained attention, however, the right lateralization of vigilance/sustained attention is unclear because information about the network for sustained attention is traditionally provided by neglect patients who typically have right brain damage. Here,...

  20. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools

    OpenAIRE

    Macuga, Kristen L.; Frey, Scott H.

    2014-01-01

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Usi...

  1. Dynamic Social Adaptation of Motion-Related Neurons in Primate Parietal Cortex

    OpenAIRE

    Fujii, Naotaka; Hihara, Sayaka; Iriki, Atsushi

    2007-01-01

    Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a comm...

  2. Activation and Inhibition of Posterior Parietal Cortex Have Bi-Directional Effects on Spatial Errors Following Interruptions

    Directory of Open Access Journals (Sweden)

    Cyrus Khan Foroughi

    2015-01-01

    Full Text Available Interruptions to ongoing mental activities are omnipresent in our modern digital world, but the brain networks involved in interrupted performance are not known, nor have the activation of those networks been modulated. Errors following interruptions reflect failures in spatial memory, whose maintenance is supported by a brain network including the right posterior parietal cortex (PPC. The present study therefore used bi-directional transcranial Direct Current Stimulation (tDCS of right PPC to examine the neuromodulation of spatial errors following interruptions, as well as performance on another PPC-dependent task, mental rotation. Anodal stimulation significantly reduced the number of interruption-based errors and increased mental rotation accuracy whereas cathodal stimulation significantly increased errors and reduced mental rotation accuracy. The results provide evidence for a causal role of the PPC in the maintenance of spatial representations during interrupted task performance.

  3. Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex.

    Science.gov (United States)

    Serences, John T; Yantis, Steven

    2007-02-01

    When multiple objects are present in a visual scene, they compete for cortical processing in the visual system; selective attention biases this competition so that representations of behaviorally relevant objects enter awareness and irrelevant objects do not. Deployments of selective attention can be voluntary (e.g., shift or attention to a target's expected spatial location) or stimulus driven (e.g., capture of attention by a target-defining feature such as color). Here we use functional magnetic resonance imaging to show that both of these factors induce spatially selective attentional modulations within regions of human occipital, parietal, and frontal cortex. In addition, the voluntary attentional modulations are temporally sustained, indicating that activity in these regions dynamically tracks the locus of attention. These data show that a convolution of factors, including prior knowledge of location and target-defining features, determines the relative competitive advantage of visual stimuli within multiple stages of the visual system. PMID:16514108

  4. rTMS over bilateral inferior parietal cortex induces decrement of spatial sustained attention

    Directory of Open Access Journals (Sweden)

    Jeonghun Ku

    2013-02-01

    Full Text Available Sustained attention is an essential brain function that enables a subject to maintain attention level over the time of a task. In previous work, the right inferior parietal lobe (IPL has been reported as one of the main brain regions related to sustained attention, however, the right lateralization of vigilance/sustained attention is unclear because information about the network for sustained attention is traditionally provided by neglect patients who typically have right brain damage. Here, we investigated sustained attention by applying a virtual lesion technique, transcranial magnetic stimulation (TMS, over the left and right superior parietal lobe (SPL and IPL. We used two different types of visual sustained attention tasks: spatial (location based and non-spatial (feature based. When the participants performed the spatial task, repetitive TMS (rTMS over either the right or left IPL induced a significant decrement of sustained attention causing a progressive increment of errors and response time. In contrast, participants’ performance was not changed by rTMS on the non-spatial task. Also, omission errors (true negative gradually increased with time on right and left IPL rTMS conditions, while commission errors (false positive were relatively stable. These findings suggest that the maintenance of attention, especially in tasks regarding spatial location, is not uniquely lateralized to the right IPL, but may also involve participation of the left IPL as well.

  5. Functional magnetic resonance imaging evaluation of visual cortex activation in patients with anterior visual pathway lesions

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Song; Guohua Wang; Tong Zhang; Lei Feng; Peng An; Yueli Zhu

    2012-01-01

    The aim of this study was to examine the secondary visual cortex functional disorder in patients with glaucoma and large pituitary adenoma by functional magnetic resonance imaging, and to determine the correlation between visual field defect and primary visual cortex activation. Results showed that single eye stimulation resulted in bilateral visual cortex activation in patients with glaucoma or large pituitary adenoma. Compared with the normal control group, the extent and intensity of visual cortex activation was decreased after left and right eye stimulation, and functional magnetic resonance imaging revealed a correlation between visual field defects and visual cortex activation in patients with glaucoma and large pituitary adenoma. These functional magnetic resonance imaging data suggest that anterior optic pathway lesions can cause secondary functional disorder of the visual cortex, and that visual defects are correlated with visual cortex activation.

  6. Seeing without the Occipito-Parietal Cortex: Simultagnosia as a Shrinkage of the Attentional Visual Field

    Directory of Open Access Journals (Sweden)

    François Michel

    2004-01-01

    Full Text Available Following bi-parietal lesions patient AT showed a severe inability to relocate her attention within a visual field which perimetry proved to be near-normal. An experimental approach with tasks testing visuo-spatial attention demonstrated a shrinkage of A.T.’s attentional visual field. With her visual attention narrowed to a kind of functional tunnel vision, the patient exhibited simultanagnosia (Wolpert, 1924, a symptom previously described in 1909 by Balint under the label of Psychic paralysis of “Gaze”. In striking contrast AT showed an efficient and effortless perception of complex natural scenes, which, according to recent work in normal subjects, necessitate few if any attentional resources.

  7. The role of rat posterior parietal cortex in coordinating spatial representations during place avoidance in dissociated reference frames on a continuously rotating arena (Carousel)

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Telenský, Petr; Blahna, Karel; Vodička, Martin; Stuchlík, Aleš

    2015-01-01

    Roč. 292, Oct 1 (2015), s. 1-9. ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : posterior parietal cortex * reference frame * navigation * lesion * rat Subject RIV: FH - Neurology Impact factor: 3.028, year: 2014

  8. Activity in inferior parietal and medial prefrontal cortex signals the accumulation of evidence in a probability learning task.

    Directory of Open Access Journals (Sweden)

    Mathieu d'Acremont

    Full Text Available In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI, young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

  9. Temporal structure in neuronal activity during working memory in Macaque parietal cortex

    CERN Document Server

    Pesaran, B; Sahami, M; Mitra, P; Andersen, R A

    2000-01-01

    A number of cortical structures are reported to have elevated single unit firing rates sustained throughout the memory period of a working memory task. How the nervous system forms and maintains these memories is unknown but reverberating neuronal network activity is thought to be important. We studied the temporal structure of single unit (SU) activity and simultaneously recorded local field potential (LFP) activity from area LIP in the inferior parietal lobe of two awake macaques during a memory-saccade task. Using multitaper techniques for spectral analysis, which play an important role in obtaining the present results, we find elevations in spectral power in a 50--90 Hz (gamma) frequency band during the memory period in both SU and LFP activity. The activity is tuned to the direction of the saccade providing evidence for temporal structure that codes for movement plans during working memory. We also find SU and LFP activity are coherent during the memory period in the 50--90 Hz gamma band and no consisten...

  10. Activity in superior parietal cortex during training by observation predicts asymmetric learning levels across hands.

    Science.gov (United States)

    Ossmy, Ori; Mukamel, Roy

    2016-01-01

    A dominant concept in motor cognition associates action observation with motor control. Previous studies have shown that passive action observation can result in significant performance gains in humans. Nevertheless, it is unclear whether the neural mechanism subserving such learning codes abstract aspects of the action (e.g. goal) or low level aspects such as effector identity. Eighteen healthy subjects learned to perform sequences of finger movements by passively observing right or left hand performing the same sequences in egocentric view. Using functional magnetic resonance imaging we show that during passive observation, activity in the superior parietal lobule (SPL) contralateral to the identity of the observed hand (right\\left), predicts subsequent performance gains in individual subjects. Behaviorally, left hand observation resulted in positively correlated performance gains of the two hands. Conversely right hand observation yielded negative correlation - individuals with high performance gains in one hand exhibited low gains in the other. Such behavioral asymmetry is reflected by activity in contralateral SPL during short-term training in the absence of overt physical practice and demonstrates the role of observed hand identity in learning. These results shed new light on the coding level in SPL and have implications for optimizing motor skill learning. PMID:27535179

  11. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making

    OpenAIRE

    Khani, Abbas; Kermani, Mojtaba; Hesam, 6Soghra; Haghparast, Abbas; Enrike G Argandoña; Rainer, Gregor

    2015-01-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test...

  12. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  13. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mark R. Winter

    2015-10-01

    Full Text Available Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.

  14. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells.

    Science.gov (United States)

    Winter, Mark R; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K; Temple, Sally; Cohen, Andrew R

    2015-10-13

    Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  15. The anodal tDCS over the left posterior parietal cortex enhances attention toward a focus word in a sentence.

    Science.gov (United States)

    Minamoto, Takehiro; Azuma, Miyuki; Yaoi, Ken; Ashizuka, Aoi; Mima, Tastuya; Osaka, Mariko; Fukuyama, Hidenao; Osaka, Naoyuki

    2014-01-01

    The posterior parietal cortex (PPC) has two attentional functions: top-down attentional control and stimulus-driven attentional processing. Using the focused version of the reading span test (RST), in which the target word to be remembered is the critical word for comprehending a sentence (focused word) or a non-focused word, we examined the effect of tDCS on resolution of distractor interference by the focused word in the non-focus condition (top-down attentional control) and on augmented/shrunk attentional capture by the focused word in both the focus and non-focus conditions (stimulus-driven attentional processing). Participants were divided into two groups: anodal tDCS (atDCS) and cathodal tDCS (ctDCS). Online stimulation was given while participants performed the RST. A post-hoc recognition task was also administered in which three kinds of words were presented: target words in the RST, distractor words in the RST, and novel words. atDCS augmented the effect of the focused word by increasing differences in performance between the focus and non-focus conditions. Such an effect was not observed in the ctDCS group. As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition. On the other hand, ctDCS brought less recognition of non-focused target words in comparison to sham. The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions. In contrast, ctDCS appears to prevent retrieval of less important information from episodic memory, which may require top-down attentional processing. PMID:25538609

  16. Impaired performance in a conditioned reaction time task after thermocoagulatory lesions of the fronto-parietal cortex in rats.

    Science.gov (United States)

    Baunez, C; Salin, P; Nieoullon, A; Amalric, M

    1998-06-01

    The present study examined whether cortical damage in rats may disrupt the integrative processes and motor control involved in the performance of a reaction time (RT) task. To investigate the nature of the deficits in the conditioned task, rats were subjected, after learning, to a coagulation of pia brain surface of varying extent, including the frontal and parietal cortical areas. They were then tested daily for over one month. The behavioural task required the rats to hold a lever down during a variable and random delay and react quickly to the onset of a visual cue by releasing the lever within a RT limit for food reinforcement. Extensive bilateral cortical lesions had no effect on spontaneous motor activity, but severely impaired RT performance. Latencies to release the lever after the cue were dramatically increased during the first postoperative sessions and gradually returned to baseline levels within 3 weeks, whereas less dramatic but long-lasting increase in premature responding (anticipatory response before the visual cue) was observed throughout the testing sessions. More restricted lesions to the frontoparietal cortex produced a similar pattern of incorrect responding with a faster recovery of delayed responses and a strong deficit in premature responding. The major effects of lesions confined to the rostral pole of the frontal cortex were observed on premature responding, however. The present results demonstrate that the impairment in movement initiation is rapidly recovered within 2-3 weeks even after extensive thermocoagulatory lesions of the frontal and parietal areas. This recovery suggests the involvement of adaptive processes developing progressively and probably reflecting the remarkable synaptic plasticity of the extrapyramidal motor output. In contrast, the long-lasting increase in premature responding, supposed to reflect some attentional deficits, may produce anatomofunctional long-term disorganization of subcortical structures such as the

  17. Reaching with the sixth sense: Vestibular contributions to voluntary motor control in the human right parietal cortex.

    Science.gov (United States)

    Reichenbach, Alexandra; Bresciani, Jean-Pierre; Bülthoff, Heinrich H; Thielscher, Axel

    2016-01-01

    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support voluntary control of movements by complementing the other senses to accomplish the movement goal. Investigations into the neural correlates of vestibular contribution to voluntary action in humans are challenging and have progressed far less than research on corresponding visual and proprioceptive involvement. Here, we demonstrate for the first time with event-related TMS that the posterior part of the right medial intraparietal sulcus processes vestibular signals during a goal-directed reaching task with the dominant right hand. This finding suggests a qualitative difference between the processing of vestibular vs. visual and proprioceptive signals for controlling voluntary movements, which are pre-dominantly processed in the left posterior parietal cortex. Furthermore, this study reveals a neural pathway for vestibular input that might be distinct from the processing for reflexive or cognitive functions, and opens a window into their investigation in humans. PMID:26424179

  18. 10 Hz rTMS over right parietal cortex alters sense of agency during self-generated movements

    Directory of Open Access Journals (Sweden)

    Anke Ninija Karabanov

    2014-06-01

    Full Text Available A large body of fMRI and lesion-literature has provided evidence that the Inferior Parietal Cortex (IPC is important for sensorimotor integration and sense of agency (SoA. We used repetitive transcranial magnetic stimulation (rTMS to explore the role of the IPC during a validated SoA detection task. 12 healthy, right-handed adults were included. The effects of rTMS on subjects’ SoA during self-generated movements were explored. The experiment consisted of 1/3 self-generated movements and 2/3 computer manipulated movements that introduced uncertainty as to whether the subjects were agents of an observed movement. Subjects completed three sessions, in which subjects received online rTMS over the right IPC (active condition, over the vertex (CZ (sham condition or no TMS but a sound-matched control. We found that rTMS over right IPC significantly altered SoA of the non-perturbed movements. Following IPC stimulation subjects were more likely to experience self-generated movements as being externally perturbed compared to the control site (P=0.002 and the stimulation-free control (P=0.042. The data support the importance of IPC activation during sensorimotor comparison in order to correctly determine the agent of movements.

  19. Recollection, familiarity, and content-sensitivity in lateral parietal cortex: A high-resolution fMRI study

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Johnson

    2013-05-01

    Full Text Available Numerous studies have identified brain regions where activity is consistently correlated with the retrieval (recollection of qualitative episodic information. This ‘core recollection network’ can be contrasted with regions where activity differs according to the contents of retrieval. The present study used high-resolution fMRI to investigate whether these putatively-distinct retrieval processes engage common versus dissociable regions. Subjects studied words with two encoding tasks and then performed a memory test in which they distinguished between recollection and different levels of recognition confidence. The fMRI data from study and test revealed several overlapping regions where activity differed according to encoding task, suggesting that content was selectively reinstated during retrieval. The majority of recollection-related regions, though, did not exhibit reinstatement effects, providing support for a core recollection network. Importantly, lateral parietal cortex demonstrated a clear dissociation, whereby recollection effects were localized to angular gyrus and confidence effects were restricted to intraparietal sulcus. Moreover, the latter region exhibited a non-monotonic pattern, consistent with a neural signal reflecting item familiarity rather than a generic form of memory strength. Together, the findings show that episodic retrieval relies on both content-sensitive and core recollective processes, and these can be differentiated from familiarity-based recognition memory.

  20. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction

    OpenAIRE

    Goldstein, Rita Z.; Alia-Klein, Nelly; Tomasi, Dardo; Carrillo, Jean Honorio; Maloney, Thomas; Woicik, Patricia A.; Wang, Ruiliang; Telang, Frank; Volkow, Nora D.

    2009-01-01

    Anterior cingulate cortex (ACC) hypoactivations during cognitive processing characterize drug addicted individuals as compared with healthy controls. However, impaired behavioral performance or task disengagement may be crucial factors. We hypothesized that ACC hypoactivations would be documented in groups matched for performance on an emotionally salient task. Seventeen individuals with current cocaine use disorders (CUD) and 17 demographically matched healthy controls underwent functional m...

  1. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    Directory of Open Access Journals (Sweden)

    Marco Davare

    2015-05-01

    Full Text Available To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the “reaching circuit” remains unknown. Here we used transcranial magnetic stimulation (TMS in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS or dorsal premotor cortex (PMd, in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; the targets were either visible for the whole trial (Target-ON or flashed for 200 ms (Target-OFF. Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks - two parameters typically used to probe the planned movement amplitude - irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160-100 ms before movement onset for mIPS and 100-40 ms for left PMd. TMS applied over right PMd had no significant effect. These results indicate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric

  2. Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Tracey A. Knaus

    2012-01-01

    Full Text Available Autism spectrum disorder (ASD is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years, matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions.

  3. Different effects of double-pulse TMS of the posterior parietal cortex on reflexive and voluntary saccades

    Directory of Open Access Journals (Sweden)

    Zoi KAPOULA

    2011-10-01

    Full Text Available Gap and overlap tasks are widely used to promote automatic versus controlled saccades. This study examines the hypothesis that the right posterior parietal cortex (PPC is differently involved in the two tasks. Twelve healthy students participated in the experiment. We used double-pulse transcranial magnetic stimulation (dTMS on the right PPC, the first pulse delivered at the target onset and the second 65 or 80ms later. Each subject performed several blocks of gap or overlap task with or without dTMS. Eye movements were recorded with an Eyelink device. The results show an increase of latency of saccades after dTMS of the right PPC for both tasks but for different time windows (0-80ms for the gap task, 0-65ms for the overlap task. Moreover, for rightward saccades the coefficient of variation of latency increased in the gap task but decreased in the overlap task. Finally, in the gap task and for leftward saccades only, dTMS at 0-80ms decreased the amplitude and the speed of saccades. Although the study is preliminary and needs further investigation in detail, the results support the hypothesis that the right PPC is involved differently in the initiation of the saccades for two tasks: in the gap task the PPC controls saccade triggering while in the overlap task it could be a relay to the Frontal Eye Fields which is known to control voluntary saccades, e.g. memory-guided and perhaps the controlled saccades in the overlap task The results have theoretical and clinical significance as gap-overlap tasks are easy to perform even in advanced age and in patients with neurodegenerative diseases.

  4. Medial profrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study.

    Directory of Open Access Journals (Sweden)

    Yamamoto,Shin

    2006-02-01

    Full Text Available

    Previous EEG studies have shown that transcendental meditation (TM increases frontal and central alpha activity. The present study was aimed at identifying the source of this alpha activity using magnetoencephalography (MEG and electroencephalography (EEG simultaneously on eight TM practitioners before, during, and after TM. The magnetic field potentials corresponding to TM-induced alpha activities on EEG recordings were extracted, and we attempted to localize the dipole sources using the multiple signal classification (MUSIC algorithm, equivalent current dipole source analysis, and the multiple spatio-temporal dipole model. Since the dipoles were mapped to both the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC, it is suggested that the mPFC and ACC play an important role in brain activity induced by TM.

  5. Neural Selectivity in Anterior Inferotemporal Cortex for Morphed Photographic Images During Behavioral Classification or Fixation

    OpenAIRE

    Liu, Yan; Jagadeesh, Bharathi

    2008-01-01

    Anterior inferotemporal cortex (aIT) contributes to the ability to discriminate and classify complex images. To determine whether and what proportion of single neurons in aIT cortex can yield enough information to classify complex images, we recorded from aIT neurons during the presentation of morphed photographic images in sessions in which monkeys classified images in a two alternative forced-choice—delayed-match-to-sample (2AFC-DMS) task or in sessions in which they performed a fixation ta...

  6. ROLE OF THE ANTERIOR CINGULATE AND MEDIAL ORBITOFRONTAL CORTEX IN PROCESSING DRUG CUES IN COCAINE ADDICTION

    OpenAIRE

    Goldstein, Rita Z.; Tomasi, Dardo; Rajaram, Suparna; Cottone, Lisa A.; Zhang, Lei; Maloney, Thomas; Telang, Frank; Alia-Klein, Nelly; Volkow, Nora D.

    2006-01-01

    Our goal in the current report was to design a new fMRI task to probe the role of the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) in processing of salient symptom-related cues during the simultaneous performance of an unrelated task in drug addicted individuals. We used a novel functional magnetic resonance imaging color-word drug Stroop task in 14 individuals with cocaine use disorders; subjects had to press for color of drug vs. matched neutral words. Although there were ...

  7. Early adversity and combat exposure interact to influence anterior cingulate cortex volume in combat veterans ☆

    OpenAIRE

    Woodward, Steven H.; Kuo, Janice R.; Schaer, Marie; Kaloupek, Danny G.; Eliez, Stephan

    2013-01-01

    Objective Childhood and combat trauma have been observed to interact to influence amygdala volume in a sample of U.S. military veterans with and without PTSD. This interaction was assessed in a second, functionally-related fear system component, the pregenual and dorsal anterior cingulate cortex, using the same sample and modeling approach. Method Anterior cingulate cortical tissues (gray + white matter) were manually-delineated in 1.5 T MR images in 87 U.S. military veterans of the Vietnam a...

  8. Comparison of anterior cingulate vs. insular cortex as targets for real-time fMRI regulation during pain stimulation

    OpenAIRE

    Kirsten Emmert; Markus Breimhorst; Thomas Bauermann

    2014-01-01

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network, notably the anterior insular cortex (AIC) and the anterior cingulate cortex (ACC). Participants for this prospective study were randomly assigned to...

  9. Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.

    Science.gov (United States)

    Reid, Andrew T; Bzdok, Danilo; Langner, Robert; Fox, Peter T; Laird, Angela R; Amunts, Katrin; Eickhoff, Simon B; Eickhoff, Claudia R

    2016-06-01

    Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of

  10. EMX1 regulates NRP1-mediated wiring of the mouse anterior cingulate cortex.

    Science.gov (United States)

    Lim, Jonathan W C; Donahoo, Amber-Lee S; Bunt, Jens; Edwards, Timothy J; Fenlon, Laura R; Liu, Ying; Zhou, Jing; Moldrich, Randal X; Piper, Michael; Gobius, Ilan; Bailey, Timothy L; Wray, Naomi R; Kessaris, Nicoletta; Poo, Mu-Ming; Rubenstein, John L R; Richards, Linda J

    2015-11-01

    Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how they mediate the emergence of specific neuronal connections via selective axon guidance. The EMX transcription factors are essential for early patterning of the cerebral cortex, but whether EMX1 mediates interhemispheric connectivity by controlling corpus callosum formation remains unclear. Here, we demonstrate that in mice on the C57Bl/6 background EMX1 plays an essential role in the midline crossing of an axonal subpopulation of the corpus callosum derived from the anterior cingulate cortex. In the absence of EMX1, cingulate axons display reduced expression of the axon guidance receptor NRP1 and form aberrant axonal bundles within the rostral corpus callosum. EMX1 also functions as a transcriptional activator of Nrp1 expression in vitro, and overexpression of this protein in Emx1 knockout mice rescues the midline-crossing phenotype. These findings reveal a novel role for the EMX1 transcription factor in establishing cortical connectivity by regulating the interhemispheric wiring of a subpopulation of neurons within the mouse anterior cingulate cortex. PMID:26534986

  11. Medial prefrontal cortex-dorsal anterior cingulate cortex connectivity during behavior selection without an objective correct answer.

    Science.gov (United States)

    Nakao, Takashi; Osumi, Takahiro; Ohira, Hideki; Kasuya, Yukinori; Shinoda, Jun; Yamada, Jitsuhiro; Northoff, Georg

    2010-10-01

    Life choices (e.g., occupational choice) often include situations with two or more possible correct answers, thereby putting us in a situation of conflict. Recent reports have described that the evaluation of conflict might be crucially mediated by neural activity in the dorsal anterior cingulate cortex (dACC), although the reduction of conflict might rather be associated with neural activity in the medial prefrontal cortex (MPFC). What remains unclear is whether these regions mutually interact, thereby raising the question of their functional connectivity during conflict situations. Using psychophysiological interaction (PPI) analyses of functional magnetic resonance imaging (fMRI) data, this study shows that the dACC co-varied significantly higher with the MPFC during an occupational choice task with two possible correct answers when compared to the control task: a word-length task with one possible correct answer. These results suggest that the MPFC has a functional relation with dACC, especially in conflict situations where there is no objective correct answer. Taken together, this lends support to the assumption that the MPFC might be crucial in biasing the decision, thereby reducing conflict. PMID:20655361

  12. Short-term meditation increases blood flow in anterior cingulate cortex and insula

    Directory of Open Access Journals (Sweden)

    Yi-Yuan eTang

    2015-02-01

    Full Text Available Asymmetry in frontal electrical activity has been reported to be associated with positive mood. One form of mindfulness meditation, integrative body-mind training (IBMT improves positive mood and neuroplasticity. The purpose of this study is to determine whether short-term IBMT improves mood and induces frontal asymmetry. This study showed that five-day (30-min per day IBMT significantly enhanced cerebral blood flow (CBF in subgenual/adjacent ventral anterior cingulate cortex (ACC, medial prefrontal cortex and insula. The results showed that both IBMT and relaxation training increased left laterality of CBF, but only IBMT improved CBF in left ACC and insula, critical brain areas in self-regulation.

  13. Modulation of Subgenual Anterior Cingulate Cortex Activity With Real-Time Neurofeedback

    OpenAIRE

    Hamilton, J. Paul; Glover, Gary H.; Hsu, Jung-Jiin; Johnson, Rebecca F.; Gotlib, Ian H.

    2011-01-01

    The advent of real-time neurofeedback techniques has allowed us to begin to map the controllability of sensory and cognitive and, more recently, affective centers in the brain. The subgenual anterior cingulate cortex (sACC) is thought to be involved in generation of affective states and has been implicated in psychopathology. In this study, we examined whether individuals could use realtime fMRI neurofeedback to modulate sACC activity. Following a localizer task used to identify an sACC regio...

  14. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy

    OpenAIRE

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In Experiment 1, rats were trained on a cost-benefit T-maze task in which they could either choose to climb a barrier to obtain a high reward (four pellet...

  15. Comment on "Single-trial spike trains in parietal cortex reveal discrete steps during decision-making".

    Science.gov (United States)

    Shadlen, Michael N; Kiani, Roozbeh; Newsome, William T; Gold, Joshua I; Wolpert, Daniel M; Zylberberg, Ariel; Ditterich, Jochen; de Lafuente, Victor; Yang, Tianming; Roitman, Jamie

    2016-03-25

    Latimeret al (Reports, 10 July 2015, p. 184) claim that during perceptual decision formation, parietal neurons undergo one-time, discrete steps in firing rate instead of gradual changes that represent the accumulation of evidence. However, that conclusion rests on unsubstantiated assumptions about the time window of evidence accumulation, and their stepping model cannot explain existing data as effectively as evidence-accumulation models. PMID:27013723

  16. Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain.

    Science.gov (United States)

    Vandenberghe, Rik; Gillebert, Céline R

    2009-05-16

    Spatial-attentional deficits are highly prevalent following stroke. They can be clinically detected by means of conventional bedside tests such as target cancellation, line bisection and the visual extinction test. Until recently, lesion mapping studies and functional imaging of the intact brain did not agree very well on exactly which parietal areas play a key role in selective attention: the inferior parietal lobule or the intraparietal sulcus. Recently, the use of a contrastive approach in patients akin to that commonly used in functional imaging studies in healthy volunteers together with voxel-based lesion-symptom mapping have allowed to bring the patient lesion mapping much closer to the functional imaging results obtained in healthy controls. In this review we focus on converging evidence obtained from patient lesion studies and from fMRI studies in the intact brain in humans. This has yielded novel insights into the functional segregation between the middle third of the intraparietal sulcus, the superior parietal lobule and the temporoparietal junction in the intact brain and also enhanced our understanding of the pathogenetic mechanisms underlying deficits arising in patients. PMID:19118580

  17. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions. PMID:25529106

  18. Structural basis of empathy and the domain general region in the anterior insular cortex

    Directory of Open Access Journals (Sweden)

    Isabella Mutschler

    2013-05-01

    Full Text Available Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises emotional and cognitive components, such as feeling and knowing what another person is feeling, and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person’s feelings and to reduce another person’s pain. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed by using a widely used and validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex determined by activation likelihood estimate (ALE meta-analysis of previous functional imaging studies. We found that gray matter density in the left dorsal anterior insular cortex correlates with empathy and that this area overlaps with the domain general region of the anterior insula that is situated in-between functional systems involved in emotion-cognition, pain and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy might play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy.

  19. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  20. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset.

    Science.gov (United States)

    Jackson, Stacey A W; Horst, Nicole K; Pears, Andrew; Robbins, Trevor W; Roberts, Angela C

    2016-07-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the "habit" system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. PMID:27130662

  1. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response. PMID:19562631

  2. Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain

    OpenAIRE

    Zlatkina, Veronika; Petrides, Michael

    2014-01-01

    Distinct parts of the intraparietal sulcal cortex contribute to sensorimotor integration and visual spatial attentional processing. A detailed examination of the morphological relations of the different segments of the complex intraparietal sulcal region in the human brain in standard stereotaxic space, which is a prerequisite for detailed structure-to-function studies, is not available. This study examined the intraparietal sulcus (IPS) and the related sulcus of Jensen in magnetic resonance ...

  3. Anatomical and functional overlap within the insula and anterior cingulate cortex during interoception and phobic symptom provocation

    OpenAIRE

    Caseras, Xavier; Murphy, Kevin; Mataix-Cols, David; López-Sola, Marina; Soriano-Mas, Carles; Ortiz Valencia, Héctor; Pujol, Jesus; Torrubia, Rafael

    2011-01-01

    The anterior insula and the dorsal anterior cingulate cortex (ACC) are regarded as key brain structures associated with the integration of perceived phobic characteristics of external stimuli and the perception of ones own body responses that leads to emotional feelings. To test to what extent the activity in these two brain structures anatomically and functionally overlap during phobic reactions and interoception, we submitted the same group of phobic participants (n = 29; either spider or b...

  4. Reasoning with linear orders: Differential parietal cortex activation in subclinical depression. An fMRI investigation in subclinical depression and controls

    Directory of Open Access Journals (Sweden)

    Elanor C. Hinton

    2015-01-01

    Full Text Available The capacity to learn new information and manipulate it for efficient retrieval has long been studied through reasoning paradigms, which also has applicability to the study of social behaviour. Humans can learn about the linear order within groups using reasoning, and the success of such reasoning may vary according to affective state, such as depression. We investigated the neural basis of these latter findings using functional neuroimaging. Using BDI-II criteria, 14 non-depressed and 12 mildly depressed volunteers took part in a linear-order reasoning task during fMRI. The hippocampus, parietal and prefrontal cortices were activated during the task, in accordance with previous studies. In the learning phase and in the test phase, greater activation of the parietal cortex was found in the depressed group, which may be a compensatory mechanism in order to reach the same behavioural performance as the non-depressed group, or evidence for a different reasoning strategy in the depressed group.

  5. Learning to cope with stress modulates anterior cingulate cortex stargazin expression in monkeys and mice.

    Science.gov (United States)

    Lee, Alex G; Capanzana, Roxanne; Brockhurst, Jacqueline; Cheng, Michelle Y; Buckmaster, Christine L; Absher, Devin; Schatzberg, Alan F; Lyons, David M

    2016-05-01

    Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping with gains in subsequent emotion regulation. Here we investigate the effects of learning to cope with stress on anterior cingulate cortex gene expression in monkeys and mice. Anterior cingulate cortex is involved in learning, memory, cognitive control, and emotion regulation. Monkeys and mice were randomized to either stress coping or no-stress treatment conditions. Profiles of gene expression were acquired with HumanHT-12v4.0 Expression BeadChip arrays adapted for monkeys. Three genes identified in monkeys by arrays were then assessed in mice by quantitative real-time polymerase chain reaction. Expression of a key gene (PEMT) involved in acetylcholine biosynthesis was increased in monkeys by coping but this result was not verified in mice. Another gene (SPRY2) that encodes a negative regulator of neurotrophic factor signaling was decreased in monkeys by coping but this result was only partly verified in mice. The CACNG2 gene that encodes stargazin (also called TARP gamma-2) was increased by coping in monkeys as well as mice randomized to coping with or without subsequent behavioral tests of emotionality. As evidence of coping effects distinct from repeated stress exposures per se, increased stargazin expression induced by coping correlated with diminished emotionality in mice. Stargazin modulates glutamate receptor signaling and plays a role in synaptic plasticity. Molecular mechanisms of synaptic plasticity that mediate learning and memory in the context of coping with stress may provide novel targets for new treatments of disorders in human mental health. PMID:27003116

  6. Electrophysiological Correlates of a Versatile Executive Control System in the Monkey Anterior Cingulate Cortex.

    Science.gov (United States)

    Michelet, Thomas; Bioulac, Bernard; Langbour, Nicolas; Goillandeau, Michel; Guehl, Dominique; Burbaud, Pierre

    2016-04-01

    When a subject faces conflicting situations, decision-making becomes uncertain. The human dorsal anterior cingulate cortex (dACC) has been repeatedly implicated in the monitoring of such situations, and its neural activity is thought to be involved in behavioral adjustment. However, this hypothesis is mainly based on neuroimaging results and is challenged by animal studies that failed to report any neuronal correlates of conflict monitoring. This discrepancy is thought be due either to methodological or more fundamental cross-species differences. In this study, we eliminated methodological biases and recorded single-neuron activity in monkeys performing a Stroop-like task. We found specific changes in dACC activity during incongruent trials but only in a small subpopulation of cells. Critically, these changes were not related to reaction time and were absent before any incorrect action was taken. A larger fraction of neurons exhibited sustained activity during the whole decision period, whereas another subpopulation of neurons was modulated by reaction time, with a gradual increase in their firing rate that peaked at movement onset. Most of the neurons found in these subpopulations exhibited activity after the delivery of an external negative feedback stimulus that indicated an error had been made. These findings, which are consistent with an executive control role, reconcile various theories of prefrontal cortex function and support the homology between human and monkey cognitive architectures. PMID:25631057

  7. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WANG Ya-rong; QIN Wei; YUAN Kai; TIAN Jie; LI Qiang; YANG Lan-ying; LU Lin; GUO You-min

    2010-01-01

    Background Previous studies with animal experiments, autopsy, structural magnetic resonance imaging (MRI) and task-related functional MRI (fMRI) have confirmed that brain functional connectivity in addicts has become impaired. The goal of this study was to investigate the alteration of resting-state functional connectivity of the ventral anterior cingulate cortex (vACC) in the heroin abusers' brain.Methods Fifteen heroin abusers and fifteen matched healthy volunteers were studied using vACC as the region-of interest (ROI) seed. A 3.0 T scanner with a standard head coil was the imagining apparatus. T2*-weighted gradient-echo planar imaging (GRE-EPI) was the scanning protocol. A ROI seed based correlation analysis used a SPM5 software package as the tool for all images processing.Results This study showed a functional connection to the insula vACC in heroin abusers. Compared with controls,heroin users showed decreased functional connectivity between the nucleus accumbens (NAc) and vACC, between the parahippocampala gyrus/amgdala (PHC/amygdala) and vACC, between the thalamus and vACC, and between the posterior cingulated cortex/precuneus (PCC/pC) and vACC.Conclusion The altered resting-state functional connectivity to the vACC suggests the neural circuitry on which the addictive drug has an affect and reflects the dysfunction of the addictive brain.

  8. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  9. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    Science.gov (United States)

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  10. Role of anterior piriform cortex in the acquisition of conditioned flavour preference.

    Science.gov (United States)

    Mediavilla, Cristina; Martin-Signes, Mar; Risco, Severiano

    2016-01-01

    Flavour aversion learning (FAL) and conditioned flavour preference (CFP) facilitate animal survival and play a major role in food selection, but the neurobiological mechanisms involved are not completely understood. Neuroanatomical bases of CFP were examined by using Fos immunohistochemistry to record neuronal activity. Rats were trained over eight alternating one-bottle sessions to acquire a CFP induced by pairing a flavour with saccharin (grape was CS+ in Group 1; cherry in Group 2; in Group 3, grape/cherry in half of animals; Group 4, grape/cherry in water). Animals were offered the grape flavour on the day immediately after the training and their brains were processed for c-Fos. Neurons evidencing Fos-like immunoreactivity were counted in the infralimbic cortex, nucleus accumbens core, and anterior piriform cortex (aPC). Analysis showed a significantly larger number of activated cells after learning in the aPC alone, suggesting that the learning process might have produced a change in this cortical region. Ibotenic lesions in the aPC blocked flavour-taste preference but did not interrupt flavour-toxin FAL by LiCl. These data suggest that aPC cells may be involved in the formation of flavour preferences and that the integrity of this region may be specifically necessary for the acquisition of a CFP. PMID:27624896

  11. Postnatal development of the electrophysiological properties of somatostatin interneurons in the anterior cingulate cortex of mice.

