WorldWideScience

Sample records for anterior cingulate cortex

  1. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  2. The Anterior Cingulate Cortex and Pain Processing

    Directory of Open Access Journals (Sweden)

    Perry Neil Fuchs

    2014-05-01

    Full Text Available The neural network that contributes to the suffering which accompanies persistent pain states involves a number of brain regions. Of primary interest is the contribution of the cingulate cortex in processing the affective component of pain. The purpose of this review is to summarize recent data obtained using novel behavioral paradigms in animals based on measuring escape and/or avoidance of a noxious stimulus. These paradigms have successfully been used to study the nature of the neuroanatomical and neurochemical contributions of the anterior cingulate cortex to higher order pain processing in rodents.

  3. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  4. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  5. Motivation of extended behaviors by anterior cingulate cortex.

    Science.gov (United States)

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences.

  6. Dorsal anterior cingulate cortex and the value of control.

    Science.gov (United States)

    Shenhav, Amitai; Cohen, Jonathan D; Botvinick, Matthew M

    2016-09-27

    Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the region's association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACC's involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACC's sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACC's particular involvement in decisions regarding foraging or otherwise altering one's behavior.

  7. Dorsal anterior cingulate cortex and the value of control.

    Science.gov (United States)

    Shenhav, Amitai; Cohen, Jonathan D; Botvinick, Matthew M

    2016-09-27

    Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the region's association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACC's involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACC's sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACC's particular involvement in decisions regarding foraging or otherwise altering one's behavior. PMID:27669989

  8. Pleasant human touch is represented in pregenual anterior cingulate cortex.

    Science.gov (United States)

    Lindgren, Lenita; Westling, Göran; Brulin, Christine; Lehtipalo, Stefan; Andersson, Micael; Nyberg, Lars

    2012-02-15

    Touch massage (TM) is a form of pleasant touch stimulation used as treatment in clinical settings and found to improve well-being and decrease anxiety, stress, and pain. Emotional responses reported during and after TM have been studied, but the underlying mechanisms are still largely unexplored. In this study, we used functional magnetic resonance (fMRI) to test the hypothesis that the combination of human touch (i.e. skin-to-skin contact) with movement is eliciting a specific response in brain areas coding for pleasant sensations. The design included four different touch conditions; human touch with or without movement and rubber glove with or without movement. Force (2.5 N) and velocity (1.5 cm/s) were held constant across conditions. The pleasantness of the four different touch stimulations was rated on a visual analog scale (VAS-scale) and human touch was rated as most pleasant, particularly in combination with movement. The fMRI results revealed that TM stimulation most strongly activated the pregenual anterior cingulate cortex (pgACC). These results are consistent with findings showing pgACC activation during various rewarding pleasant stimulations. This area is also known to be activated by both opioid analgesia and placebo. Together with these prior results, our finding furthers the understanding of the basis for positive TM treatment effects.

  9. A direct anterior cingulate pathway to the primate primary olfactory cortex may control attention to olfaction

    Science.gov (United States)

    García-Cabezas, Miguel Á.; Barbas, Helen

    2016-01-01

    Behavioral and functional studies in humans suggest that attention plays a key role in activating the primary olfactory cortex through an unknown circuit mechanism. We report that a novel pathway from the anterior cingulate cortex, an area which has a key role in attention, projects directly to the primary olfactory cortex in rhesus monkeys, innervating mostly the anterior olfactory nucleus. Axons from the anterior cingulate cortex formed synapses mostly with spines of putative excitatory pyramidal neurons and with a small proportion of a neurochemical class of inhibitory neurons that are thought to have disinhibitory effect on excitatory neurons. This novel pathway from the anterior cingulate is poised to exert a powerful excitatory effect on the anterior olfactory nucleus, which is a critical hub for odorant processing via extensive bilateral connections with primary olfactory cortices and the olfactory bulb. Acting on the anterior olfactory nucleus, the anterior cingulate may activate the entire primary olfactory cortex to mediate the process of rapid attention to olfactory stimuli. PMID:23797208

  10. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.

    Science.gov (United States)

    Grossman, M; Crino, P; Reivich, M; Stern, M B; Hurtig, H I

    1992-01-01

    Parkinson's disease (PD) is a complex neurodegenerative condition involving a motor disorder that is related to reduced dopaminergic input to the striatum. Intellectual deficits are also seen in PD, but the pathophysiology of these difficulties is poorly understood. Regional cerebral blood flow (rCBF) was studied in neurologically intact subjects during the performance of attention-demanding, sentence processing tasks using positron emission tomography (PET). The results demonstrated significantly increased rCBF in a distributed set of cerebral regions during the detection of an adjective or a particular agent in a sentence, including anterior cingulate cortex, left inferior and middle frontal cortex, left inferior temporo-occipital cortex, posterolateral temporal cortex, left caudate, and left thalamus. We identified defects in this cerebral network by studying PD patients with two PET techniques. Resting PET studies revealed a significant correlation between regional cerebral glucose metabolism in anterior cingulate cortex and deficits in attending to subtle grammatical aspects of sentences. Studies of PD patients with the PET activation technique revealed little change in anterior cingulate and left frontal CBF during performance of the adjective detection or agent detection tasks. These data suggest that a defect in anterior cingulate cortex contributes to the cognitive impairments observed in PD.

  11. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  12. Early adversity and combat exposure interact to influence anterior cingulate cortex volume in combat veterans ☆

    OpenAIRE

    Woodward, Steven H.; Kuo, Janice R.; Schaer, Marie; Kaloupek, Danny G.; Eliez, Stephan

    2013-01-01

    Objective Childhood and combat trauma have been observed to interact to influence amygdala volume in a sample of U.S. military veterans with and without PTSD. This interaction was assessed in a second, functionally-related fear system component, the pregenual and dorsal anterior cingulate cortex, using the same sample and modeling approach. Method Anterior cingulate cortical tissues (gray + white matter) were manually-delineated in 1.5 T MR images in 87 U.S. military veterans of the Vietnam a...

  13. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control.

    Science.gov (United States)

    Tolomeo, Serenella; Christmas, David; Jentzsch, Ines; Johnston, Blair; Sprengelmeyer, Reiner; Matthews, Keith; Douglas Steele, J

    2016-06-01

    Converging evidence has linked the anterior mid-cingulate cortex to negative affect, pain and cognitive control. It has previously been proposed that this region uses information about punishment to control aversively motivated actions. Studies on the effects of lesions allow causal inferences about brain function; however, naturally occurring lesions in the anterior mid-cingulate cortex are rare. In two studies we therefore recruited 94 volunteers, comprising 15 patients with treatment-resistant depression who had received bilateral anterior cingulotomy, which consists of lesions made within the anterior mid-cingulate cortex, 20 patients with treatment-resistant depression who had not received surgery and 59 healthy control subjects. Using the Ekman 60 faces paradigm and two Stroop paradigms, we tested the hypothesis that patients who received anterior cingulotomy were impaired in recognizing negative facial affect expressions but not positive or neutral facial expressions, and impaired in Stroop cognitive control, with larger lesions being associated with more impairment. Consistent with this hypothesis, we found that larger volume lesions predicted more impairment in recognizing fear, disgust and anger, and no impairment in recognizing facial expressions of surprise or happiness. However, we found no impairment in recognizing expressions of sadness. Also consistent with the hypothesis, we found that larger volume lesions predicted impaired Stroop cognitive control. Notably, this relationship was only present when anterior mid-cingulate cortex lesion volume was defined as the overlap between cingulotomy lesion volume and Shackman's meta-analysis-derived binary masks for negative affect and cognitive control. Given substantial evidence from healthy subjects that the anterior mid-cingulate cortex is part of a network associated with the experience of negative affect and pain, engaging cognitive control processes for optimizing behaviour in the presence of such

  14. Modulation of Subgenual Anterior Cingulate Cortex Activity With Real-Time Neurofeedback

    OpenAIRE

    Hamilton, J. Paul; Glover, Gary H.; Hsu, Jung-Jiin; Johnson, Rebecca F.; Gotlib, Ian H.

    2011-01-01

    The advent of real-time neurofeedback techniques has allowed us to begin to map the controllability of sensory and cognitive and, more recently, affective centers in the brain. The subgenual anterior cingulate cortex (sACC) is thought to be involved in generation of affective states and has been implicated in psychopathology. In this study, we examined whether individuals could use realtime fMRI neurofeedback to modulate sACC activity. Following a localizer task used to identify an sACC regio...

  15. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy

    OpenAIRE

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In Experiment 1, rats were trained on a cost-benefit T-maze task in which they could either choose to climb a barrier to obtain a high reward (four pellet...

  16. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making

    OpenAIRE

    Khani, Abbas; Kermani, Mojtaba; Hesam, 6Soghra; Haghparast, Abbas; Enrike G Argandoña; Rainer, Gregor

    2015-01-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test...

  17. Short-term meditation increases blood flow in anterior cingulate cortex and insula

    Directory of Open Access Journals (Sweden)

    Yi-Yuan eTang

    2015-02-01

    Full Text Available Asymmetry in frontal electrical activity has been reported to be associated with positive mood. One form of mindfulness meditation, integrative body-mind training (IBMT improves positive mood and neuroplasticity. The purpose of this study is to determine whether short-term IBMT improves mood and induces frontal asymmetry. This study showed that five-day (30-min per day IBMT significantly enhanced cerebral blood flow (CBF in subgenual/adjacent ventral anterior cingulate cortex (ACC, medial prefrontal cortex and insula. The results showed that both IBMT and relaxation training increased left laterality of CBF, but only IBMT improved CBF in left ACC and insula, critical brain areas in self-regulation.

  18. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  19. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WANG Ya-rong; QIN Wei; YUAN Kai; TIAN Jie; LI Qiang; YANG Lan-ying; LU Lin; GUO You-min

    2010-01-01

    Background Previous studies with animal experiments, autopsy, structural magnetic resonance imaging (MRI) and task-related functional MRI (fMRI) have confirmed that brain functional connectivity in addicts has become impaired. The goal of this study was to investigate the alteration of resting-state functional connectivity of the ventral anterior cingulate cortex (vACC) in the heroin abusers' brain.Methods Fifteen heroin abusers and fifteen matched healthy volunteers were studied using vACC as the region-of interest (ROI) seed. A 3.0 T scanner with a standard head coil was the imagining apparatus. T2*-weighted gradient-echo planar imaging (GRE-EPI) was the scanning protocol. A ROI seed based correlation analysis used a SPM5 software package as the tool for all images processing.Results This study showed a functional connection to the insula vACC in heroin abusers. Compared with controls,heroin users showed decreased functional connectivity between the nucleus accumbens (NAc) and vACC, between the parahippocampala gyrus/amgdala (PHC/amygdala) and vACC, between the thalamus and vACC, and between the posterior cingulated cortex/precuneus (PCC/pC) and vACC.Conclusion The altered resting-state functional connectivity to the vACC suggests the neural circuitry on which the addictive drug has an affect and reflects the dysfunction of the addictive brain.

  20. The expected value of control: an integrative theory of anterior cingulate cortex function.

    Science.gov (United States)

    Shenhav, Amitai; Botvinick, Matthew M; Cohen, Jonathan D

    2013-07-24

    The dorsal anterior cingulate cortex (dACC) has a near-ubiquitous presence in the neuroscience of cognitive control. It has been implicated in a diversity of functions, from reward processing and performance monitoring to the execution of control and action selection. Here, we propose that this diversity can be understood in terms of a single underlying function: allocation of control based on an evaluation of the expected value of control (EVC). We present a normative model of EVC that integrates three critical factors: the expected payoff from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in terms of cognitive effort. We propose that dACC integrates this information, using it to determine whether, where and how much control to allocate. We then consider how the EVC model can explain the diverse array of findings concerning dACC function.

  1. Learning to cope with stress modulates anterior cingulate cortex stargazin expression in monkeys and mice.

    Science.gov (United States)

    Lee, Alex G; Capanzana, Roxanne; Brockhurst, Jacqueline; Cheng, Michelle Y; Buckmaster, Christine L; Absher, Devin; Schatzberg, Alan F; Lyons, David M

    2016-05-01

    Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping with gains in subsequent emotion regulation. Here we investigate the effects of learning to cope with stress on anterior cingulate cortex gene expression in monkeys and mice. Anterior cingulate cortex is involved in learning, memory, cognitive control, and emotion regulation. Monkeys and mice were randomized to either stress coping or no-stress treatment conditions. Profiles of gene expression were acquired with HumanHT-12v4.0 Expression BeadChip arrays adapted for monkeys. Three genes identified in monkeys by arrays were then assessed in mice by quantitative real-time polymerase chain reaction. Expression of a key gene (PEMT) involved in acetylcholine biosynthesis was increased in monkeys by coping but this result was not verified in mice. Another gene (SPRY2) that encodes a negative regulator of neurotrophic factor signaling was decreased in monkeys by coping but this result was only partly verified in mice. The CACNG2 gene that encodes stargazin (also called TARP gamma-2) was increased by coping in monkeys as well as mice randomized to coping with or without subsequent behavioral tests of emotionality. As evidence of coping effects distinct from repeated stress exposures per se, increased stargazin expression induced by coping correlated with diminished emotionality in mice. Stargazin modulates glutamate receptor signaling and plays a role in synaptic plasticity. Molecular mechanisms of synaptic plasticity that mediate learning and memory in the context of coping with stress may provide novel targets for new treatments of disorders in human mental health. PMID:27003116

  2. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset.

    Science.gov (United States)

    Jackson, Stacey A W; Horst, Nicole K; Pears, Andrew; Robbins, Trevor W; Roberts, Angela C

    2016-07-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the "habit" system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. PMID:27130662

  3. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response. PMID:19562631

  4. Medial profrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study.

    Directory of Open Access Journals (Sweden)

    Yamamoto,Shin

    2006-02-01

    Full Text Available

    Previous EEG studies have shown that transcendental meditation (TM increases frontal and central alpha activity. The present study was aimed at identifying the source of this alpha activity using magnetoencephalography (MEG and electroencephalography (EEG simultaneously on eight TM practitioners before, during, and after TM. The magnetic field potentials corresponding to TM-induced alpha activities on EEG recordings were extracted, and we attempted to localize the dipole sources using the multiple signal classification (MUSIC algorithm, equivalent current dipole source analysis, and the multiple spatio-temporal dipole model. Since the dipoles were mapped to both the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC, it is suggested that the mPFC and ACC play an important role in brain activity induced by TM.

  5. Post-Learning Infusion of Anisomycin into the Anterior Cingulate Cortex Impairs Instrumental Acquisition through an Effect on Reinforcer Valuation

    Science.gov (United States)

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of…

  6. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  7. Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex.

    Science.gov (United States)

    Wittmann, Marco K; Kolling, Nils; Akaishi, Rei; Chau, Bolton K H; Brown, Joshua W; Nelissen, Natalie; Rushworth, Matthew F S

    2016-01-01

    In many natural environments the value of a choice gradually gets better or worse as circumstances change. Discerning such trends makes predicting future choice values possible. We show that humans track such trends by comparing estimates of recent and past reward rates, which they are able to hold simultaneously in the dorsal anterior cingulate cortex (dACC). Comparison of recent and past reward rates with positive and negative decision weights is reflected by opposing dACC signals indexing these quantities. The relative strengths of time-linked reward representations in dACC predict whether subjects persist in their current behaviour or switch to an alternative. Computationally, trend-guided choice can be modelled by using a reinforcement-learning mechanism that computes a longer-term estimate (or expectation) of prediction errors. Using such a model, we find a relative predominance of expected prediction errors in dACC, instantaneous prediction errors in the ventral striatum and choice signals in the ventromedial prefrontal cortex.

  8. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    Science.gov (United States)

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  9. Postnatal development of the electrophysiological properties of somatostatin interneurons in the anterior cingulate cortex of mice.

    Science.gov (United States)

    Pan, Geng; Yang, Jian-Ming; Hu, Xing-Yue; Li, Xiao-Ming

    2016-01-01

    Somatostatin (SST)-positive interneurons in the anterior cingulate cortex (ACC) play important roles in neuronal diseases, memory and cognitive functions. However, their development in the ACC remains unclear. Using postnatal day 3 (P3) to P45 GIN mice, we found that most of the intrinsic membrane properties of SST interneurons in the ACC were developmentally mature after the second postnatal week and that the development of these neurons differed from that of parvalbumin (PV) interneurons in the prefrontal cortex. In addition, electrical coupling between SST interneurons appeared primarily between P12-14. The coupling probability plateaued at approximately P21-30, with a non-age-dependent development of coupling strength. The development of excitatory chemical afferents to SST interneurons occurred earlier than the development of inhibitory chemical afferents. Furthermore, eye closure attenuated the development of electrical coupling probability at P21-30 but had no effect on coupling strength. Eye closure also delayed the development of inhibitory chemical afferent frequency but had no effect on the excitatory chemical afferent amplitude, frequency or rise time. Our data suggest that SST interneurons in the ACC exhibit inherent developmental characteristics distinct from other interneuron subtypes, such as PV interneurons, and that some of these characteristics are subject to environmental regulation. PMID:27319800

  10. Resting-state functional connectivity in anterior cingulate cortex in normal aging

    Directory of Open Access Journals (Sweden)

    Weifang eCao

    2014-10-01

    Full Text Available Growing evidence suggests that normal aging is associated with cognitive decline and well-maintained emotional well-being. The anterior cingulate cortex (ACC is an important brain region involved in emotional and cognitive processing. We investigated resting-state functional connectivity (FC of two ACC subregions in 30 healthy older adults versus 33 healthy younger adults, by parcellating into rostral (rACC and dorsal (dACC ACC based on clustering of FC profiles. Compared with younger adults, older adults demonstrated greater connection between rACC and anterior insula, suggesting that older adults recruit more proximal dACC brain regions connected with insula to maintain a salient response. Older adults also demonstrated increased FC between rACC and superior temporal gyrus and inferior frontal gyrus, decreased integration between rACC and default mode, and decreased dACC-hippocampal and dACC-thalamic connectivity. These altered FCs reflected rACC and dACC reorganization, and might be related to well emotion regulation and cognitive decline in older adults. Our findings provide further insight into potential functional substrates of emotional and cognitive alterations in the aging brain.

  11. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  12. Functional Connectivity of the Caudal Anterior Cingulate Cortex Is Decreased in Autism.

    Science.gov (United States)

    Zhou, Yuanyue; Shi, Lijuan; Cui, Xilong; Wang, Suhong; Luo, Xuerong

    2016-01-01

    The anterior cingulate cortex (ACC) is frequently reported to have functionally distinct sub-regions that play key roles in different intrinsic networks. However, the contribution of the ACC, which is connected to several cortical areas and the limbic system, to autism is not clearly understood, although it may be involved in dysfunctions across several distinct but related functional domains. By comparing resting-state fMRI data from persons with autism and healthy controls, we sought to identify the abnormalities in the functional connectivity (FC) of ACC sub-regions in autism. The analyses found autism-related reductions in FC between the left caudal ACC and the right rolandic operculum, insula, postcentral gyrus, superior temporal gyrus, and the middle temporal gyrus. The FC (z-scores) between the left caudal ACC and the right insula was negatively correlated with the Stereotyped Behaviors and Restricted Interests scores of the autism group. These findings suggest that the caudal ACC is recruited selectively in the pathomechanism of autism.

  13. Pavlovian fear memory induced by activation in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Calejesan Amelita A

    2005-02-01

    Full Text Available Abstract Identifying higher brain central region(s that are responsible for the unpleasantness of pain is the focus of many recent studies. Here we show that direct stimulation of the anterior cingulate cortex (ACC in mice produced fear-like freezing responses and induced long-term fear memory, including contextual and auditory fear memory. Auditory fear memory required the activation of N-methyl-D-aspartate (NMDA receptors in the amygdala. To test the hypothesis that neuronal activity in the ACC contributes to unpleasantness, we injected a GABAA receptor agonist, muscimol bilaterally into the ACC. Both contextual and auditory memories induced by foot shock were blocked. Furthermore, activation of metabotropic glutamate receptors in the ACC enhanced behavioral escape responses in a noxious hot-plate as well as spinal nociceptive tail-flick reflex. Our results provide strong evidence that the excitatory activity in the ACC contribute to pain-related fear memory as well as descending facilitatory modulation of spinal nociception.

  14. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  15. Hierarchical Error Representation: A Computational Model of Anterior Cingulate and Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Alexander, William H; Brown, Joshua W

    2015-11-01

    Anterior cingulate and dorsolateral prefrontal cortex (ACC and dlPFC, respectively) are core components of the cognitive control network. Activation of these regions is routinely observed in tasks that involve monitoring the external environment and maintaining information in order to generate appropriate responses. Despite the ubiquity of studies reporting coactivation of these two regions, a consensus on how they interact to support cognitive control has yet to emerge. In this letter, we present a new hypothesis and computational model of ACC and dlPFC. The error representation hypothesis states that multidimensional error signals generated by ACC in response to surprising outcomes are used to train representations of expected error in dlPFC, which are then associated with relevant task stimuli. Error representations maintained in dlPFC are in turn used to modulate predictive activity in ACC in order to generate better estimates of the likely outcomes of actions. We formalize the error representation hypothesis in a new computational model based on our previous model of ACC. The hierarchical error representation (HER) model of ACC/dlPFC suggests a mechanism by which hierarchically organized layers within ACC and dlPFC interact in order to solve sophisticated cognitive tasks. In a series of simulations, we demonstrate the ability of the HER model to autonomously learn to perform structured tasks in a manner comparable to human performance, and we show that the HER model outperforms current deep learning networks by an order of magnitude. PMID:26378874

  16. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  17. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development.

    Science.gov (United States)

    Cachia, A; Borst, G; Tissier, C; Fisher, C; Plaze, M; Gay, O; Rivière, D; Gogtay, N; Giedd, J; Mangin, J-F; Houdé, O; Raznahan, A

    2016-06-01

    Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events - under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC) - an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show - without exception-that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life. PMID:26974743

  18. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development

    Directory of Open Access Journals (Sweden)

    A. Cachia

    2016-06-01

    Full Text Available Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events – under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC – an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show – without exception–that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life.

  19. Potentiation of synaptic transmission in Rat anterior cingulate cortex by chronic itch.

    Science.gov (United States)

    Zhang, Ting-Ting; Shen, Feng-Yan; Ma, Li-Qing; Wen, Wen; Wang, Bin; Peng, Yuan-Zhi; Wang, Zhi-Ru; Zhao, Xuan

    2016-01-01

    Itch and pain share similar mechanisms. It has been well documented that the anterior cingulate cortex (ACC) is important for pain-related perception. ACC has also been approved to be a potential pruritus-associated brain region. However, the mechanism of sensitization in pruriceptive neurons in the ACC is not clear. In current study, a chronic itch model was established by diphenylcyclopropenone (DCP) application. We found that both the frequency and amplitude of miniature excitatory postsynaptic currents in the ACC were enhanced after the formation of chronic itch. The paired-pulse ratio in ACC neurons recorded from the DCP group were smaller than those recorded in control group at the 50-ms interval. We also observe a significant increase in the AMPA/NMDA ratio in the DCP group. Moreover, an increased inward rectification of AMPARs in ACC pyramidal neurons was observed in the DCP group. Interestingly, the calculated ratio of silent synapses was significantly reduced in the DCP group compared with controls. Taken together, we conclude that a potentiation of synaptic transmission in the ACC can be induced by chronic itch, and unsilencing silent synapses, which probably involved recruitment of AMPARS, contributed to the potentiation of postsynaptic transmission. PMID:27472923

  20. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice.

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu; Zhuo, Min

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  1. Anatomical Abnormalities of the Anterior Cingulate Cortex in Schizophrenia: Bridging the Gap Between Neuroimaging and Neuropathology

    Science.gov (United States)

    Fornito, Alex; Yücel, Murat; Dean, Brian; Wood, Stephen J.; Pantelis, Christos

    2009-01-01

    The anterior cingulate cortex (ACC) is a functionally heterogeneous region involved in diverse cognitive and emotional processes that support goal-directed behaviour. Structural magnetic resonance imaging (MRI) and neuropathological findings over the past two decades have converged to suggest abnormalities in the region may represent a neurobiological basis for many of the clinical manifestations of schizophrenia. However, while each approach offers complimentary information that can provide clues regarding underlying patholophysiological processes, the findings from these 2 fields are seldom integrated. In this article, we review structural neuroimaging and neuropathological studies of the ACC, focusing on the unique information they provide. The available imaging data suggest grey matter reductions in the ACC precede psychosis onset in some categories of high-risk individuals, show sub-regional specificity, and may progress with illness duration. The available post-mortem findings indicate these imaging-related changes are accompanied by reductions in neuronal, synaptic, and dendritic density, as well as increased afferent input, suggesting the grey matter differences observed with MRI arise from alterations in both neuronal and non-neuronal tissue compartments. We discuss the potential mechanisms that might facilitate integration of these findings and consider strategies for future research. PMID:18436528

  2. Temporal and spatial dynamics of thalamus-evoked activity in the anterior cingulate cortex.

    Science.gov (United States)

    Chang, Wei-Chih; Lee, Chia-Ming; Shyu, Bai-Chuang

    2012-10-11

    In the present study, multielectrode array (MEA) recording was used to illustrate the spatial-temporal progression of anterior cingulate cortex (ACC) activity following stimulation of the thalamus in a thalamocingulate pathway-preserved slice. The MEA was placed under the slice that contained the ACC, and 60 channels of extracellular local field potentials evoked by bipolar electrical stimulation within the thalamus were analyzed. Several distinct thalamic-evoked responses were identified. The early negative component (N1; amplitude, -35.7 ± 5.9 μV) emerged in layer VI near the cingulum 8.4 ± 0.5 ms after stimulation. N1 progressed upward to layers V and II/III in a lateral-to-medial direction. Subsequently, a positive component (P; amplitude, 27.0 ± 3.2 μV) appeared 12.0 ± 0.6 ms after stimulation in layer VI. At 26.8 ± 1.1 ms, a second negative component (N2; amplitude, -20.9 ± 2.7 μV) became apparent in layers II/III and V, followed by a more ventrolateral component (N3; amplitude, -18.9 ± 2.9 μV) at 42.8 ± 2.6 ms. These two late components spread downward to layer VI in a medial-to-lateral direction. The trajectory paths of the evoked components were consistently represented with varied medial thalamic stimulation intensities and sites. Both AMPA/kainate and N-methyl-D-aspartate-type glutamate receptors involved in monosynaptic and polysynaptic transmission participated in this thalamocortical pathway. Morphine mainly diminished the two negative synaptic components, and this suppressive effect was reversed by naloxone. The present study confirmed that functional thalamocingulate activity was preserved in the brain-slice preparation. The thalamus-evoked responses were activated and progressed along a deep surface-deep trajectory loop across the ACC layers. Glutamatergic neurotransmitters were crucially involved in information processing. Opioid interneurons may play a modulatory role in regulating the signal flows in the cingulate cortex.

  3. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  4. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying.

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H; Wilhelm, Frank H; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca's homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and may

  5. Involvement of the Rostral Anterior Cingulate Cortex in Consolidation of Inhibitory Avoidance Memory: Interaction with the Basolateral Amygdala

    OpenAIRE

    Malin, Emily L.; Ibrahim, Deena Y.; Tu, Jessica W.; McGaugh, James L.

    2006-01-01

    Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigat...

  6. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure

    OpenAIRE

    Migliorini, R; Moore, EM; Glass, L.; Infante, MA; Tapert, SF; Jones, KL; Mattson, SN; Riley, EP

    2015-01-01

    © 2015 Elsevier B.V. Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n=. 32) and non-exposed controls (CON, n=. 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging ...

  7. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  8. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [3H]MK801, [3H]AMPA and [3H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [3H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [3H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [3H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [3H]AMPA and [3H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  9. Anterior cingulate cortex mediates the relationship between O3PUFAs and executive functions in APOE e4 carriers

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2015-05-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between biomarkers of diet and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between omega-3 polyunsaturated fatty acids (O3PUFAs and executive functions in at-risk (APOE e4 carriers, cognitively intact older adults. We hypothesized that higher levels of O3PUFAs are associated with better performance in a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter volume of a specific region thought to be important for cognitive flexibility, the anterior cingulate cortex. Methods: We examined 40 cognitively intact adults between the ages of 65 and 75 with the APOE e4 polymorphism to investigate the relationship between biomarkers of O3PUFAs, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter volume within regions of the prefrontal cortex. Results: A mediation analysis revealed that gray matter volume within the left rostral anterior cingulate cortex partially mediates the relationship between O3PUFA biomarkers and cognitive flexibility. Conclusion: These results suggest that the anterior cingulate cortex acts as a mediator of the relationship between O3PUFAs and cognitive flexibility in cognitively intact adults thought to be at risk for cognitive decline. Through their link to executive functions and neuronal measures of prefrontal cortex volume, O3PUFAs show potential as a nutritional therapy to prevent dysfunction in the aging brain.

  10. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions. PMID:25529106

  11. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    Directory of Open Access Journals (Sweden)

    Hiroki eNakata

    2014-12-01

    Full Text Available Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI, and neurophysiological methods, such as magnetoencephalography (MEG and electroencephalography (EEG, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation’. In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation.

  12. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  13. Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder.

    Science.gov (United States)

    Feng, Zhan; Xu, Shunliang; Huang, Manli; Shi, Yushu; Xiong, Bing; Yang, Hong

    2016-01-01

    In recent years, major depressive disorder (MDD) has been demonstrated to be associated with abnormalities in neural networks, particularly the prefrontal-limbic network (PLN). However, there are few current studies that have examined information flow in the PLN. In this study, Granger causality analysis (GCA), based on signed regression coefficient, was used to explore changes in causal connectivity in resting-state PLNs of MDD patients. A total of 23 first-episode medication-naïve MDD patients and 20 normal control participants were subjected to resting-state functional magnetic resonance imaging (RS-fMRI) scans. Increased causal effects of the right insular cortex, right putamen and right caudate on the rostral anterior cingulate cortex (rACC) and reduced causal effects of bilateral dorsolateral prefrontal cortex (DLPFC) and left orbitofrontal cortex (OFC) on the rACC were found in MDD patients compared to normal controls. The extensive reduction in the causal effect of the prefrontal cortex (PFC) demonstrates impaired top-down cognitive control in MDD patients. Changes in the causal relationship between the right insula and rACC suggest problems in coordination of the default mode network by the right anterior insular cortex (rAI). These findings provide valuable insight into MDD-related neural network disorders reported in previous RS-fMRI studies and may potentially guide clinical treatment of MDD in the future. PMID:26234517

  14. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  15. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  16. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization.

  17. Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring.

    Science.gov (United States)

    Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang

    2016-06-01

    Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.

  18. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    Science.gov (United States)

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  19. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    Science.gov (United States)

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  20. The von Economo neurons in the frontoinsular and anterior cingulate cortex.

    Science.gov (United States)

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Manaye, Kebreten F; Semendeferi, Katerina; Erwin, Joseph M; Park, Soyoung; Goubert, Virginie; Hof, Patrick R

    2011-04-01

    The von Economo neurons (VENs) are large bipolar neurons located in the frontoinsular cortex (FI) and limbic anterior (LA) area in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week postconception, with numbers increasing during the first 8 months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of frontotemporal dementia (FTD) implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  1. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  2. Decision Making in the Balloon Analogue Risk Task (BART): Anterior Cingulate Cortex Signals Loss-Aversion but not the Infrequency of Risky Choices

    OpenAIRE

    Fukunaga, Rena; Brown, Joshua W.; Bogg, Tim

    2012-01-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision-making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursu...

  3. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset

    OpenAIRE

    Jackson, Stacey A. W.; Pears, Andrew; Horst, Nicole K.; Robbins, Trevor W.; Roberts, Angela C.

    2016-01-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the “habit” system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existin...

  4. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  5. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  6. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    曹晓华; 卢湘岳; 周绍慈

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropos-tero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on rec

  7. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropostero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on receptive fields of ON-OFF neurons showed that the excitation of the ACC could change an ON-response on the verge of a receptive field into an ON-OFF response. The above results suggest that the ACC modulation sharpens the response of a VB neuron to a moving stimulus within its receptive field, indicating that the limbic system can modulate tactile ascending sensory information.

  8. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    Science.gov (United States)

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. PMID:27163752

  9. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHENG XinLing; LIU Fang; WU XingWen; LI BaoMing

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolaterel nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at '0' or 6 h post-treining. Saline was administered as control. Memory retention was tested 48 h poet-training. In-tra-BLA or intra-ACC infusion of MPD '0' h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  10. Cortical thinning of the right anterior cingulate cortex in spider phobia: a magnetic resonance imaging and spectroscopy study.

    Science.gov (United States)

    Linares, I M P; Jackowski, A P; Trzesniak, C M F; Arrais, K C; Chagas, M H N; Sato, J R; Santos, A C; Hallak, J E C; Zuardi, A W; Nardi, A E; Coimbra, N C; Crippa, J A S

    2014-08-12

    There a lack of consistent neuroimaging data on specific phobia (SP) and a need to assess volumetric and metabolic differences in structures implicated in this condition. The aim of this study is investigate possible metabolic (via (1)H MRS) and cortical thickness abnormalities in spider-phobic patients compared to healthy volunteers. Participants were recruited via public advertisement and underwent clinical evaluations and MRI scans. The study started in 2010 and the investigators involved were not blind in respect to patient groupings. The study was conducted at the Ribeirão Preto Medical School University Hospital of the University of São Paulo, Brazil. Patients with spider phobia (n=19) were matched to 17 healthy volunteers with respect to age, education and socio-economic status. The spider SP group fulfilled the diagnostic criteria for spider phobia according to the Structured Clinical Interview for DSM-IV. None of the participants had a history of neurological, psychiatric or other relevant organic diseases, use of prescribed psychotropic medication or substance abuse. All imaging and spectroscopy data were collected with a 3 T MRI scanner equipped with 25 mT gradient coils in 30-minute scans. The Freesurfer image analysis package and LC Model software were used to analyze data. The hypothesis being tested was formulated before the data collection (neural correlates of SP would include the amygdala, insula, anterior cingulate gyrus and others). The results indicated the absence of metabolic alterations, but thinning of the right anterior cingulate cortex (ACC) in the SP group when compared to the healthy control group (mean cortical thickness±SD: SP=2.11±0.45 mm; HC=2.16±0.42 mm; t (34)=3.19, p=0.001 [-35.45, 71.00, -23.82]). In spectroscopy, the ratios between N-acetylaspartate and creatine and choline levels were measured. No significant effect or correlation was found between MRS metabolites and scores in the Spider Phobia Questionnaire and Beck

  11. Women's Preference for a Male Acquaintance Enhances Social Reward Processing of Material Goods in the Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Jun Nakagawa

    Full Text Available Men, like the male of many animal species, use gifts to build satisfactory relationships with a desired woman. From the woman's perspective, all gifts are not always equally rewarding; the reward value of a gift depends on two factors: (1 the giver and (2 the type of the gift (the gift's social meaning. In this study, we investigated how these two factors interactively determine the reward value of a gift. Specifically, we examined how the neural processing for understanding a gift's social meaning is modulated by preferences for the giver. We performed a functional magnetic resonance imaging (fMRI study in which a female participant was asked to judge a gift from a male she was acquainted with in real life. We examined the interactive effects between (1 the female participant's attitude toward the male acquaintance (liked vs. uninteresting and (2 the type of the gift (romantic [e.g., bouquet, earrings, and perfumes] vs. non-romantic [e.g., pencils, memo pad, and moneybox]. We found that preference for an acquaintance selectively modulated activity in the anterior cingulate cortex (ACC in response to romantic gifts, compared to non-romantic gifts. In contrast, if the woman was indifferent toward an acquaintance, no activity modulation was observed in this area for the same gifts. In addition, the ACC showed functional connectivity with the supplementary motor area/dorsal ACC (SMA/dACC, an area within the dorsal mediofrontal cortex, suggesting that it integrates action monitoring and emotional and cognitive processing in decision-making. These results suggest that attitude toward an opposite sex member has a modulatory role in recognizing the social meaning of material goods--preference for the member is a powerful modulator of social reward processing.

  12. Activation of the caudal anterior cingulate cortex due to task-related interference in an auditory Stroop paradigm.

    Science.gov (United States)

    Haupt, Sven; Axmacher, Nikolai; Cohen, Michael X; Elger, Christian E; Fell, Juergen

    2009-09-01

    Successful information processing requires the focusing of attention on a certain stimulus property and the simultaneous suppression of irrelevant information. The Stroop task is a useful paradigm to study such attentional top-down control in the presence of interference. Here, we investigated the neural correlates of an auditory Stroop task using fMRI. Subjects focused either on tone pitch (relatively high or low; phonetic task) or on the meaning of a spoken word (high/low/good; semantic task), while ignoring the other stimulus feature. We differentiated between task-related (phonetic incongruent vs. semantic incongruent) and sensory-level interference (phonetic incongruent vs. phonetic congruent). Task-related interference activated similar regions as in visual Stroop tasks, including the anterior cingulate cortex (ACC) and the presupplementary motor-area (pre-SMA). More specifically, we observed that the very caudal/posterior part of the ACC was activated and not the dorsal/anterior region. Because identical stimuli but different task demands are compared in this contrast, it reflects conflict at a relatively high processing level. A more conventional contrast between incongruent and congruent phonetic trials was associated with a different cluster in the pre-SMA/ACC which was observed in a large number of previous studies. Finally, functional connectivity analysis revealed that activity within the regions activated in the phonetic incongruent vs. semantic incongruent contrast was more strongly interrelated during semantically vs. phonetically incongruent trials. Taken together, we found (besides activation of regions well-known from visual Stroop tasks) activation of the very caudal and posterior part of the ACC due to task-related interference in an auditory Stroop task. PMID:19180558

  13. Spatial memory and -fos expression in supramammillary nucleus, anterior cingulated gyrus and entorhinal cortex

    OpenAIRE

    Santín Núñez, Luis Javier; Aguirre, José A.; Rubio Fernández, Sandra; Begega Losa, María Azucena; Miranda Cuevas, Rubén; Arias Pérez, Jorge Luis

    2001-01-01

    Este trabajo se aproxima al estudio de los substratos cerebrales de la memoria espacial en ratas, empleando la expresión celular de la proteína c-Fos. Para ello, se analizó la expresión de la proteína c-Fos después de la ejecución de una tarea de memoria de referencia y otra de trabajo espacial. De este modo, se cuantificó el número de núcleos neuronales c-Fos positivos en varias regiones cerebrales: corteza entorrinal, giro cingulado anterior y núcleo supramamilar. Los resultados mostraron q...

  14. Choosing the lesser of two evils, the better of two goods: Specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice

    OpenAIRE

    Blair, K.S.; Marsh, A. A.; Morton, J.; Vythilingam, M.; Jones, M M; K, P.; D C, D.; W C, B. R. J.

    2006-01-01

    The ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortices (ACd) are considered important for reward-based decision making. However, work distinguishing their individual functional contributions has only begun. One aspect of decision making that has received little attention is that making the right choice often translates to making the better choice. Thus, response choice often occurs in situations where both options are desirable (e.g., choosing between mousse au choc...

  15. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  16. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia.

    Science.gov (United States)

    Cordes, Julia S; Mathiak, Krystyna A; Dyck, Miriam; Alawi, Eliza M; Gaber, Tilman J; Zepf, Florian D; Klasen, Martin; Zvyagintsev, Mikhail; Gur, Ruben C; Mathiak, Klaus

    2015-01-01

    Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the brain regions known to be dysfunctional in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over 3 days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. In a stepwise regression analysis, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, patients with schizophrenia can learn to regulate localized brain activity. However, cognitive strategies and neural network location differ from healthy controls. These data emphasize that for therapeutic interventions in patients with schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social NF based on fMRI may be one method to accomplish precise learning targets.

  17. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Science.gov (United States)

    Cordes, Julia S.; Mathiak, Krystyna A.; Dyck, Miriam; Alawi, Eliza M.; Gaber, Tilman J.; Zepf, Florian D.; Klasen, Martin; Zvyagintsev, Mikhail; Gur, Ruben C.; Mathiak, Klaus

    2015-01-01

    Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the brain regions known to be dysfunctional in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over 3 days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. In a stepwise regression analysis, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, patients with schizophrenia can learn to regulate localized brain activity. However, cognitive strategies and neural network location differ from healthy controls. These data emphasize that for therapeutic interventions in patients with schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social NF based on fMRI may be one method to accomplish precise learning targets. PMID:26161073

  18. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory.

    Science.gov (United States)

    Corcoran, Kevin A; Frick, Brendan J; Radulovic, Jelena; Kay, Leslie M

    2016-01-01

    Memory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction. Specifically, exposure to a novel context and retrieval of recently acquired fear conditioning memory were associated with increased theta coherence between RSC and all three other structures. In contrast, RSC-DH and RSC-ADT theta coherence were decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote memory. Greater RSC-ADT theta and gamma coherence were observed during recent, compared to remote, extinction of freezing responses. Thus, the degree of coherence between RSC and connected brain areas may predict and contribute to context memory retrieval and retrieval-related phenomena such as fear extinction. Importantly, although theta coherence in this circuit increases during memory encoding and retrieval of recent memory, failure to decrease RSC-DH theta coherence might be linked to retrieval deficit in the long term, and possibly contribute to aberrant memory processing characteristic of neuropsychiatric disorders.

  19. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem. PMID:20144945

  20. Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression

    Science.gov (United States)

    Dedovic, Katarina; Slavich, George M.; Muscatell, Keely A.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    The dorsal anterior cingulate cortex (dACC) is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD), as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed) and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive) feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels). Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the role of the d

  1. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    Victoria eHolec

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., courage. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to certain

  2. The Cingulate Cortex and Human Memory Processes

    Directory of Open Access Journals (Sweden)

    Maria M.Pyasik

    2012-01-01

    Full Text Available This study presents data from a magnetic-resonance morphometric (MRMM analysisof the main regions of the cingulate cortex (in both hemispheres and theirrole in memory processes in a group of healthy, females of older age. The resultsdemonstrate a statistically reliable correlation between overall performance andthe type of errors in different neuropsychological memory tests and the relativesize of these regions. The discovered pattern of correlations can be explained byhypothesizing the reciprocal functional influence of the two major areas of thecingulate cortex – its anterior and posterior dorsal parts – on performance in neuropsychologicalmemory tests.

  3. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  4. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  5. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain

    Directory of Open Access Journals (Sweden)

    Mariela eRance

    2014-10-01

    Full Text Available The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC and the left posterior insula (pInsL on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1 or the pInsL (state 2 being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: (rACC – pInsL increase (state 1, rACC – pInsL decrease (state 2, pInsL – rACC increase (state 2, pInsL – rACC decrease (state 1. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e. learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of

  6. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    Science.gov (United States)

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. PMID:21295109

  7. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    Science.gov (United States)

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  8. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  9. Open label smoking cessation with varenicline is associated with decreased glutamate levels and functional changes in anterior cingulate cortex: preliminary findings

    Directory of Open Access Journals (Sweden)

    Muriah Dawn Wheelock

    2014-07-01

    Full Text Available Rationale: Varenicline, the most effective single agent for smoking cessation, is a partial agonist at α4β2 nicotinic acetylcholine receptors. Increasing evidence implicates glutamate in the pathophysiology of addiction and one of the benefits of treatment for smoking cessation is the ability to regain cognitive control. Objective: To evaluate the effects of 12 week varenicline administration on glutamate levels in the dorsal anterior cingulate cortex (dACC and functional changes within the cognitive control network.Methods: We used single-voxel proton magnetic resonance spectroscopy (1H-MRS in the dACC and functional MRI (fMRI during performance of a Stroop color-naming task before and after smoking cessation with varenicline in 11 healthy smokers (open label design. Using the dACC as a seed region, we evaluated functional connectivity changes using a psychophysiological interaction (PPI analysis. Results: We observed a significant decrease in dACC glutamate + glutamine (Glx/Cr levels as well as significant blood oxygen level-dependent signal (BOLD decreases in the rostral ACC/medial orbitofrontal cortex and precuneus/posterior cingulate cortex. These BOLD changes are suggestive of alterations in default mode network (DMN function and are further supported by the results of the PPI analysis that revealed changes in connectivity between the dACC and regions of the DMN. Baseline measures of nicotine dependence and craving positively correlated with baseline Glx/Cr levels.Conclusions: These results suggest possible mechanisms of action for varenicline such as reduction in Glx levels in dACC and shifts in BOLD activities between large scale brain networks. They also suggest a role for ACC Glx in the modulation of behavior. Due to the preliminary nature of this study (lack of control group and small sample size, future studies are needed to replicate these findings.

  10. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Lee, Seojung; Ran Kim, Kyung; Ku, Jeonghun; Lee, Jung-Hyun; Namkoong, Kee; Jung, Young-Chul

    2014-01-30

    Cortical areas supporting cognitive control and salience demonstrate different neural responses to visual food cues in patients with eating disorders. This top-down cognitive control, which interacts with bottom-up appetitive responses, is tightly integrated not only in task conditions but also in the resting-state. The dorsal anterior cingulate cortex (dACC) is a key node of a large-scale network that is involved in self-referential processing and cognitive control. We investigated resting-state functional connectivity of the dACC and hypothesized that altered connectivity would be demonstrated in cortical midline structures involved in self-referential processing and cognitive control. Seed-based resting-state functional connectivity was analyzed in women with anorexia nervosa (N=18), women with bulimia nervosa (N=20) and age matched healthy controls (N=20). Between group comparisons revealed that the anorexia nervosa group exhibited stronger synchronous activity between the dACC and retrosplenial cortex, whereas the bulimia nervosa group showed stronger synchronous activity between the dACC and medial orbitofrontal cortex. Both groups demonstrated stronger synchronous activity between the dACC and precuneus, which correlated with higher scores of the Body Shape Questionnaire. The dACC-precuneus resting-state synchrony might be associated with the disorder-specific rumination on eating, weight and body shape in patients with eating disorders.

