WorldWideScience

Sample records for anterior cingulate cortex

  1. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  2. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  3. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  4. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-05-01

    Full Text Available Abstract Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC, in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice.

  5. Pleasant human touch is represented in pregenual anterior cingulate cortex.

    Science.gov (United States)

    Lindgren, Lenita; Westling, Göran; Brulin, Christine; Lehtipalo, Stefan; Andersson, Micael; Nyberg, Lars

    2012-02-15

    Touch massage (TM) is a form of pleasant touch stimulation used as treatment in clinical settings and found to improve well-being and decrease anxiety, stress, and pain. Emotional responses reported during and after TM have been studied, but the underlying mechanisms are still largely unexplored. In this study, we used functional magnetic resonance (fMRI) to test the hypothesis that the combination of human touch (i.e. skin-to-skin contact) with movement is eliciting a specific response in brain areas coding for pleasant sensations. The design included four different touch conditions; human touch with or without movement and rubber glove with or without movement. Force (2.5 N) and velocity (1.5 cm/s) were held constant across conditions. The pleasantness of the four different touch stimulations was rated on a visual analog scale (VAS-scale) and human touch was rated as most pleasant, particularly in combination with movement. The fMRI results revealed that TM stimulation most strongly activated the pregenual anterior cingulate cortex (pgACC). These results are consistent with findings showing pgACC activation during various rewarding pleasant stimulations. This area is also known to be activated by both opioid analgesia and placebo. Together with these prior results, our finding furthers the understanding of the basis for positive TM treatment effects. PMID:22100768

  6. Attentional effects of lesions to the anterior cingulate cortex: how prior reinforcement influences distractibility

    OpenAIRE

    Newman, Lori A.; McGaughy, Jill

    2011-01-01

    Morphological changes in the anterior cingulate cortex are found in subjects with schizophrenia, attention deficit hyperactivity disorder, and obsessive compulsive disorder. These changes are hypothesized to underlie the impairments these individuals show on tasks that require cognitive control. The anterior cingulate cortex has previously been shown to be active in situations involving high conflict, presentation of salient, distracting stimuli, and error processing, i.e. situations that occ...

  7. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  8. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction

    OpenAIRE

    Goldstein, Rita Z.; Alia-Klein, Nelly; Tomasi, Dardo; Carrillo, Jean Honorio; Maloney, Thomas; Woicik, Patricia A.; Wang, Ruiliang; Telang, Frank; Volkow, Nora D.

    2009-01-01

    Anterior cingulate cortex (ACC) hypoactivations during cognitive processing characterize drug addicted individuals as compared with healthy controls. However, impaired behavioral performance or task disengagement may be crucial factors. We hypothesized that ACC hypoactivations would be documented in groups matched for performance on an emotionally salient task. Seventeen individuals with current cocaine use disorders (CUD) and 17 demographically matched healthy controls underwent functional m...

  9. Early adversity and combat exposure interact to influence anterior cingulate cortex volume in combat veterans ☆

    OpenAIRE

    Woodward, Steven H.; Kuo, Janice R.; Schaer, Marie; Kaloupek, Danny G.; Eliez, Stephan

    2013-01-01

    Objective Childhood and combat trauma have been observed to interact to influence amygdala volume in a sample of U.S. military veterans with and without PTSD. This interaction was assessed in a second, functionally-related fear system component, the pregenual and dorsal anterior cingulate cortex, using the same sample and modeling approach. Method Anterior cingulate cortical tissues (gray + white matter) were manually-delineated in 1.5 T MR images in 87 U.S. military veterans of the Vietnam a...

  10. ROLE OF THE ANTERIOR CINGULATE AND MEDIAL ORBITOFRONTAL CORTEX IN PROCESSING DRUG CUES IN COCAINE ADDICTION

    OpenAIRE

    Goldstein, Rita Z.; Tomasi, Dardo; Rajaram, Suparna; Cottone, Lisa A.; Zhang, Lei; Maloney, Thomas; Telang, Frank; Alia-Klein, Nelly; Volkow, Nora D.

    2006-01-01

    Our goal in the current report was to design a new fMRI task to probe the role of the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) in processing of salient symptom-related cues during the simultaneous performance of an unrelated task in drug addicted individuals. We used a novel functional magnetic resonance imaging color-word drug Stroop task in 14 individuals with cocaine use disorders; subjects had to press for color of drug vs. matched neutral words. Although there were ...

  11. EMX1 regulates NRP1-mediated wiring of the mouse anterior cingulate cortex.

    Science.gov (United States)

    Lim, Jonathan W C; Donahoo, Amber-Lee S; Bunt, Jens; Edwards, Timothy J; Fenlon, Laura R; Liu, Ying; Zhou, Jing; Moldrich, Randal X; Piper, Michael; Gobius, Ilan; Bailey, Timothy L; Wray, Naomi R; Kessaris, Nicoletta; Poo, Mu-Ming; Rubenstein, John L R; Richards, Linda J

    2015-11-01

    Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how they mediate the emergence of specific neuronal connections via selective axon guidance. The EMX transcription factors are essential for early patterning of the cerebral cortex, but whether EMX1 mediates interhemispheric connectivity by controlling corpus callosum formation remains unclear. Here, we demonstrate that in mice on the C57Bl/6 background EMX1 plays an essential role in the midline crossing of an axonal subpopulation of the corpus callosum derived from the anterior cingulate cortex. In the absence of EMX1, cingulate axons display reduced expression of the axon guidance receptor NRP1 and form aberrant axonal bundles within the rostral corpus callosum. EMX1 also functions as a transcriptional activator of Nrp1 expression in vitro, and overexpression of this protein in Emx1 knockout mice rescues the midline-crossing phenotype. These findings reveal a novel role for the EMX1 transcription factor in establishing cortical connectivity by regulating the interhemispheric wiring of a subpopulation of neurons within the mouse anterior cingulate cortex. PMID:26534986

  12. Modulation of Subgenual Anterior Cingulate Cortex Activity With Real-Time Neurofeedback

    OpenAIRE

    Hamilton, J. Paul; Glover, Gary H.; Hsu, Jung-Jiin; Johnson, Rebecca F.; Gotlib, Ian H.

    2011-01-01

    The advent of real-time neurofeedback techniques has allowed us to begin to map the controllability of sensory and cognitive and, more recently, affective centers in the brain. The subgenual anterior cingulate cortex (sACC) is thought to be involved in generation of affective states and has been implicated in psychopathology. In this study, we examined whether individuals could use realtime fMRI neurofeedback to modulate sACC activity. Following a localizer task used to identify an sACC regio...

  13. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy

    OpenAIRE

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In Experiment 1, rats were trained on a cost-benefit T-maze task in which they could either choose to climb a barrier to obtain a high reward (four pellet...

  14. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making

    OpenAIRE

    Khani, Abbas; Kermani, Mojtaba; Hesam, 6Soghra; Haghparast, Abbas; Enrike G Argandoña; Rainer, Gregor

    2015-01-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test...

  15. Short-term meditation increases blood flow in anterior cingulate cortex and insula

    Directory of Open Access Journals (Sweden)

    Yi-Yuan eTang

    2015-02-01

    Full Text Available Asymmetry in frontal electrical activity has been reported to be associated with positive mood. One form of mindfulness meditation, integrative body-mind training (IBMT improves positive mood and neuroplasticity. The purpose of this study is to determine whether short-term IBMT improves mood and induces frontal asymmetry. This study showed that five-day (30-min per day IBMT significantly enhanced cerebral blood flow (CBF in subgenual/adjacent ventral anterior cingulate cortex (ACC, medial prefrontal cortex and insula. The results showed that both IBMT and relaxation training increased left laterality of CBF, but only IBMT improved CBF in left ACC and insula, critical brain areas in self-regulation.

  16. Comparison of anterior cingulate vs. insular cortex as targets for real-time fMRI regulation during pain stimulation

    OpenAIRE

    Kirsten Emmert; Markus Breimhorst; Thomas Bauermann

    2014-01-01

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network, notably the anterior insular cortex (AIC) and the anterior cingulate cortex (ACC). Participants for this prospective study were randomly assigned to...

  17. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  18. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WANG Ya-rong; QIN Wei; YUAN Kai; TIAN Jie; LI Qiang; YANG Lan-ying; LU Lin; GUO You-min

    2010-01-01

    Background Previous studies with animal experiments, autopsy, structural magnetic resonance imaging (MRI) and task-related functional MRI (fMRI) have confirmed that brain functional connectivity in addicts has become impaired. The goal of this study was to investigate the alteration of resting-state functional connectivity of the ventral anterior cingulate cortex (vACC) in the heroin abusers' brain.Methods Fifteen heroin abusers and fifteen matched healthy volunteers were studied using vACC as the region-of interest (ROI) seed. A 3.0 T scanner with a standard head coil was the imagining apparatus. T2*-weighted gradient-echo planar imaging (GRE-EPI) was the scanning protocol. A ROI seed based correlation analysis used a SPM5 software package as the tool for all images processing.Results This study showed a functional connection to the insula vACC in heroin abusers. Compared with controls,heroin users showed decreased functional connectivity between the nucleus accumbens (NAc) and vACC, between the parahippocampala gyrus/amgdala (PHC/amygdala) and vACC, between the thalamus and vACC, and between the posterior cingulated cortex/precuneus (PCC/pC) and vACC.Conclusion The altered resting-state functional connectivity to the vACC suggests the neural circuitry on which the addictive drug has an affect and reflects the dysfunction of the addictive brain.

  19. Learning to cope with stress modulates anterior cingulate cortex stargazin expression in monkeys and mice.

    Science.gov (United States)

    Lee, Alex G; Capanzana, Roxanne; Brockhurst, Jacqueline; Cheng, Michelle Y; Buckmaster, Christine L; Absher, Devin; Schatzberg, Alan F; Lyons, David M

    2016-05-01

    Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping with gains in subsequent emotion regulation. Here we investigate the effects of learning to cope with stress on anterior cingulate cortex gene expression in monkeys and mice. Anterior cingulate cortex is involved in learning, memory, cognitive control, and emotion regulation. Monkeys and mice were randomized to either stress coping or no-stress treatment conditions. Profiles of gene expression were acquired with HumanHT-12v4.0 Expression BeadChip arrays adapted for monkeys. Three genes identified in monkeys by arrays were then assessed in mice by quantitative real-time polymerase chain reaction. Expression of a key gene (PEMT) involved in acetylcholine biosynthesis was increased in monkeys by coping but this result was not verified in mice. Another gene (SPRY2) that encodes a negative regulator of neurotrophic factor signaling was decreased in monkeys by coping but this result was only partly verified in mice. The CACNG2 gene that encodes stargazin (also called TARP gamma-2) was increased by coping in monkeys as well as mice randomized to coping with or without subsequent behavioral tests of emotionality. As evidence of coping effects distinct from repeated stress exposures per se, increased stargazin expression induced by coping correlated with diminished emotionality in mice. Stargazin modulates glutamate receptor signaling and plays a role in synaptic plasticity. Molecular mechanisms of synaptic plasticity that mediate learning and memory in the context of coping with stress may provide novel targets for new treatments of disorders in human mental health. PMID:27003116

  20. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset.

    Science.gov (United States)

    Jackson, Stacey A W; Horst, Nicole K; Pears, Andrew; Robbins, Trevor W; Roberts, Angela C

    2016-07-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the "habit" system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. PMID:27130662

  1. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response. PMID:19562631

  2. Medial profrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study.

    Directory of Open Access Journals (Sweden)

    Yamamoto,Shin

    2006-02-01

    Full Text Available

    Previous EEG studies have shown that transcendental meditation (TM increases frontal and central alpha activity. The present study was aimed at identifying the source of this alpha activity using magnetoencephalography (MEG and electroencephalography (EEG simultaneously on eight TM practitioners before, during, and after TM. The magnetic field potentials corresponding to TM-induced alpha activities on EEG recordings were extracted, and we attempted to localize the dipole sources using the multiple signal classification (MUSIC algorithm, equivalent current dipole source analysis, and the multiple spatio-temporal dipole model. Since the dipoles were mapped to both the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC, it is suggested that the mPFC and ACC play an important role in brain activity induced by TM.

  3. Post-Learning Infusion of Anisomycin into the Anterior Cingulate Cortex Impairs Instrumental Acquisition through an Effect on Reinforcer Valuation

    Science.gov (United States)

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of…

  4. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study

    Czech Academy of Sciences Publication Activity Database

    Rusnáková-Aulická, Š.; Jurák, Pavel; Chládek, Jan; Daniel, P.; Halámek, Josef; Baláž, M.; Bočková, M.; Chrastina, J.; Rektor, I.

    2014-01-01

    Roč. 121, č. 10 (2014), s. 1287-1296. ISSN 0300-9564 R&D Projects: GA ČR GAP103/11/0933 Institutional support: RVO:68081731 Keywords : ERD/S * Anterior cingulate cortex * Subthalamic nucleus * Flanker test * Executive functions Subject RIV: BD - Theory of Information Impact factor: 2.402, year: 2014

  5. Anatomical and functional overlap within the insula and anterior cingulate cortex during interoception and phobic symptom provocation

    OpenAIRE

    Caseras, Xavier; Murphy, Kevin; Mataix-Cols, David; López-Sola, Marina; Soriano-Mas, Carles; Ortiz Valencia, Héctor; Pujol, Jesus; Torrubia, Rafael

    2011-01-01

    The anterior insula and the dorsal anterior cingulate cortex (ACC) are regarded as key brain structures associated with the integration of perceived phobic characteristics of external stimuli and the perception of ones own body responses that leads to emotional feelings. To test to what extent the activity in these two brain structures anatomically and functionally overlap during phobic reactions and interoception, we submitted the same group of phobic participants (n = 29; either spider or b...

  6. Electrophysiological Correlates of a Versatile Executive Control System in the Monkey Anterior Cingulate Cortex.

    Science.gov (United States)

    Michelet, Thomas; Bioulac, Bernard; Langbour, Nicolas; Goillandeau, Michel; Guehl, Dominique; Burbaud, Pierre

    2016-04-01

    When a subject faces conflicting situations, decision-making becomes uncertain. The human dorsal anterior cingulate cortex (dACC) has been repeatedly implicated in the monitoring of such situations, and its neural activity is thought to be involved in behavioral adjustment. However, this hypothesis is mainly based on neuroimaging results and is challenged by animal studies that failed to report any neuronal correlates of conflict monitoring. This discrepancy is thought be due either to methodological or more fundamental cross-species differences. In this study, we eliminated methodological biases and recorded single-neuron activity in monkeys performing a Stroop-like task. We found specific changes in dACC activity during incongruent trials but only in a small subpopulation of cells. Critically, these changes were not related to reaction time and were absent before any incorrect action was taken. A larger fraction of neurons exhibited sustained activity during the whole decision period, whereas another subpopulation of neurons was modulated by reaction time, with a gradual increase in their firing rate that peaked at movement onset. Most of the neurons found in these subpopulations exhibited activity after the delivery of an external negative feedback stimulus that indicated an error had been made. These findings, which are consistent with an executive control role, reconcile various theories of prefrontal cortex function and support the homology between human and monkey cognitive architectures. PMID:25631057

  7. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  8. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    Science.gov (United States)

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  9. Postnatal development of the electrophysiological properties of somatostatin interneurons in the anterior cingulate cortex of mice.

    Science.gov (United States)

    Pan, Geng; Yang, Jian-Ming; Hu, Xing-Yue; Li, Xiao-Ming

    2016-01-01

    Somatostatin (SST)-positive interneurons in the anterior cingulate cortex (ACC) play important roles in neuronal diseases, memory and cognitive functions. However, their development in the ACC remains unclear. Using postnatal day 3 (P3) to P45 GIN mice, we found that most of the intrinsic membrane properties of SST interneurons in the ACC were developmentally mature after the second postnatal week and that the development of these neurons differed from that of parvalbumin (PV) interneurons in the prefrontal cortex. In addition, electrical coupling between SST interneurons appeared primarily between P12-14. The coupling probability plateaued at approximately P21-30, with a non-age-dependent development of coupling strength. The development of excitatory chemical afferents to SST interneurons occurred earlier than the development of inhibitory chemical afferents. Furthermore, eye closure attenuated the development of electrical coupling probability at P21-30 but had no effect on coupling strength. Eye closure also delayed the development of inhibitory chemical afferent frequency but had no effect on the excitatory chemical afferent amplitude, frequency or rise time. Our data suggest that SST interneurons in the ACC exhibit inherent developmental characteristics distinct from other interneuron subtypes, such as PV interneurons, and that some of these characteristics are subject to environmental regulation. PMID:27319800

  10. Potentiation of synaptic transmission in Rat anterior cingulate cortex by chronic itch.

    Science.gov (United States)

    Zhang, Ting-Ting; Shen, Feng-Yan; Ma, Li-Qing; Wen, Wen; Wang, Bin; Peng, Yuan-Zhi; Wang, Zhi-Ru; Zhao, Xuan

    2016-01-01

    Itch and pain share similar mechanisms. It has been well documented that the anterior cingulate cortex (ACC) is important for pain-related perception. ACC has also been approved to be a potential pruritus-associated brain region. However, the mechanism of sensitization in pruriceptive neurons in the ACC is not clear. In current study, a chronic itch model was established by diphenylcyclopropenone (DCP) application. We found that both the frequency and amplitude of miniature excitatory postsynaptic currents in the ACC were enhanced after the formation of chronic itch. The paired-pulse ratio in ACC neurons recorded from the DCP group were smaller than those recorded in control group at the 50-ms interval. We also observe a significant increase in the AMPA/NMDA ratio in the DCP group. Moreover, an increased inward rectification of AMPARs in ACC pyramidal neurons was observed in the DCP group. Interestingly, the calculated ratio of silent synapses was significantly reduced in the DCP group compared with controls. Taken together, we conclude that a potentiation of synaptic transmission in the ACC can be induced by chronic itch, and unsilencing silent synapses, which probably involved recruitment of AMPARS, contributed to the potentiation of postsynaptic transmission. PMID:27472923

  11. An Examination of Rostral Anterior Cingulate Cortex Function and Neurochemistry in Obsessive-Compulsive Disorder.

    Science.gov (United States)

    Brennan, Brian P; Tkachenko, Olga; Schwab, Zachary J; Juelich, Richard J; Ryan, Erin M; Athey, Alison J; Pope, Harrison G; Jenike, Michael A; Baker, Justin T; Killgore, William D S; Hudson, James I; Jensen, J Eric; Rauch, Scott L

    2015-07-01

    The anterior cingulate cortex is implicated in the neurobiology of obsessive-compulsive disorder (OCD). However, few studies have examined functional and neurochemical abnormalities specifically in the rostral subdivision of the ACC (rACC) in OCD patients. We used functional magnetic resonance imaging (fMRI) during an emotional counting Stroop task and single-voxel J-resolved proton magnetic resonance spectroscopy ((1)H-MRS) in the rACC to examine the function and neurochemistry of the rACC in individuals with OCD and comparison individuals without OCD. Between-group differences in rACC activation and glutamine/glutamate ratio (Gln/Glu), Glu, and Gln levels, as well as associations between rACC activation, Gln/Glu, Glu, Gln, behavioral, and clinical measures were examined using linear regression. In a sample of 30 participants with OCD and 29 age- and sex-matched participants without OCD, participants with OCD displayed significantly reduced rACC deactivation compared with those without OCD in response to OCD-specific words versus neutral words on the emotional counting Stroop task. However, Gln/Glu, Glu, and Gln in the rACC did not differ between groups nor was there an association between reduced rACC deactivation and Gln/Glu, Glu, or Gln in the OCD group. Taken together, these findings strengthen the evidence for rACC dysfunction in OCD, but weigh against an underlying association with abnormal rACC glutamatergic neurotransmission. PMID:25662837

  12. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Koike, Takahiko; Yoshihara, Kazufumi; Yoshida, Yumiko; Takahashi, Haruka K; Nakagawa, Eri; Sadato, Norihiro

    2016-07-01

    Happiness is one of the most fundamental human goals, which has led researchers to examine the source of individual happiness. Happiness has usually been discussed regarding two aspects (a temporary positive emotion and a trait-like long-term sense of being happy) that are interrelated; for example, individuals with a high level of trait-like subjective happiness tend to rate events as more pleasant. In this study, we hypothesized that the interaction between the two aspects of happiness could be explained by the interaction between structure and function in certain brain regions. Thus, we first assessed the association between gray matter density (GMD) of healthy participants and trait-like subjective happiness using voxel-based morphometry (VBM). Further, to assess the association between the GMD and brain function, we conducted functional magnetic resonance imaging (MRI) using the task of positive emotion induction (imagination of several emotional life events). VBM indicated that the subjective happiness was positively correlated with the GMD of the rostral anterior cingulate cortex (rACC). Functional MRI demonstrated that experimentally induced temporal happy feelings were positively correlated with subjective happiness level and rACC activity. The rACC response to positive events was also positively correlated with its GMD. These results provide convergent structural and functional evidence that the rACC is related to happiness and suggest that the interaction between structure and function in the rACC may explain the trait-state interaction in happiness. PMID:27085503

  13. Anterior cingulate cortex inactivation impairs rodent visual selective attention and prospective memory.

    Science.gov (United States)

    Kim, Jangjin; Wasserman, Edward A; Castro, Leyre; Freeman, John H

    2016-02-01

    Previous studies showed that the anterior cingulate cortex (ACC) plays a role in selective visual attention. The current study further examined the role of the ACC in attention using a visual cuing task with task-relevant and task-irrelevant stimuli. On every trial, 2 stimuli were presented on the touchscreen; 1 was task-relevant and the other was task-irrelevant. Rats were trained to attend to the task-relevant stimulus over the task-irrelevant stimulus to determine which side of the touchscreen should be selected for reward. After the rats were well-trained, cannulas targeting the ACC were implanted bilaterally for infusions of PBS or muscimol. When the ACC was functionally intact, high task performance was correlated with the anticipatory touches toward the reward; rats touched the stimulus proximal to the correct side more often, regardless of its task-relevancy. Analysis of the presurgery training data showed that rats developed anticipatory touches during training. Linear discriminant analyses of the touches also showed that the touches predict rats' choices in trials. With muscimol infusions, choice accuracy was impaired and the anticipatory touches toward the correct response location were less frequent. A control experiment, in which there were no irrelevant stimuli, showed no effects of ACC inactivation on choice accuracy or anticipatory touches. These results indicate that the rat ACC plays a critical role in reducing distraction from irrelevant stimuli as well as in guiding attention toward the goal locations. (PsycINFO Database Record PMID:26692448

  14. Chemogenetic Inactivation of Dorsal Anterior Cingulate Cortex Neurons Disrupts Attentional Behavior in Mouse.

    Science.gov (United States)

    Koike, Hiroyuki; Demars, Michael P; Short, Jennifer A; Nabel, Elisa M; Akbarian, Schahram; Baxter, Mark G; Morishita, Hirofumi

    2016-03-01

    Attention is disrupted commonly in psychiatric disorders, yet mechanistic insight remains limited. Deficits in this function are associated with dorsal anterior cingulate cortex (dACC) excitotoxic lesions and pharmacological disinhibition; however, a causal relationship has not been established at the cellular level. Moreover, this association has not yet been examined in a genetically tractable species such as mice. Here, we reveal that dACC neurons causally contribute to attention processing by combining a chemogenetic approach that reversibly suppresses neural activity with a translational, touchscreen-based attention task in mice. We virally expressed inhibitory hM4Di DREADD (designer receptor exclusively activated by a designer drug) in dACC neurons, and examined the effects of this inhibitory action with the attention-based five-choice serial reaction time task. DREADD inactivation of the dACC neurons during the task significantly increased omission and correct response latencies, indicating that the neuronal activities of dACC contribute to attention and processing speed. Selective inactivation of excitatory neurons in the dACC not only increased omission, but also decreased accuracy. The effect of inactivating dACC neurons was selective to attention as response control, motivation, and locomotion remain normal. This finding suggests that dACC excitatory neurons play a principal role in modulating attention to task-relevant stimuli. This study establishes a foundation to chemogenetically dissect specific cell-type and circuit mechanisms underlying attentional behaviors in a genetically tractable species. PMID:26224620

  15. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development.

    Science.gov (United States)

    Cachia, A; Borst, G; Tissier, C; Fisher, C; Plaze, M; Gay, O; Rivière, D; Gogtay, N; Giedd, J; Mangin, J-F; Houdé, O; Raznahan, A

    2016-06-01

    Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events - under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC) - an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show - without exception-that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life. PMID:26974743

  16. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  17. Anatomical Abnormalities of the Anterior Cingulate Cortex in Schizophrenia: Bridging the Gap Between Neuroimaging and Neuropathology

    Science.gov (United States)

    Fornito, Alex; Yücel, Murat; Dean, Brian; Wood, Stephen J.; Pantelis, Christos

    2009-01-01

    The anterior cingulate cortex (ACC) is a functionally heterogeneous region involved in diverse cognitive and emotional processes that support goal-directed behaviour. Structural magnetic resonance imaging (MRI) and neuropathological findings over the past two decades have converged to suggest abnormalities in the region may represent a neurobiological basis for many of the clinical manifestations of schizophrenia. However, while each approach offers complimentary information that can provide clues regarding underlying patholophysiological processes, the findings from these 2 fields are seldom integrated. In this article, we review structural neuroimaging and neuropathological studies of the ACC, focusing on the unique information they provide. The available imaging data suggest grey matter reductions in the ACC precede psychosis onset in some categories of high-risk individuals, show sub-regional specificity, and may progress with illness duration. The available post-mortem findings indicate these imaging-related changes are accompanied by reductions in neuronal, synaptic, and dendritic density, as well as increased afferent input, suggesting the grey matter differences observed with MRI arise from alterations in both neuronal and non-neuronal tissue compartments. We discuss the potential mechanisms that might facilitate integration of these findings and consider strategies for future research. PMID:18436528

  18. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  19. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Science.gov (United States)

    Xie, Kun; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder. PMID:23741416

  20. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice.

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu; Zhuo, Min

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  1. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning. PMID:23494292

  2. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying.

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H; Wilhelm, Frank H; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca's homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and may

  3. Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study

    OpenAIRE

    Brody, Arthur L.; Mandelkern, Mark A.; Lee, Grace; Smith, Erlyn; Sadeghi, Mary; Saxena, Sanjaya; Jarvik, Murray E.; London, Edythe D.

    2004-01-01

    In untreated smokers, exposure to cigarette-related cues increases both the intensity of cigarette craving and relative glucose metabolism of the perigenual/ventral anterior cingulate cortex (ACC). Given that treatment with bupropion HCl reduces overall cigarette craving levels in nicotine dependent subjects, we performed a preliminary study of smokers to determine if bupropion HCl treatment attenuates cue-induced cigarette craving and associated brain metabolic activation. Thirty-seven, othe...

  4. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure

    OpenAIRE

    Migliorini, R; Moore, EM; Glass, L.; Infante, MA; Tapert, SF; Jones, KL; Mattson, SN; Riley, EP

    2015-01-01

    © 2015 Elsevier B.V. Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n=. 32) and non-exposed controls (CON, n=. 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging ...

  5. Involvement of the Rostral Anterior Cingulate Cortex in Consolidation of Inhibitory Avoidance Memory: Interaction with the Basolateral Amygdala

    OpenAIRE

    Malin, Emily L.; Ibrahim, Deena Y.; Tu, Jessica W.; McGaugh, James L.

    2006-01-01

    Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigat...

  6. Medial prefrontal cortex-dorsal anterior cingulate cortex connectivity during behavior selection without an objective correct answer.

    Science.gov (United States)

    Nakao, Takashi; Osumi, Takahiro; Ohira, Hideki; Kasuya, Yukinori; Shinoda, Jun; Yamada, Jitsuhiro; Northoff, Georg

    2010-10-01

    Life choices (e.g., occupational choice) often include situations with two or more possible correct answers, thereby putting us in a situation of conflict. Recent reports have described that the evaluation of conflict might be crucially mediated by neural activity in the dorsal anterior cingulate cortex (dACC), although the reduction of conflict might rather be associated with neural activity in the medial prefrontal cortex (MPFC). What remains unclear is whether these regions mutually interact, thereby raising the question of their functional connectivity during conflict situations. Using psychophysiological interaction (PPI) analyses of functional magnetic resonance imaging (fMRI) data, this study shows that the dACC co-varied significantly higher with the MPFC during an occupational choice task with two possible correct answers when compared to the control task: a word-length task with one possible correct answer. These results suggest that the MPFC has a functional relation with dACC, especially in conflict situations where there is no objective correct answer. Taken together, this lends support to the assumption that the MPFC might be crucial in biasing the decision, thereby reducing conflict. PMID:20655361

  7. Neuropeptide S receptor gene variation modulates anterior cingulate cortex Glx levels during CCK-4 induced panic.

    Science.gov (United States)

    Ruland, Tillmann; Domschke, Katharina; Schütte, Valerie; Zavorotnyy, Maxim; Kugel, Harald; Notzon, Swantje; Vennewald, Nadja; Ohrmann, Patricia; Arolt, Volker; Pfleiderer, Bettina; Zwanzger, Peter

    2015-10-01

    An excitatory-inhibitory neurotransmitter dysbalance has been suggested in pathogenesis of panic disorder. The neuropeptide S (NPS) system has been implicated in modulating GABA and glutamate neurotransmission in animal models and to genetically drive altered fear circuit function and an increased risk of panic disorder in humans. Probing a multi-level imaging genetic risk model of panic, in the present magnetic resonance spectroscopy (MRS) study brain glutamate+glutamine (Glx) levels in the bilateral anterior cingulate cortex (ACC) during a pharmacological cholecystokinin tetrapeptide (CCK-4) panic challenge were assessed depending on the functional neuropeptide S receptor gene (NPSR1) rs324981 A/T variant in a final sample of 35 healthy male subjects. The subjective panic response (Panic Symptom Scale; PSS) as well as cortisol and ACTH levels were ascertained throughout the experiment. CCK-4 injection was followed by a strong panic response. A significant time×genotype interaction was detected (p=.008), with significantly lower ACC Glx/Cr levels in T allele carriers as compared to AA homozygotes 5min after injection (p=.003). CCK-4 induced significant HPA axis stimulation, but no effect of genotype was discerned. The present pilot data suggests NPSR1 gene variation to modulate Glx levels in the ACC during acute states of stress and anxiety, with blunted, i.e. possibly maladaptive ACC glutamatergic reactivity in T risk allele carriers. Our results underline the notion of a genetically driven rapid and dynamic response mechanism in the neural regulation of human anxiety and further strengthen the emerging role of the NPS system in anxiety. PMID:26235955

  8. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [3H]MK801, [3H]AMPA and [3H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [3H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [3H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [3H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [3H]AMPA and [3H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  9. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction

    Science.gov (United States)

    Goldstein, Rita Z.; Alia-Klein, Nelly; Tomasi, Dardo; Carrillo, Jean Honorio; Maloney, Thomas; Woicik, Patricia A.; Wang, Ruiliang; Telang, Frank; Volkow, Nora D.

    2009-01-01

    Anterior cingulate cortex (ACC) hypoactivations during cognitive processing characterize drug addicted individuals as compared with healthy controls. However, impaired behavioral performance or task disengagement may be crucial factors. We hypothesized that ACC hypoactivations would be documented in groups matched for performance on an emotionally salient task. Seventeen individuals with current cocaine use disorders (CUD) and 17 demographically matched healthy controls underwent functional magnetic resonance imaging during performance of a rewarded drug cue-reactivity task previously shown to engage the ACC. Despite lack of group differences in objective or subjective task-related performance, CUD showed more ACC hypoactivations throughout this emotionally salient task. Nevertheless, intensity of emotional salience contributed to results: (i) CUD with the largest rostroventral ACC [Brodmann Area (BA) 10, 11, implicated in default brain function] hypoactivations to the most salient task condition (drug words during the highest available monetary reward), had the least task-induced cocaine craving; (ii) CUD with the largest caudal-dorsal ACC (BA 32) hypoactivations especially to the least salient task condition (neutral words with no reward) had the most frequent current cocaine use; and (iii) responses to the most salient task condition in both these ACC major subdivisions were positively intercorrelated in the controls only. In conclusion, ACC hypoactivations in drug users cannot be attributed to task difficulty or disengagement. Nevertheless, emotional salience modulates ACC responses in proportion to drug use severity. Interventions to strengthen ACC reactivity or interconnectivity may be beneficial in enhancing top-down monitoring and emotion regulation as a strategy to reduce impulsive and compulsive behavior in addiction. PMID:19478067

  10. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  11. Anterior cingulate cortex mediates the relationship between O3PUFAs and executive functions in APOE e4 carriers

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2015-05-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between biomarkers of diet and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between omega-3 polyunsaturated fatty acids (O3PUFAs and executive functions in at-risk (APOE e4 carriers, cognitively intact older adults. We hypothesized that higher levels of O3PUFAs are associated with better performance in a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter volume of a specific region thought to be important for cognitive flexibility, the anterior cingulate cortex. Methods: We examined 40 cognitively intact adults between the ages of 65 and 75 with the APOE e4 polymorphism to investigate the relationship between biomarkers of O3PUFAs, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter volume within regions of the prefrontal cortex. Results: A mediation analysis revealed that gray matter volume within the left rostral anterior cingulate cortex partially mediates the relationship between O3PUFA biomarkers and cognitive flexibility. Conclusion: These results suggest that the anterior cingulate cortex acts as a mediator of the relationship between O3PUFAs and cognitive flexibility in cognitively intact adults thought to be at risk for cognitive decline. Through their link to executive functions and neuronal measures of prefrontal cortex volume, O3PUFAs show potential as a nutritional therapy to prevent dysfunction in the aging brain.

  12. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions. PMID:25529106

  13. Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder.

    Science.gov (United States)

    Feng, Zhan; Xu, Shunliang; Huang, Manli; Shi, Yushu; Xiong, Bing; Yang, Hong

    2016-01-01

    In recent years, major depressive disorder (MDD) has been demonstrated to be associated with abnormalities in neural networks, particularly the prefrontal-limbic network (PLN). However, there are few current studies that have examined information flow in the PLN. In this study, Granger causality analysis (GCA), based on signed regression coefficient, was used to explore changes in causal connectivity in resting-state PLNs of MDD patients. A total of 23 first-episode medication-naïve MDD patients and 20 normal control participants were subjected to resting-state functional magnetic resonance imaging (RS-fMRI) scans. Increased causal effects of the right insular cortex, right putamen and right caudate on the rostral anterior cingulate cortex (rACC) and reduced causal effects of bilateral dorsolateral prefrontal cortex (DLPFC) and left orbitofrontal cortex (OFC) on the rACC were found in MDD patients compared to normal controls. The extensive reduction in the causal effect of the prefrontal cortex (PFC) demonstrates impaired top-down cognitive control in MDD patients. Changes in the causal relationship between the right insula and rACC suggest problems in coordination of the default mode network by the right anterior insular cortex (rAI). These findings provide valuable insight into MDD-related neural network disorders reported in previous RS-fMRI studies and may potentially guide clinical treatment of MDD in the future. PMID:26234517

  14. Memory consolidation of fear conditioning: bi-stable amygdala connectivity with dorsal anterior cingulate and medial prefrontal cortex.

    Science.gov (United States)

    Feng, Pan; Feng, Tingyong; Chen, Zhencai; Lei, Xu

    2014-11-01

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of memory consolidation of fear conditioning is not well understood. To address this question, we measured brain activity and the changes in functional connectivity following fear acquisition using resting-state functional magnetic resonance imaging. The amygdala-dorsal anterior cingulate cortex (dACC) and hippocampus-insula functional connectivity were enhanced, whereas the amygdala-medial prefrontal cortex (mPFC) functional coupling was decreased during fear memory consolidation. Furthermore, the amygdala-mPFC functional connectivity was negatively correlated with the subjective fear ratings. These findings suggest the amygdala functional connectivity with dACC and mPFC may play an important role in memory consolidation of fear conditioning. The change of amygdala-mPFC functional connectivity could predict the subjective fear. Accordingly, this study provides a new perspective for understanding fear memory consolidation. PMID:24194579

  15. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal

    Science.gov (United States)

    Ebitz, R. Becket; Platt, Michael L.