    Science.gov (United States)

    Pan, Geng; Yang, Jian-Ming; Hu, Xing-Yue; Li, Xiao-Ming

    2016-01-01

    Somatostatin (SST)-positive interneurons in the anterior cingulate cortex (ACC) play important roles in neuronal diseases, memory and cognitive functions. However, their development in the ACC remains unclear. Using postnatal day 3 (P3) to P45 GIN mice, we found that most of the intrinsic membrane properties of SST interneurons in the ACC were developmentally mature after the second postnatal week and that the development of these neurons differed from that of parvalbumin (PV) interneurons in the prefrontal cortex. In addition, electrical coupling between SST interneurons appeared primarily between P12-14. The coupling probability plateaued at approximately P21-30, with a non-age-dependent development of coupling strength. The development of excitatory chemical afferents to SST interneurons occurred earlier than the development of inhibitory chemical afferents. Furthermore, eye closure attenuated the development of electrical coupling probability at P21-30 but had no effect on coupling strength. Eye closure also delayed the development of inhibitory chemical afferent frequency but had no effect on the excitatory chemical afferent amplitude, frequency or rise time. Our data suggest that SST interneurons in the ACC exhibit inherent developmental characteristics distinct from other interneuron subtypes, such as PV interneurons, and that some of these characteristics are subject to environmental regulation. PMID:27319800

  12. Learning increases stimulus salience in anterior inferior temporal cortex of the macaque.

    Science.gov (United States)

    Jagadeesh, B; Chelazzi, L; Mishkin, M; Desimone, R

    2001-07-01

    With experience, an object can become behaviorally relevant and thereby quickly attract our interest when presented in a visual scene. A likely site of these learning effects is anterior inferior temporal (aIT) cortex, where neurons are thought to participate in the filtering of irrelevant information out of complex visual displays. We trained monkeys to saccade consistently to one of two pictures in an array, in return for a reward. The array was constructed by pairing two stimuli, one of which elicited a good response from the cell when presented alone ("good" stimulus) and the other of which elicited a poor response ("poor" stimulus). The activity of aIT cells was recorded while monkeys learned to saccade to either the good or poor stimulus in the array. We found that neuronal responses to the array were greater (before the saccade occurred) when training reinforced a saccade to the good stimulus than when training reinforced a saccade to the poor stimulus. This difference was not present on incorrect trials, i.e., when saccades to the incorrect stimulus were made. Thus the difference in activity was correlated with performance. The response difference grew over the course of the recording session, in parallel with the improvement in performance. The response difference was not preceded by a difference in the baseline activity of the cells, unlike what was found in studies of cued visual search and working memory in aIT cortex. Furthermore, we found similar effects in a version of the task in which any of 10 possible pairs of stimuli, prelearned before the recording session, could appear on a given trial, thereby precluding a working memory strategy. The results suggest that increasing the behavioral significance of a stimulus through training alters the neural representation of that stimulus in aIT cortex. As a result, neurons responding to features of the relevant stimulus may suppress neurons responding to features of irrelevant stimuli. PMID:11431510

  13. Post-Learning Infusion of Anisomycin into the Anterior Cingulate Cortex Impairs Instrumental Acquisition through an Effect on Reinforcer Valuation

    Science.gov (United States)

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of…

  14. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study

    Czech Academy of Sciences Publication Activity Database

    Rusnáková-Aulická, Š.; Jurák, Pavel; Chládek, Jan; Daniel, P.; Halámek, Josef; Baláž, M.; Bočková, M.; Chrastina, J.; Rektor, I.

    2014-01-01

    Roč. 121, č. 10 (2014), s. 1287-1296. ISSN 0300-9564 R&D Projects: GA ČR GAP103/11/0933 Institutional support: RVO:68081731 Keywords : ERD/S * Anterior cingulate cortex * Subthalamic nucleus * Flanker test * Executive functions Subject RIV: BD - Theory of Information Impact factor: 2.402, year: 2014

  15. Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder.

    Science.gov (United States)

    Feng, Zhan; Xu, Shunliang; Huang, Manli; Shi, Yushu; Xiong, Bing; Yang, Hong

    2016-01-01

    In recent years, major depressive disorder (MDD) has been demonstrated to be associated with abnormalities in neural networks, particularly the prefrontal-limbic network (PLN). However, there are few current studies that have examined information flow in the PLN. In this study, Granger causality analysis (GCA), based on signed regression coefficient, was used to explore changes in causal connectivity in resting-state PLNs of MDD patients. A total of 23 first-episode medication-naïve MDD patients and 20 normal control participants were subjected to resting-state functional magnetic resonance imaging (RS-fMRI) scans. Increased causal effects of the right insular cortex, right putamen and right caudate on the rostral anterior cingulate cortex (rACC) and reduced causal effects of bilateral dorsolateral prefrontal cortex (DLPFC) and left orbitofrontal cortex (OFC) on the rACC were found in MDD patients compared to normal controls. The extensive reduction in the causal effect of the prefrontal cortex (PFC) demonstrates impaired top-down cognitive control in MDD patients. Changes in the causal relationship between the right insula and rACC suggest problems in coordination of the default mode network by the right anterior insular cortex (rAI). These findings provide valuable insight into MDD-related neural network disorders reported in previous RS-fMRI studies and may potentially guide clinical treatment of MDD in the future. PMID:26234517

  16. Trans-saccadic interactions in human parietal and occipital cortex during the retention and comparison of object orientation.

    Science.gov (United States)

    Dunkley, Benjamin T; Baltaretu, Bianca; Crawford, J Douglas

    2016-09-01

    The cortical sites for the trans-saccadic storage and integration of visual object features are unknown. Here, we used a variant of fMRI-Adaptation where subjects fixated to the left or right of a briefly presented visual grating, maintained fixation or saccaded to the opposite side, then judged whether a re-presented grating had the same or different orientation. fMRI analysis revealed trans-saccadic interactions (different > same orientation) in a visual field-insensitive cluster within right supramarginal gyrus. This cluster was located at the anterolateral pole of the parietal eye field (identified in a localizer task). We also observed gaze centered, field-specific interactions (same > different orientation) in an extrastriate cluster overlapping with putative 'V4'. Based on these data and our literature review, we conclude that these supramarginal and extrastriate areas are involved in the retention, spatial updating, and evaluation of object orientation information across saccades. PMID:27424061

  17. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning. PMID:23494292

  18. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying.

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H; Wilhelm, Frank H; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca's homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and may

  19. Potentiation of synaptic transmission in Rat anterior cingulate cortex by chronic itch.

    Science.gov (United States)

    Zhang, Ting-Ting; Shen, Feng-Yan; Ma, Li-Qing; Wen, Wen; Wang, Bin; Peng, Yuan-Zhi; Wang, Zhi-Ru; Zhao, Xuan

    2016-01-01

    Itch and pain share similar mechanisms. It has been well documented that the anterior cingulate cortex (ACC) is important for pain-related perception. ACC has also been approved to be a potential pruritus-associated brain region. However, the mechanism of sensitization in pruriceptive neurons in the ACC is not clear. In current study, a chronic itch model was established by diphenylcyclopropenone (DCP) application. We found that both the frequency and amplitude of miniature excitatory postsynaptic currents in the ACC were enhanced after the formation of chronic itch. The paired-pulse ratio in ACC neurons recorded from the DCP group were smaller than those recorded in control group at the 50-ms interval. We also observe a significant increase in the AMPA/NMDA ratio in the DCP group. Moreover, an increased inward rectification of AMPARs in ACC pyramidal neurons was observed in the DCP group. Interestingly, the calculated ratio of silent synapses was significantly reduced in the DCP group compared with controls. Taken together, we conclude that a potentiation of synaptic transmission in the ACC can be induced by chronic itch, and unsilencing silent synapses, which probably involved recruitment of AMPARS, contributed to the potentiation of postsynaptic transmission. PMID:27472923

  20. An Examination of Rostral Anterior Cingulate Cortex Function and Neurochemistry in Obsessive-Compulsive Disorder.

    Science.gov (United States)

    Brennan, Brian P; Tkachenko, Olga; Schwab, Zachary J; Juelich, Richard J; Ryan, Erin M; Athey, Alison J; Pope, Harrison G; Jenike, Michael A; Baker, Justin T; Killgore, William D S; Hudson, James I; Jensen, J Eric; Rauch, Scott L

    2015-07-01

    The anterior cingulate cortex is implicated in the neurobiology of obsessive-compulsive disorder (OCD). However, few studies have examined functional and neurochemical abnormalities specifically in the rostral subdivision of the ACC (rACC) in OCD patients. We used functional magnetic resonance imaging (fMRI) during an emotional counting Stroop task and single-voxel J-resolved proton magnetic resonance spectroscopy ((1)H-MRS) in the rACC to examine the function and neurochemistry of the rACC in individuals with OCD and comparison individuals without OCD. Between-group differences in rACC activation and glutamine/glutamate ratio (Gln/Glu), Glu, and Gln levels, as well as associations between rACC activation, Gln/Glu, Glu, Gln, behavioral, and clinical measures were examined using linear regression. In a sample of 30 participants with OCD and 29 age- and sex-matched participants without OCD, participants with OCD displayed significantly reduced rACC deactivation compared with those without OCD in response to OCD-specific words versus neutral words on the emotional counting Stroop task. However, Gln/Glu, Glu, and Gln in the rACC did not differ between groups nor was there an association between reduced rACC deactivation and Gln/Glu, Glu, or Gln in the OCD group. Taken together, these findings strengthen the evidence for rACC dysfunction in OCD, but weigh against an underlying association with abnormal rACC glutamatergic neurotransmission. PMID:25662837

  1. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Koike, Takahiko; Yoshihara, Kazufumi; Yoshida, Yumiko; Takahashi, Haruka K; Nakagawa, Eri; Sadato, Norihiro

    2016-07-01

    Happiness is one of the most fundamental human goals, which has led researchers to examine the source of individual happiness. Happiness has usually been discussed regarding two aspects (a temporary positive emotion and a trait-like long-term sense of being happy) that are interrelated; for example, individuals with a high level of trait-like subjective happiness tend to rate events as more pleasant. In this study, we hypothesized that the interaction between the two aspects of happiness could be explained by the interaction between structure and function in certain brain regions. Thus, we first assessed the association between gray matter density (GMD) of healthy participants and trait-like subjective happiness using voxel-based morphometry (VBM). Further, to assess the association between the GMD and brain function, we conducted functional magnetic resonance imaging (MRI) using the task of positive emotion induction (imagination of several emotional life events). VBM indicated that the subjective happiness was positively correlated with the GMD of the rostral anterior cingulate cortex (rACC). Functional MRI demonstrated that experimentally induced temporal happy feelings were positively correlated with subjective happiness level and rACC activity. The rACC response to positive events was also positively correlated with its GMD. These results provide convergent structural and functional evidence that the rACC is related to happiness and suggest that the interaction between structure and function in the rACC may explain the trait-state interaction in happiness. PMID:27085503

  2. The von Economo neurons in the frontoinsular and anterior cingulate cortex.

    Science.gov (United States)

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Manaye, Kebreten F; Semendeferi, Katerina; Erwin, Joseph M; Park, Soyoung; Goubert, Virginie; Hof, Patrick R

    2011-04-01

    The von Economo neurons (VENs) are large bipolar neurons located in the frontoinsular cortex (FI) and limbic anterior (LA) area in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week postconception, with numbers increasing during the first 8 months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of frontotemporal dementia (FTD) implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  3. Anterior cingulate cortex inactivation impairs rodent visual selective attention and prospective memory.

    Science.gov (United States)

    Kim, Jangjin; Wasserman, Edward A; Castro, Leyre; Freeman, John H

    2016-02-01

    Previous studies showed that the anterior cingulate cortex (ACC) plays a role in selective visual attention. The current study further examined the role of the ACC in attention using a visual cuing task with task-relevant and task-irrelevant stimuli. On every trial, 2 stimuli were presented on the touchscreen; 1 was task-relevant and the other was task-irrelevant. Rats were trained to attend to the task-relevant stimulus over the task-irrelevant stimulus to determine which side of the touchscreen should be selected for reward. After the rats were well-trained, cannulas targeting the ACC were implanted bilaterally for infusions of PBS or muscimol. When the ACC was functionally intact, high task performance was correlated with the anticipatory touches toward the reward; rats touched the stimulus proximal to the correct side more often, regardless of its task-relevancy. Analysis of the presurgery training data showed that rats developed anticipatory touches during training. Linear discriminant analyses of the touches also showed that the touches predict rats' choices in trials. With muscimol infusions, choice accuracy was impaired and the anticipatory touches toward the correct response location were less frequent. A control experiment, in which there were no irrelevant stimuli, showed no effects of ACC inactivation on choice accuracy or anticipatory touches. These results indicate that the rat ACC plays a critical role in reducing distraction from irrelevant stimuli as well as in guiding attention toward the goal locations. (PsycINFO Database Record PMID:26692448

  4. Chemogenetic Inactivation of Dorsal Anterior Cingulate Cortex Neurons Disrupts Attentional Behavior in Mouse.

    Science.gov (United States)

    Koike, Hiroyuki; Demars, Michael P; Short, Jennifer A; Nabel, Elisa M; Akbarian, Schahram; Baxter, Mark G; Morishita, Hirofumi

    2016-03-01

    Attention is disrupted commonly in psychiatric disorders, yet mechanistic insight remains limited. Deficits in this function are associated with dorsal anterior cingulate cortex (dACC) excitotoxic lesions and pharmacological disinhibition; however, a causal relationship has not been established at the cellular level. Moreover, this association has not yet been examined in a genetically tractable species such as mice. Here, we reveal that dACC neurons causally contribute to attention processing by combining a chemogenetic approach that reversibly suppresses neural activity with a translational, touchscreen-based attention task in mice. We virally expressed inhibitory hM4Di DREADD (designer receptor exclusively activated by a designer drug) in dACC neurons, and examined the effects of this inhibitory action with the attention-based five-choice serial reaction time task. DREADD inactivation of the dACC neurons during the task significantly increased omission and correct response latencies, indicating that the neuronal activities of dACC contribute to attention and processing speed. Selective inactivation of excitatory neurons in the dACC not only increased omission, but also decreased accuracy. The effect of inactivating dACC neurons was selective to attention as response control, motivation, and locomotion remain normal. This finding suggests that dACC excitatory neurons play a principal role in modulating attention to task-relevant stimuli. This study establishes a foundation to chemogenetically dissect specific cell-type and circuit mechanisms underlying attentional behaviors in a genetically tractable species. PMID:26224620

  5. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development.

    Science.gov (United States)

    Cachia, A; Borst, G; Tissier, C; Fisher, C; Plaze, M; Gay, O; Rivière, D; Gogtay, N; Giedd, J; Mangin, J-F; Houdé, O; Raznahan, A

    2016-06-01

    Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events - under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC) - an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show - without exception-that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life. PMID:26974743

  6. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  7. Anatomical Abnormalities of the Anterior Cingulate Cortex in Schizophrenia: Bridging the Gap Between Neuroimaging and Neuropathology

    Science.gov (United States)

    Fornito, Alex; Yücel, Murat; Dean, Brian; Wood, Stephen J.; Pantelis, Christos

    2009-01-01

    The anterior cingulate cortex (ACC) is a functionally heterogeneous region involved in diverse cognitive and emotional processes that support goal-directed behaviour. Structural magnetic resonance imaging (MRI) and neuropathological findings over the past two decades have converged to suggest abnormalities in the region may represent a neurobiological basis for many of the clinical manifestations of schizophrenia. However, while each approach offers complimentary information that can provide clues regarding underlying patholophysiological processes, the findings from these 2 fields are seldom integrated. In this article, we review structural neuroimaging and neuropathological studies of the ACC, focusing on the unique information they provide. The available imaging data suggest grey matter reductions in the ACC precede psychosis onset in some categories of high-risk individuals, show sub-regional specificity, and may progress with illness duration. The available post-mortem findings indicate these imaging-related changes are accompanied by reductions in neuronal, synaptic, and dendritic density, as well as increased afferent input, suggesting the grey matter differences observed with MRI arise from alterations in both neuronal and non-neuronal tissue compartments. We discuss the potential mechanisms that might facilitate integration of these findings and consider strategies for future research. PMID:18436528

  8. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  9. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Science.gov (United States)

    Xie, Kun; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder. PMID:23741416

  10. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice.

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu; Zhuo, Min

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  11. Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study

    OpenAIRE

    Brody, Arthur L.; Mandelkern, Mark A.; Lee, Grace; Smith, Erlyn; Sadeghi, Mary; Saxena, Sanjaya; Jarvik, Murray E.; London, Edythe D.

    2004-01-01

    In untreated smokers, exposure to cigarette-related cues increases both the intensity of cigarette craving and relative glucose metabolism of the perigenual/ventral anterior cingulate cortex (ACC). Given that treatment with bupropion HCl reduces overall cigarette craving levels in nicotine dependent subjects, we performed a preliminary study of smokers to determine if bupropion HCl treatment attenuates cue-induced cigarette craving and associated brain metabolic activation. Thirty-seven, othe...

  12. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure

    OpenAIRE

    Migliorini, R; Moore, EM; Glass, L.; Infante, MA; Tapert, SF; Jones, KL; Mattson, SN; Riley, EP

    2015-01-01

    © 2015 Elsevier B.V. Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n=. 32) and non-exposed controls (CON, n=. 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging ...

  13. Involvement of the Rostral Anterior Cingulate Cortex in Consolidation of Inhibitory Avoidance Memory: Interaction with the Basolateral Amygdala

    OpenAIRE

    Malin, Emily L.; Ibrahim, Deena Y.; Tu, Jessica W.; McGaugh, James L.

    2006-01-01

    Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigat...

  14. Anterior cingulate cortex mediates the relationship between O3PUFAs and executive functions in APOE e4 carriers

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2015-05-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between biomarkers of diet and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between omega-3 polyunsaturated fatty acids (O3PUFAs and executive functions in at-risk (APOE e4 carriers, cognitively intact older adults. We hypothesized that higher levels of O3PUFAs are associated with better performance in a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter volume of a specific region thought to be important for cognitive flexibility, the anterior cingulate cortex. Methods: We examined 40 cognitively intact adults between the ages of 65 and 75 with the APOE e4 polymorphism to investigate the relationship between biomarkers of O3PUFAs, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter volume within regions of the prefrontal cortex. Results: A mediation analysis revealed that gray matter volume within the left rostral anterior cingulate cortex partially mediates the relationship between O3PUFA biomarkers and cognitive flexibility. Conclusion: These results suggest that the anterior cingulate cortex acts as a mediator of the relationship between O3PUFAs and cognitive flexibility in cognitively intact adults thought to be at risk for cognitive decline. Through their link to executive functions and neuronal measures of prefrontal cortex volume, O3PUFAs show potential as a nutritional therapy to prevent dysfunction in the aging brain.

  15. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    International Nuclear Information System (INIS)

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  16. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  17. Neuropeptide S receptor gene variation modulates anterior cingulate cortex Glx levels during CCK-4 induced panic.

    Science.gov (United States)

    Ruland, Tillmann; Domschke, Katharina; Schütte, Valerie; Zavorotnyy, Maxim; Kugel, Harald; Notzon, Swantje; Vennewald, Nadja; Ohrmann, Patricia; Arolt, Volker; Pfleiderer, Bettina; Zwanzger, Peter

    2015-10-01

    An excitatory-inhibitory neurotransmitter dysbalance has been suggested in pathogenesis of panic disorder. The neuropeptide S (NPS) system has been implicated in modulating GABA and glutamate neurotransmission in animal models and to genetically drive altered fear circuit function and an increased risk of panic disorder in humans. Probing a multi-level imaging genetic risk model of panic, in the present magnetic resonance spectroscopy (MRS) study brain glutamate+glutamine (Glx) levels in the bilateral anterior cingulate cortex (ACC) during a pharmacological cholecystokinin tetrapeptide (CCK-4) panic challenge were assessed depending on the functional neuropeptide S receptor gene (NPSR1) rs324981 A/T variant in a final sample of 35 healthy male subjects. The subjective panic response (Panic Symptom Scale; PSS) as well as cortisol and ACTH levels were ascertained throughout the experiment. CCK-4 injection was followed by a strong panic response. A significant time×genotype interaction was detected (p=.008), with significantly lower ACC Glx/Cr levels in T allele carriers as compared to AA homozygotes 5min after injection (p=.003). CCK-4 induced significant HPA axis stimulation, but no effect of genotype was discerned. The present pilot data suggests NPSR1 gene variation to modulate Glx levels in the ACC during acute states of stress and anxiety, with blunted, i.e. possibly maladaptive ACC glutamatergic reactivity in T risk allele carriers. Our results underline the notion of a genetically driven rapid and dynamic response mechanism in the neural regulation of human anxiety and further strengthen the emerging role of the NPS system in anxiety. PMID:26235955

  18. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [3H]MK801, [3H]AMPA and [3H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [3H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [3H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [3H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [3H]AMPA and [3H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  19. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction

    Science.gov (United States)

    Goldstein, Rita Z.; Alia-Klein, Nelly; Tomasi, Dardo; Carrillo, Jean Honorio; Maloney, Thomas; Woicik, Patricia A.; Wang, Ruiliang; Telang, Frank; Volkow, Nora D.

    2009-01-01

    Anterior cingulate cortex (ACC) hypoactivations during cognitive processing characterize drug addicted individuals as compared with healthy controls. However, impaired behavioral performance or task disengagement may be crucial factors. We hypothesized that ACC hypoactivations would be documented in groups matched for performance on an emotionally salient task. Seventeen individuals with current cocaine use disorders (CUD) and 17 demographically matched healthy controls underwent functional magnetic resonance imaging during performance of a rewarded drug cue-reactivity task previously shown to engage the ACC. Despite lack of group differences in objective or subjective task-related performance, CUD showed more ACC hypoactivations throughout this emotionally salient task. Nevertheless, intensity of emotional salience contributed to results: (i) CUD with the largest rostroventral ACC [Brodmann Area (BA) 10, 11, implicated in default brain function] hypoactivations to the most salient task condition (drug words during the highest available monetary reward), had the least task-induced cocaine craving; (ii) CUD with the largest caudal-dorsal ACC (BA 32) hypoactivations especially to the least salient task condition (neutral words with no reward) had the most frequent current cocaine use; and (iii) responses to the most salient task condition in both these ACC major subdivisions were positively intercorrelated in the controls only. In conclusion, ACC hypoactivations in drug users cannot be attributed to task difficulty or disengagement. Nevertheless, emotional salience modulates ACC responses in proportion to drug use severity. Interventions to strengthen ACC reactivity or interconnectivity may be beneficial in enhancing top-down monitoring and emotion regulation as a strategy to reduce impulsive and compulsive behavior in addiction. PMID:19478067

  20. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge.

    Science.gov (United States)

    Hoffman, Paul; Binney, Richard J; Lambon Ralph, Matthew A

    2015-02-01

    Semantic cognition is underpinned by regions involved in representing conceptual knowledge and executive control areas that provide regulation of this information according to current task requirements. Using distortion-corrected fMRI, we investigated the contributions of these two systems to abstract and concrete word comprehension. We contrasted semantic decisions made either with coherent contextual support, which encouraged retrieval of a rich conceptual representation, or with irrelevant contextual information, which instead maximised demands on control processes. Inferior prefrontal cortex was activated more when decisions were made in the presence of irrelevant context, suggesting that this region is crucial for the semantic control functions required to select appropriate aspects of meaning in the face of competing information. It also exhibited greater activation for abstract words, which reflects the fact that abstract words tend to have variable, context-dependent meanings that place higher demands on control processes. In contrast, anterior temporal regions (ATL) were most active when decisions were made with the benefit of a coherent context, suggesting a representational role. There was a graded shift in concreteness effects in this region, with dorsolateral areas particularly active for abstract words and ventromedial areas preferentially activated by concrete words. This supports the idea that concrete concepts are closely associated with visual experience and abstract concepts with auditory-verbal information; and that sub-regions of the ATL display graded specialisation for these two types of knowledge. Between these two extremes, we identified significant activations for both word types in ventrolateral ATL. This area is known to be involved in representing knowledge for concrete concepts; here we established that it is also activated by abstract concepts. These results converge with data from rTMS and neuropsychological investigations in

  1. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  2. Memory consolidation of fear conditioning: bi-stable amygdala connectivity with dorsal anterior cingulate and medial prefrontal cortex.

    Science.gov (United States)

    Feng, Pan; Feng, Tingyong; Chen, Zhencai; Lei, Xu

    2014-11-01

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of memory consolidation of fear conditioning is not well understood. To address this question, we measured brain activity and the changes in functional connectivity following fear acquisition using resting-state functional magnetic resonance imaging. The amygdala-dorsal anterior cingulate cortex (dACC) and hippocampus-insula functional connectivity were enhanced, whereas the amygdala-medial prefrontal cortex (mPFC) functional coupling was decreased during fear memory consolidation. Furthermore, the amygdala-mPFC functional connectivity was negatively correlated with the subjective fear ratings. These findings suggest the amygdala functional connectivity with dACC and mPFC may play an important role in memory consolidation of fear conditioning. The change of amygdala-mPFC functional connectivity could predict the subjective fear. Accordingly, this study provides a new perspective for understanding fear memory consolidation. PMID:24194579

  3. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset

    OpenAIRE

    Jackson, Stacey A. W.; Pears, Andrew; Horst, Nicole K.; Robbins, Trevor W.; Roberts, Angela C.

    2016-01-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the “habit” system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existin...

  4. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  5. Anatomical and functional overlap within the insula and anterior cingulate cortex during interoception and phobic symptom provocation.

    Science.gov (United States)

    Caseras, Xavier; Murphy, Kevin; Mataix-Cols, David; López-Solà, Marina; Soriano-Mas, Carles; Ortriz, Hector; Pujol, Jesus; Torrubia, Rafael

    2013-05-01

    The anterior insula and the dorsal anterior cingulate cortex (ACC) are regarded as key brain structures associated with the integration of perceived phobic characteristics of external stimuli and the perception of ones own body responses that leads to emotional feelings. To test to what extent the activity in these two brain structures anatomically and functionally overlap during phobic reactions and interoception, we submitted the same group of phobic participants (n = 29; either spider or blood-injection-injury (BII) phobics) and controls (n = 17) to both type of experimental paradigms. Results showed that there was a clear anatomical overlap in the Blood Oxygen Level-Dependent (BOLD) responses within the anterior insula and ACC elicited during phobic symptom provocation and during interoceptive awareness. The activity within these two brain structures also showed to be correlated in the spider phobia group, but not in the BII phobic participants. Our results seem to support the idea that the activity within these two brain areas would be associated with the integration of perceived stimuli characteristics and bodily responses that lead to what we label as "fear." However, that seems not to be the case in BII phobia, where more research is needed in order to clarify to what extent that could be associated with the idiosyncratic physiological response that these patients present in front of phobic stimuli (i.e., drop in heart rate and blood pressure). PMID:22162203

  6. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: preliminary evidence for the energetic effects of an intention-based treatment modality on human neurophysiology.

    OpenAIRE

    Pike, C.; Vernon, D.; Hald, L.

    2014-01-01

    Objectives: Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anterior asymmetric activation may mediate the energetic effects of intention-based biofield treatments as well. The aim of the current study was to test this hypothesis by using a treatment ...

  7. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal

    Science.gov (United States)

    Ebitz, R. Becket; Platt, Michael L.

    2014-01-01

    Summary Whether driving a car, shopping for food, or paying attention in a classroom of boisterous teenagers, it’s often hard to maintain focus on goals in the face of distraction. Brain imaging studies in humans implicate the dorsal anterior cingulate cortex (dACC) in regulating the conflict between goals and distractors. Here we show for the first time that single dACC neurons signal conflict between task goals and distractors in the rhesus macaque, particularly for biologically-relevant social stimuli. For some neurons, task conflict signals predicted subsequent changes in pupil size—a peripheral index of arousal linked to noradrenergic tone—associated with reduced distractor interference. dACC neurons also responded to errors and these signals predicted adjustments in pupil size. These findings provide the first neurophysiological endorsement of the hypothesis that dACC regulates conflict, in part, via modulation of pupil-linked processes such as arousal. PMID:25654259

  8. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  9. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory.

    Science.gov (United States)

    Woodcock, Eric A; Wadehra, Sunali; Diwadkar, Vaibhav A

    2016-01-01

    Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness' characterization as a disconnection syndrome. PMID:27092063

  10. Is dorsal anterior cingulate cortex activation in response to social exclusion due to expectancy violation?: An fMRI study

    Directory of Open Access Journals (Sweden)

    Taishi Kawamoto

    2012-07-01

    Full Text Available People are typically quite sensitive about being accepted or excluded by others. Previous studies have suggested that the dorsal anterior cingulate cortex (dACC is a key brain region involved in the detection of social exclusion. However, this region has also been shown to be sensitive to non-social expectancy violations. We often expect other people to follow an unwritten rule in which they include us as they would expect to be included, such that social exclusion likely involves some degree of expectancy violation. The present event-related functional magnetic resonance imaging (fMRI study sought to separate the effects of expectancy violation from those of social exclusion, such that we employed an “overinclusion” condition in which a player was unexpectedly overincluded in the game by the other players. With this modification, we found that the dACC and right ventrolateral prefrontal cortex (rVLPFC were activated by exclusion, relative to overinclusion. In addition, we identified a negative correlation between exclusion-evoked brain activity and self-rated social pain in the rVLPFC, but not in the dACC. These findings suggest that the rVLPFC is critical for regulating social pain, whereas the dACC plays an important role in the detection of exclusion. The neurobiological basis of social exclusion is different from that of mere expectancy violation.

  11. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    Science.gov (United States)

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  12. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    Science.gov (United States)

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  13. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anteri

  14. Spatial memory and -fos expression in supramammillary nucleus, anterior cingulated gyrus and entorhinal cortex

    OpenAIRE

    Santín Núñez, Luis Javier; Aguirre, José A.; Rubio Fernández, Sandra; Begega Losa, María Azucena; Miranda Cuevas, Rubén; Arias Pérez, Jorge Luis

    2001-01-01

    Este trabajo se aproxima al estudio de los substratos cerebrales de la memoria espacial en ratas, empleando la expresión celular de la proteína c-Fos. Para ello, se analizó la expresión de la proteína c-Fos después de la ejecución de una tarea de memoria de referencia y otra de trabajo espacial. De este modo, se cuantificó el número de núcleos neuronales c-Fos positivos en varias regiones cerebrales: corteza entorrinal, giro cingulado anterior y núcleo supramamilar. Los resultados mostraron q...

  15. Reduced parietal activation in cervical dystonia after parietal TMS interleaved with fMRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Hinson, Vanessa K.; George, Mark S.; Leenders, Klaus L.

    2012-01-01

    Objective: Clinically normal hand movement with altered cerebral activation patterns in cervical dystonia (CD) may imply cerebral adaptation. Since impaired sensorimotor integration appears to play a role in dystonia, left superior parietal cortex modulation with repetitive transcranial magnetic sti

  16. Parietal contributions to recollection: Electrophysiological evidence from aging and patients with parietal lesions

    OpenAIRE

    Ally, Brandon A.; Jon S Simons; McKeever, Joshua D.; Peers, Polly V.; Budson, Andrew E.

    2008-01-01

    There has been much recent investigation into the role of parietal cortex in memory retrieval. Proposed hypotheses include attention to internal memorial representations, an episodic working memory-type buffer, and an accumulator of retrieved memorial information. The current investigation used event-related potentials (ERPs) to test the episodic buffer hypothesis, and to assess the memorial contribution of parietal cortex in younger and older adults, and in patients with circumscribed latera...

  17. Women's Preference for a Male Acquaintance Enhances Social Reward Processing of Material Goods in the Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Jun Nakagawa

    Full Text Available Men, like the male of many animal species, use gifts to build satisfactory relationships with a desired woman. From the woman's perspective, all gifts are not always equally rewarding; the reward value of a gift depends on two factors: (1 the giver and (2 the type of the gift (the gift's social meaning. In this study, we investigated how these two factors interactively determine the reward value of a gift. Specifically, we examined how the neural processing for understanding a gift's social meaning is modulated by preferences for the giver. We performed a functional magnetic resonance imaging (fMRI study in which a female participant was asked to judge a gift from a male she was acquainted with in real life. We examined the interactive effects between (1 the female participant's attitude toward the male acquaintance (liked vs. uninteresting and (2 the type of the gift (romantic [e.g., bouquet, earrings, and perfumes] vs. non-romantic [e.g., pencils, memo pad, and moneybox]. We found that preference for an acquaintance selectively modulated activity in the anterior cingulate cortex (ACC in response to romantic gifts, compared to non-romantic gifts. In contrast, if the woman was indifferent toward an acquaintance, no activity modulation was observed in this area for the same gifts. In addition, the ACC showed functional connectivity with the supplementary motor area/dorsal ACC (SMA/dACC, an area within the dorsal mediofrontal cortex, suggesting that it integrates action monitoring and emotional and cognitive processing in decision-making. These results suggest that attitude toward an opposite sex member has a modulatory role in recognizing the social meaning of material goods--preference for the member is a powerful modulator of social reward processing.

  18. Modulation by context of a scene in monkey anterior inferotemporal cortex during a saccadic eye movement task

    Directory of Open Access Journals (Sweden)

    BRUSS LIMA

    2003-03-01

    Full Text Available We investigated the effect of a scene on the activity of cells in the anterior inferotemporal (AIT cortex while the monkey performed a saccadic eye movement (SEM task with and without the context of a scene (gray frame. Most neurons did not code for the presence of a scene when it appeared alone (monkey free viewing or when the monkey was fixating. Nevertheless, when a peripheral target was turned on and the monkey had to make a SEM to it, some cells were capable of differentially coding the presence of the scene before and after the saccade.Nós investigamos o efeito de uma cena na atividade de células do córtex inferotemporal anterior enquanto o macaco executava uma tarefa de movimento sacádico dos olhos, com e sem o contexto de uma cena (moldura retangular cinza. A maioria dos neurônios não codificou a presença da cena quando ela foi apresentada sozinha no campo visual e o animal estava livre para mover os olhos (macaco na condição de visão livre ou quando o animal estava fixando um alvo na tela. No entanto, quando um alvo periférico era apresentado e o animal tinha que fazer um movimento sacádico para o alvo, algumas células foram capazes de codificar diferencialmente a presença da cena antes ou depois de um movimento sacádico.

  19. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  20. Modulation of Beta-Band Activity in the Subgenual Anterior Cingulate Cortex during Emotional Empathy in Treatment-Resistant Depression.

    Science.gov (United States)

    Merkl, Angela; Neumann, Wolf-Julian; Huebl, Julius; Aust, Sabine; Horn, Andreas; Krauss, Joachim K; Dziobek, Isabel; Kuhn, Jens; Schneider, Gerd-Helge; Bajbouj, Malek; Kühn, Andrea A

    2016-06-01

    Deep brain stimulation (DBS) is a promising approach in treatment-resistant depression (TRD). TRD is associated with problems in interpersonal relationships, which might be linked to impaired empathy. Here, we investigate the influence of DBS in the subgenual anterior cingulate cortex (sgACC) on empathy in patients with TRD and explore the pattern of oscillatory sgACC activity during performance of the multifaceted empathy test. We recorded local field potential activity directly from sgACC via DBS electrodes in patients. Based on previous behavioral findings, we expected disrupted empathy networks. Patients showed increased empathic involvement ratings toward negative stimuli as compared with healthy subjects that were significantly reduced after 6 months of DBS. Stimulus-related oscillatory activity pattern revealed a broad desynchronization in the beta (14-35 Hz) band that was significantly larger during patients' reported emotional empathy for negative stimuli than when patients reported to have no empathy. Beta desynchronization for empathic involvement correlated with self-reported severity of depression. Our results indicate a "negativity bias" in patients that can be reduced by DBS. Moreover, direct recordings show activation of the sgACC area during emotional processing and propose that changes in beta-band oscillatory activity in the sgACC might index empathic involvement of negative emotion in TRD. PMID:25994959

  1. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    曹晓华; 卢湘岳; 周绍慈

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropos-tero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on rec

  2. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropostero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on receptive fields of ON-OFF neurons showed that the excitation of the ACC could change an ON-response on the verge of a receptive field into an ON-OFF response. The above results suggest that the ACC modulation sharpens the response of a VB neuron to a moving stimulus within its receptive field, indicating that the limbic system can modulate tactile ascending sensory information.

  3. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    BarakFranciscoCaracheo

    2013-05-01

    Foraging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  4. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHENG XinLing; LIU Fang; WU XingWen; LI BaoMing

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolaterel nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at '0' or 6 h post-treining. Saline was administered as control. Memory retention was tested 48 h poet-training. In-tra-BLA or intra-ACC infusion of MPD '0' h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  5. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    Science.gov (United States)

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. PMID:27163752

  6. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  7. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment.