  11. Decision making in the Balloon Analogue Risk Task (BART): anterior cingulate cortex signals loss aversion but not the infrequency of risky choices.

    Science.gov (United States)

    Fukunaga, Rena; Brown, Joshua W; Bogg, Tim

    2012-09-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., Journal of Experimental Psychology: Applied, 8, 75-84, 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether the ACC and IFG/AI regions correspond to loss aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward seeking. However, in the cingulate and in mainly bilateral IFG regions, blood-oxygenation-level-dependent activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings that are consistent with a reduced loss aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision making, as well as the importance of distinguishing between decision and feedback signals. PMID:22707378

  12. Resting-state functional connectivity between the dorsal anterior cingulate cortex and thalamus is associated with risky decision-making in nicotine addicts.

    Science.gov (United States)

    Wei, Zhengde; Yang, Nannan; Liu, Ying; Yang, Lizhuang; Wang, Ying; Han, Long; Zha, Rujing; Huang, Ruiqi; Zhang, Peng; Zhou, Yifeng; Zhang, Xiaochu

    2016-01-01

    Nicotine addiction is associated with risky behaviors and abnormalities in local brain areas related to risky decision-making such as the dorsal anterior cingulate cortex (dACC), anterior insula (AI), and thalamus. Although these brain abnormalities are anatomically separated, they may in fact belong to one neural network. However, it is unclear whether circuit-level abnormalities lead to risky decision-making in smokers. In the current study, we used task-based functional magnetic resonance imaging (fMRI) and examined resting-state functional connectivity (RSFC) to study how connectivity between the dACC, insula, and thalamus influence risky decision-making in nicotine addicts. We found that an increase in risky decision-making was associated with stronger nicotine dependence and stronger RSFC of the dACC-rAI (right AI), the dACC-thalamus, the dACC-lAI (left AI), and the rAI-lAI, but that risky decision-making was not associated with risk level-related activation. Furthermore, the severity of nicotine dependence positively correlated with RSFC of the dACC-thalamus but was not associated with risk level-related activation. Importantly, the dACC-thalamus coupling fully mediated the effect of nicotine-dependent severity on risky decision-making. These results suggest that circuit-level connectivity may be a critical neural link between risky decision-making and severity of nicotine dependence in smokers. PMID:26879047

  13. Calcium/calmodulin-dependent kinase IV contributes to translation-dependent early synaptic potentiation in the anterior cingulate cortex of adult mice

    Directory of Open Access Journals (Sweden)

    Toyoda Hiroki

    2010-09-01

    Full Text Available Abstract Calcium/calmodulin-dependent kinase IV (CaMKIV phosphorylates the major transcription factor, cyclic AMP-responsive element binding protein (CREB, which plays key roles in synaptic plasticity and memory consolidation. Our previous study showed that long-term potentiation (LTP in the anterior cingulate cortex (ACC was significantly enhanced in transgenic mice overexpressing CaMKIV. Considering that the CaMKIV-CREB pathway plays a central role in the protein synthesis-dependent LTP, it is possible that upregulation of CaMKIV contributes to enhancement of LTP by promoting protein synthesis. To test this possibility, we examined the effects of transcription and translation inhibitors on synaptic potentiation induced by pairing of synaptic activity with postsynaptic depolarization (paired training in ACC pyramidal neurons of wild-type and CaMKIV transgenic mice. We found that synaptic potentiation induced by paired training was partially inhibited by transcription or translation inhibitors both in wild-type and CaMKIV transgenic mice; the extent of inhibition was markedly larger in the CaMKIV transgenic mice than in the wild-type mice. Biochemical and immunohistochemical studies revealed that CaMKIV was distributed in the membrane, cytosol and nucleus of ACC neurons. Our results reveal in the first time a transcription- and translation-dependent component of early synaptic LTP in adult ACC synapses, and demonstrate that CaMKIV enhances early synaptic potentiation by activating new protein synthesis.

  14. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa.

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Quattrocchi, Carlo Cosimo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  15. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  16. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  17. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study.

    Science.gov (United States)

    Li, Xingbao; Hartwell, Karen J; Borckardt, Jeffery; Prisciandaro, James J; Saladin, Michael E; Morgan, Paul S; Johnson, Kevin A; Lematty, Todd; Brady, Kathleen T; George, Mark S

    2013-07-01

    Numerous research groups are now using analysis of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) results and relaying back information about regional activity in their brains to participants in the scanner in 'real time'. In this study, we explored the feasibility of self-regulation of frontal cortical activation using real-time fMRI (rtfMRI) neurofeedback in nicotine-dependent cigarette smokers during exposure to smoking cues. Ten cigarette smokers were shown smoking-related visual cues in a 3 Tesla MRI scanner to induce their nicotine craving. Participants were instructed to modify their craving using rtfMRI feedback with two different approaches. In a 'reduce craving' paradigm, participants were instructed to 'reduce' their craving, and decrease the anterior cingulate cortex (ACC) activity. In a separate 'increase resistance' paradigm, participants were asked to increase their resistance to craving and to increase middle prefrontal cortex (mPFC) activity. We found that participants were able to significantly reduce the BOLD signal in the ACC during the 'reduce craving' task (P=0.028). There was a significant correlation between decreased ACC activation and reduced craving ratings during the 'reduce craving' session (P=0.011). In contrast, there was no modulation of the BOLD signal in mPFC during the 'increase resistance' session. These preliminary results suggest that some smokers may be able to use neurofeedback via rtfMRI to voluntarily regulate ACC activation and temporarily reduce smoking cue-induced craving. Further research is needed to determine the optimal parameters of neurofeedback rtfMRI, and whether it might eventually become a therapeutic tool for nicotine dependence.

  18. Relationship of γ-aminobutyric acid and glutamate+glutamine concentrations in the perigenual anterior cingulate cortex with performance of Cambridge Gambling Task.

    Science.gov (United States)

    Fujihara, Kazuyuki; Narita, Kosuke; Suzuki, Yusuke; Takei, Yuichi; Suda, Masashi; Tagawa, Minami; Ujita, Koichi; Sakai, Yuki; Narumoto, Jin; Near, Jamie; Fukuda, Masato

    2015-04-01

    The anterior cingulate cortex (ACC), consisting of the perigenual ACC (pgACC) and mid-ACC (i.e., affective and cognitive areas, respectively), plays a significant role in the performance of gambling tasks, which are used to measure decision-making behavior under conditions of risk. Although recent neuroimaging studies have suggested that the γ-aminobutyric acid (GABA) concentration in the pgACC is associated with decision-making behavior, knowledge regarding the relationship of GABA concentrations in subdivisions of the ACC with gambling task performance is still limited. The aim of our magnetic resonance spectroscopy study is to investigate in 20 healthy males the relationship of concentrations of GABA and glutamate+glutamine (Glx) in the pgACC, mid-ACC, and occipital cortex (OC) with multiple indexes of decision-making behavior under conditions of risk, using the Cambridge Gambling Task (CGT). The GABA/creatine (Cr) ratio in the pgACC negatively correlated with delay aversion score, which corresponds to the impulsivity index. The Glx/Cr ratio in the pgACC negatively correlated with risk adjustment score, which is reported to reflect the ability to change the amount of the bet depending on the probability of winning or losing. The scores of CGT did not significantly correlate with the GABA/Cr or Glx/Cr ratio in the mid-ACC or OC. Results of this study suggest that in the pgACC, but not in the mid-ACC or OC, GABA and Glx concentrations play a distinct role in regulating impulsiveness and risk probability during decision-making behavior under conditions of risk, respectively.

  19. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  20. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    Science.gov (United States)

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  1. Choosing the lesser of two evils, the better of two goods: specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice.

    Science.gov (United States)

    Blair, Karina; Marsh, Abigail A; Morton, John; Vythilingam, Meena; Jones, Matthew; Mondillo, Krystal; Pine, Daniel C; Drevets, Wayne C; Blair, James R

    2006-11-01

    The ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortices (ACd) are considered important for reward-based decision making. However, work distinguishing their individual functional contributions has only begun. One aspect of decision making that has received little attention is that making the right choice often translates to making the better choice. Thus, response choice often occurs in situations where both options are desirable (e.g., choosing between mousse au chocolat or crème caramel cheesecake from a menu) or, alternatively, in situations where both options are undesirable. Moreover, response choice is easier when the reinforcements associated with the objects are far apart, rather than close together, in value. We used functional magnetic resonance imaging to delineate the functional roles of the vmPFC and ACd by investigating these two aspects of decision making: (1) decision form (i.e., choosing between two objects to gain the greater reward or the lesser punishment), and (2) between-object reinforcement distance (i.e., the difference in reinforcements associated with the two objects). Blood oxygen level-dependent (BOLD) responses within the ACd and vmPFC were both related to decision form but differentially. Whereas ACd showed greater responses when deciding between objects to gain the lesser punishment, vmPFC showed greater responses when deciding between objects to gain the greater reward. Moreover, vmPFC was sensitive to reinforcement expectations associated with both the chosen and the forgone choice. In contrast, BOLD responses within ACd, but not vmPFC, related to between-object reinforcement distance, increasing as the distance between the reinforcements of the two objects decreased. These data are interpreted with reference to models of ACd and vmPFC functioning.

  2. Systematic Regional Variations of GABA, Glutamine, and Glutamate Concentrations Follow Receptor Fingerprints of Human Cingulate Cortex

    NARCIS (Netherlands)

    Dou, Weiqiang; Palomero-Gallagher, Nicola; van Tol, Marie-Jose; Kaufmann, Joern; Zhong, Kai; Bernstein, Hans-Gert; Heinze, Hans-Jochen; Speck, Oliver; Walter, Martin

    2013-01-01

    Magnetic resonance spectroscopy (MRS) of glutamatergic or GABAergic measures in anterior cingulate cortex (ACC) was found altered in psychiatric disorders and predictive of interindividual variations of functional responses in healthy populations. Several ACC subregions have been parcellated into re

  3. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  4. Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without past history of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katarina eDedovic

    2016-03-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD, as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels. Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the

  5. No volumetric differences in the anterior cingulate of psychopathic individuals

    OpenAIRE

    Glenn, Andrea L.; Yang, Yaling; Raine, Adrian; Colletti, Patrick

    2010-01-01

    Functional imaging studies of psychopathy have demonstrated reduced activity in the anterior cingulate, yet it is unclear whether this region is structurally impaired. In this study, we used structural MRI to examine whether volumetric differences exist in the anterior cingulate between psychopathic (n=24) and control (n=24) male participants. We found no group differences in the volume of the anterior cingulate or its dorsal and ventral subregions. Our findings call into question whether the...

  6. The Role of the Dorsal Anterior Cingulate in Evaluating Behavior for Achieving Gains and Avoiding Losses

    Science.gov (United States)

    Magno, Elena; Simoes-Franklin, Cristina; Robertson, Ian H.; Garavan, Hugh

    2009-01-01

    Effective goal-directed behavior relies on a network of regions including anterior cingulate cortex and ventral striatum to learn from negative outcomes in order to improve performance. We employed fMRI to determine if this frontal-striatal system is also involved in instances of behavior that do not presume negative circumstances. Participants…

  7. Reduced Activation in Lateral Prefrontal Cortex and Anterior Cingulate during Attention and Cognitive Control Functions in Medication-Naive Adolescents with Depression Compared to Controls

    Science.gov (United States)

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M.; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-01-01

    Background: There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of…

  8. Subgenual anterior cingulate responses to peer rejection: A marker of adolescents’ risk for depression

    OpenAIRE

    Masten, Carrie L.; Eisenberger, Naomi I.; Borofsky, Larissa A.; McNealy, Kristin; Pfeifer, Jennifer H.; DAPRETTO, MIRELLA

    2011-01-01

    Extensive developmental research has linked peer rejection during adolescence with a host of psychopathological outcomes, including depression. Moreover, recent neuroimaging research has suggested that increased activity in the subgenual region of the anterior cingulate cortex (subACC), which has been consistently linked with depression, is related to heightened sensitivity to peer rejection among adolescents. The goal of the current study was to directly test the hypothesis that adolescents’...

  9. MRI study of the structure and functional connectivity of anterior cingulate cortex in heroin addicts%海洛因成瘾者扣带前回结构与功能连接的MRI研究

    Institute of Scientific and Technical Information of China (English)

    伊涛; 傅先明; 钱若兵; 季学兵; 魏祥品; 林彬; 胡文富; 牛朝诗; 汪业汉

    2011-01-01

    Objective To explore changes of the structure and functional connectivity of anterior cingulate cortex (ACC) and analyze the role of ACC in heroin addiction by voxel-based morphometry (VBM) and resting-state functional MRI (fMRI). Methods Fifteen heroin addicts and 15 normal people were set as addiction group and normal control group respectively, who underwent 3-dimensional structural imaging and resting-state fMRI. The VBM was used to compare the structural differences between the two groups. The ACC was selected as the regions of interest (ROI) to analyze the resting-state fMRI data of two groups in order to investigate the differences in functional connectivity between the ACC and related brain regions. Results VBM results showed that there were significant differences in gray matter density of right and left ACCs, right and left parahippocampal gyri, right and left caudate nuclei between two groups. When the ACC was selected as ROI, functional connectivity in some brain regions including the right and left ACCs, right and left posterior cingulate cortexes (PCCs) and the right and left parahippocampal gyri were weaker in addiction group than in normal control group. Conclusions The unusual changes of structure and functional connectivity appear in long-term heroin addicts, suggesting that ACC may play an important role in generation and maintain of addiction, and also in relapse after drug withdraw.%目的 利用基于体素的形态学分析(voxel-based morphometry,VBM)和静息态fMRI探讨扣带前回结构和功能连接的改变,分析扣带前回在海洛因成瘾中的作用.方法 15例海洛因成瘾者和15例正常人分别作为成瘾组和正常对照组,均接受3D结构像和静息态fMRI检查,使用VBM比较2组受试者大脑的结构差异;以扣带前回为感兴趣区,对2组进行静息态fRI数据分析,比较扣带前回与相关脑区之间功能连接的差异.结果 VBM分析显示2组在左右扣带前回、左右海马旁回、

  10. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Susanna A Walter

    Full Text Available Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD responses in functional magnetic resonance imaging (fMRI is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.

  11. Morphine decreases extracellular levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats

    Institute of Scientific and Technical Information of China (English)

    YueHAO; Jing-yuYANG; MingGUO; Chun-fuWU; Ming-fanWU

    2004-01-01

    AIM: The anterior cingulate cortex (ACC), an important region of prefrontal cortex for cognitive functions, has been implicated in drug abuse and addiction. In the present study, we intended to investigate the effect of morphine on the extracellular levels of glutamate in the ACC in freely moving rats. METHODS: In vivo microdialysis coupled to high performance liquid chromatography and electrochemical detection had been used for the

  12. Resting Metabolic Activity in the Cingulate Cortex and Vulnerability to Posttraumatic Stress Disorder

    Science.gov (United States)

    Shin, Lisa M.; Lasko, Natasha B.; Macklin, Michael L.; Karpf, Rachel D.; Milad, Mohammed R.; Orr, Scott P.; Goetz, Jared M.; Fischman, Alan J.; Rauch, Scott L.; Pitman, Roger K.

    2013-01-01

    Context Recent neuroimaging research has revealed functional abnormalities in the anterior cingulate cortex, amygdala and hippocampus in posttraumatic stress disorder (PTSD). Objective To determine whether resting functional abnormalities found in PTSD are acquired characteristics or familial risk factors. Design Cross-sectional design including identical twins discordant for trauma exposure. Setting Academic medical center. Participants Combat-exposed veterans with PTSD (n=14) and their identical, combat-unexposed co-twins (n=14), as well as combat-exposed veterans without PTSD (n=19) and their identical, combat-unexposed co-twins (n=19). Main Outcome Measures We used positron emission tomography and [18F]-fluorodeoxyglucose to examine resting regional cerebral metabolic rates for glucose (rCMRglu). Results Veterans with PTSD and their co-twins had significantly higher resting rCMRglu in dorsal anterior cingulate/mid cingulate cortex (dACC/MCC) compared to non-PTSD veterans and their co-twins. Resting rCMRglu in dACC/MCC in the combat-unexposed co-twins was positively correlated with combat exposure severity, PTSD symptom severity, and alcohol use in their exposed twins. Conclusions Enhanced resting metabolic activity in dACC/MCC appears to represent a familial risk factor for developing PTSD after exposure to psychological trauma. PMID:19805700

  13. Altered SPECT (123)I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa.

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using (123)I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). "Depression-Dejection" and "Confusion" POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in

  14. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  15. Posterior cingulate cortex: adapting behavior to a changing world.

    Science.gov (United States)

    Pearson, John M; Heilbronner, Sarah R; Barack, David L; Hayden, Benjamin Y; Platt, Michael L

    2011-04-01

    When has the world changed enough to warrant a new approach? The answer depends on current needs, behavioral flexibility and prior knowledge about the environment. Formal approaches solve the problem by integrating the recent history of rewards, errors, uncertainty and context via Bayesian inference to detect changes in the world and alter behavioral policy. Neuronal activity in posterior cingulate cortex - a key node in the default network - is known to vary with learning, memory, reward and task engagement. We propose that these modulations reflect the underlying process of change detection and motivate subsequent shifts in behavior.

  16. Cingulate cortex hypoperfusion predicts Alzheimer's disease in mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Svensson Leif

    2002-09-01

    Full Text Available Abstract Background Mild cognitive impairment (MCI was recently described as a heterogeneous group with a variety of clinical outcomes and high risk to develop Alzheimer's disease (AD. Regional cerebral blood flow (rCBF as measured by single photon emission computed tomography (SPECT was used to study the heterogeneity of MCI and to look for predictors of future development of AD. Methods rCBF was investigated in 54 MCI subjects using Tc-99m hexamethylpropyleneamine oxime (HMPAO. An automated analysis software (BRASS was applied to analyze the relative blood flow (cerebellar ratios of 24 cortical regions. After the baseline examination, the subjects were followed clinically for an average of two years. 17 subjects progressed to Alzheimer's disease (PMCI and 37 subjects remained stable (SMCI. The baseline SPECT ratio values were compared between PMCI and SMCI. Receiver operating characteristic (ROC analysis was applied for the discrimination of the two subgroups at baseline. Results The conversion rate of MCI to AD was 13.7% per year. PMCI had a significantly decreased rCBF in the left posterior cingulate cortex, as compared to SMCI. Left posterior cingulate rCBF ratios were entered into a logistic regression model for ROC curve calculation. The area under the ROC curve was 74%–76%, which indicates an acceptable discrimination between PMCI and SMCI at baseline. Conclusion A reduced relative blood flow of the posterior cingulate gyrus could be found at least two years before the patients met the clinical diagnostic criteria of AD.

  17. Die Rolle des anterioren cingulären Cortex bei Entscheidungsprozessen und instrumentellen Lernvorgängen

    OpenAIRE

    Schweimer, Judith

    2006-01-01

    Der Anteriore Cinguläre Cortex (ACC) spielt eine wichtige Rolle bei Stimulus-Belohnungs-Lernen und bei der Auswahl von belohnungsgesteuerten Handlungsweisen. Im Rahmen dieser Doktorarbeit wurde eine Reihe von Experimenten durchgeführt, um die Rolle des ACC bei instrumentellen Verhalten, welches aufwandsabhängige Entscheidungen beruht, und bei instrumentellem Lernen, welches durch belohnungsprädiktive Stimuli gesteuert wird, näher zu untersuchen. In Experiment 1 wurden das Erlernen und das ...

  18. Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway

    Directory of Open Access Journals (Sweden)

    Vogt Brent A

    2009-09-01

    Full Text Available Abstract Background Although the mechanisms of short- and long-term potentiation of nociceptive-evoked responses are well known in the spinal cord, including central sensitization, there has been a growing body of information on such events in the cerebral cortex. In view of the importance of anterior cingulate cortex (ACC in chronic pain conditions, this review considers neuronal plasticities in the thalamocingulate pathway that may be the earliest changes associated with such syndromes. Results A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink current in the layer II/III of the ACC in vivo, while high frequency stimulation potentiated the response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal and intralaminar thalamic nuclei (MITN suggesting that the MITN projection to ACC mediates the nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different inputs in vitro where the medial thalamic and contralateral corpus callosum afferents were compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of the short-term plasticity. Conclusion The potentiation of ACC neuronal activity induced by thalamic bursting suggest that short-term synaptic plasticities enable the processing of nociceptive information from the medial thalamus and this temporal response variability is particularly important in pain because temporal maintenance of the response supports cortical integration and memory formation related to

  19. Short-term meditation induces white matter changes in the anterior cingulate.

    Science.gov (United States)

    Tang, Yi-Yuan; Lu, Qilin; Geng, Xiujuan; Stein, Elliot A; Yang, Yihong; Posner, Michael I

    2010-08-31

    The anterior cingulate cortex (ACC) is part of a network implicated in the development of self-regulation and whose connectivity changes dramatically in development. In previous studies we showed that 3 h of mental training, based on traditional Chinese medicine (integrative body-mind training, IBMT), increases ACC activity and improves self-regulation. However, it is not known whether changes in white matter connectivity can result from small amounts of mental training. We here report that 11 h of IBMT increases fractional anisotropy (FA), an index indicating the integrity and efficiency of white matter in the corona radiata, an important white-matter tract connecting the ACC to other structures. Thus IBMT could provide a means for improving self-regulation and perhaps reducing or preventing various mental disorders.

  20. Dopamine and serotonin imbalances in the left anterior cingulate and pyriform cortices following the repeated intermittent administration of cocaine.

    Science.gov (United States)

    Heidbreder, C A; Oertle, T; Feldon, J

    1999-03-01

    Studies on the neurobiology of cocaine abuse suggest that cocaine directly modifies the activity of dopamine neurons projecting from the dopamine-synthesizing cells of the ventral tegmental area to the nucleus accumbens. The repeated use of cocaine produces persistent adaptations within the mesocorticolimbic system and the resulting changes in monoamine neurotransmission may lead to behavioral sensitization. The present series of experiments sought to determine the effects of the repeated, intermittent challenge that took place two days after discontinuation of the pretreatment regimen; (ii) the ex vivo levels of biogenic monoamines, choline and acetylcholine in the nucleus accumbens, the dorsolateral caudate nucleus, as well as the anterior cingulate, frontal motor, frontal somatosensory and pyriform cortices; and (iii) the degree of neurochemical relationship between the left and right hemispheres. The repeated administration of cocaine produced sensitized behavioral responses to a subsequent challenge. Neurochemical correlates of repeated cocaine administration were observed at the cortical level and included a significant decrease in serotonin levels in the left anterior cingulate and pyriform cortices and an increase in dopamine metabolism in the left pyriform cortex. Furthermore, a shift in the interhemispheric coupling coefficient matrix for dopamine neurotransmission was observed in both the pyriform cortex and nucleus accumbens of cocaine-sensitized animals suggesting that, in these structures, the two hemispheres are operating independently. These results demonstrate that cocaine produces alterations in specific dopaminergic and serotonergic pathways that arise from the mesencephalon and project towards both the anterior cingulate and pyriform cortices. PMID:10199606

  1. Effects of functional connectivity between anterior cingulate cortex and dorsolateral prefrontal cortex on executive control of attention in healthy individuals%前扣带回与背外侧额前皮质的功能连接影响执行控制

    Institute of Scientific and Technical Information of China (English)

    韩燕; 徐君海; 尹训涛; 张栋; 徐文坚; 逄增昌; 葛海涛; 刘树伟

    2013-01-01

    目的 探讨执行控制过程中健康人大脑前扣带回(ACC)与背外侧额前皮质(DLPFC)之间的功能连接及其与行为学表现之间的关系.方法 2011年1至5月25名17~20岁的健康志愿者在青岛大学医学院附属医院放射科进行3.0T功能磁共振扫描,采用注意网络测试(ANT)作为试验范式,计算ACC和DLPFC之间的功能连接,并与ANT的行为学得分做相关分析.结果 在执行控制过程中,背侧ACC(dACC)与两侧的DLPFC之间存在显著的功能连接,其中左侧的dACC和DLPFC之间的功能连接系数与执行控制的行为学得分存在显著负相关(r=-0.63;P <0.01).结论 ACC与DLPFC之间存在功能连接,并对注意的执行控制功能存在有利的影响,这有助于我们理解注意功能中相关脑区的功能整合作用.%Objective To explore the presence of functional connectivity between anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) during the manipulation of attentional network test (ANT) and its relationship with behavioral performance.Methods Functional magnetic resonance imaging was performed on 25 healthy subjects aged 17-20 years.And ANT was used as a paradigm.Functional connectivity between ACC-DLPFC was tested and correlation analysis conducted between functional connectivity coefficients and behavioral scores of ANT.Results Significant functional connectivity between the dorsal ACC (dACC) with bilateral DLPFC was found.Furthermore,event-related functional connectivity coefficients between left dACC and lefi DLPFC were negatively associated with the behavioral scores of executive control (r =-0.63 ; P < 0.01).Conclusion Our findings provide new evidence that ACC and DLPFC are functionally connected and such functional connectivity has advantageous influence on executive control function of attention so as to contribute to our understanding of the integrated role of these brain regions in attentional network.

  2. Altered SPECT 123I iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2016-02-01

    Full Text Available Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN in children. The purpose of this study was to examine cortical GABA(A-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single photon emission computed tomography (SPECT measurements using 123I iomazenil, which binds to GABA(A-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26 and the short form of the Profile of Mood States (POMS. Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil binding activity in cortical regions of interest (ROIs and psychometric profiles, and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil binding activity in the anterior posterior cingulate cortex (ACC. Higher POMS subscale scores were significantly associated with lower iomazenil binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC. Depression-Dejection, and Confusion POMS subscale scores, and total POMS score, showed interaction effects with brain regions in iomazenil binding activity. Decreased binding in the ACC and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in children

  3. Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency.

    NARCIS (Netherlands)

    S. Nieuwenhuis; N. Yeung; W. van den Wildenberg; K.R. Ridderinkhof

    2003-01-01

    Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a prepote

  4. Generation of theta activity (RSA) in the cingulate cortex of the rat

    OpenAIRE

    Holsheimer, J.

    1982-01-01

    Unit activity recorded from the cingulate cortex during theta rhythm shows periodic trains of spikes which are phase-locked to the local theta field potential waves. These cortical theta units were also shown to be correlated with hippocampal theta units. These findings, along with the fact that theta field potentials show a phase reversal within the cingulate cortex, lead to the conclusion that this cortical area is a source of theta activity.

  5. Visual and noxious electrical stimulus-evoked membrane-potential responses in anterior cingulate cortical neurons.

    Science.gov (United States)

    Ma, Li-Qing; Ning, Li; Wang, Zhiru; Wang, Ying-Wei

    2016-01-01

    Anterior cingulate cortex (ACC) is known to participate in numerous brain functions, such as memory storage, emotion, attention, as well as perception of acute and chronic pain. ACC-dependent brain functions often rely on ACC processing of various forms of environmental information. To understand the neural basis of ACC functions, previous studies have investigated ACC responses to environmental stimulation, particularly complex sensory stimuli as well as award and aversive stimuli, but this issue remains to be further clarified. Here, by performing whole-cell recording in vivo in anaesthetized adult rats, we examined membrane-potential (MP) responses of layer II/III ACC neurons that were evoked by a brief flash of visual stimulation and pain-related electrical stimulation delivered to hind paws. We found that ~54 and ~81 % ACC neurons exhibited excitatory MP responses, subthreshold or suprathreshold, to the visual stimulus and the electrical stimulus, respectively, with no cell showing inhibitory MP responses. We further found that the visually evoked ACC response could be greatly diminished by local lidocaine infusion in the visual thalamus, and only their temporal patterns but not amplitudes could be changed by large-scale visual cortical lesions. Our in vivo whole-cell recording data characterized in ACC neurons a visually evoked response, which was largely dependent on the visual thalamus but not visual cortex, as well as a noxious electrical stimulus-evoked response. These findings may provide potential mechanisms that are used for ACC functions on the basis of sensory information processing. PMID:27585569

  6. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    Science.gov (United States)

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC. PMID:27318139

  7. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    Science.gov (United States)

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC.

  8. Bone cancer pain induce anxiety-like behavior and high expression of NR2B subunit in anterior cingulate cortex of rats%骨癌痛诱发大鼠焦虑样行为和前扣带回脑区NR2B 的上调表达

    Institute of Scientific and Technical Information of China (English)

    赵宇; 刘瑾瑜

    2016-01-01

    Objective To investigate the effect of bone cancer pain on emotion and NMDA re-ceptor NR2B subunit expression level in anterior cingulate cortex (ACC)in rats.Methods One hun-dred and fifty healthy male Wistar rats weighing 200-250 g aged 3 months old were randomly divided into 3 groups (n = 50 in each group):sham operation group (group S),bone cancer pain group (group BCP),RO25-6981 group (group RO).The BCP model was established by inoculating Walker 256 breast cancer cells into right intra-tibial.Rats in group S were given the same dose of d-hanks. Group RO was injected intraperitoneally with RO25-6981 (5 mg/kg/d)on the day of inoculation, while rats in the group S and group BCP were given the same dose of normal saline.Mechanical with-drawal threshold (MWT)and thermal withdrawal latency (TWL)of right hind legs were measured on day 7,10,14 after inoculation respectively.Elevated plus-maze test was carried out to investigate the effect of bone cancer pain on emotion in rats after pain threshold detection,then the percentage of the times entering the open arms (OE)and the percentage of the time staying in the open arms (OT) duration the total period were evaluated.Then the anterior cingulate cortex tissue was removed to e-valuate the NR2B protein and mRNA expression levels by RT-PCR,Western blot and immunofluo-rescence methods on day 14 after elevated plus-maze test.Results All the parameters did not differ with significant difference between group S and group RO.MWT decreased and TWL shortened on day 7,10,14 after inoculation in group BCP compared with those before inoculation and those of group S and group RO.OE and OT in group BCP reduced remarkably than those before inoculation and those of group S and group RO.Relative absorbance of NR2B mRNA,the expression of NR2B pro-tein,average NR2B relative fluorescence intensity value is obviously higher than that of group S and group RO (P <0.05).Conclusion Bone cancer pain can induce pain-related aversion and anxiety

  9. Anterior cingulate cortico-hippocampal dysconnectivity in unaffected relatives of schizophrenia patients: a stochastic dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Yi-Bin Xi

    2016-07-01

    Full Text Available Familial risk plays a significant role in the etiology of schizophrenia (SZ. Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC, caudate, dorsolateral prefrontal cortex (DLPFC, and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients — according to the DSM-IV — were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI. We used stochastic dynamic causal modeling (sDCM to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ.

  10. Anterior Cingulate Cortico-Hippocampal Dysconnectivity in Unaffected Relatives of Schizophrenia Patients: A Stochastic Dynamic Causal Modeling Study.

    Science.gov (United States)

    Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong

    2016-01-01

    Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients-according to the DSM-IV-were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370

  11. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    Science.gov (United States)

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  12. Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents

    Directory of Open Access Journals (Sweden)

    Justine Nienke Pannekoek

    2014-01-01

    Full Text Available Adolescent depression is associated with increased risk for suicidality, social and educational impairment, smoking, substance use, obesity, and depression in adulthood. It is of relevance to further our insight in the neurobiological mechanisms underlying this disorder in the developing brain, as this may be essential to optimize treatment and prevention of adolescent depression and its negative clinical trajectories. The equivocal findings of the limited number of studies on neural abnormalities in depressed youth stress the need for further neurobiological investigation of adolescent depression. We therefore performed a voxel-based morphometry study of the hippocampus, amygdala, superior temporal gyrus, and anterior cingulate cortex (ACC in 26 treatment-naïve, clinically depressed adolescents and 26 pair-wise matched healthy controls. Additionally, an exploratory whole-brain analysis was performed. Clinically depressed adolescents showed a volume reduction of the bilateral dorsal ACC compared to healthy controls. However, no association was found between gray matter volume of the ACC and clinical severity scores for depression or anxiety. Our finding of a smaller ACC in clinically depressed adolescents is consistent with literature on depressed adults. Future research is needed to investigate if gray matter abnormalities precede or follow clinical depression in adolescents.

  13. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Directory of Open Access Journals (Sweden)

    Lauren A Demers

    Full Text Available Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD. The dorsal anterior cingulate cortex (dACC has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC completed the Toronto Alexithymia Scale 20 (TAS-20 and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology.

  14. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Science.gov (United States)

    Demers, Lauren A; Olson, Elizabeth A; Crowley, David J; Rauch, Scott L; Rosso, Isabelle M

    2015-01-01

    Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD). The dorsal anterior cingulate cortex (dACC) has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC) completed the Toronto Alexithymia Scale 20 (TAS-20) and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology. PMID:26439117

  15. In-group and out-group membership mediates anterior cingulate activation to social exclusion

    Directory of Open Access Journals (Sweden)

    Austen Krill

    2009-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI was employed to examine sensitivity to social exclusion in three conditions: same-race, other-race, and self-resembling faces. The anterior cingulate cortex (ACC, specifically the dorsal ACC, has been targeted as a key substrate in the physical and social pain matrix and was hypothesized to regulate activation response to various facial conditions. We show that participants demonstrated greatest ACC activation when being excluded by self-resembling and same-race faces, relative to other-race faces. Additionally, participants expressed greater distress and showed increased ACC activation as a result of exclusion in the same-race condition relative to the other-race condition. A positive correlation between implicit racial bias and activation in the amygdala was also evident. Implicit attitude about other-race faces partly explains levels of concern about exclusion by out-group individuals. These findings suggest that individuals are more distressed and their brain (i.e. neural alarm system responds with greater activation when being excluded by individuals whom they are more likely to share group membership with.

  16. Impact of the genome wide supported NRGN gene on anterior cingulate morphology in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Kazutaka Ohi

    Full Text Available BACKGROUND: The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls. METHODS: Genotype effects of rs12807809 were investigated on gray matter (GM and white matter (WM volumes using magnetic resonance imaging (MRI with a voxel-based morphometry (VBM technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls. RESULTS: Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC. Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32 than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls. CONCLUSIONS: Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.

  17. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    NARCIS (Netherlands)

    Arns, M.W.; Etkin, A.; Hegerl, U.; Williams, L.M.; DeBattista, C.; Palmer, D.M.; Fitzgerald, P.B.; Harris, A.; deBeuss, R.; Gordon, E.

    2015-01-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been link

  18. Impaired functional connectivity of anterior cingulated cortex in vascular cognitive impairment with no dementia explored by resting state functional magnetic resonance imaging%静息态功能磁共振观察非痴呆型血管性认知障碍前扣带回功能连接的特点

    Institute of Scientific and Technical Information of China (English)

    邓丽霞; 阮杏林; 黄华品; 林海龙; 邓艳青; 林婉挥

    2014-01-01

    Objective To study the functional connectivity (FC) pattern of anterior cingulated cortex in patients with vascular cognitive impairment with no dementia (VCIND) after subcortical ischemic vascular disease,and to analyze the relationship between FC and cognitive function.Methods Resting state functional magnetic resonance imaging (MRI) data were acquired from 14 patients with VCIND and 16 healthy volunteers with normal cognition.The altered functional connectivity pattern in VCIND was valuated by comparing to normal control.Then a correlation analysis was performed between the strength of FC and the Montreal Cognitive Assessment (MoCA) scores in patients with VCICD.Results (1) The visual space or executive function (3.14 ± 0.29),attention or computing power (3.79 ± 0.37),language (1.14 ± 0.21),directional power (4.14 ± 0.53) items,and the total points of MoCA (17.29 ± 1.53) in VCIND were significantly lower than that in the normal control group (4.93 ± 0.07,5.93 ± 0.07,2.93 ± 0.26,5.93 ± 0.07,27.57 ± 0.33 ; t =31.62,32.50,28.51,12.00,39.71,all P < 0.05).While the abstract ability or memory (4.36 ± 0.74),the naming (2.79 ± 0.11) items in VCIND were not significantly different with that in the control group (4.79 ± 0.80,2.93 ± 0.07 ; t =1.76,1.00,both P > 0.05).(2) Compared with the control group,the patients showed FC decrease between the anterior cingulated cortex and several brain regions,including the left middle temporal gyrus/left superior temporal gyrus,the left superior frontal gyrus/left middle frontal gyrus/left inferior frontal gyrus,the left posterior cingulated cortex/left precuneus,the left inferior parietal lobule/left angular gyrus,the right middle temporal gyrus/right superior temporal gyrus,the right orbit frontal cortex/right inferior frontal gyrus,the right inferior parietal lobule/right angular gyrums,and the right superior frontal gyrus/right middle frontal gyrus.There were also some regions that showed increased FC

  19. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    Science.gov (United States)

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  20. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  1. Posterior cingulated cortex functional connectivity in deficit schizophrenia: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    唐小伟

    2014-01-01

    Objective To explore the discrepancies of the network of resting brain functional connectivity related to posterior cingulated cortex(PCC)between deficit schizophrenia patients and normal control.Methods Thirty male patients of deficit schizophrenia,nondeficit schizophrenia and 30 healthy controls were enrolled,and the age,education level and sex were matched between three

  2. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    Science.gov (United States)

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-01

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion. PMID:25304498

  3. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    Science.gov (United States)

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-01

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion.

  4. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism

    Science.gov (United States)

    Balsters, Joshua H.; Mantini, Dante; Apps, Matthew A.J.; Eickhoff, Simon B.; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  5. PARCELLATION OF THE CINGULATE CORTEX AT REST AND DURING TASKS: A META-ANALYTIC CLUSTERING AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Diana M.E. Torta

    2013-06-01

    Full Text Available Anatomical, morphological and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The experimental studies, which included two active tasks and a resting state protocol, were used to control the results obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by applying a meta-analytic clustering (MaC to papers retrieved from the BrainMap database. The MaC is a meta-analytic connectivity driven parcellation technique recently developed by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern of co-activations during active tasks. The MaC results indicated that the cingulate cortex can be parcellated into three clusters. These clusters covered different percentages of the cingulate parenchyma and had a different density of foci, with the first cluster being more densely connected. The control experiments showed different clusterization results, suggesting that the co-activations of the cingulate cortex are highly dependent on the task that is tested. Our results highlight the importance of the cingulate cortex as a hub, which modifies its pattern of co-activations depending on the task requests and on the level of task complexity. The neurobiological meaning of these results is discussed.

  6. 认知行为治疗对首次发病轻中度抑郁症患者膝下前扣带回功能连接的影响%The effect of cognitive behavior therapy on functional connectivity of subgenual anterior cingulated cortex in first-episode treatment-na(i)ve mild to moderate patients with major depressive disorder

    Institute of Scientific and Technical Information of China (English)

    滕昌军; 王纯; 张宁; 马辉; 谭雅容; 肖朝勇; 高帅; 李鸿磊; 张文瑄

    2016-01-01

    目的 通过静息态功能连接探讨认知行为治疗(cognitive behavior therapy,CBT)早期对首次发病轻中度抑郁症患者膝下前扣带回(subgenual anterior cingulated cortex,sgACC)功能连接的影响,初步探讨CBT对抑郁症患者的神经作用机制.方法 对18例首次发病未服药轻中度抑郁症患者(抑郁症组)及相匹配的20名健康对照者(对照组)进行静息态功能磁共振扫描.抑郁症组接受6周CBT后进行第2次扫描.采用DPARSF和REST软件以sgACC为种子点进行基于感兴趣区的全脑功能连接分析并比较差异.结果 治疗前,抑郁症组sgACC与左侧额上回(t=-5.50)、左侧额中回(t=-3.78)、左侧角回(t=-3.38)功能连接低于对照组(均P<0.05).治疗后,抑郁症组sgACC与右侧额下回(蒙特利尔神经科学研究所坐标:x=42,y=33,z=6;t=3.61)、右侧小脑(蒙特利尔神经科学研究所坐标:x=36,y=-42,z=-48;t=4.08)功能连接较对照组增高(均P<0.05),与右侧额上回(t=-4.02)、左侧额上回(t=-3.67)、左侧内侧额上回(t=-4.38)、右侧楔前叶(t=-4.59)、左侧角回(t=-4.71)功能连接低于对照组(均P<0.05).治疗后,抑郁症组sgACC与左侧额下回(t=6.22)、右侧额下回(t=4.66)、左侧颞中回(t=4.76)、右侧颞中回(t=4.43)、左侧颞下回(t=5.33)、右侧缘上回(t=5.51)、左侧中央前回(t=4.68)和右侧小脑(t=3.88)功能连接较治疗前增加(均P<0.05).结论 CBT早期可能通过直接调节sgACC与额下回、默认网络内节点的功能连接而改善抑郁症患者反应抑制功能、降低自我参照性加工和反刍.%Objective To explore the neurobiological mechanism of cognitive behavior therapy(CBT) by detecting alterations of resting state functional connectivitiy of subgenual anterior cingulate cortex (sgACC) of CBT for first episode patients with mild to moderate depression.Methods Resting state fMRI data were collected from 18 first-episode treatment na(i)ve patients who suffered from major

  7. The study of 1H-Magnetic resonance spectroscope (1H-MRS) in the anterior cingulate cortex (ACC) in depressive patients with childhood neglect%伴儿童期忽略的抑郁症患者前扣带回氢质子波谱对照研究

    Institute of Scientific and Technical Information of China (English)

    彭红军; 李凌江; 贺忠

    2013-01-01

    目的 探讨伴儿童期忽略抑郁症患者前扣带回氢质子波谱物质代谢的特点.方法 采用儿童期创伤问卷(childhood trauma questionnaire,CTQ)对40例抑郁症患者进行儿童期忽略评估和分组,伴儿童期忽略抑郁症组19例患者和不伴儿童期忽略抑郁症组21例患者,以及20名正常对照行磁共振氢质子波谱(hydrogen magnetic resonance spectroscopy,1H-MRS)扫描,兴趣区选取双侧前扣带回(anterior cingulate cortex,ACC),检测N-乙酰天门冬氨酸(N-acetyl aspartate,NAA)、谷氨酸复合物(glutamate/glutamine,Glx)、胆碱(choline,Cho)、肌醇(myo-inositol,mI)及肌酸(creatine,Cr)水平,比较3组NAA/Cr、Glx/Cr、Cho/Cr和mI/Cr比值的差异.结果 伴与不伴儿童期忽略抑郁症组分别与对照组比较,左右两侧ACC均表现NAA/Cr降低(均P<0.010);2组右侧Glx/Cr均低于对照组(均P<0.001);伴儿童期忽略抑郁症组较不伴儿童期忽略抑郁症组左右两侧NAA/Cr差异均有统计学意义(左P<0.005,右P<0.01).结论 抑郁症患者前扣带回物质代谢不同于正常人;伴儿童期忽略抑郁症患者ACC的物质代谢存在特异性改变.

  8. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  9. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions.

    Science.gov (United States)

    Scheck, Simon M; Pannek, Kerstin; Raffelt, David A; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2015-01-01

    In this work we investigate the structural connectivity of the anterior cingulate cortex (ACC) and its link with impaired executive function in children with unilateral cerebral palsy (UCP) due to periventricular white matter lesions. Fifty two children with UCP and 17 children with typical development participated in the study, and underwent diffusion and structural MRI. Five brain regions were identified for their high connectivity with the ACC using diffusion MRI fibre tractography: the superior frontal gyrus, medial orbitofrontal cortex, rostral middle frontal gyrus, precuneus and isthmus cingulate. Structural connectivity was assessed in pathways connecting these regions to the ACC using three diffusion MRI derived measures: fractional anisotropy (FA), mean diffusivity (MD) and apparent fibre density (AFD), and compared between participant groups. Furthermore we investigated correlations of these measures with executive function as assessed by the Flanker task. The ACC-precuneus tract had significantly different MD (p < 0.0001) and AFD (p = 0.0072) between groups, with post-hoc analysis showing significantly increased MD in the right hemisphere of children with left hemiparesis compared with controls. The ACC-superior frontal gyrus tract had significantly different FA (p = 0.0049) and MD (p = 0.0031) between groups. AFD in this tract (contralateral to side of hemiparesis; right hemisphere in controls) showed a significant relationship with Flanker task performance (p = 0.0045, β = -0.5856), suggesting that reduced connectivity correlates with executive dysfunction. Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function. PMID:26640762

  10. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients.

    Science.gov (United States)

    Becerra, L; Veggeberg, R; Prescot, A; Jensen, J E; Renshaw, P; Scrivani, S; Spierings, E L H; Burstein, R; Borsook, D

    2016-01-01

    Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a 'complex' of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite 'complex' may confer more subtle but biological processes that are ongoing. The data also support the current theory that the

  11. Cigarette smoking leads to persistent and dose-dependent alterations of brain activity and connectivity in anterior insula and anterior cingulate.