    2014-01-01

    Summary Whether driving a car, shopping for food, or paying attention in a classroom of boisterous teenagers, it’s often hard to maintain focus on goals in the face of distraction. Brain imaging studies in humans implicate the dorsal anterior cingulate cortex (dACC) in regulating the conflict between goals and distractors. Here we show for the first time that single dACC neurons signal conflict between task goals and distractors in the rhesus macaque, particularly for biologically-relevant social stimuli. For some neurons, task conflict signals predicted subsequent changes in pupil size—a peripheral index of arousal linked to noradrenergic tone—associated with reduced distractor interference. dACC neurons also responded to errors and these signals predicted adjustments in pupil size. These findings provide the first neurophysiological endorsement of the hypothesis that dACC regulates conflict, in part, via modulation of pupil-linked processes such as arousal. PMID:25654259

  16. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  17. Anatomical and functional overlap within the insula and anterior cingulate cortex during interoception and phobic symptom provocation.

    Science.gov (United States)

    Caseras, Xavier; Murphy, Kevin; Mataix-Cols, David; López-Solà, Marina; Soriano-Mas, Carles; Ortriz, Hector; Pujol, Jesus; Torrubia, Rafael

    2013-05-01

    The anterior insula and the dorsal anterior cingulate cortex (ACC) are regarded as key brain structures associated with the integration of perceived phobic characteristics of external stimuli and the perception of ones own body responses that leads to emotional feelings. To test to what extent the activity in these two brain structures anatomically and functionally overlap during phobic reactions and interoception, we submitted the same group of phobic participants (n = 29; either spider or blood-injection-injury (BII) phobics) and controls (n = 17) to both type of experimental paradigms. Results showed that there was a clear anatomical overlap in the Blood Oxygen Level-Dependent (BOLD) responses within the anterior insula and ACC elicited during phobic symptom provocation and during interoceptive awareness. The activity within these two brain structures also showed to be correlated in the spider phobia group, but not in the BII phobic participants. Our results seem to support the idea that the activity within these two brain areas would be associated with the integration of perceived stimuli characteristics and bodily responses that lead to what we label as "fear." However, that seems not to be the case in BII phobia, where more research is needed in order to clarify to what extent that could be associated with the idiosyncratic physiological response that these patients present in front of phobic stimuli (i.e., drop in heart rate and blood pressure). PMID:22162203

  18. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    Science.gov (United States)

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  19. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    Science.gov (United States)

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  20. The von Economo neurons in the frontoinsular and anterior cingulate cortex.

    Science.gov (United States)

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Manaye, Kebreten F; Semendeferi, Katerina; Erwin, Joseph M; Park, Soyoung; Goubert, Virginie; Hof, Patrick R

    2011-04-01

    The von Economo neurons (VENs) are large bipolar neurons located in the frontoinsular cortex (FI) and limbic anterior (LA) area in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week postconception, with numbers increasing during the first 8 months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of frontotemporal dementia (FTD) implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  1. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  2. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory.

    Science.gov (United States)

    Woodcock, Eric A; Wadehra, Sunali; Diwadkar, Vaibhav A

    2016-01-01

    Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness' characterization as a disconnection syndrome. PMID:27092063

  3. Is dorsal anterior cingulate cortex activation in response to social exclusion due to expectancy violation?: An fMRI study

    Directory of Open Access Journals (Sweden)

    Taishi Kawamoto

    2012-07-01

    Full Text Available People are typically quite sensitive about being accepted or excluded by others. Previous studies have suggested that the dorsal anterior cingulate cortex (dACC is a key brain region involved in the detection of social exclusion. However, this region has also been shown to be sensitive to non-social expectancy violations. We often expect other people to follow an unwritten rule in which they include us as they would expect to be included, such that social exclusion likely involves some degree of expectancy violation. The present event-related functional magnetic resonance imaging (fMRI study sought to separate the effects of expectancy violation from those of social exclusion, such that we employed an “overinclusion” condition in which a player was unexpectedly overincluded in the game by the other players. With this modification, we found that the dACC and right ventrolateral prefrontal cortex (rVLPFC were activated by exclusion, relative to overinclusion. In addition, we identified a negative correlation between exclusion-evoked brain activity and self-rated social pain in the rVLPFC, but not in the dACC. These findings suggest that the rVLPFC is critical for regulating social pain, whereas the dACC plays an important role in the detection of exclusion. The neurobiological basis of social exclusion is different from that of mere expectancy violation.

  4. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset

    OpenAIRE

    Jackson, Stacey A. W.; Pears, Andrew; Horst, Nicole K.; Robbins, Trevor W.; Roberts, Angela C.

    2016-01-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the “habit” system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existin...

  5. Modulation of Beta-Band Activity in the Subgenual Anterior Cingulate Cortex during Emotional Empathy in Treatment-Resistant Depression.

    Science.gov (United States)

    Merkl, Angela; Neumann, Wolf-Julian; Huebl, Julius; Aust, Sabine; Horn, Andreas; Krauss, Joachim K; Dziobek, Isabel; Kuhn, Jens; Schneider, Gerd-Helge; Bajbouj, Malek; Kühn, Andrea A

    2016-06-01

    Deep brain stimulation (DBS) is a promising approach in treatment-resistant depression (TRD). TRD is associated with problems in interpersonal relationships, which might be linked to impaired empathy. Here, we investigate the influence of DBS in the subgenual anterior cingulate cortex (sgACC) on empathy in patients with TRD and explore the pattern of oscillatory sgACC activity during performance of the multifaceted empathy test. We recorded local field potential activity directly from sgACC via DBS electrodes in patients. Based on previous behavioral findings, we expected disrupted empathy networks. Patients showed increased empathic involvement ratings toward negative stimuli as compared with healthy subjects that were significantly reduced after 6 months of DBS. Stimulus-related oscillatory activity pattern revealed a broad desynchronization in the beta (14-35 Hz) band that was significantly larger during patients' reported emotional empathy for negative stimuli than when patients reported to have no empathy. Beta desynchronization for empathic involvement correlated with self-reported severity of depression. Our results indicate a "negativity bias" in patients that can be reduced by DBS. Moreover, direct recordings show activation of the sgACC area during emotional processing and propose that changes in beta-band oscillatory activity in the sgACC might index empathic involvement of negative emotion in TRD. PMID:25994959

  6. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    曹晓华; 卢湘岳; 周绍慈

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropos-tero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on rec

  7. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropostero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on receptive fields of ON-OFF neurons showed that the excitation of the ACC could change an ON-response on the verge of a receptive field into an ON-OFF response. The above results suggest that the ACC modulation sharpens the response of a VB neuron to a moving stimulus within its receptive field, indicating that the limbic system can modulate tactile ascending sensory information.

  8. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    BarakFranciscoCaracheo

    2013-05-01

    Foraging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  9. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHENG XinLing; LIU Fang; WU XingWen; LI BaoMing

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolaterel nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at '0' or 6 h post-treining. Saline was administered as control. Memory retention was tested 48 h poet-training. In-tra-BLA or intra-ACC infusion of MPD '0' h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  10. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    Science.gov (United States)

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. PMID:27163752

  11. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  12. Cortical thinning of the right anterior cingulate cortex in spider phobia: a magnetic resonance imaging and spectroscopy study.

    Science.gov (United States)

    Linares, I M P; Jackowski, A P; Trzesniak, C M F; Arrais, K C; Chagas, M H N; Sato, J R; Santos, A C; Hallak, J E C; Zuardi, A W; Nardi, A E; Coimbra, N C; Crippa, J A S

    2014-08-12

    There a lack of consistent neuroimaging data on specific phobia (SP) and a need to assess volumetric and metabolic differences in structures implicated in this condition. The aim of this study is investigate possible metabolic (via (1)H MRS) and cortical thickness abnormalities in spider-phobic patients compared to healthy volunteers. Participants were recruited via public advertisement and underwent clinical evaluations and MRI scans. The study started in 2010 and the investigators involved were not blind in respect to patient groupings. The study was conducted at the Ribeirão Preto Medical School University Hospital of the University of São Paulo, Brazil. Patients with spider phobia (n=19) were matched to 17 healthy volunteers with respect to age, education and socio-economic status. The spider SP group fulfilled the diagnostic criteria for spider phobia according to the Structured Clinical Interview for DSM-IV. None of the participants had a history of neurological, psychiatric or other relevant organic diseases, use of prescribed psychotropic medication or substance abuse. All imaging and spectroscopy data were collected with a 3 T MRI scanner equipped with 25 mT gradient coils in 30-minute scans. The Freesurfer image analysis package and LC Model software were used to analyze data. The hypothesis being tested was formulated before the data collection (neural correlates of SP would include the amygdala, insula, anterior cingulate gyrus and others). The results indicated the absence of metabolic alterations, but thinning of the right anterior cingulate cortex (ACC) in the SP group when compared to the healthy control group (mean cortical thickness±SD: SP=2.11±0.45 mm; HC=2.16±0.42 mm; t (34)=3.19, p=0.001 [-35.45, 71.00, -23.82]). In spectroscopy, the ratios between N-acetylaspartate and creatine and choline levels were measured. No significant effect or correlation was found between MRS metabolites and scores in the Spider Phobia Questionnaire and Beck

  13. Women's Preference for a Male Acquaintance Enhances Social Reward Processing of Material Goods in the Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Jun Nakagawa

    Full Text Available Men, like the male of many animal species, use gifts to build satisfactory relationships with a desired woman. From the woman's perspective, all gifts are not always equally rewarding; the reward value of a gift depends on two factors: (1 the giver and (2 the type of the gift (the gift's social meaning. In this study, we investigated how these two factors interactively determine the reward value of a gift. Specifically, we examined how the neural processing for understanding a gift's social meaning is modulated by preferences for the giver. We performed a functional magnetic resonance imaging (fMRI study in which a female participant was asked to judge a gift from a male she was acquainted with in real life. We examined the interactive effects between (1 the female participant's attitude toward the male acquaintance (liked vs. uninteresting and (2 the type of the gift (romantic [e.g., bouquet, earrings, and perfumes] vs. non-romantic [e.g., pencils, memo pad, and moneybox]. We found that preference for an acquaintance selectively modulated activity in the anterior cingulate cortex (ACC in response to romantic gifts, compared to non-romantic gifts. In contrast, if the woman was indifferent toward an acquaintance, no activity modulation was observed in this area for the same gifts. In addition, the ACC showed functional connectivity with the supplementary motor area/dorsal ACC (SMA/dACC, an area within the dorsal mediofrontal cortex, suggesting that it integrates action monitoring and emotional and cognitive processing in decision-making. These results suggest that attitude toward an opposite sex member has a modulatory role in recognizing the social meaning of material goods--preference for the member is a powerful modulator of social reward processing.

  14. Spatial memory and -fos expression in supramammillary nucleus, anterior cingulated gyrus and entorhinal cortex

    OpenAIRE

    Santín Núñez, Luis Javier; Aguirre, José A.; Rubio Fernández, Sandra; Begega Losa, María Azucena; Miranda Cuevas, Rubén; Arias Pérez, Jorge Luis

    2001-01-01

    Este trabajo se aproxima al estudio de los substratos cerebrales de la memoria espacial en ratas, empleando la expresión celular de la proteína c-Fos. Para ello, se analizó la expresión de la proteína c-Fos después de la ejecución de una tarea de memoria de referencia y otra de trabajo espacial. De este modo, se cuantificó el número de núcleos neuronales c-Fos positivos en varias regiones cerebrales: corteza entorrinal, giro cingulado anterior y núcleo supramamilar. Los resultados mostraron q...

  15. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Science.gov (United States)

    Cordes, Julia S.; Mathiak, Krystyna A.; Dyck, Miriam; Alawi, Eliza M.; Gaber, Tilman J.; Zepf, Florian D.; Klasen, Martin; Zvyagintsev, Mikhail; Gur, Ruben C.; Mathiak, Klaus

    2015-01-01

    Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the brain regions known to be dysfunctional in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over 3 days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. In a stepwise regression analysis, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, patients with schizophrenia can learn to regulate localized brain activity. However, cognitive strategies and neural network location differ from healthy controls. These data emphasize that for therapeutic interventions in patients with schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social NF based on fMRI may be one method to accomplish precise learning targets. PMID:26161073

  16. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  17. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem. PMID:20144945

  18. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    David R Euston

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., “courage”. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to

  19. Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression

    Science.gov (United States)

    Dedovic, Katarina; Slavich, George M.; Muscatell, Keely A.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    The dorsal anterior cingulate cortex (dACC) is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD), as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed) and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive) feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels). Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the role of the d

  20. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  1. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain

    Directory of Open Access Journals (Sweden)

    Mariela eRance

    2014-10-01

    Full Text Available The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC and the left posterior insula (pInsL on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1 or the pInsL (state 2 being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: (rACC – pInsL increase (state 1, rACC – pInsL decrease (state 2, pInsL – rACC increase (state 2, pInsL – rACC decrease (state 1. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e. learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of

  2. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Science.gov (United States)

    Geisseler, Olivia; Pflugshaupt, Tobias; Bezzola, Ladina; Reuter, Katja; Weller, David; Schuknecht, Bernhard; Brugger, Peter; Linnebank, Michael

    2015-01-01

    Cognitive impairment is as an important feature of Multiple Sclerosis (MS), and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology. PMID:26759784

  3. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  4. The val158met polymorphism of human catechol-O-methyltransferase (COMT affects anterior cingulate cortex activation in response to painful laser stimulation

    Directory of Open Access Journals (Sweden)

    Musso Francesco

    2010-05-01

    Full Text Available Abstract Background Pain is a complex experience with sensory, emotional and cognitive aspects. Genetic and environmental factors contribute to pain-related phenotypes such as chronic pain states. Genetic variations in the gene coding for catechol-O-methyltransferase (COMT have been suggested to affect clinical and experimental pain-related phenotypes including regional μ-opioid system responses to painful stimulation as measured by ligand-PET (positron emission tomography. The functional val158met single nucleotide polymorphism has been most widely studied. However, apart from its impact on pain-induced opioid release the effect of this genetic variation on cerebral pain processing has not been studied with activation measures such as functional magnetic resonance imaging (fMRI, PET or electroencephalography. In the present fMRI study we therefore sought to investigate the impact of the COMT val158met polymorphism on the blood oxygen level-dependent (BOLD response to painful laser stimulation. Results 57 subjects were studied. We found that subjects homozygous for the met158 allele exhibit a higher BOLD response in the anterior cingulate cortex (ACC, foremost in the mid-cingulate cortex, than carriers of the val158 allele. Conclusion This result is in line with previous studies that reported higher pain sensitivity in homozygous met carriers. It adds to the current literature in suggesting that this behavioral phenotype may be mediated by, or is at least associated with, increased ACC activity. More generally, apart from one report that focused on pain-induced opioid release, this is the first functional neuroimaging study showing an effect of the COMT val158met polymorphism on cerebral pain processing.

  5. Resting-state functional connectivity between the dorsal anterior cingulate cortex and thalamus is associated with risky decision-making in nicotine addicts.

    Science.gov (United States)

    Wei, Zhengde; Yang, Nannan; Liu, Ying; Yang, Lizhuang; Wang, Ying; Han, Long; Zha, Rujing; Huang, Ruiqi; Zhang, Peng; Zhou, Yifeng; Zhang, Xiaochu

    2016-01-01

    Nicotine addiction is associated with risky behaviors and abnormalities in local brain areas related to risky decision-making such as the dorsal anterior cingulate cortex (dACC), anterior insula (AI), and thalamus. Although these brain abnormalities are anatomically separated, they may in fact belong to one neural network. However, it is unclear whether circuit-level abnormalities lead to risky decision-making in smokers. In the current study, we used task-based functional magnetic resonance imaging (fMRI) and examined resting-state functional connectivity (RSFC) to study how connectivity between the dACC, insula, and thalamus influence risky decision-making in nicotine addicts. We found that an increase in risky decision-making was associated with stronger nicotine dependence and stronger RSFC of the dACC-rAI (right AI), the dACC-thalamus, the dACC-lAI (left AI), and the rAI-lAI, but that risky decision-making was not associated with risk level-related activation. Furthermore, the severity of nicotine dependence positively correlated with RSFC of the dACC-thalamus but was not associated with risk level-related activation. Importantly, the dACC-thalamus coupling fully mediated the effect of nicotine-dependent severity on risky decision-making. These results suggest that circuit-level connectivity may be a critical neural link between risky decision-making and severity of nicotine dependence in smokers. PMID:26879047

  6. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  7. Neurotransmitter changes during interference task in anterior cingulate cortex: evidence from fMRI-guided functional MRS at 3 T.

    Science.gov (United States)

    Kühn, Simone; Schubert, Florian; Mekle, Ralf; Wenger, Elisabeth; Ittermann, Bernd; Lindenberger, Ulman; Gallinat, Jürgen

    2016-06-01

    Neural activity as indirectly observed in blood oxygenation level-dependent (BOLD) response is thought to reflect changes in neurotransmitter flux. In this study, we used fMRI-guided functional magnetic resonance spectroscopy (MRS) to measure metabolite/BOLD associations during a cognitive task at 3 T. GABA and glutamate concentration in anterior cingulate cortex (ACC) were determined by means of MRS using the SPECIAL pulse sequence before, during and after the performance of a manual Stroop task. MRS voxel positions were centred around individuals' BOLD activity during Stroop performance. Levels of GABA and glutamate showed inverted U-shape patterns across measurement time points (before, during, and after task), glutamine increased linearly and total creatine did not change. The GABA increase during task performance was associated with ACC BOLD signal changes in both congruent and incongruent Stroop conditions. Using an fMRI-guided MRS approach, an association between induced inhibitory neurotransmitter increase and BOLD changes was observed. The proposed procedure might allow the in vivo investigation of normal and dysfunctional associations between neurotransmitters and BOLD signal crucial for cerebral functioning. PMID:25976598

  8. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa.

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Quattrocchi, Carlo Cosimo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  9. Calcium/calmodulin-dependent kinase IV contributes to translation-dependent early synaptic potentiation in the anterior cingulate cortex of adult mice

    Directory of Open Access Journals (Sweden)

    Toyoda Hiroki

    2010-09-01

    Full Text Available Abstract Calcium/calmodulin-dependent kinase IV (CaMKIV phosphorylates the major transcription factor, cyclic AMP-responsive element binding protein (CREB, which plays key roles in synaptic plasticity and memory consolidation. Our previous study showed that long-term potentiation (LTP in the anterior cingulate cortex (ACC was significantly enhanced in transgenic mice overexpressing CaMKIV. Considering that the CaMKIV-CREB pathway plays a central role in the protein synthesis-dependent LTP, it is possible that upregulation of CaMKIV contributes to enhancement of LTP by promoting protein synthesis. To test this possibility, we examined the effects of transcription and translation inhibitors on synaptic potentiation induced by pairing of synaptic activity with postsynaptic depolarization (paired training in ACC pyramidal neurons of wild-type and CaMKIV transgenic mice. We found that synaptic potentiation induced by paired training was partially inhibited by transcription or translation inhibitors both in wild-type and CaMKIV transgenic mice; the extent of inhibition was markedly larger in the CaMKIV transgenic mice than in the wild-type mice. Biochemical and immunohistochemical studies revealed that CaMKIV was distributed in the membrane, cytosol and nucleus of ACC neurons. Our results reveal in the first time a transcription- and translation-dependent component of early synaptic LTP in adult ACC synapses, and demonstrate that CaMKIV enhances early synaptic potentiation by activating new protein synthesis.

  10. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  11. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex.

    Science.gov (United States)

    Restivo, Leonardo; Vetere, Gisella; Bontempi, Bruno; Ammassari-Teule, Martine

    2009-06-24

    Although hippocampal-cortical interactions are crucial for the formation of enduring declarative memories, synaptic events that govern long-term memory storage remain mostly unclear. We present evidence that neuronal structural changes, i.e., dendritic spine growth, develop sequentially in the hippocampus and anterior cingulate cortex (aCC) during the formation of recent and remote contextual fear memory. We found that mice placed in a conditioning chamber for one 7 min conditioning session and exposed to five footshocks (duration, 2 s; intensity, 0.7 mA; interstimulus interval, 60 s) delivered through the grid floor exhibited robust fear response when returned to the experimental context 24 h or 36 d after the conditioning. We then observed that their fear response at the recent, but not the remote, time point was associated with an increase in spine density on hippocampal neurons, whereas an inverse temporal pattern of spine density changes occurred on aCC neurons. At each time point, hippocampal or aCC structural alterations were achieved even in the absence of recent or remote memory tests, thus suggesting that they were not driven by retrieval processes. Furthermore, ibotenic lesions of the hippocampus impaired remote memory and prevented dendritic spine growth on aCC neurons when they were performed immediately after the conditioning, whereas they were ineffective when performed 24 d later. These findings reveal that gradual structural changes modifying connectivity in hippocampal-cortical networks underlie the formation and expression of remote memory, and that the hippocampus plays a crucial but time-limited role in driving structural plasticity in the cortex. PMID:19553460

  12. A network-level analysis of cognitive flexibility reveals a differential influence of the anterior cingulate cortex in bilinguals versus monolinguals.

    Science.gov (United States)

    Becker, Theresa M; Prat, Chantel S; Stocco, Andrea

    2016-05-01

    Mounting evidence suggests that bilingual development may change the brain in a way that gives rise to differences in non-linguistic cognitive functioning; however, only a limited number of studies have investigated the mechanism by which bilingualism shapes the brain. The current study used a network-level analysis to investigate differences in the mechanisms by which bilinguals and monolinguals flexibly adapt their neural networks in the face of novel task demands. Three competing hypotheses concerning differences in network-level adaptation were examined using Dynamic Causal Modeling of data from 15 bilinguals and 14 monolinguals who performed a Rapid Instructed Task Learning paradigm. The results demonstrated that the best-fitting model for the data from both groups specified that novel task execution is accomplished through a modulation of the influence of the anterior cingulate cortex (ACC) on the dorsolateral prefrontal cortex (DLPFC) and on the striatum. Further examination of the best-fitting model revealed that ACC activity increased DLPFC and striatal activity in bilinguals but decreased activity in these regions in monolinguals. Interestingly, an increased positive connection between the ACC and striatum was associated with decreased accuracy across groups. Taken together, the results suggest that regardless of language experience, the ACC plays a critical role in cognitive flexibility, but the exact influence of the ACC on other primary control regions seems to be dependent on language experience. When paired with the behavioral results, these results suggest that bilinguals and monolinguals may employ different neurocognitive mechanisms for conflict monitoring to flexibly adapt to novel situations. PMID:26796713

  13. The anterior insular and anterior cingulate cortices in emotional processing for self-face recognition

    OpenAIRE

    Morita, Tomoyo; Tanabe, Hiroki C.; Akihiro T Sasaki; Shimada, Koji; Kakigi, Ryusuke; Sadato, Norihiro

    2013-01-01

    Individuals can experience embarrassment when exposed to self-feedback images, depending on the extent of the divergence from the internal representation of the standard self. Our previous work implicated the anterior insular cortex (AI) and the anterior cingulate cortex (ACC) in the processing of embarrassment; however, their exact functional contributions have remained uncertain. Here, we explored the effects of being observed by others while viewing self-face images on the extent of embarr...

  14. Hippocampal and Left Subcallosal Anterior Cingulate Atrophy in Psychotic Depression

    OpenAIRE

    Bijanki, Kelly Rowe; Hodis, Brendan; Brumm, Michael C.; Harlynn, Emily L.; McCormick, Laurie M.

    2014-01-01

    Background Psychotic depression is arguably the most diagnostically stable subtype of major depressive disorder, and an attractive target of study in a famously heterogeneous mental illness. Previous imaging studies have identified abnormal volumes of the hippocampus, amygdala, and subcallosal region of the anterior cingulate cortex (scACC) in psychotic depression, though studies have not yet examined the role of family history of depression in these relationships. Methods 20 participants wit...

  15. Outcome Uncertainty and Brain Activity Aberrance in the Insula and Anterior Cingulate Cortex Are Associated with Dysfunctional Impulsivity in Borderline Personality Disorder.

    Science.gov (United States)

    Mortensen, Jørgen Assar; Evensmoen, Hallvard Røe; Klensmeden, Gunilla; Håberg, Asta Kristine

    2016-01-01

    Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD. PMID:27199724

  16. Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels.

    Science.gov (United States)

    Gao, Shi-Hao; Wen, Hui-Zhong; Shen, Lin-Lin; Zhao, Yan-Dong; Ruan, Huai-Zhen

    2016-06-01

    Neuronal hyperexcitability in the anterior cingulate cortex (ACC) is considered as one of the most important pathological changes responsible for the chronification of neuropathic pain. However, the underlying mechanisms remain elusive. In the present study, we investigated the possible mechanisms using a rat model of chronic constriction injury (CCI) to the sciatic nerve. We found a substantial decrease in hyperpolarization-activated/cyclic nucleotide-gated (HCN) currents in layer 5 pyramidal neurons (L5 PNs) in ACC slices, which dramatically increased the excitability of these neurons. This effect could be mimicked in sham slices by activating group 1 metabotropic glutamate receptors, and be blocked in CCI slices by inhibiting metabotropic glutamate receptor subtype 1 (mGluR1). Next, the inhibition of HCN currents was reversed by a protein kinase C (PKC) inhibitor, followed by a reduced neuronal hyperexcitability. Furthermore, HCN channel subtype 1 (HCN1) level was significantly reduced after CCI, whereas mGluR1 level increased. These changes were mainly observed in L5 of the ACC, where HCN1 and mGluR1 were highly colocalized. For behavioral tests, intra-ACC microinjection of mGluR1-shRNA suppressed the CCI-induced behavioral hypersensitivity, particularly thermal hyperalgesia, but not aversive behavior, and this effect was attenuated by the pre-blockade of HCN channels. Taken together, the neuronal hyperexcitability of ACC L5 PNs likely results from an upregulation of mGluR1 and a downstream pathway involving PKC activation and a downregulation of HCN1 in the early phase of neuropathic pain. These alterations may at least in part contribute to the development of behavioral hypersensitivity in CCI rats. PMID:26829470

  17. Activation of dopamine D4 receptors within the anterior cingulate cortex enhances the erroneous expectation of reward on a rat slot machine task.

    Science.gov (United States)

    Cocker, P J; Hosking, J G; Murch, W S; Clark, L; Winstanley, C A

    2016-06-01

    Using a rodent slot machine task (rSMT), we have previously shown that rats, like humans, are susceptible to the reinforcing effects of winning signals presented within a compound stimulus array, even when the pattern generated predicts a negative rather than a positive outcome such as during a "near-miss". The dopamine D4 receptor critically mediates the erroneous reward expectancy generated on such trials. D4 receptors are particularly enriched within frontal and limbic areas activated during slot machine play, such as the anterior cingulate cortex (ACC). We therefore selectively inactivated the ACC to confirm involvement of this region in rSMT performance, and subsequently examined the specific contribution of local D4 receptors. ACC inactivations generally impaired animals' ability to optimally differentiate winning from losing outcomes. Local administration of the D4 agonist PD168077 had a qualitatively similar effect, but increased reward expectancy was only evident on archetypal "near-miss" trials i.e. when the first two of three stimuli in the array were concordant with a rewarding outcome, and only the last stimulus critically signalled a non-win. These data indicate that the ACC is critically involved in parsing the appropriate response when competing stimulus-outcome associations are activated, and that signalling via D4 receptors may play a particularly important role in gating the temporal and spatial summation of salient events. Such findings provide novel insights into the mechanism underlying the erroneous expectations of reward generated when playing slot machines, and suggest a mechanism by which D4 receptor antagonists may be effective in treating gambling disorder. PMID:26775821

  18. Outcome Uncertainty and Brain Activity Aberrance in the Insula and Anterior Cingulate Cortex Are Associated with Dysfunctional Impulsivity in Borderline Personality Disorder

    Science.gov (United States)

    Mortensen, Jørgen Assar; Evensmoen, Hallvard Røe; Klensmeden, Gunilla; Håberg, Asta Kristine

    2016-01-01

    Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD. PMID:27199724

  19. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  20. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    Science.gov (United States)

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  1. Systematic Regional Variations of GABA, Glutamine, and Glutamate Concentrations Follow Receptor Fingerprints of Human Cingulate Cortex

    NARCIS (Netherlands)

    Dou, Weiqiang; Palomero-Gallagher, Nicola; van Tol, Marie-Jose; Kaufmann, Joern; Zhong, Kai; Bernstein, Hans-Gert; Heinze, Hans-Jochen; Speck, Oliver; Walter, Martin

    2013-01-01

    Magnetic resonance spectroscopy (MRS) of glutamatergic or GABAergic measures in anterior cingulate cortex (ACC) was found altered in psychiatric disorders and predictive of interindividual variations of functional responses in healthy populations. Several ACC subregions have been parcellated into re

  2. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  3. Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without past history of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katarina eDedovic

    2016-03-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD, as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels. Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the

  4. Epileptiform synchronization in the cingulate cortex

    Science.gov (United States)

    Panuccio, Gabriella; Curia, Giulia; Colosimo, Alfredo; Cruccu, Giorgio; Avoli, Massimo

    2016-01-01

    Summary Purpose The anterior cingulate cortex (ACC)— which plays a role in pain, emotions and behavior— can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region. Methods We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation. Results Bath-application of the convulsant 4- aminopyridine (4AP, 50 μM) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N-methyl-D-aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application. Conclusions Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC. PMID:19178556

  5. No volumetric differences in the anterior cingulate of psychopathic individuals

    OpenAIRE

    Glenn, Andrea L.; Yang, Yaling; Raine, Adrian; Colletti, Patrick

    2010-01-01

    Functional imaging studies of psychopathy have demonstrated reduced activity in the anterior cingulate, yet it is unclear whether this region is structurally impaired. In this study, we used structural MRI to examine whether volumetric differences exist in the anterior cingulate between psychopathic (n=24) and control (n=24) male participants. We found no group differences in the volume of the anterior cingulate or its dorsal and ventral subregions. Our findings call into question whether the...

  6. The Role of the Dorsal Anterior Cingulate in Evaluating Behavior for Achieving Gains and Avoiding Losses

    Science.gov (United States)

    Magno, Elena; Simoes-Franklin, Cristina; Robertson, Ian H.; Garavan, Hugh

    2009-01-01

    Effective goal-directed behavior relies on a network of regions including anterior cingulate cortex and ventral striatum to learn from negative outcomes in order to improve performance. We employed fMRI to determine if this frontal-striatal system is also involved in instances of behavior that do not presume negative circumstances. Participants…

  7. Reduced Activation in Lateral Prefrontal Cortex and Anterior Cingulate during Attention and Cognitive Control Functions in Medication-Naive Adolescents with Depression Compared to Controls

    Science.gov (United States)

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M.; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-01-01

    Background: There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of…

  8. Subgenual anterior cingulate responses to peer rejection: A marker of adolescents’ risk for depression

    OpenAIRE

    Masten, Carrie L.; Eisenberger, Naomi I.; Borofsky, Larissa A.; McNealy, Kristin; Pfeifer, Jennifer H.; DAPRETTO, MIRELLA

    2011-01-01

    Extensive developmental research has linked peer rejection during adolescence with a host of psychopathological outcomes, including depression. Moreover, recent neuroimaging research has suggested that increased activity in the subgenual region of the anterior cingulate cortex (subACC), which has been consistently linked with depression, is related to heightened sensitivity to peer rejection among adolescents. The goal of the current study was to directly test the hypothesis that adolescents’...

  9. Short-term meditation induces white matter changes in the anterior cingulate

    OpenAIRE

    Tang, Yi-Yuan; Lu, Qilin; Geng, Xiujuan; Stein, Elliot A.; Yang, Yihong; Posner, Michael I.

    2010-01-01

    The anterior cingulate cortex (ACC) is part of a network implicated in the development of self-regulation and whose connectivity changes dramatically in development. In previous studies we showed that 3 h of mental training, based on traditional Chinese medicine (integrative body–mind training, IBMT), increases ACC activity and improves self-regulation. However, it is not known whether changes in white matter connectivity can result from small amounts of mental training. We here report that 1...

  10. MRI study of the structure and functional connectivity of anterior cingulate cortex in heroin addicts%海洛因成瘾者扣带前回结构与功能连接的MRI研究

    Institute of Scientific and Technical Information of China (English)

    伊涛; 傅先明; 钱若兵; 季学兵; 魏祥品; 林彬; 胡文富; 牛朝诗; 汪业汉

    2011-01-01

    Objective To explore changes of the structure and functional connectivity of anterior cingulate cortex (ACC) and analyze the role of ACC in heroin addiction by voxel-based morphometry (VBM) and resting-state functional MRI (fMRI). Methods Fifteen heroin addicts and 15 normal people were set as addiction group and normal control group respectively, who underwent 3-dimensional structural imaging and resting-state fMRI. The VBM was used to compare the structural differences between the two groups. The ACC was selected as the regions of interest (ROI) to analyze the resting-state fMRI data of two groups in order to investigate the differences in functional connectivity between the ACC and related brain regions. Results VBM results showed that there were significant differences in gray matter density of right and left ACCs, right and left parahippocampal gyri, right and left caudate nuclei between two groups. When the ACC was selected as ROI, functional connectivity in some brain regions including the right and left ACCs, right and left posterior cingulate cortexes (PCCs) and the right and left parahippocampal gyri were weaker in addiction group than in normal control group. Conclusions The unusual changes of structure and functional connectivity appear in long-term heroin addicts, suggesting that ACC may play an important role in generation and maintain of addiction, and also in relapse after drug withdraw.%目的 利用基于体素的形态学分析(voxel-based morphometry,VBM)和静息态fMRI探讨扣带前回结构和功能连接的改变,分析扣带前回在海洛因成瘾中的作用.方法 15例海洛因成瘾者和15例正常人分别作为成瘾组和正常对照组,均接受3D结构像和静息态fMRI检查,使用VBM比较2组受试者大脑的结构差异;以扣带前回为感兴趣区,对2组进行静息态fRI数据分析,比较扣带前回与相关脑区之间功能连接的差异.结果 VBM分析显示2组在左右扣带前回、左右海马旁回、

  11. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Susanna A Walter

    Full Text Available Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD responses in functional magnetic resonance imaging (fMRI is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.

  12. Morphine decreases extracellular levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats

    Institute of Scientific and Technical Information of China (English)

    YueHAO; Jing-yuYANG; MingGUO; Chun-fuWU; Ming-fanWU

    2004-01-01

    AIM: The anterior cingulate cortex (ACC), an important region of prefrontal cortex for cognitive functions, has been implicated in drug abuse and addiction. In the present study, we intended to investigate the effect of morphine on the extracellular levels of glutamate in the ACC in freely moving rats. METHODS: In vivo microdialysis coupled to high performance liquid chromatography and electrochemical detection had been used for the

  13. Altered SPECT (123)I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa.

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using (123)I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). "Depression-Dejection" and "Confusion" POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in

  14. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  15. Resting Metabolic Activity in the Cingulate Cortex and Vulnerability to Posttraumatic Stress Disorder

    Science.gov (United States)

    Shin, Lisa M.; Lasko, Natasha B.; Macklin, Michael L.; Karpf, Rachel D.; Milad, Mohammed R.; Orr, Scott P.; Goetz, Jared M.; Fischman, Alan J.; Rauch, Scott L.; Pitman, Roger K.

    2013-01-01

    Context Recent neuroimaging research has revealed functional abnormalities in the anterior cingulate cortex, amygdala and hippocampus in posttraumatic stress disorder (PTSD). Objective To determine whether resting functional abnormalities found in PTSD are acquired characteristics or familial risk factors. Design Cross-sectional design including identical twins discordant for trauma exposure. Setting Academic medical center. Participants Combat-exposed veterans with PTSD (n=14) and their identical, combat-unexposed co-twins (n=14), as well as combat-exposed veterans without PTSD (n=19) and their identical, combat-unexposed co-twins (n=19). Main Outcome Measures We used positron emission tomography and [18F]-fluorodeoxyglucose to examine resting regional cerebral metabolic rates for glucose (rCMRglu). Results Veterans with PTSD and their co-twins had significantly higher resting rCMRglu in dorsal anterior cingulate/mid cingulate cortex (dACC/MCC) compared to non-PTSD veterans and their co-twins. Resting rCMRglu in dACC/MCC in the combat-unexposed co-twins was positively correlated with combat exposure severity, PTSD symptom severity, and alcohol use in their exposed twins. Conclusions Enhanced resting metabolic activity in dACC/MCC appears to represent a familial risk factor for developing PTSD after exposure to psychological trauma. PMID:19805700

  16. Cingulate cortex hypoperfusion predicts Alzheimer's disease in mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Svensson Leif

    2002-09-01

    Full Text Available Abstract Background Mild cognitive impairment (MCI was recently described as a heterogeneous group with a variety of clinical outcomes and high risk to develop Alzheimer's disease (AD. Regional cerebral blood flow (rCBF as measured by single photon emission computed tomography (SPECT was used to study the heterogeneity of MCI and to look for predictors of future development of AD. Methods rCBF was investigated in 54 MCI subjects using Tc-99m hexamethylpropyleneamine oxime (HMPAO. An automated analysis software (BRASS was applied to analyze the relative blood flow (cerebellar ratios of 24 cortical regions. After the baseline examination, the subjects were followed clinically for an average of two years. 17 subjects progressed to Alzheimer's disease (PMCI and 37 subjects remained stable (SMCI. The baseline SPECT ratio values were compared between PMCI and SMCI. Receiver operating characteristic (ROC analysis was applied for the discrimination of the two subgroups at baseline. Results The conversion rate of MCI to AD was 13.7% per year. PMCI had a significantly decreased rCBF in the left posterior cingulate cortex, as compared to SMCI. Left posterior cingulate rCBF ratios were entered into a logistic regression model for ROC curve calculation. The area under the ROC curve was 74%–76%, which indicates an acceptable discrimination between PMCI and SMCI at baseline. Conclusion A reduced relative blood flow of the posterior cingulate gyrus could be found at least two years before the patients met the clinical diagnostic criteria of AD.