    Science.gov (United States)

    Köbe, Theresa; Witte, A Veronica; Schnelle, Ariane; Lesemann, Anne; Fabian, Sonja; Tesky, Valentina A; Pantel, Johannes; Flöel, Agnes

    2016-05-01

    Previous studies in older adults suggested beneficial effects of omega-3 fatty acid (FA) supplementation, aerobic exercise, or cognitive stimulation on brain structure and function. However, combined effects of these interventions in patients suffering from mild cognitive impairment (MCI) are unknown. Using a randomized interventional design, we evaluated the effect of combined omega-3 FA supplementation, aerobic exercise and cognitive stimulation (target intervention) versus omega-3 FA supplementation and non-aerobic exercise (control intervention) on cognitive function and gray matter volume in patients with MCI. Moreover, we analyzed potential vascular, metabolic or inflammatory mechanisms underlying these effects. Twenty-two MCI patients (8 females; 60-80years) successfully completed six months of omega-3 FA intake, aerobic cycling training and cognitive stimulation (n=13) or omega-3 FA intake and non-aerobic stretching and toning (n=9). Before and after the interventions, cognitive performance, magnetic resonance imaging of the brain at 3T (n=20), intima-media thickness of the internal carotid artery and serum markers of glucose control, lipid and B-vitamin metabolism, and inflammation were assessed. Intervention-related changes in gray matter volume of Alzheimer's disease (AD)-related brain regions, i.e., frontal, parietal, temporal and cingulate cortex were examined using voxel-based morphometry of high resolution T1-weighted images. After the intervention period, significant differences emerged in brain structure between groups: Gray matter volume decreased in the frontal, parietal and cingulate cortex of patients in the control intervention, while gray matter volume in these areas was preserved or even increased after the target intervention. Decreases in homocysteine levels in the target intervention group were associated with increases in gray matter volume in the middle frontal cortex (p=0.010). No significant differences in cognitive performance or

  8. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem. PMID:20144945

  9. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain

    Directory of Open Access Journals (Sweden)

    Mariela eRance

    2014-10-01

    Full Text Available The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC and the left posterior insula (pInsL on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1 or the pInsL (state 2 being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: (rACC – pInsL increase (state 1, rACC – pInsL decrease (state 2, pInsL – rACC increase (state 2, pInsL – rACC decrease (state 1. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e. learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of

  10. Cortical thinning of the right anterior cingulate cortex in spider phobia: a magnetic resonance imaging and spectroscopy study.

    Science.gov (United States)

    Linares, I M P; Jackowski, A P; Trzesniak, C M F; Arrais, K C; Chagas, M H N; Sato, J R; Santos, A C; Hallak, J E C; Zuardi, A W; Nardi, A E; Coimbra, N C; Crippa, J A S

    2014-08-12

    There a lack of consistent neuroimaging data on specific phobia (SP) and a need to assess volumetric and metabolic differences in structures implicated in this condition. The aim of this study is investigate possible metabolic (via (1)H MRS) and cortical thickness abnormalities in spider-phobic patients compared to healthy volunteers. Participants were recruited via public advertisement and underwent clinical evaluations and MRI scans. The study started in 2010 and the investigators involved were not blind in respect to patient groupings. The study was conducted at the Ribeirão Preto Medical School University Hospital of the University of São Paulo, Brazil. Patients with spider phobia (n=19) were matched to 17 healthy volunteers with respect to age, education and socio-economic status. The spider SP group fulfilled the diagnostic criteria for spider phobia according to the Structured Clinical Interview for DSM-IV. None of the participants had a history of neurological, psychiatric or other relevant organic diseases, use of prescribed psychotropic medication or substance abuse. All imaging and spectroscopy data were collected with a 3 T MRI scanner equipped with 25 mT gradient coils in 30-minute scans. The Freesurfer image analysis package and LC Model software were used to analyze data. The hypothesis being tested was formulated before the data collection (neural correlates of SP would include the amygdala, insula, anterior cingulate gyrus and others). The results indicated the absence of metabolic alterations, but thinning of the right anterior cingulate cortex (ACC) in the SP group when compared to the healthy control group (mean cortical thickness±SD: SP=2.11±0.45 mm; HC=2.16±0.42 mm; t (34)=3.19, p=0.001 [-35.45, 71.00, -23.82]). In spectroscopy, the ratios between N-acetylaspartate and creatine and choline levels were measured. No significant effect or correlation was found between MRS metabolites and scores in the Spider Phobia Questionnaire and Beck

  11. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Science.gov (United States)

    Cordes, Julia S.; Mathiak, Krystyna A.; Dyck, Miriam; Alawi, Eliza M.; Gaber, Tilman J.; Zepf, Florian D.; Klasen, Martin; Zvyagintsev, Mikhail; Gur, Ruben C.; Mathiak, Klaus

    2015-01-01

    Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the brain regions known to be dysfunctional in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over 3 days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. In a stepwise regression analysis, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, patients with schizophrenia can learn to regulate localized brain activity. However, cognitive strategies and neural network location differ from healthy controls. These data emphasize that for therapeutic interventions in patients with schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social NF based on fMRI may be one method to accomplish precise learning targets. PMID:26161073

  12. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  13. Parietal contributions to recollection: electrophysiological evidence from aging and patients with parietal lesions.

    Science.gov (United States)

    Ally, Brandon A; Simons, Jon S; McKeever, Joshua D; Peers, Polly V; Budson, Andrew E

    2008-01-01

    There has been much recent investigation into the role of parietal cortex in memory retrieval. Proposed hypotheses include attention to internal memorial representations, an episodic working memory-type buffer, and an accumulator of retrieved memorial information. The current investigation used event-related potentials (ERPs) to test the episodic buffer hypothesis, and to assess the memorial contribution of parietal cortex in younger and older adults, and in patients with circumscribed lateral parietal lesions. In a standard recognition memory paradigm, subjects studied color pictures of common objects. One-third of the test items were presented in the same viewpoint as the study phase, one-third were presented in a 90 degrees rotated viewpoint, and one-third were presented in a noncanonical viewpoint. Conflicting with the episodic buffer hypothesis, results revealed that the duration of the parietal old/new effect was longest for the canonical condition and shortest for the noncanonical condition. Results also revealed that older adults demonstrated a diminished parietal old/new effect relative to younger adults. Consistent with previous data reported by Simons et al., patients with lateral parietal lesions showed no behavioral impairment compared to controls. Behavioral and ERP data from parietal lesion patients are presented and discussed. From these results, the authors speculate that the parietal old/new effect may be the neural correlate of an individual's subjective recollective experience. PMID:18402990

  14. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    David R Euston

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., “courage”. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to

  15. Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression

    Science.gov (United States)

    Dedovic, Katarina; Slavich, George M.; Muscatell, Keely A.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    The dorsal anterior cingulate cortex (dACC) is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD), as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed) and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive) feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels). Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the role of the d

  16. Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis

    OpenAIRE

    Cabeza, Roberto

    2008-01-01

    Although parietal cortex is frequently activated during episodic memory retrieval, damage to this region does not markedly impair episodic memory. To account for these and other findings, a new dual attentional processes (DAP) hypothesis is proposed. According to this hypothesis, dorsal parietal cortex (DPC) contributes top-down attentional processes guided by retrieval goals, whereas ventral parietal cortex (VPC) contributes bottom-up attentional processes captured by the retrieval output. C...

  17. Functional activity within the frontal eye fields, posterior parietal cortex, and cerebellar vermis significantly correlates to symmetrical vergence peak velocity: an ROI-based, fMRI study of vergence training.

    Science.gov (United States)

    Alvarez, Tara L; Jaswal, Raj; Gohel, Suril; Biswal, Bharat B

    2014-01-01

    Convergence insufficiency (CI) is a prevalent binocular vision disorder with symptoms that include double/blurred vision, eyestrain, and headaches when engaged in reading or other near work. Randomized clinical trials support that Office-Based Vergence and Accommodative Therapy with home reinforcement leads to a sustained reduction in patient symptoms. However, the underlying neurophysiological basis for treatment is unknown. Functional activity and vergence eye movements were quantified from seven binocularly normal controls (BNC) and four CI patients before and after 18 h of vergence training. An fMRI conventional block design of sustained fixation vs. vergence eye movements stimulated activity in the frontal eye fields (FEF), the posterior parietal cortex (PPC), and the cerebellar vermis (CV). Comparing the CI patients' baseline measurements to the post-vergence training data sets with a paired t-test revealed the following: (1) the percent change in the BOLD signal in the FEF, PPC, and CV significantly increased (p convergence step responses increased (p < 0.01) and (3) patient symptoms assessed using the CI Symptom Survey (CISS) improved (p < 0.05). CI patient measurements after vergence training were more similar to levels observed within BNC. A regression analysis revealed the peak velocity from BNC and CI subjects before and after vergence training was significantly correlated to the percent BOLD signal change within the FEF, PPC, and CV (r = 0.6; p < 0.05). Results have clinical implications for understanding the behavioral and neurophysiological changes after vergence training in patients with CI, which may lead to the sustained reduction in visual symptoms. PMID:24987340

  18. Functional activity within the frontal eye fields, posterior parietal cortex and cerebellar vermis significantly correlates to symmetrical vergence peak velocity: An ROI-based, fMRI study of vergence training

    Directory of Open Access Journals (Sweden)

    Tara L Alvarez

    2014-06-01

    Full Text Available Convergence insufficiency (CI is a prevalent binocular vision disorder with symptoms that include double/blurred vision, eyestrain, and headaches when engaged in reading or other near work. Randomized clinical trials support that Office-Based Vergence and Accommodative Therapy with home reinforcement leads to a sustained reduction in patient symptoms. However, the underlying neurophysiological basis for treatment is unknown. Functional activity and vergence eye movements were quantified from seven binocularly normal controls (BNC and four CI patients before and after 18 hours of vergence training. An fMRI conventional block design of sustained fixation versus vergence eye movements stimulated activity in the frontal eye fields (FEF, the posterior parietal cortex (PPC and the cerebellar vermis (CV. Comparing the CI patients’ baseline measurements to the post vergence training data sets with a paired t-test revealed the following: 1 the percent change in the BOLD signal in the FEF, PPC and CV significantly increased (p<0.02, 2 the peak velocity from 4° symmetrical convergence step responses increased (p<0.01 and 3 patient symptoms assessed using the CI Symptom Survey (CISS improved (p<0.05. CI patient measurements after vergence training were more similar to levels observed within BNC. A regression analysis revealed the peak velocity from BNC and CI subjects before and after vergence training was significantly correlated to the percent BOLD signal change within the FEF, PPC and CV (r=0.6;p<0.05. Results have clinical implications for understanding the behavioral and neurophysiological changes after vergence training in patients with CI, which may lead to the sustained reduction in visual symptoms.

  19. Mapping different intra-hemispheric parietal-motor networks using twin Coil TMS

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Chao, Chi-Chao; Paine, Rainer; Hallett, Mark

    2013-01-01

    Accumulating evidence suggests anatomical and functional differences in connectivity between the anterior and posterior parts of the inferior-parietal lobule (IPL) and the frontal motor areas.......Accumulating evidence suggests anatomical and functional differences in connectivity between the anterior and posterior parts of the inferior-parietal lobule (IPL) and the frontal motor areas....

  20. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    OpenAIRE

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top–down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom–up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To inv...

  1. Enhancing duration processing with parietal brain stimulation.

    Science.gov (United States)

    Dormal, Valérie; Javadi, Amir-Homayoun; Pesenti, Mauro; Walsh, Vincent; Cappelletti, Marinella

    2016-05-01

    Numerosity and duration are thought to share common magnitude-based mechanisms in brain regions including the right parietal and frontal cortices like the supplementary motor area, SMA. Numerosity and duration are, however, also different in several intrinsic features. For instance, in a quantification context, numerosity is known for being more automatically accessed than temporal events, and durations are by definition sequential whereas numerosity can be both sequential and simultaneous. Moreover, numerosity and duration processing diverge in terms of their neuronal correlates. Whether these observed neuronal specificities can be accounted for by differences in automaticity or presentation-mode is however not clear. To address this issue, we used brain stimulation (transcranial random noise stimulation, tRNS) to the right parietal cortex or the SMA combined with experimental stimuli differing in their level of automaticity (numerosity and duration) and presentation mode (sequential or simultaneous). Compared to a no stimulation group, performance changed in duration but not in numerosity categorisation following right parietal but not SMA stimulation. These results indicate that the right parietal cortex is critical for duration processing, and suggest that tRNS has a stronger effect on less automatic processes such as duration. PMID:27037043

  2. Resting-state functional connectivity between the dorsal anterior cingulate cortex and thalamus is associated with risky decision-making in nicotine addicts.

    Science.gov (United States)

    Wei, Zhengde; Yang, Nannan; Liu, Ying; Yang, Lizhuang; Wang, Ying; Han, Long; Zha, Rujing; Huang, Ruiqi; Zhang, Peng; Zhou, Yifeng; Zhang, Xiaochu

    2016-01-01

    Nicotine addiction is associated with risky behaviors and abnormalities in local brain areas related to risky decision-making such as the dorsal anterior cingulate cortex (dACC), anterior insula (AI), and thalamus. Although these brain abnormalities are anatomically separated, they may in fact belong to one neural network. However, it is unclear whether circuit-level abnormalities lead to risky decision-making in smokers. In the current study, we used task-based functional magnetic resonance imaging (fMRI) and examined resting-state functional connectivity (RSFC) to study how connectivity between the dACC, insula, and thalamus influence risky decision-making in nicotine addicts. We found that an increase in risky decision-making was associated with stronger nicotine dependence and stronger RSFC of the dACC-rAI (right AI), the dACC-thalamus, the dACC-lAI (left AI), and the rAI-lAI, but that risky decision-making was not associated with risk level-related activation. Furthermore, the severity of nicotine dependence positively correlated with RSFC of the dACC-thalamus but was not associated with risk level-related activation. Importantly, the dACC-thalamus coupling fully mediated the effect of nicotine-dependent severity on risky decision-making. These results suggest that circuit-level connectivity may be a critical neural link between risky decision-making and severity of nicotine dependence in smokers. PMID:26879047

  3. Resting-state functional connectivity of ventral parietal regions associated with attention reorienting and episodic recollection

    Directory of Open Access Journals (Sweden)

    Sander M Daselaar

    2013-02-01

    Full Text Available In functional neuroimaging studies, ventral parietal cortex (VPC is recruited by very different cognitive tasks. Explaining the contributions VPC to these tasks has become a topic of intense study and lively debate. Perception studies frequently find VPC activations during tasks involving attention-reorienting, and memory studies frequently find them during tasks involving episodic recollection. According to the Attention to Memory (AtoM model, both phenomena can be explained by the same VPC function: bottom-up attention. Yet, a recent functional MRI (fMRI meta-analysis suggested that attention-reorienting activations are more frequent in anterior VPC, whereas recollection activations are more frequent in posterior VPC. Also, there is evidence that anterior and posterior VPC regions have different functional connectivity patterns. To investigate these issues, we conducted a resting-state functional connectivity analysis using as seeds the center-of-mass of attention-reorienting and recollection activations in the meta-analysis, which were located in the supramarginal gyrus (SMG, around the temporo-parietal junction—TPJ and in the angular gyrus (AG, respectively. The SMG seed showed stronger connectivity with ventrolateral prefrontal cortex (VLPFC and occipito-temporal cortex, whereas the AG seed showed stronger connectivity with the hippocampus and default network regions. To investigate whether these connectivity differences were graded or sharp, VLPFC and hippocampal connectivity was measured in VPC regions traversing through the SMG and AG seeds. The results showed a graded pattern: VLPFC connectivity gradually decreases from SMG to AG, whereas hippocampal connectivity gradually increases from SMG to AG. Importantly, both gradients showed an abrupt break when extended beyond VPC borders. This finding suggests that functional differences between SMG and AG are more subtle than previously thought. These connectivity differences can be

  4. Parietal contributions to visual working memory depend on task difficulty

    Directory of Open Access Journals (Sweden)

    MarianBerryhill

    2012-09-01

    Full Text Available The nature of parietal contributions to working memory (WM remain poorly understood but of considerable interest. We previously reported that posterior parietal damage selectively impaired WM probed by recognition (Berryhill & Olson, 2008a. Recent studies provided support using a neuromodulatory technique, transcranial direct current stimulation (tDCS applied to the right parietal cortex (P4. These studies confirmed parietal involvement in WM because parietal tDCS altered WM performance: anodal current tDCS improved performance in a change detection task, and cathodal current tDCS impaired performance on a sequential presentation task. In Experiment 1, we applied cathodal and anodal tDCS to the right parietal cortex and tested participants on both previously used WM tasks. When the WM task was difficult, parietal stimulation (anodal or cathodal improved WM performance selectively in participants with high WM capacity. In the low WM capacity group, parietal stimulation (anodal or cathodal impaired WM performance. These nearly equal and opposite effects were only observed when the WM task was challenging, as in the change detection task. Experiment 2 probed the interplay of WM task difficulty and WM capacity in a parametric manner by varying set size in the WM change detection task. Here, the effect of parietal stimulation (anodal or cathodal on the high WM capacity group followed a linear function as WM task difficulty increased with set size. These findings provide evidence that parietal involvement in WM performance depends on both WM capacity and WM task demands. We discuss these findings in terms of alternative WM strategies employed by low and high WM capacity individuals. We speculate that low WM capacity individuals do not recruit the posterior parietal lobe for WM tasks as efficiently as high WM capacity individuals. Consequently, tDCS provides greater benefit to individuals with high WM capacity.

  5. Parietal function in good and poor readers

    Directory of Open Access Journals (Sweden)

    Kiely Patricia M

    2006-08-01

    Full Text Available Abstract Background While there are many psychophysical reports of impaired magnocellular pathway function in developmental dyslexia (DD, few have investigated parietal function, the major projection of this pathway, in good and poor readers closely matched for nonverbal intelligence. In view of new feedforward-feedback theories of visual processing, impaired magnocellular function raises the question of whether all visually-driven functions or only those associated with parietal cortex functions are equally impaired and if so, whether parietal performance is more closely related to general ability levels than reading ability. Methods Reading accuracy and performance on psychophysical tasks purported to selectively activate parietal cortex such as motion sensitivity, attentional tracking, and spatial localization was compared in 17 children with DD, 16 younger reading-age matched (RA control children, and 46 good readers of similar chronological-age (CA divided into CA-HighIQ and a CA-LowIQ matched to DD group nonverbal IQ. Results In the age-matched groups no significant differences were found between DD and CA controls on any of the tasks relating to parietal function, although performance of the DD group and their nonverbal IQ scores was always lower. As expected, CA and RA group comparisons indicated purported parietal functioning improves with age. No difference in performance was seen on any of the parietally driven tasks between the DD and age-nonverbal IQ matched groups, whereas performance differentiated the DD group from the age-matched, higher nonverbal IQ group on several such tasks. An unexpected statistical difference in performance between lower reading age (DD and RA children and all higher reading age (CA children was seen on a test of chromatic sensitivity, whereas when high and low nonverbal IQ normal readers were compared performance was not different Conclusion The results indicate that performance on purported parietal

  6. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Audet, M.A.; Doucet, G.; Oleskevich, S.; Descarries, L.

    1988-08-15

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with (3H)DA and citalopram or with (3H)NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after (3H)NA incubation with or without DMI were observed after (3H)NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness.

  7. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    International Nuclear Information System (INIS)

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with [3H]DA and citalopram or with [3H]NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after [3H]NA incubation with or without DMI were observed after [3H]NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness

  8. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex.

    Science.gov (United States)

    Restivo, Leonardo; Vetere, Gisella; Bontempi, Bruno; Ammassari-Teule, Martine

    2009-06-24

    Although hippocampal-cortical interactions are crucial for the formation of enduring declarative memories, synaptic events that govern long-term memory storage remain mostly unclear. We present evidence that neuronal structural changes, i.e., dendritic spine growth, develop sequentially in the hippocampus and anterior cingulate cortex (aCC) during the formation of recent and remote contextual fear memory. We found that mice placed in a conditioning chamber for one 7 min conditioning session and exposed to five footshocks (duration, 2 s; intensity, 0.7 mA; interstimulus interval, 60 s) delivered through the grid floor exhibited robust fear response when returned to the experimental context 24 h or 36 d after the conditioning. We then observed that their fear response at the recent, but not the remote, time point was associated with an increase in spine density on hippocampal neurons, whereas an inverse temporal pattern of spine density changes occurred on aCC neurons. At each time point, hippocampal or aCC structural alterations were achieved even in the absence of recent or remote memory tests, thus suggesting that they were not driven by retrieval processes. Furthermore, ibotenic lesions of the hippocampus impaired remote memory and prevented dendritic spine growth on aCC neurons when they were performed immediately after the conditioning, whereas they were ineffective when performed 24 d later. These findings reveal that gradual structural changes modifying connectivity in hippocampal-cortical networks underlie the formation and expression of remote memory, and that the hippocampus plays a crucial but time-limited role in driving structural plasticity in the cortex. PMID:19553460

  9. A network-level analysis of cognitive flexibility reveals a differential influence of the anterior cingulate cortex in bilinguals versus monolinguals.

    Science.gov (United States)

    Becker, Theresa M; Prat, Chantel S; Stocco, Andrea

    2016-05-01

    Mounting evidence suggests that bilingual development may change the brain in a way that gives rise to differences in non-linguistic cognitive functioning; however, only a limited number of studies have investigated the mechanism by which bilingualism shapes the brain. The current study used a network-level analysis to investigate differences in the mechanisms by which bilinguals and monolinguals flexibly adapt their neural networks in the face of novel task demands. Three competing hypotheses concerning differences in network-level adaptation were examined using Dynamic Causal Modeling of data from 15 bilinguals and 14 monolinguals who performed a Rapid Instructed Task Learning paradigm. The results demonstrated that the best-fitting model for the data from both groups specified that novel task execution is accomplished through a modulation of the influence of the anterior cingulate cortex (ACC) on the dorsolateral prefrontal cortex (DLPFC) and on the striatum. Further examination of the best-fitting model revealed that ACC activity increased DLPFC and striatal activity in bilinguals but decreased activity in these regions in monolinguals. Interestingly, an increased positive connection between the ACC and striatum was associated with decreased accuracy across groups. Taken together, the results suggest that regardless of language experience, the ACC plays a critical role in cognitive flexibility, but the exact influence of the ACC on other primary control regions seems to be dependent on language experience. When paired with the behavioral results, these results suggest that bilinguals and monolinguals may employ different neurocognitive mechanisms for conflict monitoring to flexibly adapt to novel situations. PMID:26796713

  10. The val158met polymorphism of human catechol-O-methyltransferase (COMT affects anterior cingulate cortex activation in response to painful laser stimulation

    Directory of Open Access Journals (Sweden)

    Musso Francesco

    2010-05-01

    Full Text Available Abstract Background Pain is a complex experience with sensory, emotional and cognitive aspects. Genetic and environmental factors contribute to pain-related phenotypes such as chronic pain states. Genetic variations in the gene coding for catechol-O-methyltransferase (COMT have been suggested to affect clinical and experimental pain-related phenotypes including regional μ-opioid system responses to painful stimulation as measured by ligand-PET (positron emission tomography. The functional val158met single nucleotide polymorphism has been most widely studied. However, apart from its impact on pain-induced opioid release the effect of this genetic variation on cerebral pain processing has not been studied with activation measures such as functional magnetic resonance imaging (fMRI, PET or electroencephalography. In the present fMRI study we therefore sought to investigate the impact of the COMT val158met polymorphism on the blood oxygen level-dependent (BOLD response to painful laser stimulation. Results 57 subjects were studied. We found that subjects homozygous for the met158 allele exhibit a higher BOLD response in the anterior cingulate cortex (ACC, foremost in the mid-cingulate cortex, than carriers of the val158 allele. Conclusion This result is in line with previous studies that reported higher pain sensitivity in homozygous met carriers. It adds to the current literature in suggesting that this behavioral phenotype may be mediated by, or is at least associated with, increased ACC activity. More generally, apart from one report that focused on pain-induced opioid release, this is the first functional neuroimaging study showing an effect of the COMT val158met polymorphism on cerebral pain processing.

  11. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Science.gov (United States)

    Geisseler, Olivia; Pflugshaupt, Tobias; Bezzola, Ladina; Reuter, Katja; Weller, David; Schuknecht, Bernhard; Brugger, Peter; Linnebank, Michael

    2015-01-01

    Cognitive impairment is as an important feature of Multiple Sclerosis (MS), and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology. PMID:26759784

  12. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  13. Synaptic Basis for Cross-modal Plasticity: Enhanced Supragranular Dendritic Spine Density in Anterior Ectosylvian Auditory Cortex of the Early Deaf Cat.

    Science.gov (United States)

    Clemo, H Ruth; Lomber, Stephen G; Meredith, M Alex

    2016-04-01

    In the cat, the auditory field of the anterior ectosylvian sulcus (FAES) is sensitive to auditory cues and its deactivation leads to orienting deficits toward acoustic, but not visual, stimuli. However, in early deaf cats, FAES activity shifts to the visual modality and its deactivation blocks orienting toward visual stimuli. Thus, as in other auditory cortices, hearing loss leads to cross-modal plasticity in the FAES. However, the synaptic basis for cross-modal plasticity is unknown. Therefore, the present study examined the effect of early deafness on the density, distribution, and size of dendritic spines in the FAES. Young cats were ototoxically deafened and raised until adulthood when they (and hearing controls) were euthanized, the cortex stained using Golgi-Cox, and FAES neurons examined using light microscopy. FAES dendritic spine density averaged 0.85 spines/μm in hearing animals, but was significantly higher (0.95 spines/μm) in the early deaf. Size distributions and increased spine density were evident specifically on apical dendrites of supragranular neurons. In separate tracer experiments, cross-modal cortical projections were shown to terminate predominantly within the supragranular layers of the FAES. This distributional correspondence between projection terminals and dendritic spine changes indicates that cross-modal plasticity is synaptically based within the supragranular layers of the early deaf FAES. PMID:25274986

  14. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  15. Neurotransmitter changes during interference task in anterior cingulate cortex: evidence from fMRI-guided functional MRS at 3 T.

    Science.gov (United States)

    Kühn, Simone; Schubert, Florian; Mekle, Ralf; Wenger, Elisabeth; Ittermann, Bernd; Lindenberger, Ulman; Gallinat, Jürgen

    2016-06-01

    Neural activity as indirectly observed in blood oxygenation level-dependent (BOLD) response is thought to reflect changes in neurotransmitter flux. In this study, we used fMRI-guided functional magnetic resonance spectroscopy (MRS) to measure metabolite/BOLD associations during a cognitive task at 3 T. GABA and glutamate concentration in anterior cingulate cortex (ACC) were determined by means of MRS using the SPECIAL pulse sequence before, during and after the performance of a manual Stroop task. MRS voxel positions were centred around individuals' BOLD activity during Stroop performance. Levels of GABA and glutamate showed inverted U-shape patterns across measurement time points (before, during, and after task), glutamine increased linearly and total creatine did not change. The GABA increase during task performance was associated with ACC BOLD signal changes in both congruent and incongruent Stroop conditions. Using an fMRI-guided MRS approach, an association between induced inhibitory neurotransmitter increase and BOLD changes was observed. The proposed procedure might allow the in vivo investigation of normal and dysfunctional associations between neurotransmitters and BOLD signal crucial for cerebral functioning. PMID:25976598

  16. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa.

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Quattrocchi, Carlo Cosimo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  17. Calcium/calmodulin-dependent kinase IV contributes to translation-dependent early synaptic potentiation in the anterior cingulate cortex of adult mice

    Directory of Open Access Journals (Sweden)

    Toyoda Hiroki

    2010-09-01

    Full Text Available Abstract Calcium/calmodulin-dependent kinase IV (CaMKIV phosphorylates the major transcription factor, cyclic AMP-responsive element binding protein (CREB, which plays key roles in synaptic plasticity and memory consolidation. Our previous study showed that long-term potentiation (LTP in the anterior cingulate cortex (ACC was significantly enhanced in transgenic mice overexpressing CaMKIV. Considering that the CaMKIV-CREB pathway plays a central role in the protein synthesis-dependent LTP, it is possible that upregulation of CaMKIV contributes to enhancement of LTP by promoting protein synthesis. To test this possibility, we examined the effects of transcription and translation inhibitors on synaptic potentiation induced by pairing of synaptic activity with postsynaptic depolarization (paired training in ACC pyramidal neurons of wild-type and CaMKIV transgenic mice. We found that synaptic potentiation induced by paired training was partially inhibited by transcription or translation inhibitors both in wild-type and CaMKIV transgenic mice; the extent of inhibition was markedly larger in the CaMKIV transgenic mice than in the wild-type mice. Biochemical and immunohistochemical studies revealed that CaMKIV was distributed in the membrane, cytosol and nucleus of ACC neurons. Our results reveal in the first time a transcription- and translation-dependent component of early synaptic LTP in adult ACC synapses, and demonstrate that CaMKIV enhances early synaptic potentiation by activating new protein synthesis.

  18. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  19. Effect of Kangxin Capsule(康欣胶囊) on the Expression of Nerve Growth Factors in Parietal Lobe of Cortex and Hippocampus CA1 Area of Vascular Dementia Model Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To observe the effect of Kangxin Capsule (康欣胶囊, KXC) on the expression of nerve growth factor (NGF) as well as the morphology and amount of nerve synapse in the cortical parietal lobe and hippocampus CA1 area of vascular dementia (VD) model rats. Methods: The model rats of VD made by photochemical reaction technique were randomly divided into five groups: the model group (MG), the high-dose, middle-dose and low-dose KXC groups (HDG, MDG and LDG), and the Western medicine hydergin control group (WMG). They were treated respectively with distilled water, high, middle and low dosage of KXC suspended liquid, and hydergin for a month. Besides, a blank group consisting of normal (non-model)rats was set up for control (CG). The ultrastructure of nerve synapse in the cortical parietal lobe and hippocampus CA1 area of the rats were observed and its density estimated. The condition of NGF positive neurons in the above-mentioned two regions were also observed by immunohistochemical stain. Results: All the KXC or hydergin treated groups demonstrated a normal amount of nerve synapse with integral structure in the cortical parietal lobe and hippocampus CA1 area, which approached that in the CG and was superior to that in the MG. Also, the NGF positive neuron in all the treated groups was much more than that in MG with significant difference ( P<0.01 ), approaching to that in the CG. Conclusion: KXC could elevate the expression of NGF in the cortical parietal lobe and hippocampus CA1 area, preserve the number and morphology of synapse,thus to protect the function of nerve system from ischemic injury.

  20. Interoception, emotion and brain: new insights link internal physiology to social behaviour. Commentary on:: “Anterior insular cortex mediates bodily sensibility and social anxiety” by Terasawa et al. (2012)

    OpenAIRE

    Garfinkel, Sarah N.; Critchley, Hugo D.

    2013-01-01

    In this issue, Terasawa and colleagues used functional neuroimaging to test for common neural substrates supporting conscious appraisal of subjective bodily and emotional states and explored how the relationship might account for personality and experience of anxiety symptoms. Their study highlights a role for the same region of anterior insula cortex in appraisal of emotions and bodily physiology. The reactivity of this region also mediated the relationship between ‘bodily sensibility’ and s...

  1. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. PMID:25998492

  2. Spatial localization and distribution of the TMS-related 'hotspot' of the tibialis anterior muscle representation in the healthy and post-stroke motor cortex.

    Science.gov (United States)

    Sivaramakrishnan, Anjali; Tahara-Eckl, Lenore; Madhavan, Sangeetha

    2016-08-01

    Transcranial magnetic stimulation (TMS) is a type of noninvasive brain stimulation used to study corticomotor excitability of the intact and injured brain. Identification of muscle representations in the motor cortex is typically done using a procedure called 'hotspotting', which involves establishing the optimal location on the scalp that evokes a maximum TMS response with minimum stimulator intensity. The purpose of this study was to report the hotspot locations for the tibialis anterior (TA) muscle representation in the motor cortex of healthy and post stroke individuals. A retrospective data analyses from 42 stroke participants and 32 healthy participants was conducted for reporting TMS hotspot locations and their spatial patterns. Single pulse TMS, using a 110mm double cone coil, was used to identify the motor representation of the TA. The hotspot locations were represented as x and y-distances from the vertex for each participant. The mediolateral extent of the loci from the vertex (x-coordinate) and anteroposterior extent of the loci from the vertex (y-coordinate) was reported for each hemisphere: non-lesioned (XNLes, YNLes), lesioned (XLes, YLes) and healthy (XH, YH). We found that the mean hotspot loci for TA muscle from the vertex were approximately: 1.29cm lateral and 0.55cm posterior in the non-lesioned hemisphere, 1.25cm lateral and 0.5cm posterior in the lesioned hemisphere and 1.6cm lateral and 0.8cm posterior in the healthy brain. There was no significant difference in the x- and y-coordinates between the lesioned and non-lesioned hemispheres. However, the locations of the XNLes (p=0.01) and XLes (p=0.004) were significantly different from XH. The YNLes and YLes showed no significant differences from YH loci. Analyses of spatial clustering patterns using the Moran's I index showed a negative autocorrelation in stroke participants (NLes: Moran's I=-0.09, p<0.001; Les: Moran's I=-0.14, p=0.002), and a positive autocorrelation in healthy participants

  3. Outcome Uncertainty and Brain Activity Aberrance in the Insula and Anterior Cingulate Cortex Are Associated with Dysfunctional Impulsivity in Borderline Personality Disorder.

    Science.gov (United States)

    Mortensen, Jørgen Assar; Evensmoen, Hallvard Røe; Klensmeden, Gunilla; Håberg, Asta Kristine

    2016-01-01

    Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD. PMID:27199724

  4. Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels.

    Science.gov (United States)

    Gao, Shi-Hao; Wen, Hui-Zhong; Shen, Lin-Lin; Zhao, Yan-Dong; Ruan, Huai-Zhen

    2016-06-01

    Neuronal hyperexcitability in the anterior cingulate cortex (ACC) is considered as one of the most important pathological changes responsible for the chronification of neuropathic pain. However, the underlying mechanisms remain elusive. In the present study, we investigated the possible mechanisms using a rat model of chronic constriction injury (CCI) to the sciatic nerve. We found a substantial decrease in hyperpolarization-activated/cyclic nucleotide-gated (HCN) currents in layer 5 pyramidal neurons (L5 PNs) in ACC slices, which dramatically increased the excitability of these neurons. This effect could be mimicked in sham slices by activating group 1 metabotropic glutamate receptors, and be blocked in CCI slices by inhibiting metabotropic glutamate receptor subtype 1 (mGluR1). Next, the inhibition of HCN currents was reversed by a protein kinase C (PKC) inhibitor, followed by a reduced neuronal hyperexcitability. Furthermore, HCN channel subtype 1 (HCN1) level was significantly reduced after CCI, whereas mGluR1 level increased. These changes were mainly observed in L5 of the ACC, where HCN1 and mGluR1 were highly colocalized. For behavioral tests, intra-ACC microinjection of mGluR1-shRNA suppressed the CCI-induced behavioral hypersensitivity, particularly thermal hyperalgesia, but not aversive behavior, and this effect was attenuated by the pre-blockade of HCN channels. Taken together, the neuronal hyperexcitability of ACC L5 PNs likely results from an upregulation of mGluR1 and a downstream pathway involving PKC activation and a downregulation of HCN1 in the early phase of neuropathic pain. These alterations may at least in part contribute to the development of behavioral hypersensitivity in CCI rats. PMID:26829470

  5. Activation of dopamine D4 receptors within the anterior cingulate cortex enhances the erroneous expectation of reward on a rat slot machine task.

    Science.gov (United States)

    Cocker, P J; Hosking, J G; Murch, W S; Clark, L; Winstanley, C A

    2016-06-01

    Using a rodent slot machine task (rSMT), we have previously shown that rats, like humans, are susceptible to the reinforcing effects of winning signals presented within a compound stimulus array, even when the pattern generated predicts a negative rather than a positive outcome such as during a "near-miss". The dopamine D4 receptor critically mediates the erroneous reward expectancy generated on such trials. D4 receptors are particularly enriched within frontal and limbic areas activated during slot machine play, such as the anterior cingulate cortex (ACC). We therefore selectively inactivated the ACC to confirm involvement of this region in rSMT performance, and subsequently examined the specific contribution of local D4 receptors. ACC inactivations generally impaired animals' ability to optimally differentiate winning from losing outcomes. Local administration of the D4 agonist PD168077 had a qualitatively similar effect, but increased reward expectancy was only evident on archetypal "near-miss" trials i.e. when the first two of three stimuli in the array were concordant with a rewarding outcome, and only the last stimulus critically signalled a non-win. These data indicate that the ACC is critically involved in parsing the appropriate response when competing stimulus-outcome associations are activated, and that signalling via D4 receptors may play a particularly important role in gating the temporal and spatial summation of salient events. Such findings provide novel insights into the mechanism underlying the erroneous expectations of reward generated when playing slot machines, and suggest a mechanism by which D4 receptor antagonists may be effective in treating gambling disorder. PMID:26775821

  6. Outcome Uncertainty and Brain Activity Aberrance in the Insula and Anterior Cingulate Cortex Are Associated with Dysfunctional Impulsivity in Borderline Personality Disorder

    Science.gov (United States)

    Mortensen, Jørgen Assar; Evensmoen, Hallvard Røe; Klensmeden, Gunilla; Håberg, Asta Kristine

    2016-01-01

    Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD. PMID:27199724

  7. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  8. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    Science.gov (United States)

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  9. Right fronto-parietal involvement in monitoring spatial trajectories.

    Science.gov (United States)

    Vallesi, Antonino; Crescentini, Cristiano

    2011-07-15

    This study investigates whether the monitoring role that has been ascribed to the right lateral prefrontal cortex in various cognitive domains also applies to the spatial domain. Specific questions of the study were (i) what kind of spatial contingencies trigger the putative monitoring function of right lateral prefrontal cortex and (ii) which other brain regions are functionally connected to it in monitoring-related conditions. Participants had to track the trajectory of a car moving within a roundabout and detect when the car hit the crash-barrier. Four different trajectories were used with different degrees of regularity and predictability. The results showed that two regions in the right hemisphere, the lateral prefrontal and inferior parietal cortex, were maximally activated and functionally connected when monitoring regular predictable trajectories as compared with unpredictable ones, demonstrating that this fronto-parietal network plays a role in monitoring environmental contingencies that can inform expectancy in a meaningful way. PMID:21571078

  10. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  11. Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without past history of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katarina eDedovic

    2016-03-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD, as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels. Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the

  12. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition

    Science.gov (United States)

    Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.