    Science.gov (United States)

    Zanchi, Davide; Brody, Arthur L; Montandon, Marie-Louise; Kopel, Rotem; Emmert, Kirsten; Preti, Maria Giulia; Van De Ville, Dimitri; Haller, Sven

    2015-11-01

    Although many smokers try to quit smoking, only about 20-25 percent will achieve abstinence despite 6 months or more of gold-standard treatment. This low success rate suggests long-term changes in the brain related to smoking, which remain poorly understood. We compared ex-smokers to both active smokers and non-smokers using functional magnetic resonance imaging (fMRI) to explore persistent modifications in brain activity and network organization. This prospective and consecutive study includes 18 non-smokers (29.5 ± 6.7 years of age, 11 women), 14 smokers (≥10 cigarettes a day >2 years of smoking, 29.3 ± 6.0 years of age, 10 women) and 14 ex-smokers (>1 year of quitting 30.5 ± 5.7 years of age, 10 women). Participants underwent a block-design fMRI study contrasting smoking cue with control (neutral cue) videos. Data analyses included task-related general linear model, seed-based functional connectivity, voxel-based morphometry (VBM) of gray matter and tract-based spatial statistics (TBSS) of white matter. Smoking cue videos versus control videos activated the right anterior insula in ex-smokers compared with smokers, an effect correlating with cumulative nicotine intake (pack-years). Moreover, ex-smokers had a persistent decrease in functional connectivity between right anterior insula and anterior cingulate cortex (ACC) compared with control participants, but similar to active smokers. Potentially confounding alterations in gray or white matter were excluded in VBM and TBSS analyses. In summary, ex-smokers with long-term nicotine abstinence have persistent and dose-dependent brain network changes notably in the right anterior insula and its connection to the ACC.

  12. Anterior cingulate hyperactivations during negative emotion processing among men with schizophrenia and a history of violent behavior

    Directory of Open Access Journals (Sweden)

    Tikàsz A

    2016-06-01

    Full Text Available Andràs Tikàsz,1,2 Stéphane Potvin,1,2 Ovidiu Lungu,2–4 Christian C Joyal,5,6 Sheilagh Hodgins,2,5 Adrianna Mendrek,1,7 Alexandre Dumais1,2,5 1Centre de recherche de l’Institut Universitaire en Santé Mentale de Montréal, 2Department of Psychiatry, University of Montreal, 3Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal, 4Centre for Research in Aging, Donald Berman Maimonides Geriatric Centre, 5Institut Philippe-Pinel de Montréal, 6Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, 7Department of Psychology, Bishop’s University, Sherbrooke, QC, Canada Background: Evidence suggests a 2.1–4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. Objective: The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Methods: Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Results: Negative images elicited hyperactivations in the anterior cingulate cortex (ACC, left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited

  13. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    Science.gov (United States)

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  14. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Christopher G Davey

    2012-02-01

    Full Text Available Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected by depression.Methods: Eighteen patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterised task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task; MSIT. We used a psycho-physiological interactions (PPI approach to examine functional connectivity changes with subgenual ACC. Voxelwise statistical maps for each analysis were compared between the patient and control groups.Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive control regions in depressed patients.Conclusions: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes.

  15. Localization of brain activity by temporal anti-correlation with the posterior cingulate cortex.

    Science.gov (United States)

    Wang, Shijie; Zhang, Zhiqiang; Lu, Guangming; Luo, Limin

    2007-01-01

    The default mode network of brain function hypothesis has recently attracted more attention in the neuro-science community. In this study, we addressed a new data-driven method that based on temporal anti-correlation with the posterior cingulate cortex, one node of the default mode network, to localize the brain activation related to task and spontaneous epileptic discharges. The experimental results of real fMRI data analysis show not only the task-related activation region can be robustly recognized without any prior information on the functional activation paradigm, but also the epileptogenic zone in some patients with frequent interictal epileptiform discharges can be localized reliably using resting-state fMRI without EEG. PMID:18003186

  16. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts.

    Science.gov (United States)

    Dong, Guangheng; DeVito, Elise; Huang, Jie; Du, Xiaoxia

    2012-09-01

    Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with internet gaming addiction (IGA) using diffusion tensor imaging (DTI). IGA subjects (N = 16) showed higher fractional anisotropy (FA), indicating greater white matter integrity, in the thalamus and left posterior cingulate cortex (PCC) relative to healthy controls (N = 15). Higher FA in the thalamus was associated with greater severity of internet addiction. Increased regional FA in individuals with internet gaming addiction may be a pre-existing vulnerability factor for IGA, or may arise secondary to IGA, perhaps as a direct result of excessive internet game playing.

  17. Biochemistry of the cingulate cortex in autism: An MR spectroscopy study.

    Science.gov (United States)

    Libero, Lauren E; Reid, Meredith A; White, David M; Salibi, Nouha; Lahti, Adrienne C; Kana, Rajesh K

    2016-06-01

    Neuroimaging studies have uncovered structural and functional alterations in the cingulate cortex in individuals with autism spectrum disorders (ASD). Such abnormalities may underlie neurochemical imbalance. In order to characterize the neurochemical profile, the current study examined the concentration of brain metabolites in dorsal ACC (dACC) and posterior cingulate cortex (PCC) in high-functioning adults with ASD. Twenty high-functioning adults with ASD and 20 age-and-IQ-matched typically developing (TD) peers participated in this Proton magnetic resonance spectroscopy (1H-MRS) study. LCModel was used in analyzing the spectra to measure the levels of N-Acetyl aspartate (NAA), choline (Cho), creatine (Cr), and glutamate/glutamine (Glx) in dACC and PCC. Groups were compared using means for the ratio of each metabolite to their respective Cr levels as well as on absolute internal-water-referenced measures of each metabolite. There was a significant increase in Cho in PCC for ASD adults, with a marginal increase in dACC. A reduction in NAA/Cr in dACC was found in ASD participants, compared to their TD peers. No significant differences in Glx/Cr or Cho/Cr were found in dACC. There were no statistically significant group differences in the absolute concentration of NAA, Cr, Glx, or NAA/Cr, Cho/Cr, and Glx/Cr in the PCC. Differences in the metabolic properties of dACC compared to PCC were also found. Results of this study provide evidence for possible cellular and metabolic differences in the dACC and PCC in adults with ASD. This may suggest neuronal dysfunction in these regions and may contribute to the neuropathology of ASD. Autism Res 2016, 9: 643-657. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26526126

  18. The Effects of Haloperidol on Neuronal Firing in Rats Anterior Cingulate Cortex During Cost-Benefit Decision-Making Tasks%氟哌啶醇干扰决策过程中前扣带回神经元的放电活动

    Institute of Scientific and Technical Information of China (English)

    袁水霞; 徐晖; 李霞; 顾凯; 左洋凡; 卢钦钦; 代淑芬; 于萍

    2012-01-01

    运用在体多通道神经元放电同步记录技术,观察和记录大鼠在完成T-迷宫成本效益决策任务时前扣带回神经元放电和局部场电位的变化及氟哌啶醇对此的改变,在细胞水平上探讨前扣带回在决策中的作用以及多巴胺递质系统对决策的作用机制.结果显示,经过一段时间的训练,10只大鼠中有8只偏好高付出-高奖赏端,且在选择高付出-高奖赏端时的神经元放电频率要显著高于选择低付出-低奖赏端时的频率,同时局部场电位也呈现出事件相关性;腹腔注射多巴胺受体拮抗剂氟哌啶醇后,大鼠不再偏好高付出-高奖赏端,对该端的选择显著减少,而对低付出-低奖赏端的选择显著增加,且神经元的放电频率和局部场电位显著降低,神经元放电和局部场电位的特征性也消失.研究提示,前扣带回和多巴胺在努力相关决策任务中有着至关重要的作用.%There many studies have demonstrated that anterior cingulate cortex (ACC) and the level of dopamine (DA) in this brain area play a critical role in effort-based decision-making, a kind of cost-benefit decision-making. It has been found that haloperidol, a DA D2 receptor-antagonist, could disrupt the performance of rats in effort-based decision-making tasks. The present experimental study used on-line multi-channel neuronal recording technique to record both the neuronal firing frequency and local field potentials (LFPs) in ACC whenrats were performing effort-based decision-making tasks. We further investigate the effects of haloperidol on performance of rats.All rats (10 Wistar rats) were surgically implanted with a 2x8 microelectrode array in ACC before they learned behavioral task. After 1 week of recovery, rats were introduced to T-maze for training periods. There were two choices in this task, rats could choose to get two food pellets at the end of one arm without any barrier (low cost-low reward, LCLR) or by climbing a

  19. Deactivation of medial prefrontal and posterior cingulate cortex in anxiety disorders

    International Nuclear Information System (INIS)

    Objective: We used blood oxygenation level dependent-functional MR imaging (BOLD- fMRI) to explore the characteristics of deactivation patterns in patients with anxiety disorders and the underlying neural mechanism of this disease. Methods: Ten patients and ten healthy controls participated the experiments. All subjects performed the trait portion of the State-Trait anxiety Inventory (STAI-T) prior to the fMRI scans. The subjects underwent noninvasive functional magnetic resonance imaging while listening actively to emotionally neutral words alternating with no words (experiment 1) and threat related-words alternating with emotionally neutral words (experiment2). During fMRI scanning, subjects were instructed to closely listen to each stimuli word and to silently make a judgment of the word's valence. Data were analyzed with statistical parametric mapping (SPM 99). Individual and group analysis were conducted. Results: Mean STAI-T score was significantly higher for patients group than that of controls (58 ± 8 for patients group and 33 ± 5 for controls, t=8.3, P<0.01). Our fMRI data revealed sets of deactivation brain regions in Experiment for patients and healthy controls, however, the deactivation can be found in experiment 2 only for patients. Interestingly, all the observed deactivation patterns were similar. The related areas compromise medial prefrontal cortex(BA 10, BA 24/32), posterior cingulate (BA 31/30) and Bilateral inferior parietal cortex (MPFC) (BA 39/40), which nearly overlapping with the organized default model network. Further more, the mean t values in the MPFC area (BA 24/32) was significantly higher for control group than that of patient (5.1 controls and 4.2 for patients, t=4.8, P=0.006), conversely, the mean t values in the posterior cingulate cortex(PCC) area was significantly higher for patients l than that of controls (4.9 controls and 5.8 for patients, t=2.4, P=0.026). Conclusion: Our observations suggest that the default model network

  20. Cross-modal sensory processing in the anterior cingulate and medial prefrontal cortices.

    Science.gov (United States)

    Laurienti, Paul J; Wallace, Mark T; Maldjian, Joseph A; Susi, Christina M; Stein, Barry E; Burdette, Jonathan H

    2003-08-01

    One of the principal functions of the nervous system is to synthesize information from multiple sensory channels into a coherent behavioral and perceptual gestalt. A critical feature of this multisensory synthesis is the sorting and coupling of information derived from the same event. One of the singular features of stimuli conveying such information is their contextual or semantic congruence. Illustrating this fact, subjects are typically faster and more accurate when performing tasks that include congruent compared to incongruent cross-modal stimuli. Using functional magnetic resonance imaging, we demonstrate that activity in select brain areas is sensitive to the contextual congruence among cross-modal cues and to task difficulty. The anterior cingulate gyrus and adjacent medial prefrontal cortices showed significantly greater activity when visual and auditory stimuli were contextually congruent (i.e., matching) than when they were nonmatching. Although activity in these regions was also dependent on task difficulty, showing decreased activity with decreasing task difficulty, the activity changes associated with stimulus congruence predominated.

  1. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus.

    Science.gov (United States)

    Craigmyle, Nancy A

    2013-01-01

    During functional magnetic resonance imaging studies of meditation the cortical salience detecting and executive networks become active during "awareness of mind wandering," "shifting," and "sustained attention." The anterior cingulate (AC) is activated during "awareness of mind wandering." The AC modulates both the peripheral sympathetic nervous system (SNS) and the central locus coeruleus (LC) norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE) and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine and activates the LC, increasing C-NE. Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set-shifting, and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS, and LC with respect to their possible relevance to meditation.

  2. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus

    Directory of Open Access Journals (Sweden)

    Nancy Alker Craigmyle

    2013-10-01

    Full Text Available Abstract During fMRI studies of meditation the cortical salience detecting and executive networks become active during awareness of mind wandering, shifting and sustained attention. The anterior cingulate (AC is activated during awareness of mind wandering.The AC modulates both the peripheral sympathetic nervous system (SNS and the central locus coeruleus (LC norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine (P-NE and activates the LC, increasing C-NE.Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set shifting and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS and LC with respect to their possible relevance to meditation.

  3. Effects of serotonin depletion on punishment processing in the orbitofrontal and anterior cingulate cortices of healthy women.

    Science.gov (United States)

    Helmbold, K; Zvyagintsev, M; Dahmen, B; Bubenzer-Busch, S; Gaber, T J; Crockett, M J; Klasen, M; Sánchez, C L; Eisert, A; Konrad, K; Habel, U; Herpertz-Dahlmann, B; Zepf, F D

    2015-06-01

    Diminished synthesis of the neurotransmitter serotonin (5-HT) has been linked to disrupted impulse control in aversive contexts. However, the neural correlates underlying a serotonergic modulation of female impulsivity remain unclear. The present study investigated punishment-induced inhibition in healthy young women. Eighteen healthy female subjects (aged 20-31) participated in a double-blinded, counterbalanced, placebo-controlled, within subjects, repeated measures study. They were assessed on two randomly assigned occasions that were controlled for menstrual cycle phase. In a randomized order, one day, acute tryptophan depletion (ATD) was used to reduce 5-HT synthesis in the brain. On the other day, participants received a tryptophan-balanced amino acid load (BAL) as a control condition. Three hours after administration of ATD/BAL, neural activity was recorded during a modified Go/No-Go task implementing reward or punishment processes using functional magnetic resonance imaging (fMRI). Neural activation during No-Go trials in punishment conditions after BAL versus ATD administration correlated positively with the magnitude of central 5-HT depletion in the ventral and subgenual anterior cingulate cortices (ACC). Furthermore, neural activation in the medial orbitofrontal cortex (mOFC) and the dorsal ACC correlated positively with trait impulsivity. The results indicate reduced neural sensitivity to punishment after short-term depletion of 5-HT in brain areas related to emotion regulation (subgenual ACC) increasing with depletion magnitude and in brain areas related to appraisal and expression of emotions (mOFC and dorsal ACC), increasing with trait impulsivity. This suggests a serotonergic modulation of neural circuits related to emotion regulation, impulsive behavior, and punishment processing in females.

  4. Proton magnetic resonance spectroscopy of the anterior cingulate gyrus and caudate nucleus in schizophrenia patients versus healthy controls

    Institute of Scientific and Technical Information of China (English)

    Lutfi Incesu; Meral Baydin; Kerim Aslan; Baris Diren; Huseyin Sahin; Omer Boke; Senol Dane

    2011-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) permits the assessment of cerebral neurometabolites, such as N-acetylaspartate, choline, and creatine, in vivo and has been used to study schizophrenia. The present study used 1H-MRS to compare the spectroscopy change of N-acetylaspartate, creatine, and choline metabolite levels in the anterior cingulate and caudate nucleus of both schizophrenia patients and healthy controls, as well as between the left and right cerebral hemispheres in the schizophrenia patients. Results showed that N-acetylaspartate and creatine metabolite levels in the left anterior cingulate gyrus were significantly lower in the schizophrenia patients than in the healthy controls, indicating hypometabolism. In addition, choline concentration in the left caudate nucleus of schizophrenia patients was significantly lower than in the right caudate nucleus, indicating that it is necessary to study the cerebral lateralization of 1H-MRS in schizophrenia patients.

  5. Reduced muscarinic receptors in the cingulate cortex in mild Alzheimer's disease demonstrated with 123I iodo-dexetamide SPECT

    International Nuclear Information System (INIS)

    Full text: Parietal hypoperfusion/hypometabolism is a feature of Alzheimer's disease (AD). In early AD this may be preceded by changes in the posterior cingulate cortex, part of the cortico-limbic circuit with connections to the medial temporal lobes. Because cholinergic function is affected in early AD, we aimed to investigate the binding of the muscarinic receptor label, I-123 iodo-dexetamide (IDEX). We recruited 11 mild (MiniMental State Examination 27-24) and 11 moderate (MMSE 23-16) Alzheimer's patients and 10 age and sex-matched normal subjects. SPECT was performed six hours after injection of 185 MBq IDEX. Sections were reconstructed with attenuation correction using an iterative algorithm (OSEM). Statistical Parametric Mapping (SPM 99) was used to analyse the data. Because there is very little IDEX uptake in the cerebellum and thalamus it was necessary to edit them from the SPM PET template. Facial and scalp activity was also edited. Global scaling relative to the basal ganglia was used. Significant areas of decreased IDEX binding were found in the mild Alzheimer's group in the cingulate cortex with pvoxel = .08 and pcluster < 0.001, (particularly the posterior cingulate), left parietotemporal junction (pcluster = 0.01) and posteromedial left temporal lobe (pcluster = 0.03). In moderate AD extensive areas of decreased binding were found in the posterior cingulate, parietal and temporal lobes. The difference between the group-means at the posterior cingulate was 14% (mild AD) and 22% (moderate AD). Hypoperfusion, hypometabolism and now reduced cholinergic receptors have been demonstrated in the posterior cingulate in mild AD. Greater attention to this area may enhance the diagnostic value of functional imaging in early AD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. GABA concentration in posterior cingulate cortex predicts putamen response during resting state fMRI.

    Directory of Open Access Journals (Sweden)

    Jorge Arrubla

    Full Text Available The role of neurotransmitters in the activity of resting state networks has been gaining attention and has become a field of research with magnetic resonance spectroscopy (MRS being one of the key techniques. MRS permits the measurement of γ-aminobutyric acid (GABA and glutamate levels, the central biochemical constituents of the excitation-inhibition balance in vivo. The inhibitory effects of GABA in the brain have been largely investigated in relation to the activity of resting state networks in functional magnetic resonance imaging (fMRI. In this study GABA concentration in the posterior cingulate cortex (PCC was measured using single voxel spectra acquired with standard point resolved spectroscopy (PRESS from 20 healthy male volunteers at 3 T. Resting state fMRI was consecutively measured and the values of GABA/Creatine+Phosphocreatine ratio (GABA ratio were included in a general linear model matrix as a step of dual regression analysis in order to identify voxels whose neuroimaging metrics during rest were related to individual levels of the GABA ratio. Our data show that the connection strength of putamen to the default-mode network during resting state has a negative linear relationship with the GABA ratio measured in the PCC. These findings highlight the role of PCC and GABA in segregation of the motor input, which is an inherent condition that characterises resting state.

  7. Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance.

    Science.gov (United States)

    Lin, Pan; Yang, Yong; Jovicich, Jorge; De Pisapia, Nicola; Wang, Xiang; Zuo, Chun S; Levitt, James Jonathan

    2016-03-01

    Characterization of the default mode network (DMN) as a complex network of functionally interacting dynamic systems has received great interest for the study of DMN neural mechanisms. In particular, understanding the relationship of intrinsic resting-state DMN brain network with cognitive behaviors is an important issue in healthy cognition and mental disorders. However, it is still unclear how DMN functional connectivity links to cognitive behaviors during resting-state. In this study, we hypothesize that static and dynamic DMN nodal topology is associated with upcoming cognitive task performance. We used graph theory analysis in order to understand better the relationship between the DMN functional connectivity and cognitive behavior during resting-state and task performance. Nodal degree of the DMN was calculated as a metric of network topology. We found that the static and dynamic posterior cingulate cortex (PCC) nodal degree within the DMN was associated with task performance (Reaction Time). Our results show that the core node PCC nodal degree within the DMN was significantly correlated with reaction time, which suggests that the PCC plays a key role in supporting cognitive function. PMID:25904156

  8. What about the self is processed in the posterior cingulate cortex?

    Directory of Open Access Journals (Sweden)

    Judson eBrewer

    2013-10-01

    Full Text Available In the past decade, neuroimaging research has begun to identify key brain regions involved in self-referential processing, most consistently midline structures such as the posterior cingulate cortex (PCC. The majority of studies have employed cognitive tasks such as judgment about trait adjectives or mind-wandering, that have been associated with increased PCC activity. Conversely, tasks that share an element of present centered attention (being on task, ranging from working memory to meditation, have been associated with decreased PCC activity. Given the complexity of cognitive processes that likely contribute to these tasks, the specific contribution of the PCC to self-related processes still remains unknown. Building on this prior literature, recent studies have employed sampling methods that more precisely link subjective experience to brain activity, such as real-time fMRI neurofeedback. This recent work suggests that PCC activity may represent a sub-component cognitive process of self-reference – getting caught up in one’s experience. For example, getting caught up in a drug craving or a particular viewpoint. In this paper, we will review evidence across a number of different domains of cognitive neuroscience that converges in activation and deactivation of the PCC including recent neurophenomenological studies of PCC activity using real-time fMRI neurofeedback.

  9. Pregnancy and maternal behavior induce changes in glia, glutamate and its metabolism within the cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Natalina Salmaso

    Full Text Available An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2 occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS, and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience.

  10. Scene construction impairments in Alzheimer's disease - A unique role for the posterior cingulate cortex.

    Science.gov (United States)

    Irish, Muireann; Halena, Stephanie; Kamminga, Jody; Tu, Sicong; Hornberger, Michael; Hodges, John R

    2015-12-01

    Episodic memory dysfunction represents one of the most prominent and characteristic clinical features of patients with Alzheimer's disease (AD), attributable to the degeneration of medial temporal and posterior parietal regions of the brain. Recent studies have demonstrated marked impairments in the ability to envisage personally relevant events in the future in AD. It remains unclear, however, whether AD patients can imagine fictitious scenes free from temporal constraints, a process that is proposed to rely fundamentally upon the integrity of the hippocampus. The objective of the present study was to investigate the capacity for atemporal scene construction, and its associated neural substrates, in AD. Fourteen AD patients were tested on the scene construction task and their performance was contrasted with 14 age- and education-matched healthy older Control participants. Scene construction performance was strikingly compromised in the AD group, with significant impairments evident for provision of contextual details, spatial coherence, and the overall richness of the imagined experience. Voxel-based morphometry analyses based on structural MRI revealed significant associations between scene construction capacity and atrophy in posterior parietal and lateral temporal brain structures in AD. In contrast, scene construction performance in Controls was related to integrity of frontal, parietal, and medial temporal structures, including the parahippocampal gyrus and posterior hippocampus. The posterior cingulate cortex (PCC) emerged as the common region implicated for scene construction performance across participant groups. Our study highlights the importance of regions specialised for spatial and contextual processing for the construction of atemporal scenes. Damage to these regions in AD compromises the ability to construct novel scenes, leading to the recapitulation of content from previously experienced events.

  11. Abnormal function of the posterior cingulate cortex in heroin addicted users during resting-state and drug-cue stimulation task

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; YANG Wei-chuan; WANG Ya-rong; HUANG Yu-fang; LI Wei; ZHU Jia

    2013-01-01

    Background Previous animal and neuroimaging studies have demonstrated that brain function in heroin addicted users is impaired.However,the posterior cingulate cortex (PCC) has not received much attention.The purpose of this study was to investigate whether chronic heroin use is associated with craving-related changes in the functional connectivity of the PCC of heroin addicted users.Methods Fourteen male adult chronic heroin users and fifteen age and gender-matched healthy subjects participated in the present study.The participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and a cue-induced craving task fMRI scan.The activated PCC was identified in the cue-induced craving task by means of a group contrast test.Functional connectivity was analyzed based on resting-state fMRI data in order to determine the correlation between brain regions.The relationship between the connectivity of specific regions and heroin dependence was investigated.Results The activation of PCC,bilateral anterior cingulate cortex,caudate,putamen,precuneus,and thalamus was significant in the heroin group compared to the healthy group in the cue-induced craving task.The detectable functional connectivity of the heroin users was stronger between the PCC and bilateral insula,bilateral dorsal striatum,right inferior parietal Iobule (IPL) and right supramarginal gyrus (P<0.001) compared to that of the healthy subjects in the resting-state data analysis.The strength of the functional connectivity,both for the PCC-insula (r=0.60,P <0.05) and for PCC-striatum (r=0.58,P<0.05),was positively correlated with the duration of heroin use.Conclusion The altered functional connectivity patterns in the PCC-insula and PCC-striatum areas may be regarded as biomarkers of brain damage severity in chronic heroin users.

  12. Changes in the default mode network in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users

    Institute of Scientific and Technical Information of China (English)

    Wenfu Hu; Xiangming Fu; Ruobing Qian; Xiangpin Wei; Xuebing Ji; Chaoshi Niu

    2012-01-01

    The default mode network is associated with senior cognitive functions in humans. In this study, we performed independent component analysis of blood oxygenation signals from 14 heroin users and 13 matched normal controls in the resting state through functional MRI scans. Results showed that the default mode network was significantly activated in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users, and an enhanced activation signal was observed in the right inferior parietal lobule (P < 0.05, corrected for false discovery rate). Experimental findings indicate that the default mode network is altered in heroin users.

  13. NK-3 receptor activation depolarizes and induces an after-depolarization in pyramidal neurons in gerbil cingulate cortex

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2004-01-01

    The involvement of tachykinins in cortical function is poorly understood. To study the actions of neurokinin-3 (NK3) receptor activation in frontal cortex, whole cell patch clamp recordings were performed from pyramidal neurons in slices of cingulate cortex from juvenile gerbils. Senktide (500n......M), a selective NK3 receptor agonist, induced a transient increase in spontaneous EPSPs in layer V pyramidal neurons, accompanied by a small depolarization ( approximately 4 mV). EPSPs during senktide had a larger amplitude and faster 10-90% rise time than during control. Senktide induced a transient...... depolarization in layer II/III pyramidal neurons, which often reached threshold for spikes. The depolarization ( approximately 6 mV) persisted in TTX, and was accompanied by an increase in input resistance. Senktide also transiently induced a slow after-depolarization, which appeared following a depolarizing...

  14. Abulia following penetrating brain injury during endoscopic sinus surgery with disruption of the anterior cingulate circuit: Case report

    Directory of Open Access Journals (Sweden)

    Login Ivan S

    2006-01-01

    Full Text Available Abstract Background It is common knowledge that the frontal lobes mediate complex human behavior and that damage to these regions can cause executive dysfunction, apathy, disinhibition and personality changes. However, it is less well known that subcortical structures such as the caudate and thalamus are part of functionally segregated fronto-subcortical circuits, that can also alter behavior after injury. Case presentation We present a 57 year old woman who suffered penetrating brain injury during endoscopic sinus surgery causing right basal ganglia injury which resulted in an abulic syndrome. Conclusion Abulia does not result solely from cortical injury but can occur after disruption anywhere in the anterior cingulate circuit – in the case of our patient, most prominently at the right caudate.

  15. Dysfunctional activation and brain network profiles in youth with Obsessive-Compulsive Disorder: A focus on the dorsal anterior cingulate during working memory

    Directory of Open Access Journals (Sweden)

    Vaibhav A. Diwadkar

    2015-03-01

    Full Text Available Brain network dysfunction is emerging as a central biomarker of interest in psychiatry, in large part because psychiatric conditions are increasingly seen as disconnection syndromes. Understanding dysfunctional brain network profiles in task-active states provides important information on network engagement in an experimental context. This in turn may be predictive of many of the cognitive and behavioral deficits associated with complex behavioral phenotypes. Here we investigated brain network profiles in youth with obsessive-compulsive disorder (OCD, contrasting them with a group of age-comparable controls. Network interactions were assessed during simple working memory: in particular, we focused on the modulation by the dorsal anterior cingulate cortex (dACC of cortical, striatal and thalamic regions. The focus on the dACC was motivated by its hypothesized role in the pathophysiology of OCD. However, its task-active network signatures have not been investigated before. Network interactions were modeled using psychophysiological interaction, a simple directional model of seed to target brain interactions. Our results indicate that OCD is characterized by significantly increased dACC modulation of cortical, striatal and thalamic targets during working memory, and that this aberrant increase in OCD patients is maintained regardless of working memory demand. The results constitute compelling evidence of dysfunctional brain network interactions in OCD and suggest that these interactions may be related to a combination of network inefficiencies and dACC hyper-activity that has been associated with the phenotype.

  16. Women with multiple chemical sensitivity have increased harm avoidance and reduced 5-HT(1A receptor binding potential in the anterior cingulate and amygdala.

    Directory of Open Access Journals (Sweden)

    Lena Hillert

    Full Text Available Multiple chemical sensitivity (MCS is a common condition, characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the underlying mechanisms are unknown. Contrary to the expectations it was recently found that persons with MCS activate the odor-processing brain regions less than controls, while their activation of the anterior cingulate cortex (ACC is increased. The present follow-up study was designed to test the hypotheses that MCS subjects have increased harm avoidance and deviations in the serotonin system, which could render them intolerant to environmental odors. Twelve MCS and 11 control subjects, age 22-44, all working or studying females, were included in a PET study where 5-HT(1A receptor binding potential (BP was assessed after bolus injection of [(11C]WAY100635. Psychological profiles were assessed by the Temperament and Character Inventory and the Swedish universities Scales of Personality. All MCS and 12 control subjects were also tested for emotional startle modulation in an acoustic startle test. MCS subjects exhibited significantly increased harm avoidance, and anxiety compared to controls. They also had a reduced 5-HT(1A receptor BP in amygdala (p = 0.029, ACC (p = 0.005 (planned comparisons, significance level 0.05, and insular cortex (p = 0.003; significance level p<0.005 with Bonferroni correction, and showed an inverse correlation between degree of anxiety and the BP in the amygdala (planned comparison. No group by emotional category difference was found in the startle test. Increased harm avoidance and the observed changes in the 5-HT(1A receptor BP in the regions processing harm avoidance provides a plausible pathophysiological ground for the symptoms described in MCS, and yields valuable information for our general understanding of idiopathic environmental intolerances.

  17. Greater anterior cingulate activation and connectivity in response to visual and auditory high-calorie food cues in binge eating: Preliminary findings.

    Science.gov (United States)

    Geliebter, Allan; Benson, Leora; Pantazatos, Spiro P; Hirsch, Joy; Carnell, Susan

    2016-01-01

    Obese individuals show altered neural responses to high-calorie food cues. Individuals with binge eating [BE], who exhibit heightened impulsivity and emotionality, may show a related but distinct pattern of irregular neural responses. However, few neuroimaging studies have compared BE and non-BE groups. To examine neural responses to food cues in BE, 10 women with BE and 10 women without BE (non-BE) who were matched for obesity (5 obese and 5 lean in each group) underwent fMRI scanning during presentation of visual (picture) and auditory (spoken word) cues representing high energy density (ED) foods, low-ED foods, and non-foods. We then compared regional brain activation in BE vs. non-BE groups for high-ED vs. low-ED foods. To explore differences in functional connectivity, we also compared psychophysiologic interactions [PPI] with dorsal anterior cingulate cortex [dACC] for BE vs. non-BE groups. Region of interest (ROI) analyses revealed that the BE group showed more activation than the non-BE group in the dACC, with no activation differences in the striatum or orbitofrontal cortex [OFC]. Exploratory PPI analyses revealed a trend towards greater functional connectivity with dACC in the insula, cerebellum, and supramarginal gyrus in the BE vs. non-BE group. Our results suggest that women with BE show hyper-responsivity in the dACC as well as increased coupling with other brain regions when presented with high-ED cues. These differences are independent of body weight, and appear to be associated with the BE phenotype. PMID:26275334

  18. Right anterior cingulate gyrus in encephalic region associated with integrating and processing Chinese words information in working memory: A functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Daxing Wu; Shuqiao Yao; Lirong Yan; Changlian Tan; Dewen Hu; Wai Cheong Carl Tam; Yadong Liu; Zongtan Zhou; Xiang Wang; Ding Liu

    2006-01-01

    scanner (GE Signa Twinspeed) (slice thickness 5 mm, slice gap 1.5 mm, slice parallel to line between pars geniculate and splenium in corpus callosum from corona capitis to superior part of cerebellum, totally 16 to 18 layers). ③The obtained images were pre-processed and statistically analysed with SPM 99 software. The procedure included timeslice adjusted, realigned, nomalized and smoothed. According to experimental task, data from each subject were analysed to obtain t value of each voxel. Brain activation image was got by Student's t test and statistic was presented by pseudo-color. Statistical parameter image was formed by overlapping brain activation image on three-dimensional structure image, and the threshold value was set at P< 0.05 with ten or more continous voxels (T ≥ 4.64, K ≥ 10 voxels). The brain activation images of all the subjects were calculated and overlapped into mean brain activation images. The regions with different activation density were found out. The activation voxels in regions-of-interest were checked to calculate a laterality index for each condition. The negative value indicated right hemisphere dominance.MAIN OUTCOME MEASURES: fMRI activation and laterality coefficient of Chinese numerial working task. RESULTS: Thirteen ealthy subjects participated in the result analysis. ①fMRI activation of Chinese numerial working task: The results showed that the working memory task with Chinese words not only activated left cerebral cortex including left superior frontal gyrus (BA6/10), left middle frontal gyrus (BA9), left inferior frontal gyrus (BA45/9/47), but also activated right cerebral cortex including right middle frontal gyrus (BA10/46/8), right inferior frontal lobe (BA47). Specially, peak activation was located in right anterior cingulate gyrus (BA32) with an activation volume of 879 (voxels). It indicated that superior, middle and inferior frontal gyrus, bilateral Broca regions and anterior cingutate involved in the working memory

  19. Immunocytochemical heterogeneity of somatostatin-expressing GABAergic interneurons in layers II and III of the mouse cingulate cortex: A combined immunofluorescence/design-based stereologic study.

    Science.gov (United States)

    Riedemann, Therese; Schmitz, Christoph; Sutor, Bernd

    2016-08-01

    Many neurological diseases including major depression and schizophrenia manifest as dysfunction of the GABAergic system within the cingulate cortex. However, relatively little is known about the properties of GABAergic interneurons in the cingulate cortex. Therefore, we investigated the neurochemical properties of GABAergic interneurons in the cingulate cortex of FVB-Tg(GadGFP)45704Swn/J mice expressing green fluorescent protein (GFP) in a subset of GABAergic interneurons (GFP-expressing inhibitory interneurons [GINs]) by means of immunocytochemical and design-based stereologic techniques. We found that GINs represent around 12% of all GABAergic interneurons in the cingulate cortex. In contrast to other neocortical areas, GINs were only found in cortical layers II and III. More than 98% of GINs coexpressed the neuropeptide somatostatin (SOM), but only 50% of all SOM + neurons were GINs. By analyzing the expression of calretinin (CR), calbindin (CB), parvalbumin, and various neuropeptides, we identified several distinct GIN subgroups. In particular, we observed coexpression of SOM with CR and CB. In addition, we found neuropeptide Y expression almost exclusively in those GINs that coexpressed SOM and CR. Thus, with respect to the expression of calcium-binding proteins and neuropeptides, GINs are surprisingly heterogeneous in the mouse cingulate cortex, and the minority of GINs express only one marker protein or peptide. Furthermore, our observation of overlap between the SOM + and CR + interneuron population was in contrast to earlier findings of non-overlapping SOM + and CR + interneuron populations in the human cortex. This might indicate that findings in mouse models of neuropsychiatric diseases may not be directly transferred to human patients. J. Comp. Neurol. 524:2281-2299, 2016. © 2015 Wiley Periodicals, Inc. PMID:26669716

  20. Development of anterior cingulate functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Kelly, A M Clare; Di Martino, Adriana; Uddin, Lucina Q; Shehzad, Zarrar; Gee, Dylan G; Reiss, Philip T; Margulies, Daniel S; Castellanos, F Xavier; Milham, Michael P

    2009-03-01

    Human cerebral development is remarkably protracted. Although microstructural processes of neuronal maturation remain accessible only to morphometric post-mortem studies, neuroimaging tools permit the examination of macrostructural aspects of brain development. The analysis of resting-state functional connectivity (FC) offers novel possibilities for the investigation of cerebral development. Using seed-based FC methods, we examined the development of 5 functionally distinct cingulate-based intrinsic connectivity networks (ICNs) in children (n = 14, 10.6 +/- 1.5 years), adolescents (n = 12, 15.4 +/- 1.2) and young adults (n=14, 22.4 +/- 1.2). Children demonstrated a more diffuse pattern of correlation with voxels proximal to the seed region of interest (ROI) ("local FC"), whereas adults exhibited more focal patterns of FC, as well as a greater number of significantly correlated voxels at long distances from the seed ROI. Adolescents exhibited intermediate patterns of FC. Consistent with evidence for different maturational time courses, ICNs associated with social and emotional functions exhibited the greatest developmental effects. Our findings demonstrate the utility of FC for the study of developing functional organization. Moreover, given that ICNs are thought to have an anatomical basis in neuronal connectivity, measures of FC may provide a quantitative index of brain maturation in healthy subjects and those with neurodevelopmental disorders.

  1. Prenatal nicotine exposure mouse model showing hyperactivity, reduced cingulate cortex volume, reduced dopamine turnover and responsiveness to oral methylphenidate treatment

    Science.gov (United States)

    Zhu, Jinmin; Zhang, Xuan; Xu, Yuehang; Spencer, Thomas J.; Biederman, Joseph; Bhide, Pradeep G.

    2012-01-01

    Cigarette smoking, nicotine replacement therapy and smokeless tobacco use during pregnancy are associated with cognitive disabilities later in life in children exposed prenatally to nicotine. The disabilities include attention deficit hyperactivity disorder (ADHD) and conduct disorder. However, the structural and neurochemical bases of these cognitive deficits remain unclear. Using a mouse model we show that prenatal nicotine exposure produces hyperactivity, selective decreases in cingulate cortical volume and radial thickness as well as decreased dopamine turnover in the frontal cortex. The hyperactivity occurs in both male and female offspring and peaks during the “active” or dark phase of the light-dark cycle. These features of the mouse model closely parallel the human ADHD phenotype, whether or not the ADHD is associated with prenatal nicotine exposure. A single oral, but not intraperitoneal, administration of a therapeutic equivalent dose (0.75 mg/kg) of methylphenidate decreases the hyperactivity and increases the dopamine turnover in the frontal cortex of the prenatally nicotine exposed mice, once again paralleling the therapeutic effects of this compound in ADHD subjects. Collectively, our data suggest that the prenatal nicotine exposure mouse model has striking parallels to the ADHD phenotype not only in behavioral, neuroanatomical and neurochemical features but also with respect to responsiveness of the behavioral phenotype to methylphenidate treatment. The behavioral, neurochemical and anatomical biomarkers in the mouse model could be valuable for evaluating new therapies for ADHD and mechanistic investigations into its etiology. PMID:22764249

  2. Opposite effective connectivity in the posterior cingulate and medial prefrontal cortex between first-episode schizophrenic patients with suicide risk and healthy controls.

    Directory of Open Access Journals (Sweden)

    Huiran Zhang

    Full Text Available OBJECTIVE: The schizophrenic patients with high suicide risk are characterized by depression, better cognitive function, and prominent positive symptoms. However, the neurobiological basis of suicide attempts in schizophrenia is not clear. The suicide in schizophrenia is implicated in the defects in emotional process and decision-making, which are associated with prefrontal-cingulate circuit. In order to explore the possible neurobiological basis of suicide in schizophrenia, we investigated the correlation of prefrontal-cingulate circuit with suicide risk in schizophrenia via dynamic casual modelling. METHOD: Participants were 33 first-episode schizophrenic patients comprising of a high suicide risk group (N = 14 and a low suicide risk group (N = 19. A comparison group of healthy controls (N = 15 were matched for age, gender and education. N-back tasking functional magnetic resonance imaging data was collected. RESULTS: Compared with healthy controls group, the two patients groups showed decreased task-related suppression during 2-back task state versus baseline state in the left posterior cingulate and medial prefrontal cortex; the hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex existed in both schizophrenic patients groups, but hypo-connectivity in the opposite direction only existed in the schizophrenic patients group with high suicide risk. CONCLUSIONS: The hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex may suggest that the abnormal effective connectivity was associated with risk for schizophrenia. The hypo-connectivity in the opposite direction may represent a possible correlate of increased vulnerability to suicide attempt.

  3. Decreases in blood perfusion of the anterior cingulate gyri in Anorexia Nervosa Restricters assessed by SPECT image analysis

    Directory of Open Access Journals (Sweden)

    Tsutsui Junko

    2001-06-01

    Full Text Available Abstract Background It is possible that psychopathological differences exist between the restricting and bulimic forms of anorexia nervosa. We investigated localized differences of brain blood flow of anorexia nervosa patients using SPECT image analysis with statistic parametric mapping (SPM in an attempt to link brain blood flow patterns to neurophysiologic characteristics. Methods The subjects enrolled in this study included the following three groups: pure restrictor anorexics (AN-R, anorexic bulimics (AN-BP, and healthy volunteers (HV. All images were transformed into the standard anatomical space of the stereotactic brain atlas, then smoothed. After statistical analysis of each brain image, the relationships among images were evaluated. Results SPM analysis of the SPECT images revealed that the blood flow of frontal area mainly containing bilateral anterior cingulate gyri (ACC was significantly decreased in the AN-R group compared to the AN-BP and HV groups. Conclusions These findings suggest that some localized functions ofthe ACCare possibly relevant to the psychopathological aspects of AN-R.

  4. Anterior Cingulate Cortex Activation Is Related to Learning Potential on the WCST in Schizophrenia Patients

    Science.gov (United States)

    Pedersen, Anya; Wilmsmeier, Andreas; Wiedl, Karl H.; Bauer, Jochen; Kueppers, Kerstin; Koelkebeck, Katja; Kohl, Waldemar; Kugel, Harald; Arolt, Volker; Ohrmann, Patricia

    2012-01-01

    The remediation of executive function in patients with schizophrenia is important in rehabilitation because these skills affect the patient's capacity to function in the community. There is evidence that instructional techniques can improve deficits in the Wisconsin Card Sorting Test (WCST) in some schizophrenia patients. We used a standard…

  5. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    NARCIS (Netherlands)

    Piai, V.; Roelofs, A.P.A.; Acheson, D.J.; Takashima, A.

    2013-01-01

    ulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and mon

  6. Frontal and anterior cingulate activation during overt verbal fluency in patients with first episode psychosis Ativação frontal e do cíngulo anterior durante tarefa de fluência verbal em pacientes em primeiro episódio psicótico

    Directory of Open Access Journals (Sweden)

    Maristela Schaufelberger

    2005-09-01

    Full Text Available OBJECTIVE: Functional neuroimaging studies using phonological verbal fluency tasks allow the assessment of neural circuits relevant to the neuropsychology of psychosis. There is evidence that the prefrontal cortex and anterior cingulate gyrus present different activation patterns in subjects with chronic schizophrenia relative to healthy controls. We assessed the functioning in these brain regions during phonological verbal fluency in subjects with recent-onset functional psychoses, using functional magnetic resonance imaging (FMRI. METHODS: Seven patients with functional psychoses (3 schizophreniform, 4 affective and 9 healthy controls were studied. We compared functional magnetic resonance images acquired during articulation of words beginning with letters classified as easy for word production in Portuguese. Statistical comparisons were performed using non-parametric tests. RESULTS: There were no differences between patients and controls in task performance. Controls showed greater activation than patients in the left rostral anterior cingulate gyrus and right inferior prefrontal cortex, whereas patients showed stronger activation than controls in a more dorsal part of the anterior cingulate gyrus bilaterally and in a more superior portion of the right prefrontal cortex. CONCLUSION: Our preliminary findings of attenuated engagement of inferior prefrontal cortex and anterior cingulate gyrus in patients with recent onset psychosis during phonological verbal fluency are consistent with those of previous studies. The greater activation found in other parts of the anterior cingulate gyrus and prefrontal cortex in patients may be related to a compensatory response that is required to maintain normal task performance, and suggests a pattern of disorganized activity of different functional anterior cingulate gyrus units in association with psychotic conditions.OBJETIVO: Estudos de neuroimagem funcional empregando tarefa de fluência verbal fonol

  7. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    OpenAIRE

    Hiroki eNakata; Kiwako eSakamoto; Ryusuke eKakigi

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI), and neurophysiological methods, such as magnetoencephalography (MEG) and electroencephalography (EEG), have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural response...

  8. Functional magnetic resonance imaging evaluation of visual cortex activation in patients with anterior visual pathway lesions

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Song; Guohua Wang; Tong Zhang; Lei Feng; Peng An; Yueli Zhu

    2012-01-01

    The aim of this study was to examine the secondary visual cortex functional disorder in patients with glaucoma and large pituitary adenoma by functional magnetic resonance imaging, and to determine the correlation between visual field defect and primary visual cortex activation. Results showed that single eye stimulation resulted in bilateral visual cortex activation in patients with glaucoma or large pituitary adenoma. Compared with the normal control group, the extent and intensity of visual cortex activation was decreased after left and right eye stimulation, and functional magnetic resonance imaging revealed a correlation between visual field defects and visual cortex activation in patients with glaucoma and large pituitary adenoma. These functional magnetic resonance imaging data suggest that anterior optic pathway lesions can cause secondary functional disorder of the visual cortex, and that visual defects are correlated with visual cortex activation.

  9. Feelings of warmth correlate with neural activity in right anterior insular cortex.

    Science.gov (United States)

    Olausson, H; Charron, J; Marchand, S; Villemure, C; Strigo, I A; Bushnell, M C

    2005-11-25

    The neural coding of perception can differ from that for the physical attributes of a stimulus. Recent studies suggest that activity in right anterior insular cortex may underlie thermal perception, particularly that of cold. We now examine whether this region is also important for the perception of warmth. We applied cutaneous warm stimuli on the left leg (warmth) in normal subjects (n = 7) during functional magnetic resonance imaging (fMRI). After each stimulus, subjects rated their subjective intensity of the stimulus using a visual analogue scale (VAS), and correlations were determined between the fMRI signal and the VAS ratings. We found that intensity ratings of warmth correlated with the fMRI signal in the right (contralateral to stimulation) anterior insular cortex. These results, in conjunction with previous reports, suggest that the right anterior insular cortex is important for different types of thermal perception.

  10. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mark R. Winter

    2015-10-01

    Full Text Available Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.