  17. Die Rolle des anterioren cingulären Cortex bei Entscheidungsprozessen und instrumentellen Lernvorgängen

    OpenAIRE

    Schweimer, Judith

    2006-01-01

    Der Anteriore Cinguläre Cortex (ACC) spielt eine wichtige Rolle bei Stimulus-Belohnungs-Lernen und bei der Auswahl von belohnungsgesteuerten Handlungsweisen. Im Rahmen dieser Doktorarbeit wurde eine Reihe von Experimenten durchgeführt, um die Rolle des ACC bei instrumentellen Verhalten, welches aufwandsabhängige Entscheidungen beruht, und bei instrumentellem Lernen, welches durch belohnungsprädiktive Stimuli gesteuert wird, näher zu untersuchen. In Experiment 1 wurden das Erlernen und das ...

  18. Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway

    Directory of Open Access Journals (Sweden)

    Vogt Brent A

    2009-09-01

    Full Text Available Abstract Background Although the mechanisms of short- and long-term potentiation of nociceptive-evoked responses are well known in the spinal cord, including central sensitization, there has been a growing body of information on such events in the cerebral cortex. In view of the importance of anterior cingulate cortex (ACC in chronic pain conditions, this review considers neuronal plasticities in the thalamocingulate pathway that may be the earliest changes associated with such syndromes. Results A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink current in the layer II/III of the ACC in vivo, while high frequency stimulation potentiated the response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal and intralaminar thalamic nuclei (MITN suggesting that the MITN projection to ACC mediates the nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different inputs in vitro where the medial thalamic and contralateral corpus callosum afferents were compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of the short-term plasticity. Conclusion The potentiation of ACC neuronal activity induced by thalamic bursting suggest that short-term synaptic plasticities enable the processing of nociceptive information from the medial thalamus and this temporal response variability is particularly important in pain because temporal maintenance of the response supports cortical integration and memory formation related to

  19. Parcellation of the cingulate cortex at rest and during tasks: a meta-analytic clustering and experimental study

    OpenAIRE

    Torta, Diana M.E.; Tommaso Costa; Fox, Peter T.

    2013-01-01

    Anatomical, morphological, and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The exper...

  20. Dopamine and serotonin imbalances in the left anterior cingulate and pyriform cortices following the repeated intermittent administration of cocaine.

    Science.gov (United States)

    Heidbreder, C A; Oertle, T; Feldon, J

    1999-03-01

    Studies on the neurobiology of cocaine abuse suggest that cocaine directly modifies the activity of dopamine neurons projecting from the dopamine-synthesizing cells of the ventral tegmental area to the nucleus accumbens. The repeated use of cocaine produces persistent adaptations within the mesocorticolimbic system and the resulting changes in monoamine neurotransmission may lead to behavioral sensitization. The present series of experiments sought to determine the effects of the repeated, intermittent challenge that took place two days after discontinuation of the pretreatment regimen; (ii) the ex vivo levels of biogenic monoamines, choline and acetylcholine in the nucleus accumbens, the dorsolateral caudate nucleus, as well as the anterior cingulate, frontal motor, frontal somatosensory and pyriform cortices; and (iii) the degree of neurochemical relationship between the left and right hemispheres. The repeated administration of cocaine produced sensitized behavioral responses to a subsequent challenge. Neurochemical correlates of repeated cocaine administration were observed at the cortical level and included a significant decrease in serotonin levels in the left anterior cingulate and pyriform cortices and an increase in dopamine metabolism in the left pyriform cortex. Furthermore, a shift in the interhemispheric coupling coefficient matrix for dopamine neurotransmission was observed in both the pyriform cortex and nucleus accumbens of cocaine-sensitized animals suggesting that, in these structures, the two hemispheres are operating independently. These results demonstrate that cocaine produces alterations in specific dopaminergic and serotonergic pathways that arise from the mesencephalon and project towards both the anterior cingulate and pyriform cortices. PMID:10199606

  1. Effects of functional connectivity between anterior cingulate cortex and dorsolateral prefrontal cortex on executive control of attention in healthy individuals%前扣带回与背外侧额前皮质的功能连接影响执行控制

    Institute of Scientific and Technical Information of China (English)

    韩燕; 徐君海; 尹训涛; 张栋; 徐文坚; 逄增昌; 葛海涛; 刘树伟

    2013-01-01

    目的 探讨执行控制过程中健康人大脑前扣带回(ACC)与背外侧额前皮质(DLPFC)之间的功能连接及其与行为学表现之间的关系.方法 2011年1至5月25名17~20岁的健康志愿者在青岛大学医学院附属医院放射科进行3.0T功能磁共振扫描,采用注意网络测试(ANT)作为试验范式,计算ACC和DLPFC之间的功能连接,并与ANT的行为学得分做相关分析.结果 在执行控制过程中,背侧ACC(dACC)与两侧的DLPFC之间存在显著的功能连接,其中左侧的dACC和DLPFC之间的功能连接系数与执行控制的行为学得分存在显著负相关(r=-0.63;P <0.01).结论 ACC与DLPFC之间存在功能连接,并对注意的执行控制功能存在有利的影响,这有助于我们理解注意功能中相关脑区的功能整合作用.%Objective To explore the presence of functional connectivity between anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) during the manipulation of attentional network test (ANT) and its relationship with behavioral performance.Methods Functional magnetic resonance imaging was performed on 25 healthy subjects aged 17-20 years.And ANT was used as a paradigm.Functional connectivity between ACC-DLPFC was tested and correlation analysis conducted between functional connectivity coefficients and behavioral scores of ANT.Results Significant functional connectivity between the dorsal ACC (dACC) with bilateral DLPFC was found.Furthermore,event-related functional connectivity coefficients between left dACC and lefi DLPFC were negatively associated with the behavioral scores of executive control (r =-0.63 ; P < 0.01).Conclusion Our findings provide new evidence that ACC and DLPFC are functionally connected and such functional connectivity has advantageous influence on executive control function of attention so as to contribute to our understanding of the integrated role of these brain regions in attentional network.

  2. Altered SPECT 123I iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2016-02-01

    Full Text Available Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN in children. The purpose of this study was to examine cortical GABA(A-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single photon emission computed tomography (SPECT measurements using 123I iomazenil, which binds to GABA(A-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26 and the short form of the Profile of Mood States (POMS. Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil binding activity in cortical regions of interest (ROIs and psychometric profiles, and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil binding activity in the anterior posterior cingulate cortex (ACC. Higher POMS subscale scores were significantly associated with lower iomazenil binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC. Depression-Dejection, and Confusion POMS subscale scores, and total POMS score, showed interaction effects with brain regions in iomazenil binding activity. Decreased binding in the ACC and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in children

  3. Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency.

    NARCIS (Netherlands)

    S. Nieuwenhuis; N. Yeung; W. van den Wildenberg; K.R. Ridderinkhof

    2003-01-01

    Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a prepote

  4. Generation of theta activity (RSA) in the cingulate cortex of the rat

    OpenAIRE

    Holsheimer, J.

    1982-01-01

    Unit activity recorded from the cingulate cortex during theta rhythm shows periodic trains of spikes which are phase-locked to the local theta field potential waves. These cortical theta units were also shown to be correlated with hippocampal theta units. These findings, along with the fact that theta field potentials show a phase reversal within the cingulate cortex, lead to the conclusion that this cortical area is a source of theta activity.

  5. Reward value enhances post-decision error-related activity in the cingulate cortex.

    Science.gov (United States)

    Taylor, Jessica E; Ogawa, Akitoshi; Sakagami, Masamichi

    2016-06-01

    By saying "Anyone who has never made a mistake has never tried anything new", Albert Einstein himself allegedly implied that the making and processing of errors are essential for behavioral adaption to a new or changing environment. These essential error-related cognitive and neural processes are likely influenced by reward value. However, previous studies have not dissociated accuracy and value and so the distinct effect of reward on error processing in the brain remained unknown. Therefore, we set out to investigate this at various points in decision-making. We used functional magnetic resonance imaging to scan participants while they completed a random dot motion discrimination task where reward and non-reward were associated with stimuli via classical conditioning. Pre-error activity was found in the medial frontal cortex prior to response but this was not related to reward value. At response time, error-related activity was found to be significantly greater in reward than non-reward trials in the midcingulate cortex. Finally at outcome time, error-related activity was found in the anterior cingulate cortex in non-reward trials. These results show that reward value enhances post-decision but not pre-decision error-related activities and these results therefore have implications for theories of error correction and confidence. PMID:26739226

  6. Visual and noxious electrical stimulus-evoked membrane-potential responses in anterior cingulate cortical neurons.

    Science.gov (United States)

    Ma, Li-Qing; Ning, Li; Wang, Zhiru; Wang, Ying-Wei

    2016-01-01

    Anterior cingulate cortex (ACC) is known to participate in numerous brain functions, such as memory storage, emotion, attention, as well as perception of acute and chronic pain. ACC-dependent brain functions often rely on ACC processing of various forms of environmental information. To understand the neural basis of ACC functions, previous studies have investigated ACC responses to environmental stimulation, particularly complex sensory stimuli as well as award and aversive stimuli, but this issue remains to be further clarified. Here, by performing whole-cell recording in vivo in anaesthetized adult rats, we examined membrane-potential (MP) responses of layer II/III ACC neurons that were evoked by a brief flash of visual stimulation and pain-related electrical stimulation delivered to hind paws. We found that ~54 and ~81 % ACC neurons exhibited excitatory MP responses, subthreshold or suprathreshold, to the visual stimulus and the electrical stimulus, respectively, with no cell showing inhibitory MP responses. We further found that the visually evoked ACC response could be greatly diminished by local lidocaine infusion in the visual thalamus, and only their temporal patterns but not amplitudes could be changed by large-scale visual cortical lesions. Our in vivo whole-cell recording data characterized in ACC neurons a visually evoked response, which was largely dependent on the visual thalamus but not visual cortex, as well as a noxious electrical stimulus-evoked response. These findings may provide potential mechanisms that are used for ACC functions on the basis of sensory information processing. PMID:27585569

  7. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    Science.gov (United States)

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC. PMID:27318139

  8. Anterior Cingulate Cortico-Hippocampal Dysconnectivity in Unaffected Relatives of Schizophrenia Patients: A Stochastic Dynamic Causal Modeling Study.

    Science.gov (United States)

    Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong

    2016-01-01

    Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients-according to the DSM-IV-were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370

  9. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Directory of Open Access Journals (Sweden)

    Lauren A Demers

    Full Text Available Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD. The dorsal anterior cingulate cortex (dACC has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC completed the Toronto Alexithymia Scale 20 (TAS-20 and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology.

  10. In-group and out-group membership mediates anterior cingulate activation to social exclusion

    Directory of Open Access Journals (Sweden)

    Austen Krill

    2009-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI was employed to examine sensitivity to social exclusion in three conditions: same-race, other-race, and self-resembling faces. The anterior cingulate cortex (ACC, specifically the dorsal ACC, has been targeted as a key substrate in the physical and social pain matrix and was hypothesized to regulate activation response to various facial conditions. We show that participants demonstrated greatest ACC activation when being excluded by self-resembling and same-race faces, relative to other-race faces. Additionally, participants expressed greater distress and showed increased ACC activation as a result of exclusion in the same-race condition relative to the other-race condition. A positive correlation between implicit racial bias and activation in the amygdala was also evident. Implicit attitude about other-race faces partly explains levels of concern about exclusion by out-group individuals. These findings suggest that individuals are more distressed and their brain (i.e. neural alarm system responds with greater activation when being excluded by individuals whom they are more likely to share group membership with.

  11. The political (and physiological) divide: Political orientation, performance monitoring, and the anterior cingulate response.

    Science.gov (United States)

    Weissflog, Meghan; Choma, Becky L; Dywan, Jane; van Noordt, Stefon J R; Segalowitz, Sidney J

    2013-01-01

    Our goal was to test a model of sociopolitical attitudes that posits a relationship between individual differences in liberal versus conservative political orientation and differential levels of anterior cingulate cortex (ACC) responsivity. We recorded event-related potentials (ERPs) while participants who varied along a unidimensional liberal-conservative continuum engaged in a standard Go/NoGo task. We also measured component attitudes of political orientation in the form of traditionalism (degree of openness to social change) and egalitarianism (a preference for social equality). Generally, participants who reported a more liberal political orientation made fewer errors and produced larger ACC-generated ERPs (the error-related negativity, or ERN and the NoGo N2). This ACC activation, especially as indicated by a larger NoGo N2, was most strongly associated with greater preference for social equality. Performance accuracy, however, was most strongly associated with greater openness to social change. These data are consistent with a social neuroscience view that sociopolitical attitudes are related to aspects of neurophysiological responsivity. They also indicate that a bidimensional model of political orientation can enhance our interpretation of the nature of these associations. PMID:24028311

  12. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    NARCIS (Netherlands)

    Arns, M.W.; Etkin, A.; Hegerl, U.; Williams, L.M.; DeBattista, C.; Palmer, D.M.; Fitzgerald, P.B.; Harris, A.; deBeuss, R.; Gordon, E.

    2015-01-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been link

  13. The effects of stimulation of the anterior cingulate gyrus in cats with freedom of movement

    Science.gov (United States)

    Dapres, G.; Cadilhac, J.; Passouant, P.

    1980-01-01

    Stimuli of varying strength, frequency and duration were applied to the anterior cingulate gyrus in unanesthetized cats with freedom of movement. The motor, vegetative and electrical effects of these stimuli, although inconstant, lead to a consideration of the role of this structure in the extrapyramidal control of motricity.

  14. The dorsal medial prefrontal (anterior cingulate) cortex–amygdala aversive amplification circuit in unmedicated generalised and social anxiety disorders: an observational study

    OpenAIRE

    Robinson, O.J.; Krimsky, M; Lieberman, L.; Allen, P.; Vytal, K.; Grillon, C.

    2014-01-01

    We have delineated, across four prior studies, the role of positive dorsal medial prefrontal/anterior cingulate cortex (dmPFC/ACC)-amygdala circuit coupling during aversive processing in healthy individuals under stress. This translational circuit, termed the 'aversive amplification circuit', is thought to drive adaptive, harm-avoidant behavior in threatening environments. Here, in a natural progression of this prior work, we confirm that this circuit also plays a role in the pathological man...

  15. Impaired functional connectivity of anterior cingulated cortex in vascular cognitive impairment with no dementia explored by resting state functional magnetic resonance imaging%静息态功能磁共振观察非痴呆型血管性认知障碍前扣带回功能连接的特点

    Institute of Scientific and Technical Information of China (English)

    邓丽霞; 阮杏林; 黄华品; 林海龙; 邓艳青; 林婉挥

    2014-01-01

    Objective To study the functional connectivity (FC) pattern of anterior cingulated cortex in patients with vascular cognitive impairment with no dementia (VCIND) after subcortical ischemic vascular disease,and to analyze the relationship between FC and cognitive function.Methods Resting state functional magnetic resonance imaging (MRI) data were acquired from 14 patients with VCIND and 16 healthy volunteers with normal cognition.The altered functional connectivity pattern in VCIND was valuated by comparing to normal control.Then a correlation analysis was performed between the strength of FC and the Montreal Cognitive Assessment (MoCA) scores in patients with VCICD.Results (1) The visual space or executive function (3.14 ± 0.29),attention or computing power (3.79 ± 0.37),language (1.14 ± 0.21),directional power (4.14 ± 0.53) items,and the total points of MoCA (17.29 ± 1.53) in VCIND were significantly lower than that in the normal control group (4.93 ± 0.07,5.93 ± 0.07,2.93 ± 0.26,5.93 ± 0.07,27.57 ± 0.33 ; t =31.62,32.50,28.51,12.00,39.71,all P < 0.05).While the abstract ability or memory (4.36 ± 0.74),the naming (2.79 ± 0.11) items in VCIND were not significantly different with that in the control group (4.79 ± 0.80,2.93 ± 0.07 ; t =1.76,1.00,both P > 0.05).(2) Compared with the control group,the patients showed FC decrease between the anterior cingulated cortex and several brain regions,including the left middle temporal gyrus/left superior temporal gyrus,the left superior frontal gyrus/left middle frontal gyrus/left inferior frontal gyrus,the left posterior cingulated cortex/left precuneus,the left inferior parietal lobule/left angular gyrus,the right middle temporal gyrus/right superior temporal gyrus,the right orbit frontal cortex/right inferior frontal gyrus,the right inferior parietal lobule/right angular gyrums,and the right superior frontal gyrus/right middle frontal gyrus.There were also some regions that showed increased FC

  16. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  17. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    Science.gov (United States)

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  18. Posterior cingulated cortex functional connectivity in deficit schizophrenia: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    唐小伟

    2014-01-01

    Objective To explore the discrepancies of the network of resting brain functional connectivity related to posterior cingulated cortex(PCC)between deficit schizophrenia patients and normal control.Methods Thirty male patients of deficit schizophrenia,nondeficit schizophrenia and 30 healthy controls were enrolled,and the age,education level and sex were matched between three

  19. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    Science.gov (United States)

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-01

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion. PMID:25304498

  20. Glutamatergic excitatory responses of anterior cingulate neurons to stimulation of the mediodorsal thalamus and their regulation by GABA: an in vivo iontophoretic study.

    Science.gov (United States)

    Gigg, J; Tan, A M; Finch, D M

    1992-01-01

    Anatomical and physiological studies in the rat have shown projections from the medial dorsal thalamus to the anterior cingulate cortex. We used multibarrel iontophoresis to identify the neurotransmitter used in this thalamic projection. Extracellular responses were recorded from 165 cingulate neurons in anesthetized rats after electrical stimulation of the medial dorsal thalamus and vicinity. Forty-four of these cells (27%) showed an excitatory response to thalamic stimulation. In a further 40 cells that showed no baseline excitation, iontophoresis of the GABAA antagonist bicuculline methiodide revealed excitatory responses. The GABAB antagonist CGP-35348 attenuated longer-latency inhibition in 5 of 10 cells. In 23 of 49 (47%) of the above cells, AMPA antagonist iontophoresis (either CNQX or DNQX) selectively decreased the excitatory response to thalamic stimulation. The NMDA antagonist 3[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid had no such effect. These data suggest that the thalamic projection to anterior cingulate cortex is glutamatergic, acting principally via AMPA receptors, and that the response of cingulate neurons to thalamic stimulation is regulated by GABA acting at both GABAA and GABAB receptors. PMID:1282403

  1. Left anterior cingulate activity predicts intra-individual reaction time variability in healthy adults.

    Science.gov (United States)

    Johnson, Beth P; Pinar, Ari; Fornito, Alex; Nandam, L Sanjay; Hester, Robert; Bellgrove, Mark A

    2015-06-01

    Within-subject, or intra-individual, variability in reaction time (RT) is increasingly recognised as an important indicator of the efficiency of attentional control, yet there have been few investigations of the neural correlates of trial-to-trial RT variability in healthy adults. We sought to determine the neural correlates of intra-individual RT variability during a go/no-go response inhibition task in 27 healthy, male participants. We found that reduced trial-to-trial RT variability (i.e. greater response stability) was significantly associated with greater activation in the left pregenual anterior cingulate. These results support the role of the left anterior cingulate in the dynamic control of attention and efficient response selection. Greater understanding of intra-individual RT variability and top-down attentional control in healthy adults may help to inform disorders that impact executive/attentional control, such as attention deficit hyperactivity disorder and schizophrenia. PMID:25791710

  2. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism

    Science.gov (United States)

    Balsters, Joshua H.; Mantini, Dante; Apps, Matthew A.J.; Eickhoff, Simon B.; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  3. PARCELLATION OF THE CINGULATE CORTEX AT REST AND DURING TASKS: A META-ANALYTIC CLUSTERING AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Diana M.E. Torta

    2013-06-01

    Full Text Available Anatomical, morphological and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The experimental studies, which included two active tasks and a resting state protocol, were used to control the results obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by applying a meta-analytic clustering (MaC to papers retrieved from the BrainMap database. The MaC is a meta-analytic connectivity driven parcellation technique recently developed by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern of co-activations during active tasks. The MaC results indicated that the cingulate cortex can be parcellated into three clusters. These clusters covered different percentages of the cingulate parenchyma and had a different density of foci, with the first cluster being more densely connected. The control experiments showed different clusterization results, suggesting that the co-activations of the cingulate cortex are highly dependent on the task that is tested. Our results highlight the importance of the cingulate cortex as a hub, which modifies its pattern of co-activations depending on the task requests and on the level of task complexity. The neurobiological meaning of these results is discussed.

  4. The study of 1H-Magnetic resonance spectroscope (1H-MRS) in the anterior cingulate cortex (ACC) in depressive patients with childhood neglect%伴儿童期忽略的抑郁症患者前扣带回氢质子波谱对照研究

    Institute of Scientific and Technical Information of China (English)

    彭红军; 李凌江; 贺忠

    2013-01-01

    目的 探讨伴儿童期忽略抑郁症患者前扣带回氢质子波谱物质代谢的特点.方法 采用儿童期创伤问卷(childhood trauma questionnaire,CTQ)对40例抑郁症患者进行儿童期忽略评估和分组,伴儿童期忽略抑郁症组19例患者和不伴儿童期忽略抑郁症组21例患者,以及20名正常对照行磁共振氢质子波谱(hydrogen magnetic resonance spectroscopy,1H-MRS)扫描,兴趣区选取双侧前扣带回(anterior cingulate cortex,ACC),检测N-乙酰天门冬氨酸(N-acetyl aspartate,NAA)、谷氨酸复合物(glutamate/glutamine,Glx)、胆碱(choline,Cho)、肌醇(myo-inositol,mI)及肌酸(creatine,Cr)水平,比较3组NAA/Cr、Glx/Cr、Cho/Cr和mI/Cr比值的差异.结果 伴与不伴儿童期忽略抑郁症组分别与对照组比较,左右两侧ACC均表现NAA/Cr降低(均P<0.010);2组右侧Glx/Cr均低于对照组(均P<0.001);伴儿童期忽略抑郁症组较不伴儿童期忽略抑郁症组左右两侧NAA/Cr差异均有统计学意义(左P<0.005,右P<0.01).结论 抑郁症患者前扣带回物质代谢不同于正常人;伴儿童期忽略抑郁症患者ACC的物质代谢存在特异性改变.

  5. Identification by [99mTc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    International Nuclear Information System (INIS)

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [99mTc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [99mTc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [99mTc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  6. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  7. Measuring the volume of cingulate cortex in Chinese normal adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Objective: To explore the normal range of cingulate cortex volumes of Chinese adults of the Han nationality and its relationship with age, which provide morphological data for the construction of database for Chinese Standard Brain. Methods: This is a clinical multi-center study. One thousand Chinese healthy volunteers (age range = 18 to 70) recruited from 15 hospitals were divided into 5 groups, i.e., Group A (age range = 18 to 30), B (age range =31 to 40), C (age range =41 to 50), D (age range =51 to 60), and E (age range =61 to 70). Each group contained 100 males and 100 females. All of the volunteers were scanned by MR using T1 weighted three-dimensional magnetization prepared rapid acquisition gradient echo sequence. Cingulate cortex volume (including bulk volume and the left/right volume) was measured semi-manually using 3D volume analysis software. Cingulate cortex volumes among age groups were compared by one-way ANOVA. Right and left cingulate cortex volumes between sexualities were analyzed by paired samples t test. The relationship between cingulate cortex volume and age was analyzed by Pearson correlations and regression analysis. Results: Cingulate cortex volumes of male and female were (20 347 ± 2504) and (19 432 ± 2184) mm3 respectively, and the male's was significantly larger than that of female's (two sample t'-test for independent samples, t'=6.156, P3 respectively, and those of female's were (10 064 ± 1407) and (9368 ± 1441) mm3 respectively. The volumes of cingulate cortex were significantly different between right and left in male or female (t=-12.960, -8.511, P3; right: (11212±1442), (11 096±1602), (11 040±1403), (10633±1638), (9604±1522) mm3] had statistical differences (F=16.738, 18.707, P3; right: (10 558± 1325), (10 266 ±1463), (10 100 ± 1497), (9779 ± 1304), (9617 ± 1254) mm3] also had significant differences (F=16.859,7.528,P<0.01). Bilateral cingulate cortex volume in both male and female were negatively correlated with

  8. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients.

    Science.gov (United States)

    Becerra, L; Veggeberg, R; Prescot, A; Jensen, J E; Renshaw, P; Scrivani, S; Spierings, E L H; Burstein, R; Borsook, D

    2016-01-01

    Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a 'complex' of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite 'complex' may confer more subtle but biological processes that are ongoing. The data also support the current theory that the

  9. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Christopher G Davey

    2012-02-01

    Full Text Available Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected by depression.Methods: Eighteen patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterised task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task; MSIT. We used a psycho-physiological interactions (PPI approach to examine functional connectivity changes with subgenual ACC. Voxelwise statistical maps for each analysis were compared between the patient and control groups.Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive control regions in depressed patients.Conclusions: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes.

  10. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    Science.gov (United States)

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  11. The Effects of Haloperidol on Neuronal Firing in Rats Anterior Cingulate Cortex During Cost-Benefit Decision-Making Tasks%氟哌啶醇干扰决策过程中前扣带回神经元的放电活动

    Institute of Scientific and Technical Information of China (English)

    袁水霞; 徐晖; 李霞; 顾凯; 左洋凡; 卢钦钦; 代淑芬; 于萍

    2012-01-01

    运用在体多通道神经元放电同步记录技术,观察和记录大鼠在完成T-迷宫成本效益决策任务时前扣带回神经元放电和局部场电位的变化及氟哌啶醇对此的改变,在细胞水平上探讨前扣带回在决策中的作用以及多巴胺递质系统对决策的作用机制.结果显示,经过一段时间的训练,10只大鼠中有8只偏好高付出-高奖赏端,且在选择高付出-高奖赏端时的神经元放电频率要显著高于选择低付出-低奖赏端时的频率,同时局部场电位也呈现出事件相关性;腹腔注射多巴胺受体拮抗剂氟哌啶醇后,大鼠不再偏好高付出-高奖赏端,对该端的选择显著减少,而对低付出-低奖赏端的选择显著增加,且神经元的放电频率和局部场电位显著降低,神经元放电和局部场电位的特征性也消失.研究提示,前扣带回和多巴胺在努力相关决策任务中有着至关重要的作用.%There many studies have demonstrated that anterior cingulate cortex (ACC) and the level of dopamine (DA) in this brain area play a critical role in effort-based decision-making, a kind of cost-benefit decision-making. It has been found that haloperidol, a DA D2 receptor-antagonist, could disrupt the performance of rats in effort-based decision-making tasks. The present experimental study used on-line multi-channel neuronal recording technique to record both the neuronal firing frequency and local field potentials (LFPs) in ACC whenrats were performing effort-based decision-making tasks. We further investigate the effects of haloperidol on performance of rats.All rats (10 Wistar rats) were surgically implanted with a 2x8 microelectrode array in ACC before they learned behavioral task. After 1 week of recovery, rats were introduced to T-maze for training periods. There were two choices in this task, rats could choose to get two food pellets at the end of one arm without any barrier (low cost-low reward, LCLR) or by climbing a

  12. Biochemistry of the cingulate cortex in autism: An MR spectroscopy study.

    Science.gov (United States)

    Libero, Lauren E; Reid, Meredith A; White, David M; Salibi, Nouha; Lahti, Adrienne C; Kana, Rajesh K

    2016-06-01

    Neuroimaging studies have uncovered structural and functional alterations in the cingulate cortex in individuals with autism spectrum disorders (ASD). Such abnormalities may underlie neurochemical imbalance. In order to characterize the neurochemical profile, the current study examined the concentration of brain metabolites in dorsal ACC (dACC) and posterior cingulate cortex (PCC) in high-functioning adults with ASD. Twenty high-functioning adults with ASD and 20 age-and-IQ-matched typically developing (TD) peers participated in this Proton magnetic resonance spectroscopy (1H-MRS) study. LCModel was used in analyzing the spectra to measure the levels of N-Acetyl aspartate (NAA), choline (Cho), creatine (Cr), and glutamate/glutamine (Glx) in dACC and PCC. Groups were compared using means for the ratio of each metabolite to their respective Cr levels as well as on absolute internal-water-referenced measures of each metabolite. There was a significant increase in Cho in PCC for ASD adults, with a marginal increase in dACC. A reduction in NAA/Cr in dACC was found in ASD participants, compared to their TD peers. No significant differences in Glx/Cr or Cho/Cr were found in dACC. There were no statistically significant group differences in the absolute concentration of NAA, Cr, Glx, or NAA/Cr, Cho/Cr, and Glx/Cr in the PCC. Differences in the metabolic properties of dACC compared to PCC were also found. Results of this study provide evidence for possible cellular and metabolic differences in the dACC and PCC in adults with ASD. This may suggest neuronal dysfunction in these regions and may contribute to the neuropathology of ASD. Autism Res 2016, 9: 643-657. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26526126

  13. Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report.

    Directory of Open Access Journals (Sweden)

    Juan Santoyo

    2013-08-01

    Full Text Available Neurophenomenological studies seek to utilize first-person self-report to elucidate cognitive processes related to physiological data. Grounded theory offers an approach to the qualitative analysis of self-report, whereby theoretical constructs are derived from empirical data. Here we used grounded theory methodology to assess how the first-person experience of meditation relates to neural activity in a core region of the default mode network –the posterior cingulate cortex. We analyzed first-person data consisting of meditators’ accounts of their subjective experience during runs of a real-time fMRI neurofeedback study of meditation, and third-person data consisting of corresponding feedback graphs of posterior cingulate cortex activity during the same runs. We found that for meditators, the subjective experiences of ‘undistracted awareness’ such as ‘concentration’ and ‘observing sensory experience’, and ‘effortless doing’ such as ‘observing sensory experience’, ‘not efforting’, and ‘contentment’, correspond with posterior cingulate cortex deactivation. Further, the subjective experiences of ‘distracted awareness’ such as ‘distraction’ and ‘interpreting’, and ‘controlling’ such as ‘efforting’ and ‘discontentment’, correspond with posterior cingulate cortex activation. Moreover, we derived several novel hypotheses about how specific qualities of cognitive processes during meditation relate to posterior cingulate cortex activity, such as the difference between meditation and ‘trying to meditate’. These findings offer novel insights into the relationship between meditation and self-related thinking and neural activity in the default mode network, driven by the first-person experience.

  14. Deactivation of medial prefrontal and posterior cingulate cortex in anxiety disorders

    International Nuclear Information System (INIS)

    Objective: We used blood oxygenation level dependent-functional MR imaging (BOLD- fMRI) to explore the characteristics of deactivation patterns in patients with anxiety disorders and the underlying neural mechanism of this disease. Methods: Ten patients and ten healthy controls participated the experiments. All subjects performed the trait portion of the State-Trait anxiety Inventory (STAI-T) prior to the fMRI scans. The subjects underwent noninvasive functional magnetic resonance imaging while listening actively to emotionally neutral words alternating with no words (experiment 1) and threat related-words alternating with emotionally neutral words (experiment2). During fMRI scanning, subjects were instructed to closely listen to each stimuli word and to silently make a judgment of the word's valence. Data were analyzed with statistical parametric mapping (SPM 99). Individual and group analysis were conducted. Results: Mean STAI-T score was significantly higher for patients group than that of controls (58 ± 8 for patients group and 33 ± 5 for controls, t=8.3, P<0.01). Our fMRI data revealed sets of deactivation brain regions in Experiment for patients and healthy controls, however, the deactivation can be found in experiment 2 only for patients. Interestingly, all the observed deactivation patterns were similar. The related areas compromise medial prefrontal cortex(BA 10, BA 24/32), posterior cingulate (BA 31/30) and Bilateral inferior parietal cortex (MPFC) (BA 39/40), which nearly overlapping with the organized default model network. Further more, the mean t values in the MPFC area (BA 24/32) was significantly higher for control group than that of patient (5.1 controls and 4.2 for patients, t=4.8, P=0.006), conversely, the mean t values in the posterior cingulate cortex(PCC) area was significantly higher for patients l than that of controls (4.9 controls and 5.8 for patients, t=2.4, P=0.026). Conclusion: Our observations suggest that the default model network

  15. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus

    Directory of Open Access Journals (Sweden)

    Nancy Alker Craigmyle

    2013-10-01

    Full Text Available Abstract During fMRI studies of meditation the cortical salience detecting and executive networks become active during awareness of mind wandering, shifting and sustained attention. The anterior cingulate (AC is activated during awareness of mind wandering.The AC modulates both the peripheral sympathetic nervous system (SNS and the central locus coeruleus (LC norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine (P-NE and activates the LC, increasing C-NE.Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set shifting and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS and LC with respect to their possible relevance to meditation.

  16. Proton magnetic resonance spectroscopy of the anterior cingulate gyrus and caudate nucleus in schizophrenia patients versus healthy controls

    Institute of Scientific and Technical Information of China (English)

    Lutfi Incesu; Meral Baydin; Kerim Aslan; Baris Diren; Huseyin Sahin; Omer Boke; Senol Dane

    2011-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) permits the assessment of cerebral neurometabolites, such as N-acetylaspartate, choline, and creatine, in vivo and has been used to study schizophrenia. The present study used 1H-MRS to compare the spectroscopy change of N-acetylaspartate, creatine, and choline metabolite levels in the anterior cingulate and caudate nucleus of both schizophrenia patients and healthy controls, as well as between the left and right cerebral hemispheres in the schizophrenia patients. Results showed that N-acetylaspartate and creatine metabolite levels in the left anterior cingulate gyrus were significantly lower in the schizophrenia patients than in the healthy controls, indicating hypometabolism. In addition, choline concentration in the left caudate nucleus of schizophrenia patients was significantly lower than in the right caudate nucleus, indicating that it is necessary to study the cerebral lateralization of 1H-MRS in schizophrenia patients.

  17. Reduced muscarinic receptors in the cingulate cortex in mild Alzheimer's disease demonstrated with 123I iodo-dexetamide SPECT

    International Nuclear Information System (INIS)

    Full text: Parietal hypoperfusion/hypometabolism is a feature of Alzheimer's disease (AD). In early AD this may be preceded by changes in the posterior cingulate cortex, part of the cortico-limbic circuit with connections to the medial temporal lobes. Because cholinergic function is affected in early AD, we aimed to investigate the binding of the muscarinic receptor label, I-123 iodo-dexetamide (IDEX). We recruited 11 mild (MiniMental State Examination 27-24) and 11 moderate (MMSE 23-16) Alzheimer's patients and 10 age and sex-matched normal subjects. SPECT was performed six hours after injection of 185 MBq IDEX. Sections were reconstructed with attenuation correction using an iterative algorithm (OSEM). Statistical Parametric Mapping (SPM 99) was used to analyse the data. Because there is very little IDEX uptake in the cerebellum and thalamus it was necessary to edit them from the SPM PET template. Facial and scalp activity was also edited. Global scaling relative to the basal ganglia was used. Significant areas of decreased IDEX binding were found in the mild Alzheimer's group in the cingulate cortex with pvoxel = .08 and pcluster < 0.001, (particularly the posterior cingulate), left parietotemporal junction (pcluster = 0.01) and posteromedial left temporal lobe (pcluster = 0.03). In moderate AD extensive areas of decreased binding were found in the posterior cingulate, parietal and temporal lobes. The difference between the group-means at the posterior cingulate was 14% (mild AD) and 22% (moderate AD). Hypoperfusion, hypometabolism and now reduced cholinergic receptors have been demonstrated in the posterior cingulate in mild AD. Greater attention to this area may enhance the diagnostic value of functional imaging in early AD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  18. Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance.