    2003-01-01

    The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.

  13. The contribution of fronto-parietal regions to sentence comprehension: insights from the Moses illusion.

    Science.gov (United States)

    Raposo, Ana; Marques, J Frederico

    2013-12-01

    To interpret a sentence, the reader must not only process the linguistic input, but many times has also to draw inferences about what is implicitly stated. In some cases, the generation and integration of inferred information may lead to semantic illusions. In these sentences, subjects fail to detect errors such as in "It was two animals of each kind that Moses took on the ark" despite knowing that the correct answer is Noah, not Moses. The relative inability to notice these errors raises questions about how people establish and integrate inferences and which conditions improve error detection. To unravel the neural processes underlying inference and error detection in language comprehension, we carried out an fMRI study in which participants read sentences containing true or false statements. The false statements either took the form of more obvious (i.e., clearly false) or subtle (i.e., semantic illusions) inconsistent relations. Participants had to decide if each statement was true or false. Processing semantic illusions relative to true and clearly false sentences significantly engaged the right inferior parietal lobule, suggesting higher demands in establishing coherence. Successful versus unsuccessful error detection revealed a network of regions, including right dorsolateral prefrontal cortex, orbitofrontal, insula/putamen and anterior cingulate cortex. Such activation was significantly correlated with overall response accuracy to the illusions. These results suggest that to detect the semantic conflict, people must inhibit the tendency to draw pragmatic inferences. These findings demonstrate that fronto-parietal areas are involved in inference and inhibition processes necessary for establishing semantic coherence. PMID:23796543

  14. Parietal intraparenchymal Schwannoma: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Hwan; Chung, Tae Woong; Yoon, Woong; Jeong, Gwang Woo; Kang, Heoung Keun [Chonnam National University Hospital, Kwangju (Korea, Republic of)

    2008-10-15

    We report a case of an intraparenchymal schwannoma of the left parietal lobe. A 51-year-old woman was admitted to our hospital with complaints of intermittent headaches. Computed tomography and magnetic resonance images revealed a 1.3 cm sized intra-axial homogeneous enhancing mass in the left parietal lobe. The lesion was pathologically confirmed to be a schwannoma.

  15. Parietal intraparenchymal Schwannoma: case report

    International Nuclear Information System (INIS)

    We report a case of an intraparenchymal schwannoma of the left parietal lobe. A 51-year-old woman was admitted to our hospital with complaints of intermittent headaches. Computed tomography and magnetic resonance images revealed a 1.3 cm sized intra-axial homogeneous enhancing mass in the left parietal lobe. The lesion was pathologically confirmed to be a schwannoma

  16. Music perception and cognition following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Tramo, M J; Bharucha, J J; Musiek, F E

    1990-01-01

    We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250-8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies

  17. Impaired functional connectivity of anterior cingulated cortex in vascular cognitive impairment with no dementia explored by resting state functional magnetic resonance imaging%静息态功能磁共振观察非痴呆型血管性认知障碍前扣带回功能连接的特点

    Institute of Scientific and Technical Information of China (English)

    邓丽霞; 阮杏林; 黄华品; 林海龙; 邓艳青; 林婉挥

    2014-01-01

    Objective To study the functional connectivity (FC) pattern of anterior cingulated cortex in patients with vascular cognitive impairment with no dementia (VCIND) after subcortical ischemic vascular disease,and to analyze the relationship between FC and cognitive function.Methods Resting state functional magnetic resonance imaging (MRI) data were acquired from 14 patients with VCIND and 16 healthy volunteers with normal cognition.The altered functional connectivity pattern in VCIND was valuated by comparing to normal control.Then a correlation analysis was performed between the strength of FC and the Montreal Cognitive Assessment (MoCA) scores in patients with VCICD.Results (1) The visual space or executive function (3.14 ± 0.29),attention or computing power (3.79 ± 0.37),language (1.14 ± 0.21),directional power (4.14 ± 0.53) items,and the total points of MoCA (17.29 ± 1.53) in VCIND were significantly lower than that in the normal control group (4.93 ± 0.07,5.93 ± 0.07,2.93 ± 0.26,5.93 ± 0.07,27.57 ± 0.33 ; t =31.62,32.50,28.51,12.00,39.71,all P < 0.05).While the abstract ability or memory (4.36 ± 0.74),the naming (2.79 ± 0.11) items in VCIND were not significantly different with that in the control group (4.79 ± 0.80,2.93 ± 0.07 ; t =1.76,1.00,both P > 0.05).(2) Compared with the control group,the patients showed FC decrease between the anterior cingulated cortex and several brain regions,including the left middle temporal gyrus/left superior temporal gyrus,the left superior frontal gyrus/left middle frontal gyrus/left inferior frontal gyrus,the left posterior cingulated cortex/left precuneus,the left inferior parietal lobule/left angular gyrus,the right middle temporal gyrus/right superior temporal gyrus,the right orbit frontal cortex/right inferior frontal gyrus,the right inferior parietal lobule/right angular gyrums,and the right superior frontal gyrus/right middle frontal gyrus.There were also some regions that showed increased FC

  18. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  19. Dissociation of object and spatial visual processing pathways in human extrastriate cortex.

    Science.gov (United States)

    Haxby, J V; Grady, C L; Horwitz, B; Ungerleider, L G; Mishkin, M; Carson, R E; Herscovitch, P; Schapiro, M B; Rapoport, S I

    1991-01-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas. Images PMID:2000370

  20. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    International Nuclear Information System (INIS)

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas

  1. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity.

    Science.gov (United States)

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej

    2016-05-01

    The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations. PMID:26790868

  2. Differential effect of age on posterior and anterior hippocampal functional connectivity.

    Science.gov (United States)

    Damoiseaux, Jessica S; Viviano, Raymond P; Yuan, Peng; Raz, Naftali

    2016-06-01

    Aging is associated with declines in cognitive performance and multiple changes in the brain, including reduced default mode functional connectivity (FC). However, conflicting results have been reported regarding age differences in FC between hippocampal and default mode regions. This discrepancy may stem from the variation in selection of hippocampal regions. We therefore examined the effect of age on resting state FC of anterior and posterior hippocampal regions in an adult life-span sample. Advanced age was associated with lower FC between the posterior hippocampus and three regions: the posterior cingulate cortex, medial prefrontal cortex, and lateral parietal cortex. In addition, age-related reductions of FC between the left and right posterior hippocampus, and bilaterally along the posterior to anterior hippocampal axis were noted. Age differences in medial prefrontal and inter-hemispheric FC significantly differed between anterior and posterior hippocampus. Older age was associated with lower performance in all cognitive domains, but we observed no associations between FC and cognitive performance after controlling for age. We observed a significant effect of gender and a linear effect of COMT val158met polymorphism on hippocampal FC. Females showed higher FC of anterior and posterior hippocampus and medial prefrontal cortex than males, and the dose of val allele was associated with lower posterior hippocampus - posterior cingulate FC, independent of age. Vascular and metabolic factors showed no significant effects on FC. These results suggest differential age-related reduction in the posterior hippocampal FC compared to the anterior hippocampus, and an age-independent effect of gender and COMT on hippocampal FC. PMID:27034025

  3. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  4. Altered SPECT (123)I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa.

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using (123)I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). "Depression-Dejection" and "Confusion" POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in

  5. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  6. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Göttlich, Martin; Krämer, Ulrike M; Kordon, Andreas; Hohagen, Fritz; Zurowski, Bartosz

    2014-11-01

    Obsessive-compulsive disorder (OCD) is characterized by recurrent intrusive thoughts and ritualized, repetitive behaviors, or mental acts. Convergent experimental evidence from neuroimaging and neuropsychological studies supports an orbitofronto-striato-thalamo-cortical dysfunction in OCD. Moreover, an over excitability of the amygdala and over monitoring of thoughts and actions involving the anterior cingulate, frontal and parietal cortex has been proposed as aspects of pathophysiology in OCD. We chose a data driven, graph theoretical approach to investigate brain network organization in 17 unmedicated OCD patients and 19 controls using resting-state fMRI. OCD patients showed a decreased connectivity of the limbic network to several other brain networks: the basal ganglia network, the default mode network, and the executive/attention network. The connectivity within the limbic network was also found to be decreased in OCD patients compared to healthy controls. Furthermore, we found a stronger connectivity of brain regions within the executive/attention network in OCD patients. This effect was positively correlated with disease severity. The decreased connectivity of limbic regions (amygdala, hippocampus) may be related to several neurocognitive deficits observed in OCD patients involving implicit learning, emotion processing and expectation, and processing of reward and punishment. Limbic disconnection from fronto-parietal regions relevant for (re)-appraisal may explain why intrusive thoughts become and/or remain threatening to patients but not to healthy subjects. Hyperconnectivity within the executive/attention network might be related to OCD symptoms such as excessive monitoring of thoughts and behavior as a dysfunctional strategy to cope with threat and uncertainty. PMID:25044747

  7. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. PMID:25726458

  8. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  9. Estimating frontal and parietal involvement in cognitive estimation: a study of focal neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Teagan Ann Bisbing

    2015-06-01

    Full Text Available We often estimate an unknown value based on available relevant information, a process known as cognitive estimation. In this study, we assess the cognitive and neuroanatomic basis for quantitative estimation by examining deficits in patients with focal neurodegenerative disease in frontal and parietal cortex. Executive function and number knowledge are key components in cognitive estimation. Prefrontal cortex has been implicated in multilevel reasoning and planning processes, and parietal cortex has been associated with number knowledge required for such estimations. We administered the Biber Cognitive Estimation Test (BCET to assess cognitive estimation in 22 patients with prefrontal disease due to behavioral variant frontotemporal dementia (bvFTD, to 17 patients with parietal disease due to corticobasal syndrome (CBS or posterior cortical atrophy (PCA and 11 patients with mild cognitive impairment (MCI. Both bvFTD and CBS/PCA patients had significantly more difficulty with cognitive estimation than controls. MCI were not impaired on BCET relative to controls. Regression analyses related BCET performance to gray matter atrophy in right lateral prefrontal and orbital frontal cortices in bvFTD, and to atrophy in right inferior parietal cortex, right insula and fusiform cortices in CBS/PCA. These results are consistent with the hypothesis that a frontal-parietal network plays a crucial role in cognitive estimation.

  10. Changes of endothelin-3 in the cortex of the frontal and parietal lobes of type 2 diabetic mice following ischemia-reperfusion and observation of neurological symptoms%2型糖尿病小鼠脑缺血再灌注额顶叶皮质因子变化及神经症状观察

    Institute of Scientific and Technical Information of China (English)

    资晓宏; 涂秋云; 唐湘祁; 刘正清

    2004-01-01

    AIM:To explore the role of endothelin(ET)-3 and astrocytes in cerebral ischemia-reperfusion injury in diabetic mice. METHODS:A total of 66 adult male Kunming mice were randomly divided into diabetes mellitus group(DM group,n=6),diabetes mellitus with cerebral ischemia-reperfusion group(DM/IR group,n=24),cerebral ischemia-reperfusion group(IR group,n=24),sham operation group(SO group,n=6) and control group(n=6).The expressions of ET-3 and glial fibrillary acidic protein(GFAP) in the cortex of the frontal and parietal lobes of the mice were examined immunohistochemically. RESULTS:In the control group,a small amount of ET-3 expressed in the ⅢⅣ layers of the frontal and parietal lobe cortex in mice,with scattered GFAP-positive cells.On the third day of reperfusion,the number of ET-3-positive neurons and GFAP-positive cells was 75± 6 and 96± 70 respectively in the IR group,and 687± 17 and 702± 35 in the DM/IR group,both higher than those of the control group (28± 9 and 183± 11 respectively,P< 0.01). CONCLUSION:Diabetes is one of the important causes of cerebral ischemia-reperfusion injury,and ET-3 and activated astrocytes may worsen the neural injuries in diabetic mice.%目的:探讨内皮素- 3和星形胶质细胞在糖尿病小鼠脑缺血再灌注损伤中的作用机制. 方法: 将 66只成年雄性昆明小鼠按随机数字表法分为 5组:单纯糖尿病( diabetes mellitus,DM)组 (n=6),糖尿病合并脑缺血再灌注( diatetes mellitus/ischemia-reperfusion,DM/IR)组( n=24),脑缺血再灌注 (ischemia-reperfusion,IR)组( n=24),假手术组( n=6),正常对照组( n=6).分别取小鼠额顶叶皮质进行免疫组化染色检测内皮素- 3和胶质纤维酸性蛋白( glial fibrillary acidic protein,GFAP)的表达. 结果:对照组小鼠额叶、顶叶皮质Ⅲ-Ⅵ层可见少量内皮素- 3、 GFAP阳性细胞散在分布 ;糖尿病组内皮素- 3阳性神经元( 3 d时 IR, DM/IR组: 75± 6, 96± 70)及 GFAP阳性细胞数( 3 d时 IR, DM/IR组: 687

  11. Gestalt perception is associated with reduced parietal beta oscillations.

    Science.gov (United States)

    Zaretskaya, Natalia; Bartels, Andreas

    2015-05-15

    The ability to perceive composite objects as a whole is fundamental for visual perception in a complex and cluttered natural environment. This ability may be mediated by increased communication between neural representations of distinct object elements, and has been linked to increased synchronization of oscillatory brain activity in the gamma band. Previous studies of perceptual grouping either guided attention between local and global aspects of a given stimulus or manipulated its physical properties to achieve grouped and ungrouped perceptual conditions. In contrast to those studies, we fully matched the physical properties underlying global and local percepts using a bistable stimulus that causes the viewer to perceive either local motion of multiple elements or global motion of two illusory shapes without any external change. To test the synchronization hypothesis we recorded brain activity with EEG, while human participants viewed the stimulus and reported changes in their perception. In contrast to previous findings we show that power of the beta-band was lower during perception of global Gestalt than during that of local elements. Source localization places these differences in the posterior parietal cortex, overlapping with a site previously associated with both attention and Gestalt perception. These findings reveal a role of parietal beta-band activity in internally, rather than externally or attention-driven processes of Gestalt perception. They also add to the growing evidence for shared neural substrates of attention and Gestalt perception, both being linked to parietal cortex. PMID:25731988

  12. Ventral fronto-parietal contributions to the disruption of visual working memory storage.

    Science.gov (United States)

    Hakun, Jonathan G; Ravizza, Susan M

    2016-01-01

    The ability to maintain information in visual working memory (VWM) in the presence of ongoing visual input allows for flexible goal-directed behavior. Previous evidence suggests that categorical overlap between visual distractors and the contents of VWM is associated with both the degree to which distractors disrupt VWM performance and activation among fronto-parietal regions of cortex. While within-category distractors have been shown to elicit a greater response in ventral fronto-parietal regions, to date, no study has linked distractor-evoked response of these regions to VWM performance costs. Here we examined the contributions of ventral fronto-parietal cortex to the disruption of VWM storage by manipulating memoranda-distractor similarity. Our results revealed that the degree of activation across cortex was graded in a manner suggesting that similarity between the contents of VWM and visual distractors influenced distractor processing. While abrupt visual onsets failed to engage ventral fronto-parietal regions during VWM maintenance, objects sharing categorical- (Related objects) and feature-overlap (Matched objects) with VWM elicited a significant response in the right TPJ and right AI. Of central relevance, the magnitude of activation in the right AI elicited by both types of distractor objects subsequently predicted costs to binding change detection accuracy. In addition, Related and Matched distractors differentially affected ventral-dorsal connectivity between the right AI and dorsal parietal regions, uniquely contributing to disruption of VWM storage. Together, our current results implicate activation of ventral fronto-parietal cortex in disruption of VWM storage, and disconnection between ventral frontal and dorsal parietal cortices as a mechanism to protect the contents of VWM. PMID:26436710

  13. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects Ativação do córtex frontopolar e temporal anterior em uma tarefa de julgamento moral: resultados preliminares de ressonância magnética funcional em indivíduos normais

    Directory of Open Access Journals (Sweden)

    Jorge Moll

    2001-09-01

    Full Text Available OBJECTIVE: To study the brain areas which are activated when normal subjects make moral judgments. METHOD: Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI during the auditory presentation of sentences that they were instructed to silently judge as either "right" or "wrong". Half of the sentences had an explicit moral content ("We break the law when necessary", the other half comprised factual statements devoid of moral connotation ("Stones are made of water". After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemodynamically modeled for event-related fMRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. RESULTS: Regions activated during moral judgment included the frontopolar cortex (FPC, medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (BA 10/46 and 9 were largely independent of emotional experience and represented the largest areas of activation. CONCLUSIONS: These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct.OBJETIVO: Estudar, com ressonância magnética funcional (RMf, as áreas cerebrais normalmente ativadas por julgamentos morais em tarefa de verificação de sentenças. MÉTODO: Dez adultos normais foram estudados com RMf-BOLD durante a apresentação auditiva de sentenças cujo conteúdo foram instruídos a julgar como "certo" ou "errado". Metade das sentenças possuía um conteúdo moral explícito ("Transgredimos a lei se necess

  14. True and False Memories, Parietal Cortex, and Confidence Judgments

    Science.gov (United States)

    Urgolites, Zhisen J.; Smith, Christine N.; Squire, Larry R.

    2015-01-01

    Recent studies have asked whether activity in the medial temporal lobe (MTL) and the neocortex can distinguish true memory from false memory. A frequent complication has been that the confidence associated with correct memory judgments (true memory) is typically higher than the confidence associated with incorrect memory judgments (false memory).…

  15. Transient contribution of left posterior parietal cortex to cognitive restructuring

    OpenAIRE

    Sutoh, Chihiro; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yamada, Makiko; Nagaoka, Sawako; Chakraborty, Sudesna; Ishii, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Ito,Hiroshi; Tsuji, Hiroshi; Obata, Takayuki; Shimizu, Eiji

    2015-01-01

    Cognitive restructuring is a fundamental method within cognitive behavioural therapy of changing dysfunctional beliefs into flexible beliefs and learning to react appropriately to the reality of an anxiety-causing situation. To clarify the neural mechanisms of cognitive restructuring, we designed a unique task that replicated psychotherapy during a brain scan. The brain activities of healthy male participants were analysed using functional magnetic resonance imaging. During the brain scan, pa...

  16. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task

    OpenAIRE

    Suliann Ben Hamed; Etienne Olivier

    2012-01-01

    The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP) and of the frontal eye field (FEF) in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT) necessar...

  17. Cervicoplastia anterior Anterior cervicoplasty

    Directory of Open Access Journals (Sweden)

    Lucas Gomes Patrocínio

    2004-10-01

    Full Text Available Muitos pacientes buscam correção estética da frouxidão da pele do pescoço, depósito de gordura na região submentoneana ou bandas de platisma. Em grande parte dos casos a ação medial, via cervicoplastia anterior é necessária. OBJETIVO: Demonstrar a casuística e avaliar os resultados e complicações com a técnica de cervicoplastia anterior no Serviço de Otorrinolaringologia da Universidade Federal de Uberlândia. FORMA DE ESTUDO: Relato de série. PACIENTES E MÉTODOS: Quarenta e dois pacientes, entre 39 e 65 anos de idade, sendo 40 (95,2% do sexo feminino e 2 (4,8% do masculino, foram submetidos a cervicoplastia anterior. Retrospectivamente foram avaliados resultados e complicações. RESULTADOS: Destes, 34 apresentaram resultados satisfatórios, 4 apresentaram déficit estético notado somente pelo cirurgião, 3 apresentaram déficit estético notado somente pelo paciente e 1 apresentou déficit estético necessitando cirurgia revisional. Ao estudo fotográfico, todos os pacientes apresentaram melhora do perfil cervical, redução das bandas de platisma e da frouxidão da pele, estabilização da musculatura cervical e acentuação do ângulo cervicomental, em graus variados. Houve complicação em 2 casos (discreto serohematoma e cicatriz um pouco alargada. CONCLUSÃO: A cervicoplastia, associada ou não à tração lateral pela ritidoplastia, é uma técnica que produz resultados satisfatórios na grande maioria dos casos.Many patients look for aesthetic correction of the laxity of neck skin, submandibular fat deposit or platisma bands. In a large part of the cases, medial action, through anterior cervicoplasty is necessary. AIM: To demonstrate the casuistic and to evaluate the results and complications with anterior cervicoplasty technique in the Otorhinolaryngology Service of the Federal University of Uberlândia. STUDY DESIGN: Serie report. PATIENTS AND METHODS: Forty-two patients, between 39 and 65 years of age, being 40 (95

  18. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity.

    Science.gov (United States)

    Meredith, M Alex; Clemo, H Ruth; Corley, Sarah B; Chabot, Nicole; Lomber, Stephen G

    2016-03-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  19. Abnormal parietal function in conversion paresis.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms.

  20. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats

    OpenAIRE

    Herzog, Linnea; Salehi, Kia; Bohon, Kaitlin S.; Wiest, Michael C.

    2014-01-01

    Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (

  1. Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    2016-03-01

    Full Text Available The dorsolateral prefrontal cortex and posterior parietal cortex have been implicated in the planning of movements and inhibition of inappropriate responses, though their precise roles in these functions are not known. To address this question, we trained monkeys to perform memory-guided saccade and anti-saccade tasks and compared neural responses in the same animals. A population of neurons with no motor responses was also activated by a stimulus appearing out of the receptive field and could therefore mediate vector inversion. These neurons were found almost exclusively in the prefrontal cortex. Prefrontal cortical activity better predicted the level of performance in the task. Representation of the saccade goal also peaked in the prefrontal cortex at a time that was predictive of reaction time. These results suggest that the prefrontal cortex is the primary site of vector inversion in the cerebral cortex and explain the importance of this area in response inhibition.

  2. Optimized Gamma Synchronization Enhances Functional Binding of Fronto-Parietal Cortices in Mathematically Gifted Adolescents during Deductive Reasoning.

    Science.gov (United States)

    Zhang, Li; Gan, John Q; Wang, Haixian

    2014-01-01

    As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60 Hz) synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain), and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more "connector bridges" between the frontal and parietal cortices and less "connector hubs" in the sensorimotor cortex. The time domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration. PMID:24966829

  3. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  4. Food related processes in the insular cortex

    OpenAIRE

    Frank, Sabine; Kullmann, Stephanie; Veit, Ralf

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex. In this review, we will specifically focus on the involvement of the insula in food processing and on multim...

  5. Food related processes in the insular cortex

    OpenAIRE

    Sabine eFrank; Stephanie eKullmann; Ralf eVeit

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimo...

  6. Altered SPECT 123I iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2016-02-01

    Full Text Available Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN in children. The purpose of this study was to examine cortical GABA(A-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single photon emission computed tomography (SPECT measurements using 123I iomazenil, which binds to GABA(A-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26 and the short form of the Profile of Mood States (POMS. Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil binding activity in cortical regions of interest (ROIs and psychometric profiles, and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil binding activity in the anterior posterior cingulate cortex (ACC. Higher POMS subscale scores were significantly associated with lower iomazenil binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC. Depression-Dejection, and Confusion POMS subscale scores, and total POMS score, showed interaction effects with brain regions in iomazenil binding activity. Decreased binding in the ACC and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in children

  7. Compensatory activation in fronto-parietal cortices among HIV-infected persons during a monetary decision-making task.

    Science.gov (United States)

    Meade, Christina S; Cordero, Daniella M; Hobkirk, Andrea L; Metra, Brandon M; Chen, Nan-Kuei; Huettel, Scott A

    2016-07-01

    HIV infection can cause direct and indirect damage to the brain and is consistently associated with neurocognitive disorders, including impairments in decision-making capacities. The tendency to devalue rewards that are delayed (temporal discounting) is relevant to a range of health risk behaviors. Making choices about delayed rewards engages the executive control network of the brain, which has been found to be affected by HIV. In this case-control study of 18 HIV-positive and 17 HIV-negative adults, we examined the effects of HIV on brain activation during a temporal discounting task. Functional MRI (fMRI) data were collected while participants made choices between smaller, sooner rewards and larger, delayed rewards. Choices were individualized based on participants' unique discount functions, so each participant experienced hard (similarly valued), easy (disparately valued), and control choices. fMRI data were analyzed using a mixed-effects model to identify group-related differences associated with choice difficulty. While there was no difference between groups in behavioral performance, the HIV-positive group demonstrated significantly larger increases in activation within left parietal regions and bilateral prefrontal regions during easy trials and within the right prefrontal cortex and anterior cingulate during hard trials. Increasing activation within the prefrontal regions was associated with lower nadir CD4 cell count and risk-taking propensity. These results support the hypothesis that HIV infection can alter brain functioning in regions that support decision making, providing further evidence for HIV-associated compensatory activation within fronto-parietal cortices. A history of immunosuppression may contribute to these brain changes. Hum Brain Mapp 37:2455-2467, 2016. © 2016 Wiley Periodicals, Inc. PMID:27004729

  8. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was depression and schizophrenia can be efficiently assessed using this method.

  9. Cortico-cortical connections of the motor cortex in the brushtailed possum (Trichosurus vulpecula).

    OpenAIRE

    Joschko, M A; Sanderson, K J

    1987-01-01

    Cortico-cortical connections of motor cortex in the marsupial brushtailed possum were traced by making injections of horseradish peroxidase (HRP) into two parts of motor cortex: the rostral agranular part which does not overlap somatosensory cortex, and the caudal part which does. Following injections in motor cortex, labelled neurons were observed on the same side of the brain within somatosensory areas 1 and 2 and in parietal cortex just caudal to S1, with most neurons in cortical Layers 2-...

  10. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Directory of Open Access Journals (Sweden)

    Anders C. Green

    2012-01-01

    Full Text Available We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  11. Connectivity changes underlying neurofeedback training of visual cortex activity.

    Directory of Open Access Journals (Sweden)

    Frank Scharnowski

    Full Text Available Neurofeedback based on real-time functional magnetic resonance imaging (fMRI is a new approach that allows training of voluntary control over regionally specific brain activity. However, the neural basis of successful neurofeedback learning remains poorly understood. Here, we assessed changes in effective brain connectivity associated with neurofeedback training of visual cortex activity. Using dynamic causal modeling (DCM, we found that training participants to increase visual cortex activity was associated with increased effective connectivity between the visual cortex and the superior parietal lobe. Specifically, participants who learned to control activity in their visual cortex showed increased top-down control of the superior parietal lobe over the visual cortex, and at the same time reduced bottom-up processing. These results are consistent with efficient employment of top-down visual attention and imagery, which were the cognitive strategies used by participants to increase their visual cortex activity.

  12. The anterior insular and anterior cingulate cortices in emotional processing for self-face recognition

    OpenAIRE

    Morita, Tomoyo; Tanabe, Hiroki C.; Akihiro T Sasaki; Shimada, Koji; Kakigi, Ryusuke; Sadato, Norihiro

    2013-01-01

    Individuals can experience embarrassment when exposed to self-feedback images, depending on the extent of the divergence from the internal representation of the standard self. Our previous work implicated the anterior insular cortex (AI) and the anterior cingulate cortex (ACC) in the processing of embarrassment; however, their exact functional contributions have remained uncertain. Here, we explored the effects of being observed by others while viewing self-face images on the extent of embarr...

  13. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG.

    Science.gov (United States)

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L; Iriye, Heather; Seth, Anil K; Kanai, Ryota

    2016-01-01

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant's individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception. PMID:27529410

  14. Optic ataxia as a result of the breakdown of the global tuning fields of parietal neurones.

    Science.gov (United States)

    Battaglia-Mayer, Alexandra; Caminiti, Roberto

    2002-02-01

    Optic ataxia is characterized by an impaired visual control of the direction of arm reaching to a visual target, accompanied by defective hand orientation and grip formation. In humans, optic ataxia is associated with lesions of the superior parietal lobule (SPL), which also affect visually guided saccades and other forms of eye-hand coordination. In the last 10 years, anatomical and physiological studies of the SPL have shed new light on the role of parietal cortex in the control of combined eye-hand movements to visual targets, and on the underlying distributed network which links parietal to frontal cortex. A main emerging functional feature of SPL neurones seems to be their capacity to combine, in a spatially congruent fashion, different directional eye- and hand-related information, that any coding scheme so far proposed, considers essential for the composition of motor commands for reaching. This integration occurs within the global tuning field of parietal neurones, is context-dependent and involves eye and hand information that shares the same directional properties. Depending on task demands, this integration of signals can result in the representation of different reference frames for coordinated eye-hand movements. The dynamic operations occurring within the global tuning fields might depend, at least in part, on the reciprocal sets of association connections linking the SPL and the premotor areas of the frontal lobe. From this picture, the SPL emerges as both a main source of visual input to the frontal cortex and a key structure for visuomotor integration based on re-entrant signalling and, therefore, as a crucial node in the visual control of movement. It is hypothesized that in parietal patients, the directional errors that characterize reaching are a consequence of the breakdown of the combination of directional eye and hand information within the global tuning fields of parietal neurones. In these patients, the spatial match among information about

  15. Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.

    Science.gov (United States)

    Tschentscher, Nadja; Hauk, Olaf

    2016-08-01

    Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions. PMID:27027542

  16. MRI study of the structure and functional connectivity of anterior cingulate cortex in heroin addicts%海洛因成瘾者扣带前回结构与功能连接的MRI研究

    Institute of Scientific and Technical Information of China (English)

    伊涛; 傅先明; 钱若兵; 季学兵; 魏祥品; 林彬; 胡文富; 牛朝诗; 汪业汉

    2011-01-01

    Objective To explore changes of the structure and functional connectivity of anterior cingulate cortex (ACC) and analyze the role of ACC in heroin addiction by voxel-based morphometry (VBM) and resting-state functional MRI (fMRI). Methods Fifteen heroin addicts and 15 normal people were set as addiction group and normal control group respectively, who underwent 3-dimensional structural imaging and resting-state fMRI. The VBM was used to compare the structural differences between the two groups. The ACC was selected as the regions of interest (ROI) to analyze the resting-state fMRI data of two groups in order to investigate the differences in functional connectivity between the ACC and related brain regions. Results VBM results showed that there were significant differences in gray matter density of right and left ACCs, right and left parahippocampal gyri, right and left caudate nuclei between two groups. When the ACC was selected as ROI, functional connectivity in some brain regions including the right and left ACCs, right and left posterior cingulate cortexes (PCCs) and the right and left parahippocampal gyri were weaker in addiction group than in normal control group. Conclusions The unusual changes of structure and functional connectivity appear in long-term heroin addicts, suggesting that ACC may play an important role in generation and maintain of addiction, and also in relapse after drug withdraw.%目的 利用基于体素的形态学分析(voxel-based morphometry,VBM)和静息态fMRI探讨扣带前回结构和功能连接的改变,分析扣带前回在海洛因成瘾中的作用.方法 15例海洛因成瘾者和15例正常人分别作为成瘾组和正常对照组,均接受3D结构像和静息态fMRI检查,使用VBM比较2组受试者大脑的结构差异;以扣带前回为感兴趣区,对2组进行静息态fRI数据分析,比较扣带前回与相关脑区之间功能连接的差异.结果 VBM分析显示2组在左右扣带前回、左右海马旁回、

  17. Effects of functional connectivity between anterior cingulate cortex and dorsolateral prefrontal cortex on executive control of attention in healthy individuals%前扣带回与背外侧额前皮质的功能连接影响执行控制

    Institute of Scientific and Technical Information of China (English)

    韩燕; 徐君海; 尹训涛; 张栋; 徐文坚; 逄增昌; 葛海涛; 刘树伟

    2013-01-01

    目的 探讨执行控制过程中健康人大脑前扣带回(ACC)与背外侧额前皮质(DLPFC)之间的功能连接及其与行为学表现之间的关系.方法 2011年1至5月25名17~20岁的健康志愿者在青岛大学医学院附属医院放射科进行3.0T功能磁共振扫描,采用注意网络测试(ANT)作为试验范式,计算ACC和DLPFC之间的功能连接,并与ANT的行为学得分做相关分析.结果 在执行控制过程中,背侧ACC(dACC)与两侧的DLPFC之间存在显著的功能连接,其中左侧的dACC和DLPFC之间的功能连接系数与执行控制的行为学得分存在显著负相关(r=-0.63;P <0.01).结论 ACC与DLPFC之间存在功能连接,并对注意的执行控制功能存在有利的影响,这有助于我们理解注意功能中相关脑区的功能整合作用.%Objective To explore the presence of functional connectivity between anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) during the manipulation of attentional network test (ANT) and its relationship with behavioral performance.Methods Functional magnetic resonance imaging was performed on 25 healthy subjects aged 17-20 years.And ANT was used as a paradigm.Functional connectivity between ACC-DLPFC was tested and correlation analysis conducted between functional connectivity coefficients and behavioral scores of ANT.Results Significant functional connectivity between the dorsal ACC (dACC) with bilateral DLPFC was found.Furthermore,event-related functional connectivity coefficients between left dACC and lefi DLPFC were negatively associated with the behavioral scores of executive control (r =-0.63 ; P < 0.01).Conclusion Our findings provide new evidence that ACC and DLPFC are functionally connected and such functional connectivity has advantageous influence on executive control function of attention so as to contribute to our understanding of the integrated role of these brain regions in attentional network.

  18. [Mother and son with enlarged parietal foramina, persistent fetal vein, and ALX4 mutation].

    Science.gov (United States)

    Morita, Motoaki; Nanba, Eiji; Adachi, Kaori; Ohno, Kousaku

    2016-05-01

    Enlarged parietal foramina (EPF) are rare congenital skull defects. These round or oval defects are situated on each parietal bone approximately 1 cm from the midline. Most patients with EPF have a positive family history. The condition is inherited as an autosomal dominant trait with relatively high, but not full, penetrance. Mutation in either MSX2 or ALX4 genes is associated with enlarged parietal foramina. Case 1 is a boy who was noticed to have a large anterior fontanelle, large posterior fontanelle, and widely opened sagittal suture at 2 months. During development, the anterior fontanelle and sagittal suture closed at 3 years and the posterior fontanelle subsequently divided into two foramina with ossification of the midline bridge by 4 years. The foramina were about 2.5 x 2.5 cm in diameter at 8 years. Case 2 is the 34-year-old mother of Case 1. She showed similar bone defects in her cranium, again about 2.5 x 2.5 cm in diameter. Neither patient showed any neurological symptoms. Genetic analysis revealed a mutation in the ALX4 gene in both patients, and magnetic resonance imaging showed a persistent falcine sinus and a hypoplastic straight sinus. Further evaluation revealed that the mother of Case 2 also had a mutation in the ALX4 gene, but no enlarged parietal foramina. Although high penetrance of this condition has been reported, this family suggests incomplete penetrance of this disorder. PMID:27349084

  19. Spike-field activity in parietal area LIP during coordinated reach and saccade movements

    OpenAIRE

    Hagan, Maureen A.; Dean, Heather L.; Pesaran, Bijan

    2011-01-01

    The posterior parietal cortex is situated between visual and motor areas and supports coordinated visually guided behavior. Area LIP in the intraparietal sulcus contains representations of visual space and has been extensively studied in the context of saccades. However, area LIP has not been studied during coordinated movements, so it is not known whether saccadic representations in area LIP are influenced by coordinated behavior. Here, we studied spiking and local field potential (LFP) acti...

  20. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    OpenAIRE

    Bradley Russell Buchsbaum; Mark D'Esposito

    2011-01-01

    The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such “recency effects” have shown that activation in the lateral inferior parietal cortex (LIPC) tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength) of information in memory, or whether such eff...

  1. Prism adaptation reverses the local processing bias in patients with right temporo-parietal junction lesions

    OpenAIRE

    Bultitude, Janet H.; Rafal, Robert D.; List, Alexandra

    2009-01-01

    Lesions to the right temporo-parietal cortex commonly result in hemispatial neglect. Lesions to the same area are also associated with hyperattention to local details of a scene and difficulty perceiving the global structure. This local processing bias is an important factor contributing to neglect and may contribute to the higher prevalence of the disorder following right compared with left hemisphere strokes. In recent years, visuomotor adaptation to rightward-shifting prisms has been intro...

  2. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats

    Science.gov (United States)

    Herzog, Linnea; Salehi, Kia; Bohon, Kaitlin S.

    2014-01-01

    Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (motor state. PMID:24572093

  3. Herniation of the anterior lens capsule

    Directory of Open Access Journals (Sweden)

    Pereira Nolette

    2007-01-01

    Full Text Available Herniation of the anterior lens capsule is a rare abnormality in which the capsule bulges forward in the pupillary area. This herniation can be mistaken for an anterior lenticonus where both the capsule and the cortex bulge forward. The exact pathology behind this finding is still unclear. We report the clinical, ultrasound biomicroscopy (UBM and histopathological findings of a case of herniation of the anterior lens capsule. UBM helped to differentiate this entity from anterior lenticonus. Light microscopy revealed capsular splitting suggestive of capsular delamination and collection of fluid (aqueous in the area of herniation giving it a characteristic appearance.