  11. Inter-individual decision-making differences in the effects of cingulate, orbitofrontal and prelimbic cortex lesions in a rat gambling task

    Directory of Open Access Journals (Sweden)

    Marion eRivalan

    2011-04-01

    Full Text Available Deficits in decision-making is a hallmark of several neuropsychiatric pathologies but is also observed in some healthy individuals that could be at risk to develop these pathologies. Poor decision-making can be revealed experimentally in humans using the Iowa Gambling Task (IGT, through the inability to select options that ensure long term gains over larger immediate gratification. We devised an analogous task in the rat, based on uncertainty and conflicting choices, the Rat Gambling Task (RGT. It similarly reveals good and poor performers within a single session. Using this task, we investigated the role of three prefrontal cortical areas, the orbitofrontal, prelimbic and cingulate cortices on decision-making, taking into account inter-individual variability in behavioural performances. Here, we show that these three distinct subregions are differentially engaged to solve the RGT. Cingulate cortex lesion mainly delayed good decision-making whereas prelimbic and orbitofrontal cortices induced different patterns of inadapted behaviors in the task, indicating varying degree of functional specialization of these three areas. Their contribution largely depended on the level of adaptability demonstrated by each individual to the constraint of the task. The inter-individual differences in prefrontal cortex areas recruitment during decision-making revealed in this study open new perspectives in the search for vulnerability markers to develop disorders related to executive dysfunctioning.

  12. Increased anterior cingulate and temporal lobe activity during visuospatial working memory in children and adolescents with schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); D. Hongwanishkul (Donaya); M. Schmidt (Manfred)

    2011-01-01

    textabstractObjective: Similar to adults, children and adolescents with schizophrenia present with significant working memory (WkM) deficits. However, unlike adults, findings of abnormal activity in the prefrontal cortex in early-onset schizophrenia (EOS) are not consistently reported. Since WkM con

  13. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David;

    2009-01-01

    was measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35...

  14. Neural Selectivity in Anterior Inferotemporal Cortex for Morphed Photographic Images During Behavioral Classification or Fixation

    OpenAIRE

    Liu, Yan; Jagadeesh, Bharathi

    2008-01-01

    Anterior inferotemporal cortex (aIT) contributes to the ability to discriminate and classify complex images. To determine whether and what proportion of single neurons in aIT cortex can yield enough information to classify complex images, we recorded from aIT neurons during the presentation of morphed photographic images in sessions in which monkeys classified images in a two alternative forced-choice—delayed-match-to-sample (2AFC-DMS) task or in sessions in which they performed a fixation ta...

  15. Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.

    Science.gov (United States)

    Reid, Andrew T; Bzdok, Danilo; Langner, Robert; Fox, Peter T; Laird, Angela R; Amunts, Katrin; Eickhoff, Simon B; Eickhoff, Claudia R

    2016-06-01

    Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of

  16. Medial cortex activity, self-reflection and depression

    OpenAIRE

    Johnson, Marcia K.; Nolen-Hoeksema, Susan; Mitchell, Karen J.; Levin, Yael

    2009-01-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and o...

  17. BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects

    OpenAIRE

    Gerritsen, Lotte; Tendolkar, Indira; Franke, Barbara; Arias Vasquez, Alejandro; Kooijman, Sabine; Buitelaar, Jan; Fernández, Guillén; Rijpkema, Mark

    2011-01-01

    Abstract According to the neurotrophic hypothesis of depression, stress can lead to brain atrophy by modifying brain-derived neurotrophic factor (BDNF) levels. Given that BDNF secretion is affected by a common polymorphism (rs6265, Val66Met), which also is associated with depression, we investigated whether this polymorphism modifies the effect of childhood adversity (CA) on local gray matter volume in depression-relevant brain regions using data from two large cohorts of healthy s...

  18. Genetic Variation in the Catechol-O-Methyl Transferase Val108/158Met Is Linked to the Caudate and Posterior Cingulate Cortex Volume in Healthy Subjects: Voxel-Based Morphometry Analysis of Brain Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Keita Watanabe

    Full Text Available The effect of the catechol-O-methyltransferase (COMT Val158Met polymorphism on brain morphology has been investigated but remains controversial. We hypothesized that a comparison between Val/Val and Val/Met individuals, which may represent the most different combinations concerning the effects of the COMT genotype, may reveal new findings. We investigated the brain morphology using 3-Tesla magnetic resonance imaging in 27 Val/Val and 22 Val/Met individuals. Voxel-based morphometry revealed that the volumes of the bilateral caudate and posterior cingulate cortex were significantly smaller in Val/Val individuals than in Val/Met individuals [right caudate: false discovery rate (FDR-corrected p = 0.048; left caudate: FDR-corrected p = 0.048; and bilateral posterior cingulate cortex: FDR-corrected p = 0.048]. This study demonstrates that interacting functional variants of COMT affect gray matter regional volumes in healthy subjects.

  19. Structural basis of empathy and the domain general region in the anterior insular cortex

    Directory of Open Access Journals (Sweden)

    Isabella eMutschler

    2013-05-01

    Full Text Available Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises emotional and cognitive components, such as feeling and knowing what another person is feeling, and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person’s feelings and to reduce another person’s pain. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed by using a widely used and validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex determined by activation likelihood estimate (ALE meta-analysis of previous functional imaging studies. We found that gray matter density in the left dorsal anterior insular cortex correlates with empathy and that this area overlaps with the domain general region of the anterior insula that is situated in-between functional systems involved in emotion-cognition, pain and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy might play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy.

  20. Bilateral lesions of the central but not anterior or posterior parts of the piriform cortex retard amygdala kindling in rats.

    Science.gov (United States)

    Schwabe, K; Ebert, U; Löscher, W

    2000-01-01

    The piriform cortex is thought to be involved in temporal lobe seizure propagation, such as that occurring during kindling of the amygdala or hippocampus. A number of observations suggested that the circuits of the piriform cortex might act as a critical pathway for limbic seizure discharges to assess motor systems, but direct evidence for this suggestion is scarce. Furthermore, the piriform cortex is not a homogeneous structure, which complicates studies on its role in limbic epileptogenesis. We have previously reported data indicating that the central part of the piriform cortex might be particularly involved during amygdala kindling. In order to further evaluate the role of different parts of the piriform cortex during kindling development, we bilaterally destroyed either the central, anterior or posterior piriform cortex by microinjections of ibotenate two weeks before onset of amygdala kindling. Lesions of the anterior piriform cortex hardly affected kindling acquisition, except that fewer animals exhibited stage 3 (unilateral forelimb) seizures compared to sham controls. Lesions of the central piriform cortex significantly retarded kindling, which was due to a decreased progression from stage 3 to stage 4/5 seizures, i.e. the lesioned rats needed significantly longer for the acquisition of generalized clonic seizures in the late stages of kindling development. Lesions of the posterior piriform cortex did not significantly affect kindling development. The data demonstrate that different parts of the piriform cortex mediate qualitatively different effects on amygdala kindling. The central piriform cortex seems to be a neural substrate involved in the continuous development of kindling from stage 3 to stages 4/5, indicating that this part of the piriform cortex may have preferred access, either directly or indirectly, to structures capable of supporting generalized kindled seizure expression.

  1. Role of anterior piriform cortex in the acquisition of conditioned flavour preference.

    Science.gov (United States)

    Mediavilla, Cristina; Martin-Signes, Mar; Risco, Severiano

    2016-01-01

    Flavour aversion learning (FAL) and conditioned flavour preference (CFP) facilitate animal survival and play a major role in food selection, but the neurobiological mechanisms involved are not completely understood. Neuroanatomical bases of CFP were examined by using Fos immunohistochemistry to record neuronal activity. Rats were trained over eight alternating one-bottle sessions to acquire a CFP induced by pairing a flavour with saccharin (grape was CS+ in Group 1; cherry in Group 2; in Group 3, grape/cherry in half of animals; Group 4, grape/cherry in water). Animals were offered the grape flavour on the day immediately after the training and their brains were processed for c-Fos. Neurons evidencing Fos-like immunoreactivity were counted in the infralimbic cortex, nucleus accumbens core, and anterior piriform cortex (aPC). Analysis showed a significantly larger number of activated cells after learning in the aPC alone, suggesting that the learning process might have produced a change in this cortical region. Ibotenic lesions in the aPC blocked flavour-taste preference but did not interrupt flavour-toxin FAL by LiCl. These data suggest that aPC cells may be involved in the formation of flavour preferences and that the integrity of this region may be specifically necessary for the acquisition of a CFP. PMID:27624896

  2. Cingulate and thalamic metabolites in obsessive-compulsive disorder.

    Science.gov (United States)

    O'Neill, Joseph; Lai, Tsz M; Sheen, Courtney; Salgari, Giulia C; Ly, Ronald; Armstrong, Casey; Chang, Susanna; Levitt, Jennifer G; Salamon, Noriko; Alger, Jeffry R; Feusner, Jamie D

    2016-08-30

    Focal brain metabolic effects detected by proton magnetic resonance spectroscopy (MRS) in obsessive-compulsive disorder (OCD) represent prospective indices of clinical status and guides to treatment design. Sampling bilateral pregenual anterior cingulate cortex (pACC), anterior middle cingulate cortex (aMCC), and thalamus in 40 adult patients and 16 healthy controls, we examined relationships of the neurometabolites glutamate+glutamine (Glx), creatine+phosphocreatine (Cr), and choline-compounds (Cho) with OCD diagnosis and multiple symptom types. The latter included OC core symptoms (Yale-Brown Obsessive-Compulsive Scale - YBOCS), depressive symptoms (Montgomery-Åsberg Depression Rating Scale - MADRS), and general functioning (Global Assessment Scale - GAS). pACC Glx was 9.7% higher in patients than controls. Within patients, Cr and Cho correlated negatively with YBOCS and MADRS, while Cr correlated positively with the GAS. In aMCC, Cr and Cho correlated negatively with MADRS, while Cr in thalamus correlated positively with GAS. These findings present moderate support for glutamatergic and cingulocentric perspectives on OCD. Based on our prior metabolic model of OCD, we offer one possible interpretation of these group and correlational effects as consequences of a corticothalamic state of elevated glutamatergic receptor activity alongside below-normal glutamatergic transporter activity. PMID:27317876

  3. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    International Nuclear Information System (INIS)

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  4. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  5. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP.

    Directory of Open Access Journals (Sweden)

    Sebastian J Lehmann

    Full Text Available The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013, and in particular in the anterior intraparietal cortex (AIP. To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta how different frequency bands of the local field potential (LFP in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively. Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  6. Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex

    OpenAIRE

    Michalka, Samantha W.; Rosen, Maya L.; Kong, Lingqiang; Shinn-Cunningham, Barbara G.; Somers, David C.

    2015-01-01

    Audition and vision both convey spatial information about the environment, but much less is known about mechanisms of auditory spatial cognition than visual spatial cognition. Human cortex contains >20 visuospatial map representations but no reported auditory spatial maps. The intraparietal sulcus (IPS) contains several of these visuospatial maps, which support visuospatial attention and short-term memory (STM). Neuroimaging studies also demonstrate that parietal cortex is activated during au...

  7. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment.

    Science.gov (United States)

    Köbe, Theresa; Witte, A Veronica; Schnelle, Ariane; Lesemann, Anne; Fabian, Sonja; Tesky, Valentina A; Pantel, Johannes; Flöel, Agnes

    2016-05-01

    Previous studies in older adults suggested beneficial effects of omega-3 fatty acid (FA) supplementation, aerobic exercise, or cognitive stimulation on brain structure and function. However, combined effects of these interventions in patients suffering from mild cognitive impairment (MCI) are unknown. Using a randomized interventional design, we evaluated the effect of combined omega-3 FA supplementation, aerobic exercise and cognitive stimulation (target intervention) versus omega-3 FA supplementation and non-aerobic exercise (control intervention) on cognitive function and gray matter volume in patients with MCI. Moreover, we analyzed potential vascular, metabolic or inflammatory mechanisms underlying these effects. Twenty-two MCI patients (8 females; 60-80years) successfully completed six months of omega-3 FA intake, aerobic cycling training and cognitive stimulation (n=13) or omega-3 FA intake and non-aerobic stretching and toning (n=9). Before and after the interventions, cognitive performance, magnetic resonance imaging of the brain at 3T (n=20), intima-media thickness of the internal carotid artery and serum markers of glucose control, lipid and B-vitamin metabolism, and inflammation were assessed. Intervention-related changes in gray matter volume of Alzheimer's disease (AD)-related brain regions, i.e., frontal, parietal, temporal and cingulate cortex were examined using voxel-based morphometry of high resolution T1-weighted images. After the intervention period, significant differences emerged in brain structure between groups: Gray matter volume decreased in the frontal, parietal and cingulate cortex of patients in the control intervention, while gray matter volume in these areas was preserved or even increased after the target intervention. Decreases in homocysteine levels in the target intervention group were associated with increases in gray matter volume in the middle frontal cortex (p=0.010). No significant differences in cognitive performance or

  8. Evolutionary appearance of von Economo’s neurons in the mammalian cerebral cortex

    OpenAIRE

    Alessandro Vercelli

    2014-01-01

    von Economo’s neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like socia...

  9. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex

    NARCIS (Netherlands)

    Neubert, F.X.; Mars, R.B.; Sallet, J.; Rushworth, M.F.S.

    2015-01-01

    Reward-guided decision-making depends on a network of brain regions. Among these are the orbitofrontal and the anterior cingulate cortex. However, it is difficult to ascertain if these areas constitute anatomical and functional unities, and how these areas correspond between monkeys and humans. To a

  10. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: preliminary evidence for the energetic effects of an intention-based treatment modality on human neurophysiology.

    OpenAIRE

    Pike, C.; Vernon, D.; Hald, L.

    2014-01-01

    Objectives: Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anterior asymmetric activation may mediate the energetic effects of intention-based biofield treatments as well. The aim of the current study was to test this hypothesis by using a treatment ...

  11. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anteri

  12. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  13. Entorhinal cortex and consolidated memory.

    Science.gov (United States)

    Takehara-Nishiuchi, Kaori

    2014-07-01

    The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.

  14. Working Memory Performance Is Correlated with Local Brain Morphology in the Medial Frontal and Anterior Cingulate Cortex in Fibromyalgia Patients: Structural Correlates of Pain-Cognition Interaction

    Science.gov (United States)

    Luerding, R.; Weigand, T.; Bogdahn, U.; Schmidt-Wilcke, T.

    2008-01-01

    Fibromyalgia (FM) is a disorder of unknown aetiology, characterized by chronic widespread pain, stiffness and sleep disturbances. In addition, patients frequently complain of memory and attention deficits. Accumulating evidence suggests that FM is associated with CNS dysfunction and with an altered brain morphology. However, few studies have…

  15. Subliminal versus supraliminal stimuli activate neural responses in anterior cingulate cortex, fusiform gyrus and insula: a meta-analysis of fMRI studies

    OpenAIRE

    Meneguzzo, Paolo; Tsakiris, Manos; Schioth, Helgi B.; Dan J Stein; Brooks, Samantha J.

    2014-01-01

    Background Non-conscious neural activation may underlie various psychological functions in health and disorder. However, the neural substrates of non-conscious processing have not been entirely elucidated. Examining the differential effects of arousing stimuli that are consciously, versus unconsciously perceived will improve our knowledge of neural circuitry involved in non-conscious perception. Here we conduct preliminary analyses of neural activation in studies that have used both sublimina...

  16. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism

    OpenAIRE

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken’ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-01-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then...

  17. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques

    OpenAIRE

    Wacker, Jan; Pizzagalli, Diego A.; Dillon, Daniel G.

    2009-01-01

    Anhedonia, the reduced propensity to experience pleasure, is a promising endo-- phenotype and vulnerability factor for several psychiatric disorders, including depression and schizophrenia. In the present study, we used resting electroencephalography, functional magnetic resonance imaging, and volumetric analyses to probe putative associations between anhedonia and individual differences in key nodes of the brain's reward system in a non-clinical sample. We found that anhedonia, but not other...

  18. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    OpenAIRE

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant re...

  19. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    OpenAIRE

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R.; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate ...

  20. Spinogenesis and pruning in the anterior ventral inferotemporal cortex of the macaque monkey: an intracellular injection study of layer III pyramidal cells

    Directory of Open Access Journals (Sweden)

    Guy N. Elston

    2011-07-01

    Full Text Available Cortical pyramidal cells grow and mature at different rates in visual, auditory and prefrontal cortex of the macaque monkey. In particular, differences across the areas have been reported in both the timing and magnitude of growth, branching, spinogenesis and pruning in the basal dendritic trees of cells in layer III. Presently available data suggest that these different growth profiles reflect the type of functions performed by these cells in the adult brain. However, to date, studies have focussed on only a relatively few cortical areas. In the present investigation we quantified the growth of the dendritic trees of layer III pyramidal cells in the anterior ventral portion of cytoarchitectonic area TE (TEav to better comprehend developmental trends in the cerebral cortex. We quantified the growth and branching of the dendrities, and spinogenesis and pruning of spines, from post-natal day 2 (PND2 to four and a half years of age. We found that the dendritic trees increase in size from PND2 to 7 months of age and thereafter become smaller. The dendritic trees became increasingly more branched from PND2 into adulthood. There was a 2-fold increase in the number of spines in the basal dendritic trees of pyramidal cells from PND2 to 3½ months of age and then a 10% net decrease in spine number into adulthood. Thus, the growth profile of layer III pyramidal cells in the anterior ventral portion of the inferotemporal cortex differs to that in other cortical areas associated with visual processing.

  1. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  2. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man

    DEFF Research Database (Denmark)

    Kupers, Ron; Danielsen, Else R; Kehlet, Henrik;

    2009-01-01

    in pain processing. Using a 3T MR scanner, we acquired spectra from the rostral anterior cingulate cortex (rACC) in 13 healthy right-handed subjects at rest and during painful heat stimulation. The painful stimulus consisted of a suprathreshold painful tonic heat pulse, which was delivered to the right...... that GABA is released in the human cerebral cortex during painful stimulation. The results are in line with animal findings on the role of GABA in pain processing and with studies in humans showing analgesic efficacy of GABA-related drugs in clinical pain conditions....

  3. Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis

    OpenAIRE

    Charmaine Demanuele; Peter Kirsch; Christine Esslinger; Mathias Zink; Andreas Meyer-Lindenberg; Daniel Durstewitz

    2015-01-01

    Introduction Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To invest...

  4. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim;

    2006-01-01

    the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  5. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    Directory of Open Access Journals (Sweden)

    Claudia Perez-Cruz

    2007-01-01

    Full Text Available The prefrontal cortex (PFC plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx.

  6. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  7. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.

  8. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion. PMID:20693390

  9. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Audet, M.A.; Doucet, G.; Oleskevich, S.; Descarries, L.

    1988-08-15

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with (3H)DA and citalopram or with (3H)NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after (3H)NA incubation with or without DMI were observed after (3H)NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness.

  10. Analysis of the presence or absence of atrophy of the subgenual and subcallosal cingulate cortices using voxel-based morphometry on MRI is useful to select prescriptions for patients with depressive symptoms

    Directory of Open Access Journals (Sweden)

    Niida A

    2014-12-01

    Full Text Available Akira Niida,1 Richi Niida,2 Hiroshi Matsuda,3 Makoto Motomura,4 Akihiko Uechi5 1Department of Radiology, Nanbu Hospital, Itoman City, Okinawa, Japan; 2Department of Psychiatry, Nanto Clinic, Urasoe City, Okinawa, Japan; 3Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan; 4Department of Human Sciences, University of the Ryukyus, Nakagami County, Okinawa, Japan; 5Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata City, Osaka, Japan Objective: We objectively evaluated the presence or absence of atrophy of the subgenual anterior cingulate cortex (sgACC and the subcallosal anterior cingulate cortex (scACC, using new voxel-based morphometry (VBM software employing Statistical Parametric Mapping software v8 and diffeomorphic anatomic registration through an exponentiated lie algebra. We prepared a database covering young-mature adulthood and investigated the clinical usefulness of the evaluation. Subjects and methods: One hundred seven patients with major depressive disorder (MDD, 74 patients with bipolar disorder (BD, and 240 healthy control subjects underwent 1.5T magnetic resonance imaging scanning. Using new VBM software and databases covering young-mature adults and the elderly, target volumes of interest were set in the sgACC and scACC, four indicators (severity, extent, ratio, and whole-brain extent were determined, and the presence or absence of atrophy of the sgACC and scACC was evaluated on the basis of the indicators. In addition, the relationships between the presence or absence of atrophy of the sgACC and scACC and performance of diagnosing MDD and BD and therapeutic drugs were investigated. Results: It was clarified that the disease is likely to be MDD when atrophy is detected in the sgACC, and likely to be BD when no atrophy is detected in the sgACC but is detected in the scACC. Regarding the relationship with therapeutic drugs, it was clarified that, when

  11. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    International Nuclear Information System (INIS)

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  12. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, d.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  13. Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex.

    Science.gov (United States)

    Rivera, S M; Reiss, A L; Eckert, M A; Menon, V

    2005-11-01

    Arithmetic reasoning is arguably one of the most important cognitive skills a child must master. Here we examine neurodevelopmental changes in mental arithmetic. Subjects (ages 8-19 years) viewed arithmetic equations and were asked to judge whether the results were correct or incorrect. During two-operand addition or subtraction trials, for which accuracy was comparable across age, older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. These age-related changes were not associated with alterations in gray matter density, and provide novel evidence for increased functional maturation with age. By contrast, younger subjects showed greater activation in the prefrontal cortex, including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex, suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of mental arithmetic performance. Younger subjects also showed greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems. Our findings provide evidence for a process of increased functional specialization of the left inferior parietal cortex in mental arithmetic, a process that is accompanied by decreased dependence on memory and attentional resources with development. PMID:15716474

  14. Individual attentional selection capacities are reflected in interhemispheric connectivity of the parietal cortex.

    Science.gov (United States)

    Vossel, Simone; Weidner, Ralph; Moos, Katharina; Fink, Gereon R

    2016-04-01

    Modelling psychophysical data using the Theory of Visual Attention (TVA) allows for a quantification of attentional sub-processes, such as the resolution of competition amongst multiple stimuli by top-down control signals for target selection (TVA-parameter α). This fMRI study investigated the neural correlates of α by comparing activity differences and changes of effective connectivity between conditions where a target was accompanied by a distractor or by a second target. Twenty-five participants performed a partial report task inside the MRI scanner. The left angular gyrus (ANG), medial frontal, and posterior cingulate cortex showed higher activity when a target was accompanied by a distractor as opposed to a second target. The reverse contrast yielded activation of a bilateral fronto-parietal network, the anterior insula, anterior cingulate cortex, and left inferior occipital gyrus. A psychophysiological interaction analysis revealed that the connectivity between left ANG and the left and right supramarginal gyrus (SMG), left anterior insula, and right putamen was enhanced in the target-distractor condition in participants with worse attentional top-down control. Dynamic causal modelling suggested that the connection from left ANG to right SMG during distractor presence was modulated by α. Our data show that interindividual differences in attentional processing are reflected in changes of effective connectivity without significant differences in activation strength of network nodes. PMID:26827815

  15. Enhanced metabolic capacity of the frontal cerebral cortex after Pavlovian conditioning.

    Science.gov (United States)

    Bruchey, A K; Gonzalez-Lima, F

    2008-03-18

    While Pavlovian conditioning alters stimulus-evoked metabolic activity in the cerebral cortex, less is known about the effects of Pavlovian conditioning on neuronal metabolic capacity. Pavlovian conditioning may increase prefrontal cortical metabolic capacity, as suggested by evidence of changes in cortical synaptic strengths, and evidence for a shift in memory initially processed in subcortical regions to more distributed prefrontal cortical circuits. Quantitative cytochrome oxidase histochemistry was used to measure cumulative changes in brain metabolic capacity associated with both cued and contextual Pavlovian conditioning in rats. The cued conditioned group received tone-foot-shock pairings to elicit a conditioned freezing response to the tone conditioned stimulus, while the contextually conditioned group received pseudorandom tone-foot-shock pairings in an excitatory context. Untrained control group was handled daily, but did not receive any tone presentations or foot shocks. The cued conditioned group had higher cytochrome oxidase activity in the infralimbic and anterior cingulate cortex, and lower cytochrome oxidase activity in dorsal hippocampus than the other two groups. A significant increase in cytochrome oxidase activity was found in anterior cortical areas (medial, dorsal and lateral frontal cortex; agranular insular cortex; lateral and medial orbital cortex and prelimbic cortex) in both conditioned groups, as compared with the untrained control group. In addition, no differences in cytochrome oxidase activity in the somatosensory regions and the amygdala were detected among all groups. The findings indicate that cued and contextual Pavlovian conditioning induces sustained increases in frontal cortical neuronal metabolic demand resulting in regional enhancement in the metabolic capacity of anterior cortical regions. Enhanced metabolic capacity of these anterior cortical areas after Pavlovian conditioning suggests that the frontal cortex may play a

  16. Development of temperamental effortful control mediates the relationship between maturation of the prefrontal cortex and psychopathology during adolescence: a 4-year longitudinal study.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Dennison, Meg; Yücel, Murat; Simmons, Julian; Allen, Nicholas B

    2014-07-01

    This study investigated the relationship between the development of effortful control (EC), a temperamental measure of self-regulation, and concurrent development of three regions of the prefrontal cortex (anterior cingulate cortex, ACC; dorsolateral prefrontal cortex, dlPFC; ventrolateral prefrontal cortex, vlPFC) between early- and mid-adolescence. It also examined whether development of EC mediated the relationship between cortical maturation and emotional and behavioral symptoms. Ninety-two adolescents underwent baseline assessments when they were approximately 12 years old and follow-up assessments approximately 4 years later. At each assessment, participants had MRI scans and completed the Early Adolescent Temperament Questionnaire-Revised, as well as measures of depressive and anxious symptoms, and aggressive and risk taking behavior. Cortical thicknesses of the ACC, dlPFC and vlPFC, estimated using the FreeSurfer software, were found to decrease over time. EC also decreased over time in females. Greater thinning of the left ACC was associated with less reduction in EC. Furthermore, change in effortful control mediated the relationship between greater thinning of the left ACC and improvements in socioemotional functioning, including reductions in psychopathological symptoms. These findings highlight the dynamic association between EC and the maturation of the anterior cingulate cortex, and the importance of this relationship for socioemotional functioning during adolescence.

  17. Spatial localization and distribution of the TMS-related 'hotspot' of the tibialis anterior muscle representation in the healthy and post-stroke motor cortex.

    Science.gov (United States)

    Sivaramakrishnan, Anjali; Tahara-Eckl, Lenore; Madhavan, Sangeetha

    2016-08-01

    Transcranial magnetic stimulation (TMS) is a type of noninvasive brain stimulation used to study corticomotor excitability of the intact and injured brain. Identification of muscle representations in the motor cortex is typically done using a procedure called 'hotspotting', which involves establishing the optimal location on the scalp that evokes a maximum TMS response with minimum stimulator intensity. The purpose of this study was to report the hotspot locations for the tibialis anterior (TA) muscle representation in the motor cortex of healthy and post stroke individuals. A retrospective data analyses from 42 stroke participants and 32 healthy participants was conducted for reporting TMS hotspot locations and their spatial patterns. Single pulse TMS, using a 110mm double cone coil, was used to identify the motor representation of the TA. The hotspot locations were represented as x and y-distances from the vertex for each participant. The mediolateral extent of the loci from the vertex (x-coordinate) and anteroposterior extent of the loci from the vertex (y-coordinate) was reported for each hemisphere: non-lesioned (XNLes, YNLes), lesioned (XLes, YLes) and healthy (XH, YH). We found that the mean hotspot loci for TA muscle from the vertex were approximately: 1.29cm lateral and 0.55cm posterior in the non-lesioned hemisphere, 1.25cm lateral and 0.5cm posterior in the lesioned hemisphere and 1.6cm lateral and 0.8cm posterior in the healthy brain. There was no significant difference in the x- and y-coordinates between the lesioned and non-lesioned hemispheres. However, the locations of the XNLes (p=0.01) and XLes (p=0.004) were significantly different from XH. The YNLes and YLes showed no significant differences from YH loci. Analyses of spatial clustering patterns using the Moran's I index showed a negative autocorrelation in stroke participants (NLes: Moran's I=-0.09, p<0.001; Les: Moran's I=-0.14, p=0.002), and a positive autocorrelation in healthy participants

  18. Impaired assessment of cumulative lifetime familiarity for object concepts after left anterior temporal-lobe resection that includes perirhinal cortex but spares the hippocampus.

    Science.gov (United States)

    Bowles, Ben; Duke, Devin; Rosenbaum, R Shayna; McRae, Ken; Köhler, Stefan

    2016-09-01

    The ability to recognize the prior occurrence of objects can operate effectively even in the absence of successful recollection of episodic contextual detail about a relevant past object encounter. The pertinent process, familiarity assessment, is typically probed in humans with recognition-memory tasks that include an experimentally controlled study phase for a list of items. When meaningful stimuli such as words or pictures of common objects are employed, participants must judge familiarity with reference to the recent experimental encounter rather than their lifetime of autobiographical experience, which may have involved hundreds or thousands of exposures across numerous episodic contexts. Humans can, however, also judge the cumulative familiarity of objects concepts they have encountered over their lifetime. At present, little is known about the cognitive and neural mechanisms that support this ability. Here, we tested an individual (NB) with a rare left anterior temporal-lobe lesion that included perirhinal cortex but spared the hippocampus, who had previously been found to exhibit selective impairments in familiarity assessment on verbal recognition-memory tasks. As NB exhibits normal recollection abilities, her case presents a unique opportunity to examine potential links between both types of familiarity. In Experiment 1, we demonstrated that NB's impairment in making recognition judgments affects cumulative frequency judgments for exposure to concept names in a recent study episode. Experiments 2 and 3 revealed, with a task borrowed from the semantic-memory literature, that NB's impairments do indeed extend to abnormalities in judging cumulative lifetime familiarity for object concepts. These abnormalities were not limited to verbal processing, and were present even when pictures were offered as additional cues. Moreover, they showed sensitivity to concept structure as reflected in semantic feature norms; we only observed them for judgments on object

  19. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  20. Atrophy of the left dorsolateral prefrontal cortex is associated with poor performance in verbal fluency in elderly poststroke women

    Institute of Scientific and Technical Information of China (English)

    Yang-Kun Chen; Wei-Min Xiao; Defeng Wang; Lin Shi; Winnie CW Chu; Vincent CT Mok; Ka Sing Wong; Gabor S Ungvari; Wai Kwong Tang

    2013-01-01

    This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged ≥ 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.

  1. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    Science.gov (United States)

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  2. An analysis of von Economo neurons in the cerebral cortex of cetaceans, artiodactyls, and perissodactyls.

    Science.gov (United States)

    Raghanti, Mary Ann; Spurlock, Linda B; Treichler, F Robert; Weigel, Sara E; Stimmelmayr, Raphaela; Butti, Camilla; Thewissen, J G M Hans; Hof, Patrick R

    2015-07-01

    Von Economo neurons (VENs) are specialized projection neurons with a characteristic spindle-shaped soma and thick basal and apical dendrites. VENs have been described in restricted cortical regions, with their most frequent appearance in layers III and V of the anterior cingulate cortex, anterior insula, and frontopolar cortex of humans, great apes, macaque monkeys, elephants, and some cetaceans. Recently, a ubiquitous distribution of VENs was reported in various cortical areas in the pygmy hippopotamus, one of the closest living relatives of cetaceans. That finding suggested that VENs might not be unique to only a few species that possess enlarged brains. In the present analysis, we assessed the phylogenetic distribution of VENs within species representative of the superordinal clade that includes cetartiodactyls and perissodactyls, as well as afrotherians. In addition, the distribution of fork cells that are often found in close proximity to VENs was also assessed. Nissl-stained sections from the frontal pole, anterior cingulate cortex, anterior insula, and occipital pole of bowhead whale, cow, sheep, deer, horse, pig, rock hyrax, and human were examined using stereologic methods to quantify VENs and fork cells within layer V of all four cortical regions. VENs and fork cells were found in each of the species examined here with species-specific differences in distributions and densities. The present results demonstrated that VENs and fork cells were not restricted to highly encephalized or socially complex species, and their repeated emergence among distantly related species seems to represent convergent evolution of specialized pyramidal neurons. The widespread phylogenetic presence of VENs and fork cells indicates that these neuron morphologies readily emerged in response to selective forces,whose variety and nature are yet to be identified.

  3. Fear avoidance beliefs in back pain-free subjects are reflected by amygdala-cingulate responses.

    Science.gov (United States)

    Meier, Michael L; Stämpfli, Phillipp; Vrana, Andrea; Humphreys, Barry K; Seifritz, Erich; Hotz-Boendermaker, Sabina

    2015-01-01

    In most individuals suffering from chronic low back pain, psychosocial factors, specifically fear avoidance beliefs (FABs), play central roles in the absence of identifiable organic pathology. On a neurobiological level, encouraging research has shown brain system correlates of somatic and psychological factors during the transition from (sub) acute to chronic low back pain. The characterization of brain imaging signatures in pain-free individuals before any injury will be of high importance regarding the identification of relevant networks for low back pain (LBP) vulnerability. Fear-avoidance beliefs serve as strong predictors of disability and chronification in LBP and current research indicates that back pain related FABs already exist in the general and pain-free population. Therefore, we aimed at investigating possible differential neural functioning between high- and low fear-avoidant individuals in the general population using functional magnetic resonance imaging. Results revealed that pain-free individuals without a history of chronic pain episodes could be differentiated in amygdala activity and connectivity to the pregenual anterior cingulate cortex by their level of back pain related FABs. These results shed new light on brain networks underlying psychological factors that may become relevant for enhanced disability in a future LBP episode. PMID:26257635

  4. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Wen-Han Hu; De-Long Wu; Kai Zhang; Jian-Guo Zhang

    2015-01-01

    Background:Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions.The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit,including the anterior nucleus of thalamus (ANT),the entorhinal cortex (EC),and the fornix (FX),on cognitive behaviors in an Alzheimer's disease (AD) rat model.Methods:Forty-eight rats were subjected to an intrahippocampal injection ofamyloid peptides 1-42 to induce an AD model.Rats were divided into six groups:DBS and sham DBS groups of ANT,EC,and FX.Spatial learning and memory were assessed by the Morris water maze (MWM).Recognition memory was investigated by the novel object recognition memory test (NORM).Locomotor and anxiety-related behaviors were detected by the open field test (OF).By using two-way analysis of variance (ANOVA),behavior differences between the six groups were analyzed.Results:In the MWM,the ANT,EC,and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2.23) =6.04,P < 0.01),the frequency of platform crossing (F(2,23) =11.53,P < 0.001),and the percent time spent within the platform quadrant (F(2,23) =6.29,P < 0.01).In the NORM,the EC and FX DBS groups spent more time with the novel object,although the ANT DBS group did not (F(2,23) =10.03,P < 0.001).In the OF,all of the groups showed a similar total distance moved (F(1.42) =1.14,P =0.29)and relative time spent in the center (F(2,42) =0.56,P =0.58).Conclusions:Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently thanANT DBS.In addition,hippocampus-independent recognition memory was enhanced by EC and FX DBS.None of the targets showed side-effects of anxiety or locomotor behaviors.

  5. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents.

    Science.gov (United States)

    Insausti, R; Herrero, M T; Witter, M P

    1997-01-01

    The origins and terminations of entorhinal cortical projections in the rat were analyzed in detail with retrograde and anterograde tracing techniques. Retrograde fluorescent tracers were injected in different portions of olfactory, medial frontal (infralimbic and prelimbic areas), lateral frontal (motor area), temporal (auditory), parietal (somatosensory), occipital (visual), cingulate, retrosplenial, insular, and perirhinal cortices. Anterograde tracer injections were placed in various parts of the rat entorhinal cortex to demonstrate the laminar and topographical distribution of the cortical projections of the entorhinal cortex. The retrograde experiments showed that each cortical area explored receives projections from a specific set of entorhinal neurons, limited in number and distribution. By far the most extensive entorhinal projection was directed to the perirhinal cortex. This projection, which arises from all layers, originates throughout the entorhinal cortex, although its major origin is from the more lateral and caudal parts of the entorhinal cortex. Projections to the medial frontal cortex and olfactory structures originate largely in layers II and III of much of the intermediate and medial portions of the entorhinal cortex, although a modest component arises from neurons in layer V of the more caudal parts of the entorhinal cortex. Neurons in layer V of an extremely laterally located strip of entorhinal cortex, positioned along the rhinal fissure, give rise to the projections to lateral frontal (motor), parietal (somatosensory), temporal (auditory), occipital (visual), anterior insular, and cingulate cortices. Neurons in layer V of the most caudal part of the entorhinal cortex originate projections to the retrosplenial cortex. The anterograde experiments confirmed these findings and showed that in general, the terminal fields of the entorhinal-cortical projections were densest in layers I, II, and III, although particularly in the more densely

  6. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    Science.gov (United States)

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  7. Digital morphometric study of the extrasulcal surface of the cingulate gyrus in man

    Directory of Open Access Journals (Sweden)

    Spasojević Goran

    2010-01-01

    Full Text Available Introduction. The frequency of different morphological types and extrasulcal (visible surface area of the cingulate gyms, were measured and analyzed in order to obtain more precise data about morphology, right/left and sex differences in the human brain. Material and methods. The study included 42 brains (84 hemispheres from persons of both sexes and of different age (26 males, 16 females, 20-65 years old, without neuropathological changes. After fixation in 10% formaline (3-4 weeks and removal of meninges the brains were photographed under standard conditions by digital camera. Following determination of morphological type, regions of interest of cingulate gyrus were determined in stereotactic system system of coordinates and the extrasulcal surface was measured by digital AutoCAD planimetry. Results and discussion. Three basic morphological types of cingulate gyrus were found: the continuous type (34.5%, segmented type (35.7% and double paralel type (29.8%. There was no statistically significant difference in the frequency of morphological types related to the side (right/left or sex (p>0.05. The area of extrasulcal cortex of cingulate gyrus was statistically significantly (p<0.O5 larger on the left hemispheres (for 1.13 cm than on the right (left: 14.58 cm; right: 13.45 cm. The extrasulcal surface of the left cingulate gyrus was significantly larger (p0.05 in males (males 15.9 cm: females - 13.6 cm, while for the right cingulate gyrus this difference was not significant. Conclusion. Morphometry indicated sex and right/left differences of extrasulcal surface area of the human cingulate gyrus. However, the morphological analysis itself did not indicate corresponding differences, suggesting complexity of the problem of sex dimorphism and of right/left asymmetries in the domain of limbic cortex.

  8. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  9. Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood.

    Directory of Open Access Journals (Sweden)

    Sven Vanneste

    Full Text Available BACKGROUND: Tinnitus refers to auditory phantom sensation. It is estimated that for 2% of the population this auditory phantom percept severely affects the quality of life, due to tinnitus related distress. Although the overall distress levels do not differ between sexes in tinnitus, females are more influenced by distress than males. Typically, pain, sleep, and depression are perceived as significantly more severe by female tinnitus patients. Studies on gender differences in emotional regulation indicate that females with high depressive symptoms show greater attention to emotion, and use less anti-rumination emotional repair strategies than males. METHODOLOGY: The objective of this study was to verify whether the activity and connectivity of the resting brain is different for male and female tinnitus patients using resting-state EEG. CONCLUSIONS: Females had a higher mean score than male tinnitus patients on the BDI-II. Female tinnitus patients differ from male tinnitus patients in the orbitofrontal cortex (OFC extending to the frontopolar cortex in beta1 and beta2. The OFC is important for emotional processing of sounds. Increased functional alpha connectivity is found between the OFC, insula, subgenual anterior cingulate (sgACC, parahippocampal (PHC areas and the auditory cortex in females. Our data suggest increased functional connectivity that binds tinnitus-related auditory cortex activity to auditory emotion-related areas via the PHC-sgACC connections resulting in a more depressive state even though the tinnitus intensity and tinnitus-related distress are not different from men. Comparing male tinnitus patients to a control group of males significant differences could be found for beta3 in the posterior cingulate cortex (PCC. The PCC might be related to cognitive and memory-related aspects of the tinnitus percept. Our results propose that sex influences in tinnitus research cannot be ignored and should be taken into account in functional

  10. The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment.

    Science.gov (United States)

    Mansouri, Farshad A; Buckley, Mark J; Tanaka, Keiji

    2014-08-13

    Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions. PMID:25122901

  11. The processing of unexpected positive response outcomes in the mediofrontal cortex.

    Science.gov (United States)

    Ferdinand, Nicola K; Mecklinger, Axel; Kray, Jutta; Gehring, William J

    2012-08-29

    The human mediofrontal cortex, especially the anterior cingulate cortex, is commonly assumed to contribute to higher cognitive functions like performance monitoring. How exactly this is achieved is currently the subject of lively debate but there is evidence that an event's valence and its expectancy play important roles. One prominent theory, the reinforcement learning theory by Holroyd and colleagues (2002, 2008), assigns a special role to feedback valence, while the prediction of response-outcome (PRO) model by Alexander and Brown (2010, 2011) claims that the mediofrontal cortex is sensitive to unexpected events regardless of their valence. However, paradigms examining this issue have included confounds that fail to separate valence and expectancy. In the present study, we tested the two competing theories of performance monitoring by using an experimental task that separates valence and unexpectedness of performance feedback. The feedback-related negativity of the event-related potential, which is commonly assumed to be a reflection of mediofrontal cortex activity, was elicited not only by unexpected negative feedback, but also by unexpected positive feedback. This implies that the mediofrontal cortex is sensitive to the unexpectedness of events in general rather than their valence and by this supports the PRO model. PMID:22933792

  12. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression.

    Science.gov (United States)

    Weissmann, D; van der Laan, S; Underwood, M D; Salvetat, N; Cavarec, L; Vincent, L; Molina, F; Mann, J J; Arango, V; Pujol, J F

    2016-01-01

    Brain region-specific abnormalities in serotonergic transmission appear to underlie suicidal behavior. Alterations of RNA editing on the serotonin receptor 2C (HTR2C) pre-mRNA in the brain of suicides produce transcripts that attenuate 5-HT2CR signaling by impairing intracellular G-protein coupling and subsequent intracellular signal transduction. In brain, the distribution of RNA-editing enzymes catalyzing deamination (A-to-I modification) shows regional variation, including within the cerebral cortex. We tested the hypothesis that altered pre-mRNA 5-HT2CR receptor editing in suicide is region-specific. To this end, we investigated the complete 5-HT2CR mRNA-editing profile in two architectonically distinct cortical areas involved in mood regulation and decision-making in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicides. By using an original biochemical detection method, that is, capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), we corroborated the 5-HT2CR mRNA-editing profile previously described in the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)). Editing of 5-HT2CR mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Compared with non-psychiatric control individuals, alterations of editing levels of 5-HT2CR mRNA were detected in both cortical areas of depressed suicides. A marked increase in editing on 5-HT2CR was especially observed in the anterior cingulate cortex in suicides, implicating this cortical area in suicide risk. The results suggest that region-specific changes in RNA editing of 5-HT2CR mRNA and deficient receptor function likely contribute to the etiology of major depressive disorder or suicide. PMID:27576167

  13. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects Ativação do córtex frontopolar e temporal anterior em uma tarefa de julgamento moral: resultados preliminares de ressonância magnética funcional em indivíduos normais

    Directory of Open Access Journals (Sweden)

    Jorge Moll

    2001-09-01

    Full Text Available OBJECTIVE: To study the brain areas which are activated when normal subjects make moral judgments. METHOD: Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI during the auditory presentation of sentences that they were instructed to silently judge as either "right" or "wrong". Half of the sentences had an explicit moral content ("We break the law when necessary", the other half comprised factual statements devoid of moral connotation ("Stones are made of water". After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemodynamically modeled for event-related fMRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. RESULTS: Regions activated during moral judgment included the frontopolar cortex (FPC, medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (BA 10/46 and 9 were largely independent of emotional experience and represented the largest areas of activation. CONCLUSIONS: These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct.OBJETIVO: Estudar, com ressonância magnética funcional (RMf, as áreas cerebrais normalmente ativadas por julgamentos morais em tarefa de verificação de sentenças. MÉTODO: Dez adultos normais foram estudados com RMf-BOLD durante a apresentação auditiva de sentenças cujo conteúdo foram instruídos a julgar como "certo" ou "errado". Metade das sentenças possuía um conteúdo moral explícito ("Transgredimos a lei se necess

  14. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity.

    Science.gov (United States)

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej

    2016-05-01

    The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations. PMID:26790868

  15. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity.

    Science.gov (United States)

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej

    2016-05-01

    The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations.

  16. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    Science.gov (United States)

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. PMID:26166620

  17. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity.

    Science.gov (United States)

    Meredith, M Alex; Clemo, H Ruth; Corley, Sarah B; Chabot, Nicole; Lomber, Stephen G

    2016-03-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  18. Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory.