    Science.gov (United States)

    Lin, Pan; Yang, Yong; Jovicich, Jorge; De Pisapia, Nicola; Wang, Xiang; Zuo, Chun S; Levitt, James Jonathan

    2016-03-01

    Characterization of the default mode network (DMN) as a complex network of functionally interacting dynamic systems has received great interest for the study of DMN neural mechanisms. In particular, understanding the relationship of intrinsic resting-state DMN brain network with cognitive behaviors is an important issue in healthy cognition and mental disorders. However, it is still unclear how DMN functional connectivity links to cognitive behaviors during resting-state. In this study, we hypothesize that static and dynamic DMN nodal topology is associated with upcoming cognitive task performance. We used graph theory analysis in order to understand better the relationship between the DMN functional connectivity and cognitive behavior during resting-state and task performance. Nodal degree of the DMN was calculated as a metric of network topology. We found that the static and dynamic posterior cingulate cortex (PCC) nodal degree within the DMN was associated with task performance (Reaction Time). Our results show that the core node PCC nodal degree within the DMN was significantly correlated with reaction time, which suggests that the PCC plays a key role in supporting cognitive function. PMID:25904156

  19. GABA concentration in posterior cingulate cortex predicts putamen response during resting state fMRI.

    Directory of Open Access Journals (Sweden)

    Jorge Arrubla

    Full Text Available The role of neurotransmitters in the activity of resting state networks has been gaining attention and has become a field of research with magnetic resonance spectroscopy (MRS being one of the key techniques. MRS permits the measurement of γ-aminobutyric acid (GABA and glutamate levels, the central biochemical constituents of the excitation-inhibition balance in vivo. The inhibitory effects of GABA in the brain have been largely investigated in relation to the activity of resting state networks in functional magnetic resonance imaging (fMRI. In this study GABA concentration in the posterior cingulate cortex (PCC was measured using single voxel spectra acquired with standard point resolved spectroscopy (PRESS from 20 healthy male volunteers at 3 T. Resting state fMRI was consecutively measured and the values of GABA/Creatine+Phosphocreatine ratio (GABA ratio were included in a general linear model matrix as a step of dual regression analysis in order to identify voxels whose neuroimaging metrics during rest were related to individual levels of the GABA ratio. Our data show that the connection strength of putamen to the default-mode network during resting state has a negative linear relationship with the GABA ratio measured in the PCC. These findings highlight the role of PCC and GABA in segregation of the motor input, which is an inherent condition that characterises resting state.

  20. Pregnancy and maternal behavior induce changes in glia, glutamate and its metabolism within the cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Natalina Salmaso

    Full Text Available An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2 occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS, and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience.

  1. Abnormal function of the posterior cingulate cortex in heroin addicted users during resting-state and drug-cue stimulation task

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; YANG Wei-chuan; WANG Ya-rong; HUANG Yu-fang; LI Wei; ZHU Jia

    2013-01-01

    Background Previous animal and neuroimaging studies have demonstrated that brain function in heroin addicted users is impaired.However,the posterior cingulate cortex (PCC) has not received much attention.The purpose of this study was to investigate whether chronic heroin use is associated with craving-related changes in the functional connectivity of the PCC of heroin addicted users.Methods Fourteen male adult chronic heroin users and fifteen age and gender-matched healthy subjects participated in the present study.The participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and a cue-induced craving task fMRI scan.The activated PCC was identified in the cue-induced craving task by means of a group contrast test.Functional connectivity was analyzed based on resting-state fMRI data in order to determine the correlation between brain regions.The relationship between the connectivity of specific regions and heroin dependence was investigated.Results The activation of PCC,bilateral anterior cingulate cortex,caudate,putamen,precuneus,and thalamus was significant in the heroin group compared to the healthy group in the cue-induced craving task.The detectable functional connectivity of the heroin users was stronger between the PCC and bilateral insula,bilateral dorsal striatum,right inferior parietal Iobule (IPL) and right supramarginal gyrus (P<0.001) compared to that of the healthy subjects in the resting-state data analysis.The strength of the functional connectivity,both for the PCC-insula (r=0.60,P <0.05) and for PCC-striatum (r=0.58,P<0.05),was positively correlated with the duration of heroin use.Conclusion The altered functional connectivity patterns in the PCC-insula and PCC-striatum areas may be regarded as biomarkers of brain damage severity in chronic heroin users.

  2. Changes in the default mode network in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users

    Institute of Scientific and Technical Information of China (English)

    Wenfu Hu; Xiangming Fu; Ruobing Qian; Xiangpin Wei; Xuebing Ji; Chaoshi Niu

    2012-01-01

    The default mode network is associated with senior cognitive functions in humans. In this study, we performed independent component analysis of blood oxygenation signals from 14 heroin users and 13 matched normal controls in the resting state through functional MRI scans. Results showed that the default mode network was significantly activated in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users, and an enhanced activation signal was observed in the right inferior parietal lobule (P < 0.05, corrected for false discovery rate). Experimental findings indicate that the default mode network is altered in heroin users.

  3. Anterior insular cortex regulation in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Andrea Caria

    2015-03-01

    Full Text Available Autism spectrum disorders (ASDs comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findings of anterior insula cortex hypoactivation and dysconnectivity during tasks related to emotional and social processing indicates its dysfunctional role in ASD. In parallel, increasing evidence showed that successful control of anterior insula activity can be attained using real-time fMRI paradigms. More importantly, successful regulation of this region was associated with changes in behavior and brain connectivity in both healthy individuals and psychiatric patients. Building on these results we here propose and discuss the use of real-time fMRI neurofeedback in ASD aiming at improving emotional and social behavior.

  4. Anterior insular cortex regulation in autism spectrum disorders.

    Science.gov (United States)

    Caria, Andrea; de Falco, Simona

    2015-01-01

    Autism spectrum disorders (ASDs) comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findings of anterior insula cortex hypoactivation and dysconnectivity during tasks related to emotional and social processing indicates its dysfunctional role in ASD. In parallel, increasing evidence showed that successful control of anterior insula activity can be attained using real-time fMRI paradigms. More importantly, successful regulation of this region was associated with changes in behavior and brain connectivity in both healthy individuals and psychiatric patients. Building on these results we here propose and discuss the use of real-time fMRI neurofeedback in ASD aiming at improving emotional and social behavior. PMID:25798096

  5. Abulia following penetrating brain injury during endoscopic sinus surgery with disruption of the anterior cingulate circuit: Case report

    Directory of Open Access Journals (Sweden)

    Login Ivan S

    2006-01-01

    Full Text Available Abstract Background It is common knowledge that the frontal lobes mediate complex human behavior and that damage to these regions can cause executive dysfunction, apathy, disinhibition and personality changes. However, it is less well known that subcortical structures such as the caudate and thalamus are part of functionally segregated fronto-subcortical circuits, that can also alter behavior after injury. Case presentation We present a 57 year old woman who suffered penetrating brain injury during endoscopic sinus surgery causing right basal ganglia injury which resulted in an abulic syndrome. Conclusion Abulia does not result solely from cortical injury but can occur after disruption anywhere in the anterior cingulate circuit – in the case of our patient, most prominently at the right caudate.

  6. Heritability of brain structure and glutamate levels in the anterior cingulate and left thalamus assessed with MR: A twin study

    DEFF Research Database (Denmark)

    Broberg, Brian Villumsen; Legind, Christian Stefan; Mandl, Rene C W;

    Heritability of brain structure and glutamate levels in the anterior cingulate and left thalamus assessed with MR: A twin study Brian V. Broberg1,2; Christian S. Legind1,2, Rene C. Mandl1,3, Maria H. Jensen1, Simon J. Anhøj1,2, Rikke Hilker1, Egill Rostrup1,2, Birte Y. Glenthøj1 Author affiliations......, Copenhagen, Denmark 3. Brain Center Rudolf Magnus, Dept. of Psychiatry, UMC Utrecht, the Netherlands Background Changes in global and regional brain volumes in schizophrenia are known to be heritable and to cosegregate with illness (McDonald et al., 2002; Peper et al., 2007). Changes in neurochemistry — and...... particularly changes in glutamate — are most likely linked to changes in brain volume (Kraguljac et al., 2013) but investigations on heritability of glutamate levels are sparse. Several genes associated with glutamate transmission were suggested to be involved in the pathophysiology of schizophrenia (Ripke et...

  7. Methadone maintenance dose modulates anterior cingulate glutamate levels in heroin-dependent individuals: A preliminary in vivo (1)H MRS study.

    Science.gov (United States)

    Greenwald, Mark K; Woodcock, Eric A; Khatib, Dalal; Stanley, Jeffrey A

    2015-08-30

    Mu-opioid receptor agonists alter brain glutamate (GLU) levels in laboratory animals. This clinical study used proton magnetic resonance spectroscopy ((1)H MRS) to examine regional brain GLU levels during experimental manipulation of methadone (MTD) maintenance dose under double-blind, within-subject conditions in seven heroin-dependent volunteers. Subjects were scanned first at a high MTD dose (100 mg/day), underwent a 3-week outpatient MTD dose taper, and then were scanned again at a low MTD dose (10-25 mg/day; modified for participant comfort). Five age- and cigarette smoking-matched controls were scanned once. In vivo short echo time (TE = 22 ms), single voxel (1)H MRS data from midline pregenual anterior cingulate cortex (ACC) and thalamus (4.5 cm(3) each) were collected using PRESS on a 4-Tesla MRI system. Absolute metabolite levels were quantified. GLU levels in the ACC, but not the thalamus, were higher at the low relative to the high MTD dose in heroin-dependent subjects. No other metabolites differed by MTD dose, or between control vs. heroin-dependent subjects (at either MTD dose). GLU levels in the ACC were inversely related to the duration of cigarette smoking (controls) and heroin use (experimental group). Future studies are warranted to investigate the relationship between GLU levels during treatment (and detoxification), and withdrawal symptoms or relapse. PMID:26188663

  8. Women with multiple chemical sensitivity have increased harm avoidance and reduced 5-HT(1A receptor binding potential in the anterior cingulate and amygdala.

    Directory of Open Access Journals (Sweden)

    Lena Hillert

    Full Text Available Multiple chemical sensitivity (MCS is a common condition, characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the underlying mechanisms are unknown. Contrary to the expectations it was recently found that persons with MCS activate the odor-processing brain regions less than controls, while their activation of the anterior cingulate cortex (ACC is increased. The present follow-up study was designed to test the hypotheses that MCS subjects have increased harm avoidance and deviations in the serotonin system, which could render them intolerant to environmental odors. Twelve MCS and 11 control subjects, age 22-44, all working or studying females, were included in a PET study where 5-HT(1A receptor binding potential (BP was assessed after bolus injection of [(11C]WAY100635. Psychological profiles were assessed by the Temperament and Character Inventory and the Swedish universities Scales of Personality. All MCS and 12 control subjects were also tested for emotional startle modulation in an acoustic startle test. MCS subjects exhibited significantly increased harm avoidance, and anxiety compared to controls. They also had a reduced 5-HT(1A receptor BP in amygdala (p = 0.029, ACC (p = 0.005 (planned comparisons, significance level 0.05, and insular cortex (p = 0.003; significance level p<0.005 with Bonferroni correction, and showed an inverse correlation between degree of anxiety and the BP in the amygdala (planned comparison. No group by emotional category difference was found in the startle test. Increased harm avoidance and the observed changes in the 5-HT(1A receptor BP in the regions processing harm avoidance provides a plausible pathophysiological ground for the symptoms described in MCS, and yields valuable information for our general understanding of idiopathic environmental intolerances.

  9. Right anterior cingulate gyrus in encephalic region associated with integrating and processing Chinese words information in working memory: A functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Daxing Wu; Shuqiao Yao; Lirong Yan; Changlian Tan; Dewen Hu; Wai Cheong Carl Tam; Yadong Liu; Zongtan Zhou; Xiang Wang; Ding Liu

    2006-01-01

    scanner (GE Signa Twinspeed) (slice thickness 5 mm, slice gap 1.5 mm, slice parallel to line between pars geniculate and splenium in corpus callosum from corona capitis to superior part of cerebellum, totally 16 to 18 layers). ③The obtained images were pre-processed and statistically analysed with SPM 99 software. The procedure included timeslice adjusted, realigned, nomalized and smoothed. According to experimental task, data from each subject were analysed to obtain t value of each voxel. Brain activation image was got by Student's t test and statistic was presented by pseudo-color. Statistical parameter image was formed by overlapping brain activation image on three-dimensional structure image, and the threshold value was set at P< 0.05 with ten or more continous voxels (T ≥ 4.64, K ≥ 10 voxels). The brain activation images of all the subjects were calculated and overlapped into mean brain activation images. The regions with different activation density were found out. The activation voxels in regions-of-interest were checked to calculate a laterality index for each condition. The negative value indicated right hemisphere dominance.MAIN OUTCOME MEASURES: fMRI activation and laterality coefficient of Chinese numerial working task. RESULTS: Thirteen ealthy subjects participated in the result analysis. ①fMRI activation of Chinese numerial working task: The results showed that the working memory task with Chinese words not only activated left cerebral cortex including left superior frontal gyrus (BA6/10), left middle frontal gyrus (BA9), left inferior frontal gyrus (BA45/9/47), but also activated right cerebral cortex including right middle frontal gyrus (BA10/46/8), right inferior frontal lobe (BA47). Specially, peak activation was located in right anterior cingulate gyrus (BA32) with an activation volume of 879 (voxels). It indicated that superior, middle and inferior frontal gyrus, bilateral Broca regions and anterior cingutate involved in the working memory

  10. Immunocytochemical heterogeneity of somatostatin-expressing GABAergic interneurons in layers II and III of the mouse cingulate cortex: A combined immunofluorescence/design-based stereologic study.

    Science.gov (United States)

    Riedemann, Therese; Schmitz, Christoph; Sutor, Bernd

    2016-08-01

    Many neurological diseases including major depression and schizophrenia manifest as dysfunction of the GABAergic system within the cingulate cortex. However, relatively little is known about the properties of GABAergic interneurons in the cingulate cortex. Therefore, we investigated the neurochemical properties of GABAergic interneurons in the cingulate cortex of FVB-Tg(GadGFP)45704Swn/J mice expressing green fluorescent protein (GFP) in a subset of GABAergic interneurons (GFP-expressing inhibitory interneurons [GINs]) by means of immunocytochemical and design-based stereologic techniques. We found that GINs represent around 12% of all GABAergic interneurons in the cingulate cortex. In contrast to other neocortical areas, GINs were only found in cortical layers II and III. More than 98% of GINs coexpressed the neuropeptide somatostatin (SOM), but only 50% of all SOM + neurons were GINs. By analyzing the expression of calretinin (CR), calbindin (CB), parvalbumin, and various neuropeptides, we identified several distinct GIN subgroups. In particular, we observed coexpression of SOM with CR and CB. In addition, we found neuropeptide Y expression almost exclusively in those GINs that coexpressed SOM and CR. Thus, with respect to the expression of calcium-binding proteins and neuropeptides, GINs are surprisingly heterogeneous in the mouse cingulate cortex, and the minority of GINs express only one marker protein or peptide. Furthermore, our observation of overlap between the SOM + and CR + interneuron population was in contrast to earlier findings of non-overlapping SOM + and CR + interneuron populations in the human cortex. This might indicate that findings in mouse models of neuropsychiatric diseases may not be directly transferred to human patients. J. Comp. Neurol. 524:2281-2299, 2016. © 2015 Wiley Periodicals, Inc. PMID:26669716

  11. Opposite effective connectivity in the posterior cingulate and medial prefrontal cortex between first-episode schizophrenic patients with suicide risk and healthy controls.

    Directory of Open Access Journals (Sweden)

    Huiran Zhang

    Full Text Available OBJECTIVE: The schizophrenic patients with high suicide risk are characterized by depression, better cognitive function, and prominent positive symptoms. However, the neurobiological basis of suicide attempts in schizophrenia is not clear. The suicide in schizophrenia is implicated in the defects in emotional process and decision-making, which are associated with prefrontal-cingulate circuit. In order to explore the possible neurobiological basis of suicide in schizophrenia, we investigated the correlation of prefrontal-cingulate circuit with suicide risk in schizophrenia via dynamic casual modelling. METHOD: Participants were 33 first-episode schizophrenic patients comprising of a high suicide risk group (N = 14 and a low suicide risk group (N = 19. A comparison group of healthy controls (N = 15 were matched for age, gender and education. N-back tasking functional magnetic resonance imaging data was collected. RESULTS: Compared with healthy controls group, the two patients groups showed decreased task-related suppression during 2-back task state versus baseline state in the left posterior cingulate and medial prefrontal cortex; the hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex existed in both schizophrenic patients groups, but hypo-connectivity in the opposite direction only existed in the schizophrenic patients group with high suicide risk. CONCLUSIONS: The hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex may suggest that the abnormal effective connectivity was associated with risk for schizophrenia. The hypo-connectivity in the opposite direction may represent a possible correlate of increased vulnerability to suicide attempt.

  12. Decreases in blood perfusion of the anterior cingulate gyri in Anorexia Nervosa Restricters assessed by SPECT image analysis

    Directory of Open Access Journals (Sweden)

    Tsutsui Junko

    2001-06-01

    Full Text Available Abstract Background It is possible that psychopathological differences exist between the restricting and bulimic forms of anorexia nervosa. We investigated localized differences of brain blood flow of anorexia nervosa patients using SPECT image analysis with statistic parametric mapping (SPM in an attempt to link brain blood flow patterns to neurophysiologic characteristics. Methods The subjects enrolled in this study included the following three groups: pure restrictor anorexics (AN-R, anorexic bulimics (AN-BP, and healthy volunteers (HV. All images were transformed into the standard anatomical space of the stereotactic brain atlas, then smoothed. After statistical analysis of each brain image, the relationships among images were evaluated. Results SPM analysis of the SPECT images revealed that the blood flow of frontal area mainly containing bilateral anterior cingulate gyri (ACC was significantly decreased in the AN-R group compared to the AN-BP and HV groups. Conclusions These findings suggest that some localized functions ofthe ACCare possibly relevant to the psychopathological aspects of AN-R.

  13. Anterior Cingulate Cortex Activation Is Related to Learning Potential on the WCST in Schizophrenia Patients

    Science.gov (United States)

    Pedersen, Anya; Wilmsmeier, Andreas; Wiedl, Karl H.; Bauer, Jochen; Kueppers, Kerstin; Koelkebeck, Katja; Kohl, Waldemar; Kugel, Harald; Arolt, Volker; Ohrmann, Patricia

    2012-01-01

    The remediation of executive function in patients with schizophrenia is important in rehabilitation because these skills affect the patient's capacity to function in the community. There is evidence that instructional techniques can improve deficits in the Wisconsin Card Sorting Test (WCST) in some schizophrenia patients. We used a standard…

  14. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    NARCIS (Netherlands)

    Piai, V.; Roelofs, A.P.A.; Acheson, D.J.; Takashima, A.

    2013-01-01

    ulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and mon

  15. Frontal and anterior cingulate activation during overt verbal fluency in patients with first episode psychosis Ativação frontal e do cíngulo anterior durante tarefa de fluência verbal em pacientes em primeiro episódio psicótico

    Directory of Open Access Journals (Sweden)

    Maristela Schaufelberger

    2005-09-01

    Full Text Available OBJECTIVE: Functional neuroimaging studies using phonological verbal fluency tasks allow the assessment of neural circuits relevant to the neuropsychology of psychosis. There is evidence that the prefrontal cortex and anterior cingulate gyrus present different activation patterns in subjects with chronic schizophrenia relative to healthy controls. We assessed the functioning in these brain regions during phonological verbal fluency in subjects with recent-onset functional psychoses, using functional magnetic resonance imaging (FMRI. METHODS: Seven patients with functional psychoses (3 schizophreniform, 4 affective and 9 healthy controls were studied. We compared functional magnetic resonance images acquired during articulation of words beginning with letters classified as easy for word production in Portuguese. Statistical comparisons were performed using non-parametric tests. RESULTS: There were no differences between patients and controls in task performance. Controls showed greater activation than patients in the left rostral anterior cingulate gyrus and right inferior prefrontal cortex, whereas patients showed stronger activation than controls in a more dorsal part of the anterior cingulate gyrus bilaterally and in a more superior portion of the right prefrontal cortex. CONCLUSION: Our preliminary findings of attenuated engagement of inferior prefrontal cortex and anterior cingulate gyrus in patients with recent onset psychosis during phonological verbal fluency are consistent with those of previous studies. The greater activation found in other parts of the anterior cingulate gyrus and prefrontal cortex in patients may be related to a compensatory response that is required to maintain normal task performance, and suggests a pattern of disorganized activity of different functional anterior cingulate gyrus units in association with psychotic conditions.OBJETIVO: Estudos de neuroimagem funcional empregando tarefa de fluência verbal fonol

  16. Functional magnetic resonance imaging evaluation of visual cortex activation in patients with anterior visual pathway lesions

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Song; Guohua Wang; Tong Zhang; Lei Feng; Peng An; Yueli Zhu

    2012-01-01

    The aim of this study was to examine the secondary visual cortex functional disorder in patients with glaucoma and large pituitary adenoma by functional magnetic resonance imaging, and to determine the correlation between visual field defect and primary visual cortex activation. Results showed that single eye stimulation resulted in bilateral visual cortex activation in patients with glaucoma or large pituitary adenoma. Compared with the normal control group, the extent and intensity of visual cortex activation was decreased after left and right eye stimulation, and functional magnetic resonance imaging revealed a correlation between visual field defects and visual cortex activation in patients with glaucoma and large pituitary adenoma. These functional magnetic resonance imaging data suggest that anterior optic pathway lesions can cause secondary functional disorder of the visual cortex, and that visual defects are correlated with visual cortex activation.

  17. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    OpenAIRE

    Hiroki eNakata; Kiwako eSakamoto; Ryusuke eKakigi

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI), and neurophysiological methods, such as magnetoencephalography (MEG) and electroencephalography (EEG), have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural response...

  18. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus. PMID:18574518

  19. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mark R. Winter

    2015-10-01

    Full Text Available Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.

  20. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells.

    Science.gov (United States)

    Winter, Mark R; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K; Temple, Sally; Cohen, Andrew R

    2015-10-13

    Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  1. Inter-individual decision-making differences in the effects of cingulate, orbitofrontal and prelimbic cortex lesions in a rat gambling task

    Directory of Open Access Journals (Sweden)

    Françoise Dellu-Hagedorn

    2011-04-01

    Full Text Available Deficits in decision-making is a hallmark of several neuropsychiatric pathologies but is also observed in some healthy individuals that could be at risk to develop these pathologies. Poor decision-making can be revealed experimentally in humans using the Iowa Gambling Task (IGT, through the inability to select options that ensure long term gains over larger immediate gratification. We devised an analogous task in the rat, based on uncertainty and conflicting choices, the Rat Gambling Task (RGT. It similarly reveals good and poor performers within a single session. Using this task, we investigated the role of three prefrontal cortical areas, the orbitofrontal, prelimbic and cingulate cortices on decision-making, taking into account inter-individual variability in behavioural performances. Here, we show that these three distinct subregions are differentially engaged to solve the RGT. Cingulate cortex lesion mainly delayed good decision-making whereas prelimbic and orbitofrontal cortices induced different patterns of inadapted behaviors in the task, indicating varying degree of functional specialization of these three areas. Their contribution largely depended on the level of adaptability demonstrated by each individual to the constraint of the task. The inter-individual differences in prefrontal cortex areas recruitment during decision-making revealed in this study open new perspectives in the search for vulnerability markers to develop disorders related to executive dysfunctioning.

  2. Structural and Functional Dichotomy of Human Midcingulate Cortex

    OpenAIRE

    Vogt, Brent A.; Berger, Gail R.; Derbyshire, Stuart W G

    2003-01-01

    Anterior cingulate cortex is comprised of perigenual and midcingulate regions based on cytology, imaging, and connections. Its anterior (aMCC) and posterior (pMCC) parts and transition to posterior area 23 were evaluated in 6 human cingulate gyri with Nissl-staining and immunoreactions for neuron-specific nuclear binding protein and intermediate neurofilament proteins (NFP) and their pain and emotion functions evaluated in standard coordinates. Morphological differences included a poorly diff...

  3. Neural Selectivity in Anterior Inferotemporal Cortex for Morphed Photographic Images During Behavioral Classification or Fixation

    OpenAIRE

    Liu, Yan; Jagadeesh, Bharathi

    2008-01-01

    Anterior inferotemporal cortex (aIT) contributes to the ability to discriminate and classify complex images. To determine whether and what proportion of single neurons in aIT cortex can yield enough information to classify complex images, we recorded from aIT neurons during the presentation of morphed photographic images in sessions in which monkeys classified images in a two alternative forced-choice—delayed-match-to-sample (2AFC-DMS) task or in sessions in which they performed a fixation ta...

  4. Increased anterior cingulate and temporal lobe activity during visuospatial working memory in children and adolescents with schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); D. Hongwanishkul (Donaya); M. Schmidt (Manfred)

    2011-01-01

    textabstractObjective: Similar to adults, children and adolescents with schizophrenia present with significant working memory (WkM) deficits. However, unlike adults, findings of abnormal activity in the prefrontal cortex in early-onset schizophrenia (EOS) are not consistently reported. Since WkM con

  5. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: A 1H-MRS study

    International Nuclear Information System (INIS)

    Objective: To study age-related metabolic changes in N-acetylaspartate (NAA), total creatine (tCr), choline (Cho) and myo-inositol (Ins). Materials and methods: Proton magnetic resonance spectroscopy (1H-MRS) was performed in the posterior cingulate cortex (PCC) and the left hippocampus (HC) of 90 healthy subjects (42 women and 48 men aged 18–76 years, mean ± SD, 48.4 ± 16.8 years). Both metabolite ratios and absolute metabolite concentrations were evaluated. Analysis of covariance (ANCOVA) and linear regression were used for statistical analysis. Results: Metabolite ratios Ins/tCr and Ins/H2O were found significantly increased with age in the PCC (P 2O was only observed in the PCC (P 1H-MRS results in these specific brain regions can be important to differentiate normal ageing from age-related pathologies such as mild cognitive impairment (MCI) and Alzheimer's disease.

  6. Posterior cingulate cortex-related co-activation patterns: a resting state FMRI study in propofol-induced loss of consciousness.

    Directory of Open Access Journals (Sweden)

    Enrico Amico

    Full Text Available BACKGROUND: Recent studies have been shown that functional connectivity of cerebral areas is not a static phenomenon, but exhibits spontaneous fluctuations over time. There is evidence that fluctuating connectivity is an intrinsic phenomenon of brain dynamics that persists during anesthesia. Lately, point process analysis applied on functional data has revealed that much of the information regarding brain connectivity is contained in a fraction of critical time points of a resting state dataset. In the present study we want to extend this methodology for the investigation of resting state fMRI spatial pattern changes during propofol-induced modulation of consciousness, with the aim of extracting new insights on brain networks consciousness-dependent fluctuations. METHODS: Resting-state fMRI volumes on 18 healthy subjects were acquired in four clinical states during propofol injection: wakefulness, sedation, unconsciousness, and recovery. The dataset was reduced to a spatio-temporal point process by selecting time points in the Posterior Cingulate Cortex (PCC at which the signal is higher than a given threshold (i.e., BOLD intensity above 1 standard deviation. Spatial clustering on the PCC time frames extracted was then performed (number of clusters = 8, to obtain 8 different PCC co-activation patterns (CAPs for each level of consciousness. RESULTS: The current analysis shows that the core of the PCC-CAPs throughout consciousness modulation seems to be preserved. Nonetheless, this methodology enables to differentiate region-specific propofol-induced reductions in PCC-CAPs, some of them already present in the functional connectivity literature (e.g., disconnections of the prefrontal cortex, thalamus, auditory cortex, some others new (e.g., reduced co-activation in motor cortex and visual area. CONCLUSION: In conclusion, our results indicate that the employed methodology can help in improving and refining the characterization of local

  7. Posterior Cingulate Cortex-Related Co-Activation Patterns: A Resting State fMRI Study in Propofol-Induced Loss of Consciousness

    Science.gov (United States)

    Amico, Enrico; Gomez, Francisco; Di Perri, Carol; Vanhaudenhuyse, Audrey; Lesenfants, Damien; Boveroux, Pierre; Bonhomme, Vincent; Brichant, Jean-François; Marinazzo, Daniele; Laureys, Steven

    2014-01-01

    Background Recent studies have been shown that functional connectivity of cerebral areas is not a static phenomenon, but exhibits spontaneous fluctuations over time. There is evidence that fluctuating connectivity is an intrinsic phenomenon of brain dynamics that persists during anesthesia. Lately, point process analysis applied on functional data has revealed that much of the information regarding brain connectivity is contained in a fraction of critical time points of a resting state dataset. In the present study we want to extend this methodology for the investigation of resting state fMRI spatial pattern changes during propofol-induced modulation of consciousness, with the aim of extracting new insights on brain networks consciousness-dependent fluctuations. Methods Resting-state fMRI volumes on 18 healthy subjects were acquired in four clinical states during propofol injection: wakefulness, sedation, unconsciousness, and recovery. The dataset was reduced to a spatio-temporal point process by selecting time points in the Posterior Cingulate Cortex (PCC) at which the signal is higher than a given threshold (i.e., BOLD intensity above 1 standard deviation). Spatial clustering on the PCC time frames extracted was then performed (number of clusters = 8), to obtain 8 different PCC co-activation patterns (CAPs) for each level of consciousness. Results The current analysis shows that the core of the PCC-CAPs throughout consciousness modulation seems to be preserved. Nonetheless, this methodology enables to differentiate region-specific propofol-induced reductions in PCC-CAPs, some of them already present in the functional connectivity literature (e.g., disconnections of the prefrontal cortex, thalamus, auditory cortex), some others new (e.g., reduced co-activation in motor cortex and visual area). Conclusion In conclusion, our results indicate that the employed methodology can help in improving and refining the characterization of local functional changes in the

  8. Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.

    Science.gov (United States)

    Reid, Andrew T; Bzdok, Danilo; Langner, Robert; Fox, Peter T; Laird, Angela R; Amunts, Katrin; Eickhoff, Simon B; Eickhoff, Claudia R

    2016-06-01

    Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of

  9. Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex.

    Science.gov (United States)

    Michalka, Samantha W; Rosen, Maya L; Kong, Lingqiang; Shinn-Cunningham, Barbara G; Somers, David C

    2016-03-01

    Audition and vision both convey spatial information about the environment, but much less is known about mechanisms of auditory spatial cognition than visual spatial cognition. Human cortex contains >20 visuospatial map representations but no reported auditory spatial maps. The intraparietal sulcus (IPS) contains several of these visuospatial maps, which support visuospatial attention and short-term memory (STM). Neuroimaging studies also demonstrate that parietal cortex is activated during auditory spatial attention and working memory tasks, but prior work has not demonstrated that auditory activation occurs within visual spatial maps in parietal cortex. Here, we report both cognitive and anatomical distinctions in the auditory recruitment of visuotopically mapped regions within the superior parietal lobule. An auditory spatial STM task recruited anterior visuotopic maps (IPS2-4, SPL1), but an auditory temporal STM task with equivalent stimuli failed to drive these regions significantly. Behavioral and eye-tracking measures rule out task difficulty and eye movement explanations. Neither auditory task recruited posterior regions IPS0 or IPS1, which appear to be exclusively visual. These findings support the hypothesis of multisensory spatial processing in the anterior, but not posterior, superior parietal lobule and demonstrate that recruitment of these maps depends on auditory task demands. PMID:26656996

  10. Medial cortex activity, self-reflection and depression

    OpenAIRE

    Johnson, Marcia K.; Nolen-Hoeksema, Susan; Mitchell, Karen J.; Levin, Yael

    2009-01-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and o...

  11. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex

    OpenAIRE

    Loh, Kep Kee; Kanai, Ryota

    2014-01-01

    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multi...

  12. BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects

    OpenAIRE

    Gerritsen, Lotte; Tendolkar, Indira; Franke, Barbara; Arias Vasquez, Alejandro; Kooijman, Sabine; Buitelaar, Jan; Fernández, Guillén; Rijpkema, Mark

    2011-01-01

    Abstract According to the neurotrophic hypothesis of depression, stress can lead to brain atrophy by modifying brain-derived neurotrophic factor (BDNF) levels. Given that BDNF secretion is affected by a common polymorphism (rs6265, Val66Met), which also is associated with depression, we investigated whether this polymorphism modifies the effect of childhood adversity (CA) on local gray matter volume in depression-relevant brain regions using data from two large cohorts of healthy s...

  13. Structural basis of empathy and the domain general region in the anterior insular cortex

    Directory of Open Access Journals (Sweden)

    Isabella Mutschler

    2013-05-01

    Full Text Available Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises emotional and cognitive components, such as feeling and knowing what another person is feeling, and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person’s feelings and to reduce another person’s pain. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed by using a widely used and validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex determined by activation likelihood estimate (ALE meta-analysis of previous functional imaging studies. We found that gray matter density in the left dorsal anterior insular cortex correlates with empathy and that this area overlaps with the domain general region of the anterior insula that is situated in-between functional systems involved in emotion-cognition, pain and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy might play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy.

  14. Genetic Variation in the Catechol-O-Methyl Transferase Val108/158Met Is Linked to the Caudate and Posterior Cingulate Cortex Volume in Healthy Subjects: Voxel-Based Morphometry Analysis of Brain Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Keita Watanabe

    Full Text Available The effect of the catechol-O-methyltransferase (COMT Val158Met polymorphism on brain morphology has been investigated but remains controversial. We hypothesized that a comparison between Val/Val and Val/Met individuals, which may represent the most different combinations concerning the effects of the COMT genotype, may reveal new findings. We investigated the brain morphology using 3-Tesla magnetic resonance imaging in 27 Val/Val and 22 Val/Met individuals. Voxel-based morphometry revealed that the volumes of the bilateral caudate and posterior cingulate cortex were significantly smaller in Val/Val individuals than in Val/Met individuals [right caudate: false discovery rate (FDR-corrected p = 0.048; left caudate: FDR-corrected p = 0.048; and bilateral posterior cingulate cortex: FDR-corrected p = 0.048]. This study demonstrates that interacting functional variants of COMT affect gray matter regional volumes in healthy subjects.

  15. Role of anterior piriform cortex in the acquisition of conditioned flavour preference.

    Science.gov (United States)

    Mediavilla, Cristina; Martin-Signes, Mar; Risco, Severiano

    2016-01-01

    Flavour aversion learning (FAL) and conditioned flavour preference (CFP) facilitate animal survival and play a major role in food selection, but the neurobiological mechanisms involved are not completely understood. Neuroanatomical bases of CFP were examined by using Fos immunohistochemistry to record neuronal activity. Rats were trained over eight alternating one-bottle sessions to acquire a CFP induced by pairing a flavour with saccharin (grape was CS+ in Group 1; cherry in Group 2; in Group 3, grape/cherry in half of animals; Group 4, grape/cherry in water). Animals were offered the grape flavour on the day immediately after the training and their brains were processed for c-Fos. Neurons evidencing Fos-like immunoreactivity were counted in the infralimbic cortex, nucleus accumbens core, and anterior piriform cortex (aPC). Analysis showed a significantly larger number of activated cells after learning in the aPC alone, suggesting that the learning process might have produced a change in this cortical region. Ibotenic lesions in the aPC blocked flavour-taste preference but did not interrupt flavour-toxin FAL by LiCl. These data suggest that aPC cells may be involved in the formation of flavour preferences and that the integrity of this region may be specifically necessary for the acquisition of a CFP. PMID:27624896

  16. Learning increases stimulus salience in anterior inferior temporal cortex of the macaque.

    Science.gov (United States)

    Jagadeesh, B; Chelazzi, L; Mishkin, M; Desimone, R

    2001-07-01

    With experience, an object can become behaviorally relevant and thereby quickly attract our interest when presented in a visual scene. A likely site of these learning effects is anterior inferior temporal (aIT) cortex, where neurons are thought to participate in the filtering of irrelevant information out of complex visual displays. We trained monkeys to saccade consistently to one of two pictures in an array, in return for a reward. The array was constructed by pairing two stimuli, one of which elicited a good response from the cell when presented alone ("good" stimulus) and the other of which elicited a poor response ("poor" stimulus). The activity of aIT cells was recorded while monkeys learned to saccade to either the good or poor stimulus in the array. We found that neuronal responses to the array were greater (before the saccade occurred) when training reinforced a saccade to the good stimulus than when training reinforced a saccade to the poor stimulus. This difference was not present on incorrect trials, i.e., when saccades to the incorrect stimulus were made. Thus the difference in activity was correlated with performance. The response difference grew over the course of the recording session, in parallel with the improvement in performance. The response difference was not preceded by a difference in the baseline activity of the cells, unlike what was found in studies of cued visual search and working memory in aIT cortex. Furthermore, we found similar effects in a version of the task in which any of 10 possible pairs of stimuli, prelearned before the recording session, could appear on a given trial, thereby precluding a working memory strategy. The results suggest that increasing the behavioral significance of a stimulus through training alters the neural representation of that stimulus in aIT cortex. As a result, neurons responding to features of the relevant stimulus may suppress neurons responding to features of irrelevant stimuli. PMID:11431510

  17. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    OpenAIRE

    Goldstein, Rita Z.; Woicik, Patricia A.; Maloney, Thomas; Tomasi, Dardo; Alia-Klein, Nelly; Shan, Juntian; Honorio, Jean; Samaras, Dimitris; Wang, Ruiliang; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D.