  4. Sensorimotor cortex injury effects on recovery of contralesional dexterous movements in Macaca mulatta.

    Science.gov (United States)

    Darling, Warren G; Pizzimenti, Marc A; Rotella, Diane L; Hynes, Stephanie M; Ge, Jizhi; Stilwell-Morecraft, Kimberly; Morecraft, Robert J

    2016-07-01

    The effects of primary somatosensory cortex (S1) injury on recovery of contralateral upper limb reaching and grasping were studied by comparing the consequences of isolated lesions to the arm/hand region of primary motor cortex (M1) and lateral premotor cortex (LPMC) to lesions of these same areas plus anterior parietal cortex (S1 and rostral area PE). We used multiple linear regression to assess the effects of gray and white matter lesion volumes on deficits in reaching and fine motor performance during the first month after the lesion, and during recovery of function over 3, 6 and 12months post-injury in 13 monkeys. Subjects with frontoparietal lesions exhibited larger deficits and poorer recovery as predicted, including one subject with extensive peri-Rolandic injury developing learned nonuse after showing signs of recovery. Regression analyses showed that total white matter lesion volume was strongly associated with initial post-lesion deficits in motor performance and with recovery of skill in reaching and manipulation. Multiple regression analyses using percent damage to caudal M1 (M1c), rostral S1 (S1r), LPMC and area PE as predictor variables showed that S1r lesion volumes were closely related to delayed post-lesion recovery of upper limb function, as well as lower skill level of recovery. In contrast, M1c lesion volume was related primarily to initial post-lesion deficits in hand motor performance. Overall, these findings demonstrate that frontoparietal injury impairs hand motor function more so than frontal motor injury alone, and results in slower and poorer recovery than lesions limited to frontal motor cortex. PMID:27091225

  5. Effects of transplantation with bone marrow-derived endothelial progenitor cells on learning, memory and neurons in the cortex of the parietal lobe after cerebral ischemia reperfusion injury of atherosclerotic model rats%内皮祖细胞移植对动脉粥样硬化模型大鼠脑缺血再灌注后学习记忆能力与脑顶叶皮质的影响

    Institute of Scientific and Technical Information of China (English)

    朱俊德; 王贵学; 余彦; 余资江; 肖朝伦; 王玉林

    2012-01-01

    目的 探讨内皮祖细胞(EPCs)移植对动脉粥样硬化(AS)模型大鼠脑缺血再灌注损伤(IRI)后学习记忆能力与脑顶叶皮质结构的影响.方法 高脂膳食饲养建立30只动脉粥样硬化大鼠模型,随机分为AS组,IRI组和EPCs移植组.采集骨髓分离EPCs并体外扩增培养,检测其表面标记物的表达;第7天采用线栓法制作局灶性IRI模型,建模成功后1d EPCs移植组经尾静脉移植EPCs,IRI组与AS组给予等量体积的磷酸盐缓冲液.移植后7d检测各组大鼠的行为能力、脑组织血管内皮生长因子(VEGF)含量及其mRNA表达与其结构的病理改变.结果 培养24h后见细胞贴壁生长逐渐变为梭形;第3天细胞明显增殖集落形成;第5天细胞集落逐渐增大呈现克隆样生长;第7天细胞汇合达80%;第10~14天细胞基本铺满瓶底呈铺路石样密集排列.荧光显微镜下,DIL-ac-LDL和FITC-UEA-1双荧光染色的细胞数占贴壁细胞数的75%以上.与IRI组相比,EPCs移植后大鼠的学习记忆能力较IRI组明显改善,VEGF含量及其mRNA表达显著下降(P<0.05).光镜下,EPCs移植组大鼠脑缺血侧顶叶皮质Caspase-3和胶质细胞原纤维酸性蛋白(GFAP)阳性神经元均较IRI组明显下降(P<0.05).结论 EPCs移植能改善AS模型大鼠脑IRI后的学习记忆能力、减轻脑组织的病理损害,这些变化提示EPCs促进了神经的修复.%Objective To study behavior abilities and morphological changes on neurons in the cortex of parietal lobe after cerebral ischemia reperfusion injury (IRI) of atherosclerotic ( AS) model rats and observe the effect of transplantation with bone marrow-derived endothelial progenitor cells (EPCs) on the AS model rat. Methods A total of thirty male adult Wister AS model rats were established by fat-rich diet feeding for six consecutive weeks. EPCs were obtained from the bone marrow and the cells cultured in vitro in M199. On the 7th day, middle cerebral artery occlusion (MCAO) rat models

  6. Hurt but still alive: Residual activity in the parahippocampal cortex conditions the recognition of familiar places in a patient with topographic agnosia.

    Science.gov (United States)

    van Assche, Mitsouko; Kebets, Valeria; Lopez, Ursula; Saj, Arnaud; Goldstein, Rachel; Bernasconi, Françoise; Vuilleumier, Patrik; Assal, Frédéric

    2016-01-01

    The parahippocampal cortex (PHC) participates in both perception and memory. However, the way perceptual and memory processes cooperate when we navigate in our everyday life environment remains poorly understood. We studied a stroke patient presenting a brain lesion in the right PHC, which resulted in a mild and quantifiable topographic agnosia, and allowed us to investigate the role of this structure in overt place recognition. Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI). Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia. PMID:26909331

  7. Hurt but still alive: Residual activity in the parahippocampal cortex conditions the recognition of familiar places in a patient with topographic agnosia☆

    Science.gov (United States)

    van Assche, Mitsouko; Kebets, Valeria; Lopez, Ursula; Saj, Arnaud; Goldstein, Rachel; Bernasconi, Françoise; Vuilleumier, Patrik; Assal, Frédéric

    2016-01-01

    The parahippocampal cortex (PHC) participates in both perception and memory. However, the way perceptual and memory processes cooperate when we navigate in our everyday life environment remains poorly understood. We studied a stroke patient presenting a brain lesion in the right PHC, which resulted in a mild and quantifiable topographic agnosia, and allowed us to investigate the role of this structure in overt place recognition. Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI). Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia. PMID:26909331

  8. Phase tuning properties of the Local Field Potentials during reach movements in the fronto-parietal areas PRR and PMd of rhesus monkey

    OpenAIRE

    Pablo Martinez-Vazquez

    2012-01-01

    The fronto-parietal reach network in primates comprises the dorsal premotor cortex (PMd) and the parietal reach region (PRR). The spiking activity of neurons in these areas is typically highly selective for the direction of a planned reach movement. For a large-enough population of motor-tuned neurons, the preferred movement direction (PD: direction of highest firing rate) of the individual neurons cover the full range of possible directions [1]. An important consequence of this heterogenity ...

  9. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

    DEFF Research Database (Denmark)

    Verleger, Rolf; Möller, Friderike; Kuniecki, Michal;

    2010-01-01

    right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2...... identification might reflect capacity limitations of the left hemisphere, which might be aggravated by rTMS to the left parietal cortex. Therefore, rTMS pulses were applied during each trial, beginning simultaneously with T1 presentation. rTMS was directed either to P4 or to P3 (right or left parietal cortex......) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field was...

  10. Identification by [99mTc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    International Nuclear Information System (INIS)

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [99mTc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [99mTc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [99mTc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  11. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  12. Anterior tarsaltunnelsyndrom

    DEFF Research Database (Denmark)

    Miliam, Palle B; Basse, Peter N

    2009-01-01

    Anterior tarsal tunnel syndrome is a rare entrapment neuropathy of the deep peroneal nerve beneath the extensor retinaculum of the ankle. It may be rare because it is underrecognized clinically.We present a case regarding a 29-year-old man, drummer, who for one and a half year experienced clinical...

  13. Unilateral deactivation of macaque dorsolateral prefrontal cortex induces biases in stimulus selection.

    Science.gov (United States)

    Johnston, Kevin; Lomber, Stephen G; Everling, Stefan

    2016-03-01

    Following unilateral brain injury, patients are often unable to detect a stimulus presented in the contralesional field when another is presented simultaneously ipsilesionally. This phenomenon has been referred to as extinction and has been conceptualized as a deficit in selective attention. Although most commonly observed following damage to posterior parietal areas, extinction has been observed following lesions of prefrontal cortex (PFC) in both humans and nonhuman primates. To date, most studies in nonhuman primates have examined lesions of multiple PFC subregions, including the frontal eye fields (FEF). Theoretical accounts of attentional disturbances from human patients, however, also implicate other PFC areas, including the middle frontal gyrus. Here, we investigated the effects of deactivating PFC areas anterior to the FEF on stimulus selection using a free-choice task. Macaque monkeys were presented with two peripheral stimuli appearing either simultaneously, or at varying stimulus onset asynchronies, and their performance was evaluated during unilateral cryogenic deactivation of part of dorsolateral prefrontal cortex or the cortex lining the caudal principal sulcus, the likely homologue of the human middle frontal gyrus. A decreased proportion of saccades was made to stimuli presented in the hemifield contralateral to the deactivated PFC. We also observed increases in reaction times to contralateral stimuli and decreases for stimuli presented in the hemifield ipsilateral to the deactivated hemisphere. In both cases, these results were greatest when both PFC subregions were deactivated. These findings demonstrate that selection biases result from PFC deactivation and support a role of dorsolateral prefrontal subregions anterior to FEF in stimulus selection. PMID:26792881

  14. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    Science.gov (United States)

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. PMID:26720411

  15. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    Science.gov (United States)

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  16. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  17. Intraosseous Hemangioma of the Left Parietal Bone

    OpenAIRE

    Dubbeldam, A.; Thywissen, C.; Vanwyck, R; Cleeren, P.

    2015-01-01

    Background: A 26-year-old male presented with pain in his left tibia. Ultrasonography revealed no abnormalities. Tc-99m-bonescan was requested to rule out stress fracture. The scan confirmed the presence of a left tibial stress fracture, as well as an enhancing lesion in the left parietal bone. The patient had no neurological symptoms.

  18. Small parietal thrombi in artificial bypass grafts

    International Nuclear Information System (INIS)

    During the last five years, 51 femoro-popliteal polytrafluoroethylene grafts were implanted in patients in the Second Surgical University Clinic, Vienna. In four of these patients an angiogram performed shortly after operation showed numerous small parietal thrombi on the artificial graft, a review of the literature has not shown any similar reports. The clinical importance and consequences of this observation are discussed. (orig.)

  19. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness☆

    Science.gov (United States)

    Crone, Julia Sophia; Soddu, Andrea; Höller, Yvonne; Vanhaudenhuyse, Audrey; Schurz, Matthias; Bergmann, Jürgen; Schmid, Elisabeth; Trinka, Eugen; Laureys, Steven; Kronbichler, Martin

    2013-01-01

    Recovery of consciousness has been associated with connectivity in the frontal cortex and parietal regions modulated by the thalamus. To examine this model and to relate alterations to deficits in cognitive functioning and conscious processing, we investigated topological network properties in patients with chronic disorders of consciousness recovered from coma. Resting state fMRI data of 34 patients with unresponsive wakefulness syndrome and 25 in minimally conscious state were compared to 28 healthy controls. We investigated global and local network characteristics. Additionally, behavioral measures were correlated with the local metrics of 28 regions within the fronto-parietal network and the thalamus. In chronic disorders of consciousness, modularity at the global level was reduced suggesting a disturbance in the optimal balance between segregation and integration. Moreover, network properties were altered in several regions which are associated with conscious processing (particularly, in medial parietal, and frontal regions, as well as in the thalamus). Between minimally conscious and unconscious patients the local efficiency of medial parietal regions differed. Alterations in the thalamus were particularly evident in non-conscious patients. Most of the regions affected in patients with impaired consciousness belong to the so-called ‘rich club’ of highly interconnected central nodes. Disturbances in their topological characteristics have severe impact on information integration and are reflected in deficits in cognitive functioning probably leading to a total breakdown of consciousness. PMID:24455474

  20. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition

    Directory of Open Access Journals (Sweden)

    Adam M P Miller

    2014-08-01

    Full Text Available Spatial navigation requires representations of landmarks and other navigation cues. The retrosplenial cortex (RSC is anatomically positioned between limbic areas important for memory formation, such as the hippocampus and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the hippocampus. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the hippocampus and as a target of the hippocampal-dependent systems consolidation of long-term memory.

  1. The ventrolateral prefrontal cortex facilitates processing of sentential context to locate referents.

    Science.gov (United States)

    Nozari, Nazbanou; Mirman, Daniel; Thompson-Schill, Sharon L

    2016-01-01

    Left ventrolateral prefrontal cortex (VLPFC) has been implicated in both integration and conflict resolution in sentence comprehension. Most evidence in favor of the integration account comes from processing ambiguous or anomalous sentences, which also poses a demand for conflict resolution. In two eye-tracking experiments we studied the role of VLPFC in integration when demands for conflict resolution were minimal. Two closely-matched groups of individuals with chronic post-stroke aphasia were tested: the Anterior group had damage to left VLPFC, whereas the Posterior group had left temporo-parietal damage. In Experiment 1 a semantic cue (e.g., "She will eat the apple") uniquely marked the target (apple) among three distractors that were incompatible with the verb. In Experiment 2 phonological cues (e.g., "She will see an eagle."/"She will see a bear.") uniquely marked the target among three distractors whose onsets were incompatible with the cue (e.g., all consonants when the target started with a vowel). In both experiments, control conditions had a similar format, but contained no semantic or phonological contextual information useful for target integration (e.g., the verb "see", and the determiner "the"). All individuals in the Anterior group were slower in using both types of contextual information to locate the target than were individuals in the Posterior group. These results suggest a role for VLPFC in integration beyond conflict resolution. We discuss a framework that accommodates both integration and conflict resolution. PMID:27148817

  2. Parietal dysfunction during number processing in children with fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    K.J. Woods

    2015-01-01

    Full Text Available Number processing deficits are frequently seen in children prenatally exposed to alcohol. Although the parietal lobe, which is known to mediate several key aspects of number processing, has been shown to be structurally impaired in fetal alcohol spectrum disorders (FASD, effects on functional activity in this region during number processing have not previously been investigated. This fMRI study of 49 children examined differences in activation associated with prenatal alcohol exposure in five key parietal regions involved in number processing, using tasks involving simple addition and magnitude comparison. Despite generally similar behavioral performance, in both tasks greater prenatal alcohol exposure was related to less activation in an anterior section of the right horizontal intraparietal sulcus known to mediate mental representation and manipulation of quantity. Children with fetal alcohol syndrome and partial fetal alcohol syndrome appeared to compensate for this deficit by increased activation of the angular gyrus during the magnitude comparison task.

  3. Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children

    DEFF Research Database (Denmark)

    Klarborg, Brith; Skak Madsen, Kathrine; Vestergaard, Martin; Skimminge, Arnold; Jernigan, Terry L; Baaré, William F C

    2013-01-01

    the right fronto-parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7-13 years. Sustained attention was assessed using a rapid visual information processing paradigm. The two behavioral measures of interest were the sensitivity......Sustained attention develops during childhood and has been linked to the right fronto-parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting...... index d' and the coefficient of variation in reaction times (RT(CV) ). Diffusion-weighted imaging was performed. Mean fractional anisotropy (FA) was extracted from the WM underlying right dorsolateral prefrontal (DLPFC) and parietal cortex (PC), and the right superior longitudinal fasciculus (SLF), as...

  4. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory. PMID:24604603

  5. Parietal wall endometriosis: a rare case report

    Directory of Open Access Journals (Sweden)

    Mahija Sahu

    2015-04-01

    Full Text Available A 28 year old P2L1 with one previous cesarean presented with cyclical pain in periumblical area just below umbilicus for 1 year with USG finding suggestive of parietal wall endometriosis planned for surgery on her 2nd day of menstruation. She underwent diagnostic laparoscopy with complete excision of endometrioma. Diagnostic laparoscopy showed no evidence of endometrioma in the pelvic cavity except for omental adhesion at parietal wall endometrioma site, adhesiolysis of omentum, mesh repair of rectus sheath defect done. She is followed up for last 3 cycles post-operative and has no cyclical pain further. [Int J Reprod Contracept Obstet Gynecol 2015; 4(2.000: 524-526

  6. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    OpenAIRE

    Gharib, Sina A; Pippin, Jeffrey W.; Takamoto Ohse; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs ...

  7. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  8. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes - A report of 4 cases

    NARCIS (Netherlands)

    O. Borens; M.K. Sen; R.C. Huang; J. Richmond; P. Kloen; J.B. Jupiter; D.L. Helfet

    2006-01-01

    Stress fracture of the anterior tibial cortex is an extremely challenging fracture to treat, especially in the high-performance female athlete who requires rapid return to competition. Previous reports have not addressed treating these fractures in the world-class athlete with anterior plating. We h

  9. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM study.

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka

    Full Text Available Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.

  10. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study.

    Science.gov (United States)

    Tanaka, Satoshi; Ikeda, Hanako; Kasahara, Kazumi; Kato, Ryo; Tsubomi, Hiroyuki; Sugawara, Sho K; Mori, Makoto; Hanakawa, Takashi; Sadato, Norihiro; Honda, Manabu; Watanabe, Katsumi

    2013-01-01

    Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts. PMID:23776706

  11. Medial cortex activity, self-reflection and depression

    OpenAIRE

    Johnson, Marcia K.; Nolen-Hoeksema, Susan; Mitchell, Karen J.; Levin, Yael

    2009-01-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and o...

  12. Hurt but still alive: Residual activity in the parahippocampal cortex conditions the recognition of familiar places in a patient with topographic agnosia

    Directory of Open Access Journals (Sweden)

    Mitsouko van Assche

    2016-01-01

    Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI. Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia.

  13. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions

    OpenAIRE

    Morgan, Helen M.; Jackson, Margaret C.; van Koningsbruggen, Martijn G.; Shapiro, Kimron L.; Linden, David E. J.

    2013-01-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activ...

  14. Towards an understanding of parietal mnemonic processes: Some conceptual guideposts

    Directory of Open Access Journals (Sweden)

    Daniel A Levy

    2012-07-01

    Full Text Available The posterior parietal lobes have been implicated in a range of episodic memory retrieval tasks, but the nature of parietal contributions to remembering remains unclear. In an attempt to identify fruitful avenues of further research, several heuristic questions about parietal-mnemonic activations are considered in light of recent empirical findings: Do such parietal activations reflect memory processes or their contents? Do they precede, follow, or co-occur with retrieval? What can we learn from their pattern of lateralization? Do they index access to episodic representations or the feeling of remembering? Are parietal activations graded by memory strength, quantity of retrieved information, or the type of retrieval? How do memory-related activations map onto functional parcellation of parietal lobes suggested by other cognitive phenomena? Consideration of these questions can promote understanding of the relationship between parietal-mnemonic effects and perceptual, attentional, and action-oriented cognitive processes.

  15. The fMRI study on the front-parietal activation in abacus mental calculation trained children

    International Nuclear Information System (INIS)

    Objective: To investigate the difference in front-parietal activation between the trained and untrained children engaged in addition and multiplication with functional magnetic resonance imaging (fMRI), and to explore the role of abacus mental calculation in brain development. Methods: Twenty-four children trained with abacus mental calculation and twelve untrained children performed mental calculation tasks including addition, multiplication and number-object control judging tasks. Blood oxygenation level dependence (BOLD) fMRI was performed when they were calculating. All data were analyzed by SPM2 (statistical parametric mapping 2) to generate the brain activation map. Results: The performance of the trained group had better correctness and shorter reaction time than that of the untrained group. The front-parietal activation between two groups had obvious difference. The activation involved less prefrontal cortex in the trained group than in the untrained group (P<0.05). The parietal activation in the trained group was mainly in the posterior superior parietal lobe/ precuneus, whereas the activation areas focused on the inferior parietal lobule in the untrained group. Conclusion: Abacus mental calculation involves multiple functional areas. and these areas may work together as a whole in processing arithmetic problems. Abacus mental calculation not only enhances the information processing in some brain areas and improves the utilization efficiency of neural resources, but also plays an important role in developing brain. (authors)

  16. Visual Map Shifts based on Whisker-Guided Cues in the Young Mouse Visual Cortex

    OpenAIRE

    Kohei Yoshitake; Hiroaki Tsukano; Manavu Tohmi; Seiji Komagata; Ryuichi Hishida; Takeshi Yagi; Katsuei Shibuki

    2013-01-01

    Mice navigate nearby space using their vision and whiskers, and young mice learn to integrate these heterogeneous inputs in perceptual space. We found that cortical responses were depressed in the primary visual cortex of young mice after wearing a monocular prism. This depression was uniformly observed in the primary visual cortex and was eliminated by whisker trimming or lesions in the posterior parietal cortex. Compensatory visual map shifts of responses elicited via the eye that had worn ...

  17. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    Science.gov (United States)

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  18. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  19. Temporary interference over the posterior parietal cortices disrupts thermoregulatory control in humans.

    Directory of Open Access Journals (Sweden)

    Alberto Gallace

    Full Text Available The suggestion has recently been made that certain higher-order cortical areas involved in supporting multisensory representations of the body, and of the space around it, might also play a role in controlling thermoregulatory functions. Here we demonstrate that temporary interference with the function of one of these areas, the posterior parietal cortex, by repetitive transcranial magnetic stimulation, results in a decrease in limb temperature. By contrast, interference with the activity of a sensory-specific area (the primary somatosensory cortex had no effect on temperature. The results of this experiment suggest that associative multisensory brain areas might exert a top-down modulation over basic physiological control. Such a function might be part of a larger neural circuit responsible for maintaining the integrity of the body at both a homeostatic and a psychological level.

  20. Temporary Interference over the Posterior Parietal Cortices Disrupts Thermoregulatory Control in Humans

    Science.gov (United States)

    Gallace, Alberto; Soravia, Giovanna; Cattaneo, Zaira; Moseley, G. Lorimer; Vallar, Giuseppe

    2014-01-01

    The suggestion has recently been made that certain higher-order cortical areas involved in supporting multisensory representations of the body, and of the space around it, might also play a role in controlling thermoregulatory functions. Here we demonstrate that temporary interference with the function of one of these areas, the posterior parietal cortex, by repetitive transcranial magnetic stimulation, results in a decrease in limb temperature. By contrast, interference with the activity of a sensory-specific area (the primary somatosensory cortex) had no effect on temperature. The results of this experiment suggest that associative multisensory brain areas might exert a top-down modulation over basic physiological control. Such a function might be part of a larger neural circuit responsible for maintaining the integrity of the body at both a homeostatic and a psychological level. PMID:24622382

  1. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability.

    Science.gov (United States)

    Wendelken, Carter; Ferrer, Emilio; Whitaker, Kirstie J; Bunge, Silvia A

    2016-05-01

    The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12-18-year olds. For 9-11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6-8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence. PMID:25824536

  2. Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study.

    Science.gov (United States)

    Strenziok, Maren; Krueger, Frank; Deshpande, Gopikrishna; Lenroot, Rhoshel K; van der Meer, Elke; Grafman, Jordan

    2011-10-01

    Adolescents spend a significant part of their leisure time watching TV programs and movies that portray violence. It is unknown, however, how the extent of violent media use and the severity of aggression displayed affect adolescents' brain function. We investigated skin conductance responses, brain activation and functional brain connectivity to media violence in healthy adolescents. In an event-related functional magnetic resonance imaging experiment, subjects repeatedly viewed normed videos that displayed different degrees of aggressive behavior. We found a downward linear adaptation in skin conductance responses with increasing aggression and desensitization towards more aggressive videos. Our results further revealed adaptation in a fronto-parietal network including the left lateral orbitofrontal cortex (lOFC), right precuneus and bilateral inferior parietal lobules, again showing downward linear adaptations and desensitization towards more aggressive videos. Granger causality mapping analyses revealed attenuation in the left lOFC, indicating that activation during viewing aggressive media is driven by input from parietal regions that decreased over time, for more aggressive videos. We conclude that aggressive media activates an emotion-attention network that has the capability to blunt emotional responses through reduced attention with repeated viewing of aggressive media contents, which may restrict the linking of the consequences of aggression with an emotional response, and therefore potentially promotes aggressive attitudes and behavior. PMID:20934985

  3. What does spatial alternation tell us about retrosplenial cortex function?

    OpenAIRE

    Andrew John Dudley Nelson

    2015-01-01

    The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g. allocentric, direc...

  4. What does spatial alternation tell us about retrosplenial cortex function?

    OpenAIRE

    Nelson, Andrew J.D.; Powell, Anna L.; Holmes, Joshua D.; Vann, Seralynne D.; Aggleton, John. P.

    2015-01-01

    The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g., allocentric, dire...

  5. Complementary sensory and associative microcircuitry in primary olfactory cortex

    OpenAIRE

    Wiegand, H.F.; Beed, P.; Bendels, M.H.; Leibold, C.; Schmitz, D; Johenning, F.W.

    2011-01-01

    The three-layered primary olfactory (piriform) cortex is the largest component of the olfactory cortex. Sensory and intracortical inputs converge on principal cells in the anterior piriform cortex (aPC). We characterize organization principles of the sensory and intracortical microcircuitry of layer II and III principal cells in acute slices of rat aPC using laser-scanning photostimulation and fast two-photon population Ca(2+) imaging. Layer II and III principal cells are set up on a superfic...

  6. Osmotic barrier of the parietal peritoneum.

    Science.gov (United States)

    Flessner, M F

    1994-11-01

    Fluid movement into the peritoneal cavity results after instillation of a hypertonic solution. Some investigators have assumed that the peritoneum is a significant barrier to small solutes and have predicted that fluid would be drawn by an osmotic gradient into the cavity from the tissue surrounding the peritoneal cavity, resulting in tissue hydrostatic pressures well below atmospheric pressure. Contrary to this, we have previously shown that protein and fluid cross the peritoneum and enter the tissue at the same rate during either isotonic or hypertonic dialysis. To investigate the nature of the osmotic barrier of the peritoneum, the hydrostatic pressure profiles were measured in the abdominal wall of the rat during conditions of either isotonicity or hypertonicity in the peritoneal cavity and constant intraperitoneal hydrostatic pressure (Pip). Measurements were made with a micropipette mounted on a micromanipulator and connected to a servo-null pressure measurement system. No interstitial pressures below atmospheric pressure were observed with either type of solution in the peritoneal cavity. For the three Pip values tested, there were few significant differences between the corresponding pressure profiles of isotonic or hypertonic solutions. It is concluded that the parietal peritoneum is not a functional barrier to small solutes, which are often used to raise the osmolality of intraperitoneal solutions. This finding also implies that the tissue interstitium underlying the parietal peritoneum is not the source of water flow into the cavity, which is observed during hypertonic dialysis. PMID:7977791

  7. A focus on parietal cells as a renewing cell population

    Institute of Scientific and Technical Information of China (English)

    Sherif; M; Karam

    2010-01-01

    The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells...

  8. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  9. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  10. Parietal lesions produce illusory conjunction errors in rats

    Directory of Open Access Journals (Sweden)

    Raymond PIERRE Kesner

    2012-05-01

    Full Text Available When several different objects are presented, visual objects are perceived correctly only if their features are identified and then bound together. Illusory-conjunction errors result when an object is correctly identified but is combined incorrectly. The parietal cortex (PPC has been shown repeatedly to play an important role in feature binding. The present study builds on a series of recent studies that have made use of visual search paradigms to elucidate the neural system involved in feature binding. This experiment attempts to define the role the PPC plays in binding the properties of a visual object that varies on the features of color and size in rats. Rats with PPC lesions or control surgery were exposed to three blocks of 20 trials administered over a 1-week period, with each block containing ten-one feature and ten-two feature trials. The target object consisted of one color object (e.g. black and white and one size object (e.g. short and tall. Of the ten one feature trials, five of the trials were tailored specifically for size discrimination and five for color discrimination. In the two-feature condition, the animal was required to locate the targeted object among four objects with two objects differing in size and two objects differing in color. The results showed a significant decrease in learning the task for the PPC lesioned rats compared to controls, especially for the two-feature condition. Based on a subsequent error analysis for color and size, the results showed a significant increase in illusory conjunction errors for the PPC lesioned rats relative to controls for color and relative to color discrimination, suggesting that the PPC may support feature binding as it relates to color. There was an increase in illusory conjunctions errors for both the PPC lesioned and control animals for size, but this appeared to be due to a difficulty with size discrimination.

  11. Phacoemulsification in anterior megalophthalmos.

    Science.gov (United States)

    Lee, Graham A; Hann, Joshua V; Braga-Mele, Rosa

    2006-07-01

    This case outlines the phacoemulsification technique used to overcome the challenge of the hyperdeep anterior chamber, weak zonules, abnormal anterior capsule, and large capsular bag. Key steps included trypan blue staining of the anterior capsule, a large capsulorhexis, prolapse of the nucleus into the anterior chamber with phacoemulsification anterior to the capsulorhexis, and a posterior chamber-placed iris-clip intraocular lens. Successful visual rehabilitation is achievable in these anatomically challenging eyes. PMID:16857490

  12. Inferior parietal lobule encodes visual temporal resolution processes contributing to the critical flicker frequency threshold in humans.

    Directory of Open Access Journals (Sweden)

    Andrea Nardella

    Full Text Available The measurement of the Critical Flicker Frequency threshold is used to study the visual temporal resolution in healthy subjects and in pathological conditions. To better understand the role played by different cortical areas in the Critical Flicker Frequency threshold perception we used continuous Theta Burst Stimulation (cTBS, an inhibitory plasticity-inducing protocol based on repetitive transcranial magnetic stimulation. The Critical Flicker Frequency threshold was measured in twelve healthy subjects before and after cTBS applied over different cortical areas in separate sessions. cTBS over the left inferior parietal lobule altered the Critical Flicker Frequency threshold, whereas cTBS over the left mediotemporal cortex, primary visual cortex and right inferior parietal lobule left the Critical Flicker Frequency threshold unchanged. No statistical difference was found when the red or blue lights were used. Our findings show that left inferior parietal lobule is causally involved in the conscious perception of Critical Flicker Frequency and that Critical Flicker Frequency threshold can be modulated by plasticity-inducing protocols.

  13. Visuospatial and mathematical dysfunction in major depressive disorder and/or panic disorder: A study of parietal functioning.

    Science.gov (United States)

    Nelson, Brady D; Shankman, Stewart A

    2016-04-01

    The parietal cortex is critical for several different cognitive functions, including visuospatial processing and mathematical abilities. There is strong evidence indicating parietal dysfunction in depression. However, it is less clear whether anxiety is associated with parietal dysfunction and whether comorbid depression and anxiety are associated with greater impairment. The present study compared participants with major depression (MDD), panic disorder (PD), comorbid MDD/PD and controls on neuropsychological measures of visuospatial processing, Judgement of Line Orientation (JLO), and mathematical abilities, Wide Range Achievement Test (WRAT) Arithmetic. Only comorbid MDD/PD was associated with decreased performance on JLO, whereas all psychopathological groups exhibited comparably decreased performance on WRAT Arithmetic. Furthermore, the results were not accounted for by other comorbid disorders, medication use or psychopathology severity. The present study suggests comorbid depression and anxious arousal are associated with impairment in visuospatial processing and provides novel evidence indicating mathematical deficits across depression and/or anxiety. Implications for understanding parietal dysfunction in internalising psychopathology are discussed. PMID:25707308

  14. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas.

    Science.gov (United States)

    Pilgramm, Sebastian; de Haas, Benjamin; Helm, Fabian; Zentgraf, Karen; Stark, Rudolf; Munzert, Jörn; Krüger, Britta

    2016-01-01

    How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action-specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI-scanning, 20 right-handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right-hand actions: an aiming movement, an extension-flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor- and motor-associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. PMID:26452176

  15. Cortical connections of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action.

    Science.gov (United States)

    Bakola, Sophia; Gamberini, Michela; Passarelli, Lauretta; Fattori, Patrizia; Galletti, Claudio

    2010-11-01

    The cortical projections to the caudal part of the superior parietal lobule (area PEc) were studied in 6 cynomolgus monkeys using fluorescence tracers. Significant numbers of labeled cells were found in a restricted network of parietal, mesial, and frontal areas. Quantitative analysis demonstrated that approximately 30% of the total projection neurons originated in the adjacent areas of the dorsocaudal part of the superior parietal lobule (areas PE and V6A). The medial bank of the intraparietal sulcus, inferior parietal lobule, and frontal lobe (mainly the dorsocaudal part of premotor area F2) each contributed approximately 15% of the projection neurons. About 15% of the labeled neurons were located in the posterior cingulate area (PEci) and another 10% in other areas of the mesial surface of the hemisphere. Based on these data, we suggest that PEc processes information about the position of the limbs. The specific anatomical links between PEc and motor and premotor areas that host a representation of the lower limbs, together with the link with vestibular cortex and with areas involved in the analysis of optic flow and spatial navigation, imply a role for PEc in locomotion and coordinated limb movement in the environment. PMID:20176687

  16. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  17. Cerebellar networks with the cerebral cortex and basal ganglia.

    Science.gov (United States)

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2013-05-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  18. Medial cortex activity, self-reflection and depression.

    Science.gov (United States)

    Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael

    2009-12-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so. PMID:19620180

  19. Working Memory Retrieval: Contributions of the Left Prefrontal Cortex, the Left Posterior Parietal Cortex, and the Hippocampus

    Science.gov (United States)

    Oztekin, Ilke; McElree, Brian; Staresina, Bernhard P.; Davachi, Lila

    2009-01-01

    Functional magnetic resonance imaging was used to identify regions involved in working memory (WM) retrieval. Neural activation was examined in two WM tasks: an item recognition task, which can be mediated by a direct-access retrieval process, and a judgment of recency task that requires a serial search. Dissociations were found in the activation…

  20. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke; Jin, Seung-Hyun; Joutsen, Atte;

    2012-01-01

    performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1......-motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline....

  1. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte;

    2012-01-01

    performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1......-motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline...

  2. A focus on parietal cells as a renewing cell population

    Directory of Open Access Journals (Sweden)

    Sherif M Karam

    2010-02-01

    Full Text Available The fact that the acid-secreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3H-thymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells. The stem cells give rise to three main progenitors: prepit, preneck and preparietal cells. Parietal cells develop either directly from the non-cycling preparietal cells or less commonly via differentiation of the cycling prepit and preneck cell progenitors. The formation of a parietal cell is a sequential process which involves diminishment of glycocalyx, production of cytoplasmic tubulovesicles, an increase in number and length of microvilli, an increase in number and size of mitochondria, and finally, expansion and invagination of the apical membrane with the formation of an intracellular canalicular system. Little is known about the genetic counterparts of these morphological events. However, the time dimension of parietal cell production and the consequences of its alteration on the biological features of the gastric gland are well documented. The production of a new parietal cell takes about 2 d. However, mature parietal cells have a long lifespan during which they migrate bi-directionally while their functional activity for acid secretion gradually diminishes. Following an average lifespan of about 54 d, in mice, old parietal cells undergo degeneration and elimination. Various approaches for genetic alteration of the development of parietal cells have provided evidence in support of their role as governors of the stem/progenitor cell proliferation and differentiation programs. Revealing the dynamic features and the various roles of

  3. Orbitofrontal cortex contribution to working memory. N-back ERP study

    International Nuclear Information System (INIS)

    Remarkable progress in cognitive neuroscience has revealed the involvement of the prefrontal cortex and the orbitofrontal cortex in human working memory, but the orbitofrontal cortex is still one of the least understood regions in the human brain. To elucidate the contribution of the orbitofrontal cortex to human working memory, we studied electroencephalography (EEG) P300 activity in n-back task. We elicited early P3 around 300 ms and late P3 around 360 ms of P300 components in n-back event related potentials (ERP). The amplitudes of the respective peaks changed depending on the working memory load (0-back, 1-back, 2-back, 3-back). We used source analysis to evaluate the orbitofrontal cortex in P3 components. A source model was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and late P3 components in the n-back ERP. This source model had more than 99% of GOF (goodness of fit) in n-back ERP. It gave us an insight of brain activity at the positions where sources existed. Early P3 was mainly produced by the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, the inferior parietal lobule, the medial posterior parietal and the visual cortex. Late P3 was mainly produced by the medial premotor, the lateral premotor, the frontal pole and the orbitofrontal cortex. The contribution of the frontal pole and the orbitofrontal cortex had peaks around 390 ms which were later than late P3 component. In this study, the method to evaluate the orbitofrontal cortex activity in n-back ERP was provided. Our results elicited the involvement of the orbitofrontal cortex in late P3 component of n-back ERP. (author)

  4. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain.

    Science.gov (United States)

    Kamali, A; Sair, H I; Radmanesh, A; Hasan, K M

    2014-09-26

    The temporo-parietal (TP) white matter connections between the inferior parietal lobule and superior temporal gyrus as part of the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF) or middle longitudinal fasciculus (MdLF) have been studied in prior diffusion tensor tractography (DTT) studies. However, few studies have been focusing on the higher TP connections of the superior parietal lobule with the temporal lobe. These higher TP connections have been shown to have a role in core processes such as attention, memory, emotions, and language. Our most recent study, for the first time, hinted to the possibility of a long white matter connection interconnecting the superior parietal lobule (SPL) with the posterior temporal lobe in human brain which we call the SLF/AF TP-SPL and for a shorter abbreviation, the TP-SPL. We decided to further investigate this white matter connection using fiber assignment by continuous tracking deterministic tractography and high spatial resolution diffusion tensor imaging on 3T. Five healthy right-handed men (age range 24-37 years) were studied. We delineated the SPL connections of the SLF/AF TP bilaterally in five normal adult human brains. Using a high resolution DTT technique, we demonstrate for the first time, the trajectory of a long fiber bundle connectivity between the SPL and posterior temporal lobe, called the SLF/AF TP-SPL (or the TP-SPL), bilaterally in five healthy adult human brains. We also demonstrate the trajectory of the vertically oriented posterior TP connections, interconnecting the inferior parietal lobule (IPL) with the posterior temporal lobe (TP-IPL) in relation to the TP-SPL, arcuate fasciculus and other major language pathways. In the current study, for the first time, we categorized the TP connections into the anterior and posterior connectivity groups and subcategorized each one into the SPL or IPL connections. PMID:25086308

  5. It's how you get there: Walking down a virtual alley activates premotor and parietal areas

    Directory of Open Access Journals (Sweden)

    Johanna eWagner

    2014-02-01

    Full Text Available Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12Hz, 15-20Hz and 23-40Hz was significantly (p ≤ 0.05 decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05 from baseline in the frequency range 23-40Hz during walking. These modulations were significantly (p ≤ 0.05 reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions.We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.