    Science.gov (United States)

    Hanson, Jamie L; Chung, Moo K; Avants, Brian B; Rudolph, Karen D; Shirtcliff, Elizabeth A; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2012-06-01

    A large corpus of research indicates that exposure to stress impairs cognitive abilities, specifically executive functioning dependent on the prefrontal cortex (PFC). We collected structural MRI scans (n = 61), well-validated assessments of executive functioning, and detailed interviews assessing stress exposure in humans to examine whether cumulative life stress affected brain morphometry and one type of executive functioning, spatial working memory, during adolescence-a critical time of brain development and reorganization. Analysis of variations in brain structure revealed that cumulative life stress and spatial working memory were related to smaller volumes in the PFC, specifically prefrontal gray and white matter between the anterior cingulate and the frontal poles. Mediation analyses revealed that individual differences in prefrontal volumes accounted for the association between cumulative life stress and spatial working memory. These results suggest that structural changes in the PFC may serve as a mediating mechanism through which greater cumulative life stress engenders decrements in cognitive functioning. PMID:22674267

  19. Cervicoplastia anterior Anterior cervicoplasty

    Directory of Open Access Journals (Sweden)

    Lucas Gomes Patrocínio

    2004-10-01

    Full Text Available Muitos pacientes buscam correção estética da frouxidão da pele do pescoço, depósito de gordura na região submentoneana ou bandas de platisma. Em grande parte dos casos a ação medial, via cervicoplastia anterior é necessária. OBJETIVO: Demonstrar a casuística e avaliar os resultados e complicações com a técnica de cervicoplastia anterior no Serviço de Otorrinolaringologia da Universidade Federal de Uberlândia. FORMA DE ESTUDO: Relato de série. PACIENTES E MÉTODOS: Quarenta e dois pacientes, entre 39 e 65 anos de idade, sendo 40 (95,2% do sexo feminino e 2 (4,8% do masculino, foram submetidos a cervicoplastia anterior. Retrospectivamente foram avaliados resultados e complicações. RESULTADOS: Destes, 34 apresentaram resultados satisfatórios, 4 apresentaram déficit estético notado somente pelo cirurgião, 3 apresentaram déficit estético notado somente pelo paciente e 1 apresentou déficit estético necessitando cirurgia revisional. Ao estudo fotográfico, todos os pacientes apresentaram melhora do perfil cervical, redução das bandas de platisma e da frouxidão da pele, estabilização da musculatura cervical e acentuação do ângulo cervicomental, em graus variados. Houve complicação em 2 casos (discreto serohematoma e cicatriz um pouco alargada. CONCLUSÃO: A cervicoplastia, associada ou não à tração lateral pela ritidoplastia, é uma técnica que produz resultados satisfatórios na grande maioria dos casos.Many patients look for aesthetic correction of the laxity of neck skin, submandibular fat deposit or platisma bands. In a large part of the cases, medial action, through anterior cervicoplasty is necessary. AIM: To demonstrate the casuistic and to evaluate the results and complications with anterior cervicoplasty technique in the Otorhinolaryngology Service of the Federal University of Uberlândia. STUDY DESIGN: Serie report. PATIENTS AND METHODS: Forty-two patients, between 39 and 65 years of age, being 40 (95

  20. Evolutionary appearance of von Economo's neurons in the mammalian cerebral cortex.

    Science.gov (United States)

    Cauda, Franco; Geminiani, Giuliano Carlo; Vercelli, Alessandro

    2014-01-01

    von Economo's neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the "social brain." VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the "global Workspace" architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental

  1. Evolutionary appearance of Von Economo’s Neurons in the mammalian cerebral cortex

    Directory of Open Access Journals (Sweden)

    Franco eCauda

    2014-03-01

    Full Text Available Von Economo’s neurons (VENs are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months.VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the social brain. VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain.However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the global Workspace architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication between salience-related insular and cingulate and other widely separated brain areas.Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the fMRI data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental investigatio

  2. Food related processes in the insular cortex

    OpenAIRE

    Frank, Sabine; Kullmann, Stephanie; Veit, Ralf

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex. In this review, we will specifically focus on the involvement of the insula in food processing and on multim...

  3. Food related processes in the insular cortex

    OpenAIRE

    Sabine eFrank; Stephanie eKullmann; Ralf eVeit

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimo...

  4. Social phobia modulates risk sensitivity through activity in the anterior insula

    Directory of Open Access Journals (Sweden)

    Grace Shi Min Tang

    2012-01-01

    Full Text Available Decision neuroscience offers the potential for decomposing differences in behavior across individuals into components of valuation intimately tied to brain function. One application of this approach lies in novel conceptualizations of behavioral attributes that are aberrant in psychiatric disorders. We investigated the relationship between social phobia and behavior in a novel socially-determined risk task. Behaviorally, higher scores on a social phobia inventory (SPIN among healthy participants were associated with an increase in risky responses. Furthermore, activity in a region of the dorsal anterior insula (dAI scaled in proportion to SPIN score in risky versus non-risky choices. This region of the insula was functionally connected to areas in the intraparietal sulcus (IPS and anterior cingulate cortex (ACC that were related to decision-making across all participants. Overall, social phobia was associated with decreased risk aversion in our task, consistent with previous results investigating risk taking in many everyday behaviors. Moreover, this difference was linked to the anterior insula, a region commonly implicated in risk attitudes and socio-emotional processes.

  5. Dopaminergic dysregulation in prefrontal cortex of rhesus monkeys following cocaine self-administration

    Directory of Open Access Journals (Sweden)

    Scot eMcIntosh

    2013-08-01

    Full Text Available Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v. under limited (n=4 and extended access conditions (n=6. The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC, orbitofrontal cortex (OFC and anterior cingulate cortex (ACC were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport, tyrosine hydroxylase (TH; marker of dopamine synthesis and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity, extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2 and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity, and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine. Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTHSer31 in all regions. In addition, a slight but significant reduction in phosphorylated pTHSer40 was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex.

  6. cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest

    Science.gov (United States)

    Valchev, Nikola; Ćurčić-Blake, Branislava; Renken, Remco J.; Avenanti, Alessio; Keysers, Christian

    2016-01-01

    The primary somatosensory cortex (SI) plays a critical role in somatosensation as well as in action performance and social cognition. Although SI has been a major target of experimental and clinical research using non-invasive transcranial magnetic stimulation (TMS), to date information on the effect of TMS over SI on its resting-state functional connectivity is very scant. Here, we explored whether continuous theta burst stimulation (cTBS), a repetitive TMS protocol, administered over SI can change the functional connectivity of the brain at rest, as measured using resting-state functional magnetic resonance imaging (rs-fMRI). In a randomized order on two different days we administered active TMS or sham TMS over the left SI. TMS was delivered off-line before scanning by means of cTBS. The target area was selected previously and individually for each subject as the part of SI activated both when the participant executes and observes actions. Three analytical approaches, both theory driven (partial correlations and seed based whole brain regression) and more data driven (Independent Component Analysis), indicated a reduction in functional connectivity between the stimulated part of SI and several brain regions functionally associated with SI including the dorsal premotor cortex, the cerebellum, basal ganglia, and anterior cingulate cortex. These findings highlight the impact of cTBS delivered over SI on its functional connectivity at rest. Our data may have implications for experimental and therapeutic applications of cTBS over SI. PMID:25882754

  7. A dorsolateral prefrontal cortex semi-automatic segmenter

    Science.gov (United States)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  8. Anterior insula coordinates hierarchical processing of tactile mismatch responses.

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J; Hillebrandt, Hauke; Friston, Karl J; Rees, Geraint; Roepstorff, Andreas

    2016-02-15

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace. PMID:26584870

  9. Anterior insula coordinates hierarchical processing of tactile mismatch responses.

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J; Hillebrandt, Hauke; Friston, Karl J; Rees, Geraint; Roepstorff, Andreas

    2016-02-15

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace.

  10. Anterior insula coordinates hierarchical processing of tactile mismatch responses

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J.; Hillebrandt, Hauke; Friston, Karl J.; Rees, Geraint; Roepstorff, Andreas

    2016-01-01

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy—projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace. PMID:26584870

  11. Cocaine cue–induced dopamine release in the human prefrontal cortex

    Science.gov (United States)

    Milella, Michele S.; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F.; Larcher, Kevin; Verhaeghe, Jeroen A.J.; Cox, Sylvia M.L.; Reader, Andrew J.; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-01-01

    Background Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. Methods We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Results Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. Conclusion In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms. PMID:26900792

  12. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex.

    Science.gov (United States)

    Hutcherson, Cendri A; Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-09-01

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. Significance statement: Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  13. Evidence of a posterior cingulate involvement (Brodmann area 31) in dyslexia: a study based on source localization algorithm of event-related potentials.

    Science.gov (United States)

    Stoitsis, John; Giannakakis, Giorgos A; Papageorgiou, Charalabos; Nikita, Konstantina S; Rabavilas, Andreas; Anagnostopoulos, Dimitris

    2008-04-01

    The study investigates the differences regarding the position of intracranial generators of P50 component of ERPs in 38 dyslexic children aged 11.47+/-2.12 years compared with their 19 healthy siblings aged 12.21+/-2.25. The dipoles were extracted by solving the inverse electromagnetic problem according to the recursively applied and projected multiple signal classification (RAP-MUSIC) algorithm approach. For improved localization of the main dipole the solutions were optimized using genetic algorithms. The statistical analysis revealed differences regarding the position of intracranial generators of low frequency of P50. Particularly, dyslexics showed main activity being located at posterior cingulate cortex (Brodmann's area 31) while controls exhibited main activity being located at retrosplenial cortex (Brodmann's area 30). These results may indicate a role for the posterior cingulate cortex in the pre-attentive processing operation of dyslexia beyond of its traditional function in terms of spatial attention and motor intention. PMID:18180091

  14. Nocifensive behavior-related laser heat-evoked component in the rostral agranular insular cortex revealed using morphine analgesia.

    Science.gov (United States)

    Wu, Wen-Yi; Liu, Chan-Ying; Tsai, Meng-Li; Yen, Chen-Tung

    2016-02-01

    The rostral agranular insular cortex (RAIC), an opioid-responsive site, is essential for modulating nociception in rats. Our previous studies have shown that morphine suppressed long latency laser heat-evoked nociceptive responses in the primary somatosensory cortex (SmI). By contrast, morphine significantly attenuated both short and long latency responses in the anterior cingulate cortex (ACC). The present study assessed the effect of morphine on laser heat-evoked responses in the RAIC. Laser heat irradiation applied to the rat forepaws at graded levels was used as a specific noxious stimulus. In the RAIC, the first part of the long latency component (140-250ms) of the laser heat-evoked response was enhanced by intraperitoneal morphine (5mg/kg). When the laser heat-evoked cortical responses were examined for trials showing strong nocifensive movement (paw licking), moderate nocifensive movement (paw lifting), and no nocifensive movement, a 140-250ms period enhancement was observed in the RAIC only for the paw lifting movement. This enhancement was absent in the SmI. Thus, our data suggest that the RAIC has a pain-related behavior-dependent neuronal component. Furthermore, the RAIC, ACC, and SmI are differentially modulated by morphine analgesia.

  15. Cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex.

    Science.gov (United States)

    Bakola, Sophia; Passarelli, Lauretta; Gamberini, Michela; Fattori, Patrizia; Galletti, Claudio

    2013-04-10

    In macaques, superior parietal lobule area 5 has been described as occupying an extensive region, which includes the caudal half of the postcentral convexity as well as the medial bank of the intraparietal sulcus. Modern neuroanatomical methods have allowed the identification of various areas within this region. In the present study, we investigated the corticocortical afferent projections of one of these subdivisions, area PE. Our results demonstrate that PE, defined as a single architectonic area that contains a topographic map of the body, forms specific connections with somatic and motor fields. Thus, PE receives major afferents from parietal areas, mainly area 2, PEc, several areas in the medial bank of the intraparietal sulcus, opercular areas PGop/PFop, and the retroinsular area, frontal afferents from the primary motor cortex, the supplementary motor area, and the caudal subdivision of dorsal premotor cortex, as well as afferents from cingulate areas PEci, 23, and 24. The presence and relative strength of these connections depend on the location of injection sites, so that lateral PE receives preferential input from anterior sectors of the medial bank of intraparietal sulcus and from the ventral premotor cortex, whereas medial PE forms denser connections with area PEc and motor fields. In contrast with other posterior parietal areas, there are no projections to PE from occipital or prefrontal cortices. Overall, the sensory and motor afferents to PE are consistent with functions in goal-directed movement but also hint at a wider variety of motor coordination roles. PMID:23575861

  16. Herniation of the anterior lens capsule

    Directory of Open Access Journals (Sweden)

    Pereira Nolette

    2007-01-01

    Full Text Available Herniation of the anterior lens capsule is a rare abnormality in which the capsule bulges forward in the pupillary area. This herniation can be mistaken for an anterior lenticonus where both the capsule and the cortex bulge forward. The exact pathology behind this finding is still unclear. We report the clinical, ultrasound biomicroscopy (UBM and histopathological findings of a case of herniation of the anterior lens capsule. UBM helped to differentiate this entity from anterior lenticonus. Light microscopy revealed capsular splitting suggestive of capsular delamination and collection of fluid (aqueous in the area of herniation giving it a characteristic appearance.

  17. An increase in tobacco craving is associated with enhanced medial prefrontal cortex network coupling.

    Directory of Open Access Journals (Sweden)

    Amy C Janes

    Full Text Available Craving is a key aspect of drug dependence that is thought to motivate continued drug use. Numerous brain regions have been associated with craving, suggesting that craving is mediated by a distributed brain network. Whether an increase in subjective craving is associated with enhanced interactions among brain regions was evaluated using resting state functional magnetic imaging (fMRI in nicotine dependent participants. We focused on craving-related changes in the orbital and medial prefrontal cortex (OMPFC network, which also included the subgenual anterior cingulate cortex (sgACC extending into the ventral striatum. Brain regions in the OMPFC network are not only implicated in addiction and reward, but, due to their rich anatomic interconnections, may serve as the site of integration across craving-related brain regions. Subjective craving and resting state fMRI were evaluated twice with an ∼1 hour delay between the scans. Cigarette craving was significantly increased at the end, relative to the beginning of the scan session. Enhanced craving was associated with heightened coupling between the OMPFC network and other cortical, limbic, striatal, and visceromotor brain regions that are both anatomically interconnected with the OMPFC, and have been implicated in addiction and craving. This is the first demonstration confirming that an increase in craving is associated with enhanced brain region interactions, which may play a role in the experience of craving.

  18. Extraversion is linked to volume of the orbitofrontal cortex and amygdala.

    Directory of Open Access Journals (Sweden)

    Henk Cremers

    Full Text Available Neuroticism and extraversion are personality factors associated with the vulnerability for developing depression and anxiety disorders, and are possibly differentially related to brain structures implicated in the processing of emotional information and the generation of mood states. To date, studies on brain morphology mainly focused on neuroticism, a dimension primarily related to negative affect, yielding conflicting findings concerning the association with personality, partially due to methodological issues and variable population samples under study. Recently, extraversion, a dimension primarily related to positive affect, has been repeatedly inversely related to with symptoms of depression and anxiety disorders. In the present study, high resolution structural T1-weighted MR images of 65 healthy adults were processed using an optimized Voxel Based Morphometry (VBM approach. Multiple regression analyses were performed to test for associations of neuroticism and extraversion with prefrontal and subcortical volumes. Orbitofrontal and right amygdala volume were both positively related to extraversion. Extraversion was differentially related to volume of the anterior cingulate cortex in males (positive and females (negative. Neuroticism scores did not significantly correlate with these brain regions. As extraversion is regarded a protective factor for developing anxiety disorders and depression and has been related to the generation of positive affect, the present results indicate that the reduced likelihood of developing affective disorders in individuals high on extraversion is related to modulation of emotion processing through the orbitofrontal cortex and the amygdala.

  19. Corticotrigeminal projections from the insular cortex to the trigeminal caudal subnucleus regulate orofacial pain after nerve injury via extracellular signal-regulated kinase activation in insular cortex neurons

    Directory of Open Access Journals (Sweden)

    Jian eWang

    2015-12-01

    Full Text Available Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc, especially the superficial laminae (I/II, received direct descending projections from granular and dysgranular parts of the insular cortex (IC. Extracellular signal-regulated kinase (ERK, an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs and reduced the paired-pulse ratio (PPR of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These

  20. Global resting-state fMRI analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder

    Science.gov (United States)

    Anticevic, Alan; Hu, Sien; Zhang, Sheng; Savic, Aleksandar; Billingslea, Eileen; Wasylink, Suzanne; Repovs, Grega; Cole, Michael W.; Bednarski, Sarah; Krystal, John H.; Bloch, Michael H.; Li, Chiang-shan R.; Pittenger, Christopher

    2013-01-01

    Background Obsessive-compulsive disorder (OCD) is associated with regional hyperactivity in cortico-striatal circuits. However, the large-scale patterns of abnormal neural connectivity remain uncharacterized. Resting-state functional connectivity (rs-fcMRI) studies have shown altered connectivity within the implicated circuitry, but they have used seed-driven approaches wherein a circuit of interest is defined a priori. This limits their ability to identify network abnormalities beyond the prevailing framework. This limitation is particularly problematic within the prefrontal cortex (PFC), which is large and heterogeneous and where a priori specification of seeds is therefore difficult. A hypothesis-neutral data-driven approach to the analysis of connectivity is vital. Method We analyzed rs-fcMRI data collected at 3T in 27 OCD patients and 66 matched controls using a recently developed data-driven global brain connectivity (GBC) method, both within the PFC and across the whole brain. Results We found clusters of decreased connectivity in the left lateral PFC in both whole-brain and PFC-restricted analyses. Increased GBC was found in the right putamen and left cerebellar cortex. Within ROIs in the basal ganglia and thalamus, we identified increased GBC in dorsal striatum and anterior thalamus, which was reduced in patients on medication. The ventral striatum/nucleus accumbens exhibited decreased global connectivity, but increased connectivity specifically with the ventral anterior cingulate cortex in subjects with OCD. Conclusion These findings identify previously uncharacterized PFC and basal ganglia dysconnectivity in OCD and reveal differentially altered GBC in dorsal and ventral striatum. Results highlight complex disturbances in PFC networks, which could contribute to disrupted cortical-striatal-cerebellar circuits in OCD. PMID:24314349

  1. Treatment with direct-current stimulation against cingulate seizure-like activity induced by 4-aminopyridine and bicuculline in an in vitro mouse model.

    Science.gov (United States)

    Chang, Wei-Pang; Lu, Hsiang-Chin; Shyu, Bai-Chuang

    2015-03-01

    Clinical studies have shown that cathodal transcranial direct-current stimulation (tDCS) application can produce long-term suppressive effects on drug-resistant seizures. Whether this long-term effect produced by cathodal tDCS can counterbalance the enhancement of synaptic transmission during seizures requires further investigation. Our hypothesis was that the long-term effects of DCS on seizure suppression by the application of cathodal DCS occur through a long-term depression (LTD)-like mechanism. We used a thalamocingulate brain slice preparation combined with a multielectrode array and patch recording to investigate the underlying mechanism of the suppressive effect of DCS on anterior cingulate cortex (ACC) seizures. Patch-clamp recordings showed that cathodal DCS significantly decreased spontaneous excitatory postsynaptic currents (EPSCs) and epileptic EPSCs caused by the 4-aminopyridine. Fifteen minutes of DCS application reliably induced LTD, and the synaptic activation frequency was an important factor in LTD formation. The application of DCS alone without continuous synaptic activation did not induce LTD. Direct-current stimulation-induced LTD appeared to be N-methyl-d-aspartate (NMDA)-dependent, in which the application of the NMDA receptor antagonist D-1-2-amino-5-phosphonopentanoic acid (APV) abolished DCS-induced LTD, and the immediate effect remained. Direct-current stimulation-induced LTD and the long-term effects of DCS on seizure-like activities were also abolished by okadaic acid, a protein phosphatase 1 inhibitor. The long-term effects of DCS on seizures were not influenced by the depotentiation blocker FK-506. Therefore, we conclude that the long-term effects of DCS on seizure-like activities in brain slice occur through an LTD-like mechanism. PMID:25682917

  2. Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices.

    Science.gov (United States)

    Mansouri, Farshad A; Buckley, Mark J; Mahboubi, Majid; Tanaka, Keiji

    2015-07-21

    Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys' ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals' abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals. PMID:26150522

  3. The neural mechanisms of affect infusion in social economic decision-making: a mediating role of the anterior insula.

    Science.gov (United States)

    Harlé, Katia M; Chang, Luke J; van 't Wout, Mascha; Sanfey, Alan G

    2012-05-15

    Though emotions have been shown to have sometimes dramatic effects on decision-making, the neural mechanisms mediating these biases are relatively unexplored. Here, we investigated how incidental affect (i.e. emotional states unrelated to the decision at hand) may influence decisions, and how these biases are implemented in the brain. Nineteen adult participants made decisions which involved accepting or rejecting monetary offers from others in an Ultimatum Game while undergoing functional magnetic resonance imaging (fMRI). Prior to each set of decisions, participants watched a short video clip aimed at inducing either a sad or neutral emotional state. Results demonstrated that, as expected, sad participants rejected more unfair offers than those in the neutral condition. Neuroimaging analyses revealed that receiving unfair offers while in a sad mood elicited activity in brain areas related to aversive emotional states and somatosensory integration (anterior insula) and to cognitive conflict (anterior cingulate cortex). Sad participants also showed a diminished sensitivity in neural regions associated with reward processing (ventral striatum). Importantly, insular activation uniquely mediated the relationship between sadness and decision bias. This study is the first to reveal how subtle mood states can be integrated at the neural level to influence decision-making.

  4. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2009-11-11

    Classically, the spinothalamic (ST) system has been viewed as the major pathway for transmitting nociceptive and thermoceptive information to the cerebral cortex. There is a long-standing controversy about the cortical targets of this system. We used anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 in the Cebus monkey to label the cortical areas that receive ST input. We found that the ST system reaches multiple cortical areas located in the contralateral hemisphere. The major targets are granular insular cortex, secondary somatosensory cortex and several cortical areas in the cingulate sulcus. It is noteworthy that comparable cortical regions in humans consistently display activation when subjects are acutely exposed to painful stimuli. We next combined anterograde transneuronal transport of virus with injections of a conventional tracer into the ventral premotor area (PMv). We used the PMv injection to identify the cingulate motor areas on the medial wall of the hemisphere. This combined approach demonstrated that each of the cingulate motor areas receives ST input. Our meta-analysis of imaging studies indicates that the human equivalents of the three cingulate motor areas also correspond to sites of pain-related activation. The cingulate motor areas in the monkey project directly to the primary motor cortex and to the spinal cord. Thus, the substrate exists for the ST system to have an important influence on the cortical control of movement. PMID:19906970

  5. Parcellation of the human orbitofrontal cortex based on gray matter volume covariance.

    Science.gov (United States)

    Liu, Huaigui; Qin, Wen; Qi, Haotian; Jiang, Tianzi; Yu, Chunshui

    2015-02-01

    The human orbitofrontal cortex (OFC) is an enigmatic brain region that cannot be parcellated reliably using diffusional and functional magnetic resonance imaging (fMRI) because there is signal dropout that results from an inherent defect in imaging techniques. We hypothesise that the OFC can be reliably parcellated into subregions based on gray matter volume (GMV) covariance patterns that are derived from artefact-free structural images. A total of 321 healthy young subjects were examined by high-resolution structural MRI. The OFC was parcellated into subregions-based GMV covariance patterns; and then sex and laterality differences in GMV covariance pattern of each OFC subregion were compared. The human OFC was parcellated into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. This parcellation scheme was validated by the same analyses of the left OFC and the bilateral OFCs in male and female subjects. Both visual observation and quantitative comparisons indicated a unique GMV covariance pattern for each OFC subregion. These OFC subregions mainly covaried with the prefrontal and temporal cortices, cingulate cortex and amygdala. In addition, GMV correlations of most OFC subregions were similar across sex and laterality except for significant laterality difference in the OFCl. The right OFCl had stronger GMV correlation with the right inferior frontal cortex. Using high-resolution structural images, we established a reliable parcellation scheme for the human OFC, which may provide an in vivo guide for subregion-level studies of this region and improve our understanding of the human OFC at subregional levels.

  6. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex

    Science.gov (United States)

    Pirnia, T; Joshi, S H; Leaver, A M; Vasavada, M; Njau, S; Woods, R P; Espinoza, R; Narr, K L

    2016-01-01

    Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections. PMID:27271858

  7. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex.

    Science.gov (United States)

    Pirnia, T; Joshi, S H; Leaver, A M; Vasavada, M; Njau, S; Woods, R P; Espinoza, R; Narr, K L

    2016-01-01

    Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections. PMID:27271858

  8. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  9. Dimensional change card sort performance associated with age-related differences in functional connectivity of lateral prefrontal cortex.

    Science.gov (United States)

    Ezekiel, Fredrick; Bosma, Rachael; Morton, J Bruce

    2013-07-01

    The Dimensional Change Card Sort (DCCS) is a standard procedure for assessing executive functioning early in development. In the task, participants switch from sorting cards one way (e.g., by color) to sorting them a different way (e.g., by shape). Traditional accounts associate age-related changes in DCCS performance with circumscribed changes in lateral prefrontal cortex (lPFC) functioning, but evidence of age-related differences in the modulation of lPFC activity by switching is mixed. The current study therefore tested for possible age-related differences in functional connectivity of lPFC with regions that comprise a larger cognitive control network. Functional magnetic resonance imaging (fMRI) data collected from children and adults performing the DCCS were analyzed by means of independent components analysis (ICA). The analysis revealed several important age-related differences in functional connectivity of lPFC. In particular, lPFC was more strongly connected with the anterior cingulate, inferior parietal cortex, and the ventral tegmental area in adults than in children. Theoretical implications are discussed. PMID:23328350

  10. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex.

    Science.gov (United States)

    Silvetti, Massimo; Alexander, William; Verguts, Tom; Brown, Joshua W

    2014-10-01

    The role of the medial prefrontal cortex (mPFC) and especially the anterior cingulate cortex has been the subject of intense debate for the last decade. A number of theories have been proposed to account for its function. Broadly speaking, some emphasize cognitive control, whereas others emphasize value processing; specific theories concern reward processing, conflict detection, error monitoring, and volatility detection, among others. Here we survey and evaluate them relative to experimental results from neurophysiological, anatomical, and cognitive studies. We argue for a new conceptualization of mPFC, arising from recent computational modeling work. Based on reinforcement learning theory, these new models propose that mPFC is an Actor-Critic system. This system is aimed to predict future events including rewards, to evaluate errors in those predictions, and finally, to implement optimal skeletal-motor and visceromotor commands to obtain reward. This framework provides a comprehensive account of mPFC function, accounting for and predicting empirical results across different levels of analysis, including monkey neurophysiology, human ERP, human neuroimaging, and human behavior. PMID:24239852

  11. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  12. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex.

    Science.gov (United States)

    Smith, Elliot H; Banks, Garrett P; Mikell, Charles B; Cash, Syndey S; Patel, Shaun R; Eskandar, Emad N; Sheth, Sameer A

    2015-12-01

    The feedback-related negativity (FRN) is a commonly observed potential in scalp electroencephalography (EEG) studies related to the valence of feedback about a subject's performance. This potential classically manifests as a negative deflection in medial frontocentral EEG contacts following negative feedback. Recent work has shown prominence of theta power in the spectral composition of the FRN, placing it within the larger class of "frontal midline theta" cognitive control signals. Although the dorsal anterior cingulate cortex (dACC) is thought to be the cortical generator of the FRN, conclusive data regarding its origin and propagation are lacking. Here we examine intracranial electrophysiology from the human medial and lateral prefrontal cortex (PFC) to better understand the anatomical localization and communication patterns of the FRN. We show that the FRN is evident in both low- and high-frequency local field potentials (LFPs) recorded on electrocorticography. The FRN is larger in medial compared with lateral PFC, and coupling between theta band phase and high-frequency LFP power is also greater in medial PFC. Using Granger causality and conditional mutual information analyses, we provide evidence that feedback-related information propagates from medial to lateral PFC, and that this information transfer oscillates with theta-range periodicity. These results provide evidence for the dACC as the cortical source of the FRN, provide insight into the local computation of frontal midline theta, and have implications for reinforcement learning models of cognitive control. PMID:26631465

  13. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex.

    Science.gov (United States)

    Silvetti, Massimo; Alexander, William; Verguts, Tom; Brown, Joshua W

    2014-10-01

    The role of the medial prefrontal cortex (mPFC) and especially the anterior cingulate cortex has been the subject of intense debate for the last decade. A number of theories have been proposed to account for its function. Broadly speaking, some emphasize cognitive control, whereas others emphasize value processing; specific theories concern reward processing, conflict detection, error monitoring, and volatility detection, among others. Here we survey and evaluate them relative to experimental results from neurophysiological, anatomical, and cognitive studies. We argue for a new conceptualization of mPFC, arising from recent computational modeling work. Based on reinforcement learning theory, these new models propose that mPFC is an Actor-Critic system. This system is aimed to predict future events including rewards, to evaluate errors in those predictions, and finally, to implement optimal skeletal-motor and visceromotor commands to obtain reward. This framework provides a comprehensive account of mPFC function, accounting for and predicting empirical results across different levels of analysis, including monkey neurophysiology, human ERP, human neuroimaging, and human behavior.

  14. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex.

    Science.gov (United States)

    Smith, Elliot H; Banks, Garrett P; Mikell, Charles B; Cash, Syndey S; Patel, Shaun R; Eskandar, Emad N; Sheth, Sameer A

    2015-12-01

    The feedback-related negativity (FRN) is a commonly observed potential in scalp electroencephalography (EEG) studies related to the valence of feedback about a subject's performance. This potential classically manifests as a negative deflection in medial frontocentral EEG contacts following negative feedback. Recent work has shown prominence of theta power in the spectral composition of the FRN, placing it within the larger class of "frontal midline theta" cognitive control signals. Although the dorsal anterior cingulate cortex (dACC) is thought to be the cortical generator of the FRN, conclusive data regarding its origin and propagation are lacking. Here we examine intracranial electrophysiology from the human medial and lateral prefrontal cortex (PFC) to better understand the anatomical localization and communication patterns of the FRN. We show that the FRN is evident in both low- and high-frequency local field potentials (LFPs) recorded on electrocorticography. The FRN is larger in medial compared with lateral PFC, and coupling between theta band phase and high-frequency LFP power is also greater in medial PFC. Using Granger causality and conditional mutual information analyses, we provide evidence that feedback-related information propagates from medial to lateral PFC, and that this information transfer oscillates with theta-range periodicity. These results provide evidence for the dACC as the cortical source of the FRN, provide insight into the local computation of frontal midline theta, and have implications for reinforcement learning models of cognitive control.

  15. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  16. Early adverse events, HPA activity and rostral anterior cingulate volume in MDD.

    Directory of Open Access Journals (Sweden)

    Michael T Treadway

    Full Text Available BACKGROUND: Prior studies have independently reported associations between major depressive disorder (MDD, elevated cortisol concentrations, early adverse events and region-specific decreases in grey matter volume, but the relationships among these variables are unclear. In the present study, we sought to evaluate the relationships between grey matter volume, early adverse events and cortisol levels in MDD. METHODS/RESULTS: Grey matter volume was compared between 19 controls and 19 individuals with MDD using voxel-based morphometry. A history of early adverse events was assessed using the Childhood Trauma Questionnaire. Subjects also provided salivary cortisol samples. Depressed patients showed decreased grey matter volume in the rostral ACC as compared to controls. Rostral ACC volume was inversely correlated with both cortisol and early adverse events. CONCLUSIONS: These findings suggest a key relationship between ACC morphology, a history of early adverse events and circulating cortisol in the pathophysiology of MDD.

  17. Stimulus-Outcome Learnability Differentially Activates Anterior Cingulate and Hippocampus at Feedback Processing

    Science.gov (United States)

    Rodriguez, Paul F.

    2009-01-01

    Memory systems are known to be influenced by feedback and error processing, but it is not well known what aspects of outcome contingencies are related to different memory systems. Here we use the Rescorla-Wagner model to estimate prediction errors in an fMRI study of stimulus-outcome association learning. The conditional probabilities of outcomes…

  18. Blocking Central Opiate Function Modulates Hedonic Impact and Anterior Cingulate Response to Rewards and Losses

    OpenAIRE

    Petrovic, P.; Pleger, B.; Seymour, B; Kloppel, S.; Martino, B.; Critchley, H; Dolan, R J

    2008-01-01

    Reward processing is linked to specific neuromodulatory systems with a dopaminergic contribution to reward learning and motivational drive being well established. Neuromodulatory influences on hedonic responses to actual receipt of reward, or punishment, referred to as experienced utility are less well characterized, although a link to the endogenous opioid system is suggested. Here, in a combined functional magnetic resonance imaging-psychopharmacological investigation, we used naloxone to b...

  19. Individual Differences in Anterior Cingulate Activation Associated with Attentional Bias Predict Cocaine Use After Treatment

    NARCIS (Netherlands)

    Marhe, R.; Luijten, M.; Wetering, B.J.M. van de; Smits, M.; Franken, I.H.A.

    2013-01-01

    Drug-dependent patients often relapse into drug use after treatment. Behavioral studies show that enhanced attentional bias to drug cues is a precursor of relapse. The present functional magnetic resonance imaging (fMRI) study examined whether brain regions involved in attentional bias are predictiv

  20. Individual differences in anterior cingulate activation associated with attentional bias predict cocaine use after treatment

    NARCIS (Netherlands)

    R. Marhe (Reshmi); M. Luijten (Maartje); B.J.M. van de Wetering (Ben); M. Smits (Marion); I.H.A. Franken (Ingmar)

    2013-01-01

    textabstractDrug-dependent patients often relapse into drug use after treatment. Behavioral studies show that enhanced attentional bias to drug cues is a precursor of relapse. The present functional magnetic resonance imaging (fMRI) study examined whether brain regions involved in attentional bias a

  1. Improvement of cognitive flexibility and cingulate blood flow correlates after atypical antipsychotic treatment in drug-naive patients with first-episode schizophrenia.

    Science.gov (United States)

    Pardo, Bernardo M; Garolera, Maite; Ariza, Mar; Pareto, Deborah; Salamero, Manel; Valles, Vicenç; Delgado, Luis; Alberni, Joan

    2011-12-30

    The aim of this study was to examine the changes in cognitive flexibility and associated cerebral blood flow in the anterior cingulate lobe of drug-naive patients with first-episode schizophrenia who were treated with atypical antipsychotics for 6 weeks. Single photon emission computed tomography (SPECT) images were obtained from 8 healthy subjects both at rest and while performing the flexibility subtest of the TAP (Test for Attentional Performance). SPECT images were obtained in parallel from 8 first-episode drug-naive schizophrenic patients while they were performing the same task both before and after 6 weeks of neuroleptic treatment. In the control group, an increase in the perfusion indices of the dorsal section of the anterior cingulate gyrus was observed in the activation condition. Task performance was altered and the level of perfusion of the brain region related to the task execution was significantly decreased in the patients at baseline. After treatment, there was a significant improvement in both task performance and the level of perfusion of the dorsal section of the anterior cingulate. We conclude that treatment with second-generation neuroleptics improves cognitive flexibility, and there was a relationship between such improvements and normalization of perfusion indices of the involved brain areas.

  2. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes - A report of 4 cases

    NARCIS (Netherlands)

    O. Borens; M.K. Sen; R.C. Huang; J. Richmond; P. Kloen; J.B. Jupiter; D.L. Helfet

    2006-01-01

    Stress fracture of the anterior tibial cortex is an extremely challenging fracture to treat, especially in the high-performance female athlete who requires rapid return to competition. Previous reports have not addressed treating these fractures in the world-class athlete with anterior plating. We h

  3. Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies.

    Directory of Open Access Journals (Sweden)

    Samantha J Brooks

    Full Text Available BACKGROUND AND OBJECTIVES: Obesity is emerging as the most significant health concern of the twenty-first century. A wealth of neuroimaging data suggest that weight gain might be related to aberrant brain function, particularly in prefrontal cortical regions modulating mesolimbic addictive responses to food. Nevertheless, food addiction is currently a model hotly debated. Here, we conduct a meta-analysis of neuroimaging data, examining the most common functional differences between normal-weight and obese participants in response to food stimuli. DATA SOURCE: We conducted a search using several journal databases and adhered to the 'Preferred Reporting Items for Systematic Reviews and Meta-analyses' (PRISMA method. To this aim, 10 studies were found with a total of 126 obese participants, 129 healthy controls, equaling 184 foci (146 increased, 38 decreased activation using the Activation Likelihood Estimation (ALE technique. Out of the 10 studies, 7 investigated neural responses to food versus non-food images. RESULTS: In response to food images, obese in comparison to healthy weight subjects had increased activation in the left dorsomedial prefrontal cortex, right parahippocampal gyrus, right precentral gyrus and right anterior cingulate cortex, and reduced activation in the left dorsolateral prefrontal cortex and left insular cortex. CONCLUSIONS: Prefrontal cortex areas linked to cognitive evaluation processes, such as evaluation of rewarding stimuli, as well as explicit memory regions, appear most consistently activated in response to images of food in those who are obese. Conversely, a reduced activation in brain regions associated with cognitive control and interoceptive awareness of sensations in the body might indicate a weakened control system, combined with hypo-sensitivity to satiety and discomfort signals after eating in those who are prone to overeat.

  4. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Pierre Enel

    2016-06-01

    Full Text Available Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that

  5. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex.

    Science.gov (United States)

    Enel, Pierre; Procyk, Emmanuel; Quilodran, René; Dominey, Peter Ford

    2016-06-01

    Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a

  6. Increased activation in cingulate cortex in conversion disorder : What does it mean?

    NARCIS (Netherlands)

    van Beilen, M.; Vogt, B. A.; Leenders, K. L.

    2010-01-01

    Conversion disorder is one of the terms used to describe various psychosomatic neurological symptoms that are thought to originate from a psychological conflict Psychological stressors can usually be identified but appear to be almost similar to the severity of psychological stress in non-psychosoma

  7. Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: An fMRI investigation of the Balloon Analogue Risk Task

    Directory of Open Access Journals (Sweden)

    Tom eSchonberg

    2012-06-01

    Full Text Available Functional imaging studies examining the neural correlates of risk have mainly relied on paradigms involving exposure to simple chance gambles and an economic definition of risk as variance in the probability distribution over possible outcomes. However, there is little evidence that choices made during gambling tasks predict naturalistic risk-taking behaviors such as drug use, extreme sports, or even equity investing. To better understand the neural basis of naturalistic risk-taking, we scanned participants using fMRI while they completed the Balloon Analog Risk Task (BART, an experimental measure that includes an active decision/choice component and that has been found to correlate with a number of naturalistic risk taking behaviors. In the task, as in many naturalistic settings, escalating risk-taking occurs under uncertainty and might be experienced either as the accumulation of greater potential rewards, or as exposure to increasing possible losses (and decreasing expected value. We found that areas previously linked to risk and risk-taking (bilateral anterior insula, anterior cingulate cortex (ACC and right dorsolateral prefrontal cortex (DLPFC were activated as participants continued to inflate balloons. Interestingly, we found that ventromedial prefrontal cortex (vmPFC activity decreased as participants further expanded balloons. In light of previous findings implicating the vmPFC in value calculation, this result suggests that escalating risk-taking in the task might be perceived as exposure to increasing possible losses (and decreasing expected value rather than the increasing potential total reward relative to the starting point of the trial. A better understanding of how neural activity changes with risk-taking behavior in the task offers insight into the potential neural mechanisms driving naturalistic risk-taking.

  8. Complementary sensory and associative microcircuitry in primary olfactory cortex

    OpenAIRE

    Wiegand, H.F.; Beed, P.; Bendels, M.H.; Leibold, C.; Schmitz, D; Johenning, F.W.

    2011-01-01

    The three-layered primary olfactory (piriform) cortex is the largest component of the olfactory cortex. Sensory and intracortical inputs converge on principal cells in the anterior piriform cortex (aPC). We characterize organization principles of the sensory and intracortical microcircuitry of layer II and III principal cells in acute slices of rat aPC using laser-scanning photostimulation and fast two-photon population Ca(2+) imaging. Layer II and III principal cells are set up on a superfic...

  9. Sensory Deprivation during Early Postnatal Period Alters the Density of Interneurons in the Mouse Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Hiroshi Ueno

    2015-01-01

    Full Text Available Early loss of one sensory system can cause improved function of other sensory systems. However, both the time course and neuronal mechanism of cross-modal plasticity remain elusive. Recent study using functional MRI in humans suggests a role of the prefrontal cortex (PFC in cross-modal plasticity. Since this phenomenon is assumed to be associated with altered GABAergic inhibition in the PFC, we have tested the hypothesis that early postnatal sensory deprivation causes the changes of inhibitory neuronal circuit in different regions of the PFC of the mice. We determined the effects of sensory deprivation from birth to postnatal day 28 (P28 or P58 on the density of parvalbumin (PV, calbindin (CB, and calretinin (CR neurons in the prelimbic, infralimbic, and dorsal anterior cingulate cortices. The density of PV and CB neurons was significantly increased in layer 5/6 (L5/6. Moreover, the density of CR neurons was higher in L2/3 in sensory deprived mice compared to intact mice. These changes were more prominent at P56 than at P28. These results suggest that long-term sensory deprivation causes the changes of intracortical inhibitory networks in the PFC and the changes of inhibitory networks in the PFC may contribute to cross-modal plasticity.

  10. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno

    2015-01-01

    Full Text Available The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS. We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG, which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  11. Individual differences in the effects of perceived controllability on pain perception: critical role of the prefrontal cortex.

    Science.gov (United States)

    Salomons, Tim V; Johnstone, Tom; Backonja, Misha-Miroslav; Shackman, Alexander J; Davidson, Richard J

    2007-06-01

    The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267-283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation. PMID:17536969

  12. Functional Reorganization of the Primary Somatosensory Cortex of a Phantom Limb Pain Patient.

    Science.gov (United States)

    Zhao, Jia; Guo, Xiaoli; Xia, Xiaolei; Peng, Weiwei; Wang, Wuchao; Li, Shulin; Zhang, Ya; Hu, Li

    2016-07-01

    Functional reorganization of the somatosensory system was widely observed in phantom limb pain patients. Whereas some studies demonstrated that the primary somatosensory cortex (S1) of the amputated limb was engaged with the regions around it, others showed that phantom limb pain was associated with preserved structure and functional organization in the former brain region. However, according to the law of use and disuse, the sensitivity of S1 of the amputated limb to pain-related context should be enhanced due to the adaptation to the long-lasting phantom limb pain experience. Here, we collected neurophysiological data from a patient with 21-year phantom limb pain using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) techniques. EEG data showed that both laser-evoked potentials (LEPs) and tactile-evoked potentials (TEPs) were clearly presented only when radiant-heat laser pulses and electrical pulses were delivered to the shoulder of the healthy limb, but not of the amputated limb. This observation suggested the functional deficit of somatosensory pathways at the amputated side. FMRI data showed that significant larger brain activations by painful rather than non-painful stimuli in video clips were observed not only at visual-related brain areas and anterior/mid-cingulate cortex, but also at S1 contralateral to the amputated limb. This observation suggested the increased sensitivity of S1 of the amputated limb to the pain-related context. In addition, such increase of sensitivity was significantly larger if the context was associated with the amputated limb of the patient. In summary, our findings provided novel evidence for a possible neuroplasticity of S1 of the amputated limb: in an amputee with long-lasting phantom limb pain, the sensitivity of S1 to pain-related and amputated-limb-related context was greatly enhanced. PMID:27389122

  13. Hippocampal CA1/subiculum-prefrontal cortical pathways induce plastic changes of nociceptive responses in cingulate and prelimbic areas

    Directory of Open Access Journals (Sweden)

    Nakamura Hiroyuki

    2010-08-01

    Full Text Available Abstract Background Projections from hippocampal CA1-subiculum (CA1/SB areas to the prefrontal cortex (PFC, which are involved in memory and learning processes, produce long term synaptic plasticity in PFC neurons. We examined modifying effects of these projections on nociceptive responses recorded in the prelimbic and cingulate areas of the PFC. Results Extracellular unit discharges evoked by mechanical noxious stimulation delivered to the rat-tail and field potentials evoked by a single stimulus pulse delivered to CA1/SB were recorded in the PFC. High frequency stimulation (HFS, 100 Hz delivered to CA1/SB, which produced long-term potentiation (LTP of field potentials, induced long-term enhancement (LTE of nociceptive responses in 78% of cases, while, conversely, in 22% responses decreased (long-term depression, LTD. These neurons were scattered throughout the cingulate and prelimbic areas. The results obtained for field potentials and nociceptive discharges suggest that CA1/SB-PFC pathways can produce heterosynaptic potentiation in PFC neurons. HFS had no effects on Fos expression in the cingulated cortex. Low frequency stimulation (LFS, 1 Hz, 600 bursts delivered to the CA1/SB induced LTD of nociceptive discharges in all cases. After recovery from LTD, HFS delivered to CA1/SB had the opposite effect, inducing LTE of nociceptive responses in the same neuron. The bidirectional type of plasticity was evident in these nociceptive responses, as in the homosynaptic plasticity reported previously. Neurons inducing LTD are found mainly in the prelimbic area, in which Fos expression was also shown to be inhibited by LFS. The electrophysiological results closely paralleled those of immunostaining. Our results indicate that CA1/SB-PFC pathways inhibit excitatory pyramidal cell activities in prelimbic areas. Conclusion Pressure stimulation (300 g applied to the rat-tail induced nociceptive responses in the cingulate and prelimbic areas of the PFC, which

  14. Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self-regulation

    Directory of Open Access Journals (Sweden)

    Stefon evan Noordt

    2012-07-01

    Full Text Available The medial prefrontal cortex (MPFC is central to self-regulation and has been implicated in generating a cluster of event-related potential components, collectively referred to as medial frontal negativities (MFNs. These MFNs are elicited while individuals monitor behavioural and environmental consequences, and include the error-related negativity, Nogo N2, and the feedback-related negativity. A growing cognitive and affective neuroscience literature indicates that the activation of the anterior cingulate cortex and surrounding medial prefrontal regions during performance monitoring is not only influenced by task context, but that these patterns of activity also vary as a function of individual differences (e.g., personality, temperament, clinical and non-clinical symptomatology, socio-political orientation, and genetic polymorphisms, as well as interactions between individual differences and task context. In this review we survey the neuroscience literature on the relations between performance monitoring, personality, task context, and brain functioning with a focus on the MPFC. We relate these issues to the role of affect in the paradigms used to elicit performance-monitoring neural responses and highlight some of the theoretical and clinical implications of this research. We conclude with a discussion of the complexity of these issues and how some of the basic assumptions required for their interpretation may be clarified with future research.