    2010-01-01

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in in...

  18. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex

    OpenAIRE

    Chandler, Daniel J.

    2012-01-01

    The prefrontal cortex (PFC) is implicated in a variety of cognitive and executive operations. However, this region is not a single functional unit; rather, it is composed of several functionally and anatomically distinct networks, including anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). These prefrontal subregions serve dissociable behavioral functions, and are unique in their afferent and efferent connections. Each of these subregions is inne...

  19. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David;

    2009-01-01

    Mood disorders are elicited through a combination of genetic and environmental stress factors, and treatment with selective serotonin reuptake inhibitors ameliorates depressive symptoms. Changes in the serotonin transporter (SERT) binding may therefore occur in depressive patients and in subjects...... measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35...

  20. Cingulate and thalamic metabolites in obsessive-compulsive disorder.

    Science.gov (United States)

    O'Neill, Joseph; Lai, Tsz M; Sheen, Courtney; Salgari, Giulia C; Ly, Ronald; Armstrong, Casey; Chang, Susanna; Levitt, Jennifer G; Salamon, Noriko; Alger, Jeffry R; Feusner, Jamie D

    2016-08-30

    Focal brain metabolic effects detected by proton magnetic resonance spectroscopy (MRS) in obsessive-compulsive disorder (OCD) represent prospective indices of clinical status and guides to treatment design. Sampling bilateral pregenual anterior cingulate cortex (pACC), anterior middle cingulate cortex (aMCC), and thalamus in 40 adult patients and 16 healthy controls, we examined relationships of the neurometabolites glutamate+glutamine (Glx), creatine+phosphocreatine (Cr), and choline-compounds (Cho) with OCD diagnosis and multiple symptom types. The latter included OC core symptoms (Yale-Brown Obsessive-Compulsive Scale - YBOCS), depressive symptoms (Montgomery-Åsberg Depression Rating Scale - MADRS), and general functioning (Global Assessment Scale - GAS). pACC Glx was 9.7% higher in patients than controls. Within patients, Cr and Cho correlated negatively with YBOCS and MADRS, while Cr correlated positively with the GAS. In aMCC, Cr and Cho correlated negatively with MADRS, while Cr in thalamus correlated positively with GAS. These findings present moderate support for glutamatergic and cingulocentric perspectives on OCD. Based on our prior metabolic model of OCD, we offer one possible interpretation of these group and correlational effects as consequences of a corticothalamic state of elevated glutamatergic receptor activity alongside below-normal glutamatergic transporter activity. PMID:27317876

  1. Specialized Pathways from the Primate Amygdala to Posterior Orbitofrontal Cortex

    OpenAIRE

    Timbie, Clare; Barbas, Helen

    2014-01-01

    The primate amygdala sends dense projections to posterior orbitofrontal cortex (pOFC) in pathways that are critical for processing emotional content, but the synaptic mechanisms are not understood. We addressed this issue by investigating pathways in rhesus monkeys (Macaca mulatta) from the amygdala to pOFC at the level of the system and synapse. Terminations from the amygdala were denser and larger in pOFC compared with the anterior cingulate cortex, which is also strongly connected with the...

  2. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    International Nuclear Information System (INIS)

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  3. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  4. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge.

    Science.gov (United States)

    Hoffman, Paul; Binney, Richard J; Lambon Ralph, Matthew A

    2015-02-01

    Semantic cognition is underpinned by regions involved in representing conceptual knowledge and executive control areas that provide regulation of this information according to current task requirements. Using distortion-corrected fMRI, we investigated the contributions of these two systems to abstract and concrete word comprehension. We contrasted semantic decisions made either with coherent contextual support, which encouraged retrieval of a rich conceptual representation, or with irrelevant contextual information, which instead maximised demands on control processes. Inferior prefrontal cortex was activated more when decisions were made in the presence of irrelevant context, suggesting that this region is crucial for the semantic control functions required to select appropriate aspects of meaning in the face of competing information. It also exhibited greater activation for abstract words, which reflects the fact that abstract words tend to have variable, context-dependent meanings that place higher demands on control processes. In contrast, anterior temporal regions (ATL) were most active when decisions were made with the benefit of a coherent context, suggesting a representational role. There was a graded shift in concreteness effects in this region, with dorsolateral areas particularly active for abstract words and ventromedial areas preferentially activated by concrete words. This supports the idea that concrete concepts are closely associated with visual experience and abstract concepts with auditory-verbal information; and that sub-regions of the ATL display graded specialisation for these two types of knowledge. Between these two extremes, we identified significant activations for both word types in ventrolateral ATL. This area is known to be involved in representing knowledge for concrete concepts; here we established that it is also activated by abstract concepts. These results converge with data from rTMS and neuropsychological investigations in

  5. Medial cortex activity, self-reflection and depression.

    Science.gov (United States)

    Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael

    2009-12-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so. PMID:19620180

  6. Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex

    OpenAIRE

    Michalka, Samantha W.; Rosen, Maya L.; Kong, Lingqiang; Shinn-Cunningham, Barbara G.; Somers, David C.

    2015-01-01

    Audition and vision both convey spatial information about the environment, but much less is known about mechanisms of auditory spatial cognition than visual spatial cognition. Human cortex contains >20 visuospatial map representations but no reported auditory spatial maps. The intraparietal sulcus (IPS) contains several of these visuospatial maps, which support visuospatial attention and short-term memory (STM). Neuroimaging studies also demonstrate that parietal cortex is activated during au...

  7. Evolutionary appearance of von Economo’s neurons in the mammalian cerebral cortex

    OpenAIRE

    Alessandro Vercelli

    2014-01-01

    von Economo’s neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like socia...

  8. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment.

    Science.gov (United States)

    Köbe, Theresa; Witte, A Veronica; Schnelle, Ariane; Lesemann, Anne; Fabian, Sonja; Tesky, Valentina A; Pantel, Johannes; Flöel, Agnes

    2016-05-01

    Previous studies in older adults suggested beneficial effects of omega-3 fatty acid (FA) supplementation, aerobic exercise, or cognitive stimulation on brain structure and function. However, combined effects of these interventions in patients suffering from mild cognitive impairment (MCI) are unknown. Using a randomized interventional design, we evaluated the effect of combined omega-3 FA supplementation, aerobic exercise and cognitive stimulation (target intervention) versus omega-3 FA supplementation and non-aerobic exercise (control intervention) on cognitive function and gray matter volume in patients with MCI. Moreover, we analyzed potential vascular, metabolic or inflammatory mechanisms underlying these effects. Twenty-two MCI patients (8 females; 60-80years) successfully completed six months of omega-3 FA intake, aerobic cycling training and cognitive stimulation (n=13) or omega-3 FA intake and non-aerobic stretching and toning (n=9). Before and after the interventions, cognitive performance, magnetic resonance imaging of the brain at 3T (n=20), intima-media thickness of the internal carotid artery and serum markers of glucose control, lipid and B-vitamin metabolism, and inflammation were assessed. Intervention-related changes in gray matter volume of Alzheimer's disease (AD)-related brain regions, i.e., frontal, parietal, temporal and cingulate cortex were examined using voxel-based morphometry of high resolution T1-weighted images. After the intervention period, significant differences emerged in brain structure between groups: Gray matter volume decreased in the frontal, parietal and cingulate cortex of patients in the control intervention, while gray matter volume in these areas was preserved or even increased after the target intervention. Decreases in homocysteine levels in the target intervention group were associated with increases in gray matter volume in the middle frontal cortex (p=0.010). No significant differences in cognitive performance or

  9. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: preliminary evidence for the energetic effects of an intention-based treatment modality on human neurophysiology.

    OpenAIRE

    Pike, C.; Vernon, D.; Hald, L.

    2014-01-01

    Objectives: Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anterior asymmetric activation may mediate the energetic effects of intention-based biofield treatments as well. The aim of the current study was to test this hypothesis by using a treatment ...

  10. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anteri

  11. Cytology and Functionally Correlated Circuits of Human Posterior Cingulate Areas

    OpenAIRE

    Vogt, Brent A.; Vogt, Leslie; Laureys, Steven

    2005-01-01

    Human posterior cingulate cortex (PCC) and retrosplenial cortex (RSC) form the posterior cingulate gyrus, however, monkey connection and human imaging studies suggest that PCC area 23 is not uniform and atlases mislocate RSC. We histologically assessed these regions in 6 postmortem cases, plotted a flat map, and characterized differences in dorsal (d) and ventral (v) area 23. Subsequently, functional connectivity of histologically guided regions of interest (ROI) were assessed in 163 [18F]flu...

  12. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  13. Impaired Bottom-Up Effective Connectivity Between Amygdala and Subgenual Anterior Cingulate Cortex in Unmedicated Adolescents with Major Depression: Results from a Dynamic Causal Modeling Analysis.

    Science.gov (United States)

    Musgrove, Donald R; Eberly, Lynn E; Klimes-Dougan, Bonnie; Basgoze, Zeynep; Thomas, Kathleen M; Mueller, Bryon A; Houri, Alaa; Lim, Kelvin O; Cullen, Kathryn R

    2015-12-01

    Major depressive disorder (MDD) is a significant contributor to lifetime disability and frequently emerges in adolescence, yet little is known about the neural mechanisms of MDD in adolescents. Dynamic causal modeling (DCM) analysis is an innovative tool that can shed light on neural network abnormalities. A DCM analysis was conducted to test several frontolimbic effective connectivity models in 27 adolescents with MDD and 21 healthy adolescents. The best neural model for each person was identified using Bayesian model selection. The findings revealed that the two adolescent groups fit similar optimal neural models. The best across-groups model was then used to infer upon both within-group and between-group tests of intrinsic and modulation parameters of the network connections. First, for model validation, within-group tests revealed robust evidence for bottom-up connectivity, but less evidence for strong top-down connectivity in both groups. Second, we tested for differences between groups on the validated parameters of the best model. This revealed that adolescents with MDD had significantly weaker bottom-up connectivity in one pathway, from amygdala to sgACC (p=0.008), than healthy controls. This study provides the first examination of effective connectivity using DCM within neural circuitry implicated in emotion processing in adolescents with MDD. These findings aid in advancing understanding the neurobiology of early-onset MDD during adolescence and have implications for future research investigating how effective connectivity changes across contexts, with development, over the course of the disease, and after intervention. PMID:26050933

  14. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    OpenAIRE

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant re...

  15. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques

    OpenAIRE

    Wacker, Jan; Pizzagalli, Diego A.; Dillon, Daniel G.

    2009-01-01

    Anhedonia, the reduced propensity to experience pleasure, is a promising endo-- phenotype and vulnerability factor for several psychiatric disorders, including depression and schizophrenia. In the present study, we used resting electroencephalography, functional magnetic resonance imaging, and volumetric analyses to probe putative associations between anhedonia and individual differences in key nodes of the brain's reward system in a non-clinical sample. We found that anhedonia, but not other...

  16. Working Memory Performance Is Correlated with Local Brain Morphology in the Medial Frontal and Anterior Cingulate Cortex in Fibromyalgia Patients: Structural Correlates of Pain-Cognition Interaction

    Science.gov (United States)

    Luerding, R.; Weigand, T.; Bogdahn, U.; Schmidt-Wilcke, T.

    2008-01-01

    Fibromyalgia (FM) is a disorder of unknown aetiology, characterized by chronic widespread pain, stiffness and sleep disturbances. In addition, patients frequently complain of memory and attention deficits. Accumulating evidence suggests that FM is associated with CNS dysfunction and with an altered brain morphology. However, few studies have…

  17. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism

    OpenAIRE

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken’ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-01-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then...

  18. Attracting states in anterior cingulate cortex populations associated with decision making: Altered dynamics when targeting dopamine system with d-Amphetamine

    OpenAIRE

    Emili Balaguer-Ballester; Lapish, Christopher C; Seamans, Jeremy K.

    2011-01-01

    A frequent hypothesis in theoretical neuroscience is that cognitive entities are represented and processed by attracting states of the underlying neural system (Balaguer et al., 2011; Durstewitz et al., 2000). For instance, different attractor-like states may represent different spatial locations or cognitive entities, and transitions between these attracting sets could be associated with the recall of a memory sequence or the execution of a motor plan. Attractor states underlying cognition w...

  19. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    Science.gov (United States)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  20. Subliminal versus supraliminal stimuli activate neural responses in anterior cingulate cortex, fusiform gyrus and insula: a meta-analysis of fMRI studies

    OpenAIRE

    Meneguzzo, Paolo; Tsakiris, Manos; Schioth, Helgi B.; Dan J Stein; Brooks, Samantha J.

    2014-01-01

    Background Non-conscious neural activation may underlie various psychological functions in health and disorder. However, the neural substrates of non-conscious processing have not been entirely elucidated. Examining the differential effects of arousing stimuli that are consciously, versus unconsciously perceived will improve our knowledge of neural circuitry involved in non-conscious perception. Here we conduct preliminary analyses of neural activation in studies that have used both sublimina...

  1. Modulation by context of a scene in monkey anterior inferotemporal cortex during a saccadic eye movement task

    Directory of Open Access Journals (Sweden)

    BRUSS LIMA

    2003-03-01

    Full Text Available We investigated the effect of a scene on the activity of cells in the anterior inferotemporal (AIT cortex while the monkey performed a saccadic eye movement (SEM task with and without the context of a scene (gray frame. Most neurons did not code for the presence of a scene when it appeared alone (monkey free viewing or when the monkey was fixating. Nevertheless, when a peripheral target was turned on and the monkey had to make a SEM to it, some cells were capable of differentially coding the presence of the scene before and after the saccade.Nós investigamos o efeito de uma cena na atividade de células do córtex inferotemporal anterior enquanto o macaco executava uma tarefa de movimento sacádico dos olhos, com e sem o contexto de uma cena (moldura retangular cinza. A maioria dos neurônios não codificou a presença da cena quando ela foi apresentada sozinha no campo visual e o animal estava livre para mover os olhos (macaco na condição de visão livre ou quando o animal estava fixando um alvo na tela. No entanto, quando um alvo periférico era apresentado e o animal tinha que fazer um movimento sacádico para o alvo, algumas células foram capazes de codificar diferencialmente a presença da cena antes ou depois de um movimento sacádico.

  2. Diffusional kurtosis imaging of cingulate fibers in Parkinson disease. Comparison with conventional diffusion tensor imaging. President award proceedings

    International Nuclear Information System (INIS)

    In Parkinson disease (PD), the primary neuropathological changes begin in the brain stem and extend to the limbic system and finally into the cerebral cortex. We used diffusional kurtosis imaging (DKI) to evaluate the alteration of cingulate fibers that constitute a part of the limbic system. Seventeen patients with PD (mean age, 65.0 years±9.3 [standard deviation]) and 15 age-matched healthy controls (mean age, 64.0 years±12.7 [standard deviation]) underwent diffusion kurtosis imaging with a 3-tesla magnetic resonance (MR) imager. From generated diffusion tensor tractography of the anterior and posterior cingulate fiber tracts (CFTs), we measured the mean kurtosis (MK) and conventional diffusion tensor parameters along those tracts and compared them between patients and controls. We also performed receiver operating characteristic (ROC) analysis to compare the ability of the MK and conventional diffusion tensor parameters for diagnosing PD. MK and fractional anisotropy (FA) in the anterior CFTs were significantly lower in patients with PD than in healthy controls. The areas under the ROC curve (AUC) were 0.912 for the MK and 0.747 for the FA in the anterior CFTs. The mean kurtosis in the anterior CFTs had the best diagnostic ability for PD (mean cutoff, 0.967; sensitivity, 0.87; specificity, 0.94) DKI can more sensitively detect changes in the anterior cingulate fibers in patients with PD than conventional diffusion tensor imaging (DTI) and is expected to improve the ability to diagnose PD. (author)

  3. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    OpenAIRE

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R.; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate ...

  4. Dysfunction of the Left Dorsolateral Prefrontal Cortex is Primarily Responsible for Impaired Attentional Processing in Schizophrenia

    OpenAIRE

    Choi, Jee Wook; Jeong, Bum Seok; Kim, Ji-Woong

    2008-01-01

    Objective The results for finding the deficit in the anterior cingulate (ACC) in schizophrenic patients (SZ) have been inconsistent according to the studies that used different Stroop tasks, which is unlike the deficit in the dorsolateral prefrontal cortex (DLPFC). In order to explore for the core region that's responsible for the selective attention deficit in SZ, we examined the results of a functional neuroimaging study, which involved the performance of the Stroop task using high or low p...

  5. The alterations in regional homogeneity of parieto-cingulate and temporo-cerebellum regions of first-episode medication-naïve depression patients.

    Science.gov (United States)

    Lai, Chien-Han; Wu, Yu-Te

    2016-03-01

    This study surveyed the characteristics of the indicator for the synchrony of brain activities, regional homogeneity (ReHo), in patients who were diagnosed with major depressive disorder (MDD) without co-morbidities. Forty-four patients with MDD and twenty-seven normal controls were enrolled in our study. The ReHo outputs of patients and controls were compared by a nonparametric permutation-based method with global brain volume, age, and gender as covariates. In addition, the correlations between the clinical variables (such as depression severity, anxiety severity, illness duration) and ReHo values were also estimated in each group and across both groups. The patients with MDD had lower ReHo values than the controls for the cognitive division of right anterior cingulate cortex and the left inferior parietal lobule. In contrast, the patients had higher values of ReHo than controls for the right inferior temporal lobe and the right cerebellum. Additionally, the ReHo values were negatively correlated with the depression severity and with illness duration in the right anterior cingulate cortex. MDD patients had significant alterations in the ReHo of the parieto-cingulate and temporo-cerebellum regions with opposite trends. PMID:25904155

  6. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  7. Amygdala and cingulate structure is associated with stereotype on sex-role.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-01-01

    Sex-role egalitarianism (SRE) is the belief that the sex of an individual should not influence the perception of his or her rights, abilities, obligations, and opportunities. Thus, low SRE reflects a more conservative stereotypical view on sex-role. Here we investigated anatomical correlates of individual differences in SRE in the present study. We used voxel-based morphometry, a questionnaire to determine an individual's SRE and associated psychological measures, and determined the association of SRE with gray matter structures and their cognitive nature in healthy individuals (375 men and 306 women; age, 20.6 ± 1.8 years). We demonstrated that higher SRE was associated with smaller regional gray matter density (rGMD) in the anterior part of the posterior cingulate cortex (PCC) and higher rGMD in the right amygdala. Post-hoc analyses revealed psychological measures characterized by contentious interpersonal orientations, such as contentious achievement motivation, were associated with lower SRE and higher rGMD in the anterior part of PCC. Depressive tendencies were associated with lower SRE and higher rGMD in the right amygdala. These findings suggest that variations in stereotype on sex role have roots in the limbic brain structures linked to contentious interpersonal orientation (cingulate) and negative mood (amygdala). PMID:26420574

  8. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man

    DEFF Research Database (Denmark)

    Kupers, Ron; Danielsen, Else R; Kehlet, Henrik;

    2009-01-01

    pain processing. Using a 3T MR scanner, we acquired spectra from the rostral anterior cingulate cortex (rACC) in 13 healthy right-handed subjects at rest and during painful heat stimulation. The painful stimulus consisted of a suprathreshold painful tonic heat pulse, which was delivered to the right...... that GABA is released in the human cerebral cortex during painful stimulation. The results are in line with animal findings on the role of GABA in pain processing and with studies in humans showing analgesic efficacy of GABA-related drugs in clinical pain conditions....

  9. Supplementary Motor Complex and Disturbed Motor Control – a Retrospective Clinical and Lesion Analysis of Patients after Anterior Cerebral Artery Stroke

    OpenAIRE

    Brugger, Florian; Galovic, Marian; Weder, Bruno J.; Kägi, Georg

    2015-01-01

    Background Both the supplementary motor complex (SMC), consisting of the supplementary motor area (SMA) proper, the pre-SMA, and the supplementary eye field, and the rostral cingulate cortex are supplied by the anterior cerebral artery (ACA) and are involved in higher motor control. The Bereitschaftspotential (BP) originates from the SMC and reflects cognitive preparation processes before volitional movements. ACA strokes may lead to impaired motor control in the absence of limb weakness a...

  10. Cytology and Functionally Correlated Circuits of Human Posterior Cingulate Areas

    Science.gov (United States)

    Vogt, Brent A.; Vogt, Leslie; Laureys, Steven

    2008-01-01

    Human posterior cingulate cortex (PCC) and retrosplenial cortex (RSC) form the posterior cingulate gyrus, however, monkey connection and human imaging studies suggest that PCC area 23 is not uniform and atlases mislocate RSC. We histologically assessed these regions in 6 postmortem cases, plotted a flat map, and characterized differences in dorsal (d) and ventral (v) area 23. Subsequently, functional connectivity of histologically guided regions of interest (ROI) were assessed in 163 [18F]fluorodeoxyglucose human cases with PET. Compared to area d23, area v23 had a higher density and larger pyramids in layers II, IIIc, and Vb and more intermediate neurofilament-expressing neurons in layer Va. Coregisrtration of each case to standard coordinates showed that the ventral branch of the splenial sulci coincided with the border between d/v PCC at −5.4±0.17 cm from the vertical plane and +1.97±0.08 cm from the bi-commissural line. Correlation analysis of glucose metabolism using histologically guided ROIs suggested important circuit differences including dorsal and ventral visual stream inputs, interactions between the vPCC and subgenual cingulate cortex, and preferential relations between dPCC and the cingulate motor region. The RSC, in contrast, had restricted correlated activity with pericallosal cortex and thalamus. Visual information may be processed with an orbitofrontal link for synthesis of signals to drive premotor activity through dPCC. Review of the literature in terms of a PCC duality suggests that interactions of dPCC, including area 23d, orients the body in space via the cingulate motor areas, while vPCC interacts with subgenual cortex to process self-relevant emotional and non-emotional information and objects and self reflection. PMID:16140550

  11. Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis

    OpenAIRE

    Charmaine Demanuele; Peter Kirsch; Christine Esslinger; Mathias Zink; Andreas Meyer-Lindenberg; Daniel Durstewitz

    2015-01-01

    Introduction Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To invest...

  12. Differential effect of age on posterior and anterior hippocampal functional connectivity.

    Science.gov (United States)

    Damoiseaux, Jessica S; Viviano, Raymond P; Yuan, Peng; Raz, Naftali

    2016-06-01

    Aging is associated with declines in cognitive performance and multiple changes in the brain, including reduced default mode functional connectivity (FC). However, conflicting results have been reported regarding age differences in FC between hippocampal and default mode regions. This discrepancy may stem from the variation in selection of hippocampal regions. We therefore examined the effect of age on resting state FC of anterior and posterior hippocampal regions in an adult life-span sample. Advanced age was associated with lower FC between the posterior hippocampus and three regions: the posterior cingulate cortex, medial prefrontal cortex, and lateral parietal cortex. In addition, age-related reductions of FC between the left and right posterior hippocampus, and bilaterally along the posterior to anterior hippocampal axis were noted. Age differences in medial prefrontal and inter-hemispheric FC significantly differed between anterior and posterior hippocampus. Older age was associated with lower performance in all cognitive domains, but we observed no associations between FC and cognitive performance after controlling for age. We observed a significant effect of gender and a linear effect of COMT val158met polymorphism on hippocampal FC. Females showed higher FC of anterior and posterior hippocampus and medial prefrontal cortex than males, and the dose of val allele was associated with lower posterior hippocampus - posterior cingulate FC, independent of age. Vascular and metabolic factors showed no significant effects on FC. These results suggest differential age-related reduction in the posterior hippocampal FC compared to the anterior hippocampus, and an age-independent effect of gender and COMT on hippocampal FC. PMID:27034025

  13. Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models.

    Science.gov (United States)

    Penner, Jacob; Ford, Kristen A; Taylor, Reggie; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W J; Osuch, Elizabeth A; Menon, Ravi S; Rajakumar, Nagalingam; Allman, John M; Williamson, Peter C

    2016-01-01

    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls. PMID:27064387

  14. Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models

    Science.gov (United States)

    Penner, Jacob; Ford, Kristen A.; Taylor, Reggie; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W. J.; Osuch, Elizabeth A.; Menon, Ravi S.; Rajakumar, Nagalingam; Allman, John M.; Williamson, Peter C.

    2016-01-01

    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls. PMID:27064387

  15. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    Directory of Open Access Journals (Sweden)

    Claudia Perez-Cruz

    2007-01-01

    Full Text Available The prefrontal cortex (PFC plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx.

  16. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  17. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Audet, M.A.; Doucet, G.; Oleskevich, S.; Descarries, L.

    1988-08-15

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with (3H)DA and citalopram or with (3H)NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after (3H)NA incubation with or without DMI were observed after (3H)NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness.

  18. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    International Nuclear Information System (INIS)

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with [3H]DA and citalopram or with [3H]NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after [3H]NA incubation with or without DMI were observed after [3H]NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness

  19. Analysis of the presence or absence of atrophy of the subgenual and subcallosal cingulate cortices using voxel-based morphometry on MRI is useful to select prescriptions for patients with depressive symptoms

    Directory of Open Access Journals (Sweden)

    Niida A

    2014-12-01

    Full Text Available Akira Niida,1 Richi Niida,2 Hiroshi Matsuda,3 Makoto Motomura,4 Akihiko Uechi5 1Department of Radiology, Nanbu Hospital, Itoman City, Okinawa, Japan; 2Department of Psychiatry, Nanto Clinic, Urasoe City, Okinawa, Japan; 3Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan; 4Department of Human Sciences, University of the Ryukyus, Nakagami County, Okinawa, Japan; 5Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata City, Osaka, Japan Objective: We objectively evaluated the presence or absence of atrophy of the subgenual anterior cingulate cortex (sgACC and the subcallosal anterior cingulate cortex (scACC, using new voxel-based morphometry (VBM software employing Statistical Parametric Mapping software v8 and diffeomorphic anatomic registration through an exponentiated lie algebra. We prepared a database covering young-mature adulthood and investigated the clinical usefulness of the evaluation. Subjects and methods: One hundred seven patients with major depressive disorder (MDD, 74 patients with bipolar disorder (BD, and 240 healthy control subjects underwent 1.5T magnetic resonance imaging scanning. Using new VBM software and databases covering young-mature adults and the elderly, target volumes of interest were set in the sgACC and scACC, four indicators (severity, extent, ratio, and whole-brain extent were determined, and the presence or absence of atrophy of the sgACC and scACC was evaluated on the basis of the indicators. In addition, the relationships between the presence or absence of atrophy of the sgACC and scACC and performance of diagnosing MDD and BD and therapeutic drugs were investigated. Results: It was clarified that the disease is likely to be MDD when atrophy is detected in the sgACC, and likely to be BD when no atrophy is detected in the sgACC but is detected in the scACC. Regarding the relationship with therapeutic drugs, it was clarified that, when

  20. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    Science.gov (United States)

    Goldstein, Rita Z.; Woicik, Patricia A.; Maloney, Thomas; Tomasi, Dardo; Alia-Klein, Nelly; Shan, Juntian; Honorio, Jean; Samaras, Dimitris; Wang, Ruiliang; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D.

    2010-01-01

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested. PMID:20823246

  1. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, d.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  2. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    International Nuclear Information System (INIS)

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  3. COMT Val158Met genotypes differentially influence subgenual cingulate functional connectivity in healthy females

    Directory of Open Access Journals (Sweden)

    Chris Baeken

    2014-06-01

    Full Text Available Brain imaging studies have consistently shown subgenual Anterior Cingulate Cortical (sgACC involvement in emotion processing. COMT Val158 and Met158 polymorphisms may influence such emotional brain processes in specific ways. Given that resting-state fMRI (rsfMRI may increase our understanding on brain functioning, we integrated genetic and rsfMRI data and focused on sgACC functional connections. No studies have yet investigated the influence of the COMT Val158Met polymorphism (rs4680 on sgACC resting-state functional connectivity (rsFC in healthy individuals. A homogeneous group of sixty-one Caucasian right-handed healthy female university students, all within the same age range, underwent rsfMRI. Compared to Met158 homozygotes, Val158 allele carriers displayed significantly stronger rsFC between the sgACC and the left parahippocampal gyrus, ventromedial parts of the inferior frontal gyrus, and the nucleus accumbens (NAc. On the other hand, compared to Val158 homozygotes, we found in Met158 allele carriers stronger sgACC rsFC with the medial frontal gyrus, more in particular the anterior parts of the medial orbitofrontal cortex. Although we did not use emotional or cognitive tasks, our sgACC rsFC results point to possible distinct differences in emotional and cognitive processes between Val158 and Met158 allele carriers. However, the exact nature of these directions remains to be determined.

  4. Synaptic Basis for Cross-modal Plasticity: Enhanced Supragranular Dendritic Spine Density in Anterior Ectosylvian Auditory Cortex of the Early Deaf Cat.

    Science.gov (United States)

    Clemo, H Ruth; Lomber, Stephen G; Meredith, M Alex

    2016-04-01

    In the cat, the auditory field of the anterior ectosylvian sulcus (FAES) is sensitive to auditory cues and its deactivation leads to orienting deficits toward acoustic, but not visual, stimuli. However, in early deaf cats, FAES activity shifts to the visual modality and its deactivation blocks orienting toward visual stimuli. Thus, as in other auditory cortices, hearing loss leads to cross-modal plasticity in the FAES. However, the synaptic basis for cross-modal plasticity is unknown. Therefore, the present study examined the effect of early deafness on the density, distribution, and size of dendritic spines in the FAES. Young cats were ototoxically deafened and raised until adulthood when they (and hearing controls) were euthanized, the cortex stained using Golgi-Cox, and FAES neurons examined using light microscopy. FAES dendritic spine density averaged 0.85 spines/μm in hearing animals, but was significantly higher (0.95 spines/μm) in the early deaf. Size distributions and increased spine density were evident specifically on apical dendrites of supragranular neurons. In separate tracer experiments, cross-modal cortical projections were shown to terminate predominantly within the supragranular layers of the FAES. This distributional correspondence between projection terminals and dendritic spine changes indicates that cross-modal plasticity is synaptically based within the supragranular layers of the early deaf FAES. PMID:25274986

  5. Mining the posterior cingulate: Segregation between memory and pain components

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2005-01-01

    We present a general method for automatic meta-analyses in neuroscience and apply it on text data from published functional imaging studies to extract main functions associated with a brain area --- the posterior cingulate cortex. Abstracts from PubMed are downloaded, words extracted and converte...... in some of the articles. This shows a tendency to functional segregation between memory and pain components where memory activations are predominantly in the caudal part and pain in the rostral part of PCC....

  6. Interoception, emotion and brain: new insights link internal physiology to social behaviour. Commentary on:: “Anterior insular cortex mediates bodily sensibility and social anxiety” by Terasawa et al. (2012)

    OpenAIRE

    Garfinkel, Sarah N.; Critchley, Hugo D.

    2013-01-01

    In this issue, Terasawa and colleagues used functional neuroimaging to test for common neural substrates supporting conscious appraisal of subjective bodily and emotional states and explored how the relationship might account for personality and experience of anxiety symptoms. Their study highlights a role for the same region of anterior insula cortex in appraisal of emotions and bodily physiology. The reactivity of this region also mediated the relationship between ‘bodily sensibility’ and s...

  7. Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex.

    Science.gov (United States)

    Rivera, S M; Reiss, A L; Eckert, M A; Menon, V

    2005-11-01

    Arithmetic reasoning is arguably one of the most important cognitive skills a child must master. Here we examine neurodevelopmental changes in mental arithmetic. Subjects (ages 8-19 years) viewed arithmetic equations and were asked to judge whether the results were correct or incorrect. During two-operand addition or subtraction trials, for which accuracy was comparable across age, older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. These age-related changes were not associated with alterations in gray matter density, and provide novel evidence for increased functional maturation with age. By contrast, younger subjects showed greater activation in the prefrontal cortex, including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex, suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of mental arithmetic performance. Younger subjects also showed greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems. Our findings provide evidence for a process of increased functional specialization of the left inferior parietal cortex in mental arithmetic, a process that is accompanied by decreased dependence on memory and attentional resources with development. PMID:15716474

  8. Spatial localization and distribution of the TMS-related 'hotspot' of the tibialis anterior muscle representation in the healthy and post-stroke motor cortex.

    Science.gov (United States)

    Sivaramakrishnan, Anjali; Tahara-Eckl, Lenore; Madhavan, Sangeetha

    2016-08-01

    Transcranial magnetic stimulation (TMS) is a type of noninvasive brain stimulation used to study corticomotor excitability of the intact and injured brain. Identification of muscle representations in the motor cortex is typically done using a procedure called 'hotspotting', which involves establishing the optimal location on the scalp that evokes a maximum TMS response with minimum stimulator intensity. The purpose of this study was to report the hotspot locations for the tibialis anterior (TA) muscle representation in the motor cortex of healthy and post stroke individuals. A retrospective data analyses from 42 stroke participants and 32 healthy participants was conducted for reporting TMS hotspot locations and their spatial patterns. Single pulse TMS, using a 110mm double cone coil, was used to identify the motor representation of the TA. The hotspot locations were represented as x and y-distances from the vertex for each participant. The mediolateral extent of the loci from the vertex (x-coordinate) and anteroposterior extent of the loci from the vertex (y-coordinate) was reported for each hemisphere: non-lesioned (XNLes, YNLes), lesioned (XLes, YLes) and healthy (XH, YH). We found that the mean hotspot loci for TA muscle from the vertex were approximately: 1.29cm lateral and 0.55cm posterior in the non-lesioned hemisphere, 1.25cm lateral and 0.5cm posterior in the lesioned hemisphere and 1.6cm lateral and 0.8cm posterior in the healthy brain. There was no significant difference in the x- and y-coordinates between the lesioned and non-lesioned hemispheres. However, the locations of the XNLes (p=0.01) and XLes (p=0.004) were significantly different from XH. The YNLes and YLes showed no significant differences from YH loci. Analyses of spatial clustering patterns using the Moran's I index showed a negative autocorrelation in stroke participants (NLes: Moran's I=-0.09, p<0.001; Les: Moran's I=-0.14, p=0.002), and a positive autocorrelation in healthy participants

  9. Individual attentional selection capacities are reflected in interhemispheric connectivity of the parietal cortex.

    Science.gov (United States)

    Vossel, Simone; Weidner, Ralph; Moos, Katharina; Fink, Gereon R

    2016-04-01

    Modelling psychophysical data using the Theory of Visual Attention (TVA) allows for a quantification of attentional sub-processes, such as the resolution of competition amongst multiple stimuli by top-down control signals for target selection (TVA-parameter α). This fMRI study investigated the neural correlates of α by comparing activity differences and changes of effective connectivity between conditions where a target was accompanied by a distractor or by a second target. Twenty-five participants performed a partial report task inside the MRI scanner. The left angular gyrus (ANG), medial frontal, and posterior cingulate cortex showed higher activity when a target was accompanied by a distractor as opposed to a second target. The reverse contrast yielded activation of a bilateral fronto-parietal network, the anterior insula, anterior cingulate cortex, and left inferior occipital gyrus. A psychophysiological interaction analysis revealed that the connectivity between left ANG and the left and right supramarginal gyrus (SMG), left anterior insula, and right putamen was enhanced in the target-distractor condition in participants with worse attentional top-down control. Dynamic causal modelling suggested that the connection from left ANG to right SMG during distractor presence was modulated by α. Our data show that interindividual differences in attentional processing are reflected in changes of effective connectivity without significant differences in activation strength of network nodes. PMID:26827815

  10. Anterior nucleus of the thalamus: functional organization and clinical implications.

    Science.gov (United States)

    Child, Nicholas D; Benarroch, Eduardo E

    2013-11-19

    The anterior nucleus of thalamus (ANT) is a key component of the hippocampal system for episodic memory. The ANT consist of 3 subnuclei with distinct connectivity with the subicular cortex, retrosplenial cortex, and mammillary bodies. Via its connections with the anterior cingulate and orbitomedial prefrontal cortex, the ANT may also contribute to reciprocal hippocampal-prefrontal interactions involved in emotional and executive functions. As in other thalamic nuclei, neurons of the ANT have 2 different state-dependent patterns of discharge, tonic and burst-firing; some ANT neurons also contribute to propagation of the theta rhythm, which is important for mechanisms of synaptic plasticity of the hippocampal circuit. Clinical and experimental evidence indicate that damage of the ANT or its inputs from the mammillary bodies are primarily responsible for the episodic memory deficit observed in Wernicke-Korsakoff syndrome and thalamic stroke. Experimental models also indicate that the ANT may have a role in the propagation of seizure activity both in absence and in focal seizures. Because of its central connectivity and possible role in propagation of seizure activity, the ANT has become an attractive target for deep brain stimulation (DBS) for treatment of medically refractory epilepsy. The ANT is one of the nuclei preferentially affected in prion disorders, such as fatal familial insomnia, but the relationship between ANT involvement and the clinical manifestations of these disorders remains unclear. The connectivity patterns and electrophysiology of the ANT have been the subject of several reviews.(1-4.) PMID:24142476

  11. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  12. Atrophy of the left dorsolateral prefrontal cortex is associated with poor performance in verbal fluency in elderly poststroke women

    Institute of Scientific and Technical Information of China (English)

    Yang-Kun Chen; Wei-Min Xiao; Defeng Wang; Lin Shi; Winnie CW Chu; Vincent CT Mok; Ka Sing Wong; Gabor S Ungvari; Wai Kwong Tang

    2013-01-01

    This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged ≥ 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.