  6. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Ilka eBoehm

    2014-10-01

    Full Text Available The etiology of anorexia nervosa (AN is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy female participants (HC and decomposed using spatial group independent component analyses. Using validated templates, we identified components covering the fronto-parietal control network, the default mode network (DMN, the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks. The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high levels of self

  7. Agnosia for mirror stimuli: a new case report with a small parietal lesion.

    Science.gov (United States)

    Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Lebas, Axel; Gerardin, Emmanuel; Hannequin, Didier

    2014-11-01

    Only seven cases of agnosia for mirror stimuli have been reported, always with an extensive lesion. We report a new case of an agnosia for mirror stimuli due to a circumscribed lesion. An extensive battery of neuropsychological tests and a new experimental procedure to assess visual object mirror and orientation discrimination were assessed 10 days after the onset of clinical symptoms, and 5 years later. The performances of our patient were compared with those of four healthy control subjects matched for age. This test revealed an agnosia for mirror stimuli. Brain imaging showed a small right occipitoparietal hematoma, encompassing the extrastriate cortex adjoining the inferior parietal lobe. This new case suggests that: (i) agnosia for mirror stimuli can persist for 5 years after onset and (ii) the posterior part of the right intraparietal sulcus could be critical in the cognitive process of mirror stimuli discrimination. PMID:25037846

  8. Object vision to hand action in macaque parietal, premotor, and motor cortices

    Science.gov (United States)

    Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-01-01

    Grasping requires translating object geometries into appropriate hand shapes. How the brain computes these transformations is currently unclear. We investigated three key areas of the macaque cortical grasping circuit with microelectrode arrays and found cooperative but anatomically separated visual and motor processes. The parietal area AIP operated primarily in a visual mode. Its neuronal population revealed a specialization for shape processing, even for abstract geometries, and processed object features ultimately important for grasping. Premotor area F5 acted as a hub that shared the visual coding of AIP only temporarily and switched to highly dominant motor signals towards movement planning and execution. We visualize these non-discrete premotor signals that drive the primary motor cortex M1 to reflect the movement of the grasping hand. Our results reveal visual and motor features encoded in the grasping circuit and their communication to achieve transformation for grasping. DOI: http://dx.doi.org/10.7554/eLife.15278.001 PMID:27458796

  9. Object vision to hand action in macaque parietal, premotor, and motor cortices.

    Science.gov (United States)

    Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-01-01

    Grasping requires translating object geometries into appropriate hand shapes. How the brain computes these transformations is currently unclear. We investigated three key areas of the macaque cortical grasping circuit with microelectrode arrays and found cooperative but anatomically separated visual and motor processes. The parietal area AIP operated primarily in a visual mode. Its neuronal population revealed a specialization for shape processing, even for abstract geometries, and processed object features ultimately important for grasping. Premotor area F5 acted as a hub that shared the visual coding of AIP only temporarily and switched to highly dominant motor signals towards movement planning and execution. We visualize these non-discrete premotor signals that drive the primary motor cortex M1 to reflect the movement of the grasping hand. Our results reveal visual and motor features encoded in the grasping circuit and their communication to achieve transformation for grasping. PMID:27458796

  10. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  11. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    Directory of Open Access Journals (Sweden)

    Bradley Russell Buchsbaum

    2011-07-01

    Full Text Available The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such recency effects have shown that activation in the lateral inferior parietal cortex (LIPC tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging (fMRI we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations – the memory strength and expectancy hypotheses, respectively -- of the parietal lobe recency effect.

  12. Malformation of cortical and vascular development in one family with parietal foramina determined by an ALX4 homeobox gene mutation.

    Science.gov (United States)

    Valente, Marcelo; Valente, Kette D; Sugayama, Sofia S M; Kim, Chong Ae

    2004-01-01

    Vascular and cortical anomalies have been found in a family with parietal foramina type 2 (PFM2), which is determined by the ALX4 gene. It is believed that ALX4 has a bone-restricted expression. We report a case of PFM with age-related size variation in a 4-year-old boy, as well as in his mother, aunt and grandfather. MR imaging of the child demonstrates prominent malformations of cortical (polymicrogyric cortex with an unusual infolding pattern) and vascular development (persistence median prosencephalic vein), associated with high tentorial incisure periatrial white matter changes. PMID:15569759

  13. A volumetric study of parietal lobe subregions in Turner syndrome

    OpenAIRE

    Brown, Wendy E.; Kesler, Shelli R.; Eliez, Stephan; Warsofsky, Ilana S.; Haberecht, Michael; Reiss, Allan L.

    2004-01-01

    Turner syndrome, a genetic disorder that results from the complete or partial absence of an X chromosome in females, has been associated with specific impairment in visuospatial cognition. Previous studies have demonstrated a relationship between parietal lobe abnormalities and visuospatial deficits in Turner syndrome. We used high-resolution magnetic resonance imaging to measure parietal lobe subdivisions in 14 participants with Turner syndrome (mean age 13 years 5 months, SD 5 years) and 14...

  14. Bipartite parietal bone: a rare cause of plagiocephaly

    International Nuclear Information System (INIS)

    A case of an infant with an asymmetrical head is presented. On clinical assessment the patient displayed features of deformational plagiocephaly. With the aid of three-dimensional CT imaging of the skull, a bipartite parietal bone was diagnosed. The prevalence and possible aetiology of a bipartite parietal bone is discussed as well as a brief overview of the common causes of plagiocephaly Copyright (2004) Blackwell Publishing Asia Pty Ltd

  15. Effect of lesions to the posterior parietal or medial prefrontal cortices on navigation based on distal or proximal orienting cues in the rat

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Telenský, Petr; Blahna, Karel; Bureš, Jan; Stuchlík, Aleš

    Maastricht: Noldus, 2008 - (Spink, A.; Ballintijn, M.; Bogers, N.), s. 320-320 ISBN 978-90-74821-81-0. [International Conference on Methods and Techniques in Behavioral Research /6./. Maastricht (NL), 26.08.2008-29.08.2008] R&D Projects: GA ČR(CZ) GA309/07/0341; GA ČR(CZ) GA309/06/1231; GA ČR(CZ) GD206/05/H012; GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z50110509 Keywords : parietal cortex * prefrontal cortex * spatial memory Subject RIV: FH - Neurology

  16. Evidence for differential top-down and bottom-up suppression in posterior parietal cortex.

    Science.gov (United States)

    Mirpour, Koorosh; Bisley, James W

    2013-10-19

    When searching for an object, we usually avoid items that are visually different from the target and objects or places that have been searched already. Previous studies have shown that neural activity in the lateral intraparietal area (LIP) can be used to guide this behaviour; responses to task irrelevant stimuli or to stimuli that have been fixated previously in the trial are reduced compared with responses to potential targets. Here, we test the hypothesis that these reduced responses have a different genesis. Two animals were trained on a visual foraging task, in which they had to find a target among a number of physically identical potential targets (T) and task irrelevant distractors. We recorded neural activity and local field potentials (LFPs) in LIP while the animals performed the task. We found that LFP power was similar for potential targets and distractors but was greater in the alpha and low beta bands when a previously fixated T was in the response field. We interpret these data to suggest that the reduced single-unit response to distractors is a bottom-up feed-forward result of processing in earlier areas and the reduced response to previously fixated Ts is a result of active top-down suppression. PMID:24018730

  17. Involvement of both prefrontal and inferior parietal cortex in dual-task performance

    OpenAIRE

    Collette, Fabienne; Olivier, L.; Van der Linden, Martial; Laureys, Steven; Delfiore, G.; Luxen, André; Salmon, Eric

    2005-01-01

    This PET study explored the neural substrate of both dual-task management and integration task using single tasks that are known not to evoke any prefrontal activation. The paradigm included two simple (visual and auditory) discrimination tasks, a dual task and an integration task (requiring simultaneous visual and auditory discrimination), and baseline tasks (passive viewing and hearing). Data were analyzed using SPM99. As predicted, the comparison of each single task to the baseline task sh...

  18. Functional architecture of spatial attention in the parietal cortex of behaving monkey

    OpenAIRE

    Raffi, Milena; Siegel, Ralph M.

    2005-01-01

    Functional architectures facilitate orderly transmittal of representations between cortices, allow for local interactions between neurons, and ensure a uniform distribution of feature representations with respect to larger scale topographies. We sought to correlate such topographies with internal cognitive states. A psychophysical task for which the monkey was required to detect a change in one of two identical peripheral expanding flow fields tested for spatial shifts of attention. The monke...

  19. Specialized Pathways from the Primate Amygdala to Posterior Orbitofrontal Cortex

    OpenAIRE

    Timbie, Clare; Barbas, Helen

    2014-01-01

    The primate amygdala sends dense projections to posterior orbitofrontal cortex (pOFC) in pathways that are critical for processing emotional content, but the synaptic mechanisms are not understood. We addressed this issue by investigating pathways in rhesus monkeys (Macaca mulatta) from the amygdala to pOFC at the level of the system and synapse. Terminations from the amygdala were denser and larger in pOFC compared with the anterior cingulate cortex, which is also strongly connected with the...

  20. Structural and Functional Dichotomy of Human Midcingulate Cortex

    OpenAIRE

    Vogt, Brent A.; Berger, Gail R.; Derbyshire, Stuart W G

    2003-01-01

    Anterior cingulate cortex is comprised of perigenual and midcingulate regions based on cytology, imaging, and connections. Its anterior (aMCC) and posterior (pMCC) parts and transition to posterior area 23 were evaluated in 6 human cingulate gyri with Nissl-staining and immunoreactions for neuron-specific nuclear binding protein and intermediate neurofilament proteins (NFP) and their pain and emotion functions evaluated in standard coordinates. Morphological differences included a poorly diff...

  1. Systematic Regional Variations of GABA, Glutamine, and Glutamate Concentrations Follow Receptor Fingerprints of Human Cingulate Cortex

    NARCIS (Netherlands)

    Dou, Weiqiang; Palomero-Gallagher, Nicola; van Tol, Marie-Jose; Kaufmann, Joern; Zhong, Kai; Bernstein, Hans-Gert; Heinze, Hans-Jochen; Speck, Oliver; Walter, Martin

    2013-01-01

    Magnetic resonance spectroscopy (MRS) of glutamatergic or GABAergic measures in anterior cingulate cortex (ACC) was found altered in psychiatric disorders and predictive of interindividual variations of functional responses in healthy populations. Several ACC subregions have been parcellated into re

  2. Bilateral anterior shoulder dislocation

    OpenAIRE

    Meena, Sanjay; Saini, Pramod; Singh, Vivek; Kumar, Ramakant; Trikha, Vivek

    2013-01-01

    Shoulder dislocations are the most common major joint dislocations encountered in the emergency departments. Bilateral shoulder dislocations are rare and of these, bilateral posterior shoulder dislocations are more prevalent than bilateral anterior shoulder dislocations. Bilateral anterior shoulder dislocation is very rare. We present a case of 24-year-old male who sustained bilateral anterior shoulder dislocation following minor trauma, with associated greater tuberosity fracture on one side...

  3. The inhibitory effect of propofol on Kv2.1 potassium channel in rat parietal cortical neurons.

    Science.gov (United States)

    Zhang, Yan-Zhuo; Zhang, Rui; Zeng, Xian-Zhang; Song, Chun-Yu

    2016-03-11

    Excessive K(+) efflux via activated voltage-gated K(+) channels can deplete intracellular K(+) and lead to long-lasting membrane depolarization which will promote neuronal apoptosis during ischemia/hypoxia injury. The Kv2.1 potassium channel was the major component of delayed rectifier potassium current (Ik) in pyramidal neurons in cortex and hippocampus. The neuronal protective effect of propofol has been proved. Delayed rectifier potassium current (Ik) has been shown to have close relationship with neuronal damage. The study was designed to test the inhibitory effect of propofol on Kv2.1 potassium channel in rat parietal cortical neurons. Whole-cell patch clamp recordings and Western blot analysis were used to investigate the electrophysiological function and protein expression of Kv2.1 in rat parietal cortical neurons after propofol treatment. We found that propofol concentration-dependently inhibited Ik in pyramidal neurons. Propofol also caused a downward shift of the I-V curve of Ik at 30μM concentration. Propofol significantly inhibited the expression of Kv2.1 protein level at 30μM, 50μM, 100μM concentration. In conclusion, our data showed that propofol could inhibit Ik, probably via depressing the expression of Kv2.1 protein in rat cerebral parietal cortical neurons. PMID:26828304

  4. Anterior insular cortex regulation in autism spectrum disorders

    OpenAIRE

    Caria, Andrea; De Falco, Simona

    2015-01-01

    Autism spectrum disorders (ASDs) comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findi...

  5. Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain.

    Science.gov (United States)

    Mehta, M A; Owen, A M; Sahakian, B J; Mavaddat, N; Pickard, J D; Robbins, T W

    2000-03-15

    The indirect catecholamine agonist methylphenidate (Ritalin) is the drug treatment of choice in attention deficit/hyperactivity disorder (AD/HD), one of the most common behavioral disorders of childhood (DSM-IV), although symptoms may persist into adulthood. Methylphenidate can enhance cognitive performance in adults and children diagnosed with AD/HD (Kempton et al., 1999; Riordan et al., 1999) and also in normal human volunteers on tasks sensitive to frontal lobe damage, including aspects of spatial working memory (SWM) performance (Elliott et al., 1997). The present study investigated changes in regional cerebral blood flow (rCBF) induced by methylphenidate during performance of a self-ordered SWM task to define the neuroanatomical loci of the beneficial effect of the drug. The results show that the methylphenidate-induced improvements in working memory performance occur with task-related reductions in rCBF in the dorsolateral prefrontal cortex and posterior parietal cortex. The beneficial effects of methylphenidate on working memory were greatest in the subjects with lower baseline working memory capacity. This is to our knowledge the first demonstration of a localization of a drug-induced improvement in SWM performance in humans and has relevance for understanding the treatment of AD/HD. PMID:10704519

  6. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex

    OpenAIRE

    Chandler, Daniel J.

    2012-01-01

    The prefrontal cortex (PFC) is implicated in a variety of cognitive and executive operations. However, this region is not a single functional unit; rather, it is composed of several functionally and anatomically distinct networks, including anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). These prefrontal subregions serve dissociable behavioral functions, and are unique in their afferent and efferent connections. Each of these subregions is inne...

  7. A case of secondary somatosensory epilepsy with a left deep parietal opercular lesion: successful tumor resection using a transsubcentral gyral approach during awake surgery.

    Science.gov (United States)

    Maesawa, Satoshi; Fujii, Masazumi; Futamura, Miyako; Hayashi, Yuichiro; Iijima, Kentaro; Wakabayashi, Toshihiko

    2016-03-01

    Few studies have examined the clinical characteristics of patients with lesions in the deep parietal operculum facing the sylvian fissure, the region recognized as the secondary somatosensory area (SII). Moreover, surgical approaches in this region are challenging. In this paper the authors report on a patient presenting with SII epilepsy with a tumor in the left deep parietal operculum. The patient was a 24-year-old man who suffered daily partial seizures with extremely uncomfortable dysesthesia and/or occasional pain on his right side. MRI revealed a tumor in the medial aspect of the anterior transverse parietal gyrus, surrounding the posterior insular point. Long-term video electroencephalography monitoring with scalp electrodes failed to show relevant changes to seizures. Resection with cortical and subcortical mapping under awake conditions was performed. A negative response to stimulation was observed at the subcentral gyrus during language and somatosensory tasks; thus, the transcortical approach (specifically, a transsubcentral gyral approach) was used through this region. Subcortical stimulation at the medial aspect of the anterior parietal gyrus and the posterior insula around the posterior insular point elicited strong dysesthesia and pain in his right side, similar to manifestation of his seizure. The tumor was completely removed and pathologically diagnosed as pleomorphic xanthoastrocytoma. His epilepsy disappeared without neurological deterioration postoperatively. In this case study, 3 points are clinically significant. First, the clinical manifestation of this case was quite rare, although still representative of SII epilepsy. Second, the location of the lesion made surgical removal challenging, and the transsubcentral gyral approach was useful when intraoperative mapping was performed during awake surgery. Third, intraoperative mapping demonstrated that the patient experienced pain with electrical stimulation around the posterior insular point

  8. [Microbiocenosis of parietal mucin in the gastrointestinal tract of rats].

    Science.gov (United States)

    Vorob'ev, A A; Nesvizhskiĭ, Iu V; Bogdanova, E A; Korneev, L M

    2005-01-01

    The qualitative and quantitative composition of the microbial community in parietal mucin at different areas of the gastrointestinal tract (GIT) of rats was revealed. The pronounced variability in the quantitative and qualitative characteristics of microbiocenosis in parietal mucin of rats at different sections was revealed. The differences were most pronounced in the passage from upper to lower GIT sections, the large intestine found to be the richest biocenosis. The microbial composition of rat feces was faintly associated with the GIT parietal microbiocenosis. The individual areas of GIT mucosa were unique of their microbial characteristics and organization. This makes it possible to regard them as relatively independent biotopes and indicates that it is impossible to evaluate the microbial community by one of the colonic mucosal sifes. PMID:16438365

  9. Enlarged parietal foramina: a rare forensic autopsy finding.

    Science.gov (United States)

    Durão, Carlos; Carpinteiro, Dina; Pedrosa, Frederico; Machado, Marcos P; Cunha, Eugénia

    2016-05-01

    Enlarged parietal foramina (EPF) are a quite rare developmental defect of the parietal bone which has to be distinguished from the normal small parietal foramina. We report a forensic case of an individual found in an advanced state of putrefaction in his own house with an undetermined cause of death. No evidence of trauma was observed, and the toxicological exam was negative. The victim was a 40-year-old man with a history of epilepsy. The large biparietal foramina, a rare anatomical variation and unusual autopsy finding, were observed at autopsy. The recognition of anatomical variations is important to avoid false interpretations and conclusions and has a significant potential as an identity factor, thus contributing to positive identification. PMID:26233611

  10. Restlessness with Manic Episodes due to Right Parietal Infarction

    Directory of Open Access Journals (Sweden)

    Suk Yun Kang

    2010-05-01

    Full Text Available Mood disorders following acute stroke are relatively common. However, restlessness with manic episodes has rarely been reported. Lesions responsible for post-stroke mania can be located in the thalamus, caudate nucleus, and temporal and frontal lobes. We present a patient who exhibited restlessness with manic episodes after an acute infarction in the right parietal lobe, and summarize the case reports involving post-stroke mania. The right parietal stroke causing mania in our case is a novel observation that may help us to understand the mechanisms underlying restlessness with mania following acute stroke.

  11. The study of 1H-Magnetic resonance spectroscope (1H-MRS) in the anterior cingulate cortex (ACC) in depressive patients with childhood neglect%伴儿童期忽略的抑郁症患者前扣带回氢质子波谱对照研究

    Institute of Scientific and Technical Information of China (English)

    彭红军; 李凌江; 贺忠

    2013-01-01

    目的 探讨伴儿童期忽略抑郁症患者前扣带回氢质子波谱物质代谢的特点.方法 采用儿童期创伤问卷(childhood trauma questionnaire,CTQ)对40例抑郁症患者进行儿童期忽略评估和分组,伴儿童期忽略抑郁症组19例患者和不伴儿童期忽略抑郁症组21例患者,以及20名正常对照行磁共振氢质子波谱(hydrogen magnetic resonance spectroscopy,1H-MRS)扫描,兴趣区选取双侧前扣带回(anterior cingulate cortex,ACC),检测N-乙酰天门冬氨酸(N-acetyl aspartate,NAA)、谷氨酸复合物(glutamate/glutamine,Glx)、胆碱(choline,Cho)、肌醇(myo-inositol,mI)及肌酸(creatine,Cr)水平,比较3组NAA/Cr、Glx/Cr、Cho/Cr和mI/Cr比值的差异.结果 伴与不伴儿童期忽略抑郁症组分别与对照组比较,左右两侧ACC均表现NAA/Cr降低(均P<0.010);2组右侧Glx/Cr均低于对照组(均P<0.001);伴儿童期忽略抑郁症组较不伴儿童期忽略抑郁症组左右两侧NAA/Cr差异均有统计学意义(左P<0.005,右P<0.01).结论 抑郁症患者前扣带回物质代谢不同于正常人;伴儿童期忽略抑郁症患者ACC的物质代谢存在特异性改变.

  12. Anterior Cruciate Ligament (ACL) Injuries

    Science.gov (United States)

    ... Help a Friend Who Cuts? Anterior Cruciate Ligament (ACL) Injuries KidsHealth > For Teens > Anterior Cruciate Ligament (ACL) ... and Recovery Coping With an ACL Injury About ACL Injuries A torn anterior cruciate ligament (ACL) is ...

  13. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David;

    2009-01-01

    Mood disorders are elicited through a combination of genetic and environmental stress factors, and treatment with selective serotonin reuptake inhibitors ameliorates depressive symptoms. Changes in the serotonin transporter (SERT) binding may therefore occur in depressive patients and in subjects...... measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35...

  14. Differential visually-induced gamma-oscillations in human cerebral cortex

    OpenAIRE

    Asano, Eishi; Nishida, Masaaki; Fukuda, Miho; Rothermel, Robert; Juhasz, Csaba; Sood, Sandeep

    2008-01-01

    Using intracranial electrocorticography, we determined how cortical gamma-oscillations (50–150Hz) were induced by different visual tasks in nine children with focal epilepsy. In all children, full-field stroboscopic flash-stimuli induced gamma-augmentation in the anterior-medial occipital cortex (starting on average at 31-msec after stimulus presentation) and subsequently in the lateral-polar occipital cortex; minimal gamma-augmentation was noted in the inferior occipital-temporal cortex; occ...

  15. fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects

    OpenAIRE

    Townsend, Jennifer; Bookheimer, Susan Y.; Foland, Lara C.; Sugar, Catherine A.; Altshuler, Lori L.

    2010-01-01

    Neuropsychological studies of subjects with bipolar disorder suggest impairment of working memory not only in acute mood states, but also while subjects are euthymic. Using fMRI to probe working memory regions in bipolar subjects in different mood states, we sought to determine the functional neural basis for these impairments. Typical working memory areas in normal populations include dorsolateral prefrontal cortex (BA9/46) and the posterior parietal cortex (BA40). We evaluated the activatio...

  16. Parietal network underlying movement control: disturbances during subcortical electrostimulation.

    Science.gov (United States)

    Almairac, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-07-01

    Our understanding of brain movement control has changed over the last two decades. Recent findings in the monkey and in humans have led to a parallel and interconnected network. Nevertheless, little is known about these networks. Here, we present two cases of patients with a parietal low-grade glioma. They underwent surgery under local anesthesia with cortical and subcortical mapping. For patient 1, subcortical electrostimulation immediately posterior to thalamocortical fibers induced movement disorders, with an inhibition of leg and arm movements medially and, more laterally, an acceleration of arm movement. For patient 2, electrostimulation of white matter immediately posterior to thalamocortical fibers induced an inhibition of both arm movement. It means that the detected fibers in the parietal lobe may be involved in the motor control modulation. They are distributed veil-like immediately posterior to thalamocortical pathways and could correspond to a fronto-parietal movement control subnetwork. These two cases highlight the major role of the subcortical connectivity in movement regulation, involving parietal lobe, thus the necessity to be identified and preserved during brain surgery. PMID:24526369

  17. Effect of camphor essential oil on rat cerebral cortex activity as manifested by fractal dimension changes

    Directory of Open Access Journals (Sweden)

    Grbić G.

    2008-01-01

    Full Text Available The aim of our study was to investigate the effect of camphor essential oil on rat cerebral cortex activity by fractal analysis. Fractal dimension (FD values of the parietal electrocortical activity were calculated before and after intra-peritoneal administration of camphor essential oil (450-675 μl/kg in anesthetized rats. Camphor oil induced seizure-like activity with single and multiple spiking of high amplitudes in the parietal electrocorticogram and occasional clonic limb convulsions. The FD values of cortical activity after camphor oil administration increased on the average. Only FD values of cortical ECoG sequences were lower than those before camphor oil administration.

  18. Individuals' and groups' intentions in the medial prefrontal cortex.

    Science.gov (United States)

    Chaminade, Thierry; Kawato, Mitsuo; Frith, Chris

    2011-11-16

    Functional MRI signal was recorded while participants perceived stimuli presented using moving dots. In two conditions of interest, the motion of dots depicted intentions: dots representing the joints of an agent performing an action, and dots representing individual agents behaving contingently. The finding of a common cluster in the posterior part of the medial frontal cortex involved in intentional action representation validates the hypothesis that perception of these two conditions requires a similar internal representation. A cluster responding to the behaving group only is found in the anterior medial frontal cortex. These results support a division of the medial frontal cortex according to social stimuli attributes, with anterior areas responding to higher-order group behaviours integrating the action of multiple individual agents. PMID:21897305

  19. Anterior cervical plating

    Directory of Open Access Journals (Sweden)

    Gonugunta V

    2005-01-01

    Full Text Available Although anterior cervical instrumentation was initially used in cervical trauma, because of obvious benefits, indications for its use have been expanded over time to degenerative cases as well as tumor and infection of the cervical spine. Along with a threefold increase in incidence of cervical fusion surgery, implant designs have evolved over the last three decades. Observation of graft subsidence and phenomenon of stress shielding led to the development of the new generation dynamic anterior cervical plating systems. Anterior cervical plating does not conclusively improve clinical outcome of the patients, but certainly enhances the efficacy of autograft and allograft fusion and lessens the rate of pseudoarthrosis and kyphosis after multilevel discectomy and fusions. A review of biomechanics, surgical technique, indications, complications and results of various anterior cervical plating systems is presented here to enable clinicians to select the appropriate construct design.

  20. Anterior knee pain

    Science.gov (United States)

    Patellofemoral syndrome; Chondromalacia patella; Runner's knee; Patellar tendinitis; Jumper's knee ... or playing soccer). You have flat feet. Anterior knee pain is more ... skiers, bicyclists, and soccer players who exercise often ...

  1. Anterior knee pain

    Science.gov (United States)

    ... or playing soccer). You have flat feet. Anterior knee pain is more common in: People who are overweight People who have had a dislocation, fracture, or other injury to the kneecap Runners, jumpers, ...

  2. Insular cortex activity and the evocation of laughter.

    Science.gov (United States)

    Wattendorf, Elise; Westermann, Birgit; Lotze, Martin; Fiedler, Klaus; Celio, Marco R

    2016-06-01

    The insular cortex is fundamentally involved in the processing of interoceptive information. It has been postulated that the integrative monitoring of the bodily responses to environmental stimuli is crucial for the recognition and experience of emotions. Because emotional arousal is known to be closely coupled to functions of the anterior insula, we suspected laughter to be associated primarily with neuronal activity in this region. An anatomically constrained re-analysis of our imaging data pertaining to ticklish laughter, to inhibited ticklish laughter, and to voluntary laughter revealed regional differences in the levels of neuronal activity in the posterior and mid-/anterior portions of the insula. Ticklish laughter was associated specifically with right ventral anterior insular activity, which was not detected under the other two conditions. Hence, apparently, only laughter that is evoked as an emotional response bears the signature of autonomic arousal in the insular cortex. J. Comp. Neurol. 524:1608-1615, 2016. © 2015 Wiley Periodicals, Inc. PMID:26287648

  3. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  4. Intrahemispheric cortico-cortical connections of the human auditory cortex.

    Science.gov (United States)

    Cammoun, Leila; Thiran, Jean Philippe; Griffa, Alessandra; Meuli, Reto; Hagmann, Patric; Clarke, Stephanie

    2015-11-01

    The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions. PMID:25173473

  5. Segregation of lexical and sub-lexical reading processes in the left perisylvian cortex.

    Directory of Open Access Journals (Sweden)

    Franck-Emmanuel Roux

    Full Text Available A fundamental issue in cognitive neuroscience is the existence of two major, sub-lexical and lexical, reading processes and their possible segregation in the left posterior perisylvian cortex. Using cortical electrostimulation mapping, we identified the cortical areas involved on reading either orthographically irregular words (lexical, "direct" process or pronounceable pseudowords (sublexical, "indirect" process in 14 right-handed neurosurgical patients while video-recording behavioral effects. Intraoperative neuronavigation system and Montreal Neurological Institute (MNI stereotactic coordinates were used to identify the localization of stimulation sites. Fifty-one reading interference areas were found that affected either words (14 areas, or pseudo-words (11 areas, or both (26 areas. Forty-one (80% corresponded to the impairment of the phonological level of reading processes. Reading processes involved discrete, highly localized perisylvian cortical areas with individual variability. MNI coordinates throughout the group exhibited a clear segregation according to the tested reading route; specific pseudo-word reading interferences were concentrated in a restricted inferior and anterior subpart of the left supramarginal gyrus (barycentre x = -68.1; y = -25.9; z = 30.2; Brodmann's area 40 while specific word reading areas were located almost exclusively alongside the left superior temporal gyrus. Although half of the reading interferences found were nonspecific, the finding of specific lexical or sublexical interferences is new evidence that lexical and sublexical processes of reading could be partially supported by distinct cortical sub-regions despite their anatomical proximity. These data are in line with many brain activation studies that showed that left superior temporal and inferior parietal regions had a crucial role respectively in word and pseudoword reading and were core regions for dyslexia.

  6. Dissociation Between Memory Accuracy and Memory Confidence Following Bilateral Parietal Lesions

    OpenAIRE

    Jon S Simons; Peers, Polly V.; Mazuz, Yonatan S.; Berryhill, Marian E.; Olson, Ingrid R.

    2009-01-01

    Numerous functional neuroimaging studies have observed lateral parietal lobe activation during memory tasks: a surprise to clinicians who have traditionally associated the parietal lobe with spatial attention rather than memory. Recent neuropsychological studies examining episodic recollection after parietal lobe lesions have reported differing results. Performance was preserved in unilateral lesion patients on source memory tasks involving recollecting the context in which stimuli were encou...

  7. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    International Nuclear Information System (INIS)

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from a larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications

  8. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  9. Syndecan-1 in the Mouse Parietal Peritoneum Microcirculation in Inflammation

    OpenAIRE

    Kowalewska, Paulina M.; Patrick, Amanda L.; Fox-Robichaud, Alison E.

    2014-01-01

    BACKGROUND: The heparan sulfate proteoglycan syndecan-1 (CD138) was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. METHODS: Wild-type BALB/c and syndecan-1 null mice were sti...

  10. Scalp Medical Tattooing Technique to Camouflage Bifid Parietal Whorls

    OpenAIRE

    Park, Jae hyun; You, Seung Hyun

    2016-01-01

    Background: To the best of the authors’ knowledge, no reports have described cosmetic problems arising from the hair direction around the parietal whorl (PW). This study was performed to evaluate the efficacy of scalp medical tattooing technique for camouflaging bifid PWs. Methods: We retrospectively examined the outcomes of scalp medical tattooing in 38 patients who were admitted for camouflage of a bifid PW. Results: All patients’ cosmetic appearance was judged, by both the patients and the...

  11. Neuronal oscillations form parietal/frontal networks during contour integration.

    Science.gov (United States)

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  12. Pneumothorax simulated by detachment of parietal pleura associated with pneumomediastinum

    International Nuclear Information System (INIS)

    We report a case of blunt chest trauma, where findings on repeated conventional chest radiographs were compatible with pneumothorax developing after 2 days of mechanical high-pressure ventilation. CT showed that the appearance was due to a detachment of the parietal pleura along the lateral, mediastinal and diaphragmatic boundaries of the lungs, imitating a pneumothorax. The case report illustrates the key role of CT in the differential diagnosis of epipleural interstitial air collection versus pneumothorax. (orig./MG)

  13. [The endocranial parietal vascular traces in the hominid line].

    Science.gov (United States)

    Saban, R

    1977-03-01

    The study of the grooves traced by the middle meningeal veins on the parietal bone or the endocast of Hominid fossils shows different patterns which correspond to each evolutive stage. Height types are characterised among the Hominids (Australopithecines, Archanthropines, Paleanthropines and Neanthropines): I, robust Australopithecine type; II, gracile Australopithecine type; III, earliest Pithecanthropine type; IV, evolved Pithecanthropine type; V, Preneandertal type; VI, neandertal type; VII, Neanthropine type; VIII, modern type. PMID:405108

  14. Distinct antigenic characteristics of murine parietal yolk sac laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Tichy, D; Damjanov, A; Paulsson, M; Damjanov, I

    1987-01-01

    Two monoclonal antibodies (LAM-A and LAM-B) specific for laminin from normal and neoplastic parietal yolk sac (PYS) cells were produced in rats immunized with a mouse yolk sac carcinoma cell line. Both antibodies immunoprecipitated the 400,000- and 200,000-Da chains of laminin and reacted with pu...... derived from normal or malignant PYS cells has distinct antigenic sites that are immunochemically not apparent in most other basement membranes....

  15. Correlating anterior insula gray matter volume changes in young people with clinical and neurocognitive outcomes: an MRI study

    OpenAIRE

    Hatton Sean N; Lagopoulos Jim; Hermens Daniel F; Naismith Sharon L; Bennett Maxwell R; Hickie Ian B

    2012-01-01

    Abstract Background The anterior insula cortex is considered to be both the structural and functional link between experience, affect, and behaviour. Magnetic resonance imaging (MRI) studies have shown changes in anterior insula gray matter volume (GMV) in psychosis, bipolar, depression and anxiety disorders in older patients, but few studies have investigated insula GMV changes in young people. This study examined the relationship between anterior insula GMV, clinical symptom severity and ne...

  16. Congenital anterior urethral diverticulum.

    Science.gov (United States)

    Singh, Sanjeet Kumar; Ansari, Ms

    2014-09-01

    Congenital anterior urethral diverticulum (CAUD) may be found all along the anterior urethra and may present itself at any age, from infant to adult. Most children with this condition present with difficulty in initiating micturition, dribbling of urine, poor urinary stream, or urinary tract infection. A careful history will reveal that these children never had a good urinary stream since birth, and the telltale sign is a cystic swelling of the penile urethra. In this paper, we present two cases of CAUD that were managed by excision of the diverticulum with primary repair. PMID:26328174

  17. Bottom-up Visual Integration in the Medial Parietal Lobe.

    Science.gov (United States)

    Pflugshaupt, Tobias; Nösberger, Myriam; Gutbrod, Klemens; Weber, Konrad P; Linnebank, Michael; Brugger, Peter

    2016-03-01

    Largely based on findings from functional neuroimaging studies, the medial parietal lobe is known to contribute to internally directed cognitive processes such as visual imagery or episodic memory. Here, we present 2 patients with behavioral impairments that extend this view. Both had chronic unilateral lesions of nearly the entire medial parietal lobe, but in opposite hemispheres. Routine neuropsychological examination conducted >4 years after the onset of brain damage showed little deficits of minor severity. In contrast, both patients reported persistent unusual visual impairment. A comprehensive series of tachistoscopic experiments with lateralized stimulus presentation and comparison with healthy participants revealed partial visual hemiagnosia for stimuli presented to their contralesional hemifield, applying inferential single-case statistics to evaluate deficits and dissociations. Double dissociations were found in 4 experiments during which participants had to integrate more than one visual element, either through comparison or formation of a global gestalt. Against the background of recent neuroimaging findings, we conclude that of all medial parietal structures, the precuneus is the most likely candidate for a crucial involvement in such bottom-up visual integration. PMID:25331599

  18. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task

    Directory of Open Access Journals (Sweden)

    Claire eWardak

    2012-06-01

    Full Text Available The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP and of the frontal eye field (FEF in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF.In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: 1 different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; 2 LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioural strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future

  19. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task.