  15. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento]. E-mail: awzuardi@fmrp.usp.br; Araujo, D.; Santos, A.C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Div. de Radiologia

    2008-07-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 {+-} 0.03; control = 1.12 {+-} 0.04) and in the right (schizophrenia 0.88 {+-} 0.02; control = 0.94 {+-} 0.03) and left (schizophrenia 0.84 {+-} 0.03; control = 0.94 {+-} 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 {+-} 0.05) than the controls (0.95 {+-} 0.02, P < 0.05) and the subgroup with normal SCL (0.88 {+-} 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  16. Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer's disease.

    Science.gov (United States)

    Scheff, Stephen W; Price, Douglas A; Ansari, Mubeen A; Roberts, Kelly N; Schmitt, Frederick A; Ikonomovic, Milos D; Mufson, Elliott J

    2015-01-01

    Mild cognitive impairment (MCI) is considered to be an early stage in the progression of Alzheimer's disease (AD) providing an opportunity to investigate brain pathogenesis prior to the onset of dementia. Neuroimaging studies have identified the posterior cingulate gyrus (PostC) as a cortical region affected early in the onset of AD. This association cortex is involved in a variety of different cognitive tasks and is intimately connected with the hippocampal/entorhinal cortex region, a component of the medial temporal memory circuit that displays early AD pathology. We quantified the total number of synapses in lamina 3 of the PostC using unbiased stereology coupled with electron microscopy from short postmortem autopsy tissue harvested from cases at different stage of AD progression. Individuals in the early stages of AD showed a significant decline in synaptic numbers compared to individuals with no cognitive impairment (NCI). Subjects with MCI exhibited synaptic numbers that were between the AD and NCI cohorts. Adjacent tissue was evaluated for changes in both pre and postsynaptic proteins levels. Individuals with MCI demonstrated a significant loss in presynaptic markers synapsin-1 and synaptophysin and postsynaptic markers PSD-95 and SAP-97. Levels of [3H]PiB binding was significantly increased in MCI and AD and correlated strongly with levels of synaptic proteins. All synaptic markers showed a significant association with Mini-Mental Status Examination scores. These results support the idea that the PostC synaptic function is affected during the prodromal stage of the disease and may underlie some of the early clinical sequelae associated with AD.

  17. Supplementary motor complex and disturbed motor control – a retrospective clinical and lesion analysis of patients after anterior cerebral artery stroke

    Directory of Open Access Journals (Sweden)

    Florian eBrugger

    2015-10-01

    Full Text Available Background: Both the supplementary motor complex (SMC, consisting of the supplementary motor area (SMA-proper, the pre-SMA and the supplementary eye field, and the rostral cingulate cortex (ACC are supplied by the anterior cerebral artery (ACA and are involved in higher motor control. The Bereitschaftspotential (BP originates from the SMC and reflects cognitive preparation processes before volitional movements. ACA strokes may lead to impaired motor control in the absence of limb weakness and evoke an alien-hand syndrome (AHS in its extreme form.Aim: To characterize the clinical spectrum of disturbed motor control after ACA strokes including signs attributable to AHS and to identify the underlying neuroanatomical correlates.Methods: A clinical assessment focusing on signs of disturbed motor control including intermanual conflict (i.e. bilateral hand movements directed at opposite purposes, lack of self-initiated movements, exaggerated grasping, motor perseverations, mirror movements and gait apraxia was performed. Symptoms were grouped into A AHS specific and B non-AHS specific signs of upper limbs and C gait apraxia. Lesion summation mapping was applied to the patients’ MRI or CT scans to reveal associated lesion patterns. The BP was recorded in two patients.Results: Ten patients with ACA strokes (9 unilateral, 1 bilateral; mean age: 74.2 years; median NIH-SS at admission: 13.0 were included in this case series. In the acute stage, all cases had marked difficulties to perform volitional hand movements, while movements in response to external stimuli were preserved. In the chronic stage (median follow-up: 83.5 days initiation of voluntary movements improved, although all patients showed persistent signs of disturbed motor control. Impaired motor control is predominantly associated with damaged voxels within the SMC and the anterior and medial cingulate cortex, while lesions within the pre-SMA are specifically related to AHS. No BP was detected

  18. Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer's disease.

    Science.gov (United States)

    Boundy, K L; Barnden, L R; Katsifis, A G; Rowe, C C

    2005-05-01

    Early detection of Alzheimer's disease (AD) allows timely pharmacological and social interventions. Alteration in muscarinic receptor binding was evaluated with I-123 iodo-dexetimide (IDEX) in early clinical stage AD. We studied 11 mild AD patients (Folstein Minimental State Examination Score 24-27, Clinical Dementia Rating 0.5-1.0) and 10 age- and sex-matched normal subjects with SPECT brain imaging after injection of 185 MBq of IDEX and 750 MBq of 99mTc-HMPAO. Using a voxel based approach (Statistical Parametric Mapping (SPM99) software), a deficit in IDEX binding was found in the posterior cingulate cortex in the mild AD group with p (corrected)=0.06 for the most significant voxel and p=0.0003 for the voxel cluster. Region of interest (ROI) analysis confirmed the SPM99 results. SPM99 found no deficit in the HMPAO scans, suggesting that neither atrophy nor hypoperfusion were major factors in the reduced IDEX binding. This study provides further evidence of the involvement of the posterior cingulate region and of muscarinic receptors in early Alzheimer's disease and suggests that this change may precede an alteration in blood flow. PMID:15925773

  19. Cognitive Strategy Use as an Index of Developmental Differences in Neural Responses to Feedback

    DEFF Research Database (Denmark)

    Andersen, Lau M.; Visser, Ingmar; Crone, Eveline A.;

    2014-01-01

    Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie...

  20. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    Science.gov (United States)

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  1. The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes.

    Science.gov (United States)

    Jäncke, L; Kleinschmidt, A; Mirzazade, S; Shah, N J; Freund, H J

    2001-02-01

    We employed functional magnetic resonance imaging (fMRI) in 12 healthy subjects to measure cerebral activation related to a set of higher order manual sensorimotor tasks performed in the absence of visual guidance. Purposeless manipulation of meaningless plasticine lumps served as a reference against which we contrasted two tasks where manual manipulation served a meaningful purpose, either the perception and recognition of three-dimensional shapes or the construction of such shapes out of an amorphous plasticine lump. These tasks were compared with the corresponding mental imagery of the modelling process which evokes the constructive concept but lacks concomitant sensorimotor input and output. Neural overlap was found in a bilateral activity increase in the posterior and anterior intraparietal sulcus area (IPS and AIP). Differential activation was seen in the supplementary and cingulate motor areas, the left M1 and the superior parietal lobe for modelling and in the left angular and ventral premotor cortex for imagery. Our data thus point to a congruent neural substrate for both perceptive and constructive object-oriented sensorimotor cognition in the AIP and posterior IPS. The leftward asymmetry of the inferior parietal activations, including the angular gyrus, during imagery of modelling along with the ventral premotor activations emphasize the close vicinity of the circuitry for cognitive manipulative motor behaviour and language. PMID:11208666

  2. The typical development of posterior medial frontal cortex function and connectivity during task control demands in youth 8-19years old.

    Science.gov (United States)

    Liu, Yanni; Angstadt, Mike; Taylor, Stephan F; Fitzgerald, Kate D

    2016-08-15

    To characterize the development of neural substrate for interference processing and task control, this study examined both linear and non-linear effects of age on activation and connectivity during an interference task designed to engage the posterior medial frontal cortex (pMFC). Seventy-two youth, ages 8-19years, performed the Multi-Source Interference Task (MSIT) during functional magnetic resonance imaging (fMRI). With increasing age, overall performance across high-interference incongruent and low-interference congruent trials became faster and more accurate. Effects of age on activation to interference- (incongruent versus congruent conditions), error- (errors versus correct trials during the incongruent condition) and overall task-processing (incongruent plus congruent conditions, relative to implicit baseline) were tested in whole-brain voxel-wise analyses. Age differentially impacted activation to overall task processing in discrete sub-regions of the pMFC: activation in the pre-supplementary motor area (pre-SMA) decreased with age, whereas activation in the dorsal anterior cingulate cortex (dACC) followed a non-linear (i.e., U-shaped) pattern in relation to age. In addition, connectivity of pre-SMA with anterior insula/frontal operculum (AI/FO) increased with age. These findings suggest differential development of pre-SMA and dACC sub-regions within the pMFC. Moreover, as children age, decreases in pre-SMA activation may couple with increases in pre-SMA-AI/FO connectivity to support gains in processing speed in response to demands for task control. PMID:27173761

  3. Altered anterior visual system development following early monocular enucleation

    Directory of Open Access Journals (Sweden)

    Krista R. Kelly

    2014-01-01

    Conclusions: The novel finding of an asymmetry in morphology of the anterior visual system following long-term survival from early monocular enucleation indicates altered postnatal visual development. Possible mechanisms behind this altered development include recruitment of deafferented cells by crossing nasal fibres and/or geniculate cell retention via feedback from primary visual cortex. These data highlight the importance of balanced binocular input during postnatal maturation for typical anterior visual system morphology.

  4. Prefrontal cortex markers of suicidal vulnerability in mood disorders: a model-based structural neuroimaging study with a translational perspective.

    Science.gov (United States)

    Ding, Y; Lawrence, N; Olié, E; Cyprien, F; le Bars, E; Bonafé, A; Phillips, M L; Courtet, P; Jollant, F

    2015-01-01

    The vulnerability to suicidal behavior has been modeled in deficits in both valuation and cognitive control processes, mediated by ventral and dorsal prefrontal cortices. To uncover potential markers of suicidality based on this model, we measured several brain morphometric parameters using 1.5T magnetic resonance imaging in a large sample and in a specifically designed study. We then tested their classificatory properties. Three groups were compared: euthymic suicide attempters with a past history of mood disorders and suicidal behavior (N=67); patient controls with a past history of mood disorders but not suicidal behavior (N=82); healthy controls without any history of mental disorder (N=82). A hypothesis-driven region-of-interest approach was applied targeting the orbitofrontal cortex (OFC), ventrolateral (VLPFC), dorsal (DPFC) and medial (including anterior cingulate cortex; MPFC) prefrontal cortices. Both voxel-based (SPM8) and surface-based morphometry (Freesurfer) analyses were used to comprehensively evaluate cortical gray matter measure, volume, surface area and thickness. Reduced left VLPFC volume in attempters vs both patient groups was found (P=0.001, surviving multiple comparison correction, Cohen's d=0.65 95% (0.33-0.99) between attempters and healthy controls). In addition, reduced measures in OFC and DPFC, but not MPFC, were found with moderate effect sizes in suicide attempters vs healthy controls (Cohen's d between 0.34 and 0.52). Several of these measures were correlated with suicidal variables. When added to mood disorder history, left VLPFC volume increased within-sample specificity in identifying attempters in a significant but limited way. Our study, therefore, confirms structural prefrontal alterations in individuals with histories of suicide attempts. A future clinical application of these markers will, however, necessitate further research. PMID:25710122

  5. The role of the midcingulate cortex in monitoring others’ decisions

    Directory of Open Access Journals (Sweden)

    Matthew A J Apps

    2013-12-01

    Full Text Available A plethora of research has implicated the cingulate cortex in the processing of social information (i.e. processing elicited by, about, and directed towards others and reward-related information that guides decision-making. However, it is often overlooked that there is variability in the cytoarchitectonic properties and anatomical connections across the cingulate cortex, which is indicative of functional variability. Here we review evidence from lesion, single-unit recording and functional imaging studies. Taken together, these support the claim that the processing of information that has the greatest influence on social behaviour can be localised to the gyral surface of the midcingulate cortex (MCCg. We propose that the MCCg is engaged when predicting and monitoring the outcomes of decisions during social interactions. In particular, the MCCg processes statistical information that tracks the extent to which the outcomes of decisions meet goals when interacting with others. We provide a novel framework for the computational mechanisms that underpin such social information processing in the MCCg. This framework provides testable hypotheses for the social deficits displayed in autism spectrum disorders and psychopathy.

  6. CONGENITAL ANTERIOR TIBIOFEMURAL SUBLUXATION

    Directory of Open Access Journals (Sweden)

    A. Shahla

    2008-06-01

    Full Text Available Congenital anterior tibiofemoral subluxation is an extremely rare disorder. All reported cases accompanied by other abnormalities and syndromes. A 16-year-old high school girl referred to us with bilateral anterior tibiofemoral subluxation as the knees were extended and reduced at more than 30 degrees flexion. Deformities were due to tightness of the iliotibial band and biceps femuris muscles and corrected by surgical release. Associated disorders included bilateral anterior shoulders dislocation, short metacarpals and metatarsals, and right calcaneuvalgus deformity.

  7. Bilateral anterior shoulder dislocation

    OpenAIRE

    Meena, Sanjay; Saini, Pramod; Singh, Vivek; Kumar, Ramakant; Trikha, Vivek

    2013-01-01

    Shoulder dislocations are the most common major joint dislocations encountered in the emergency departments. Bilateral shoulder dislocations are rare and of these, bilateral posterior shoulder dislocations are more prevalent than bilateral anterior shoulder dislocations. Bilateral anterior shoulder dislocation is very rare. We present a case of 24-year-old male who sustained bilateral anterior shoulder dislocation following minor trauma, with associated greater tuberosity fracture on one side...

  8. An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection

    OpenAIRE

    Holt, Daphne J.; Cassidy, Brittany S.; Andrews-Hanna, Jessica R.; Lee, Su Mei; Coombs, Garth; Goff, Donald C.; Gabrieli, John D.; Moran, Joseph M.

    2010-01-01

    Background Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during “resting” states. In this study, we tested the hypothesis that patients with schizophrenia show dys...

  9. Anterior insular cortex regulation in autism spectrum disorders

    OpenAIRE

    Caria, Andrea; De Falco, Simona

    2015-01-01

    Autism spectrum disorders (ASDs) comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findi...

  10. Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex.

    Science.gov (United States)

    Lee, Kun Ho; Choi, Yu Yong; Gray, Jeremy R; Cho, Sun Hee; Chae, Jeong-Ho; Lee, Seungheun; Kim, Kyungjin

    2006-01-15

    General intelligence (g) is a common factor in diverse cognitive abilities and a major influence on life outcomes. Neuroimaging studies in adults suggest that the lateral prefrontal and parietal cortices play a crucial role in related cognitive activities including fluid reasoning, the control of attention, and working memory. Here, we investigated the neural bases for intellectual giftedness (superior-g) in adolescents, using fMRI. The participants consisted of a superior-g group (n = 18, mean RAPM = 33.9 +/- 0.8, >99%) from the national academy for gifted adolescents and the control group (n = 18, mean RAPM = 22.8 +/- 1.6, 60%) from local high schools in Korea (mean age = 16.5 +/- 0.8). fMRI data were acquired while they performed two reasoning tasks with high and low g-loadings. In both groups, the high g-loaded tasks specifically increased regional activity in the bilateral fronto-parietal network including the lateral prefrontal, anterior cingulate, and posterior parietal cortices. However, the regional activations of the superior-g group were significantly stronger than those of the control group, especially in the posterior parietal cortex. Moreover, regression analysis revealed that activity of the superior and intraparietal cortices (BA 7/40) strongly covaried with individual differences in g (r = 0.71 to 0.81). A correlated vectors analysis implicated bilateral posterior parietal areas in g. These results suggest that superior-g may not be due to the recruitment of additional brain regions but to the functional facilitation of the fronto-parietal network particularly driven by the posterior parietal activation.

  11. Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Alexandre F DaSilva

    Full Text Available BACKGROUND: Recent data suggests that in chronic pain there are changes in gray matter consistent with decreased brain volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has evaluated cortical thickness in relation to specific functional changes in evoked pain. In this study we sought to investigate structural (gray matter thickness and functional (blood oxygenation dependent level - BOLD changes in cortical regions of precisely matched patients with chronic trigeminal neuropathic pain (TNP affecting the right maxillary (V2 division of the trigeminal nerve. The model has a number of advantages including the evaluation of specific changes that can be mapped to known somatotopic anatomy. METHODOLOGY/PRINCIPAL FINDINGS: Cortical regions were chosen based on sensory (Somatosensory cortex (SI and SII, motor (MI and posterior insula, or emotional (DLPFC, Frontal, Anterior Insula, Cingulate processing of pain. Both structural and functional (to brush-induced allodynia scans were obtained and averaged from two different imaging sessions separated by 2-6 months in all patients. Age and gender-matched healthy controls were also scanned twice for cortical thickness measurement. Changes in cortical thickness of TNP patients were frequently colocalized and correlated with functional allodynic activations, and included both cortical thickening and thinning in sensorimotor regions, and predominantly thinning in emotional regions. CONCLUSIONS: Overall, such patterns of cortical thickness suggest a dynamic functionally-driven plasticity of the brain. These structural changes, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions.

  12. Differential visually-induced gamma-oscillations in human cerebral cortex

    OpenAIRE

    Asano, Eishi; Nishida, Masaaki; Fukuda, Miho; Rothermel, Robert; Juhasz, Csaba; Sood, Sandeep

    2008-01-01

    Using intracranial electrocorticography, we determined how cortical gamma-oscillations (50–150Hz) were induced by different visual tasks in nine children with focal epilepsy. In all children, full-field stroboscopic flash-stimuli induced gamma-augmentation in the anterior-medial occipital cortex (starting on average at 31-msec after stimulus presentation) and subsequently in the lateral-polar occipital cortex; minimal gamma-augmentation was noted in the inferior occipital-temporal cortex; occ...

  13. Vasopressin Modulates Medial Prefrontal Cortex-Amygdala Circuitry During Emotion Processing in Humans

    OpenAIRE

    Zink, Caroline F.; Stein, Jason L; Kempf, Lucas; Hakimi, Shabnam; Meyer-Lindenberg, Andreas

    2010-01-01

    The neuropeptide, vasopressin, is a modulator of mammalian social behavior and emotion, particularly fear, aggression, and anxiety. In humans, the neural circuitry underlying behavioral effects of vasopressin is unknown. Using a double-blind crossover administration of 40 IU vasopressin or placebo and functional MRI during processing of facial emotions in healthy male volunteers, we show that vasopressin specifically reduces differential activation in the subgenual cingulate cortex. Structura...

  14. Anterior cruciate ligament (ACL) injury

    Science.gov (United States)

    Cruciate ligament injury - anterior; ACL injury; Knee injury - anterior cruciate ligament (ACL) ... knee. It prevents the knee from bending out. Anterior cruciate ligament (ACL) is in the middle of the knee. ...

  15. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  16. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia [v1; ref status: indexed, http://f1000r.es/34n

    Directory of Open Access Journals (Sweden)

    Julie Vallortigara

    2014-05-01

    Full Text Available Dementia with Lewy Bodies (DLB and Parkinson’s Disease Dementia (PDD together, represent the second most common cause of dementia, after Alzheimer’s disease (AD. The synaptic dysfunctions underlying the cognitive decline and psychiatric symptoms observed throughout the development of PDD and DLB are still under investigation. In this study we examined the expression level of Dynamin1 and phospho-CaMKII, key proteins of endocytosis and synaptic plasticity respectively, as potential markers of molecular processes specifically deregulated with DLB and/or PDD. In order to measure the levels of these proteins, we isolated grey matter from post-mortem prefrontal cortex area (BA9, anterior cingulated gyrus (BA24 and parietal cortex (BA40 from DLB and PDD patients in comparison to age-matched controls and a group of AD cases. Clinical and pathological data available included the MMSE score, neuropsychiatric history, and semi-quantitative scores for AD pathology (plaques - tangles and for α-synuclein (Lewy bodies. Changes in the expression of the synaptic markers, and correlates with neuropathological features and cognitive decline were predominantly found in the prefrontal cortex. On one hand, levels of Dynamin1 were significantly reduced, and correlated with a higher rate of cognitive decline observed in cases from three dementia groups. On the other hand, the fraction of phospho-CaMKII was decreased, and correlated with a high score of plaques and tangles in BA9. Interestingly, the correlation between the rate of cognitive decline and the level of Dynamin1 remained when the analysis was restricted to the PDD and DLB cases, highlighting an association of Dynamin1 with cognitive decline in people with Lewy Body dementia.

  17. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions

    Directory of Open Access Journals (Sweden)

    Simon M. Scheck

    2015-01-01

    Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function.

  18. Heritability of brain structure and glutamate levels in the anterior cingulate and left thalamus assessed with MR: A twin study

    DEFF Research Database (Denmark)

    Broberg, Brian Villumsen; Legind, Christian Stefan; Mandl, Rene C W;

    , Copenhagen, Denmark 3. Brain Center Rudolf Magnus, Dept. of Psychiatry, UMC Utrecht, the Netherlands Background Changes in global and regional brain volumes in schizophrenia are known to be heritable and to cosegregate with illness (McDonald et al., 2002; Peper et al., 2007). Changes in neurochemistry...

  19. Anterior Cingulate Taste Activation Predicts Ad Libitum Intake of Sweet and Savory Drinks in Healthy, Normal-Weight Men

    NARCIS (Netherlands)

    Spetter, M.S.; Graaf, de C.; Viergever, M.A.; Smeets, P.A.M.

    2012-01-01

    After food consumption, the motivation to eat (wanting) decreases and associated brain reward responses change. Wanting-related brain responses and how these are affected by consumption of specific foods are ill documented. Moreover, the predictive value of food-induced brain responses for subsequen

  20. Decreased prefrontal, anterior cingulate, insula, and ventral striatal metabolism in medication-free depressed outpatients with bipolar disorder

    OpenAIRE

    Brooks, John O.; Wang, Po W.; Bonner, Julie C.; Rosen, Allyson C.; Hoblyn, Jennifer C.; Hill, Shelley J.; Ketter, Terence A.

    2008-01-01

    This study explored whether cerebral metabolic changes seen in treatment resistant and rapid cycling bipolar depression inpatients are also found in an outpatient sample not specifically selected for treatment resistance or rapid cycling. We assessed 15 depressed outpatients with bipolar disorder (six type I and nine type II) who were medication-free for at least 2 weeks and were not predominantly rapid cycling. The average 28-item Hamilton Depression Scale (HAM-D) total score was 33.9. The h...

  1. Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior

    Directory of Open Access Journals (Sweden)

    Ronald P Gaykema

    2014-07-01

    Full Text Available The medial prefrontal cortex (mPFC is implicated in aspects of executive function, that include the modulation of attentional and memory processes involved in goal selection. Food-seeking behavior has been shown to involve activation of the mPFC, both during the execution of strategies designed to obtain food and during the consumption of food itself. As these behaviors likely require differential engagement of the prefrontal cortex, we hypothesized that the pattern of neuronal activation would also be behavior dependent. In this study we describe, for the first time, the expression of Fos in different layers and cell types of the infralimbic/dorsal peduncular (IL/DP and prelimbic/anterior cingulate (PL/AC subdivisions of mouse mPFC following both the consumption of palatable food and following exploratory activity of the animal directed at obtaining food reward. While both manipulations led to increases of Fos expression in principal excitatory neurons relative to control, food-directed exploratory activity produced a significantly greater increase in Fos expression than observed in the food intake condition. Consequently, we hypothesized that mPFC interneuron activation would also be differentially engaged by these manipulations. Interestingly, Fos expression patterns differed substantially between treatments and interneuron subtype, illustrating how the differential engagement of subsets of mPFC interneurons depends on the behavioral state. In our experiments, both vasoactive intestinal peptide- and parvalbumin-expressing neurons showed enhanced Fos expression only during the food-dependent exploratory task and not during food intake. Conversely, elevations in arcuate and paraventricular hypothalamic fos expression were only observed following food intake and not following food driven exploration. Our data suggest that activation of select mPFC interneurons may be required to support high cognitive demand states while being dispensable during

  2. Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer's disease

    OpenAIRE

    Hirono, N.; Mori, E.; Ishii, K.; Ikejiri, Y; Imamura, T; Shimomura, T.; Hashimoto, M.; Yamashita, H.; Sasaki, M.

    1998-01-01

    The relation between orientation for time and place and regional cerebral glucose metabolism was examined in 86 patients with probable Alzheimer's disease of minimal to moderate severity. Regional glucose metabolic rates in the posterior cingulate gyri and in the right middle temporal gyrus were significantly correlated with temporal orientation, and the glucose metabolic rate in the right posterior cingulate gyrus was significantly correlated with locational orientation irr...

  3. Observation on local and/or unilateral pathologic changes in renal cortex by CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Isao; Shinoda, Akira (Kanazawa Medical Univ. (Japan)); Onouchi, Zengoro; Saito, Yasuhito; Matsuura, Hajime

    1984-03-01

    Renal cortex visualization after bolus injection of contrast medium using computed tomography (CT), was obtained in 132 consecutive patients with renal disease. Local pathological changes in the functioning cortex of the kidney were easily recognized in 37 cases and unilateral cortical thinning was found in 17 cases. Unilateral poor enhancement of the cortex with bilateral equal cortex thickness was noted in 4 cases. Several representative cases are reported with CT scans. The cortex at the posterior aspect of the renal graft compressed on psoas muscle was thinner than that at the anterior aspect in renal transplant cases. The macroscopic observation on the renal cortex presented here is far superior to the nephrogram or pyelogram seen through conventional radiographic examination. In vivo cortex visualization will correlate renal biopsy findings with the state of the whole kidney.

  4. Corticolimbic metabolic dysregulation in euthymic older adults with bipolar disorder

    OpenAIRE

    Brooks, John O.; Hoblyn, Jennifer C.; Woodard, Stephanie A.; Rosen, Allyson C.; Ketter, Terence A.

    2008-01-01

    The corticolimbic dysregulation hypothesis of bipolar disorder suggests that depressive symptoms are related to dysregulation of components of an anterior paralimbic network (anterior cingulate, anterior temporal cortex, dorsolateral prefrontal cortex, parahippocampal gyrus, and amygdala) with excessive anterior limbic activity accompanied by diminished prefrontal activity. In younger patients, such abnormalities tend to resolve with remission of depression, but it remains to be established w...

  5. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  6. Cold or Calculating? Reduced Activity in the Subgenual Cingulate Cortex Reflects Decreased Emotional Aversion to Harming in Counterintuitive Utilitarian Judgment

    Science.gov (United States)

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-01-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has…

  7. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought.

    Directory of Open Access Journals (Sweden)

    Jonathan Smallwood

    Full Text Available When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN, it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people's spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought.

  8. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease

    Science.gov (United States)

    Prieto del Val, Laura; Cantero, Jose L.; Atienza, Mercedes

    2016-01-01

    Synaptic dysfunction, a key pathophysiological hallmark of Alzheimer’s disease (AD), may account for abnormal memory-related EEG patterns in prodromal AD. Here, we investigate to what extent oscillatory EEG changes during memory encoding and/or retrieval enhance the accuracy of medial temporal lobe (MTL) atrophy in predicting conversion from amnestic mild cognitive impairment (aMCI) to AD. As expected, aMCI individuals that, within a 2-year follow-up period, developed dementia (N = 16) compared to healthy older (HO) (N = 26) and stable aMCI (N = 18) showed poorer associative memory, greater MTL atrophy, and lower capacity to recruit alpha oscillatory cortical networks. Interestingly, encoding-induced abnormal alpha desynchronized activity over the posterior cingulate cortex (PCC) at baseline showed significantly higher accuracy in predicting AD than the magnitude of amygdala atrophy. Nevertheless, the best accuracy was obtained when the two markers were fitted into the model (sensitivity = 78%, specificity = 82%). These results support the idea that synaptic integrity/function in the PCC is affected during prodromal AD and has the potential of improving early detection when combined with MRI biomarkers. PMID:27546195

  9. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer's disease.

    Science.gov (United States)

    Prieto Del Val, Laura; Cantero, Jose L; Atienza, Mercedes

    2016-01-01

    Synaptic dysfunction, a key pathophysiological hallmark of Alzheimer's disease (AD), may account for abnormal memory-related EEG patterns in prodromal AD. Here, we investigate to what extent oscillatory EEG changes during memory encoding and/or retrieval enhance the accuracy of medial temporal lobe (MTL) atrophy in predicting conversion from amnestic mild cognitive impairment (aMCI) to AD. As expected, aMCI individuals that, within a 2-year follow-up period, developed dementia (N = 16) compared to healthy older (HO) (N = 26) and stable aMCI (N = 18) showed poorer associative memory, greater MTL atrophy, and lower capacity to recruit alpha oscillatory cortical networks. Interestingly, encoding-induced abnormal alpha desynchronized activity over the posterior cingulate cortex (PCC) at baseline showed significantly higher accuracy in predicting AD than the magnitude of amygdala atrophy. Nevertheless, the best accuracy was obtained when the two markers were fitted into the model (sensitivity = 78%, specificity = 82%). These results support the idea that synaptic integrity/function in the PCC is affected during prodromal AD and has the potential of improving early detection when combined with MRI biomarkers. PMID:27546195

  10. Spatiotemporal integration of tactile information in human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Zumer Johanna M

    2007-03-01

    Full Text Available Abstract Background Our goal was to examine the spatiotemporal integration of tactile information in the hand representation of human primary somatosensory cortex (anterior parietal somatosensory areas 3b and 1, secondary somatosensory cortex (S2, and the parietal ventral area (PV, using high-resolution whole-head magnetoencephalography (MEG. To examine representational overlap and adaptation in bilateral somatosensory cortices, we used an oddball paradigm to characterize the representation of the index finger (D2; deviant stimulus as a function of the location of the standard stimulus in both right- and left-handed subjects. Results We found that responses to deviant stimuli presented in the context of standard stimuli with an interstimulus interval (ISI of 0.33s were significantly and bilaterally attenuated compared to deviant stimulation alone in S2/PV, but not in anterior parietal cortex. This attenuation was dependent upon the distance between the deviant and standard stimuli: greater attenuation was found when the standard was immediately adjacent to the deviant (D3 and D2 respectively, with attenuation decreasing for non-adjacent fingers (D4 and opposite D2. We also found that cutaneous mechanical stimulation consistently elicited not only a strong early contralateral cortical response but also a weak ipsilateral response in anterior parietal cortex. This ipsilateral response appeared an average of 10.7 ± 6.1 ms later than the early contralateral response. In addition, no hemispheric differences either in response amplitude, response latencies or oddball responses were found, independent of handedness. Conclusion Our findings are consistent with the large receptive fields and long neuronal recovery cycles that have been described in S2/PV, and suggest that this expression of spatiotemporal integration underlies the complex functions associated with this region. The early ipsilateral response suggests that anterior parietal fields also

  11. From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations.

    Science.gov (United States)

    Cassaday, Helen J; Nelson, Andrew J D; Pezze, Marie A

    2014-01-01

    Distinctions along the dorsal-ventral axis of medial prefrontal cortex (mPFC), between anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) sub-regions, have been proposed on a variety of neuroanatomical and neurophysiological grounds. Conventional lesion approaches (as well as some electrophysiological studies) have shown that these distinctions relate to function in that a number behavioral dissociations have been demonstrated, particularly using rodent models of attention, learning, and memory. For example, there is evidence to suggest that AC has a relatively greater role in attention, whereas IL is more involved in executive function. However, the well-established methods of behavioral neuroscience have the limitation that neuromodulation is not addressed. The neurotoxin 6-hydroxydopamine has been used to deplete dopamine (DA) in mPFC sub-regions, but these lesions are not selective anatomically and noradrenalin is typically also depleted. Microinfusion of drugs through indwelling cannulae provides an alternative approach, to address the role of neuromodulation and moreover that of specific receptor subtypes within mPFC sub-regions, but the effects of such treatments cannot be assumed to be anatomically restricted either. New methodological approaches to the functional delineation of the role of mPFC in attention, learning and memory will also be considered. Taken in isolation, the conventional lesion methods which have been a first line of approach may suggest that a particular mPFC sub-region is not necessary for a particular aspect of function. However, this does not exclude a neuromodulatory role and more neuropsychopharmacological approaches are needed to explain some of the apparent inconsistencies in the results. PMID:25249948

  12. Congenital anterior urethral diverticulum.

    Science.gov (United States)

    Singh, Sanjeet Kumar; Ansari, Ms

    2014-09-01

    Congenital anterior urethral diverticulum (CAUD) may be found all along the anterior urethra and may present itself at any age, from infant to adult. Most children with this condition present with difficulty in initiating micturition, dribbling of urine, poor urinary stream, or urinary tract infection. A careful history will reveal that these children never had a good urinary stream since birth, and the telltale sign is a cystic swelling of the penile urethra. In this paper, we present two cases of CAUD that were managed by excision of the diverticulum with primary repair. PMID:26328174

  13. The orbitofrontal cortex: novelty, deviation from expectation, and memory.

    Science.gov (United States)

    Petrides, Michael

    2007-12-01

    The orbitofrontal cortex is strongly connected with limbic areas of the medial temporal lobe that are critically involved in the establishment of declarative memories (entorhinal and perirhinal cortex and the hippocampal region) as well as the amygdala and the hypothalamus that are involved in emotional and motivational states. The present article reviews evidence regarding the role of the orbitofrontal cortex in the processing of novel information, breaches of expectation, and memory. Functional neuroimaging evidence is provided that there is a difference between the anterior and posterior orbitofrontal cortex in such processing. Exposure to novel information gives rise to a selective increase of activity in the granular anterior part of the orbitofrontal cortex (area 11) and this activity increases when subjects attempt to encode this information in memory. If the stimuli violate expectations (e.g., inspection of graffiti-like stimuli in the context of other regular stimuli) or are unpleasant (i.e., exposure to the sounds of car crashes), there is increased response in the posteromedial agranular/dysgranular area 13 of the orbitofrontal region. The anatomic data provide a framework within which to understand these functional neuroimaging findings. PMID:17872393

  14. Visual processing of optic flow and motor control in the human posterior cingulate sulcus.

    Science.gov (United States)

    Field, David T; Inman, Laura A; Li, Li

    2015-10-01

    Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.

  15. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  16. Is the self special in the dorsomedial prefrontal cortex? An fMRI study.

    Science.gov (United States)

    Yaoi, Ken; Osaka, Naoyuki; Osaka, Mariko

    2009-01-01

    In recent years, several neuroimaging studies have suggested that the neural basis of the self-referential process1 is special, especially in the medial prefrontal cortex (MPFC). However, it remains controversial whether activity of the MPFC (and other related brain regions) appears only during the self-referential process. We investigated the neural correlates during the processing of references to the self, close other (friend), and distant other (prime minister) using fMRI. In comparison with baseline findings, referential processing to the three kinds of persons defined above showed common activation patterns in the dorsomedial prefrontal cortex (DMPFC), left middle temporal gyrus, left angular gyrus, posterior cingulate cortex and right cerebellum. Additionally, percent changes in BOLD signal in five regions of interest demonstrated the same findings. The result indicated that DMPFC was not special for the self-referential process, while there are common neural bases for evaluating the personalities of the self and others. PMID:19588282

  17. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  18. A Pilot Study of Mindfulness-Based Exposure Therapy in OEF/OIF Combat Veterans with PTSD: Altered Medial Frontal Cortex and Amygdala Responses in Social–Emotional Processing

    Science.gov (United States)

    King, Anthony P.; Block, Stefanie R.; Sripada, Rebecca K.; Rauch, Sheila A. M.; Porter, Katherine E.; Favorite, Todd K.; Giardino, Nicholas; Liberzon, Israel

    2016-01-01

    Combat-related posttraumatic stress disorder (PTSD) is common among returning veterans, and is a serious and debilitating disorder. While highly effective treatments involving trauma exposure exist, difficulties with engagement and early drop may lead to sub-optimal outcomes. Mindfulness training may provide a method for increasing emotional regulation skills that may improve engagement in trauma-focused therapy. Here, we examine potential neural correlates of mindfulness training and in vivo exposure (non-trauma focused) using a novel group therapy [mindfulness-based exposure therapy (MBET)] in Afghanistan (OEF) or Iraq (OIF) combat veterans with PTSD. OEF/OIF combat veterans with PTSD (N = 23) were treated with MBET (N = 14) or a comparison group therapy [Present-centered group therapy (PCGT), N = 9]. PTSD symptoms were assessed at pre- and post-therapy with Clinician Administered PTSD scale. Functional neuroimaging (3-T fMRI) before and after therapy examined responses to emotional faces (angry, fearful, and neutral faces). Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.43). Improvement in PTSD symptoms from pre- to post-treatment in both treatment groups was correlated with increased activity in rostral anterior cingulate cortex, dorsal medial prefrontal cortex (mPFC), and left amygdala. The MBET group showed greater increases in amygdala and fusiform gyrus responses to Angry faces, as well as increased response in left mPFC to Fearful faces. These preliminary findings provide intriguing evidence that MBET group therapy for PTSD may lead to changes in neural processing of social–emotional threat related to symptom reduction. PMID:27703434

  19. Adaptive coding of action values in the human rostral cingulate zone

    NARCIS (Netherlands)

    Jocham, G.; Neumann, J.; Klein, T.A.; Danielmeier, C.; Ullsperger, M.

    2009-01-01

    Correctly selecting appropriate actions in an uncertain environment requires gathering experience about the available actions by sampling them over several trials. Recent findings suggest that the human rostral cingulate zone (RCZ) is important for the integration of extended action-outcome associat

  20. Loss of resting-state posterior cingulate flexibility is associated with memory disturbance in left temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Linda Douw

    Full Text Available The association between cognition and resting-state fMRI (rs-fMRI has been the focus of many recent studies, most of which use stationary connectivity. The dynamics or flexibility of connectivity, however, may be seminal for understanding cognitive functioning. In temporal lobe epilepsy (TLE, stationary connectomic correlates of impaired memory have been reported mainly for the hippocampus and posterior cingulate cortex (PCC. We therefore investigate resting-state and task-based hippocampal and PCC flexibility in addition to stationary connectivity in left TLE (LTLE patients. Sixteen LTLE patients were analyzed with respect to rs-fMRI and task-based fMRI (t-fMRI, and underwent clinical neuropsychological testing. Flexibility of connectivity was calculated using a sliding-window approach by determining the standard deviation of Fisher-transformed Pearson correlation coefficients over all windows. Stationary connectivity was also calculated. Disturbed memory was operationalized as having at least one memory subtest score equal to or below the 5th percentile compared to normative data. Lower PCC flexibility, particularly in the contralateral (i.e. right hemisphere, was found in memory-disturbed LTLE patients, who had up to 22% less flexible connectivity. No significant group differences were found with respect to hippocampal flexibility, stationary connectivity during both rs-fMRI and t-fMRI, or flexibility during t-fMRI. Contralateral resting-state PCC flexibility was able to classify all but one patient with respect to their memory status (94% accuracy. Flexibility of the PCC during rest relates to memory functioning in LTLE patients. Loss of flexible connectivity to the rest of the brain originating from the PCC, particularly contralateral to the seizure focus, is able to discern memory disturbed patients from their preserved counterparts. This study indicates that the dynamics of resting-state connectivity are associated with cognitive status

  1. Scene-Selectivity and Retinotopy in Medial Parietal Cortex

    Science.gov (United States)

    Silson, Edward H.; Steel, Adam D.; Baker, Chris I.

    2016-01-01

    Functional imaging studies in human reliably identify a trio of scene-selective regions, one on each of the lateral [occipital place area (OPA)], ventral [parahippocampal place area (PPA)], and medial [retrosplenial complex (RSC)] cortical surfaces. Recently, we demonstrated differential retinotopic biases for the contralateral lower and upper visual fields within OPA and PPA, respectively. Here, using functional magnetic resonance imaging, we combine detailed mapping of both population receptive fields (pRF) and category-selectivity, with independently acquired resting-state functional connectivity analyses, to examine scene and retinotopic processing within medial parietal cortex. We identified a medial scene-selective region, which was contained largely within the posterior and ventral bank of the parieto-occipital sulcus (POS). While this region is typically referred to as RSC, the spatial extent of our scene-selective region typically did not extend into retrosplenial cortex, and thus we adopt the term medial place area (MPA) to refer to this visually defined scene-selective region. Intriguingly MPA co-localized with a region identified solely on the basis of retinotopic sensitivity using pRF analyses. We found that MPA demonstrates a significant contralateral visual field bias, coupled with large pRF sizes. Unlike OPA and PPA, MPA did not show a consistent bias to a single visual quadrant. MPA also co-localized with a region identified by strong differential functional connectivity with PPA and the human face-selective fusiform face area (FFA), commensurate with its functional selectivity. Functional connectivity with OPA was much weaker than with PPA, and similar to that with face-selective occipital face area (OFA), suggesting a closer link with ventral than lateral cortex. Consistent with prior research, we also observed differential functional connectivity in medial parietal cortex for anterior over posterior PPA, as well as a region on the lateral

  2. Monetary reward suppresses anterior insula activity during social pain.

    Science.gov (United States)

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion.

  3. Monetary reward suppresses anterior insula activity during social pain.

    Science.gov (United States)

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. PMID:25964499

  4. Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental Octodon degus.

    Science.gov (United States)

    Seidel, K; Poeggel, G; Holetschka, R; Helmeke, C; Braun, K

    2011-11-01

    Although the critical role of maternal care on the development of brain and behaviour of the offspring has been extensively studied, knowledge about the importance of paternal care is comparatively scarce. In biparental species, paternal care significantly contributes to a stimulating socio-emotional family environment, which most likely also includes protection from stressful events. In the biparental caviomorph rodent Octodon degus, we analysed the impact of paternal care on the development of neurones in prefrontal-limbic brain regions, which express corticotrophin-releasing factor (CRF). CRF is a polypeptidergic hormone that is expressed and released by a neuronal subpopulation in the brain, and which not only is essential for regulating stress and emotionality, but also is critically involved in cognitive functions. At weaning age [postnatal day (P)21], paternal deprivation resulted in an elevated density of CRF-containing neurones in the orbitofrontal cortex and in the basolateral amygdala of male degus, whereas a reduced density of CRF-expressing neurones was measured in the dentate gyrus and stratum pyramidale of the hippocampal CA1 region at this age. With the exception of the CA1 region, the deprivation-induced changes were no longer evident in adulthood (P90), which suggests a transient change that, in later life, might be normalised by other socio-emotional experience. The central amygdala, characterised by dense clusters of CRF-immunopositive neuropil, and the precentral medial, anterior cingulate, infralimbic and prelimbic cortices, were not affected by paternal deprivation. Taken together, this is the first evidence that paternal care interferes with the developmental expression pattern of CRF-expressing interneurones in an age- and region-specific manner.

  5. Area-specific information processing in prefrontal cortex during a probabilistic inference task: a multivariate fMRI BOLD time series analysis.

    Directory of Open Access Journals (Sweden)

    Charmaine Demanuele

    Full Text Available Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC, anterior cingulate (ACC and orbitofrontal (OFC cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a "Jumping to Conclusions" probabilistic reasoning task.We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information, while for prefrontal areas a wider multivariate pattern of activity was maximally informative.We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable

  6. Cognition without Cortex.

    Science.gov (United States)

    Güntürkün, Onur; Bugnyar, Thomas

    2016-04-01

    Assumptions on the neural basis of cognition usually focus on cortical mechanisms. Birds have no cortex, but recent studies in parrots and corvids show that their cognitive skills are on par with primates. These cognitive findings are accompanied by neurobiological discoveries that reveal avian and mammalian forebrains are homologous, and show similarities in connectivity and function down to the cellular level. But because birds have a large pallium, but no cortex, a specific cortical architecture cannot be a requirement for advanced cognitive skills. During the long parallel evolution of mammals and birds, several neural mechanisms for cognition and complex behaviors may have converged despite an overall forebrain organization that is otherwise vastly different. PMID:26944218

  7. Anterior hip pain.

    Science.gov (United States)

    O'Kane, J W

    1999-10-15

    Anterior hip pain is a common complaint with many possible causes. Apophyseal avulsion and slipped capital femoral epiphysis should not be overlooked in adolescents. Muscle and tendon strains are common in adults. Subsequent to accurate diagnosis, strains should improve with rest and directed conservative treatment. Osteoarthritis, which is diagnosed radiographically, generally occurs in middle-aged and older adults. Arthritis in younger adults should prompt consideration of an inflammatory cause. A possible femoral neck stress fracture should be evaluated urgently to prevent the potentially significant complications associated with displacement. Patients with osteitis pubis should be educated about the natural history of the condition and should undergo physical therapy to correct abnormal pelvic mechanics. "Sports hernias," nerve entrapments and labral pathologic conditions should be considered in athletic adults with characteristic presentations and chronic symptoms. Surgical intervention may allow resumption of pain-free athletic activity. PMID:10537384

  8. Improved anatomic delineation of the antidepressant response to partial sleep deprivation in medial frontal cortex using perfusion-weighted functional MRI

    OpenAIRE

    Clark, Camellia P.; Brown, Gregory G; Frank, Lawrence; Thomas, Linda; Sutherland, Ashley N.; Gillin, J. Christian

    2006-01-01

    This study used functional magnetic resonance imaging (fMRI) to clarify the sites of brain activity associated with the antidepressant effects of sleep deprivation (SD). We hypothesized: 1) depressed responders’ baseline ventral anterior cingulate (AC) perfusion will be greater than that of nonresponders and controls; 2) following partial sleep deprivation (PSD), ventral AC perfusion will significantly decrease in responders only. Seventeen unmedicated outpatients with current major depressio...