  13. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    Science.gov (United States)

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  14. Differential activation of the anterior cingulate cortex and caudate nucleus in persons with a family history of alcoholism during a gambling simulation: Studies from the Oklahoma Family Health Patterns Project

    OpenAIRE

    Acheson, Ashley; Robinson, Jennifer L.; Glahn, David C.; Lovallo, William R.; Fox, Peter T.

    2008-01-01

    Individuals with a family history of alcoholism (FH+) are at enhanced risk of developing an alcohol or other substance use disorder relative to those without this history (FH-). Recent studies comparing FH+ and FH- individuals have revealed differences in cognition, emotion processing, sociability, and decision-making. These differences suggest possible altered brain functioning in FH+ individuals that may play a crucial role in vulnerability to substance use disorders. In the present study, ...

  15. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. PMID:25726458

  16. Intrinsic functional connectivity of insular cortex and symptoms of sickness during acute experimental inflammation.

    Science.gov (United States)

    Lekander, Mats; Karshikoff, Bianka; Johansson, Emilia; Soop, Anne; Fransson, Peter; Lundström, Johan N; Andreasson, Anna; Ingvar, Martin; Petrovic, Predrag; Axelsson, John; Nilsonne, Gustav

    2016-08-01

    Task-based fMRI has been used to study the effects of experimental inflammation on the human brain, but it remains unknown whether intrinsic connectivity in the brain at rest changes during a sickness response. Here, we investigated the effect of experimental inflammation on connectivity between areas relevant for monitoring of bodily states, motivation, and subjective symptoms of sickness. In a double-blind randomized controlled experiment, 52 healthy volunteers were injected with 0.6ng/kg LPS (lipopolysaccharide) or placebo, and participated in a resting state fMRI experiment after approximately 2h 45min. Resting state fMRI data were available from 48 participants, of which 28 received LPS and 20 received placebo. Bilateral anterior and bilateral posterior insula sections were used as seed regions and connectivity with bilateral orbitofrontal and cingulate (anterior and middle) cortices was investigated. Back pain, headache and global sickness increased significantly after as compared to before LPS, while a non-significant trend was shown for increased nausea. Compared to placebo, LPS was followed by increased connectivity between left anterior insula and left midcingulate cortex. This connectivity was significantly correlated to increase in back pain after LPS and tended to be related to increased global sickness, but was not related to increased headache or nausea. LPS did not affect the connectivity from other insular seeds. In conclusion, the finding of increased functional connectivity between left anterior insula and middle cingulate cortex suggests a potential neurophysiological mechanism that can be further tested to understand the subjective feeling of malaise and discomfort during a sickness response. PMID:26732827

  17. Digital morphometric study of the extrasulcal surface of the cingulate gyrus in man

    Directory of Open Access Journals (Sweden)

    Spasojević Goran

    2010-01-01

    Full Text Available Introduction. The frequency of different morphological types and extrasulcal (visible surface area of the cingulate gyms, were measured and analyzed in order to obtain more precise data about morphology, right/left and sex differences in the human brain. Material and methods. The study included 42 brains (84 hemispheres from persons of both sexes and of different age (26 males, 16 females, 20-65 years old, without neuropathological changes. After fixation in 10% formaline (3-4 weeks and removal of meninges the brains were photographed under standard conditions by digital camera. Following determination of morphological type, regions of interest of cingulate gyrus were determined in stereotactic system system of coordinates and the extrasulcal surface was measured by digital AutoCAD planimetry. Results and discussion. Three basic morphological types of cingulate gyrus were found: the continuous type (34.5%, segmented type (35.7% and double paralel type (29.8%. There was no statistically significant difference in the frequency of morphological types related to the side (right/left or sex (p>0.05. The area of extrasulcal cortex of cingulate gyrus was statistically significantly (p<0.O5 larger on the left hemispheres (for 1.13 cm than on the right (left: 14.58 cm; right: 13.45 cm. The extrasulcal surface of the left cingulate gyrus was significantly larger (p0.05 in males (males 15.9 cm: females - 13.6 cm, while for the right cingulate gyrus this difference was not significant. Conclusion. Morphometry indicated sex and right/left differences of extrasulcal surface area of the human cingulate gyrus. However, the morphological analysis itself did not indicate corresponding differences, suggesting complexity of the problem of sex dimorphism and of right/left asymmetries in the domain of limbic cortex.

  18. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  19. Engagement of right temporal cortex during processing of linguistic context.

    Science.gov (United States)

    Kircher, T T; Brammer, M; Tous Andreu, N; Williams, S C; McGuire, P K

    2001-01-01

    Language processing involves the interplay of areas in both cerebral hemispheres. Whereas the left temporal lobe is necessary for most language tasks, the right hemisphere seems to be additionally activated during processing of paragraphs and metaphors. We studied the neural correlates of word generation and selection in a sentence context, using functional magnetic resonance imaging (fMRI). Cerebral activation was measured while seven healthy, right handed volunteers read and completed sentence stems, with relatively low Cloze frequency, out loud. During a GENERATION condition, subjects were required to generate a word which completed a sentence stem appropriately. During a DECISION condition, subjects selected and articulated one of two presented terminal words. A READING condition in which subjects read an appropriate completion aloud, served as baseline. When GENERATION was compared to READING or DECISION, the left middle frontal, anterior cingulate, precuneus and right lateral temporal cortex were activated. During DECISION relative to READING, the left inferior frontal and middle/superior temporal cortex bilaterally were activated. The prominent engagement of the right lateral temporal cortex during the GENERATION conditions may reflect the processing of linguistic context, and particularly the activation of multiple meanings in the course of producing an appropriate completion. PMID:11369403

  20. The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment.

    Science.gov (United States)

    Mansouri, Farshad A; Buckley, Mark J; Tanaka, Keiji

    2014-08-13

    Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions. PMID:25122901

  1. Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood.

    Directory of Open Access Journals (Sweden)

    Sven Vanneste

    Full Text Available BACKGROUND: Tinnitus refers to auditory phantom sensation. It is estimated that for 2% of the population this auditory phantom percept severely affects the quality of life, due to tinnitus related distress. Although the overall distress levels do not differ between sexes in tinnitus, females are more influenced by distress than males. Typically, pain, sleep, and depression are perceived as significantly more severe by female tinnitus patients. Studies on gender differences in emotional regulation indicate that females with high depressive symptoms show greater attention to emotion, and use less anti-rumination emotional repair strategies than males. METHODOLOGY: The objective of this study was to verify whether the activity and connectivity of the resting brain is different for male and female tinnitus patients using resting-state EEG. CONCLUSIONS: Females had a higher mean score than male tinnitus patients on the BDI-II. Female tinnitus patients differ from male tinnitus patients in the orbitofrontal cortex (OFC extending to the frontopolar cortex in beta1 and beta2. The OFC is important for emotional processing of sounds. Increased functional alpha connectivity is found between the OFC, insula, subgenual anterior cingulate (sgACC, parahippocampal (PHC areas and the auditory cortex in females. Our data suggest increased functional connectivity that binds tinnitus-related auditory cortex activity to auditory emotion-related areas via the PHC-sgACC connections resulting in a more depressive state even though the tinnitus intensity and tinnitus-related distress are not different from men. Comparing male tinnitus patients to a control group of males significant differences could be found for beta3 in the posterior cingulate cortex (PCC. The PCC might be related to cognitive and memory-related aspects of the tinnitus percept. Our results propose that sex influences in tinnitus research cannot be ignored and should be taken into account in functional

  2. Subgenual Cingulate-Amygdala Functional Disconnection and Vulnerability to Melancholic Depression.

    Science.gov (United States)

    Workman, Clifford I; Lythe, Karen E; McKie, Shane; Moll, Jorge; Gethin, Jennifer A; Deakin, John Fw; Elliott, Rebecca; Zahn, Roland

    2016-07-01

    The syndromic heterogeneity of major depressive disorder (MDD) hinders understanding of the etiology of predisposing vulnerability traits and underscores the importance of identifying neurobiologically valid phenotypes. Distinctive fMRI biomarkers of vulnerability to MDD subtypes are currently lacking. This study investigated whether remitted melancholic MDD patients, who are at an elevated lifetime risk for depressive episodes, demonstrate distinctive patterns of resting-state connectivity with the subgenual cingulate cortex (SCC), known to be of core pathophysiological importance for severe and familial forms of MDD. We hypothesized that patterns of disrupted SCC connectivity would be a distinguishing feature of melancholia. A total of 63 medication-free remitted MDD (rMDD) patients (33 melancholic and 30 nonmelancholic) and 39 never-depressed healthy controls (HC) underwent resting-state fMRI scanning. SCC connectivity was investigated with closely connected bilateral a priori regions of interest (ROIs) relevant to MDD (anterior temporal, ventromedial prefrontal, dorsomedial prefrontal cortices, amygdala, hippocampus, septal region, and hypothalamus). Decreased (less positive) SCC connectivity with the right parahippocampal gyrus and left amygdala distinguished melancholic rMDD patients from the nonmelancholic rMDD and HC groups (cluster-based familywise error-corrected p⩽0.007 over individual a priori ROIs corresponding to approximate Bonferroni-corrected p⩽0.05 across all seven a priori ROIs). No areas demonstrating increased (more positive) connectivity were observed. Abnormally decreased connectivity of the SCC with the amygdala and parahippocampal gyrus distinguished melancholic from nonmelancholic rMDD. These results provide the first resting-state neural signature distinctive of melancholic rMDD and may reflect a subtype-specific primary vulnerability factor given a lack of association with the number of previous episodes. PMID:26781519

  3. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression.

    Science.gov (United States)

    Weissmann, D; van der Laan, S; Underwood, M D; Salvetat, N; Cavarec, L; Vincent, L; Molina, F; Mann, J J; Arango, V; Pujol, J F

    2016-01-01

    Brain region-specific abnormalities in serotonergic transmission appear to underlie suicidal behavior. Alterations of RNA editing on the serotonin receptor 2C (HTR2C) pre-mRNA in the brain of suicides produce transcripts that attenuate 5-HT2CR signaling by impairing intracellular G-protein coupling and subsequent intracellular signal transduction. In brain, the distribution of RNA-editing enzymes catalyzing deamination (A-to-I modification) shows regional variation, including within the cerebral cortex. We tested the hypothesis that altered pre-mRNA 5-HT2CR receptor editing in suicide is region-specific. To this end, we investigated the complete 5-HT2CR mRNA-editing profile in two architectonically distinct cortical areas involved in mood regulation and decision-making in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicides. By using an original biochemical detection method, that is, capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), we corroborated the 5-HT2CR mRNA-editing profile previously described in the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)). Editing of 5-HT2CR mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Compared with non-psychiatric control individuals, alterations of editing levels of 5-HT2CR mRNA were detected in both cortical areas of depressed suicides. A marked increase in editing on 5-HT2CR was especially observed in the anterior cingulate cortex in suicides, implicating this cortical area in suicide risk. The results suggest that region-specific changes in RNA editing of 5-HT2CR mRNA and deficient receptor function likely contribute to the etiology of major depressive disorder or suicide. PMID:27576167

  4. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects Ativação do córtex frontopolar e temporal anterior em uma tarefa de julgamento moral: resultados preliminares de ressonância magnética funcional em indivíduos normais

    Directory of Open Access Journals (Sweden)

    Jorge Moll

    2001-09-01

    Full Text Available OBJECTIVE: To study the brain areas which are activated when normal subjects make moral judgments. METHOD: Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI during the auditory presentation of sentences that they were instructed to silently judge as either "right" or "wrong". Half of the sentences had an explicit moral content ("We break the law when necessary", the other half comprised factual statements devoid of moral connotation ("Stones are made of water". After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemodynamically modeled for event-related fMRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. RESULTS: Regions activated during moral judgment included the frontopolar cortex (FPC, medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (BA 10/46 and 9 were largely independent of emotional experience and represented the largest areas of activation. CONCLUSIONS: These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct.OBJETIVO: Estudar, com ressonância magnética funcional (RMf, as áreas cerebrais normalmente ativadas por julgamentos morais em tarefa de verificação de sentenças. MÉTODO: Dez adultos normais foram estudados com RMf-BOLD durante a apresentação auditiva de sentenças cujo conteúdo foram instruídos a julgar como "certo" ou "errado". Metade das sentenças possuía um conteúdo moral explícito ("Transgredimos a lei se necess

  5. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity.

    Science.gov (United States)

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej

    2016-05-01

    The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations. PMID:26790868

  6. Cervicoplastia anterior Anterior cervicoplasty

    Directory of Open Access Journals (Sweden)

    Lucas Gomes Patrocínio

    2004-10-01

    Full Text Available Muitos pacientes buscam correção estética da frouxidão da pele do pescoço, depósito de gordura na região submentoneana ou bandas de platisma. Em grande parte dos casos a ação medial, via cervicoplastia anterior é necessária. OBJETIVO: Demonstrar a casuística e avaliar os resultados e complicações com a técnica de cervicoplastia anterior no Serviço de Otorrinolaringologia da Universidade Federal de Uberlândia. FORMA DE ESTUDO: Relato de série. PACIENTES E MÉTODOS: Quarenta e dois pacientes, entre 39 e 65 anos de idade, sendo 40 (95,2% do sexo feminino e 2 (4,8% do masculino, foram submetidos a cervicoplastia anterior. Retrospectivamente foram avaliados resultados e complicações. RESULTADOS: Destes, 34 apresentaram resultados satisfatórios, 4 apresentaram déficit estético notado somente pelo cirurgião, 3 apresentaram déficit estético notado somente pelo paciente e 1 apresentou déficit estético necessitando cirurgia revisional. Ao estudo fotográfico, todos os pacientes apresentaram melhora do perfil cervical, redução das bandas de platisma e da frouxidão da pele, estabilização da musculatura cervical e acentuação do ângulo cervicomental, em graus variados. Houve complicação em 2 casos (discreto serohematoma e cicatriz um pouco alargada. CONCLUSÃO: A cervicoplastia, associada ou não à tração lateral pela ritidoplastia, é uma técnica que produz resultados satisfatórios na grande maioria dos casos.Many patients look for aesthetic correction of the laxity of neck skin, submandibular fat deposit or platisma bands. In a large part of the cases, medial action, through anterior cervicoplasty is necessary. AIM: To demonstrate the casuistic and to evaluate the results and complications with anterior cervicoplasty technique in the Otorhinolaryngology Service of the Federal University of Uberlândia. STUDY DESIGN: Serie report. PATIENTS AND METHODS: Forty-two patients, between 39 and 65 years of age, being 40 (95

  7. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity.

    Science.gov (United States)

    Meredith, M Alex; Clemo, H Ruth; Corley, Sarah B; Chabot, Nicole; Lomber, Stephen G

    2016-03-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  8. Subclinical delusional thinking predicts lateral temporal cortex responses during social reflection

    OpenAIRE

    Brent, Benjamin K.; Coombs, Garth; Keshavan, Matcheri S.; Seidman, Larry J.; Moran, Joseph M.; Holt, Daphne J.

    2012-01-01

    Neuroimaging studies have demonstrated associations between delusions in psychotic disorders and abnormalities of brain areas involved in social cognition, including medial prefrontal cortex (MPFC), posterior cingulate cortex, and lateral temporal cortex (LTC). General population studies have linked subclinical delusional thinking to impaired social cognition, raising the question of whether a specific pattern of brain activity during social perception is associated with delusional beliefs. H...

  9. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    International Nuclear Information System (INIS)

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control

  10. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe [CHNO des Quinze-Vingts, UPMC Paris 6, Service de NeuroImagerie, Paris (France)

    2010-01-15

    Three cingulate motor areas have been described in monkeys, the rostral, dorsal, and ventral cingulate motor areas, and would control limbic-related motor activity. However, little anatomical data are available in human about the functional networks these cingulate areas underlie. Therefore, networks anchored in the rostral and caudal cingulate motor areas (rCMA and cCMA, respectively) were studied in human using functional connectivity during the brain resting state. Since the rCMA and cCMA are located just under the pre-supplementary and supplementary motor areas (pre-SMA and SMA), the pre-SMA- and SMA-centered networks were also studied to ensure that these four circuits were correctly dissociated. Data from 14 right-handed healthy volunteers were acquired at rest and analyzed by region of interest (ROI)-based functional connectivity. The blood oxygenation level-dependent (BOLD) signal fluctuations of separate ROIs located in rCMA, cCMA, pre-SMA, and SMA were successively used to identify significant temporal correlations with BOLD signal fluctuations of other brain regions. Low-frequency BOLD signal of the CMA was correlated with signal fluctuations in the prefrontal, cingulate, insular, premotor, motor, medial and inferior parietal cortices, putamen and thalamus, and anticorrelated with the default-mode network. rCMA was more in relation with prefrontal, orbitofrontal, and language-associated cortices than cCMA more related to sensory cortex. These cingulate networks were very similar to the pre-SMA- and SMA-centered networks, although pre-SMA and SMA showed stronger correlation with the prefrontal and inferior parietal cortices and with the cerebellum and the superior parietal cortex, respectively. The human cingulate motor areas constitute an interface between sensorimotor, limbic and executive systems, sharing common cortical, striatal, and thalamic relays with the overlying premotor medial areas. (orig.)

  11. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T

    International Nuclear Information System (INIS)

    Three cingulate motor areas have been described in monkeys, the rostral, dorsal, and ventral cingulate motor areas, and would control limbic-related motor activity. However, little anatomical data are available in human about the functional networks these cingulate areas underlie. Therefore, networks anchored in the rostral and caudal cingulate motor areas (rCMA and cCMA, respectively) were studied in human using functional connectivity during the brain resting state. Since the rCMA and cCMA are located just under the pre-supplementary and supplementary motor areas (pre-SMA and SMA), the pre-SMA- and SMA-centered networks were also studied to ensure that these four circuits were correctly dissociated. Data from 14 right-handed healthy volunteers were acquired at rest and analyzed by region of interest (ROI)-based functional connectivity. The blood oxygenation level-dependent (BOLD) signal fluctuations of separate ROIs located in rCMA, cCMA, pre-SMA, and SMA were successively used to identify significant temporal correlations with BOLD signal fluctuations of other brain regions. Low-frequency BOLD signal of the CMA was correlated with signal fluctuations in the prefrontal, cingulate, insular, premotor, motor, medial and inferior parietal cortices, putamen and thalamus, and anticorrelated with the default-mode network. rCMA was more in relation with prefrontal, orbitofrontal, and language-associated cortices than cCMA more related to sensory cortex. These cingulate networks were very similar to the pre-SMA- and SMA-centered networks, although pre-SMA and SMA showed stronger correlation with the prefrontal and inferior parietal cortices and with the cerebellum and the superior parietal cortex, respectively. The human cingulate motor areas constitute an interface between sensorimotor, limbic and executive systems, sharing common cortical, striatal, and thalamic relays with the overlying premotor medial areas. (orig.)

  12. Evolutionary appearance of von Economo's neurons in the mammalian cerebral cortex.

    Science.gov (United States)

    Cauda, Franco; Geminiani, Giuliano Carlo; Vercelli, Alessandro

    2014-01-01

    von Economo's neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the "social brain." VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the "global Workspace" architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental

  13. Evolutionary appearance of Von Economo’s Neurons in the mammalian cerebral cortex

    Directory of Open Access Journals (Sweden)

    Franco eCauda

    2014-03-01

    Full Text Available Von Economo’s neurons (VENs are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months.VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the social brain. VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain.However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the global Workspace architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication between salience-related insular and cingulate and other widely separated brain areas.Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the fMRI data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental investigatio

  14. Food related processes in the insular cortex

    OpenAIRE

    Frank, Sabine; Kullmann, Stephanie; Veit, Ralf

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex. In this review, we will specifically focus on the involvement of the insula in food processing and on multim...

  15. Food related processes in the insular cortex

    OpenAIRE

    Sabine eFrank; Stephanie eKullmann; Ralf eVeit

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimo...

  16. Social phobia modulates risk sensitivity through activity in the anterior insula

    Directory of Open Access Journals (Sweden)

    GraceShi MinTang

    2012-01-01

    Full Text Available Decision neuroscience offers the potential for decomposing differences in behavior across individuals into components of valuation intimately tied to brain function. One application of this approach lies in novel conceptualizations of behavioral attributes that are aberrant in psychiatric disorders. We investigated the relationship between social phobia and behavior in a novel socially-determined risk task. Behaviorally, higher scores on a social phobia inventory (SPIN among healthy participants were associated with an increase in risky responses. Furthermore, activity in a region of the dorsal anterior insula (dAI scaled in proportion to SPIN score in risky versus non-risky choices. This region of the insula was functionally connected to areas in the intraparietal sulcus (IPS and anterior cingulate cortex (ACC that were related to decision-making across all participants. Overall, social phobia was associated with decreased risk aversion in our task, consistent with previous results investigating risk taking in many everyday behaviors. Moreover, this difference was linked to the anterior insula, a region commonly implicated in risk attitudes and socio-emotional processes.

  17. Dopaminergic dysregulation in prefrontal cortex of rhesus monkeys following cocaine self-administration

    Directory of Open Access Journals (Sweden)

    Scot eMcIntosh

    2013-08-01

    Full Text Available Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v. under limited (n=4 and extended access conditions (n=6. The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC, orbitofrontal cortex (OFC and anterior cingulate cortex (ACC were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport, tyrosine hydroxylase (TH; marker of dopamine synthesis and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity, extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2 and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity, and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine. Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTHSer31 in all regions. In addition, a slight but significant reduction in phosphorylated pTHSer40 was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex.

  18. cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest

    Science.gov (United States)

    Valchev, Nikola; Ćurčić-Blake, Branislava; Renken, Remco J.; Avenanti, Alessio; Keysers, Christian

    2016-01-01

    The primary somatosensory cortex (SI) plays a critical role in somatosensation as well as in action performance and social cognition. Although SI has been a major target of experimental and clinical research using non-invasive transcranial magnetic stimulation (TMS), to date information on the effect of TMS over SI on its resting-state functional connectivity is very scant. Here, we explored whether continuous theta burst stimulation (cTBS), a repetitive TMS protocol, administered over SI can change the functional connectivity of the brain at rest, as measured using resting-state functional magnetic resonance imaging (rs-fMRI). In a randomized order on two different days we administered active TMS or sham TMS over the left SI. TMS was delivered off-line before scanning by means of cTBS. The target area was selected previously and individually for each subject as the part of SI activated both when the participant executes and observes actions. Three analytical approaches, both theory driven (partial correlations and seed based whole brain regression) and more data driven (Independent Component Analysis), indicated a reduction in functional connectivity between the stimulated part of SI and several brain regions functionally associated with SI including the dorsal premotor cortex, the cerebellum, basal ganglia, and anterior cingulate cortex. These findings highlight the impact of cTBS delivered over SI on its functional connectivity at rest. Our data may have implications for experimental and therapeutic applications of cTBS over SI. PMID:25882754

  19. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was depression and schizophrenia can be efficiently assessed using this method.

  20. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex.

    Science.gov (United States)

    Hutcherson, Cendri A; Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-09-01

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. Significance statement: Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  1. Herniation of the anterior lens capsule

    Directory of Open Access Journals (Sweden)

    Pereira Nolette

    2007-01-01

    Full Text Available Herniation of the anterior lens capsule is a rare abnormality in which the capsule bulges forward in the pupillary area. This herniation can be mistaken for an anterior lenticonus where both the capsule and the cortex bulge forward. The exact pathology behind this finding is still unclear. We report the clinical, ultrasound biomicroscopy (UBM and histopathological findings of a case of herniation of the anterior lens capsule. UBM helped to differentiate this entity from anterior lenticonus. Light microscopy revealed capsular splitting suggestive of capsular delamination and collection of fluid (aqueous in the area of herniation giving it a characteristic appearance.

  2. Cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex.

    Science.gov (United States)

    Bakola, Sophia; Passarelli, Lauretta; Gamberini, Michela; Fattori, Patrizia; Galletti, Claudio

    2013-04-10

    In macaques, superior parietal lobule area 5 has been described as occupying an extensive region, which includes the caudal half of the postcentral convexity as well as the medial bank of the intraparietal sulcus. Modern neuroanatomical methods have allowed the identification of various areas within this region. In the present study, we investigated the corticocortical afferent projections of one of these subdivisions, area PE. Our results demonstrate that PE, defined as a single architectonic area that contains a topographic map of the body, forms specific connections with somatic and motor fields. Thus, PE receives major afferents from parietal areas, mainly area 2, PEc, several areas in the medial bank of the intraparietal sulcus, opercular areas PGop/PFop, and the retroinsular area, frontal afferents from the primary motor cortex, the supplementary motor area, and the caudal subdivision of dorsal premotor cortex, as well as afferents from cingulate areas PEci, 23, and 24. The presence and relative strength of these connections depend on the location of injection sites, so that lateral PE receives preferential input from anterior sectors of the medial bank of intraparietal sulcus and from the ventral premotor cortex, whereas medial PE forms denser connections with area PEc and motor fields. In contrast with other posterior parietal areas, there are no projections to PE from occipital or prefrontal cortices. Overall, the sensory and motor afferents to PE are consistent with functions in goal-directed movement but also hint at a wider variety of motor coordination roles. PMID:23575861

  3. Evidence of a posterior cingulate involvement (Brodmann area 31) in dyslexia: a study based on source localization algorithm of event-related potentials.

    Science.gov (United States)

    Stoitsis, John; Giannakakis, Giorgos A; Papageorgiou, Charalabos; Nikita, Konstantina S; Rabavilas, Andreas; Anagnostopoulos, Dimitris

    2008-04-01

    The study investigates the differences regarding the position of intracranial generators of P50 component of ERPs in 38 dyslexic children aged 11.47+/-2.12 years compared with their 19 healthy siblings aged 12.21+/-2.25. The dipoles were extracted by solving the inverse electromagnetic problem according to the recursively applied and projected multiple signal classification (RAP-MUSIC) algorithm approach. For improved localization of the main dipole the solutions were optimized using genetic algorithms. The statistical analysis revealed differences regarding the position of intracranial generators of low frequency of P50. Particularly, dyslexics showed main activity being located at posterior cingulate cortex (Brodmann's area 31) while controls exhibited main activity being located at retrosplenial cortex (Brodmann's area 30). These results may indicate a role for the posterior cingulate cortex in the pre-attentive processing operation of dyslexia beyond of its traditional function in terms of spatial attention and motor intention. PMID:18180091

  4. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex.

    Science.gov (United States)

    Timbie, Clare; Barbas, Helen

    2014-06-11

    The primate amygdala sends dense projections to posterior orbitofrontal cortex (pOFC) in pathways that are critical for processing emotional content, but the synaptic mechanisms are not understood. We addressed this issue by investigating pathways in rhesus monkeys (Macaca mulatta) from the amygdala to pOFC at the level of the system and synapse. Terminations from the amygdala were denser and larger in pOFC compared with the anterior cingulate cortex, which is also strongly connected with the amygdala. Axons from the amygdala terminated most densely in the upper layers of pOFC through large terminals. Most of these terminals innervated spines of presumed excitatory neurons and many were frequently multisynaptic and perforated, suggesting high synaptic efficacy. These amygdalar synapses in pOFC exceeded in size and specialization even thalamocortical terminals from the prefrontal-related thalamic mediodorsal nucleus to the middle cortical layers, which are thought to be highly efficient drivers of cortical neurons. Pathway terminals in the upper layers impinge on the apical dendrites of neurons in other layers, suggesting that the robust amygdalar projections may also activate neurons in layer 5 that project back to the amygdala and beyond to autonomic structures. Among inhibitory neurons, the amygdalar pathway innervated preferentially the neurochemical classes of calbindin and calretinin neurons in the upper layers of pOFC, which are synaptically suited to suppress noise and enhance signals. These features provide a circuit mechanism for flexibly shifting focus and adjusting emotional drive in processes disrupted in psychiatric disorders, such as phobias and obsessive-compulsive disorder. PMID:24920616

  5. Extraversion is linked to volume of the orbitofrontal cortex and amygdala.

    Directory of Open Access Journals (Sweden)

    Henk Cremers

    Full Text Available Neuroticism and extraversion are personality factors associated with the vulnerability for developing depression and anxiety disorders, and are possibly differentially related to brain structures implicated in the processing of emotional information and the generation of mood states. To date, studies on brain morphology mainly focused on neuroticism, a dimension primarily related to negative affect, yielding conflicting findings concerning the association with personality, partially due to methodological issues and variable population samples under study. Recently, extraversion, a dimension primarily related to positive affect, has been repeatedly inversely related to with symptoms of depression and anxiety disorders. In the present study, high resolution structural T1-weighted MR images of 65 healthy adults were processed using an optimized Voxel Based Morphometry (VBM approach. Multiple regression analyses were performed to test for associations of neuroticism and extraversion with prefrontal and subcortical volumes. Orbitofrontal and right amygdala volume were both positively related to extraversion. Extraversion was differentially related to volume of the anterior cingulate cortex in males (positive and females (negative. Neuroticism scores did not significantly correlate with these brain regions. As extraversion is regarded a protective factor for developing anxiety disorders and depression and has been related to the generation of positive affect, the present results indicate that the reduced likelihood of developing affective disorders in individuals high on extraversion is related to modulation of emotion processing through the orbitofrontal cortex and the amygdala.

  6. An increase in tobacco craving is associated with enhanced medial prefrontal cortex network coupling.

    Directory of Open Access Journals (Sweden)

    Amy C Janes

    Full Text Available Craving is a key aspect of drug dependence that is thought to motivate continued drug use. Numerous brain regions have been associated with craving, suggesting that craving is mediated by a distributed brain network. Whether an increase in subjective craving is associated with enhanced interactions among brain regions was evaluated using resting state functional magnetic imaging (fMRI in nicotine dependent participants. We focused on craving-related changes in the orbital and medial prefrontal cortex (OMPFC network, which also included the subgenual anterior cingulate cortex (sgACC extending into the ventral striatum. Brain regions in the OMPFC network are not only implicated in addiction and reward, but, due to their rich anatomic interconnections, may serve as the site of integration across craving-related brain regions. Subjective craving and resting state fMRI were evaluated twice with an ∼1 hour delay between the scans. Cigarette craving was significantly increased at the end, relative to the beginning of the scan session. Enhanced craving was associated with heightened coupling between the OMPFC network and other cortical, limbic, striatal, and visceromotor brain regions that are both anatomically interconnected with the OMPFC, and have been implicated in addiction and craving. This is the first demonstration confirming that an increase in craving is associated with enhanced brain region interactions, which may play a role in the experience of craving.

  7. Anterior tarsaltunnelsyndrom

    DEFF Research Database (Denmark)

    Miliam, Palle B; Basse, Peter N

    2009-01-01

    Anterior tarsal tunnel syndrome is a rare entrapment neuropathy of the deep peroneal nerve beneath the extensor retinaculum of the ankle. It may be rare because it is underrecognized clinically.We present a case regarding a 29-year-old man, drummer, who for one and a half year experienced clinical...

  8. Thinner Cortex in Collegiate Football Players With, but not Without, a Self-Reported History of Concussion.

    Science.gov (United States)

    Meier, Timothy B; Bellgowan, Patrick S F; Bergamino, Maurizio; Ling, Josef M; Mayer, Andrew R

    2016-02-15

    Emerging evidence suggests that a history of sports-related concussions can lead to long-term neuroanatomical changes. The extent to which similar changes are present in young athletes is undetermined at this time. Here, we tested the hypothesis that collegiate football athletes with (n = 25) and without (n = 24) a self-reported history of concussion would have cortical thickness differences and altered white matter integrity relative to healthy controls (n = 27) in fronto-temporal regions that appear particularly susceptible to traumatic brain injury. Freesurfer software was used to estimate cortical thickness, fractional anisotropy was calculated in a priori white matter tracts, and behavior was assessed using a concussion behavioral battery. Groups did not differ in self-reported symptoms (p > 0.10) or cognitive performance (p > 0.10). Healthy controls reported significantly higher happiness levels than both football groups (all p  0.10). However, football athletes with a history of concussion had significantly thinner cortex in the left anterior cingulate cortex, orbital frontal cortex, and medial superior frontal cortex relative to healthy controls (p = 0.02, d = -0.69). Further, football athletes with a history of concussion had significantly thinner cortex in the right central sulcus and precentral gyrus relative to football athletes without a history of concussion (p = 0.03, d = -0.71). No differences were observed between football athletes without a history of concussion and healthy controls. These results suggest that previous concussions, but not necessarily football exposure, may be associated with cortical thickness differences in collegiate football athletes. PMID:26061068

  9. Corticotrigeminal projections from the insular cortex to the trigeminal caudal subnucleus regulate orofacial pain after nerve injury via extracellular signal-regulated kinase activation in insular cortex neurons

    Directory of Open Access Journals (Sweden)

    Jian eWang

    2015-12-01

    Full Text Available Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc, especially the superficial laminae (I/II, received direct descending projections from granular and dysgranular parts of the insular cortex (IC. Extracellular signal-regulated kinase (ERK, an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs and reduced the paired-pulse ratio (PPR of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These

  10. Global resting-state fMRI analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder

    Science.gov (United States)

    Anticevic, Alan; Hu, Sien; Zhang, Sheng; Savic, Aleksandar; Billingslea, Eileen; Wasylink, Suzanne; Repovs, Grega; Cole, Michael W.; Bednarski, Sarah; Krystal, John H.; Bloch, Michael H.; Li, Chiang-shan R.; Pittenger, Christopher

    2013-01-01

    Background Obsessive-compulsive disorder (OCD) is associated with regional hyperactivity in cortico-striatal circuits. However, the large-scale patterns of abnormal neural connectivity remain uncharacterized. Resting-state functional connectivity (rs-fcMRI) studies have shown altered connectivity within the implicated circuitry, but they have used seed-driven approaches wherein a circuit of interest is defined a priori. This limits their ability to identify network abnormalities beyond the prevailing framework. This limitation is particularly problematic within the prefrontal cortex (PFC), which is large and heterogeneous and where a priori specification of seeds is therefore difficult. A hypothesis-neutral data-driven approach to the analysis of connectivity is vital. Method We analyzed rs-fcMRI data collected at 3T in 27 OCD patients and 66 matched controls using a recently developed data-driven global brain connectivity (GBC) method, both within the PFC and across the whole brain. Results We found clusters of decreased connectivity in the left lateral PFC in both whole-brain and PFC-restricted analyses. Increased GBC was found in the right putamen and left cerebellar cortex. Within ROIs in the basal ganglia and thalamus, we identified increased GBC in dorsal striatum and anterior thalamus, which was reduced in patients on medication. The ventral striatum/nucleus accumbens exhibited decreased global connectivity, but increased connectivity specifically with the ventral anterior cingulate cortex in subjects with OCD. Conclusion These findings identify previously uncharacterized PFC and basal ganglia dysconnectivity in OCD and reveal differentially altered GBC in dorsal and ventral striatum. Results highlight complex disturbances in PFC networks, which could contribute to disrupted cortical-striatal-cerebellar circuits in OCD. PMID:24314349

  11. Treatment with direct-current stimulation against cingulate seizure-like activity induced by 4-aminopyridine and bicuculline in an in vitro mouse model.