    Science.gov (United States)

    Wardak, Claire; Ben Hamed, Suliann; Olivier, Etienne; Duhamel, Jean-René

    2012-01-01

    The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP) and of the frontal eye field (FEF) in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT) necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF. In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: (1) different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; (2) LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioral strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future experiments. PMID

  20. Functional development of fronto-striato-parietal networks associated with time perception

    Directory of Open Access Journals (Sweden)

    Anna eSmith

    2011-11-01

    Full Text Available Compared to our understanding of the functional maturation of executive functions, little is known about the neurofunctional development of perceptive functions. Time perception develops during late adolescence, underpinning many functions including motor and verbal processing, as well as late maturing higher order cognitive skills such as forward planning and future-related decision-making. Nothing, however, is known about the neurofunctional changes associated with time perception from childhood to adulthood. Using functional magnetic resonance imaging we explored the effects of age on the brain activation and functional connectivity of 32 male participants from 10 to 53 years of age during a time discrimination task that required the discrimination of temporal intervals of seconds differing by several hundred milliseconds. Increasing development was associated with progressive activation increases within left lateralised dorsolateral and inferior fronto-parieto-striato-thalamic brain regions. Furthermore, despite comparable task performance, adults showed increased functional connectivity between inferior/dorsolateral interhemispheric fronto-frontal activation as well as between inferior fronto-parietal regions compared with adolescents. Activation in caudate, specifically, was associated with both increasing age and better temporal discrimination. Progressive decreases in activation with age were observed in ventromedial prefrontal cortex, limbic regions and cerebellum. The findings demonstrate age-dependent developmentally dissociated neural networks for time discrimination. With increasing age there is progressive recruitment of later maturing left hemispheric and lateralised fronto-parieto-striato-thalamic networks, known to mediate time discrimination in adults, while earlier developing brain regions such as ventromedial prefrontal cortex, limbic and paralimbic areas and cerebellum subserve fine-temporal processing functions in children

  1. Hippocampal and Left Subcallosal Anterior Cingulate Atrophy in Psychotic Depression

    OpenAIRE

    Bijanki, Kelly Rowe; Hodis, Brendan; Brumm, Michael C.; Harlynn, Emily L.; McCormick, Laurie M.

    2014-01-01

    Background Psychotic depression is arguably the most diagnostically stable subtype of major depressive disorder, and an attractive target of study in a famously heterogeneous mental illness. Previous imaging studies have identified abnormal volumes of the hippocampus, amygdala, and subcallosal region of the anterior cingulate cortex (scACC) in psychotic depression, though studies have not yet examined the role of family history of depression in these relationships. Methods 20 participants wit...

  2. Sleep paralysis and "the bedroom intruder": the role of the right superior parietal, phantom pain and body image projection.

    Science.gov (United States)

    Jalal, Baland; Ramachandran, Vilayanur S

    2014-12-01

    Sleep paralysis (SP) is a common condition occurring either at sleep onset or sleep offset. During SP the sleeper experiences gross motor paralysis while the sensory system is clear. Hypnogogic and hypnopompic hallucinations are common during SP and may involve seeing, hearing, and sensing the presence of menacing intruders in one's bedroom. This "intruder" is often perceived as a shadowy humanoid figure. Supernatural accounts of this hallucinated intruder are common across cultures. In this paper, we postulate that a functional disturbance of the right parietal cortex explains the shadowy nocturnal bedroom intruder hallucination during SP. This hallucination may arise due to a disturbance in the multisensory processing of body and self at the temporoparietal junction. We specifically propose that this perceived intruder is the result of a hallucinated projection of the genetically "hard-wired" body image (homunculus), in the right parietal region; namely, the same circuits that dictate aesthetic and sexual preference of body morphology. One way to test this hypothesis would be to study clinical populations who may have genetically acquired "irregularities" in their internal hard-wired body image in the right superior parietal lobule (SPL); for example, individuals with apotemnophilia or anorexia nervosa. If such individuals experience SP (e.g., induced in a sleep lab), and they hallucinate this shadowy figure, one would predict that they would see humanoid shadows and shapes with body irregularities, mirroring their own internal body image morphology. If correct, our hypothesis will offer a neurological explanation for this nocturnal bedroom intruder that has been a source of controversy, and striking and implausible cultural interpretations throughout history. Indeed, if our proposed hypothesis is tested and corroborated, dissemination of such findings would provide great relief to SP experiencers worldwide and could potentially be used in a therapeutic context

  3. Anterior vaginal wall repair

    Science.gov (United States)

    ... symptoms will go away. This improvement will often last for years. Alternative Names A/P repair; Vaginal wall repair; Anterior and/ ... writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Contact ... Institutes of Health Page last updated: 23 August 2016

  4. [Toxic anterior segment syndrome].

    Science.gov (United States)

    Cornut, P-L; Chiquet, C

    2011-01-01

    Toxic anterior segment syndrome (TASS) is a general term used to describe acute, sterile postoperative inflammation due to a non-infectious substance that accidentally enters the anterior segment at the time of surgery and mimics infectious endophthalmitis. TASS most commonly occurs acutely following anterior segment surgery, typically 12-72h after cataract extraction. Anterior segment inflammation is usually quite severe with hypopyon. Endothelial cell damage is common, resulting in diffuse corneal edema. No bacterium is isolated from ocular samples. The causes of TASS are numerous and difficult to isolate. Any device or substance used during the surgery or in the immediate postoperative period may be implicated. The major known causes include: preservatives in ophthalmic solutions, denatured ophthalmic viscosurgical devices, bacterial endotoxin, and intraocular lens-induced inflammation. Clinical features of infectious and non-infectious inflammation are initially indistinguishable and TASS is usually diagnosed and treated as acute endophthalmitis. It usually improves with local steroid treatment but may result in chronic elevation of intraocular pressure or irreversible corneal edema due to permanent damage of trabecular meshwork or endothelial cells. PMID:21176994

  5. Human cognition during REM sleep and the activity profile within frontal and parietal cortices: a reappraisal of functional neuroimaging data.

    Science.gov (United States)

    Maquet, Pierre; Ruby, Perrine; Maudoux, Audrey; Albouy, Geneviève; Sterpenich, Virginie; Dang-Vu, Thanh; Desseilles, Martin; Boly, Mélanie; Perrin, Fabien; Peigneux, Philippe; Laureys, Steven

    2005-01-01

    In this chapter, we aimed at further characterizing the functional neuroanatomy of the human rapid eye movement (REM) sleep at the population level. We carried out a meta-analysis of a large dataset of positron emission tomography (PET) scans acquired during wakefulness, slow wave sleep and REM sleep, and focused especially on the brain areas in which the activity diminishes during REM sleep. Results show that quiescent regions are confined to the inferior and middle frontal cortex and to the inferior parietal lobule. Providing a plausible explanation for some of the features of dream reports, these findings may help in refining the concepts, which try to account for human cognition during REM sleep. In particular, we discuss the significance of these results to explain the alteration in executive processes, episodic memory retrieval and self representation during REM sleep dreaming as well as the incorporation of external stimuli into the dream narrative. PMID:16186026

  6. Sense of agency is related to gamma band coupling in an inferior parietal-preSMA circuitry

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Nielsen, Jens Bo; Christensen, Mark Schram

    2014-01-01

    In the present study we tested whether sense of agency (SoA) is reflected by changes in coupling between right medio-frontal/supplementary motor area (SMA) and inferior parietal cortex (IPC). Twelve healthy adult volunteers participated in the study. They performed a variation of a line......-drawing task (Nielsen, 1963; Fourneret and Jeannerod, 1998), in which they moved a cursor on a digital tablet with their right hand without seeing the hand. Visual feedback displayed on a computer monitor was either in correspondence with or deviated from the actual movement. This made participants uncertain...... different DCMs were constructed for the early and late phases of the task, respectively. All models included two regions: a superior medial gyrus (preSMA) region and a right supramarginal gyrus (IPC) region. Bayesian models selection (Stephan et al., 2009) favored a model with input to IPC and modulation of...

  7. Regional hypoplasia of somatosensory cortex in growth-retarded mice (grt/grt).

    Science.gov (United States)

    Sawada, Kazuhiko; Saito, Shigeyoshi; Sugasawa, Akari; Sato, Chika; Aoyama, Junya; Ohara, Naoko; Horiuchi-Hirose, Miwa; Kobayashi, Tetsuya

    2016-07-01

    Growth-retarded mouse (grt/grt) is a spontaneous mutant that is known as an animal model for primary congenital hypothyroidism caused by resistance to TSH signaling. The regional pattern of cerebral cortical hypoplasia was characterized in grt/grt mice. Ex vivo computed tomography (CT)-based volumetry was examined in four regions of the cerebral cortex, i.e., prefrontal, frontal, parietal and occipito-temporal regions, which were demarcated by structural landmarks on coronal CT images. A region-specific reduced volume of the parietal cortical region covering most of the somatosensory cortex was noted in grt/grt mice rather than in both heterozygous (grt/+) and wild-type (+/+) mice. We concluded that the cortical hypoplasia in grt/grt was seen in identical cortical regions corresponding to human congenital hypothyroidism. PMID:26915353

  8. The orbitofrontal cortex: novelty, deviation from expectation, and memory.

    Science.gov (United States)

    Petrides, Michael

    2007-12-01

    The orbitofrontal cortex is strongly connected with limbic areas of the medial temporal lobe that are critically involved in the establishment of declarative memories (entorhinal and perirhinal cortex and the hippocampal region) as well as the amygdala and the hypothalamus that are involved in emotional and motivational states. The present article reviews evidence regarding the role of the orbitofrontal cortex in the processing of novel information, breaches of expectation, and memory. Functional neuroimaging evidence is provided that there is a difference between the anterior and posterior orbitofrontal cortex in such processing. Exposure to novel information gives rise to a selective increase of activity in the granular anterior part of the orbitofrontal cortex (area 11) and this activity increases when subjects attempt to encode this information in memory. If the stimuli violate expectations (e.g., inspection of graffiti-like stimuli in the context of other regular stimuli) or are unpleasant (i.e., exposure to the sounds of car crashes), there is increased response in the posteromedial agranular/dysgranular area 13 of the orbitofrontal region. The anatomic data provide a framework within which to understand these functional neuroimaging findings. PMID:17872393

  9. The effect of different EEG derivations on sleep staging in rats: the frontal midline–parietal bipolar electrode for sleep scoring

    International Nuclear Information System (INIS)

    Most sleep-staging research has focused on developing and optimizing algorithms for sleep scoring, but little attention has been paid to the effect of different electroencephalogram (EEG) derivations on sleep staging. To explore the possible effects of EEG derivations, an automatic computer method was established and confirmed by agreement analysis between the computer and two independent raters, and four fronto-parietal bipolar leads were compared for sleep scoring in rats. The results demonstrated that different bipolar electrodes have significantly different sleep-staging accuracies, and that the optimal frontal electrode for sleep scoring is located at the anterior midline

  10. Activity in ventral premotor cortex is modulated by vision of own hand in action

    Directory of Open Access Journals (Sweden)

    Luciano Fadiga

    2013-07-01

    Full Text Available Parietal and premotor cortices of the macaque monkey contain distinct populations of neurons which, in addition to their motor discharge, are also activated by visual stimulation. Among these visuomotor neurons, a population of grasping neurons located in the anterior intraparietal area (AIP shows discharge modulation when the own hand is visible during object grasping. Given the dense connections between AIP and inferior frontal regions, we aimed at investigating whether two hand-related frontal areas, ventral premotor area F5 and primary motor cortex (area F1, contain neurons with similar properties. Two macaques were involved in a grasping task executed in various light/dark conditions in which the to-be-grasped object was kept visible by a dim retro-illumination. Approximately 62% of F5 and 55% of F1 motor neurons showed light/dark modulations. To better isolate the effect of hand-related visual input, we introduced two further conditions characterized by kinematic features similar to the dark condition. The scene was briefly illuminated (i during hand preshaping (pre-touch flash, PT-flash and (ii at hand-object contact (touch flash, T-flash. Approximately 48% of F5 and 44% of F1 motor neurons showed a flash-related modulation. Considering flash-modulated neurons in the two flash conditions, ∼40% from F5 and ∼52% from F1 showed stronger activity in PT- than T-flash (PT-flash-dominant, whereas ∼60% from F5 and ∼48% from F1 showed stronger activity in T- than PT-flash (T-flash-dominant. Furthermore, F5, but not F1, flash-dominant neurons were characterized by a higher peak and mean discharge in the preferred flash condition as compared to light and dark conditions. Still considering F5, the distribution of the time of peak discharge was similar in light and preferred flash conditions. This study shows that the frontal cortex contains neurons, previously classified as motor neurons, which are sensitive to the observation of meaningful

  11. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  12. Spatial segregation of somato-sensory and pain activations in the human operculo-insular cortex

    OpenAIRE

    Mazzola, Laure; Faillenot, Isabelle; Barral, Fabrice Guy; Mauguière, François; Peyron, Roland

    2012-01-01

    The role of operculo-insular region in the processing of somato-sensory inputs, painful or not, is now well established. However, available maps from previous literature show a substantial overlap of cortical areas activated by these stimuli, and the region referred to as the "secondary somatosensory area (SII)" is widely distributed in the parietal operculum. Differentiating SII from posterior insula cortex, which is anatomically contiguous, is not easy, explaining why the "operculo-insular"...

  13. Virtual reality and the role of the prefrontal cortex in adults and children.

    Directory of Open Access Journals (Sweden)

    Lutz Jäncke

    2009-05-01

    Full Text Available In this review the neural underpinnings of the experience of presence are outlined. Firstly, it will be shown that presence is associated with an activation of a distributed network including the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Second, the dorsolateral prefrontal cortex (DLPFC is identified as a key node of this network in that it modulates the activity of this network and the associated experience of presence. Third, because of their unmatured frontal cortex, children lack the strong modulatory influence of the DLPFC on this network. Fourth, it is shown that by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS while participants are exposed to the virtual roller coaster ride presence-related measures are influenced. Finally, these findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out of body experiences.

  14. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia [v1; ref status: indexed, http://f1000r.es/34n

    Directory of Open Access Journals (Sweden)

    Julie Vallortigara

    2014-05-01

    Full Text Available Dementia with Lewy Bodies (DLB and Parkinson’s Disease Dementia (PDD together, represent the second most common cause of dementia, after Alzheimer’s disease (AD. The synaptic dysfunctions underlying the cognitive decline and psychiatric symptoms observed throughout the development of PDD and DLB are still under investigation. In this study we examined the expression level of Dynamin1 and phospho-CaMKII, key proteins of endocytosis and synaptic plasticity respectively, as potential markers of molecular processes specifically deregulated with DLB and/or PDD. In order to measure the levels of these proteins, we isolated grey matter from post-mortem prefrontal cortex area (BA9, anterior cingulated gyrus (BA24 and parietal cortex (BA40 from DLB and PDD patients in comparison to age-matched controls and a group of AD cases. Clinical and pathological data available included the MMSE score, neuropsychiatric history, and semi-quantitative scores for AD pathology (plaques - tangles and for α-synuclein (Lewy bodies. Changes in the expression of the synaptic markers, and correlates with neuropathological features and cognitive decline were predominantly found in the prefrontal cortex. On one hand, levels of Dynamin1 were significantly reduced, and correlated with a higher rate of cognitive decline observed in cases from three dementia groups. On the other hand, the fraction of phospho-CaMKII was decreased, and correlated with a high score of plaques and tangles in BA9. Interestingly, the correlation between the rate of cognitive decline and the level of Dynamin1 remained when the analysis was restricted to the PDD and DLB cases, highlighting an association of Dynamin1 with cognitive decline in people with Lewy Body dementia.

  15. Anterior cruciate ligament (ACL) injury

    Science.gov (United States)

    Cruciate ligament injury - anterior; ACL injury; Knee injury - anterior cruciate ligament (ACL) ... confirm the diagnosis. It may also show other knee injuries. First aid for an ACL injury may include: ...

  16. Estudos sobre thrombose cardiaca e endocardite parietal de origem não valvular On thrombosis of heart and on mural endocarditis of non-valvular origin

    Directory of Open Access Journals (Sweden)

    C. Magarinos Torres

    1928-01-01

    is foamy and blood-streaked than by the classic signs. Cerebral embolism was a terminal accident on various cases. Yet, in some of them, along with the signs of septicemia and of cardiac insufficiency, occurred vascular, arterial (abdominal aorta, common illiac and femurals arteries and venous (extern jugular veins thromboses. 5. The autopsy revealed an inflammatory process located on the parietal endocardium, accompanied by abundant formation of ancient and recent thrombi, being the apex of the left ventricle, the junction of the anterior wall of the same ventricle, with the interventricular septum, and the right auricular appendage, the usual seats of the inflammatory changes. The region of the left branch of HIS’ bundle is spared. The other changes found consist of fibrosis of the myocardium (healed infarcts and circumscribed interstitial myocarditis, of recent visceral infarcts chiefly in lungs, spleen and brain, of recent or old infarcts in the kidneys (embolic nephrocirrhosis and in the spleen, and of vascular thromboses (abdominal aorta, common illiacs and femurals arteries and external jugular veins, aside from hydrothorax, hydroperitoneum, cutaneous oedema, chronic passive congestion of the liver, lungs, spleen and kidneys and slight ictericia. 6. In the subacute parietal endocarditis the primary lesions sometimes locate themselves at the myocardium, depending on the ischemic necrosis associated to the arteriosclerosis of the coronariae arteries, or on an specific myocarditis. Other times, the absence of these conditions is suggestive of a primary attack to the parietal endocardium which is then the primary seat of the lesions. It matters little whatever may be the initial pathogenic mechanism; once injured the parietal endocardium and there being settled the infectious injury, the endocarditis develops with peculiar clinical and anatomical characters of remarkable uniformity, constituting an anatomo-clinical syndrome. 7.-The histologic sections show that

  17. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.

    Science.gov (United States)

    Minamoto, Takehiro; Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2015-10-01

    Neuroimaging and behavioral evidence has suggested that the lateral prefrontal cortex is involved in individual differences in working memory capacity (WMC). However, few studies have localized the neural structures that differentiate high and low WMC individuals, considering the functional architecture of the prefrontal cortex. The present study aimed to identify a frontal region that underlies individual differences from the perspective of the hierarchical architecture of the frontal cortex. By manipulating an episodic factor of cognitive control (control in selecting an appropriate task set according to a temporal context) and using a parametric modulation analysis, we found that both high- and low- WMC individuals have similar activation patterns in the premotor cortex (BA6, 8), caudal prefrontal cortex (BA44, 45), and frontopolar cortex (BA10, 11), but differed in the rostral part of the prefrontal cortex (BA46/47); high WMC individuals showed greater activation in the higher episodic control condition, whereas low WMC individuals showed reduced activation when episodic control was required. Similar patterns of activation were found in the right inferior parietal and middle/inferior temporal cortices. These results indicate that the rostral prefrontal cortex, which supports episodic cognitive control, possibly by sending a weighting signal toward the inferior parietal and middle/inferior temporal cortices that modulate saliency and sensory processing, underlies individual differences in WMC. Episodic control account, which considers the organization of the prefrontal cortex, fits well with previous findings of individual differences in WMC. PMID:26280275

  18. Abnormal function of the posterior cingulate cortex in heroin addicted users during resting-state and drug-cue stimulation task

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; YANG Wei-chuan; WANG Ya-rong; HUANG Yu-fang; LI Wei; ZHU Jia

    2013-01-01

    Background Previous animal and neuroimaging studies have demonstrated that brain function in heroin addicted users is impaired.However,the posterior cingulate cortex (PCC) has not received much attention.The purpose of this study was to investigate whether chronic heroin use is associated with craving-related changes in the functional connectivity of the PCC of heroin addicted users.Methods Fourteen male adult chronic heroin users and fifteen age and gender-matched healthy subjects participated in the present study.The participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and a cue-induced craving task fMRI scan.The activated PCC was identified in the cue-induced craving task by means of a group contrast test.Functional connectivity was analyzed based on resting-state fMRI data in order to determine the correlation between brain regions.The relationship between the connectivity of specific regions and heroin dependence was investigated.Results The activation of PCC,bilateral anterior cingulate cortex,caudate,putamen,precuneus,and thalamus was significant in the heroin group compared to the healthy group in the cue-induced craving task.The detectable functional connectivity of the heroin users was stronger between the PCC and bilateral insula,bilateral dorsal striatum,right inferior parietal Iobule (IPL) and right supramarginal gyrus (P<0.001) compared to that of the healthy subjects in the resting-state data analysis.The strength of the functional connectivity,both for the PCC-insula (r=0.60,P <0.05) and for PCC-striatum (r=0.58,P<0.05),was positively correlated with the duration of heroin use.Conclusion The altered functional connectivity patterns in the PCC-insula and PCC-striatum areas may be regarded as biomarkers of brain damage severity in chronic heroin users.

  19. Syndecan-1 in the mouse parietal peritoneum microcirculation in inflammation.

    Directory of Open Access Journals (Sweden)

    Paulina M Kowalewska

    Full Text Available BACKGROUND: The heparan sulfate proteoglycan syndecan-1 (CD138 was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. METHODS: Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2, anti-KC (CXCL1 or anti-MCP-1 (CCL2. RESULTS AND CONCLUSION: Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β2 integrin (CD18, ICAM-1 (CD54 and VCAM-1 (CD106 did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte

  20. Anterior Cruciate Ligament Injury

    OpenAIRE

    Vilaseca, Tomas; Chahla, Jorge; Rodriguez, Gustavo Gomez; Arroquy, Damián; Herrera, Gonzalo Perez; Orlowski, Belen; Carboni, Martín

    2015-01-01

    Objectives: The objective of this study was to analyze whether it is more frequent the presence of a decreased range of motion in the hips of recreational athletes with primary injury of the anterior cruciate ligament (ACL) than in a control group of volunteers without knee pathology. Methods: We included prospectively recreational athletes between 18 and 40 years with an acute ACL injury between January 2011 and January 2013. They were compared with a control group of volunteers recreational...

  1. The Effects of Haloperidol on Neuronal Firing in Rats Anterior Cingulate Cortex During Cost-Benefit Decision-Making Tasks%氟哌啶醇干扰决策过程中前扣带回神经元的放电活动

    Institute of Scientific and Technical Information of China (English)

    袁水霞; 徐晖; 李霞; 顾凯; 左洋凡; 卢钦钦; 代淑芬; 于萍

    2012-01-01

    运用在体多通道神经元放电同步记录技术,观察和记录大鼠在完成T-迷宫成本效益决策任务时前扣带回神经元放电和局部场电位的变化及氟哌啶醇对此的改变,在细胞水平上探讨前扣带回在决策中的作用以及多巴胺递质系统对决策的作用机制.结果显示,经过一段时间的训练,10只大鼠中有8只偏好高付出-高奖赏端,且在选择高付出-高奖赏端时的神经元放电频率要显著高于选择低付出-低奖赏端时的频率,同时局部场电位也呈现出事件相关性;腹腔注射多巴胺受体拮抗剂氟哌啶醇后,大鼠不再偏好高付出-高奖赏端,对该端的选择显著减少,而对低付出-低奖赏端的选择显著增加,且神经元的放电频率和局部场电位显著降低,神经元放电和局部场电位的特征性也消失.研究提示,前扣带回和多巴胺在努力相关决策任务中有着至关重要的作用.%There many studies have demonstrated that anterior cingulate cortex (ACC) and the level of dopamine (DA) in this brain area play a critical role in effort-based decision-making, a kind of cost-benefit decision-making. It has been found that haloperidol, a DA D2 receptor-antagonist, could disrupt the performance of rats in effort-based decision-making tasks. The present experimental study used on-line multi-channel neuronal recording technique to record both the neuronal firing frequency and local field potentials (LFPs) in ACC whenrats were performing effort-based decision-making tasks. We further investigate the effects of haloperidol on performance of rats.All rats (10 Wistar rats) were surgically implanted with a 2x8 microelectrode array in ACC before they learned behavioral task. After 1 week of recovery, rats were introduced to T-maze for training periods. There were two choices in this task, rats could choose to get two food pellets at the end of one arm without any barrier (low cost-low reward, LCLR) or by climbing a

  2. Fronto-Parietal Networks are Associated with Multi-Day Savings in Visuomotor Adaptation

    Science.gov (United States)

    Ruitenberg, M. F. L.; Koppelmans, V.; De Dios, Y. E.; Gadd, N. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Riascos, R. F.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2016-01-01

    , cingulate, and temporal cortical areas, as well as various subcortical areas. Interestingly, these areas mostly showed activation increases rather than decreases. Furthermore, we found that retention of adaptation learning was associated with the extent of activation in frontal cortical areas including the bilateral middle, medial and superior frontal gyri, as well as parietal and cingulate cortical areas including the bilateral precuneus and anterior cingulate gyrus. These findings suggest that participants may be learning how to better engage cognitive processes across days, potentially reflecting the improvements in action selection that have been shown to occur with savings.

  3. Frontal Monitoring and Parietal Evidence: Mechanisms of Error Correction.

    Science.gov (United States)

    Navarro-Cebrian, Ana; Knight, Robert T; Kayser, Andrew S

    2016-08-01

    When we respond to a stimulus, our decisions are based not only on external stimuli but also on our ongoing performance. If the response deviates from our goals, monitoring and decision-making brain areas interact so that future behavior may change. By taking advantage of natural variation in error salience, as measured by the RT taken to correct an error (RTEC), here we argue that an evidence accumulation framework provides a potential underlying mechanism for this variable process of error identification and correction, as evidenced by covariation of frontal monitoring and parietal decision-making processes. We study two early EEG signals linked to monitoring within medial PFC-the error-related negativity (ERN) and frontocentral theta activity-and a third EEG signal, the error positivity (Pe), that is thought to share the same parietal substrates as a signal (the P3b) proposed to reflect evidence accumulation. As predicted, our data show that on slow RTEC trials, frontal monitoring resources are less strongly employed, and the latency of the Pe is longer. Critically, the speed of the RTEC also covaries with the magnitude of subsequent neural (intertrial alpha power) and behavioral (post-error slowing) adjustments following the correction. These results are synthesized to describe a timing diagram for adaptive decision-making after errors and support a potential evidence accumulation mechanism in which error signaling is followed by rapid behavioral adjustments. PMID:27027420

  4. Insular cortex activity and the evocation of laughter

    OpenAIRE

    Wattendorf, Elise; Westermann, Birgit; Lotze, Martin; Fiedler, Klaus; Celio, Marco R.

    2015-01-01

    The insular cortex is fundamentally involved in the processing of interoceptive information. It has been postulated that the integrative monitoring of the bodily responses to environmental stimuli is crucial for the recognition and experience of emotions. Because emotional arousal is known to be closely coupled to functions of the anterior insula, we suspected laughter to be associated primarily with neuronal activity in this region. An anatomically constrained re-analysis of our imaging data...

  5. Differential parietal and temporal contributions to music perception in improvising and score-dependent musicians, an fMRI study.

    Science.gov (United States)

    Harris, Robert; de Jong, Bauke M

    2015-10-22

    Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar music, subjects either (covertly) appraised the presented music performance or imagined they were playing the music themselves. We hypothesized that improvising musicians would exhibit enhanced efficiency of audiomotor transformation reflected by stronger ventral premotor activation. Statistical Parametric Mapping revealed that, while virtually 'playing along׳ with the music, improvising musicians exhibited activation of a right-hemisphere distribution of cerebral areas including posterior-superior parietal and dorsal premotor cortex. Involvement of these right-hemisphere dorsal stream areas suggests that improvising musicians recruited an amodal spatial processing system subserving pitch-to-space transformations to facilitate their virtual motor performance. Score-dependent musicians recruited a primarily left-hemisphere pattern of motor areas together with the posterior part of the right superior temporal sulcus, suggesting a relationship between aural discrimination and symbolic representation. Activations in bilateral auditory cortex were significantly larger for improvising musicians than for score-dependent musicians, suggesting enhanced top-down effects on aural perception. Our results suggest that learning to play a music instrument primarily from notation predisposes musicians toward aural identification and discrimination, while learning by improvisation involves audio-spatial-motor transformations, not only during performance, but also perception. PMID:26206300

  6. What does spatial alternation tell us about retrosplenial cortex function?

    Directory of Open Access Journals (Sweden)

    Andrew John Dudley Nelson

    2015-05-01

    Full Text Available The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g. allocentric, directional or intra-maze cues or whether the retrosplenial cortex helps the animal switch between competing spatial strategies or competing cue types. Using T-maze alternation, retrosplenial lesion rats were challenged with situations in which the available spatial information between the sample and test phases was changed, so taxing the interaction between different cue types. Clear lesion deficits emerged when intra- and extra-maze cues were placed in conflict (by rotating the maze between the sample and choice phases, or when the animals were tested in the dark in a double-maze. Finally, temporary inactivation of the retrosplenial cortex by muscimol infusions resulted in a striking deficit on standard T-maze alternation, indicating that, over time, other sites may be able to compensate for the loss of the retrosplenial cortex. This pattern of results is consistent with the impoverished use of both allocentric and directional information, exacerbated by an impaired ability to switch between different cue types.

  7. Modeling Murine Gastric Metaplasia Through Tamoxifen-Induced Acute Parietal Cell Loss.

    Science.gov (United States)

    Saenz, Jose B; Burclaff, Joseph; Mills, Jason C

    2016-01-01

    Parietal cell loss represents the initial step in the sequential progression toward gastric adenocarcinoma. In the setting of chronic inflammation, the expansion of the mucosal response to parietal cell loss characterizes a crucial transition en route to gastric dysplasia. Here, we detail methods for using the selective estrogen receptor modulator tamoxifen as a novel tool to rapidly and reversibly induce parietal cell loss in mice in order to study the mechanisms that underlie these pre-neoplastic events. PMID:27246044

  8. Immune Response to Mycobacterium tuberculosis Infection in the Parietal Pleura of Patients with Tuberculous Pleurisy

    OpenAIRE

    Gaetano Caramori; Lisa Lasagna; Casalini, Angelo G.; Adcock, Ian M.; Paolo Casolari; Marco Contoli; Federica Tafuro; Anna Padovani; Kian Fan Chung; Barnes, Peter J; Alberto Papi; Guido Rindi; Giuseppina Bertorelli

    2011-01-01

    The T lymphocyte-mediated immune response to Mycobacterium tuberculosis infection in the parietal pleura of patients with tuberculous pleurisy is unknown. The aim of this study was to investigate the immune response in the parietal pleura of tuberculous pleurisy compared with nonspecific pleuritis. We have measured the numbers of inflammatory cells particularly T-cell subsets (Th1/Th2/Th17/Treg cells) in biopsies of parietal pleura obtained from 14 subjects with proven tuberculous pleurisy co...

  9. The Oft-Neglected Role of Parietal EEG Asymmetry and Risk for Major Depressive Disorder

    OpenAIRE

    Stewart, Jennifer L.; Towers, David N.; Coan, James A.; Allen, John J.B.

    2011-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n = 143) and without (n = 163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women disp...

  10. Anatomic variations of anterior cerebral artery cortical branches.

    Science.gov (United States)

    Stefani, M A; Schneider, F L; Marrone, A C; Severino, A G; Jackowski, A P; Wallace, M C

    2000-01-01

    The anterior cerebral artery (ACA) is a major vessel responsible for the blood supply to the interhemispheric region. The ACA segment after the anterior communicating artery (AComA) origin is called the distal ACA and has central and cortical branches. The cortical branches are distributed in the different regions of the orbital and medial part of the brain. The objects of this study are the anatomical variations found in the distal ACA. In 76 hemispheres the ACA distal branches were injected with latex and dissected under microscope magnification. Vessel diameters and distances between vessel origins and anterior communicating artery were recorded and analyzed. Microsurgical dissection was carried out to demonstrate anatomic variations of these vessels. Average diameter of ACA at origin was 2.61 +/- 0.34 mm and average diameter of cortical branches diameter ranged from 0.79 +/- 0.27 mm to 1.84 +/- 0.3 mm. Distances between vessel origin and AComA ranged from 7.68 +/- 3.91 mm (orbitofrontal) to 112.6 +/- 11.63 mm (inferior internal parietal). This study found anatomical variations: a single (azygos) ACA was present in one case and three in three cases. Crossing branches of the distal ACA to the contralateral hemisphere were present in 26% of the cases. In some cases a single ACA may supply the posterior hemispheric region through crossing branches. This calls attention to potential bilateral brain infarcts due to a single unilateral ACA occlusion. PMID:10873213

  11. Evolutionary appearance of von Economo’s neurons in the mammalian cerebral cortex

    OpenAIRE

    Alessandro Vercelli

    2014-01-01

    von Economo’s neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like socia...

  12. Anterior knee pain

    International Nuclear Information System (INIS)

    Anterior knee pain is a common complain in all ages athletes. It may be caused by a large variety of injuries. There is a continuum of diagnoses and most of the disorders are closely related. Repeated minor trauma and overuse play an important role for the development of lesions in Hoffa's pad, extensor mechanism, lateral and medial restrain structures or cartilage surface, however usually an increase or change of activity is referred. Although the direct relation of cartilage lesions, especially chondral, and pain is a subject of debate these lesions may be responsible of early osteoarthrosis and can determine athlete's prognosis. The anatomy and biomechanics of patellofemoral joint is complex and symptoms are often unspecific. Transient patellar dislocation has MR distinct features that provide evidence of prior dislocation and rules our complication. However, anterior knee pain more often is related to overuse and repeated minor trauma. Patella and quadriceps tendon have been also implicated in anterior knee pain, as well as lateral or medial restraint structures and Hoffa's pad. US and MR are excellent tools for the diagnosis of superficial tendons, the advantage of MR is that permits to rule out other sources of intraarticular derangements. Due to the complex anatomy and biomechanic of patellofemoral joint maltracking is not fully understood; plain films and CT allow the study of malalignment, new CT and MR kinematic studies have promising results but further studies are needed. Our purpose here is to describe how imaging techniques can be helpful in precisely defining the origin of the patient's complaint and thus improve understanding and management of these injuries

  13. Projections to early visual areas V1 and V2 in the calcarine fissure from parietal association areas in the macaque.

    Directory of Open Access Journals (Sweden)

    Elena Borra

    2011-06-01

    Full Text Available Non-extrastriate projections to area V1 in monkeys, now demonstrated by several anatomical studies, are potential substrates of physiologically documented multisensory effects in primary sensory areas. The full network of projections among association and primary areas, however, is likely to be complex and is still only partially understood. In the present report, we used the anterograde tracer biotinylated dextran amine to investigate projections to areas V1 and V2 from subdivisions of the parietal association cortex in macaque. Parietal cortex was chosen to allow comparisons between projections from this higher association area and from other previously reported areas. In addition, we were interested in further elucidating pathways to areas V1 and V2 from parietal areas, as potentially contributing to attention and active vision. Of eight cases, three brains had projections only to area V2, and the five others projected to both areas V1 and V2. Terminations in area V1 were sparse. These were located in supragranular layers I, II, upper III; occasionally in IVB; and in layer VI. Terminations in V2 were denser, and slightly more prevalent in the supragranular layers. For both areas, terminations were in the calcarine region, corresponding to the representation of the peripheral visual field. By reconstructions of single axons, we demonstrated that four of nine axons had collaterals, either to V1 and V2 (n=1 or to area V1 and a ventral area likely to be TEO (n=3. In area V1, axons extended divergently in layer VI as well as layer I. Overall, these and previous results suggest a nested connectivity architecture, consisting of multiple direct and indirect recurrent projections from association areas to area V1. Terminations in area V1 are not abundant, but could be potentiated by the network of indirect connections.

  14. Low intensity areas observed T2-weighted magnetic resonance imaging of the cerebral cortex in various neurological diseases

    International Nuclear Information System (INIS)

    We retrospectively studied magnetic resonance images of the brain in 158 patients (8 cases of amyotrophic lateral sclerosis, 16 cases of Alzheimer's disease, 8 cases of Parkinson's disease, 53 cases of multiple cerebral infarct, 20 cases of other central nervous system (CNS) diseases, and 53 cases without any CNS disease) to examine the appearance of T2-weighted low signal intensity areas (LIA) in the cerebral cortex. The age of subjects ranged from 36 to 85 years with the mean 65.0 and SD 9.9 years. LIA in the motor and sensory cortices, and brain atrophy were evaluated visually on axial images of the spin-echo sequence obtained with a 1.5 tesla system. The incidence of LIA in the motor cortex was significantly higher in all CNS diseases than in cases without any CNS disease, but not significantly different among CNS diseases. LIA in the motor cortex showed a correlation with age, temporal and parietal atrophy. The appearance of LIA in the sensory cortex correlated with that of LIA in the motor cortex, and parietal atrophy. These results suggest that LIA may appear according to age and be associated with the accumulation of nonheme iron in the cortex, especially in patients with CNS diseases. (author)

  15. Discrimination and evocation of affectively intoned speech in patients with right parietal disease.

    Science.gov (United States)

    Tucker, D M; Watson, R T; Heilman, K M

    1977-10-01

    Patients with right parietal disease have disturbed comprehension of affective speech. Ability to discriminate affective speech (make same/different discriminations) and ability to repeat emotionally bland sentences with affective tones were tested in three groups of subjects--patients with right parietal dysfunction and neglect, conduction aphasics with left hemispheric lesions, and patients without intracranial disease. Patients with right parietal dysfunction performed significantly poorer than did aphasic controls on both a recognition and discrimination task. Patients with right parietal dysfunction also scored poorer on the evocative task than the nonaphasic controls. PMID:561908

  16. The Role of the Dorsal Anterior Cingulate in Evaluating Behavior for Achieving Gains and Avoiding Losses

    Science.gov (United States)

    Magno, Elena; Simoes-Franklin, Cristina; Robertson, Ian H.; Garavan, Hugh

    2009-01-01

    Effective goal-directed behavior relies on a network of regions including anterior cingulate cortex and ventral striatum to learn from negative outcomes in order to improve performance. We employed fMRI to determine if this frontal-striatal system is also involved in instances of behavior that do not presume negative circumstances. Participants…

  17. Scalp Medical Tattooing Technique to Camouflage Bifid Parietal Whorls

    Science.gov (United States)

    You, Seung Hyun

    2016-01-01

    Background: To the best of the authors’ knowledge, no reports have described cosmetic problems arising from the hair direction around the parietal whorl (PW). This study was performed to evaluate the efficacy of scalp medical tattooing technique for camouflaging bifid PWs. Methods: We retrospectively examined the outcomes of scalp medical tattooing in 38 patients who were admitted for camouflage of a bifid PW. Results: All patients’ cosmetic appearance was judged, by both the patients and the surgeon, to be markedly improved. No specific complications occurred, such as infection, hair loss in the operative field, or other problems. Conclusion: Scalp medical tattooing appears to be an effective method that helps to camouflage the see-through appearance of bifid PWs. PMID:27200232

  18. Multidisciplinary management of anterior diastemata

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; Herkrath, Fernando José; Franco, Eduardo Jacomino;

    2007-01-01

    Anterior diastemata may compromise the harmony of a patient's smile. Consideration of etiologic factors, previous gingival conditioning, and individual treatment planning are essential in the proper management of anterior diastemata. An integrated orthodontic-restorative approach may enhance the...... aesthetic results when orthodontic therapy itself is not feasible. This article presents integrated orthodonticrestorative solutions of anterior diastemata, associated with the conditioning of the gingival tissue with composite resin, and discusses the most relevant aspects related to their etiology and...