  9. The anterior temporal lobes support residual comprehension in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Zahn, Roland; Keidel, James L; Binney, Richard J; Sage, Karen; Lambon Ralph, Matthew A

    2014-03-01

    Wernicke's aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke's aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke's aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke's aphasia and 12 control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke's aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke's aphasia group displayed an 'over-activation' in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke's aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions. PMID:24519979

  10. The Insular Cortex and the Regulation of Cardiac Function.

    Science.gov (United States)

    Oppenheimer, Stephen; Cechetto, David

    2016-04-01

    Cortical representation of the heart challenges the orthodox view that cardiac regulation is confined to stereotyped, preprogrammed and rigid responses to exteroceptive or interoceptive environmental stimuli. The insula has been the region most studied in this regard; the results of clinical, experimental, and functional radiological studies show a complex interweave of activity with patterns dynamically varying regarding lateralization and antero-posterior distribution of responsive insular regions. Either acting alone or together with other cortical areas including the anterior cingulate, medial prefrontal, and orbito-frontal cortices as part of a concerted network, the insula can imbue perceptions with autonomic color providing emotional salience, and aiding in learning and behavioral decision choice. In these functions, cardiovascular input and the right anterior insula appear to play an important, if not pivotal role. At a more basic level, the insula gauges cardiovascular responses to exteroceptive and interoceptive stimuli, taking into account memory, cognitive, and reflexive constructs thereby ensuring appropriate survival responses and maintaining emotional and physiological homeostasis. When acquired derangements to the insula occur after stroke, during a seizure or from abnormal central processing of interoceptive or exteroceptive environmental cues as in psychiatric disorders, serious consequences can arise including cardiac electrophysiological, structural and contractile dysfunction and sudden cardiac death. PMID:27065176

  11. Immuno-localisation of anti-thyroid antibodies in adult human cerebral cortex.

    Science.gov (United States)

    Moodley, Kogie; Botha, Julia; Raidoo, Deshandra Munsamy; Naidoo, Strinivasen

    2011-03-15

    Expression of thyroid-stimulating hormone receptor (TSH-R) has been demonstrated in adipocytes, lymphocytes, bone, kidney, heart, intestine and rat brain. Immuno-reactive TSH-R has been localised in rat brain and human embryonic cerebral cortex but not in adult human brain. We designed a pilot study to determine whether anti-thyroid auto-antibodies immuno-localise in normal adult human cerebral cortex. Forensic samples from the frontal, motor, sensory, occipital, cingulate and parieto-occipito-temporal association cortices were obtained from five individuals who had died of trauma. Although there were no head injuries, the prior psychiatric history of patients was unknown. The tissues were probed with commercial antibodies against both human TSH-R and human thyroglobulin (TG). Anti-TSH-R IgG immuno-localised to cell bodies and axons of large neurones in all 6 regions of all 5 brains. The intensity and percentage of neurones labelled were similar in all tissue sections. TSH-R immuno-label was also observed in vascular endothelial cells in the cingulate gyrus. Although also found in all 5 brains and all six cortical regions, TG localised exclusively in vascular smooth muscle cells and not on neurones. Although limited by the small sample size and number of brain areas examined, this is the first study describing the presence of antigenic targets for anti-TSH-R IgG on human cortical neurons, and anti-TG IgG in cerebral vasculature. PMID:21196016

  12. Cortical Connectivity Maps Reveal Anatomically Distinct Areas in the Parietal Cortex of the Rat

    Directory of Open Access Journals (Sweden)

    Aaron eWilber

    2015-01-01

    Full Text Available A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into up to four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.

  13. Multidisciplinary management of anterior diastemata

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; Herkrath, Fernando José; Franco, Eduardo Jacomino;

    2007-01-01

    the aesthetic results when orthodontic therapy itself is not feasible. This article presents integrated orthodonticrestorative solutions of anterior diastemata, associated with the conditioning of the gingival tissue with composite resin, and discusses the most relevant aspects related to their etiology...

  14. Anterior approach for knee arthrography

    International Nuclear Information System (INIS)

    Objective. To develop a new method of magnetic resonance arthrography (MRA) of the knee using an anterior approach analogous to the portals used for knee arthroscopy.Design. An anterior approach to the knee joint was devised mimicking anterior portals used for knee arthroscopy. Seven patients scheduled for routine knee MRA were placed in a decubitus position and under fluoroscopic guidance a needle was advanced from a position adjacent to the patellar tendon into the knee joint. After confirmation of the needle tip location, a dilute gadolinium solution was injected.Results and conclusion. All the arthrograms were technically successful. The anterior approach to knee MRA has greater technical ease than the traditional approach with little patient discomfort. (orig.)

  15. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... Taperloc Microplasty stem and E-poly antioxidant-infused technology during a hip replacement through the anterior supine ... renewed interest at this time due to several advantages that it brings. The approach that is performed ...

  16. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... it to have any real negative or deleterious effect by removing the anterior capsule. Now I would ... is what happens with one of the competitive designs. Like I told you, I just take a ...

  17. Update on anterior ankle impingement

    OpenAIRE

    Vaseenon, Tanawat; Amendola, Annunziato

    2012-01-01

    Anterior ankle impingement results from an impingement of the ankle joint by a soft tissue or osteophyte formation at the anterior aspect of the distal tibia and talar neck. It often occurs secondary to direct trauma (impaction force) or repetitive ankle dorsiflexion (repetitive impaction and traction force). Chronic ankle pain, swelling, and limitation of ankle dorsiflexion are common complaints. Imaging is valuable for diagnosis of the bony impingement but not for the soft tissue impingemen...

  18. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  19. Hemispheric differences in amygdala contributions to response monitoring

    Science.gov (United States)

    Polli, Frida E.; Wright, Christopher I.; Milad, Mohammed R.; Dickerson, Bradford C.; Vangel, Mark; Barton, Jason J.S.; Rauch, Scott L.; Manoach, Dara S.

    2009-01-01

    The amygdala detects aversive events and coordinates with rostral anterior cingulate cortex to adapt behavior. We assessed error-related activation in these regions and its relation to task performance using functional MRI and a saccadic paradigm. Both amygdalae showed increased activation during error versus correct antisaccade trials that was correlated with error-related activation in the corresponding rostral anterior cingulate cortex. Together, activation in right amygdala and right rostral anterior cingulate cortex predicted greater accuracy. In contrast, left amygdala activation predicted a higher error rate. These findings support a role for amygdala in response monitoring. Consistent with proposed specializations of right and left amygdala in aversive conditioning, we hypothesize that right amygdala-rostral anterior cingulate cortex interactions mediate learning to avoid errors, while left error-related amygdala activation underpins detrimental negative affect. PMID:19218865

  20. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  1. Emotional valence modulates brain functional abnormalities in depression : Evidence from a meta-analysis of fMRI studies

    NARCIS (Netherlands)

    Groenewold, Nynke A.; Opmeer, Esther M.; de Jonge, Peter; Aleman, Andre; Costafreda, Sergi G.

    2013-01-01

    Models describing the neural correlates of biased emotion processing in depression have focused on increased activation of anterior cingulate and amygdala and decreased activation of striatum and dorsolateral prefrontal cortex. However, neuroimaging studies investigating emotion processing in depres

  2. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  3. The Behavioral Relevance of Task Information in Human Prefrontal Cortex.

    Science.gov (United States)

    Cole, Michael W; Ito, Takuya; Braver, Todd S

    2016-06-01

    Human lateral prefrontal cortex (LPFC) is thought to play a critical role in enabling cognitive flexibility, particularly when performing novel tasks. However, it remains to be established whether LPFC representation of task-relevant information in such situations actually contributes to successful performance. We utilized pattern classification analyses of functional MRI activity to identify novelty-sensitive brain regions as participants rapidly switched between performance of 64 complex tasks, 60 of which were novel. In three of these novelty-sensitive regions-located within distinct areas of left anterior LPFC-trial-evoked activity patterns discriminated correct from error trials. Further, these regions also contained information regarding the task-relevant decision rule, but only for successfully performed trials. This suggests that left anterior LPFC may be particularly important for representing task information that contributes to the cognitive flexibility needed to perform successfully in novel task situations. PMID:25870233

  4. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease?

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Stefan [University of Rostock, Department of Psychosomatic Medicine, Rostock (Germany); DZNE, German Center for Neurodegenerative Diseases, Rostock (Germany); Alzheimer' s Disease Neuroimaging Initiative (United States); Grothe, Michel J. [DZNE, German Center for Neurodegenerative Diseases, Rostock (Germany); Alzheimer' s Disease Neuroimaging Initiative (United States)

    2016-03-15

    Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia.We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions. (orig.)

  5. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease?

    International Nuclear Information System (INIS)

    Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia.We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions. (orig.)

  6. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    Science.gov (United States)

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  7. Visual Cortex Plasticity Following Peripheral Damage To The Visual System: fMRI Evidence.

    Science.gov (United States)

    Lemos, João; Pereira, Daniela; Castelo-Branco, Miguel

    2016-10-01

    Over the last two decades, functional magnetic resonance imaging (fMRI) has become a powerful research method to investigate cortical visual plasticity. Abnormal fMRI response patterns have been occasionally detected in the visually deprived cortex of patients with bilateral retinal diseases. Controversy remains whether these observations indicate structural reorganization of the visual cortex or unmasking of previously silent cortico-cortical connections. In optic nerve diseases, there is weak evidence showing that early visual cortex seems to lack reorganization, while higher-order visual areas undergo plastic changes which may contribute to optimise visual function. There is however accumulating imaging evidence demonstrating trans-synaptic degeneration of the visual cortex in patients with disease of the anterior visual pathways. This may preclude the use of restorative treatments in these patients. Here, we review and update the body of fMRI evidence on visual cortical plasticity. PMID:27542799

  8. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  9. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  10. Dissociation of object and spatial visual processing pathways in human extrastriate cortex.

    Science.gov (United States)

    Haxby, J V; Grady, C L; Horwitz, B; Ungerleider, L G; Mishkin, M; Carson, R E; Herscovitch, P; Schapiro, M B; Rapoport, S I

    1991-01-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas. Images PMID:2000370

  11. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    International Nuclear Information System (INIS)

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas

  12. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus

    OpenAIRE

    KAY, RACHEL B.; Brunjes, Peter C

    2014-01-01

    Understanding the cellular components of neural circuits is an essential step in discerning regional function. The anterior olfactory nucleus (AON) is reciprocally connected to both the ipsi- and contralateral olfactory bulb (OB) and piriform cortex (PC), and, as a result, can broadly influence the central processing of odor information. While both the AON and PC are simple cortical structures, the regions differ in many ways including their general organization, internal wiring and synaptic ...

  13. Emotional moments across time: a possible neural basis for time perception in the anterior insula

    OpenAIRE

    Craig, A.D. (Bud)

    2009-01-01

    A model of awareness based on interoceptive salience is described, which has an endogenous time base that might provide a basis for the human capacity to perceive and estimate time intervals in the range of seconds to subseconds. The model posits that the neural substrate for awareness across time is located in the anterior insular cortex, which fits with recent functional imaging evidence relevant to awareness and time perception. The time base in this model is adaptive and emotional, and th...

  14. Music perception and cognition following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Tramo, M J; Bharucha, J J; Musiek, F E

    1990-01-01

    We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250-8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies

  15. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  16. Anterior cruciate ligament - updating article.

    Science.gov (United States)

    Luzo, Marcus Vinicius Malheiros; Franciozi, Carlos Eduardo da Silveira; Rezende, Fernando Cury; Gracitelli, Guilherme Conforto; Debieux, Pedro; Cohen, Moisés

    2016-01-01

    This updating article on the anterior cruciate ligament (ACL) has the aim of addressing some of the most interesting current topics in this field. Within this stratified approach, it contains the following sections: ACL remnant; anterolateral ligament and combined intra and extra-articular reconstruction; fixation devices; and ACL femoral tunnel creation techniques.

  17. Anterior cruciate ligament - updating article.

    Science.gov (United States)

    Luzo, Marcus Vinicius Malheiros; Franciozi, Carlos Eduardo da Silveira; Rezende, Fernando Cury; Gracitelli, Guilherme Conforto; Debieux, Pedro; Cohen, Moisés

    2016-01-01

    This updating article on the anterior cruciate ligament (ACL) has the aim of addressing some of the most interesting current topics in this field. Within this stratified approach, it contains the following sections: ACL remnant; anterolateral ligament and combined intra and extra-articular reconstruction; fixation devices; and ACL femoral tunnel creation techniques. PMID:27517015

  18. Válvula de uretra anterior Anterior urethral valves

    Directory of Open Access Journals (Sweden)

    Silvio Tucci Jr.

    2003-02-01

    Full Text Available Objetivo: apresentar os aspectos clínicos, diagnósticos e terapêuticos de pacientes portadores de válvula da uretra anterior. Descrição: em dois neonatos, o diagnóstico presuntivo de patologia obstrutiva do trato urinário foi sugerido pela ultra-sonografia realizada no período pré-natal, confirmando-se o diagnóstico de válvula de uretra anterior pela avaliação pós-natal. Os pacientes foram submetidos a tratamento cirúrgico paliativo, com vesicostomia temporária e, posteriormente, definitivo, pela fulguração endoscópica das válvulas. Ambos evoluíram com função renal normal. Comentários: a válvula da uretra anterior é anomalia rara que deve ser considerada em meninos com quadro radiológico pré-natal sugestivo de obstrução infravesical, secundariamente à hipótese mais comum de válvula da uretra posterior. Ressaltamos a utilização da vesicostomia como derivação urinária temporária nestes casos, prevenindo potenciais complicações pela manipulação da uretra do recém-nascido.Objective: to discuss clinical signs, diagnostic tools and therapeutics of anterior urethral valves, an obstructive anomaly of the urinary system in males. Description: signs of urinary tract obstruction were identified on pre-natal ultrasound in two male fetuses and the diagnosis of anterior urethral valves was made through post-natal evaluation. As an initial treatment, vesicostomy was performed in both patients. Later, the valves were fulgurated using an endoscopic procedure. During the follow-up period both patients presented normal renal function. Comments: anterior urethral valves are a rare form of urethral anomaly that must be ruled out in boys with pre-natal ultrasound indicating infravesical obstruction. Vesicostomy used as an initial treatment rather than transurethral fulguration may prevent potential complications that can occur due to the small size of the neonatal urethra.

  19. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  20. Diversity of cingulate xenarthrans in the middle-late Eocene of Northwestern Argentina

    Directory of Open Access Journals (Sweden)

    Martín R. Ciancio

    2016-08-01

    Full Text Available The study of Paleogene mammals of intermediate and low latitudes has increased in the last decades and has been clearly demonstrated their importance in the comprehension of the evolution and faunistic changes outside Patagonia. The study of these faunas permits establishing new comparisons among contemporaneous faunistic associations, completing the distributional patterns, and evaluating evolutionary changes in the lineages in relation to climatic conditions prevailing in each of the different regions. In this work we study the diversity of Dasypodidae recovered from the Geste Formation (Northwestern Argentina. Bearing levels of Geste Formation were referred alternatively to a Barrancan subage of Casamayoran SALMA (middle Eocene, Lutetian–Bartonian or a Mustersan SALMA (middle–late Eocene, Bartonian–Priabonian on faunistic comparations with their equivalent in Patagonia, although absolute isotopic data indicates ca. 37–35 Ma (late Eocene, Priabonian. We described the following taxa of Dasypodidae: (i Dasypodinae Astegotheriini: cf. Astegotherium sp., ?Prostegotherium sp., Parastegosimpsonia cf. P. peruana; (ii Dasypodinae indet.; (iii Euphractinae Euphractini: Parutaetus punaensis sp. nov.; (iv Dasypodidae incertae sedis: Pucatherium parvum, Punatherium catamarcensis gen. et sp. nov. In comparison with other beds bearing Eocene cingulate faunas from Northwestern Argentina, Geste Formation presents the greatest diversity of dasypodids. This association is consistent with a late Eocene age and shows a taxonomic and biogeographic relevant features given by a unique specific composition: (i it differs from that known for contemporaneous faunas from Southern latitudes and younger associations from more tropical areas; (ii it includes genera with close affinities to those distant areas; (iii it presents unique taxa typical from Eocene units exposed at Northwestern Argentina. This highlights the evolutionary and biogeographic meaning of the

  1. Neurometabolic characteristics in the anterior cingulate gyrus of Alzheimer’s disease patients with depression: a 1H magnetic resonance spectroscopy study

    OpenAIRE

    Guo, Zhongwei; Zhang, Jiangtao; Liu, Xiaozheng; Hou, Hongtao; Cao, Yulin; Wei, Fuquan; Li, Japeng; Chen, Xingli; Shen, Yuedi; Chen, Wei

    2015-01-01

    Background Depression is a common comorbid psychiatric symptom in patients with Alzheimer’s disease (AD), and the prevalence of depression is higher among people with AD compared with healthy older adults. Comorbid depression in AD may increase the risk of cognitive decline, impair patients’ function, and reduce their quality of life. However, the mechanisms of depression in AD remain unclear. Here, our aim was to identify neurometabolic characteristics in the brain that are associated with d...

  2. Amygdala and dorsal anterior cingulate connectivity during an emotional working memory task in borderline personality disorder patients with interpersonal trauma history

    NARCIS (Netherlands)

    A Krause-Utz; B.M. Elzinga; N.Y.L. Oei; C. Paret; I. Niedtfeld; Ph. Spinhoven; M. Bohus; C. Schmahl

    2014-01-01

    Working memory is critically involved in ignoring emotional distraction while maintaining goal-directed behavior. Antagonistic interactions between brain regions implicated in emotion processing, e.g., amygdala, and brain regions involved in cognitive control, e.g., dorsolateral and dorsomedial pref

  3. Cognitive Strategy Use as an Index of Developmental Differences in Neural Responses to Feedback

    Science.gov (United States)

    Andersen, Lau M.; Visser, Ingmar; Crone, Eveline A.; Koolschijn, P. Cédric M. P.; Raijmakers, Maartje E. J.

    2014-01-01

    Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie, Leijenhorst, Westenberg, & Rombouts, 2008). Both…

  4. Olfactory Predictive Codes and Stimulus Templates in Piriform Cortex

    Science.gov (United States)

    Zelano, Christina; Mohanty, Aprajita; Gottfried, Jay A.

    2011-01-01

    Summary Neuroscientific models of sensory perception suggest that the brain utilizes predictive codes in advance of a stimulus encounter, enabling organisms to infer forthcoming sensory events. However, it is poorly understood how such mechanisms are implemented in the olfactory system. Combining high-resolution functional magnetic resonance imaging with multivariate (pattern-based) analyses, we examined the spatiotemporal evolution of odor perception in the human brain during an olfactory search task. Ensemble activity patterns in anterior piriform cortex (APC) and orbitofrontal cortex (OFC) reflected the attended odor target both before and after stimulus onset. In contrast, pre-stimulus ensemble representations of the odor target in posterior piriform cortex (PPC) gave way to post-stimulus representations of the odor itself. Critically, the robustness of target-related patterns in PPC predicted subsequent behavioral performance. Our findings directly show that the brain generates predictive templates or “search images” in PPC, with physical correspondence to odor-specific pattern representations, to augment olfactory perception. PMID:21982378

  5. Locating Melody Processing Activity in Auditory Cortex with Magnetoencephalography.

    Science.gov (United States)

    Patterson, Roy D; Andermann, Martin; Uppenkamp, Stefan; Rupp, André

    2016-01-01

    This paper describes a technique for isolating the brain activity associated with melodic pitch processing. The magnetoencephalograhic (MEG) response to a four note, diatonic melody built of French horn notes, is contrasted with the response to a control sequence containing four identical, "tonic" notes. The transient response (TR) to the first note of each bar is dominated by energy-onset activity; the melody processing is observed by contrasting the TRs to the remaining melodic and tonic notes of the bar (2-4). They have uniform shape within a tonic or melodic sequence which makes it possible to fit a 4-dipole model and show that there are two sources in each hemisphere--a melody source in the anterior part of Heschl's gyrus (HG) and an onset source about 10 mm posterior to it, in planum temporale (PT). The N1m to the initial note has a short latency and the same magnitude for the tonic and the melodic sequences. The melody activity is distinguished by the relative sizes of the N1m and P2m components of the TRs to notes 2-4. In the anterior source a given note elicits a much larger N1m-P2m complex with a shorter latency when it is part of a melodic sequence. This study shows how to isolate the N1m, energy-onset response in PT, and produce a clean melody response in the anterior part of auditory cortex (HG).

  6. 38 CFR 3.379 - Anterior poliomyelitis.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Anterior poliomyelitis. 3... Specific Diseases § 3.379 Anterior poliomyelitis. If the first manifestations of acute anterior poliomyelitis present themselves in a veteran within 35 days of termination of active military service, it...

  7. Epidermoid cyst in Anterior, Middle

    Directory of Open Access Journals (Sweden)

    Kankane Vivek Kumar

    2016-09-01

    Full Text Available Epidermoid cysts are benign slow growing more often extra-axial tumors that insinuate between brain structures, we present the clinical, imaging, and pathological findings in 35 years old female patients with atypical epidermoid cysts which was situated anterior, middle & posterior cranial fossa. NCCT head revealed hypodense lesion over right temporal and perisylvian region with extension in prepontine cistern with mass effect & midline shift and MRI findings revealed a non-enhancing heterogeneous signal intensity cystic lesion in right frontal & temporal region extending into prepontine cistern with restricted diffusion. Patient was detoriated in night of same day of admission, emergency Fronto-temporal craniotomy with anterior peterousectomy and subtotal resection was done. The histological examination confirms the epidermoid cyst. The timing of ectodermal tissue sequestration during fetal development may account for the occurrence of atypical epidermoid cysts.

  8. Anterior impingement syndrome in dancers

    OpenAIRE

    O’Kane, John William; Kadel, Nancy

    2007-01-01

    Anterior impingement is a common problem in dancers occurring primarily secondary to the repetitive forced ankle dorsiflexion inherent in ballet. Symptoms generally occur progressively and may respond to conservative treatment including addressing biomechanical faults that contribute to the problem. As impingement progresses, movements essential to ballet may become impossible and arthroscopic ankle surgery is often effective for both diagnosis and treatment, allowing athletes to return to da...

  9. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions

    Science.gov (United States)

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana

    2016-01-01

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions

  10. Thicker temporal cortex associates with a developmental trajectory for psychopathic traits in adolescents.

    Directory of Open Access Journals (Sweden)

    Yaling Yang

    Full Text Available Psychopathy is a clinical condition characterized by a failure in normal social interaction and morality. Recent studies have begun to reveal brain structural abnormalities associated with psychopathic tendencies in children. However, little is known about whether variations in brain morphology are linked to the developmental trajectory of psychopathic traits over time. In this study, structural magnetic resonance imaging (sMRI data from 108 14-year-old adolescents with no history of substance abuse (54 males and 54 females were examined to detect cortical thickness variations associated with psychopathic traits and individual rates of change in psychopathic traits from ages 9 to 18. We found cortical thickness abnormalities to correlate with psychopathic traits both cross-sectionally and longitudinally. Specifically, at age 14, higher psychopathic scores were correlated with thinner cortex in the middle frontal gyrus, particularly in females, and thicker cortex in the superior temporal gyrus, middle temporal gyrus, and parahippocampal gyrus, particularly in males. Longitudinally, individual rates of change in psychopathic tendency over time were correlated with thicker cortex in the superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, and posterior cingulate gyrus, particularly in males. Findings suggest that abnormal cortical thickness may reflect a delay in brain maturation, resulting in disturbances in frontal and temporal functioning such as impulsivity, sensation-seeking, and emotional dysregulation in adolescents. Thus, findings provide initial evidence supporting that abnormal cortical thickness may serve as a biomarker for the development of psychopathic propensity in adolescents.

  11. Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS

    Directory of Open Access Journals (Sweden)

    Christian J. Hartmann

    2016-01-01

    Full Text Available Background: Medication resistant obsessive-compulsive disorder (OCD patients can be successfully treated with Deep Brain Stimulation (DBS which targets the anterior limb of the internal capsule (ALIC and the nucleus accumbens (NA. Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating clinical effects of ALIC-NA DBS.Methods: We created computational models of ALIC-NA DBS to simulate the activation of fiber tracts and to identify connected cerebral regions. The pattern of activated axons and their cortical targets was investigated in six OCD patients who underwent ALIC-NA DBS. Results: Modulation of the right anterior middle frontal gyrus (dorsolateral prefrontal cortex was associated with an excellent response. In contrast, non-responders showed high activation in the orbital part of the right inferior frontal gyrus (lateral orbitofrontal cortex/anterior ventrolateral prefrontal cortex. Factor analysis followed by step-wise linear regression indicated that YBOCS improvement was inversely associated with factors that were predominantly determined by gray matter activation results.Discussion: Our findings support the hypothesis that optimal therapeutic results are associated with the activation of distinct fiber pathways. This suggests that in DBS for OCD, focused stimulation of specific fiber pathways, which would allow for stimulation with lower amplitudes, may be superior to activation of a wide array of pathways, typically associated with higher stimulation amplitudes.

  12. Representation of others' action by neurons in monkey medial frontal cortex.

    Science.gov (United States)

    Yoshida, Kyoko; Saito, Nobuhito; Iriki, Atsushi; Isoda, Masaki

    2011-02-01

    Successful social interaction depends on not only the ability to identify with others but also the ability to distinguish between aspects of self and others. Although there is considerable knowledge of a shared neural substrate between self-action and others' action, it remains unknown where and how in the brain the action of others is uniquely represented. Exploring such agent-specific neural codes is important because one's action and intention can differ between individuals. Moreover, the assignment of social agency breaks down in a range of mental disorders. Here, using two monkeys monitoring each other's action for adaptive behavioral planning, we show that the medial frontal cortex (MFC) contains a group of neurons that selectively encode others' action. These neurons, observed in both dominant and submissive monkeys, were significantly more prevalent in the dorsomedial convexity region of the MFC including the pre-supplementary motor area than in the cingulate sulcus region of the MFC including the rostral cingulate motor area. Further tests revealed that the difference in neuronal activity was not due to gaze direction or muscular activity. We suggest that the MFC is involved in self-other differentiation in the domain of motor action and provides a fundamental neural signal for social learning. PMID:21256015

  13. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex.

    Science.gov (United States)

    Goulas, Alexandros; Uylings, Harry B M; Stiers, Peter

    2014-05-01

    A consensus on the prefrontal cortex (PFC) holds that it is pivotal for flexible behavior and the integration of the cognitive, affective, and motivational domains. Certain models have been put forth and a dominant model postulates a hierarchical anterior-posterior gradient. The structural connectivity principles of this model dictate that increasingly anterior PFC regions exhibit more efferent connections toward posterior ones than vice versa. Such hierarchical asymmetry principles are thought to pertain to the macaque PFC. Additionally, the laminar patterns of the connectivity of PFC regions can be used for defining hierarchies. In the current study, we formally tested the asymmetry-based hierarchical principles of the anterior-posterior model by employing an exhaustive dataset on macaque PFC connectivity and tools from network science. On the one hand, the asymmetry-based principles and predictions of the hierarchical anterior-posterior model were not confirmed. The wiring of the macaque PFC does not fully correspond to the principles of the model, and its asymmetry-based hierarchical layout does not follow a strict anterior-posterior gradient. On the other hand, our results suggest that the laminar-based hierarchy seems a more tenable working hypothesis for models advocating an anterior-posterior gradient. Our results can inform models of the human PFC.

  14. The default modes of reading: Modulation of posterior cingulate and medial prefrontal cortex connectivity associated with subjective and objective differences in reading experience

    OpenAIRE

    Jonathan eSmallwood; Gorgolewski, Krzysztof J; Johannes eGolchert; Ruby, Florence J.M; Haakon G. Engen; Benjamin eBaird; Melaina eVinski; Jonathan eSchooler; Margulies, Daniel S.

    2013-01-01

    Reading is a fundamental human capacity and yet it can easily be derailed by the simple act of mind-wandering. A large-scale brain network, referred to as the default mode network (DMN), has been shown to be involved in both mind-wandering and reading, raising the question as to how the same neural system could be implicated in processes with both costs and benefits to narrative comprehension. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to explore whether the intrin...

  15. The default modes of reading: modulation of posterior cingulate and medial prefrontal cortex connectivity associated with comprehension and task focus while reading

    OpenAIRE

    Smallwood, Jonathan; Gorgolewski, Krzysztof J; Golchert, Johannes; Ruby, Florence J.M; Engen, Haakon; Baird, Benjamin; Vinski, Melaina T.; Schooler, Jonathan W.; Margulies, Daniel S.

    2013-01-01

    Reading is a fundamental human capacity and yet it can easily be derailed by the simple act of mind-wandering. A large-scale brain network, referred to as the default mode network (DMN), has been shown to be involved in both mind-wandering and reading, raising the question as to how the same neural system could be implicated in processes with both costs and benefits to narrative comprehension. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to explore whether the intrin...

  16. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex.

    Science.gov (United States)

    Edwards, Erik; Soltani, Maryam; Deouell, Leon Y; Berger, Mitchel S; Knight, Robert T

    2005-12-01

    We recorded electrophysiological responses from the left frontal and temporal cortex of awake neurosurgical patients to both repetitive background and rare deviant auditory stimuli. Prominent sensory event-related potentials (ERPs) were recorded from auditory association cortex of the temporal lobe and adjacent regions surrounding the posterior Sylvian fissure. Deviant stimuli generated an additional longer latency mismatch response, maximal at more anterior temporal lobe sites. We found low gamma (30-60 Hz) in auditory association cortex, and we also show the existence of high-frequency oscillations above the traditional gamma range (high gamma, 60-250 Hz). Sensory and mismatch potentials were not reliably observed at frontal recording sites. We suggest that the high gamma oscillations are sensory-induced neocortical ripples, similar in physiological origin to the well-studied ripples of the hippocampus. PMID:16093343

  17. Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32.

    Science.gov (United States)

    Mellott, Jeffrey G; Van der Gucht, Estel; Lee, Charles C; Carrasco, Andres; Winer, Jeffery A; Lomber, Stephen G

    2010-08-01

    The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative; nearly all immunoreactive cells are pyramidal; and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations.

  18. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.

    Science.gov (United States)

    Pinsk, Mark A; Arcaro, Michael; Weiner, Kevin S; Kalkus, Jan F; Inati, Souheil J; Gross, Charles G; Kastner, Sabine

    2009-05-01

    Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between

  19. CT patellar cortex tilt angle: A radiological method to measure patellar tilt

    International Nuclear Information System (INIS)

    Background/Objectives: the role of patellar tilt in the anterior knee pain is indisputable. Traditionally. the lateral patello-femoral angle of Laurin has been defined in both the axial view and CT images for measuring the tilt of patella. We present a new angle. which is independent of the morphology of patella and directly relates to clinical assessment of the tilt. which is appreciated from palpation of the edges of the patella. Patients and Methods: 38 patients with anterior knee pain and forty normal control subjects were examined using CT scan of patello-femoral joint in 15 degrees of knee flexion. The amount of lateral patellar tilt was quantitatively assessed using the lateral patello-femoral angle, as described by Laurin et al, and the newly defined patellar cortex tilt angle. This angle is subtended by the line drawn along the posterior femoral condyles and the one parallel to the subchondral bone of patellar cortex. The fifteen-degree tilt was taken as normal cut-off point for patellar cortex tilt angle in the control group. Results: in patients, the average tilt of patella. using the patellar cortex tilt angle was 15.26 versus 7.05 in the control group. Using Student's t test, the difference between the two means was significant (P<0.001). The sensitivity and specificity of patellar cortex tilt angle were 40 and 90 percent, respectively There was a moderate agreement between our presented test and the lateral tilt angle test (kappa=0.40. P<0.001). Conclusion: our results indicate that patellar tilt can also be detected using patellar cortex tilt angle. We need more specific studies ta determine the validity of the test

  20. Posterior Cingulate Lactate as a Metabolic Biomarker in Amnestic Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Kurt E. Weaver

    2015-01-01

    Full Text Available Mitochondrial dysfunction represents a central factor within the pathogenesis of the Alzheimer’s disease (AD spectrum. We hypothesized that in vivo measurements of lactate (lac, a by-product of glycolysis, would correlate with functional impairment and measures of brain health in a cohort of 15 amnestic mild cognitive impairment (aMCI individuals. Lac was quantified from the precuneus/posterior cingulate (PPC using 2-dimensional J-resolved magnetic resonance spectroscopy (MRS. Additionally, standard behavioral and imaging markers of aMCI disease progression were acquired. PPC lac was negatively correlated with performance on the Wechsler logical memory tests and on the minimental state examination even after accounting for gray matter, cerebral spinal fluid volume, and age. No such relationships were observed between lac and performance on nonmemory tests. Significant negative relationships were also noted between PPC lac and hippocampal volume and PPC functional connectivity. Together, these results reveal that aMCI individuals with a greater disease progression have increased concentrations of PPC lac. Because lac is upregulated as a compensatory response to mitochondrial impairment, we propose that J-resolved MRS of lac is a noninvasive, surrogate biomarker of impaired metabolic function and would provide a useful means of tracking mitochondrial function during therapeutic trials targeting brain metabolism.

  1. From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis.

    Science.gov (United States)

    Evensmoen, Hallvard Røe; Ladstein, Jarle; Hansen, Tor Ivar; Møller, Jarle Alexander; Witter, Menno P; Nadel, Lynn; Håberg, Asta K

    2015-01-01

    In rodents representations of environmental positions follow a granularity gradient along the hippocampal and entorhinal anterior-posterior axis; with fine-grained representations most posteriorly. To investigate if such a gradient exists in humans, functional magnetic resonance imaging data were acquired during virtual environmental learning of the objects' positions and the association between the objects and room geometry. The Objects-room geometry binding led to increased activation throughout the hippocampus and in the posterior entorhinal cortex. Within subject comparisons related specifically to the level of spatial granularity of the object position encoding showed that activation in the posterior and intermediate hippocampus was highest for fine-grained and medium-grained representations, respectively. In addition, the level of fine granularity in the objects' positions encoded between subjects correlated with posterior hippocampal activation. For the anterior hippocampus increased activation was observed for coarse-grained representations as compared to failed encoding. Activation in anterior hippocampus correlated with the number of environments in which the objects positions were remembered when permitting a coarse representation of positions. In the entorhinal cortex, activation in the posterior part correlated with level of fine granularity for the objects' positions encoded between subjects, and activation in the posterior and intermediate entorhinal cortex increased for medium-grained representations. This demonstrates directly that positional granularity is represented in a graded manner along the anterior-posterior axis of the human hippocampus, and to some extent entorhinal cortex, with most fine-grained positional representations posteriorly. PMID:25155295

  2. Anterior chest wall examination reviewed

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.

  3. Positioning of anterior teeth in removable dentures

    Directory of Open Access Journals (Sweden)

    Strajnić Ljiljana

    2002-01-01

    Full Text Available Introduction The aim of this paper was to present methods of placement of artificial anterior teeth in edentulous individuals. The following review takes account of the majority of papers published during the last 100 years. The review has been divided into sections regarding the method used to determine the position of artificial anterior teeth. Geometric aspect Gysi (1895-1920 produced the first scientific theory about the position of artificial anterior teeth. Physiognomic theory The aim of this theory is to find the most natural position for artificial anterior teeth for each individual. Camper's "face angle" as a physiognomic criterion, has been introduced in papers of Wehrli (1961, Marxhors (1966, Tanzer (1968, Lombardi (1973. Esthetic aspect Important names in the field of dental esthetics are: Schön and Singer (1961, Arnheim (1965, Krajiček (1969, Tanzer (1968, Lombardi (1973, Goldstein (1976. They have introduced principles of visual aspects for selection of contours, dimension and position of artificial anterior teeth. Constitution aspect Flagg (1880, Williams (1913 and Hrauf (1957, 1958, have considered body constitution and individual characteristics regarding position of artificial anterior teeth. Physiological theory In 1971, Marxhors pointed to the fact that the position of artificial teeth corresponds with the function of the surrounding soft tissue and from the aspect of physiognomy as well. Phonetic aspect According to Silverman (1962 artificial anterior teeth are nearest when we pronounce the sound "S". Cephalometrical research Rayson (1970, Watson (1989, Strajnić Lj. (1999, Bassi F. (2001 have presented cephalometric radiographic analyses of natural anterior teeth compared with cephalometric radiographic analyses of artificial anterior teeth. A review of dental literature shows several factors suggesting modalities which should determine the position of artificial anterior teeth. Numerous methods have been designed for

  4. Pharyngocutaneous fistula after anterior cervical spine surgery

    OpenAIRE

    Sansur, Charles A.; Early, Stephen; Reibel, James; Arlet, Vincent

    2009-01-01

    Pharyngocutaneous fistulae are rare complications of anterior spine surgery occurring in less than 0.1% of all anterior surgery cases. We report a case of a 19 year old female who sustained a C6 burst fracture with complete quadriplegia. She was treated urgently with a C6 corpectomy with anterior cage and plating followed by posterior cervical stabilization at another institution. Post operatively she developed a pharyngocutaneous fistula that failed to heal despite several attempts of closu...

  5. Incidental Anterior Cruciate Ligament Calcification: Case Report.

    Science.gov (United States)

    Hayashi, Hisami; Fischer, Hans

    2016-03-01

    The calcification of knee ligaments is a finding noted only in a handful of case reports. The finding of an anterior cruciate ligament calcification has been reported once in the literature. Comparable studies involving the posterior cruciate ligament, medial collateral ligament and an ossicle within the anterior cruciate ligament are likewise discussed in reports of symptomatic patients. We report a case of incidentally discovered anterior cruciate ligament calcification. We discuss the likely etiology and clinical implications of this finding.

  6. 疼痛性冷刺激和非痛温热刺激口腔时对大脑皮层反应强度的影响%Effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water

    Institute of Scientific and Technical Information of China (English)

    杨秀文; 刘洪臣; 李科; 金真; 刘刚

    2014-01-01

    Objective We used functional magnetic resonance imaging (fMRI) to explore the effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water. Methods Six male and female subjects were subjected to whole-brain fMRI during the phasic delivery of non-noxious hot (23 ℃) and noxious cold (4 ℃) water intraoral stimulation. A block-design blood oxygenation level-dependent fMRI scan covering the entire brain was also carried out. Results The activated cortical areas were as follows: left pre-/post-central gyrus, insula/ operculum, anterior cingulate cortex (ACC), orbital frontal cortex (OFC), midbrain red nucleus, and thalamus. The activated cortical areas under cold condition were as follows: left occipital lobe, premotor cortex/Brodmann area (BA) 6, right motor language area BA44, lingual gyrus, parietal lobule (BA7, 40), and primary somatosensory cortex SⅠ. Comparisons of the regional cerebral blood flow response magnitude were made among stereotactically concordant brain regions that showed significant responses under the two conditions of this study. Compared with non-noxious warmth, more regions were activated in noxious coldness, and the magnitude of activation in areas produced after non-noxious warm stimulation significantly increased. However, ACC only significantly increased the magnitude of activation under noxious coldness stimulation. Conclusion Results suggested that a similar network of regions was activated common to the perception of pain and nopain produced by either non-noxious warmth or noxious coldness stimulation. Non-noxious warmth also activated more brain regions and significantly increased the response magnitude of cerebral-cortex activation compared with noxious coldness. Noxious coldness stimulation further significantly increased the magnitude of activation in ACC areas compared with noxious warmth.%目的:探索疼痛性冷刺激和非痛温热刺激口腔时

  7. Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma.

    Directory of Open Access Journals (Sweden)

    Shaojia Lu

    Full Text Available BACKGROUND: Preclinical studies have demonstrated the relationship between stress-induced increased cortisol levels and atrophy of specific brain regions, however, this association has been less revealed in clinical samples. The aim of the present study was to investigate the changes and associations of the hypothalamic-pituitary-adrenal (HPA axis activity and gray matter volumes in young healthy adults with self-reported childhood trauma exposures. METHODS: Twenty four healthy adults with childhood trauma and 24 age- and gender-matched individuals without childhood trauma were recruited. Each participant collected salivary samples in the morning at four time points: immediately upon awakening, 30, 45, and 60 min after awakening for the assessment of cortisol awakening response (CAR. The 3D T1-weighted magnetic resonance imaging data were obtained on a Philips 3.0 Tesla scanner. Voxel-based morphometry analyses were conducted to compare the gray matter volume between two groups. Correlations of gray matter volume changes with severity of childhood trauma and CAR data were further analyzed. RESULTS: Adults with self-reported childhood trauma showed an enhanced CAR and decreased gray matter volume in the right middle cingulate gyrus. Moreover, a significant association was observed between salivary cortisol secretions after awaking and the right middle cingulate gyrus volume reduction in subjects with childhood trauma. CONCLUSIONS: The present research outcomes suggest that childhood trauma is associated with hyperactivity of the HPA axis and decreased gray matter volume in the right middle cingulate gyrus, which may represent the vulnerability for developing psychosis after childhood trauma experiences. In addition, this study demonstrates that gray matter loss in the cingulate gyrus is related to increased cortisol levels.

  8. Correlating anterior insula gray matter volume changes in young people with clinical and neurocognitive outcomes: an MRI study

    Directory of Open Access Journals (Sweden)

    Hatton Sean N

    2012-05-01

    Full Text Available Abstract Background The anterior insula cortex is considered to be both the structural and functional link between experience, affect, and behaviour. Magnetic resonance imaging (MRI studies have shown changes in anterior insula gray matter volume (GMV in psychosis, bipolar, depression and anxiety disorders in older patients, but few studies have investigated insula GMV changes in young people. This study examined the relationship between anterior insula GMV, clinical symptom severity and neuropsychological performance in a heterogeneous cohort of young people presenting for mental health care. Methods Participants with a primary diagnosis of depression (n = 43, bipolar disorder (n = 38, psychosis (n = 32, anxiety disorder (n = 12 or healthy controls (n = 39 underwent structural MRI scanning, and volumetric segmentation of the bilateral anterior insula cortex was performed using the FreeSurfer application. Statistical analysis examined the linear and quadratic correlations between anterior insula GMV and participants’ performance in a battery of clinical and neuropsychological assessments. Results Compared to healthy participants, patients had significantly reduced GMV in the left anterior insula (t = 2.05, p = .042 which correlated with reduced performance on a neuropsychological task of attentional set-shifting (ρ = .32, p = .016. Changes in right anterior insula GMV was correlated with increased symptom severity (r = .29, p = .006 and more positive symptoms (r = .32, p = .002. Conclusions By using the novel approach of examining a heterogeneous cohort of young depression, anxiety, bipolar and psychosis patients together, this study has demonstrated that insula GMV changes are associated with neurocognitive deficits and clinical symptoms in such young patients.

  9. Akinetic Mutism Following Bilateral Anterior Cerebral Artery Territory Infarction Due to Aneurysm: A Case Report

    Directory of Open Access Journals (Sweden)

    Zeynep Özözen Ayas

    2014-04-01

    Full Text Available BACKGROUND AND PURPOSE: Bilateral anterior cerebral artery (ACA territory infarction is rare localization in stroke which should always prompt a search for an anterior communicating artery (ACoA aneurysm. The common neurological manifestations are contralateral weakness predominate in the lower extremite, behavior disturbance, motor inertia, muteness, incontinence, grasp reflex, diffuse rigidity, akinetic mutism. CASE DESCRIPTION: We describe a 38-year-old woman presented with a left sided hemiparesia and decrease of speech for last days. She was a smoker and morbide obese. She had no any diagnosed disease. Her neurological examination had weakness of left extremites affected leg more than the arm and akinetic mutism like as no spontaneously speech and move and grasp reflex. CT showed bilateral ACA infarction which included cingulate gyrus, the right side more than left and subarachnoid hemorrhage in the interhemispheric fissure. MRI angiography showed the appearance of AcoA aneurysm. CONCLUSION: We report a patient with bilateral infarction in the ACA which a rare localization and clinicians must be alert to exist AcoA aneurysm which may bleed, different symptoms and signs like as akinetic mutism, primitive reflexes.

  10. Perawatan Gigitan Terbalik Anterior Dengan Menggunakan Inclined Plane

    OpenAIRE

    Siregar, Wilda A.

    2008-01-01

    Gigitan terbalik anterior adalah suatu anomali posisi gigi anterior atas yang lebih ke lingual dibandingkan gigi anterior bawah. Anomali gigitan terbalik anterior dapat ditemui pada periode gigi sulung, gigi bercampur, dan gigi permanen. Faktor etiologi gigitan terbalik anterior dibedakan atas dental, fungsional atau skeletal. Untuk menentukan etiologi dari anomali gigitan terbalik anterior perlu dilakukan diagnosa yang tepat. Perawatan gigitan terbalik anterior ini dapat dilakukan de...

  11. Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer's disease.

    Science.gov (United States)

    Saiz-Sanchez, Daniel; De la Rosa-Prieto, Carlos; Ubeda-Banon, Isabel; Martinez-Marcos, Alino

    2015-07-01

    Impaired olfaction has been described as an early symptom of Alzheimer's disease. Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Interestingly, neuropathology begins in the transentorhinal cortex and extends to the neighboring limbic system and basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus and olfactory bulb. The human piriform cortex has been described as a crucial area in odor quality coding; disruption of this region mediates early olfactory deficits in Alzheimer's disease. Most neuropathological investigations have focused on the entorhinal cortex and hippocampus, whereas the piriform cortex has largely been neglected. This work aims to characterize the expression of the neuropathological amyloid-β peptide, tau protein and interneuron population markers (calretinin, parvalbumin and somatostatin) in the piriform cortex of ten Alzheimer-diagnosed (80.4 ± 8.3 years old) and five control (69.6 ± 11.1) cases. Here, we examined the distribution of different interneuronal markers as well as co-localization of interneurons and pathological markers. Results indicated preferential vulnerability of somatostatin- (p = 0.0001 Alzheimer's cases. These data may help to reveal the neural basis of olfactory deficits linked to Alzheimer's disease as well as to characterize neuronal populations preferentially vulnerable to neuropathology in regions critically involved in early stages of the disease.