    Science.gov (United States)

    Chang, Wei-Pang; Lu, Hsiang-Chin; Shyu, Bai-Chuang

    2015-03-01

    Clinical studies have shown that cathodal transcranial direct-current stimulation (tDCS) application can produce long-term suppressive effects on drug-resistant seizures. Whether this long-term effect produced by cathodal tDCS can counterbalance the enhancement of synaptic transmission during seizures requires further investigation. Our hypothesis was that the long-term effects of DCS on seizure suppression by the application of cathodal DCS occur through a long-term depression (LTD)-like mechanism. We used a thalamocingulate brain slice preparation combined with a multielectrode array and patch recording to investigate the underlying mechanism of the suppressive effect of DCS on anterior cingulate cortex (ACC) seizures. Patch-clamp recordings showed that cathodal DCS significantly decreased spontaneous excitatory postsynaptic currents (EPSCs) and epileptic EPSCs caused by the 4-aminopyridine. Fifteen minutes of DCS application reliably induced LTD, and the synaptic activation frequency was an important factor in LTD formation. The application of DCS alone without continuous synaptic activation did not induce LTD. Direct-current stimulation-induced LTD appeared to be N-methyl-d-aspartate (NMDA)-dependent, in which the application of the NMDA receptor antagonist D-1-2-amino-5-phosphonopentanoic acid (APV) abolished DCS-induced LTD, and the immediate effect remained. Direct-current stimulation-induced LTD and the long-term effects of DCS on seizure-like activities were also abolished by okadaic acid, a protein phosphatase 1 inhibitor. The long-term effects of DCS on seizures were not influenced by the depotentiation blocker FK-506. Therefore, we conclude that the long-term effects of DCS on seizure-like activities in brain slice occur through an LTD-like mechanism. PMID:25682917

  12. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex

    Science.gov (United States)

    Pirnia, T; Joshi, S H; Leaver, A M; Vasavada, M; Njau, S; Woods, R P; Espinoza, R; Narr, K L

    2016-01-01

    Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections. PMID:27271858

  13. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex.

    Science.gov (United States)

    Pirnia, T; Joshi, S H; Leaver, A M; Vasavada, M; Njau, S; Woods, R P; Espinoza, R; Narr, K L

    2016-01-01

    Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections. PMID:27271858

  14. Posterior Cingulate, Precuneal & Retrosplenial Cortices: Cytology & Components of the Neural Network Correlates of Consciousness*

    Science.gov (United States)

    Vogt, Brent A.; Laureys, Steven

    2008-01-01

    Neuronal aggregates involved in conscious awareness are not evenly distributed throughout the CNS but are comprised of key components referred to as the neural network correlates of consciousness (NNCC). A critical node in this network is the retrosplenial, posterior cingulate, and precuneal cortices (RSC/PCC/PrCC). The cytological and neurochemical composition of this region is reviewed in relation to the Brodmann map. This region has the highest level of brain glucose metabolism and cytochrome c oxidase activity. Monkey studies suggest that the anterior thalamic projection likely drives RSC and PCC metabolism and that the midbrain projection to the anteroventral thalamic nucleus is a key coupling site between the brainstem system for arousal and cortical systems for cognitive processing and awareness. The pivotal role of RSC/PCC/PrCC in consciousness is demonstrated with posterior cingulate epilepsy cases, midcingulate lesions that de-afferent this region and are associated with unilateral sensory neglect, observations from stroke and vegetative state patients, alterations in blood flow during sleep, and the actions of anesthetics. Since this region is critically involved in self reflection, it is not surprising that it is similarly a site for the NNCC. Interestingly, information processing during complex cognitive tasks and during aversive sensations such as pain induces efforts to terminate self reflection and result in decreased processing in PCC/PrCC. Finally, anatomical relations between the neural correlates of mind and NNCC in the cingulate gyrus do not appear to overlap and suggests that mental function and conscious awareness may be mediated by two neural networks. PMID:16186025

  15. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2009-11-11

    Classically, the spinothalamic (ST) system has been viewed as the major pathway for transmitting nociceptive and thermoceptive information to the cerebral cortex. There is a long-standing controversy about the cortical targets of this system. We used anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 in the Cebus monkey to label the cortical areas that receive ST input. We found that the ST system reaches multiple cortical areas located in the contralateral hemisphere. The major targets are granular insular cortex, secondary somatosensory cortex and several cortical areas in the cingulate sulcus. It is noteworthy that comparable cortical regions in humans consistently display activation when subjects are acutely exposed to painful stimuli. We next combined anterograde transneuronal transport of virus with injections of a conventional tracer into the ventral premotor area (PMv). We used the PMv injection to identify the cingulate motor areas on the medial wall of the hemisphere. This combined approach demonstrated that each of the cingulate motor areas receives ST input. Our meta-analysis of imaging studies indicates that the human equivalents of the three cingulate motor areas also correspond to sites of pain-related activation. The cingulate motor areas in the monkey project directly to the primary motor cortex and to the spinal cord. Thus, the substrate exists for the ST system to have an important influence on the cortical control of movement. PMID:19906970

  16. Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices.

    Science.gov (United States)

    Mansouri, Farshad A; Buckley, Mark J; Mahboubi, Majid; Tanaka, Keiji

    2015-07-21

    Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys' ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals' abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals. PMID:26150522

  17. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim; Hemmingsen, R; Uylings, HB

    medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...

  18. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  19. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Daniel J. Chandler

    2012-05-01

    Full Text Available The prefrontal cortex (PFC is implicated in a variety of cognitive and executive operations. However, this region is not a single functional unit; rather, it is composed of several functionally and anatomically distinct networks, including anterior cingulate cortex (ACC, medial prefrontal cortex (mPFC and orbitofrontal cortex (OFC. These prefrontal subregions serve dissociable behavioral functions, and are unique in their afferent and efferent connections. Each of these subregions is innervated by ascending cholinergic and noradrenergic systems, each of which likewise has a distinct role in cognitive function; yet the distribution and projection patterns of cells in the source nuclei for these pathways have not been examined in great detail. In this study, fluorescent retrograde tracers were injected into ACC, mPFC and OFC, and labeled cells were identified in the cholinergic nucleus basalis of Meynert (NBM and noradrenergic nucleus locus coeruleus (LC. Injections into all three cortical regions consistently labeled cells primarily ipsilateral to the injection site with a minimal contralateral component. In NBM, retrogradely labeled neurons were scattered throughout the rostral half of the nucleus, whereas those in LC tended to cluster in the core of the nucleus, and were rarely localized within the rostral or caudal poles. In NBM, more than half of all retrogradely labeled cells possessed axon collaterals projecting two or more PFC subregions. In LC, however, only 4.3% of retrogradely labeled neurons possessed collaterals targeting any two prefrontal subregions simultaneously, and no cells were identified that projected to all three regions. Of all labeled LC neurons, 49.3% projected only to mPFC, 28.5% projected only to OFC, and 18.0% projected only to ACC. These findings suggest that subsets of LC neurons may be capable of modulating neuronal activity in individual prefrontal subregions independently, whereas assemblies of NBM cells may exert

  20. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  1. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex.

    Science.gov (United States)

    Silvetti, Massimo; Alexander, William; Verguts, Tom; Brown, Joshua W

    2014-10-01

    The role of the medial prefrontal cortex (mPFC) and especially the anterior cingulate cortex has been the subject of intense debate for the last decade. A number of theories have been proposed to account for its function. Broadly speaking, some emphasize cognitive control, whereas others emphasize value processing; specific theories concern reward processing, conflict detection, error monitoring, and volatility detection, among others. Here we survey and evaluate them relative to experimental results from neurophysiological, anatomical, and cognitive studies. We argue for a new conceptualization of mPFC, arising from recent computational modeling work. Based on reinforcement learning theory, these new models propose that mPFC is an Actor-Critic system. This system is aimed to predict future events including rewards, to evaluate errors in those predictions, and finally, to implement optimal skeletal-motor and visceromotor commands to obtain reward. This framework provides a comprehensive account of mPFC function, accounting for and predicting empirical results across different levels of analysis, including monkey neurophysiology, human ERP, human neuroimaging, and human behavior. PMID:24239852

  2. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  3. Oxytocin blurs the self-other distinction during trait judgments and reduces medial prefrontal cortex responses.

    Science.gov (United States)

    Zhao, Weihua; Yao, Shuxia; Li, Qin; Geng, Yayuan; Ma, Xiaole; Luo, Lizhu; Xu, Lei; Kendrick, Keith M

    2016-07-01

    The neuropeptide oxytocin (OXT) may act either to increase or blur the distinction between self and other and thereby promote either more selfish or altruistic behaviors. To attempt to distinguish between these two possibilities we performed a double-blind, between-subject, placebo-controlled design study to investigate the effect of intranasal OXT on self and other (mother, classmate, or stranger) trait judgments in conjunction with functional magnetic resonance imaging. Results showed that OXT reduced response times for making both self and other judgments, but also reduced the accuracy of their subsequent recall, thereby abolishing the normal self-bias observed in this task. OXT also abolished the positive correlation between response and self-esteem scale scores seen in the PLC group, suggesting that its effects were strongest in individuals with higher levels of self-esteem. A whole-brain functional magnetic resonance imaging analysis revealed that OXT also reduced responses during both self and other trait judgments in the dorsal (dmPFC) and ventral (vmPFC) medial prefrontal cortex. A subsequent region of interest analysis revealed that behavioral performance and self-esteem scale scores were associated with dmPFC activation and its functional connectivity with the anterior cingulate and between the vmPFC and posterior cingulate. Thus overall, while OXT may improve speed of decision making in self -vs. other trait judgments it also blunts the normal bias towards remembering self-attributes and reduces mPFC responses and connectivity with other cortical midline regions involved in self-processing. This is consistent with the view that OXT can reduce self-centered behavior. Hum Brain Mapp 37:2512-2527, 2016. © 2016 Wiley Periodicals, Inc. PMID:27016006

  4. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes - A report of 4 cases

    NARCIS (Netherlands)

    O. Borens; M.K. Sen; R.C. Huang; J. Richmond; P. Kloen; J.B. Jupiter; D.L. Helfet

    2006-01-01

    Stress fracture of the anterior tibial cortex is an extremely challenging fracture to treat, especially in the high-performance female athlete who requires rapid return to competition. Previous reports have not addressed treating these fractures in the world-class athlete with anterior plating. We h

  5. Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies.

    Directory of Open Access Journals (Sweden)

    Samantha J Brooks

    Full Text Available BACKGROUND AND OBJECTIVES: Obesity is emerging as the most significant health concern of the twenty-first century. A wealth of neuroimaging data suggest that weight gain might be related to aberrant brain function, particularly in prefrontal cortical regions modulating mesolimbic addictive responses to food. Nevertheless, food addiction is currently a model hotly debated. Here, we conduct a meta-analysis of neuroimaging data, examining the most common functional differences between normal-weight and obese participants in response to food stimuli. DATA SOURCE: We conducted a search using several journal databases and adhered to the 'Preferred Reporting Items for Systematic Reviews and Meta-analyses' (PRISMA method. To this aim, 10 studies were found with a total of 126 obese participants, 129 healthy controls, equaling 184 foci (146 increased, 38 decreased activation using the Activation Likelihood Estimation (ALE technique. Out of the 10 studies, 7 investigated neural responses to food versus non-food images. RESULTS: In response to food images, obese in comparison to healthy weight subjects had increased activation in the left dorsomedial prefrontal cortex, right parahippocampal gyrus, right precentral gyrus and right anterior cingulate cortex, and reduced activation in the left dorsolateral prefrontal cortex and left insular cortex. CONCLUSIONS: Prefrontal cortex areas linked to cognitive evaluation processes, such as evaluation of rewarding stimuli, as well as explicit memory regions, appear most consistently activated in response to images of food in those who are obese. Conversely, a reduced activation in brain regions associated with cognitive control and interoceptive awareness of sensations in the body might indicate a weakened control system, combined with hypo-sensitivity to satiety and discomfort signals after eating in those who are prone to overeat.

  6. Blocking Central Opiate Function Modulates Hedonic Impact and Anterior Cingulate Response to Rewards and Losses

    OpenAIRE

    Petrovic, P.; Pleger, B.; Seymour, B; Kloppel, S.; Martino, B.; Critchley, H; Dolan, R J

    2008-01-01

    Reward processing is linked to specific neuromodulatory systems with a dopaminergic contribution to reward learning and motivational drive being well established. Neuromodulatory influences on hedonic responses to actual receipt of reward, or punishment, referred to as experienced utility are less well characterized, although a link to the endogenous opioid system is suggested. Here, in a combined functional magnetic resonance imaging-psychopharmacological investigation, we used naloxone to b...

  7. Individual differences in anterior cingulate activation associated with attentional bias predict cocaine use after treatment

    NARCIS (Netherlands)

    R. Marhe (Reshmi); M. Luijten (Maartje); B.J.M. van de Wetering (Ben); M. Smits (Marion); I.H.A. Franken (Ingmar)

    2013-01-01

    textabstractDrug-dependent patients often relapse into drug use after treatment. Behavioral studies show that enhanced attentional bias to drug cues is a precursor of relapse. The present functional magnetic resonance imaging (fMRI) study examined whether brain regions involved in attentional bias a

  8. Individual Differences in Anterior Cingulate Activation Associated with Attentional Bias Predict Cocaine Use After Treatment

    NARCIS (Netherlands)

    Marhe, R.; Luijten, M.; Wetering, B.J.M. van de; Smits, M.; Franken, I.H.A.

    2013-01-01

    Drug-dependent patients often relapse into drug use after treatment. Behavioral studies show that enhanced attentional bias to drug cues is a precursor of relapse. The present functional magnetic resonance imaging (fMRI) study examined whether brain regions involved in attentional bias are predictiv

  9. Stimulus-Outcome Learnability Differentially Activates Anterior Cingulate and Hippocampus at Feedback Processing

    Science.gov (United States)

    Rodriguez, Paul F.

    2009-01-01

    Memory systems are known to be influenced by feedback and error processing, but it is not well known what aspects of outcome contingencies are related to different memory systems. Here we use the Rescorla-Wagner model to estimate prediction errors in an fMRI study of stimulus-outcome association learning. The conditional probabilities of outcomes…

  10. Early adverse events, HPA activity and rostral anterior cingulate volume in MDD.

    Directory of Open Access Journals (Sweden)

    Michael T Treadway

    Full Text Available BACKGROUND: Prior studies have independently reported associations between major depressive disorder (MDD, elevated cortisol concentrations, early adverse events and region-specific decreases in grey matter volume, but the relationships among these variables are unclear. In the present study, we sought to evaluate the relationships between grey matter volume, early adverse events and cortisol levels in MDD. METHODS/RESULTS: Grey matter volume was compared between 19 controls and 19 individuals with MDD using voxel-based morphometry. A history of early adverse events was assessed using the Childhood Trauma Questionnaire. Subjects also provided salivary cortisol samples. Depressed patients showed decreased grey matter volume in the rostral ACC as compared to controls. Rostral ACC volume was inversely correlated with both cortisol and early adverse events. CONCLUSIONS: These findings suggest a key relationship between ACC morphology, a history of early adverse events and circulating cortisol in the pathophysiology of MDD.

  11. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex

    Science.gov (United States)

    Procyk, Emmanuel; Dominey, Peter Ford

    2016-01-01

    Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a

  12. What does spatial alternation tell us about retrosplenial cortex function?

    OpenAIRE

    Andrew John Dudley Nelson

    2015-01-01

    The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g. allocentric, direc...

  13. What does spatial alternation tell us about retrosplenial cortex function?

    OpenAIRE

    Nelson, Andrew J.D.; Powell, Anna L.; Holmes, Joshua D.; Vann, Seralynne D.; Aggleton, John. P.

    2015-01-01

    The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g., allocentric, dire...

  14. Complementary sensory and associative microcircuitry in primary olfactory cortex

    OpenAIRE

    Wiegand, H.F.; Beed, P.; Bendels, M.H.; Leibold, C.; Schmitz, D; Johenning, F.W.

    2011-01-01

    The three-layered primary olfactory (piriform) cortex is the largest component of the olfactory cortex. Sensory and intracortical inputs converge on principal cells in the anterior piriform cortex (aPC). We characterize organization principles of the sensory and intracortical microcircuitry of layer II and III principal cells in acute slices of rat aPC using laser-scanning photostimulation and fast two-photon population Ca(2+) imaging. Layer II and III principal cells are set up on a superfic...

  15. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno

    2015-01-01

    Full Text Available The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS. We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG, which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  16. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts

    OpenAIRE

    Dong, Guangheng; DeVito, Elise; Huang, Jie; Du, XiaoXia

    2012-01-01

    Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with in...

  17. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    OpenAIRE

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; KAIDA, HAYATO; ISHIBASHI, MASATOSHI; Kakuma, Tatsuki; Croarkin, Paul E; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enroll...

  18. Increased activation in cingulate cortex in conversion disorder : What does it mean?

    NARCIS (Netherlands)

    van Beilen, M.; Vogt, B. A.; Leenders, K. L.

    2010-01-01

    Conversion disorder is one of the terms used to describe various psychosomatic neurological symptoms that are thought to originate from a psychological conflict Psychological stressors can usually be identified but appear to be almost similar to the severity of psychological stress in non-psychosoma

  19. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder.

    Science.gov (United States)

    Morey, Rajendra A; Haswell, Courtney C; Hooper, Stephen R; De Bellis, Michael D

    2016-02-01

    Posttraumatic stress disorder (PTSD) is considered a disorder of recovery where individuals fail to learn and retain extinction of the traumatic fear response. In maltreated youth, PTSD is common, chronic, and associated with comorbidity. Studies of extinction-related structural volumes (amygdala, hippocampus, anterior cingulate cortex (ACC), and ventral medial prefrontal cortex (vmPFC)) and this stress diathesis, in maltreated youth were not previously investigated. In this cross-sectional study, neuroanatomical volumes associated with extinction in maltreated youth with PTSD (N=31), without PTSD (N=32), and in non-maltreated healthy volunteers (n=57) were examined using magnetic resonance imaging. Groups were sociodemographically similar. Participants underwent extensive assessments for strict inclusion/exclusion criteria and DSM-IV disorders. Maltreated youth with PTSD demonstrated decreased right vmPFC volumes compared with both maltreated youth without PTSD and non-maltreated controls. Maltreated youth without PTSD demonstrated larger left amygdala and right hippocampal volumes compared with maltreated youth with PTSD and non-maltreated control youth. PTSD symptoms inversely correlated with right and left hippocampal and left amygdala volumes. Confirmatory masked voxel base morphometry analyses demonstrated greater medial orbitofrontal cortex gray matter intensity in controls than maltreated youth with PTSD. Volumetric results were not influenced by psychopathology or maltreatment variables. We identified volumetric differences in extinction-related structures between maltreated youth with PTSD from those without PTSD. Alterations of the vmPFC may be one mechanism that mediates the pathway from PTSD to comorbidity. Further longitudinal work is needed to determine neurobiological factors related to chronic and persistent PTSD, and to PTSD resilience despite maltreatment. PMID:26171720

  20. Individual differences in the effects of perceived controllability on pain perception: critical role of the prefrontal cortex.

    Science.gov (United States)

    Salomons, Tim V; Johnstone, Tom; Backonja, Misha-Miroslav; Shackman, Alexander J; Davidson, Richard J

    2007-06-01

    The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267-283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation. PMID:17536969

  1. Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans

    OpenAIRE

    Butti, Camilla; Sherwood, Chet C.; Hakeem, Atiya Y.; Allman, John M.; Hof, Patrick R

    2009-01-01

    Von Economo neurons (VENs) are a type of large, layer V spindle-shaped neurons that were previously described in humans, great apes, elephants, and some large-brained cetaceans. Here we report the presence of Von Economo neurons in the anterior cingulate (ACC), anterior insular (AI), and frontopolar (FP) cortices of small odontocetes, including the bottlenose dolphin (Tursiops truncatus), the Risso's dolphin (Grampus griseus), and the beluga whale (Delphinapterus leucas). The total number and...

  2. Phacoemulsification in anterior megalophthalmos.

    Science.gov (United States)

    Lee, Graham A; Hann, Joshua V; Braga-Mele, Rosa

    2006-07-01

    This case outlines the phacoemulsification technique used to overcome the challenge of the hyperdeep anterior chamber, weak zonules, abnormal anterior capsule, and large capsular bag. Key steps included trypan blue staining of the anterior capsule, a large capsulorhexis, prolapse of the nucleus into the anterior chamber with phacoemulsification anterior to the capsulorhexis, and a posterior chamber-placed iris-clip intraocular lens. Successful visual rehabilitation is achievable in these anatomically challenging eyes. PMID:16857490

  3. Functional Reorganization of the Primary Somatosensory Cortex of a Phantom Limb Pain Patient.

    Science.gov (United States)

    Zhao, Jia; Guo, Xiaoli; Xia, Xiaolei; Peng, Weiwei; Wang, Wuchao; Li, Shulin; Zhang, Ya; Hu, Li

    2016-07-01

    Functional reorganization of the somatosensory system was widely observed in phantom limb pain patients. Whereas some studies demonstrated that the primary somatosensory cortex (S1) of the amputated limb was engaged with the regions around it, others showed that phantom limb pain was associated with preserved structure and functional organization in the former brain region. However, according to the law of use and disuse, the sensitivity of S1 of the amputated limb to pain-related context should be enhanced due to the adaptation to the long-lasting phantom limb pain experience. Here, we collected neurophysiological data from a patient with 21-year phantom limb pain using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) techniques. EEG data showed that both laser-evoked potentials (LEPs) and tactile-evoked potentials (TEPs) were clearly presented only when radiant-heat laser pulses and electrical pulses were delivered to the shoulder of the healthy limb, but not of the amputated limb. This observation suggested the functional deficit of somatosensory pathways at the amputated side. FMRI data showed that significant larger brain activations by painful rather than non-painful stimuli in video clips were observed not only at visual-related brain areas and anterior/mid-cingulate cortex, but also at S1 contralateral to the amputated limb. This observation suggested the increased sensitivity of S1 of the amputated limb to the pain-related context. In addition, such increase of sensitivity was significantly larger if the context was associated with the amputated limb of the patient. In summary, our findings provided novel evidence for a possible neuroplasticity of S1 of the amputated limb: in an amputee with long-lasting phantom limb pain, the sensitivity of S1 to pain-related and amputated-limb-related context was greatly enhanced. PMID:27389122

  4. Hippocampal CA1/subiculum-prefrontal cortical pathways induce plastic changes of nociceptive responses in cingulate and prelimbic areas

    Directory of Open Access Journals (Sweden)

    Nakamura Hiroyuki

    2010-08-01

    Full Text Available Abstract Background Projections from hippocampal CA1-subiculum (CA1/SB areas to the prefrontal cortex (PFC, which are involved in memory and learning processes, produce long term synaptic plasticity in PFC neurons. We examined modifying effects of these projections on nociceptive responses recorded in the prelimbic and cingulate areas of the PFC. Results Extracellular unit discharges evoked by mechanical noxious stimulation delivered to the rat-tail and field potentials evoked by a single stimulus pulse delivered to CA1/SB were recorded in the PFC. High frequency stimulation (HFS, 100 Hz delivered to CA1/SB, which produced long-term potentiation (LTP of field potentials, induced long-term enhancement (LTE of nociceptive responses in 78% of cases, while, conversely, in 22% responses decreased (long-term depression, LTD. These neurons were scattered throughout the cingulate and prelimbic areas. The results obtained for field potentials and nociceptive discharges suggest that CA1/SB-PFC pathways can produce heterosynaptic potentiation in PFC neurons. HFS had no effects on Fos expression in the cingulated cortex. Low frequency stimulation (LFS, 1 Hz, 600 bursts delivered to the CA1/SB induced LTD of nociceptive discharges in all cases. After recovery from LTD, HFS delivered to CA1/SB had the opposite effect, inducing LTE of nociceptive responses in the same neuron. The bidirectional type of plasticity was evident in these nociceptive responses, as in the homosynaptic plasticity reported previously. Neurons inducing LTD are found mainly in the prelimbic area, in which Fos expression was also shown to be inhibited by LFS. The electrophysiological results closely paralleled those of immunostaining. Our results indicate that CA1/SB-PFC pathways inhibit excitatory pyramidal cell activities in prelimbic areas. Conclusion Pressure stimulation (300 g applied to the rat-tail induced nociceptive responses in the cingulate and prelimbic areas of the PFC, which

  5. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    International Nuclear Information System (INIS)

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 ± 0.03; control = 1.12 ± 0.04) and in the right (schizophrenia 0.88 ± 0.02; control = 0.94 ± 0.03) and left (schizophrenia 0.84 ± 0.03; control = 0.94 ± 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 ± 0.05) than the controls (0.95 ± 0.02, P < 0.05) and the subgroup with normal SCL (0.88 ± 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  6. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento]. E-mail: awzuardi@fmrp.usp.br; Araujo, D.; Santos, A.C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Div. de Radiologia

    2008-07-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 {+-} 0.03; control = 1.12 {+-} 0.04) and in the right (schizophrenia 0.88 {+-} 0.02; control = 0.94 {+-} 0.03) and left (schizophrenia 0.84 {+-} 0.03; control = 0.94 {+-} 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 {+-} 0.05) than the controls (0.95 {+-} 0.02, P < 0.05) and the subgroup with normal SCL (0.88 {+-} 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  7. A positron emission tomography study of wind-up pain in chronic postherniotomy pain

    DEFF Research Database (Denmark)

    Kupers, Ron; Lonsdale, Markus Georg; Aasvang, Eske Kvanner; Kehlet, Henrik

    2011-01-01

    and non-painful von Frey stimulation revealed that the former more strongly activated contralateral secondary somatosensory cortex, insula, anterior cingulate cortex, right dorsolateral prefrontal cortex, thalamus and cerebellum. In addition, wind-up pain also activated the sublenticular extended...

  8. The typical development of posterior medial frontal cortex function and connectivity during task control demands in youth 8-19years old.

    Science.gov (United States)

    Liu, Yanni; Angstadt, Mike; Taylor, Stephan F; Fitzgerald, Kate D

    2016-08-15

    To characterize the development of neural substrate for interference processing and task control, this study examined both linear and non-linear effects of age on activation and connectivity during an interference task designed to engage the posterior medial frontal cortex (pMFC). Seventy-two youth, ages 8-19years, performed the Multi-Source Interference Task (MSIT) during functional magnetic resonance imaging (fMRI). With increasing age, overall performance across high-interference incongruent and low-interference congruent trials became faster and more accurate. Effects of age on activation to interference- (incongruent versus congruent conditions), error- (errors versus correct trials during the incongruent condition) and overall task-processing (incongruent plus congruent conditions, relative to implicit baseline) were tested in whole-brain voxel-wise analyses. Age differentially impacted activation to overall task processing in discrete sub-regions of the pMFC: activation in the pre-supplementary motor area (pre-SMA) decreased with age, whereas activation in the dorsal anterior cingulate cortex (dACC) followed a non-linear (i.e., U-shaped) pattern in relation to age. In addition, connectivity of pre-SMA with anterior insula/frontal operculum (AI/FO) increased with age. These findings suggest differential development of pre-SMA and dACC sub-regions within the pMFC. Moreover, as children age, decreases in pre-SMA activation may couple with increases in pre-SMA-AI/FO connectivity to support gains in processing speed in response to demands for task control. PMID:27173761

  9. Rapid Activation of Glucocorticoid Receptors in the Prefrontal Cortex Mediates the Expression of Contextual Conditioned Fear in Rats.

    Science.gov (United States)

    Reis, Fernando M C V; Almada, Rafael C; Fogaça, Manoela V; Brandão, Marcus L

    2016-06-01

    The aim of the present study was to investigate the role of glucocorticoids in medial prefrontal cortex (mPFC) activity and the expression of contextual conditioned fear (freezing). Rats were pretreated with vehicle or metyrapone, a corticosterone synthesis blocker, and exposed to a context previously paired with footshocks. Freezing and Fos-protein expression in different mPFC regions were assessed. Exposure to the aversive context led to increased freezing and Fos expression in the prelimbic (PrL), anterior cingulate areas 1 and 2 (Cg1/Cg2). Pretreatment with metyrapone decreased freezing and Fos expression in these areas. Administration of spironolactone, an MR antagonist, in the PrL before the test decreased freezing. Pretreatment with RU38486, a glucocorticoid receptor (GR) antagonist, reduced this effect of spironolactone, suggesting that the effects of this MR antagonist may be attributable to a redirection of endogenous corticosterone actions to GRs. Consistent with this result, the decrease in freezing that was induced by intra-PrL injections of corticosterone was attenuated by pretreatment with RU38486 but not spironolactone. These findings indicate that corticosterone release during aversive conditioning influences mPFC activity and the retrieval of conditioned fear memory indicating the importance of balance between MR:GR-mediated effects in this brain region in this process. PMID:25976757

  10. Detecting emotion in others: increased insula and decreased medial prefrontal cortex activation during emotion processing in elite adventure racers.

    Science.gov (United States)

    Thom, Nathaniel J; Johnson, Douglas C; Flagan, Taru; Simmons, Alan N; Kotturi, Sante A; Van Orden, Karl F; Potterat, Eric G; Swain, Judith L; Paulus, Martin P

    2014-02-01

    Understanding the neural processes that characterize elite performers is a first step to develop a neuroscience model that can be used to improve performance in stressful circumstances. Adventure racers are elite athletes that operate in small teams in the context of environmental and physical extremes. In particular, awareness of team member's emotional status is critical to the team's ability to navigate high-magnitude stressors. Thus, this functional magnetic resonance imaging (fMRI) study examined the hypothesis that adventure racers would show altered emotion processing in brain areas that are important for resilience and social awareness. Elite adventure racers (n = 10) were compared with healthy volunteers (n = 12) while performing a simple emotion face-processing (modified Hariri) task during fMRI. Across three types of emotional faces, adventure racers showed greater activation in right insula, left amygdala and dorsal anterior cingulate. Additionally, compared with healthy controls adventure racers showed attenuated right medial prefrontal cortex activation. These results are consistent with previous studies showing elite performers differentially activate neural substrates underlying interoception. Thus, adventure racers differentially deploy brain resources in an effort to recognize and process the internal sensations associated with emotions in others, which could be advantageous for team-based performance under stress. PMID:23171614

  11. Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer's disease.

    Science.gov (United States)

    Boundy, K L; Barnden, L R; Katsifis, A G; Rowe, C C

    2005-05-01

    Early detection of Alzheimer's disease (AD) allows timely pharmacological and social interventions. Alteration in muscarinic receptor binding was evaluated with I-123 iodo-dexetimide (IDEX) in early clinical stage AD. We studied 11 mild AD patients (Folstein Minimental State Examination Score 24-27, Clinical Dementia Rating 0.5-1.0) and 10 age- and sex-matched normal subjects with SPECT brain imaging after injection of 185 MBq of IDEX and 750 MBq of 99mTc-HMPAO. Using a voxel based approach (Statistical Parametric Mapping (SPM99) software), a deficit in IDEX binding was found in the posterior cingulate cortex in the mild AD group with p (corrected)=0.06 for the most significant voxel and p=0.0003 for the voxel cluster. Region of interest (ROI) analysis confirmed the SPM99 results. SPM99 found no deficit in the HMPAO scans, suggesting that neither atrophy nor hypoperfusion were major factors in the reduced IDEX binding. This study provides further evidence of the involvement of the posterior cingulate region and of muscarinic receptors in early Alzheimer's disease and suggests that this change may precede an alteration in blood flow. PMID:15925773

  12. Enlargement of Axo-Somatic Contacts Formed by GAD-Immunoreactive Axon Terminals onto Layer V Pyramidal Neurons in the Medial Prefrontal Cortex of Adolescent Female Mice Is Associated with Suppression of Food Restriction-Evoked Hyperactivity and Resilience to Activity-Based Anorexia.

    Science.gov (United States)

    Chen, Yi-Wen; Wable, Gauri Satish; Chowdhury, Tara Gunkali; Aoki, Chiye

    2016-06-01

    Many, but not all, adolescent female mice that are exposed to a running wheel while food restricted (FR) become excessive wheel runners, choosing to run even during the hours of food availability, to the point of death. This phenomenon is called activity-based anorexia (ABA). We used electron microscopic immunocytochemistry to ask whether individual differences in ABA resilience may correlate with the lengths of axo-somatic contacts made by GABAergic axon terminals onto layer 5 pyramidal neurons (L5P) in the prefrontal cortex. Contact lengths were, on average, 40% greater for the ABA-induced mice, relative to controls. Correspondingly, the proportion of L5P perikaryal plasma membrane contacted by GABAergic terminals was 45% greater for the ABA mice. Contact lengths in the anterior cingulate cortex correlated negatively and strongly with the overall wheel activity after FR (R = -0.87, P < 0.01), whereas those in the prelimbic cortex correlated negatively with wheel running specifically during the hours of food availability of the FR days (R = -0.84, P < 0.05). These negative correlations support the idea that increases in the glutamic acid decarboxylase (GAD) terminal contact lengths onto L5P contribute toward ABA resilience through suppression of wheel running, a behavior that is intrinsically rewarding and helpful for foraging but maladaptive within a cage. PMID:25979087

  13. Prefrontal cortex markers of suicidal vulnerability in mood disorders: a model-based structural neuroimaging study with a translational perspective.

    Science.gov (United States)

    Ding, Y; Lawrence, N; Olié, E; Cyprien, F; le Bars, E; Bonafé, A; Phillips, M L; Courtet, P; Jollant, F

    2015-01-01

    The vulnerability to suicidal behavior has been modeled in deficits in both valuation and cognitive control processes, mediated by ventral and dorsal prefrontal cortices. To uncover potential markers of suicidality based on this model, we measured several brain morphometric parameters using 1.5T magnetic resonance imaging in a large sample and in a specifically designed study. We then tested their classificatory properties. Three groups were compared: euthymic suicide attempters with a past history of mood disorders and suicidal behavior (N=67); patient controls with a past history of mood disorders but not suicidal behavior (N=82); healthy controls without any history of mental disorder (N=82). A hypothesis-driven region-of-interest approach was applied targeting the orbitofrontal cortex (OFC), ventrolateral (VLPFC), dorsal (DPFC) and medial (including anterior cingulate cortex; MPFC) prefrontal cortices. Both voxel-based (SPM8) and surface-based morphometry (Freesurfer) analyses were used to comprehensively evaluate cortical gray matter measure, volume, surface area and thickness. Reduced left VLPFC volume in attempters vs both patient groups was found (P=0.001, surviving multiple comparison correction, Cohen's d=0.65 95% (0.33-0.99) between attempters and healthy controls). In addition, reduced measures in OFC and DPFC, but not MPFC, were found with moderate effect sizes in suicide attempters vs healthy controls (Cohen's d between 0.34 and 0.52). Several of these measures were correlated with suicidal variables. When added to mood disorder history, left VLPFC volume increased within-sample specificity in identifying attempters in a significant but limited way. Our study, therefore, confirms structural prefrontal alterations in individuals with histories of suicide attempts. A future clinical application of these markers will, however, necessitate further research. PMID:25710122

  14. Bilateral anterior shoulder dislocation

    OpenAIRE

    Meena, Sanjay; Saini, Pramod; Singh, Vivek; Kumar, Ramakant; Trikha, Vivek

    2013-01-01

    Shoulder dislocations are the most common major joint dislocations encountered in the emergency departments. Bilateral shoulder dislocations are rare and of these, bilateral posterior shoulder dislocations are more prevalent than bilateral anterior shoulder dislocations. Bilateral anterior shoulder dislocation is very rare. We present a case of 24-year-old male who sustained bilateral anterior shoulder dislocation following minor trauma, with associated greater tuberosity fracture on one side...

  15. The role of the midcingulate cortex in monitoring others’ decisions

    Directory of Open Access Journals (Sweden)

    Matthew A J Apps

    2013-12-01

    Full Text Available A plethora of research has implicated the cingulate cortex in the processing of social information (i.e. processing elicited by, about, and directed towards others and reward-related information that guides decision-making. However, it is often overlooked that there is variability in the cytoarchitectonic properties and anatomical connections across the cingulate cortex, which is indicative of functional variability. Here we review evidence from lesion, single-unit recording and functional imaging studies. Taken together, these support the claim that the processing of information that has the greatest influence on social behaviour can be localised to the gyral surface of the midcingulate cortex (MCCg. We propose that the MCCg is engaged when predicting and monitoring the outcomes of decisions during social interactions. In particular, the MCCg processes statistical information that tracks the extent to which the outcomes of decisions meet goals when interacting with others. We provide a novel framework for the computational mechanisms that underpin such social information processing in the MCCg. This framework provides testable hypotheses for the social deficits displayed in autism spectrum disorders and psychopathy.