  19. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia.

    Science.gov (United States)

    Iuculano, Teresa; Cohen Kadosh, Roi

    2014-01-01

    Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD), which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small-yet constant-current through the brain, a non-invasive technique named transcranial electrical stimulation (tES). Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS) in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC). The first subject (DD1) received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance's improvements in healthy subjects. The second subject (DD2) received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i) automaticity of number processing; and (ii) mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation, and education. PMID

  20. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia

    Directory of Open Access Journals (Sweden)

    Teresa Iuculano

    2014-02-01

    Full Text Available Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD, which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small – yet constant – current through the brain, a non-invasive technique named transcranial electrical stimulation (tES. Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC. The first subject (DD1 received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance’s improvements in healthy subjects. The second subject (DD2 received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i automaticity of number processing; and (ii mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation

  1. Subcortical mapping of calculation processing in the right parietal lobe.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; Lazzarini, Anna; Gioffrè, Giorgio; Rustemi, Oriela; Cagnin, Annachiara; Scienza, Renato; Semenza, Carlo

    2015-05-01

    Preservation of calculation processing in brain surgery is crucial for patients' quality of life. Over the last decade, surgical electrostimulation was used to identify and preserve the cortical areas involved in such processing. Conversely, subcortical connectivity among different areas implicated in this function remains unclear, and the role of surgery in this domain has not been explored so far. The authors present the first 2 cases in which the subcortical functional sites involved in calculation were identified during right parietal lobe surgery. Two patients affected by a glioma located in the right parietal lobe underwent surgery with the aid of MRI neuronavigation. No calculation deficits were detected during preoperative assessment. Cortical and subcortical mapping were performed using a bipolar stimulator. The current intensity was determined by progressively increasing the amplitude by 0.5-mA increments (from a baseline of 1 mA) until a sensorimotor response was elicited. Then, addition and multiplication calculation tasks were administered. Corticectomy was performed according to both the MRI neuronavigation data and the functional findings obtained through cortical mapping. Direct subcortical electrostimulation was repeatedly performed during tumor resection. Subcortical functional sites for multiplication and addition were detected in both patients. Electrostimulation interfered with calculation processing during cortical mapping as well. Functional sites were spared during tumor removal. The postoperative course was uneventful, and calculation processing was preserved. Postoperative MRI showed complete resection of the tumor. The present preliminary study shows for the first time how functional mapping can be a promising method to intraoperatively identify the subcortical functional sites involved in calculation processing. This report therefore supports direct electrical stimulation as a promising tool to improve the current knowledge on

  2. Anterior nucleus of the thalamus: functional organization and clinical implications.

    Science.gov (United States)

    Child, Nicholas D; Benarroch, Eduardo E

    2013-11-19

    The anterior nucleus of thalamus (ANT) is a key component of the hippocampal system for episodic memory. The ANT consist of 3 subnuclei with distinct connectivity with the subicular cortex, retrosplenial cortex, and mammillary bodies. Via its connections with the anterior cingulate and orbitomedial prefrontal cortex, the ANT may also contribute to reciprocal hippocampal-prefrontal interactions involved in emotional and executive functions. As in other thalamic nuclei, neurons of the ANT have 2 different state-dependent patterns of discharge, tonic and burst-firing; some ANT neurons also contribute to propagation of the theta rhythm, which is important for mechanisms of synaptic plasticity of the hippocampal circuit. Clinical and experimental evidence indicate that damage of the ANT or its inputs from the mammillary bodies are primarily responsible for the episodic memory deficit observed in Wernicke-Korsakoff syndrome and thalamic stroke. Experimental models also indicate that the ANT may have a role in the propagation of seizure activity both in absence and in focal seizures. Because of its central connectivity and possible role in propagation of seizure activity, the ANT has become an attractive target for deep brain stimulation (DBS) for treatment of medically refractory epilepsy. The ANT is one of the nuclei preferentially affected in prion disorders, such as fatal familial insomnia, but the relationship between ANT involvement and the clinical manifestations of these disorders remains unclear. The connectivity patterns and electrophysiology of the ANT have been the subject of several reviews.(1-4.) PMID:24142476

  3. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  4. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the stria...

  5. Anterior cruciate ligament reconstruction

    International Nuclear Information System (INIS)

    This paper determines the efficacy of MR imaging in evaluation of the anterior cruciate ligament (ACL) following reconstructive surgery. Forty-three MR examinations were performed in 33 patients who had undergone previous arthroscopic ACL reconstruction with patellar bone-tendon- bone autografts (postoperative period, 1-24 months; mean, 5.2 months). Of the 40 studies performed in clinically stable knees (30 patients), MR demonstrated a well-defined, signal void ACL graft in 36. Of the three studies performed in three patients with clinical ACL laxity or suspected tear, the neoligament was of intermediate definition in one and nondiscernible in the other two. As in the native knee, buckling of the PCL was suggestive of ACL insufficiency. Bone tunnel placement, patellar tendon changes, and joint effusions were also evaluated

  6. Anterior hip pain.

    Science.gov (United States)

    O'Kane, J W

    1999-10-15

    Anterior hip pain is a common complaint with many possible causes. Apophyseal avulsion and slipped capital femoral epiphysis should not be overlooked in adolescents. Muscle and tendon strains are common in adults. Subsequent to accurate diagnosis, strains should improve with rest and directed conservative treatment. Osteoarthritis, which is diagnosed radiographically, generally occurs in middle-aged and older adults. Arthritis in younger adults should prompt consideration of an inflammatory cause. A possible femoral neck stress fracture should be evaluated urgently to prevent the potentially significant complications associated with displacement. Patients with osteitis pubis should be educated about the natural history of the condition and should undergo physical therapy to correct abnormal pelvic mechanics. "Sports hernias," nerve entrapments and labral pathologic conditions should be considered in athletic adults with characteristic presentations and chronic symptoms. Surgical intervention may allow resumption of pain-free athletic activity. PMID:10537384

  7. Cortical thinning in temporo-parietal junction (TPJ in non-affective first-episode of psychosis patients with persistent negative symptoms.

    Directory of Open Access Journals (Sweden)

    Michael Bodnar

    Full Text Available Negative symptoms represent an unmet therapeutic need in many patients with schizophrenia. In an extension to our previous voxel-based morphometry findings, we employed a more specific, vertex-based approach to explore cortical thinning in relation to persistent negative symptoms (PNS in non-affective first-episode of psychosis (FEP patients to advance our understanding of the pathophysiology of primary negative symptoms.This study included 62 non-affective FEP patients and 60 non-clinical controls; 16 patients were identified with PNS (i.e., at least 1 primary negative symptom at moderate or greater severity sustained for at least 6 consecutive months. Using cortical thickness analyses, we explored for differences between PNS and non-PNS patients as well as between each patient group and healthy controls; cut-off threshold was set at p<0.01, corrected for multiple comparisons.A thinner cortex prominently in the right superior temporal gyrus extending into the temporo-parietal junction (TPJ, right parahippocampal gyrus, and left orbital frontal gyrus was identified in PNS patients vs. non-PNS patients. Compared with healthy controls, PNS patients showed a thinner cortex prominently in the right superior temporal gyrus, right parahippocampal gyrus, and right cingulate; non-PNS patients showed a thinner cortex prominently in the parahippocampal gyrus bi-laterally.Cortical thinning in the early stages of non-affective psychosis is present in the frontal and temporo-parietal regions in patients with PNS. With these brain regions strongly related to social cognitive functioning, our finding suggests a potential link between primary negative symptoms and social cognitive deficits through common brain etiologies.

  8. Visual Map Shifts based on Whisker-Guided Cues in the Young Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Kohei Yoshitake

    2013-12-01

    Full Text Available Mice navigate nearby space using their vision and whiskers, and young mice learn to integrate these heterogeneous inputs in perceptual space. We found that cortical responses were depressed in the primary visual cortex of young mice after wearing a monocular prism. This depression was uniformly observed in the primary visual cortex and was eliminated by whisker trimming or lesions in the posterior parietal cortex. Compensatory visual map shifts of responses elicited via the eye that had worn the prism were also observed. As a result, cortical responses elicited via each eye were clearly separated when a visual stimulus was placed in front of the mice. A comparison of response areas before and after prism wearing indicated that the map shifts were produced by depression with spatial eccentricity. Visual map shifts based on whisker-guided cues may serve as a model for investigating the cellular and molecular mechanisms underlying higher sensory integration in the mammalian brain.

  9. Proximal vocal threat recruits the right voice-sensitive auditory cortex.

    Science.gov (United States)

    Ceravolo, Leonardo; Frühholz, Sascha; Grandjean, Didier

    2016-05-01

    The accurate estimation of the proximity of threat is important for biological survival and to assess relevant events of everyday life. We addressed the question of whether proximal as compared with distal vocal threat would lead to a perceptual advantage for the perceiver. Accordingly, we sought to highlight the neural mechanisms underlying the perception of proximal vs distal threatening vocal signals by the use of functional magnetic resonance imaging. Although we found that the inferior parietal and superior temporal cortex of human listeners generally decoded the spatial proximity of auditory vocalizations, activity in the right voice-sensitive auditory cortex was specifically enhanced for proximal aggressive relative to distal aggressive voices as compared with neutral voices. Our results shed new light on the processing of imminent danger signaled by proximal vocal threat and show the crucial involvement of the right mid voice-sensitive auditory cortex in such processing. PMID:26746180

  10. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  11. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.

    Science.gov (United States)

    Zhang, Tao; Liu, Tiejun; Li, Fali; Li, Mengchen; Liu, Dongbo; Zhang, Rui; He, Hui; Li, Peiyang; Gong, Jinnan; Luo, Cheng; Yao, Dezhong; Xu, Peng

    2016-07-01

    Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual

  12. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... and E-poly antioxidant-infused technology during a hip replacement through the anterior supine intramuscular approach. “OR- ... Dr. Keith Berend perform an anterior approach total hip replacement with the patient on a regular OR ...

  13. A spatially nonselective baseline signal in parietal cortex reflects the probability of a monkey's success on the current trial.

    Science.gov (United States)

    Zhang, Mingsha; Wang, Xiaolan; Goldberg, Michael E

    2014-06-17

    We recorded the activity of neurons in the lateral intraparietal area of two monkeys while they performed two similar visual search tasks, one difficult, one easy. Each task began with a period of fixation followed by an array consisting of a single capital T and a number of lowercase t's. The monkey had to find the capital T and report its orientation, upright or inverted, with a hand movement. In the easy task the monkey could explore the array with saccades. In the difficult task the monkey had to continue fixating and find the capital T in the visual periphery. The baseline activity measured during the fixation period, at a time in which the monkey could not know if the impending task would be difficult or easy or where the target would appear, predicted the monkey's probability of success or failure on the task. The baseline activity correlated inversely with the monkey's recent history of success and directly with the intensity of the response to the search array on the current trial. The baseline activity was unrelated to the monkey's spatial locus of attention as determined by the location of the cue in a cued visual reaction time task. We suggest that rather than merely reflecting the noise in the system, the baseline signal reflects the cortical manifestation of modulatory state, motivational, or arousal pathways, which determine the efficiency of cortical sensorimotor processing and the quality of the monkey's performance. PMID:24889623

  14. 10 Hz rTMS over right parietal cortex alters sense of agency during self-controlled movements

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Karabanov, Anke N; Christensen, Mark Schram;

    2014-01-01

    task. 12 healthy, right-handed adults were included. The effects of rTMS on subjects' SoA during self-controlled movements were explored. The experiment consisted of 1/3 self-controlled movements and (2)/3 computer manipulated movements that introduced uncertainty as to whether the subjects were agents......-perturbed movements. Following IPC stimulation subjects were more likely to experience self-controlled movements as being externally perturbed compared to the control site (P = 0.002) and the stimulation-free control (P = 0.042). The data support the importance of IPC activation during sensorimotor comparison in...

  15. Reaching with the sixth sense: Vestibular contributions to voluntary motor control in the human right parietal cortex

    OpenAIRE

    Reichenbach, Alexandra; Bresciani, Jean-Pierre; Heinrich H Bülthoff; Thielscher, Axel

    2016-01-01

    The vestibular system constitutes the silent sixth sense: It automatically triggers a variety of vital reflexes to maintain postural and visual stability. Beyond their role in reflexive behavior, vestibular afferents contribute to several perceptual and cognitive functions and also support voluntary control of movements by complementing the other senses to accomplish the movement goal. Investigations into the neural correlates of vestibular contribution to voluntary action in humans are chall...

  16. Recollection, familiarity, and content-sensitivity in lateral parietal cortex: A high-resolution fMRI study

    OpenAIRE

    Johnson, Jeffrey D; Maki Suzuki; Rugg, Michael D.

    2013-01-01

    Numerous studies have identified brain regions where activity is consistently correlated with the retrieval (recollection) of qualitative episodic information. This ‘core recollection network’ can be contrasted with regions where activity differs according to the contents of retrieval. The present study used high-resolution fMRI to investigate whether these putatively-distinct retrieval processes engage common versus dissociable regions. Subjects studied words with two encoding tasks and then...

  17. Ontogeny of somatostatin receptors in the rat somatosensory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, B.J.; Leroux, P.; Bodenant, C.; Vaudry, H. (Groupe de Recherche en Endocrinologie Moleculaire, CNRS URA 650, Unite Affiliee a l' INSERM, Mont-Saint-Aignan, (France))

    1991-03-08

    The distribution and density of SRIF receptors (SRIF-R) were studied during development in the rat somatosensory cortex by in vitro autoradiography with monoiodinated (Tyr0-DTrp8)S14. In 16-day-old fetuses (E16), intense labeling was evident in the intermediate zone of the cortex while low concentrations of SRIF-R were detected in the marginal and ventricular zones. The highest density of SRIF-R was measured in the intermediate zone at E18. At this stage, labeling was also intense in the internal part of the developing cortical plate; in contrast, the concentration of binding sites associated with the marginal and ventricular zones remained relatively low. Profound modifications in the distribution of SRIF-R appeared at birth. In particular, a transient reduction of receptor density occurred in the cortical plate. During the first postnatal week, the density of receptors measured in the intermediate zone decreased gradually; conversely, high levels of SRIF-R were observed in the developing cortical layers (II to VI). At postpartum day 13 (P13), a stage which just precedes completion of cell migration in the parietal cortex, the most intensely labeled regions were layers V-VI and future layers II-III. From P13 to adulthood, the concentrations of SRIF-R decreased in all cortical layers (I to VI) and the pattern of distribution of receptors at P21 was similar to that observed in the adults.

  18. Ontogeny of somatostatin receptors in the rat somatosensory cortex

    International Nuclear Information System (INIS)

    The distribution and density of SRIF receptors (SRIF-R) were studied during development in the rat somatosensory cortex by in vitro autoradiography with monoiodinated [Tyr0-DTrp8]S14. In 16-day-old fetuses (E16), intense labeling was evident in the intermediate zone of the cortex while low concentrations of SRIF-R were detected in the marginal and ventricular zones. The highest density of SRIF-R was measured in the intermediate zone at E18. At this stage, labeling was also intense in the internal part of the developing cortical plate; in contrast, the concentration of binding sites associated with the marginal and ventricular zones remained relatively low. Profound modifications in the distribution of SRIF-R appeared at birth. In particular, a transient reduction of receptor density occurred in the cortical plate. During the first postnatal week, the density of receptors measured in the intermediate zone decreased gradually; conversely, high levels of SRIF-R were observed in the developing cortical layers (II to VI). At postpartum day 13 (P13), a stage which just precedes completion of cell migration in the parietal cortex, the most intensely labeled regions were layers V-VI and future layers II-III. From P13 to adulthood, the concentrations of SRIF-R decreased in all cortical layers (I to VI) and the pattern of distribution of receptors at P21 was similar to that observed in the adults

  19. A Model of Representational Spaces in Human Cortex.

    Science.gov (United States)

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. PMID:26980615

  20. Cognition without Cortex.

    Science.gov (United States)

    Güntürkün, Onur; Bugnyar, Thomas

    2016-04-01

    Assumptions on the neural basis of cognition usually focus on cortical mechanisms. Birds have no cortex, but recent studies in parrots and corvids show that their cognitive skills are on par with primates. These cognitive findings are accompanied by neurobiological discoveries that reveal avian and mammalian forebrains are homologous, and show similarities in connectivity and function down to the cellular level. But because birds have a large pallium, but no cortex, a specific cortical architecture cannot be a requirement for advanced cognitive skills. During the long parallel evolution of mammals and birds, several neural mechanisms for cognition and complex behaviors may have converged despite an overall forebrain organization that is otherwise vastly different. PMID:26944218

  1. Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models.

    Science.gov (United States)

    Penner, Jacob; Ford, Kristen A; Taylor, Reggie; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W J; Osuch, Elizabeth A; Menon, Ravi S; Rajakumar, Nagalingam; Allman, John M; Williamson, Peter C

    2016-01-01

    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls. PMID:27064387

  2. Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models

    Science.gov (United States)

    Penner, Jacob; Ford, Kristen A.; Taylor, Reggie; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W. J.; Osuch, Elizabeth A.; Menon, Ravi S.; Rajakumar, Nagalingam; Allman, John M.; Williamson, Peter C.

    2016-01-01

    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls. PMID:27064387

  3. The anterior temporal lobes support residual comprehension in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Zahn, Roland; Keidel, James L; Binney, Richard J; Sage, Karen; Lambon Ralph, Matthew A

    2014-03-01

    Wernicke's aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke's aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke's aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke's aphasia and 12 control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke's aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke's aphasia group displayed an 'over-activation' in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke's aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions. PMID:24519979

  4. Morphine decreases extracellular levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats

    Institute of Scientific and Technical Information of China (English)

    YueHAO; Jing-yuYANG; MingGUO; Chun-fuWU; Ming-fanWU

    2004-01-01

    AIM: The anterior cingulate cortex (ACC), an important region of prefrontal cortex for cognitive functions, has been implicated in drug abuse and addiction. In the present study, we intended to investigate the effect of morphine on the extracellular levels of glutamate in the ACC in freely moving rats. METHODS: In vivo microdialysis coupled to high performance liquid chromatography and electrochemical detection had been used for the

  5. Cortico-cortical connectivity between right parietal and bilateral primary motor cortices during imagined and observed actions: A combined TMS/tDCS study.

    Directory of Open Access Journals (Sweden)

    Matteo Feurra

    2011-08-01

    Full Text Available Previous TMS studies showed functional connections between the parietal cortex (PC and the primary motor cortex (M1 during tasks of different reaching-to-grasp movements. Here, we tested whether the same network is involved in cognitive processes such as imagined or observed actions. Single pulse TMS of the right and left M1 during rest and during a motor imagery and an action observation task (i.e. an index-thumb pinch grip in both cases was used to measure corticospinal excitability changes before and after conditioning of the right PC by 10 minutes of cathodal, anodal or sham transcranial direct current stimulation (tDCS. Corticospinal excitability was indexed by the size of motor evoked potentials (MEPs from the contralateral FDI (target and ADM (control muscles. Results showed selective ipsilateral effects on the M1 excitability, exclusively for motor imagery processes: anodal tDCS enhanced the MEPs’ size from the FDI muscle, whereas cathodal tDCS decreased it. Only cathodal tDCS impacted corticospinal facilitation induced by action observation. Sham stimulation was always uneffective. These results suggest that motor imagery, differently from action observation, is sustained by a strictly ipsilateral parieto-motor cortex circuits. Results might have implication for neuromodulatory rehabilitative purposes.

  6. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H+/K+ ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H+/K+ ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H+/K+ ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H+/K+ ATPase which underpin the regulation of acid secretion

  7. Effects of L-NAME on morphometric parameters of stomach parietal cells in pregnant rats

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Hossein Noori Mugahi

    2014-05-01

    Results: Results of this study after analysis showed the significant changes in parietal cells count (mean 61.3±4.32 and its diameters (mean 16.12±1.18 µm in L-NAME group in comparison to control and the sham groups in pregnant rats (P≤0.05. Conclusion: Results of this study showed L-NAME with effects on NO synthesis can reduce the count of parietal cells and increase its diameter in pregnant rats and has destructive effects on structure of stomach parietal cells in pregnancy rats.

  8. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... Taperloc Microplasty stem and E-poly antioxidant-infused technology during a hip replacement through the anterior supine ... renewed interest at this time due to several advantages that it brings. The approach that is performed ...

  9. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... an anterior approach total hip replacement with the patient on a regular OR table supine. My name ... less invasive without being small incision surgery. Obese patients can be easier due to less distribution of ...

  10. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... it to have any real negative or deleterious effect by removing the anterior capsule. Now I would ... is what happens with one of the competitive designs. Like I told you, I just take a ...

  11. Anterior approach for knee arthrography

    International Nuclear Information System (INIS)

    Objective. To develop a new method of magnetic resonance arthrography (MRA) of the knee using an anterior approach analogous to the portals used for knee arthroscopy.Design. An anterior approach to the knee joint was devised mimicking anterior portals used for knee arthroscopy. Seven patients scheduled for routine knee MRA were placed in a decubitus position and under fluoroscopic guidance a needle was advanced from a position adjacent to the patellar tendon into the knee joint. After confirmation of the needle tip location, a dilute gadolinium solution was injected.Results and conclusion. All the arthrograms were technically successful. The anterior approach to knee MRA has greater technical ease than the traditional approach with little patient discomfort. (orig.)

  12. Travoprost Induced Granulomatous Anterior Uveitis

    OpenAIRE

    Patrick Chiam

    2011-01-01

    Purpose. To report a case of granulomatous anterior uveitis caused by travoprost. Methods. Single observational case report. Results. A 71-year-old who was fit and healthy presented with bilateral granulomatous anterior uveitis 2 months after he was started on travoprost in both eyes. There was no past history of uveitis. Blood test and radiological investigation were unremarkable. Travoprost was stopped. The uveitis resolved on topical steroid treatment. A rechallenge with travoprost was att...

  13. Update on anterior ankle impingement

    OpenAIRE

    Vaseenon, Tanawat; Amendola, Annunziato

    2012-01-01

    Anterior ankle impingement results from an impingement of the ankle joint by a soft tissue or osteophyte formation at the anterior aspect of the distal tibia and talar neck. It often occurs secondary to direct trauma (impaction force) or repetitive ankle dorsiflexion (repetitive impaction and traction force). Chronic ankle pain, swelling, and limitation of ankle dorsiflexion are common complaints. Imaging is valuable for diagnosis of the bony impingement but not for the soft tissue impingemen...

  14. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  15. Involuntary hand levitation associated with parietal damage: another alien hand syndrome

    Directory of Open Access Journals (Sweden)

    Carrilho Paulo E.M.

    2001-01-01

    Full Text Available The alien hand syndrome (AHS usually consists of an autonomous motor activity perceived as an involuntary and purposeful movement, with a feeling of foreignness of the involved limb, commonly associated with a failure to recognise ownership of the limb in the absence of visual clues. It has been described in association to lesions of the frontal lobes and corpus callosum. However, parietal damage can promote an involuntary, but purposeless, hand levitation, which, sometimes, resembles AHS. In the present study, four patients (cortico-basal ganglionic degeneration -- n=2; Alzheimer's disease -- n=1 and parietal stroke -- n=1 who developed alien hand motor behaviour and whose CT, MRI and/or SPECT have disclosed a major contralateral parietal damage or dysfunction are described. These results reinforce the idea that parietal lobe lesions may also play a role in some patients with purposeless involuntary limb levitation, which is different from the classic forms of AHS.

  16. Morphology and topography of the parietal emissary foramina in South Indians: an anatomical study

    OpenAIRE

    Murlimanju, B. V.; Vasudha V. Saralaya; Somesh, M. S.; Latha V Prabhu; Krishnamurthy, Ashwin; Chettiar, Ganesh Kumar; Pai, Mangala M.

    2015-01-01

    The objectives of the present study were to study the prevalence of the parietal emissary vein in adult South Indian population and to study the distance of foramen from the sagittal suture. There were 58 adult human skulls in the present study which were available at the anatomy department of our institution. The study included 116 parietal bones which have been observed macroscopically for the number, prevalence and topography of the emissary foramen. The emissary foramen was present in 83 ...

  17. Torsion of a lipoma of parietal peritoneum: a rare case mimicking acute appendicitis

    OpenAIRE

    Shrestha, Binod Bade; Karmacharya, Mikesh

    2014-01-01

    Lipomas are found most often on the torso, neck, upper thighs, upper arms and armpits; they can also occur almost anywhere in the body. Parietal peritoneum lipoma is a rare intraoperative finding during abdominal surgery. We present a case of a torted, pedunculated parietal wall lipoma in the right iliac fossa that gave rise to a clinical diagnosis of appendicitis. So far only one case has been reported.

  18. The Behavioral Relevance of Task Information in Human Prefrontal Cortex.

    Science.gov (United States)

    Cole, Michael W; Ito, Takuya; Braver, Todd S

    2016-06-01

    Human lateral prefrontal cortex (LPFC) is thought to play a critical role in enabling cognitive flexibility, particularly when performing novel tasks. However, it remains to be established whether LPFC representation of task-relevant information in such situations actually contributes to successful performance. We utilized pattern classification analyses of functional MRI activity to identify novelty-sensitive brain regions as participants rapidly switched between performance of 64 complex tasks, 60 of which were novel. In three of these novelty-sensitive regions-located within distinct areas of left anterior LPFC-trial-evoked activity patterns discriminated correct from error trials. Further, these regions also contained information regarding the task-relevant decision rule, but only for successfully performed trials. This suggests that left anterior LPFC may be particularly important for representing task information that contributes to the cognitive flexibility needed to perform successfully in novel task situations. PMID:25870233

  19. Visual Cortex Plasticity Following Peripheral Damage To The Visual System: fMRI Evidence.

    Science.gov (United States)

    Lemos, João; Pereira, Daniela; Castelo-Branco, Miguel

    2016-10-01

    Over the last two decades, functional magnetic resonance imaging (fMRI) has become a powerful research method to investigate cortical visual plasticity. Abnormal fMRI response patterns have been occasionally detected in the visually deprived cortex of patients with bilateral retinal diseases. Controversy remains whether these observations indicate structural reorganization of the visual cortex or unmasking of previously silent cortico-cortical connections. In optic nerve diseases, there is weak evidence showing that early visual cortex seems to lack reorganization, while higher-order visual areas undergo plastic changes which may contribute to optimise visual function. There is however accumulating imaging evidence demonstrating trans-synaptic degeneration of the visual cortex in patients with disease of the anterior visual pathways. This may preclude the use of restorative treatments in these patients. Here, we review and update the body of fMRI evidence on visual cortical plasticity. PMID:27542799

  20. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    Science.gov (United States)

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  1. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    Directory of Open Access Journals (Sweden)

    Claudia Perez-Cruz

    2007-01-01

    Full Text Available The prefrontal cortex (PFC plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx.

  2. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  3. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    International Nuclear Information System (INIS)

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  4. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC, University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, CA Rotterdam (Netherlands); K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium); Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium)

    2007-01-15

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  5. Right anterior cingulate gyrus in encephalic region associated with integrating and processing Chinese words information in working memory: A functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Daxing Wu; Shuqiao Yao; Lirong Yan; Changlian Tan; Dewen Hu; Wai Cheong Carl Tam; Yadong Liu; Zongtan Zhou; Xiang Wang; Ding Liu

    2006-01-01

    of Chinese words. ②Asymmertry index: The asymmetry index was -0.47 for frontal lobe, +0.42 for temporal lobe, +0.14 for parietal lobe and -1.00 for occipital lobe. It indicated that the right frontal lobe, left temporal lobe, left parietal lobe and right occipital lobe were more involved in the Chinese numerial working task.CONCLUSION: Brain activation in processing Chinese words in the visual working memory task broadly involves both the left and right hemisphere cortex. And right anterior cingulate gyrus (BA 32) plays an important role in integrating and processing intensive visuospatial ability.

  6. Travoprost Induced Granulomatous Anterior Uveitis

    Science.gov (United States)

    Chiam, Patrick

    2011-01-01

    Purpose. To report a case of granulomatous anterior uveitis caused by travoprost. Methods. Single observational case report. Results. A 71-year-old who was fit and healthy presented with bilateral granulomatous anterior uveitis 2 months after he was started on travoprost in both eyes. There was no past history of uveitis. Blood test and radiological investigation were unremarkable. Travoprost was stopped. The uveitis resolved on topical steroid treatment. A rechallenge with travoprost was attempted in one eye. The inflammation recurred in this eye only. This subsided with the cessation of travoprost alone without topical steroid. Conclusion. This is the first case report of travoprost causing granulomatous anterior uveitis. The uveitis recurred with a rechallenge. Changing the prostaglandin analogue to another topical treatment may be adequate to cease the inflammation. PMID:22606464

  7. Sharing social touch in the primary somatosensory cortex.

    Science.gov (United States)

    Bolognini, Nadia; Rossetti, Angela; Fusaro, Martina; Vallar, Giuseppe; Miniussi, Carlo

    2014-07-01

    Touch has an emotional and communicative meaning, and it plays a crucial role in social perception and empathy. The intuitive link between others' somatosensations and our sense of touch becomes ostensible in mirror-touch synesthesia, a condition in which the view of a touch on another person's body elicits conscious tactile sensations on the observer's own body [1]. This peculiar phenomenon may implicate normal social mirror mechanisms [2]. Here, we show that mirror-touch interference effects, synesthesia-like sensations, and even phantom touches can be induced in nonsynesthetes by priming the primary somatosensory cortex (SI) directly or indirectly via the posterior parietal cortex. These results were obtained by means of facilitatory paired-pulse transcranial magnetic stimulation (ppTMS) contingent upon the observation of touch. For these vicarious effects, the SI is engaged at 150 ms from the onset of the visual touch. Intriguingly, individual differences in empathic abilities, assessed with the Interpersonal Reactivity Index [3], drive the activity of the SI when nonsynesthetes witness others' tactile sensations. This evidence implies that, under normal conditions, touch observation activates the SI below the threshold for perceptual awareness [4]; through the visual-dependent tuning of SI activity by ppTMS, what is seen becomes felt, namely, mirror-touch synesthesia. On a broader perspective, the visual responsivity of the SI may allow an automatic and unconscious transference of the sensation that another person is experiencing onto oneself, and, in turn, the empathic sharing of somatosensations [2]. PMID:24954046

  8. Subgenual anterior cingulate responses to peer rejection: A marker of adolescents’ risk for depression

    OpenAIRE

    Masten, Carrie L.; Eisenberger, Naomi I.; Borofsky, Larissa A.; McNealy, Kristin; Pfeifer, Jennifer H.; DAPRETTO, MIRELLA

    2011-01-01

    Extensive developmental research has linked peer rejection during adolescence with a host of psychopathological outcomes, including depression. Moreover, recent neuroimaging research has suggested that increased activity in the subgenual region of the anterior cingulate cortex (subACC), which has been consistently linked with depression, is related to heightened sensitivity to peer rejection among adolescents. The goal of the current study was to directly test the hypothesis that adolescents’...

  9. Short-term meditation induces white matter changes in the anterior cingulate

    OpenAIRE

    Tang, Yi-Yuan; Lu, Qilin; Geng, Xiujuan; Stein, Elliot A.; Yang, Yihong; Posner, Michael I.

    2010-01-01

    The anterior cingulate cortex (ACC) is part of a network implicated in the development of self-regulation and whose connectivity changes dramatically in development. In previous studies we showed that 3 h of mental training, based on traditional Chinese medicine (integrative body–mind training, IBMT), increases ACC activity and improves self-regulation. However, it is not known whether changes in white matter connectivity can result from small amounts of mental training. We here report that 1...

  10. Emotional moments across time: a possible neural basis for time perception in the anterior insula

    OpenAIRE

    Craig, A.D. (Bud)

    2009-01-01

    A model of awareness based on interoceptive salience is described, which has an endogenous time base that might provide a basis for the human capacity to perceive and estimate time intervals in the range of seconds to subseconds. The model posits that the neural substrate for awareness across time is located in the anterior insular cortex, which fits with recent functional imaging evidence relevant to awareness and time perception. The time base in this model is adaptive and emotional, and th...

  11. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus

    OpenAIRE

    KAY, RACHEL B.; Brunjes, Peter C

    2014-01-01

    Understanding the cellular components of neural circuits is an essential step in discerning regional function. The anterior olfactory nucleus (AON) is reciprocally connected to both the ipsi- and contralateral olfactory bulb (OB) and piriform cortex (PC), and, as a result, can broadly influence the central processing of odor information. While both the AON and PC are simple cortical structures, the regions differ in many ways including their general organization, internal wiring and synaptic ...

  12. Multisensory and Modality Specific Processing of Visual Speech in Different Regions of the Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2014-05-01

    Full Text Available Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex has been shown to be active during both observation and execution of action (‘Mirror System’ properties, and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI study, participants identified vowels produced by a speaker in audio-visual (saw the speaker’s articulating face and heard her voice, visual only (only saw the speaker’s articulating face, and audio only (only heard the speaker’s voice conditions with varying audio signal-to-noise ratios in order to determine the regions of the premotor cortex involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the fMRI analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and premotor cortex. The left ventral inferior premotor cortex showed properties of multimodal (audio-visual enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the premotor cortex are involved with mapping unimodal (in this case visual sensory features of the speech signal with

  13. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... during a hip replacement through the anterior supine intramuscular approach. “OR-Live,” the vision of improving health. ... the approach are operating through an internervous and intramuscular anatomic interval. It’s not necessary to detach any ...

  14. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... got coming out in “JBJS,” the early six-week recovery is dramatically different between a direct lateral abductor splitting approach and this anterior supine approach. Let me get this head on. My experience, these patients have full leg control in about 24 hours. Yeah. They can get out of bed and ...

  15. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... the anterior supine intramuscular approach. “OR-Live,” the vision of improving health. Good evening and welcome to ... should know that this is done under direct vision. Yeah. You are seeing everything you’re doing. ...

  16. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  17. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    OpenAIRE

    Hiroki eNakata; Kiwako eSakamoto; Ryusuke eKakigi

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI), and neurophysiological methods, such as magnetoencephalography (MEG) and electroencephalography (EEG), have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural response...

  18. The Role of the Right Dorsolateral Prefrontal Cortex in Phasic Alertness: Evidence from a Contingent Negative Variation and Repetitive Transcranial Magnetic Stimulation Study

    OpenAIRE

    Daniela Mannarelli; Caterina Pauletti; Antonello Grippo; Aldo Amantini; Vito Augugliaro; Antonio Currà; Paolo Missori; Nicoletta Locuratolo; Maria C. De Lucia; Steno Rinalduzzi; Francesco Fattapposta

    2015-01-01

    Phasic alertness represents the ability to increase response readiness to a target following an external warning stimulus. Specific networks in the frontal and parietal regions appear to be involved in the alert state. In this study, we examined the role of the right dorsolateral prefrontal cortex (DLPFC) during the attentional processing of a stimulus using a cued double-choice reaction time task. The evaluation of these processes was conducted by means of Event-Related Potentials (ERPs), in...

  19. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man

    DEFF Research Database (Denmark)

    Kupers, Ron; Danielsen, Else R; Kehlet, Henrik;

    2009-01-01

    pain processing. Using a 3T MR scanner, we acquired spectra from the rostral anterior cingulate cortex (rACC) in 13 healthy right-handed subjects at rest and during painful heat stimulation. The painful stimulus consisted of a suprathreshold painful tonic heat pulse, which was delivered to the right...... that GABA is released in the human cerebral cortex during painful stimulation. The results are in line with animal findings on the role of GABA in pain processing and with studies in humans showing analgesic efficacy of GABA-related drugs in clinical pain conditions....

  20. Atrophy of the left dorsolateral prefrontal cortex is associated with poor performance in verbal fluency in elderly poststroke women

    Institute of Scientific and Technical Information of China (English)

    Yang-Kun Chen; Wei-Min Xiao; Defeng Wang; Lin Shi; Winnie CW Chu; Vincent CT Mok; Ka Sing Wong; Gabor S Ungvari; Wai Kwong Tang

    2013-01-01

    This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged ≥ 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.