  12. Localization of sensorimotor cortex: the influence of Sherrington and Cushing on the modern concept.

    Science.gov (United States)

    Uematsu, S; Lesser, R P; Gordon, B

    1992-06-01

    According to Penfield, the work of Charles Sherrington's laboratory forced a change from the long-held concept of a broad, overlapping sensorimotor cortex to the concept of a narrow, discrete pre-Rolandic motor cortex separate from the post-Rolandic sensory strip. Harvey Cushing, one of the founders of modern neurosurgery, coined the term narrow motor strip. Cushing also appears to have been the first to color the precentral gyrus in a mosaic pattern and to use red coloring for the motor cortex and blue for the sensory cortex. Cushing's red and blue color coding is still used in textbooks, nearly 100 years later. In this article, we review the historical evolution of and the evidence for the concept of narrow and discrete motor and sensory strips anterior and posterior to the Rolandic cortex. A review of the historical development of the concept and recent physiological studies reaffirms the proposition that the motor and sensory areas are much broader and more complex than they were thought to be in the classic teaching that originated with Sherrington and Cushing.

  13. Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex

    OpenAIRE

    Conway, Bevil R.; Tsao, Doris Y

    2009-01-01

    Large islands of extrastriate cortex that are enriched for color-tuned neurons have recently been described in alert macaque using a combination of functional magnetic resonance imaging (fMRI) and single-unit recording. These millimeter-sized islands, dubbed “globs,” are scattered throughout the posterior inferior temporal cortex (PIT), a swath of brain anterior to area V3, including areas V4, PITd, and posterior TEO. We investigated the micro-organization of neurons within the globs. We used...

  14. Toxic Anterior Segment Syndrome (TASS

    Directory of Open Access Journals (Sweden)

    Özlem Öner

    2011-12-01

    Full Text Available Toxic anterior segment syndrome (TASS is a sterile intraocular inflammation caused by noninfectious substances, resulting in extensive toxic damage to the intraocular tissues. Possible etiologic factors of TASS include surgical trauma, bacterial endotoxin, intraocular solutions with inappropriate pH and osmolality, preservatives, denatured ophthalmic viscosurgical devices (OVD, inadequate sterilization, cleaning and rinsing of surgical devices, intraocular lenses, polishing and sterilizing compounds which are related to intraocular lenses. The characteristic signs and symptoms such as blurred vision, corneal edema, hypopyon and nonreactive pupil usually occur 24 hours after the cataract surgery. The differential diagnosis of TASS from infectious endophthalmitis is important. The main treatment for TASS formation is prevention. TASS is a cataract surgery complication that is more commonly seen nowadays. In this article, the possible underlying causes as well as treatment and prevention methods of TASS are summarized. (Turk J Oph thal mol 2011; 41: 407-13

  15. Mild toxic anterior segment syndrome mimicking delayed onset toxic anterior segment syndrome after cataract surgery

    Directory of Open Access Journals (Sweden)

    Su-Na Lee

    2014-01-01

    Full Text Available Toxic anterior segment syndrome (TASS is an acute sterile postoperative anterior segment inflammation that may occur after anterior segment surgery. I report herein a case that developed mild TASS in one eye after bilateral uneventful cataract surgery, which was masked during early postoperative period under steroid eye drop and mimicking delayed onset TASS after switching to weaker steroid eye drop.

  16. Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex.

    Science.gov (United States)

    Large, Adam M; Vogler, Nathan W; Mielo, Samantha; Oswald, Anne-Marie M

    2016-02-23

    Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features--balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class--suggest mechanisms for olfactory processing that may extend to other sensory cortices. PMID:26858458

  17. Encoding and storage of spatial information in the retrosplenial cortex.

    Science.gov (United States)

    Czajkowski, Rafał; Jayaprakash, Balaji; Wiltgen, Brian; Rogerson, Thomas; Guzman-Karlsson, Mikael C; Barth, Alison L; Trachtenberg, Joshua T; Silva, Alcino J

    2014-06-10

    The retrosplenial cortex (RSC) is part of a network of interconnected cortical, hippocampal, and thalamic structures harboring spatially modulated neurons. The RSC contains head direction cells and connects to the parahippocampal region and anterior thalamus. Manipulations of the RSC can affect spatial and contextual tasks. A considerable amount of evidence implicates the role of the RSC in spatial navigation, but it is unclear whether this structure actually encodes or stores spatial information. We used a transgenic mouse in which the expression of green fluorescent protein was under the control of the immediate early gene c-fos promoter as well as time-lapse two-photon in vivo imaging to monitor neuronal activation triggered by spatial learning in the Morris water maze. We uncovered a repetitive pattern of cell activation in the RSC consistent with the hypothesis that during spatial learning an experience-dependent memory trace is formed in this structure. In support of this hypothesis, we also report three other observations. First, temporary RSC inactivation disrupts performance in a spatial learning task. Second, we show that overexpressing the transcription factor CREB in the RSC with a viral vector, a manipulation known to enhance memory consolidation in other circuits, results in spatial memory enhancements. Third, silencing the viral CREB-expressing neurons with the allatostatin system occludes the spatial memory enhancement. Taken together, these results indicate that the retrosplenial cortex engages in the formation and storage of memory traces for spatial information.

  18. The chronometry of risk processing in the human cortex.

    Directory of Open Access Journals (Sweden)

    Mkael eSymmonds

    2013-08-01

    Full Text Available The neuroscience of human decision-making has focused on localising brain activity correlating with decision variables and choice, most commonly using functional MRI. Poor temporal resolution means these studies are agnostic in relation to how decisions unfold in time. Consequently, here we address the temporal evolution of neural activity related to encoding of risk using magnetoencephalography (MEG, and show modulations of electromagnetic power in posterior parietal and dorsomedial prefrontal cortex which scale with both variance and skewness in a lottery, detectable within 500ms following stimulus presentation. Electromagnetic responses in somatosensory cortex following this risk encoding predict subsequent choices. Furthermore, within anterior insula we observed early and late effects of subject-specific risk preferences, suggestive of a role in both risk assessment and risk anticipation during choice. The observation that cortical activity tracks specific and independent components of risk from early time-points in a decision making task supports the hypothesis that specialised brain circuitry underpins risk perception.

  19. Optophysiological analysis of associational circuits in the olfactory cortex

    Directory of Open Access Journals (Sweden)

    Akari eHagiwara

    2012-04-01

    Full Text Available Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortex (aPC and pPC using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON, a major hub in olfactory cortical circuits. The local recurrent connectivity within the aPC, long invoked in cortical autoassociative models, is sparse and weak. By contrast, the pPC receives negligible input from the AON, but has dense connections from the aPC as well as more local recurrent connections than the aPC. Finally, there are negligible functional connections from the pPC to aPC. Our study provides a circuit basis for a more sensory role for the aPC in odor processing and an associative role for the pPC.

  20. Anterior segment complications of retinal photocoagulation.

    Science.gov (United States)

    Kanski, J J

    1975-03-01

    Seven patients had anterior segment complications following xenon arc retinal photocoagulation. Irreversible keratopathy was induced in two cases; all patients showed evidence of iris injury. The absorption of radiation by the iris was considered the main factor in producing overheating of the anterior segment.

  1. Dentulous Appliance for Upper Anterior Edentulous Span

    OpenAIRE

    Chalakkal, Paul; Devi, Ramisetty Sabitha; Srinivas, G Vijay; Venkataramana, Pammi

    2013-01-01

    This article discusses about a fixed dentulous appliance that was constructed to replace the primary upper anterior edentulous span in a four year old girl. It constituted a design, whereby the maxillary primary second molars were used to support the appliance through bands and a wire that contained an acrylic flange bearing trimmed acrylic teeth, anteriorly. The appliance was functionally and aesthetically compliant.

  2. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  3. Impaired anterior insular activation during risky decision making in young adults with internet gaming disorder.

    Science.gov (United States)

    Lee, Deokjong; Lee, Junghan; Yoon, Kang Joon; Kee, Namkoong; Jung, Young-Chul

    2016-05-25

    Internet gaming disorder is defined as excessive and compulsive use of the internet to engage in games that leads to clinically significant psychosocial impairment. We tested the hypothesis that individuals with internet gaming disorder would be less sensitive to high-risk situations and show aberrant brain activation related to risk prediction processing. Young adults with internet gaming disorder underwent functional MRI while performing a risky decision-making task. The healthy control group showed stronger activations within the dorsal attention network and the anterior insular cortex, which were not found in the internet gaming disorder group. Our findings imply that young adults with internet gaming disorder show impaired anterior insular activation during risky decision making, which might make them vulnerable when they need to adapt new behavioral strategies in high-risk situations. PMID:27092470

  4. Anterior Shoulder Instability with Concomitant Superior Labrum from Anterior to Posterior (SLAP) Lesion Compared to Anterior Instability without SLAP Lesion

    Science.gov (United States)

    Durban, Claire Marie C.; Kim, Je Kyun; Kim, Sae Hoon

    2016-01-01

    Background The aims of this study were to investigate the clinical characteristics of patients with combined anterior instability and superior labrum from anterior to posterior (SLAP) lesions, and to analyze the effect of concomitant SLAP repair on surgical outcomes. Methods We retrospectively reviewed patients who underwent arthroscopic stabilization for anterior shoulder instability between January 2004 and March 2013. A total of 120 patients were available for at least 1-year follow-up. Forty-four patients with reparable concomitant detached SLAP lesions (group I) underwent combined SLAP and anterior stabilization, and 76 patients without SLAP lesions (group II) underwent anterior stabilization alone. Patient characteristics, preoperative and postoperative pain scores, Rowe scores, and shoulder ranges of motion were compared between the 2 groups. Results Patients in group I had higher incidences of high-energy trauma (p = 0.03), worse preoperative pain visual analogue scale (VAS) (p = 0.02), and Rowe scores (p = 0.04). The postoperative pain VAS and Rowe scores improved equally in both groups without significant differences. Limitation in postoperative range of motion was similar between the groups (all p-value > 0.05). Conclusions Anterior instability with SLAP lesion may not be related to frequent episodes of dislocation but rather to a high-energy trauma. SLAP fixation with anterior stabilization procedures did not lead to poor functional outcomes if appropriate surgical techniques were followed. PMID:27247742

  5. Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers.

    Science.gov (United States)

    Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden

    2016-07-01

    Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865

  6. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    Science.gov (United States)

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  7. Thalamocortical mechanisms for the anteriorization of α rhythms during propofol-induced unconsciousness.

    Science.gov (United States)

    Vijayan, Sujith; Ching, Shinung; Purdon, Patrick L; Brown, Emery N; Kopell, Nancy J

    2013-07-01

    As humans are induced into a state of general anesthesia via propofol, the normal alpha rhythm (8-13 Hz) in the occipital cortex disappears and a frontal alpha rhythm emerges. This spatial shift in alpha activity is called anteriorization. We present a thalamocortical model that suggests mechanisms underlying anteriorization. Our model captures the neural dynamics of anteriorization when we adjust it to reflect two key actions of propofol: its potentiation of GABA and its reduction of the hyperpolarization-activated current Ih. The reduction in Ih abolishes the occipital alpha by silencing a specialized subset of thalamocortical cells, thought to generate occipital alpha at depolarized membrane potentials (>-60 mV). The increase in GABA inhibition imposes an alpha timescale on both the cortical and thalamic portions of the frontal component that are reinforced by reciprocal thalamocortical feedback. Anteriorization can thus be understood as a differential effect of anesthetic drugs on thalamic nuclei with disparate spatial projections, i.e.: (1) they disrupt the normal, depolarized alpha in posterior-projecting thalamic nuclei while (2) they engage a new, hyperpolarized alpha in frontothalamic nuclei. Our model generalizes to other anesthetics that include GABA as a target, since the molecular targets of many such anesthetics alter the model dynamics in a manner similar to that of propofol.

  8. Anterior retropharyngeal approach to the cervical spine.

    OpenAIRE

    Behari S; Banerji D; Trivedi P; Jain V; Chhabra D

    2001-01-01

    The anterior retropharyngeal approach (ARPA) accesses anteriorly situated lesions from the clivus to C3, in patients with a short neck, Klippel Feil anomaly or those in whom the C2-3 and C3-4 disc spaces are situated higher in relation to the hyoid bone and the angle of mandible where it is difficult to approach this region using the conventional anterior approach, due to the superomedial obliquity of the trajectory. The ARPA avoids the potentially contaminated oropharyngeal cavity providing ...

  9. Quadriceps muscle contraction protects the anterior cruciate ligament during anterior tibial translation.

    Science.gov (United States)

    Aune, A K; Cawley, P W; Ekeland, A

    1997-01-01

    The proposed skiing injury mechanism that suggests a quadriceps muscle contraction can contribute to anterior cruciate ligament rupture was biomechanically investigated. The effect of quadriceps muscle force on a knee specimen loaded to anterior cruciate ligament failure during anterior tibial translation was studied in a human cadaveric model. In both knees from six donors, average age 41 years (range, 31 to 65), the joint capsule and ligaments, except the anterior cruciate ligament, were cut. The quadriceps tendon, patella, patellar tendon, and menisci were left intact. One knee from each pair was randomly selected to undergo destructive testing of the anterior cruciate ligament by anterior tibial translation at a displacement rate of 30 mm/sec with a simultaneously applied 889 N quadriceps muscle force. The knee flexion during testing was 30 degrees. As a control, the contralateral knee was loaded correspondingly, but only 5 N of quadriceps muscle force was applied. The ultimate load for the knee to anterior cruciate ligament failure when tested with 889 N quadriceps muscle force was 22% +/- 18% higher than that of knees tested with 5 N of force. The linear stiffness increased by 43% +/- 30%. These results did not support the speculation that a quadriceps muscle contraction contributes to anterior cruciate ligament failure. In this model, the quadriceps muscle force protected the anterior cruciate ligament from injury during anterior tibial translation.

  10. Comparison of diffusion tensor imaging and proton MR spectroscopy in the posterior cingulate of patients with Alzheimer disease

    International Nuclear Information System (INIS)

    Objective To compare 1HMRS and DTI findings of Alzheimer disease (AD) patients and normal elderly controls. Methods: Fifteen mild AD patients, 20 moderate to severe AD patients and 20 aging controlled normal subjects (CN) were recruited. MRS imaging and DTI were performed on a 1.5 T MRI scanner. A ROI was positioned in the posterior part of the cingulate. MRS data were processed and the metabolite ratios were estimated, including the ratios of NAA/Cr, Cho/Cr, mI/Cr. Comparing with the axial MRS location, we chose the same level to posit the ROIs on both sides of the posterior cingulated fibers on fractional anisotropy map (FA) and mean diffusivity map (MD). Mean spectroscopy data and DTI values for each groups were analysed with Mann-Whitney U non parametric test. Correlations between MRS and DTI values for AD groups were estimated using partial correlations test controlling for the age related bias. Results Compared to normal aging groups, mild AD group showed a significantly lower FA value in the left side of posterior cingulum bundle (0.549±0.056 vs 0.517±0.058, Z=2.014, P-3 mm2/s vs (0.761±0.057) x 10-3 mm2/s, Z=1.970, P<0.05). Obvious increasing mI/Cr ratio was found in mild AD group(0.61±0.07 vs 0.68±0.12,Z=2.911, P<0.01). NAA/Cr ratio showed gradually decrease in AD groups. Partial correlations analysis revealed a positive correlation between mI/Cr ratio and left posterior cingulated FA value in mild AD group (r=0.586, P< 0.05) and negative correlation between NAA/Cr and MD value in the right side of posterior cingulated region (r=-0.505, P<0.05). Conclusions: These findings suggested that there were different regional and temporal pattern in different course of AD disease, resulting from axonal loss or gliosis. Combining MRS with DTI alternations could be a better potential indicator and could better explain the pathological changes in AD progression. (authors)

  11. Emotion Regulation in the Brain: Conceptual Issues and Directions for Developmental Research

    Science.gov (United States)

    Lewis, Marc D.; Stieben, Jim

    2004-01-01

    Emotion regulation cannot be temporally distinguished from emotion in the brain, but activation patterns in prefrontal cortex appear to mediate cognitive control during emotion episodes. Frontal event-related potentials (ERPs) can tap cognitive control hypothetically mediated by the anterior cingulate cortex, and developmentalists have used these…

  12. The Significance of Human-Animal Relationships as Modulators of Trauma Effects in Children: A Developmental Neurobiological Perspective

    Science.gov (United States)

    Yorke, Jan

    2010-01-01

    Emotional stress and trauma impacts the neurobiology of children. They are especially vulnerable given the developmental plasticity of the brain. The neural synaptic circular processes between the anterior cingulated cortex, prefrontal cortex, amygdala and the hypothalamus are altered. Trauma results in the release of the peptide glucocortisoid,…

  13. Aversive event anticipation affects connectivity between the ventral striatum and the orbitofrontal cortex in an fMRI avoidance task.

    Directory of Open Access Journals (Sweden)

    Ingeborg Bolstad

    Full Text Available Ability to anticipate aversive events is important for avoiding dangerous or unpleasant situations. The motivation to avoid an event is influenced by the incentive salience of an event-predicting cue. In an avoidance fMRI task we used tone intensities to manipulate salience in order to study the involvement of the orbitofrontal cortex in processing of incentive salience. In the task, cues predicting either aversive or neutral avoidable tones were presented. Ventral striatum, amygdala and anterior insula activations were significantly stronger during presentation of cues for aversive than neutral tones. A psychophysiological interaction analysis showed stronger connectivity between the ventral striatum and the orbitofrontal cortex during aversive than neutral conditions. The present study shows an interaction between the ventral striatum, a structure previously linked to negative incentive salience, and the orbitofrontal cortex supporting a role for this region in processing salience. In addition, this study replicates previous findings suggesting that the task is robust.

  14. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    Directory of Open Access Journals (Sweden)

    Crystal T Engineer

    2014-08-01

    Full Text Available Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes.

  15. Care of children with anterior uveitis.

    Science.gov (United States)

    Kanski, J J

    1981-09-01

    The clinical features of 290 children with anterior uveitis are presented. The vast majority suffered from chronic uveitis. Specific uveitis entities in children include the syndrome of 'chronic iridocyclitis' in girls, heterochromic cyclitis, and pars planitis. Systemic associations include sarcoidosis, the Vogt-Harada-Koyanagi syndrome, and the seronegative arthritides (juvenile chronic arthritis, juvenile ankylosing spondylitis, psoriatic arthritis, and rarely Reiter's and Beçet's syndromes). Children with a pauciarticular onset of juvenile chronic arthritis, especially when combined with positive findings for antinuclear antibody, are at particular risk of developing chronic anterior uveitis. Most cases of chronic anterior uveitis can be controlled with topical corticosteroids. Those that are resistant to both topical and systemic corticosteroids may have to be treated with chlorambucil. The operation of lensectomy is a great advance in the management of complicated cataract. Secondary glaucoma is the most devastating complication of chronic anterior uveitis in children and responds poorly to therapy.

  16. Guideline on anterior cruciate ligament injury

    NARCIS (Netherlands)

    D.E. Meuffels (Duncan); M.T. Poldervaart (Michelle T.); R.L. Diercks (Ron L.); A.W.F.M. Fievez (Alex W.F.M.); T.W. Patt (Thomas W.); C.P. van der Hart (Cor P.); E.R. Hammacher (Eric); F. van der Meer (Fred); E.A. Goedhart (Edwin A.); A.F. Lenssen (Anton F); S.B. Muller-Ploeger (Sabrina B); M.A. Pols (Margreet); D.B.F. Saris (Daniel)

    2012-01-01

    textabstractThe Dutch Orthopaedic Association has a long tradition of development of practical clinical guidelines. Here we present the recommendations from the multidisciplinary clinical guideline working group for anterior cruciate ligament injury. The following 8 clinical questions were formulate

  17. Anterior Cervical Discectomy and Fusion with Plating

    Medline Plus

    Full Text Available Anterior Cervical Discectomy and Fusion with Plating Broward Health Medical Center Fort Lauderdale, FL November 17, 2011 I'm Dr. Matthew Moore, head of the Spine Care Center here at North Broward Medical Center. And ...

  18. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  19. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamamuro

    Full Text Available Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP. Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11 to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP.

  20. Erlotinib-related bilateral anterior uveitis

    Science.gov (United States)

    Ali, Kashif; Kumar, Indu; Usman-Saeed, Muniba; Usman Saeed, Muhammad

    2011-01-01

    The authors report the case of a 68-year-old woman with secondary adenocarcinoma of the lungs from an unknown primary. Erlotinib was started which produced symptoms suggestive of uveitis. Erlotinib was stopped and restarted a month later at a lower dose, which resulted in severe bilateral anterior uveitis. The uveitis settled after stopping erlotinib and treatment with topical steroids and cycloplegics. To the best of the authors’ knowledge, this is the first case of erlotinib-related anterior uveitis. PMID:22694887

  1. The Altered Functional Connectivity of Prefrontal Cortex in Heroin Dependent Individuals:fMRI Study%慢性海洛因依赖患者前额叶皮质功能连接变化的fMRI研究

    Institute of Scientific and Technical Information of China (English)

    杨伟川; 王亚蓉; 李强; 李玮; 朱佳; 黄玉芳; 王玮

    2011-01-01

    目的 通过分析慢性海洛因成瘾者认知抑制性控制环路的关键脑区-前额叶功能连接的变化,探讨其在成瘾中的作用.方法 慢性海洛因依赖男性患者12例,与之年龄、受教育程度和尼古丁依赖水平匹配的健康被试12例参加本研究.采用3.0 T磁共振扫描仪,8通道头线圈,对被试分别进行头颅结构和静息态功能磁共振扫描,后利用SPM8软件以双侧前额叶为感兴趣区,分别进行组内和组间前额叶静息态功能网络分析.结果 与对照组比较,慢性海洛因依赖组前额叶与额眶回、角回、颞中回、双侧苍白球功能连接度显著上升,与前扣带回的功能连接显著下降(t=3.5,P5).结论慢性海洛因依赖者认知抑制性控制功能的神经环路受损,而奖赏以及动机驱动环路功能出现异常强化.%Objective To investigate whether the functional connectivity of the brain region, prefrontal cortex (PFC), which implicated in cognition and inhibitory control, changed in chronic heroin dependent individuals. Methods Twelve male chronic heroin users and 12 age- , gender- and nicotine dependence- matched healthy subjects participated in the present study. The participants received a resting state fMRI scan with a General Electric 3.0 Tesla scanner and a 8-channel birdcage head coil. Functional connectivity was analyzed based on resting state fMRI data in order to determine the temporal correlation between PFC and the other regions on the whole brain scale. Finally, one-sample t-test and two-sample t-test were applied to observe the change of functional connectivity of PFC between the two groups. Results The PFC of heroin group showed higher strength of functional connectivity between PFC and orbitofrontal cortex ( OFC), pallium, but lower between PFC and anterior cingulate cortex ( ACC) in chronic heroin users than that in healthy subjects (t= 3.52 P<0. 001). Conclusion Dysfunctional connectivity of PFC-OFC, PFC- lentiform

  2. Anterior Eye Imaging with Optical Coherence Tomography

    Science.gov (United States)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  3. The cortical structure of consolidated memory: a hypothesis on the role of the cingulate-entorhinal cortical connection.

    Science.gov (United States)

    Insel, Nathan; Takehara-Nishiuchi, Kaori

    2013-11-01

    Daily experiences are represented by networks of neurons distributed across the neocortex, bound together for rapid storage and later retrieval by the hippocampus. While the hippocampus is necessary for retrieving recent episode-based memory associations, over time, consolidation processes take place that enable many of these associations to be expressed independent of the hippocampus. It is generally thought that mechanisms of consolidation involve synaptic weight changes between cortical regions; or, in other words, the formation of "horizontal" cortico-cortical connections. Here, we review anatomical, behavioral, and physiological data which suggest that the connections in and between the entorhinal and cingulate cortices may be uniquely important for the long-term storage of memories that initially depend on the hippocampus. We propose that current theories of consolidation that divide memory into dual systems of hippocampus and neocortex might be improved by introducing a third, middle layer of entorhinal and cingulate allocortex, the synaptic weights within which are necessary and potentially sufficient for maintaining initially hippocampus-dependent associations over long time periods. This hypothesis makes a number of still untested predictions, and future experiments designed to address these will help to fill gaps in the current understanding of the cortical structure of consolidated memory.

  4. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain

    Science.gov (United States)

    Martino, Juan; De Witt Hamer, Philip C; Vergani, Francesco; Brogna, Christian; de Lucas, Enrique Marco; Vázquez-Barquero, Alfonso; García-Porrero, Juan A; Duffau, Hugues

    2011-01-01

    Classical fiber dissection of post mortem human brains enables us to isolate a fiber tract by removing the cortex and overlying white matter. In the current work, a modification of the dissection methodology is presented that preserves the cortex and the relationships within the brain during all stages of dissection, i.e. ‘cortex-sparing fiber dissection’. Thirty post mortem human hemispheres (15 right side and 15 left side) were dissected using cortex-sparing fiber dissection. Magnetic resonance imaging study of a healthy brain was analyzed using diffusion tensor imaging (DTI)-based tractography software. DTI fiber tract reconstructions were compared with cortex-sparing fiber dissection results. The fibers of the superior longitudinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) were isolated so as to enable identification of their cortical terminations. Two segments of the SLF were identified: first, an indirect and superficial component composed of a horizontal and vertical segment; and second, a direct and deep component or arcuate fasciculus. The IFOF runs within the insula, temporal stem and sagittal stratum, and connects the frontal operculum with the occipital, parietal and temporo-basal cortex. The UF crosses the limen insulae and connects the orbito-frontal gyri with the anterior temporal lobe. Finally, a portion of the ILF was isolated connecting the fusiform gyrus with the occipital gyri. These results indicate that cortex-sparing fiber dissection facilitates study of the 3D anatomy of human brain tracts, enabling the tracing of fibers to their terminations in the cortex. Consequently, it is an important tool for neurosurgical training and neuroanatomical research. PMID:21767263

  5. Combinatorial semantics strengthens angular-anterior temporal coupling.

    Science.gov (United States)

    Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel

    2015-04-01

    The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning.

  6. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex

    Science.gov (United States)

    Hofstetter, Christoph; Vuilleumier, Patrik

    2014-01-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  7. [Surgical anatomy of the anterior mediastinum].

    Science.gov (United States)

    Biondi, Alberto; Rausei, Stefano; Cananzi, Ferdinando C M; Zoccali, Marco; D'Ugo, Stefano; Persiani, Roberto

    2007-01-01

    The mediastinum is located from the thoracic inlet to the diaphragm between the left and right pleural cavities and contains vital structures of the circulatory, respiratory, digestive, and nervous system. Over the years, since there are no fascial or anatomic planes, anatomists and radiologists have suggested various schemes for subdividing the mediastinum and several anatomical and radiological classifications of the mediastinum are reported in the literature. The most popular of these scheme divides medistinum, for purposes of description, into two parts: an upper portion, above the upper level of the pericardium, which is named the superior mediastinum; and a lower portion, below the upper level of the pericardium. For clinical purposes, the mediastinum may be subdivided into three major areas, i.e. anterior, middle, and posterior compartments. The anterior mediastinum is defined as the region posterior to the sternum and anterior to the heart and brachiocephalic vessels. It extends from the thoracic inlet to the diaphragm and contains the thymus gland, fat, and lymph nodes. This article will review surgical anatomy of the anterior mediastinum and will focus on the surgical approch to anterior mediastinum and thymic diseases.

  8. Bilateral lesions in a specific subregion of posterior insular cortex impair conditioned taste aversion expression in rats.

    Science.gov (United States)

    Schier, Lindsey A; Blonde, Ginger D; Spector, Alan C

    2016-01-01

    The gustatory cortex (GC) is widely regarded for its integral role in the acquisition and retention of conditioned taste aversions (CTAs) in rodents, but large lesions in this area do not always result in CTA impairment. Recently, using a new lesion mapping system, we found that severe CTA expression deficits were associated with damage to a critical zone that included the posterior half of GC in addition to the insular cortex (IC) that is just dorsal and caudal to this region (visceral cortex). Lesions in anterior GC were without effect. Here, neurotoxic bilateral lesions were placed in the anterior half of this critical damage zone, at the confluence of the posterior GC and the anterior visceral cortex (termed IC2 ), the posterior half of this critical damage zone that contains just VC (termed IC3), or both of these subregions (IC2 + IC3). Then, pre- and postsurgically acquired CTAs (to 0.1 M NaCl and 0.1 M sucrose, respectively) were assessed postsurgically in 15-minute one-bottle and 96-hour two-bottle tests. Li-injected rats with histologically confirmed bilateral lesions in IC2 exhibited the most severe CTA deficits, whereas those with bilateral lesions in IC3 were relatively normal, exhibiting transient disruptions in the one-bottle sessions. Groupwise lesion maps showed that CTA-impaired rats had more extensive damage to IC2 than did unimpaired rats. Some individual differences in CTA expression among rats with similar lesion profiles were observed, suggesting idiosyncrasies in the topographic representation of information in the IC. Nevertheless, this study implicates IC2 as the critical zone of the IC for normal CTA expression.

  9. Pediatric anterior cruciate ligament femoral fixation: the trans-iliotibial band endoscopic portal for direct visualization of ideal button placement.

    Science.gov (United States)

    Mistovich, R Justin; O'Toole, Patrick O J; Ganley, Theodore J

    2014-06-01

    Pediatric and adolescent anterior cruciate ligament reconstruction is a commonly performed procedure that has been increasing in incidence. Multiple techniques for graft fixation have been described. Button-based femoral cortical suspension fixation of the anterior cruciate ligament graft allows for fast, secure fixation with strong load-to-failure biomechanical properties. The biomechanical properties of button-based femoral cortical suspension fixation are especially beneficial with soft-tissue grafts such as hamstring autografts. Confirmation of a successfully flipped button can be achieved with intraoperative fluoroscopy or indirect viewing; however, these techniques do not provide direct visualization of the flipped button. Our trans-iliotibial band endoscopic portal allows the surgeon to safely and directly visualize the flipped button on the lateral femoral cortex and ensure that there is no malpositioning in the form of an incompletely flipped button or from soft-tissue interposition between the button and the lateral femoral cortex. This portal therefore allows for direct visual confirmation that the button is fully flipped and resting flush against the femoral cortex, deep to the iliotibial band and vastus lateralis.

  10. Differential Involvement of the Anterior Temporal Lobes in Famous People Semantics.

    Science.gov (United States)

    Chedid, Georges; Wilson, Maximiliano A; Provost, Jean-Sebastien; Joubert, Sven; Rouleau, Isabelle; Brambati, Simona M

    2016-01-01

    The ability to recognize a famous person occurs through semantic memory. Previous neuroimaging studies have shown that the anterior temporal lobes (ATLs) are involved in the recognition of famous people. However, it is still a matter of debate whether the semantic processing of names or pictures of famous people has an impact on the activation of ATLs. The aim of this study was to explore the pattern of activation associated with a semantic processing of famous people based on face and written name stimuli. Fifteen healthy young individuals participated in our fMRI study, in which they were asked to perform a semantic categorization judgment task, based on profession, of visually presented pictures, and names of famous people. Neuroimaging findings showed a common pattern of activation for faces and names mainly involving the inferior frontal regions, the posterior temporal lobe, the visual cortex, and the ATLs. We found that the comparison names vs. pictures lead to significant activation in the anterior superior temporal gyrus. On the other hand, faces vs. names seemed associated with increased activation in the medial ATL. Moreover, our results demonstrated that the functional connectivity network anchored to the medial ATL, compared to the anterior STG, is more connected to the bilateral occipital lobe and fusiform gyrus that are regions implicated in the visual system and visual processing of faces. This study provides critical evidence of the differential involvement of ATL regions in semantics of famous people. PMID:27625630

  11. The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning

    Directory of Open Access Journals (Sweden)

    Laura Anne Bradfield

    2013-10-01

    Full Text Available The traditional animal model of instrumental behaviour has focused almost exclusively on structures within the cortico-striatal network and ignored the contributions of various thalamic nuclei despite large and specific connections with each of these structures. One possible reason for this is that the thalamus has been conventionally viewed as a mediator of general processes, such as attention, arousal and movement, that are not easily separated from more cognitive aspects of instrumental behaviour. Recent research has, however, begun to separate these roles. Here we review the role of three thalamic nuclei in instrumental conditioning: the anterior, the mediodorsal, and parafascicular thalamic nuclei. Early research suggested that anterior thalamic nuclei might regulate aspects of instrumental behaviour but, on review, we suggest that the types of tasks used in these studies were more likely to recruit Pavlovian processes. Indeed lesions of anterior thalamic nuclei have been found to have no effect on performance in instrumental free-operant tasks. By contrast the mediodorsal thalamus has been found to play a specific and important role in the acquisition of goal-directed action. We propose this role is related to its connections with prelimbic cortex and present new data that directly implicates this circuit in the acquisition of goal-directed actions. Finally we review evidence suggesting the parafascicular thalamic nucleus, although not critical for the acquisition or performance of instrumental actions, plays a specific role in regulating action flexibility.

  12. Differential Involvement of the Anterior Temporal Lobes in Famous People Semantics

    Science.gov (United States)

    Chedid, Georges; Wilson, Maximiliano A.; Provost, Jean-Sebastien; Joubert, Sven; Rouleau, Isabelle; Brambati, Simona M.

    2016-01-01

    The ability to recognize a famous person occurs through semantic memory. Previous neuroimaging studies have shown that the anterior temporal lobes (ATLs) are involved in the recognition of famous people. However, it is still a matter of debate whether the semantic processing of names or pictures of famous people has an impact on the activation of ATLs. The aim of this study was to explore the pattern of activation associated with a semantic processing of famous people based on face and written name stimuli. Fifteen healthy young individuals participated in our fMRI study, in which they were asked to perform a semantic categorization judgment task, based on profession, of visually presented pictures, and names of famous people. Neuroimaging findings showed a common pattern of activation for faces and names mainly involving the inferior frontal regions, the posterior temporal lobe, the visual cortex, and the ATLs. We found that the comparison names vs. pictures lead to significant activation in the anterior superior temporal gyrus. On the other hand, faces vs. names seemed associated with increased activation in the medial ATL. Moreover, our results demonstrated that the functional connectivity network anchored to the medial ATL, compared to the anterior STG, is more connected to the bilateral occipital lobe and fusiform gyrus that are regions implicated in the visual system and visual processing of faces. This study provides critical evidence of the differential involvement of ATL regions in semantics of famous people. PMID:27625630

  13. Esthetic crown lengthening for maxillary anterior teeth.

    Science.gov (United States)

    Sonick, M

    1997-08-01

    In the maxillary anterior region, the gingival labial margin position is an important parameter in the achievement of an ideal smile. The relationship between the periodontium and the restoration is critical if gingival health and esthetics are to be achieved. Periodontal therapy is a necessary and useful adjunct when any anterior restoration is undertaken. Anterior surgical crown lengthening may be undertaken to avoid restorative margin impingement on the biologic width. Crown lengthening is also used to alter the gingival labial profiles. This article discusses the esthetic parameters of ideal gingival labial positions and presents a classification of crown-lengthening procedures and the procedure for a two-stage crown-lengthening technique. The two-stage crown-lengthening technique is surgically precise because healing is predictable.

  14. THYMOLIPOMA: A RARE, LARGE ANTERIOR MEDIASTINAL MASS

    Directory of Open Access Journals (Sweden)

    Premananth

    2015-07-01

    Full Text Available Thymolipoma is a rare benign tumor of anterior mediastinum, described by Lange in 1916. 1 Less than 200 cases have been reported worldwide. 2 It accounts for 2% to 9% of thymic tumours. 3 We report a case of thymolipoma in a 37 year s old male patient, who pre sented with cough, dys p nea, chest pain for 2 months. CT THORAX revealed a large anterior mediastinal mass extending in to right hemithorax arising from thymus gland, with multiple areas of fat density, no significant mediastinal adenopathy, complete collap se of right middle and lower lobe suggestive of thymolipoma. CT guided biopsy suggestive of thymic neoplasm. The tumour was removed enbloc through surgery. Histopathological examination of large mass lesion confirmed thymolipoma. We report this case to emp hasize the importance of considering thymolipoma as a differential diagnosis of anterior mediastinal mass, although rare.

  15. Nonnecrotizing anterior scleritis mimicking orbital inflammatory disease

    Directory of Open Access Journals (Sweden)

    Lynch MC

    2013-08-01

    Full Text Available Michelle Chen Lynch,1 Andrew B Mick21Optometry Clinic, Ocala West Veterans Affairs Specialty Clinic, Ocala, FL, USA; 2Eye Clinic, San Francisco VA Medical Center, San Francisco, CA, USABackground: Anterior scleritis is an uncommon form of ocular inflammation, often associated with coexisting autoimmune disease. With early recognition and aggressive systemic therapy, prognosis for resolution is good. The diagnosis of underlying autoimmune disease involves a multidisciplinary approach.Case report: A 42-year-old African American female presented to the Eye Clinic at the San Francisco Veteran Affairs Medical Center, with a tremendously painful left eye, worse on eye movement, with marked injection of conjunctiva. There was mild swelling of the upper eyelid. Visual acuity was unaffected, but there was a mild red cap desaturation. The posterior segment was unremarkable. The initial differential diagnoses included anterior scleritis and orbital inflammatory disease. Oral steroid treatment was initiated with rapid resolution over a few days. Orbital imaging was unremarkable, and extensive laboratory work-up was positive only for antinuclear antibodies. The patient was diagnosed with idiopathic diffuse, nonnecrotizing anterior scleritis and has been followed for over 5 years without recurrence. The rheumatology clinic monitors the patient closely, as suspicion remains for potential arthralgias including human leukocyte antigen-B27-associated arthritis, lupus-associated arthritis, seronegative rheumatoid arthritis, recurrent juvenile idiopathic arthritis, and scleroderma, based on her constitutional symptoms and clinical presentation, along with a positive anti-nuclear antibody lab result.Conclusion: Untreated anterior scleritis can progress to formation of cataracts, glaucoma, uveitis, corneal melting, and posterior segment disease with significant risk of vision loss. Patients with anterior scleritis must be aggressively treated with systemic anti

  16. High-Field Functional Imaging of Pitch Processing in Auditory Cortex of the Cat.

    Directory of Open Access Journals (Sweden)

    Blake E Butler

    Full Text Available The perception of pitch is a widely studied and hotly debated topic in human hearing. Many of these studies combine functional imaging techniques with stimuli designed to disambiguate the percept of pitch from frequency information present in the stimulus. While useful in identifying potential "pitch centres" in cortex, the existence of truly pitch-responsive neurons requires single neuron-level measures that can only be undertaken in animal models. While a number of animals have been shown to be sensitive to pitch, few studies have addressed the location of cortical generators of pitch percepts in non-human models. The current study uses high-field functional magnetic resonance imaging (fMRI of the feline brain in an attempt to identify regions of cortex that show increased activity in response to pitch-evoking stimuli. Cats were presented with iterated rippled noise (IRN stimuli, narrowband noise stimuli with the same spectral profile but no perceivable pitch, and a processed IRN stimulus in which phase components were randomized to preserve slowly changing modulations in the absence of pitch (IRNo. Pitch-related activity was not observed to occur in either primary auditory cortex (A1 or the anterior auditory field (AAF which comprise the core auditory cortex in cats. Rather, cortical areas surrounding the posterior ectosylvian sulcus responded preferentially to the IRN stimulus when compared to narrowband noise, with group analyses revealing bilateral activity centred in the posterior auditory field (PAF. This study demonstrates that fMRI is useful for identifying pitch-related processing in cat cortex, and identifies cortical areas that warrant further investigation. Moreover, we have taken the first steps in identifying a useful animal model for the study of pitch perception.

  17. A rapid sound-action association effect in human insular cortex.

    Directory of Open Access Journals (Sweden)

    Isabella Mutschler

    Full Text Available BACKGROUND: Learning to play a musical piece is a prime example of complex sensorimotor learning in humans. Recent studies using electroencephalography (EEG and transcranial magnetic stimulation (TMS indicate that passive listening to melodies previously rehearsed by subjects on a musical instrument evokes differential brain activation as compared with unrehearsed melodies. These changes were already evident after 20-30 minutes of training. The exact brain regions involved in these differential brain responses have not yet been delineated. METHODOLOGY/PRINCIPAL FINDING: Using functional mri (fmri, we investigated subjects who passively listened to simple piano melodies from two conditions: in the 'actively learned melodies' condition subjects learned to play a piece on the piano during a short training session of a maximum of 30 minutes before the fMRI experiment, and in the 'passively learned melodies' condition subjects listened passively to and were thus familiarized with the piece. We found increased fMRI responses to actively compared with passively learned melodies in the left anterior insula, extending to the left fronto-opercular cortex. The area of significant activation overlapped the insular sensorimotor hand area as determined by our meta-analysis of previous functional imaging studies. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence for differential brain responses to action-related sounds after short periods of learning in the human insular cortex. As the hand sensorimotor area of the insular cortex appears to be involved in these responses, re-activation of movement representations stored in the insular sensorimotor cortex may have contributed to the observed effect. The insular cortex may therefore play a role in the initial learning phase of action-perception associations.

  18. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches.

  19. Somatosensory responses in a human motor cortex.

    Science.gov (United States)

    Shaikhouni, Ammar; Donoghue, John P; Hochberg, Leigh R

    2013-04-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications.

  20. Where does TMS Stimulate the Motor Cortex?

    DEFF Research Database (Denmark)

    Bungert, Andreas; Antunes, André; Espenhahn, Svenja;

    2016-01-01

    Much of our knowledge on the physiological mechanisms of transcranial magnetic stimulation (TMS) stems from studies which targeted the human motor cortex. However, it is still unclear which part of the motor cortex is predominantly affected by TMS. Considering that the motor cortex consists...... of functionally and histologically distinct subareas, this also renders the hypotheses on the physiological TMS effects uncertain. We use the finite element method (FEM) and magnetic resonance image-based individual head models to get realistic estimates of the electric field induced by TMS. The field changes...... in different subparts of the motor cortex are compared with electrophysiological threshold changes of 2 hand muscles when systematically varying the coil orientation in measurements. We demonstrate that TMS stimulates the region around the gyral crown and that the maximal electric field strength in this region...

  1. Dual (type IV left anterior descending artery

    Directory of Open Access Journals (Sweden)

    Ozdil Baskan

    2013-11-01

    Full Text Available Congenital coronary artery anomalies are uncommon. Dual left anterior descending coronary artery (LAD is defined as the presence of two LADs within the anterior interventricular sulcus (AIVS, and is classified into four types. Type IV is a rarely reported subtype and differs from the others, with a long LAD originating from the right coronary artery (RCA. Dual LAD is a benign coronary artery anomaly, but should be recognised especially before interventional procedures. With the increasing use of multidedector computed tomography (MDCT, it is essential for radiologists to be aware of this entity and the cross-sectional findings.

  2. ANTERIOR OSTEOPHYTE IDENTIFICATION IN CERVICAL VERTEBRAE

    Directory of Open Access Journals (Sweden)

    A. T. Chougale

    2011-06-01

    Full Text Available Radiologist always examines X-ray to determine abnormal changes in cervical, lumbar & thoracic vertebrae. Osteophyte (bony growth may appear at the corners of vertebrae so that vertebral shape becomes abnormal. This paper presents the idea from Image processing techniques such as customised Hough transform which will be used for segmentation which should be independent of rotation, scale, noise & shape. This segmented image will be then used for computing size invariant, convex hull based features to differentiate normal cervical vertebrae from cervical vertebrae containing anterior osteophyte. This approach effectively finds anterior osteophytes in cervical vertebrae.

  3. The Piriform Cortex and Human Focal Epilepsy

    OpenAIRE

    Vaughan, David N.; Graeme D. Jackson

    2014-01-01

    It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical releva...

  4. Salience Network and Olanzapine in Schizophrenia: Implications for Treatment in Anorexia Nervosa

    OpenAIRE

    Stip, Emmanuel; Lungu, Ovidiu V

    2015-01-01

    The salience network (SN), a set of brain regions composed of the anterior fronto-insular cortex (aFI) and the anterior cingulate cortex (ACC), is usually involved in interoception, self-regulating, and action selection. Accumulating evidence indicates that dysfunctions in this network are associated with various pathophysiological deficits in both schizophrenia and eating disorders, stemming mainly from dysfunctional information processing of internal or external stimuli. In addition, the me...

  5. [Investigation on chemical constituents of processed products of Eucommiae Cortex].

    Science.gov (United States)

    Tao, Yi; Sheng, Chen; Li, Wei-dong; Cai, Bao-chang; Lu, Tu-lin

    2014-11-01

    According to the 2010 Chinese pharmacopeia, salt processed and charcoal processed Eucommiae Cortex were pre- pared. HPLC-DAD analysis of the content of the bark and leaf of Eucommiae Cortex showed that the bark of Eucommiae Cortex mainly contained lignans such as pinoresinol glucose and iridoid including genipin, geniposide, geniposidic acid, while the leaf of Eucommiae Cortex consisted of flavonoids such as quercetin and phenolic compound such as chlorogenic acid. The content of pinoresinol diglucoside in the bark