  16. An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection

    OpenAIRE

    Holt, Daphne J.; Cassidy, Brittany S.; Andrews-Hanna, Jessica R.; Lee, Su Mei; Coombs, Garth; Goff, Donald C.; Gabrieli, John D.; Moran, Joseph M.

    2010-01-01

    Background Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during “resting” states. In this study, we tested the hypothesis that patients with schizophrenia show dys...

  17. Anterior insular cortex regulation in autism spectrum disorders

    OpenAIRE

    Caria, Andrea; De Falco, Simona

    2015-01-01

    Autism spectrum disorders (ASDs) comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findi...

  18. Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Alexandre F DaSilva

    Full Text Available BACKGROUND: Recent data suggests that in chronic pain there are changes in gray matter consistent with decreased brain volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has evaluated cortical thickness in relation to specific functional changes in evoked pain. In this study we sought to investigate structural (gray matter thickness and functional (blood oxygenation dependent level - BOLD changes in cortical regions of precisely matched patients with chronic trigeminal neuropathic pain (TNP affecting the right maxillary (V2 division of the trigeminal nerve. The model has a number of advantages including the evaluation of specific changes that can be mapped to known somatotopic anatomy. METHODOLOGY/PRINCIPAL FINDINGS: Cortical regions were chosen based on sensory (Somatosensory cortex (SI and SII, motor (MI and posterior insula, or emotional (DLPFC, Frontal, Anterior Insula, Cingulate processing of pain. Both structural and functional (to brush-induced allodynia scans were obtained and averaged from two different imaging sessions separated by 2-6 months in all patients. Age and gender-matched healthy controls were also scanned twice for cortical thickness measurement. Changes in cortical thickness of TNP patients were frequently colocalized and correlated with functional allodynic activations, and included both cortical thickening and thinning in sensorimotor regions, and predominantly thinning in emotional regions. CONCLUSIONS: Overall, such patterns of cortical thickness suggest a dynamic functionally-driven plasticity of the brain. These structural changes, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions.

  19. Anterior Cruciate Ligament (ACL) Injuries

    Science.gov (United States)

    ... Help a Friend Who Cuts? Anterior Cruciate Ligament (ACL) Injuries KidsHealth > For Teens > Anterior Cruciate Ligament (ACL) ... and Recovery Coping With an ACL Injury About ACL Injuries A torn anterior cruciate ligament (ACL) is ...

  20. Differential visually-induced gamma-oscillations in human cerebral cortex

    OpenAIRE

    Asano, Eishi; Nishida, Masaaki; Fukuda, Miho; Rothermel, Robert; Juhasz, Csaba; Sood, Sandeep

    2008-01-01

    Using intracranial electrocorticography, we determined how cortical gamma-oscillations (50–150Hz) were induced by different visual tasks in nine children with focal epilepsy. In all children, full-field stroboscopic flash-stimuli induced gamma-augmentation in the anterior-medial occipital cortex (starting on average at 31-msec after stimulus presentation) and subsequently in the lateral-polar occipital cortex; minimal gamma-augmentation was noted in the inferior occipital-temporal cortex; occ...

  1. Vasopressin Modulates Medial Prefrontal Cortex-Amygdala Circuitry During Emotion Processing in Humans

    OpenAIRE

    Zink, Caroline F.; Stein, Jason L; Kempf, Lucas; Hakimi, Shabnam; Meyer-Lindenberg, Andreas

    2010-01-01

    The neuropeptide, vasopressin, is a modulator of mammalian social behavior and emotion, particularly fear, aggression, and anxiety. In humans, the neural circuitry underlying behavioral effects of vasopressin is unknown. Using a double-blind crossover administration of 40 IU vasopressin or placebo and functional MRI during processing of facial emotions in healthy male volunteers, we show that vasopressin specifically reduces differential activation in the subgenual cingulate cortex. Structura...

  2. Individuals' and groups' intentions in the medial prefrontal cortex.

    Science.gov (United States)

    Chaminade, Thierry; Kawato, Mitsuo; Frith, Chris

    2011-11-16

    Functional MRI signal was recorded while participants perceived stimuli presented using moving dots. In two conditions of interest, the motion of dots depicted intentions: dots representing the joints of an agent performing an action, and dots representing individual agents behaving contingently. The finding of a common cluster in the posterior part of the medial frontal cortex involved in intentional action representation validates the hypothesis that perception of these two conditions requires a similar internal representation. A cluster responding to the behaving group only is found in the anterior medial frontal cortex. These results support a division of the medial frontal cortex according to social stimuli attributes, with anterior areas responding to higher-order group behaviours integrating the action of multiple individual agents. PMID:21897305

  3. Anterior cervical plating

    Directory of Open Access Journals (Sweden)

    Gonugunta V

    2005-01-01

    Full Text Available Although anterior cervical instrumentation was initially used in cervical trauma, because of obvious benefits, indications for its use have been expanded over time to degenerative cases as well as tumor and infection of the cervical spine. Along with a threefold increase in incidence of cervical fusion surgery, implant designs have evolved over the last three decades. Observation of graft subsidence and phenomenon of stress shielding led to the development of the new generation dynamic anterior cervical plating systems. Anterior cervical plating does not conclusively improve clinical outcome of the patients, but certainly enhances the efficacy of autograft and allograft fusion and lessens the rate of pseudoarthrosis and kyphosis after multilevel discectomy and fusions. A review of biomechanics, surgical technique, indications, complications and results of various anterior cervical plating systems is presented here to enable clinicians to select the appropriate construct design.

  4. Anterior knee pain

    Science.gov (United States)

    Patellofemoral syndrome; Chondromalacia patella; Runner's knee; Patellar tendinitis; Jumper's knee ... or playing soccer). You have flat feet. Anterior knee pain is more ... skiers, bicyclists, and soccer players who exercise often ...

  5. Anterior knee pain

    Science.gov (United States)

    ... or playing soccer). You have flat feet. Anterior knee pain is more common in: People who are overweight People who have had a dislocation, fracture, or other injury to the kneecap Runners, jumpers, ...

  6. Insular cortex activity and the evocation of laughter.

    Science.gov (United States)

    Wattendorf, Elise; Westermann, Birgit; Lotze, Martin; Fiedler, Klaus; Celio, Marco R

    2016-06-01

    The insular cortex is fundamentally involved in the processing of interoceptive information. It has been postulated that the integrative monitoring of the bodily responses to environmental stimuli is crucial for the recognition and experience of emotions. Because emotional arousal is known to be closely coupled to functions of the anterior insula, we suspected laughter to be associated primarily with neuronal activity in this region. An anatomically constrained re-analysis of our imaging data pertaining to ticklish laughter, to inhibited ticklish laughter, and to voluntary laughter revealed regional differences in the levels of neuronal activity in the posterior and mid-/anterior portions of the insula. Ticklish laughter was associated specifically with right ventral anterior insular activity, which was not detected under the other two conditions. Hence, apparently, only laughter that is evoked as an emotional response bears the signature of autonomic arousal in the insular cortex. J. Comp. Neurol. 524:1608-1615, 2016. © 2015 Wiley Periodicals, Inc. PMID:26287648

  7. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia [v1; ref status: indexed, http://f1000r.es/34n

    Directory of Open Access Journals (Sweden)

    Julie Vallortigara

    2014-05-01

    Full Text Available Dementia with Lewy Bodies (DLB and Parkinson’s Disease Dementia (PDD together, represent the second most common cause of dementia, after Alzheimer’s disease (AD. The synaptic dysfunctions underlying the cognitive decline and psychiatric symptoms observed throughout the development of PDD and DLB are still under investigation. In this study we examined the expression level of Dynamin1 and phospho-CaMKII, key proteins of endocytosis and synaptic plasticity respectively, as potential markers of molecular processes specifically deregulated with DLB and/or PDD. In order to measure the levels of these proteins, we isolated grey matter from post-mortem prefrontal cortex area (BA9, anterior cingulated gyrus (BA24 and parietal cortex (BA40 from DLB and PDD patients in comparison to age-matched controls and a group of AD cases. Clinical and pathological data available included the MMSE score, neuropsychiatric history, and semi-quantitative scores for AD pathology (plaques - tangles and for α-synuclein (Lewy bodies. Changes in the expression of the synaptic markers, and correlates with neuropathological features and cognitive decline were predominantly found in the prefrontal cortex. On one hand, levels of Dynamin1 were significantly reduced, and correlated with a higher rate of cognitive decline observed in cases from three dementia groups. On the other hand, the fraction of phospho-CaMKII was decreased, and correlated with a high score of plaques and tangles in BA9. Interestingly, the correlation between the rate of cognitive decline and the level of Dynamin1 remained when the analysis was restricted to the PDD and DLB cases, highlighting an association of Dynamin1 with cognitive decline in people with Lewy Body dementia.

  8. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  9. Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior

    Directory of Open Access Journals (Sweden)

    Ronald P Gaykema

    2014-07-01

    Full Text Available The medial prefrontal cortex (mPFC is implicated in aspects of executive function, that include the modulation of attentional and memory processes involved in goal selection. Food-seeking behavior has been shown to involve activation of the mPFC, both during the execution of strategies designed to obtain food and during the consumption of food itself. As these behaviors likely require differential engagement of the prefrontal cortex, we hypothesized that the pattern of neuronal activation would also be behavior dependent. In this study we describe, for the first time, the expression of Fos in different layers and cell types of the infralimbic/dorsal peduncular (IL/DP and prelimbic/anterior cingulate (PL/AC subdivisions of mouse mPFC following both the consumption of palatable food and following exploratory activity of the animal directed at obtaining food reward. While both manipulations led to increases of Fos expression in principal excitatory neurons relative to control, food-directed exploratory activity produced a significantly greater increase in Fos expression than observed in the food intake condition. Consequently, we hypothesized that mPFC interneuron activation would also be differentially engaged by these manipulations. Interestingly, Fos expression patterns differed substantially between treatments and interneuron subtype, illustrating how the differential engagement of subsets of mPFC interneurons depends on the behavioral state. In our experiments, both vasoactive intestinal peptide- and parvalbumin-expressing neurons showed enhanced Fos expression only during the food-dependent exploratory task and not during food intake. Conversely, elevations in arcuate and paraventricular hypothalamic fos expression were only observed following food intake and not following food driven exploration. Our data suggest that activation of select mPFC interneurons may be required to support high cognitive demand states while being dispensable during

  10. A positron emission tomography study of wind-up pain in chronic postherniotomy pain

    DEFF Research Database (Denmark)

    Kupers, Ron; Lonsdale, Markus Georg; Aasvang, Eske Kvanner; Kehlet, Henrik

    2011-01-01

    and non-painful von Frey stimulation revealed that the former more strongly activated contralateral secondary somatosensorycortex, insula, anterior cingulate cortex, right dorsolateral prefrontal cortex, thalamus and cerebellum. In addition, wind-up pain also activated the sublenticular extended...

  11. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions

    Directory of Open Access Journals (Sweden)

    Simon M. Scheck

    2015-01-01

    Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function.

  12. Anterior Cingulate Taste Activation Predicts Ad Libitum Intake of Sweet and Savory Drinks in Healthy, Normal-Weight Men

    NARCIS (Netherlands)

    Spetter, M.S.; Graaf, de C.; Viergever, M.A.; Smeets, P.A.M.

    2012-01-01

    After food consumption, the motivation to eat (wanting) decreases and associated brain reward responses change. Wanting-related brain responses and how these are affected by consumption of specific foods are ill documented. Moreover, the predictive value of food-induced brain responses for subsequen

  13. Decreased prefrontal, anterior cingulate, insula, and ventral striatal metabolism in medication-free depressed outpatients with bipolar disorder

    OpenAIRE

    Brooks, John O.; Wang, Po W.; Bonner, Julie C.; Rosen, Allyson C.; Hoblyn, Jennifer C.; Hill, Shelley J.; Ketter, Terence A.

    2008-01-01

    This study explored whether cerebral metabolic changes seen in treatment resistant and rapid cycling bipolar depression inpatients are also found in an outpatient sample not specifically selected for treatment resistance or rapid cycling. We assessed 15 depressed outpatients with bipolar disorder (six type I and nine type II) who were medication-free for at least 2 weeks and were not predominantly rapid cycling. The average 28-item Hamilton Depression Scale (HAM-D) total score was 33.9. The h...

  14. Corticolimbic metabolic dysregulation in euthymic older adults with bipolar disorder

    OpenAIRE

    Brooks, John O.; Hoblyn, Jennifer C.; Woodard, Stephanie A.; Rosen, Allyson C.; Ketter, Terence A.

    2008-01-01

    The corticolimbic dysregulation hypothesis of bipolar disorder suggests that depressive symptoms are related to dysregulation of components of an anterior paralimbic network (anterior cingulate, anterior temporal cortex, dorsolateral prefrontal cortex, parahippocampal gyrus, and amygdala) with excessive anterior limbic activity accompanied by diminished prefrontal activity. In younger patients, such abnormalities tend to resolve with remission of depression, but it remains to be established w...

  15. Correlating anterior insula gray matter volume changes in young people with clinical and neurocognitive outcomes: an MRI study

    OpenAIRE

    Hatton Sean N; Lagopoulos Jim; Hermens Daniel F; Naismith Sharon L; Bennett Maxwell R; Hickie Ian B

    2012-01-01

    Abstract Background The anterior insula cortex is considered to be both the structural and functional link between experience, affect, and behaviour. Magnetic resonance imaging (MRI) studies have shown changes in anterior insula gray matter volume (GMV) in psychosis, bipolar, depression and anxiety disorders in older patients, but few studies have investigated insula GMV changes in young people. This study examined the relationship between anterior insula GMV, clinical symptom severity and ne...

  16. Congenital anterior urethral diverticulum.

    Science.gov (United States)

    Singh, Sanjeet Kumar; Ansari, Ms

    2014-09-01

    Congenital anterior urethral diverticulum (CAUD) may be found all along the anterior urethra and may present itself at any age, from infant to adult. Most children with this condition present with difficulty in initiating micturition, dribbling of urine, poor urinary stream, or urinary tract infection. A careful history will reveal that these children never had a good urinary stream since birth, and the telltale sign is a cystic swelling of the penile urethra. In this paper, we present two cases of CAUD that were managed by excision of the diverticulum with primary repair. PMID:26328174

  17. Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer's disease

    OpenAIRE

    Hirono, N.; Mori, E.; Ishii, K.; Ikejiri, Y; Imamura, T; Shimomura, T.; Hashimoto, M.; Yamashita, H.; Sasaki, M.

    1998-01-01

    The relation between orientation for time and place and regional cerebral glucose metabolism was examined in 86 patients with probable Alzheimer's disease of minimal to moderate severity. Regional glucose metabolic rates in the posterior cingulate gyri and in the right middle temporal gyrus were significantly correlated with temporal orientation, and the glucose metabolic rate in the right posterior cingulate gyrus was significantly correlated with locational orientation irr...

  18. From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations.

    Science.gov (United States)

    Cassaday, Helen J; Nelson, Andrew J D; Pezze, Marie A

    2014-01-01

    Distinctions along the dorsal-ventral axis of medial prefrontal cortex (mPFC), between anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) sub-regions, have been proposed on a variety of neuroanatomical and neurophysiological grounds. Conventional lesion approaches (as well as some electrophysiological studies) have shown that these distinctions relate to function in that a number behavioral dissociations have been demonstrated, particularly using rodent models of attention, learning, and memory. For example, there is evidence to suggest that AC has a relatively greater role in attention, whereas IL is more involved in executive function. However, the well-established methods of behavioral neuroscience have the limitation that neuromodulation is not addressed. The neurotoxin 6-hydroxydopamine has been used to deplete dopamine (DA) in mPFC sub-regions, but these lesions are not selective anatomically and noradrenalin is typically also depleted. Microinfusion of drugs through indwelling cannulae provides an alternative approach, to address the role of neuromodulation and moreover that of specific receptor subtypes within mPFC sub-regions, but the effects of such treatments cannot be assumed to be anatomically restricted either. New methodological approaches to the functional delineation of the role of mPFC in attention, learning and memory will also be considered. Taken in isolation, the conventional lesion methods which have been a first line of approach may suggest that a particular mPFC sub-region is not necessary for a particular aspect of function. However, this does not exclude a neuromodulatory role and more neuropsychopharmacological approaches are needed to explain some of the apparent inconsistencies in the results. PMID:25249948

  19. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects.

    Science.gov (United States)

    Bogdanov, Volodymyr B; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2015-03-15

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n=7), increased (n=10) or stayed unchanged (n=7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  20. From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: Some methodological limitations

    Directory of Open Access Journals (Sweden)

    Helen J. Cassaday

    2014-09-01

    Full Text Available Distinctions along the dorsal-ventral axis of medial prefrontal cortex (mPFC, between anterior cingulate (AC, prelimbic (PL and infralimbic (IL sub-regions, have been proposed on a variety of neuroanatomical and neurophysiological grounds. Conventional lesion approaches (as well as some electrophysiological studies have shown that these distinctions relate to function in that a number behavioural dissociations have been demonstrated, particularly using rodent models of attention, learning and memory. For example, there is evidence to suggest that AC has a relatively greater role in attention, whereas IL is more involved in executive function. However, the well-established methods of behavioral neuroscience have the limitation that neuromodulation is not addressed. The neurotoxin 6-hydroxydopamine has been used to deplete dopamine (DA in mPFC sub-regions, but these lesions are not selective anatomically and noradrenalin is typically also depleted. Microinfusion of drugs through indwelling cannulae provides an alternative approach, to address the role of neuromodulation and moreover that of specific receptor subtypes within mPFC sub-regions, but the effects of such treatments cannot be assumed to be anatomically restricted either. New methodological approaches to the functional delineation of the role of mPFC in attention, learning and memory will also be considered. Taken in isolation, the conventional lesion methods which have been a first line of approach may suggest that a particular mPFC sub-region is not necessary for a particular aspect of function. However, this does not exclude a neuromodulatory role and more neuropsychopharmacological approaches are needed to explain some of the apparent inconsistencies in the results.

  1. Anterior vaginal wall repair

    Science.gov (United States)

    ... symptoms will go away. This improvement will often last for years. Alternative Names A/P repair; Vaginal wall repair; Anterior and/ ... writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Contact ... Institutes of Health Page last updated: 23 August 2016

  2. [Toxic anterior segment syndrome].

    Science.gov (United States)

    Cornut, P-L; Chiquet, C

    2011-01-01

    Toxic anterior segment syndrome (TASS) is a general term used to describe acute, sterile postoperative inflammation due to a non-infectious substance that accidentally enters the anterior segment at the time of surgery and mimics infectious endophthalmitis. TASS most commonly occurs acutely following anterior segment surgery, typically 12-72h after cataract extraction. Anterior segment inflammation is usually quite severe with hypopyon. Endothelial cell damage is common, resulting in diffuse corneal edema. No bacterium is isolated from ocular samples. The causes of TASS are numerous and difficult to isolate. Any device or substance used during the surgery or in the immediate postoperative period may be implicated. The major known causes include: preservatives in ophthalmic solutions, denatured ophthalmic viscosurgical devices, bacterial endotoxin, and intraocular lens-induced inflammation. Clinical features of infectious and non-infectious inflammation are initially indistinguishable and TASS is usually diagnosed and treated as acute endophthalmitis. It usually improves with local steroid treatment but may result in chronic elevation of intraocular pressure or irreversible corneal edema due to permanent damage of trabecular meshwork or endothelial cells. PMID:21176994

  3. The orbitofrontal cortex: novelty, deviation from expectation, and memory.

    Science.gov (United States)

    Petrides, Michael

    2007-12-01

    The orbitofrontal cortex is strongly connected with limbic areas of the medial temporal lobe that are critically involved in the establishment of declarative memories (entorhinal and perirhinal cortex and the hippocampal region) as well as the amygdala and the hypothalamus that are involved in emotional and motivational states. The present article reviews evidence regarding the role of the orbitofrontal cortex in the processing of novel information, breaches of expectation, and memory. Functional neuroimaging evidence is provided that there is a difference between the anterior and posterior orbitofrontal cortex in such processing. Exposure to novel information gives rise to a selective increase of activity in the granular anterior part of the orbitofrontal cortex (area 11) and this activity increases when subjects attempt to encode this information in memory. If the stimuli violate expectations (e.g., inspection of graffiti-like stimuli in the context of other regular stimuli) or are unpleasant (i.e., exposure to the sounds of car crashes), there is increased response in the posteromedial agranular/dysgranular area 13 of the orbitofrontal region. The anatomic data provide a framework within which to understand these functional neuroimaging findings. PMID:17872393

  4. Cold or Calculating? Reduced Activity in the Subgenual Cingulate Cortex Reflects Decreased Emotional Aversion to Harming in Counterintuitive Utilitarian Judgment

    Science.gov (United States)

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-01-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has…

  5. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  6. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  7. Anterior cruciate ligament (ACL) injury

    Science.gov (United States)

    Cruciate ligament injury - anterior; ACL injury; Knee injury - anterior cruciate ligament (ACL) ... confirm the diagnosis. It may also show other knee injuries. First aid for an ACL injury may include: ...

  8. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought.

    Directory of Open Access Journals (Sweden)

    Jonathan Smallwood

    Full Text Available When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN, it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people's spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought.

  9. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease

    Science.gov (United States)

    Prieto del Val, Laura; Cantero, Jose L.; Atienza, Mercedes

    2016-01-01

    Synaptic dysfunction, a key pathophysiological hallmark of Alzheimer’s disease (AD), may account for abnormal memory-related EEG patterns in prodromal AD. Here, we investigate to what extent oscillatory EEG changes during memory encoding and/or retrieval enhance the accuracy of medial temporal lobe (MTL) atrophy in predicting conversion from amnestic mild cognitive impairment (aMCI) to AD. As expected, aMCI individuals that, within a 2-year follow-up period, developed dementia (N = 16) compared to healthy older (HO) (N = 26) and stable aMCI (N = 18) showed poorer associative memory, greater MTL atrophy, and lower capacity to recruit alpha oscillatory cortical networks. Interestingly, encoding-induced abnormal alpha desynchronized activity over the posterior cingulate cortex (PCC) at baseline showed significantly higher accuracy in predicting AD than the magnitude of amygdala atrophy. Nevertheless, the best accuracy was obtained when the two markers were fitted into the model (sensitivity = 78%, specificity = 82%). These results support the idea that synaptic integrity/function in the PCC is affected during prodromal AD and has the potential of improving early detection when combined with MRI biomarkers. PMID:27546195

  10. Positive Emotionality is Associated with Baseline Metabolism in Orbitofrontal Cortex and in Regions of the Default Network

    OpenAIRE

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Fowler, Joanna S.; Telang, Frank; Goldstein, Rita Z.; Alia-Klein, Nelly; Woicik, Patricia; Wong, Christopher; Logan, Jean; Millard, Jayne; Alexoff, David

    2011-01-01

    Positive Emotionality (personality construct of well being, achievement/motivation, social and closeness) has been associated with striatal dopamine D2 receptor availability in healthy controls. Since striatal D2 receptors modulate activity in orbitofrontal cortex and cingulate (brain regions that process natural and drug rewards) we hypothesized that these regions underlie positive emotionality. To test this we assessed the correlation between baseline brain glucose metabolism (measured with...

  11. Anterior Cruciate Ligament Injury

    OpenAIRE

    Vilaseca, Tomas; Chahla, Jorge; Rodriguez, Gustavo Gomez; Arroquy, Damián; Herrera, Gonzalo Perez; Orlowski, Belen; Carboni, Martín

    2015-01-01

    Objectives: The objective of this study was to analyze whether it is more frequent the presence of a decreased range of motion in the hips of recreational athletes with primary injury of the anterior cruciate ligament (ACL) than in a control group of volunteers without knee pathology. Methods: We included prospectively recreational athletes between 18 and 40 years with an acute ACL injury between January 2011 and January 2013. They were compared with a control group of volunteers recreational...

  12. Is the self special in the dorsomedial prefrontal cortex? An fMRI study.

    Science.gov (United States)

    Yaoi, Ken; Osaka, Naoyuki; Osaka, Mariko

    2009-01-01

    In recent years, several neuroimaging studies have suggested that the neural basis of the self-referential process1 is special, especially in the medial prefrontal cortex (MPFC). However, it remains controversial whether activity of the MPFC (and other related brain regions) appears only during the self-referential process. We investigated the neural correlates during the processing of references to the self, close other (friend), and distant other (prime minister) using fMRI. In comparison with baseline findings, referential processing to the three kinds of persons defined above showed common activation patterns in the dorsomedial prefrontal cortex (DMPFC), left middle temporal gyrus, left angular gyrus, posterior cingulate cortex and right cerebellum. Additionally, percent changes in BOLD signal in five regions of interest demonstrated the same findings. The result indicated that DMPFC was not special for the self-referential process, while there are common neural bases for evaluating the personalities of the self and others. PMID:19588282

  13. Posterior cingulate metabolic changes in frontotemporal lobar degeneration detected by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Differences in prognosis and symptomatic treatment have highlighted the importance of the differential diagnosis of frontotemporal lobar degeneration (FTLD) and other dementias, but the variable clinical features make diagnosis difficult. We studied metabolic changes using multivoxel proton magnetic resonance spectroscopy (MRS) in regions of FTLD, including the posterior cingulate gyrus, which is also the area most affected by Alzheimer's disease (AD) in the early stages. We examined six patients with FTLD, six with presumed AD, and five healthy volunteers using repetition and echo times of 2000 and 135 ms. We analysed peak ratios of choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) from frontal and temporoparietal regions, basal ganglia, and posterior cingulate gyrus in both hemispheres. A decreased NAA/Cr ratio was observed in the posterior cingulate gyri in presumed AD (right: 1.56±0.44, P =0.011; left: 1.46±0.25, P =0.008) and FTD (right: 1.47±0.40, P =0.005; left: 1.36±0.32, P =0.002). No statistically significant changes in Cho/Cr were identified in the posterior cingulate gyri in presumed AD or FTLD, and no differences were observed in peak ratios in other regions. Decreased NAA may reflect neuronal activity in the posterior cingulate gyrus, and this study may contirbute to insights into the pathophysiology of FTLD. (orig.)

  14. Posterior cingulate metabolic changes in frontotemporal lobar degeneration detected by magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, O.; Yamada, K.; Ito, H.; Nishimura, T. [Department of Radiology, Kyoto Prefectural University of Medicine, 456 Kajiicho, Kamigyoku, 602-8566, Kyoto (Japan)

    2004-04-01

    Differences in prognosis and symptomatic treatment have highlighted the importance of the differential diagnosis of frontotemporal lobar degeneration (FTLD) and other dementias, but the variable clinical features make diagnosis difficult. We studied metabolic changes using multivoxel proton magnetic resonance spectroscopy (MRS) in regions of FTLD, including the posterior cingulate gyrus, which is also the area most affected by Alzheimer's disease (AD) in the early stages. We examined six patients with FTLD, six with presumed AD, and five healthy volunteers using repetition and echo times of 2000 and 135 ms. We analysed peak ratios of choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) from frontal and temporoparietal regions, basal ganglia, and posterior cingulate gyrus in both hemispheres. A decreased NAA/Cr ratio was observed in the posterior cingulate gyri in presumed AD (right: 1.56{+-}0.44, P =0.011; left: 1.46{+-}0.25, P =0.008) and FTD (right: 1.47{+-}0.40, P =0.005; left: 1.36{+-}0.32, P =0.002). No statistically significant changes in Cho/Cr were identified in the posterior cingulate gyri in presumed AD or FTLD, and no differences were observed in peak ratios in other regions. Decreased NAA may reflect neuronal activity in the posterior cingulate gyrus, and this study may contirbute to insights into the pathophysiology of FTLD. (orig.)

  15. Insular cortex activity and the evocation of laughter

    OpenAIRE

    Wattendorf, Elise; Westermann, Birgit; Lotze, Martin; Fiedler, Klaus; Celio, Marco R.

    2015-01-01

    The insular cortex is fundamentally involved in the processing of interoceptive information. It has been postulated that the integrative monitoring of the bodily responses to environmental stimuli is crucial for the recognition and experience of emotions. Because emotional arousal is known to be closely coupled to functions of the anterior insula, we suspected laughter to be associated primarily with neuronal activity in this region. An anatomically constrained re-analysis of our imaging data...

  16. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  17. What does spatial alternation tell us about retrosplenial cortex function?

    Directory of Open Access Journals (Sweden)

    Andrew John Dudley Nelson

    2015-05-01

    Full Text Available The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g. allocentric, directional or intra-maze cues or whether the retrosplenial cortex helps the animal switch between competing spatial strategies or competing cue types. Using T-maze alternation, retrosplenial lesion rats were challenged with situations in which the available spatial information between the sample and test phases was changed, so taxing the interaction between different cue types. Clear lesion deficits emerged when intra- and extra-maze cues were placed in conflict (by rotating the maze between the sample and choice phases, or when the animals were tested in the dark in a double-maze. Finally, temporary inactivation of the retrosplenial cortex by muscimol infusions resulted in a striking deficit on standard T-maze alternation, indicating that, over time, other sites may be able to compensate for the loss of the retrosplenial cortex. This pattern of results is consistent with the impoverished use of both allocentric and directional information, exacerbated by an impaired ability to switch between different cue types.

  18. Anterior knee pain

    International Nuclear Information System (INIS)

    Anterior knee pain is a common complain in all ages athletes. It may be caused by a large variety of injuries. There is a continuum of diagnoses and most of the disorders are closely related. Repeated minor trauma and overuse play an important role for the development of lesions in Hoffa's pad, extensor mechanism, lateral and medial restrain structures or cartilage surface, however usually an increase or change of activity is referred. Although the direct relation of cartilage lesions, especially chondral, and pain is a subject of debate these lesions may be responsible of early osteoarthrosis and can determine athlete's prognosis. The anatomy and biomechanics of patellofemoral joint is complex and symptoms are often unspecific. Transient patellar dislocation has MR distinct features that provide evidence of prior dislocation and rules our complication. However, anterior knee pain more often is related to overuse and repeated minor trauma. Patella and quadriceps tendon have been also implicated in anterior knee pain, as well as lateral or medial restraint structures and Hoffa's pad. US and MR are excellent tools for the diagnosis of superficial tendons, the advantage of MR is that permits to rule out other sources of intraarticular derangements. Due to the complex anatomy and biomechanic of patellofemoral joint maltracking is not fully understood; plain films and CT allow the study of malalignment, new CT and MR kinematic studies have promising results but further studies are needed. Our purpose here is to describe how imaging techniques can be helpful in precisely defining the origin of the patient's complaint and thus improve understanding and management of these injuries

  19. Transient global amnesia associated with an acute infarction at the cingulate gyrus.

    Science.gov (United States)

    Gallardo-Tur, Alejandro; Romero-Godoy, Jorge; de la Cruz Cosme, Carlos; Arboix, Adriá

    2014-01-01

    Background. Transient global amnesia (TGA) is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter) at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct. PMID:25126430

  20. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections

    Directory of Open Access Journals (Sweden)

    Hoang Nam Nguyen

    2015-02-01

    Full Text Available The medial prefrontal cortex (mPFC exerts top-down control of primary visual cortex (V1 activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB, which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL and infralimbic cortices (IL. Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate 1 V1 neurons and 2 HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labelling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labelling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC, which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.

  1. Multidisciplinary management of anterior diastemata

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; Herkrath, Fernando José; Franco, Eduardo Jacomino;

    2007-01-01

    Anterior diastemata may compromise the harmony of a patient's smile. Consideration of etiologic factors, previous gingival conditioning, and individual treatment planning are essential in the proper management of anterior diastemata. An integrated orthodontic-restorative approach may enhance the...... aesthetic results when orthodontic therapy itself is not feasible. This article presents integrated orthodonticrestorative solutions of anterior diastemata, associated with the conditioning of the gingival tissue with composite resin, and discusses the most relevant aspects related to their etiology and...

  2. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the stria...

  3. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer's disease by means of H215O positron emission tomography

    International Nuclear Information System (INIS)

    Although decreased posterior cingulate metabolism in Alzheimer's disease (AD) has been previously reported, there have been no reports on posterior cingulate perfusion. In this study we evaluated posterior cingulate perfusion as a relative value using statistical parametric maps (SPMs) and as an absolute value using conventional region of interest (ROI) settings. Twenty-eight subjects, including 14 patients with mild AD (mean age: 66.4±12.1 years) and 14 normal controls (65.9±7.3 years) were studied. Regional cerebral blood flow (CBF) was measured with H215O and positron emission tomography (PET). In the SPM analysis, the left posterior cingulate and left parietotemporal CBFs were significantly decreased in the patients with mild AD (P<0.001). At a lower statistical threshold (P<0.05), the right posterior cingulate and right parietotemporal CBFs were also significantly decreased in the AD patients. In the ROI studies, the left parietal and posterior cingulate CBFs in the patients with mild AD were significantly lower than those of the normal controls by analysis of variance and post-hoc Scheffe's test (P<0.001). We conclude that posterior cingulate perfusion is decreased in mild AD, reflecting the pathological changes and metabolic reduction in the posterior cingulate gyrus that have previously been reported to occur in mild AD. (orig.). With 1 fig., 2 tabs

  4. Anterior cruciate ligament reconstruction

    International Nuclear Information System (INIS)

    This paper determines the efficacy of MR imaging in evaluation of the anterior cruciate ligament (ACL) following reconstructive surgery. Forty-three MR examinations were performed in 33 patients who had undergone previous arthroscopic ACL reconstruction with patellar bone-tendon- bone autografts (postoperative period, 1-24 months; mean, 5.2 months). Of the 40 studies performed in clinically stable knees (30 patients), MR demonstrated a well-defined, signal void ACL graft in 36. Of the three studies performed in three patients with clinical ACL laxity or suspected tear, the neoligament was of intermediate definition in one and nondiscernible in the other two. As in the native knee, buckling of the PCL was suggestive of ACL insufficiency. Bone tunnel placement, patellar tendon changes, and joint effusions were also evaluated

  5. Anterior hip pain.

    Science.gov (United States)

    O'Kane, J W

    1999-10-15

    Anterior hip pain is a common complaint with many possible causes. Apophyseal avulsion and slipped capital femoral epiphysis should not be overlooked in adolescents. Muscle and tendon strains are common in adults. Subsequent to accurate diagnosis, strains should improve with rest and directed conservative treatment. Osteoarthritis, which is diagnosed radiographically, generally occurs in middle-aged and older adults. Arthritis in younger adults should prompt consideration of an inflammatory cause. A possible femoral neck stress fracture should be evaluated urgently to prevent the potentially significant complications associated with displacement. Patients with osteitis pubis should be educated about the natural history of the condition and should undergo physical therapy to correct abnormal pelvic mechanics. "Sports hernias," nerve entrapments and labral pathologic conditions should be considered in athletic adults with characteristic presentations and chronic symptoms. Surgical intervention may allow resumption of pain-free athletic activity. PMID:10537384

  6. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats.

    Science.gov (United States)

    Reppucci, Christina J; Petrovich, Gorica D

    2016-07-01

    The amygdala and medial prefrontal cortex (mPFC) are highly interconnected telencephalic areas critical for cognitive processes, including associative learning and decision making. Both structures strongly innervate the lateral hypothalamus (LHA), an important component of the networks underlying the control of feeding and other motivated behaviors. The amygdala-prefrontal-lateral hypothalamic system is therefore well positioned to exert cognitive control over behavior. However, the organization of this system is not well defined, particularly the topography of specific circuitries between distinct cell groups within these complex, heterogeneous regions. This study used two retrograde tracers to map the connections from the amygdala (central and basolateral area nuclei) and mPFC to the LHA in detail, and to determine whether amygdalar pathways to the mPFC and to LHA originate from the same or different neurons. One tracer was placed into a distinct mPFC area (dorsal anterior cingulate, prelimbic, infralimbic, or rostromedial orbital), and the other into dorsal or ventral LHA. We report that the central nucleus and basolateral area of the amygdala send projections to distinct LHA regions, dorsal and ventral, respectively. The basolateral area, but not central nucleus, also sends substantial projections to the mPFC, topographically organized rostrocaudal to dorsoventral. The entire mPFC, in turn, projects to the LHA, providing a separate route for potential amygdalar influence following mPFC processing. Nearly all amygdalar projections to the mPFC and to the LHA originated from different neurons suggesting amygdala and amygdala-mPFC processing influence the LHA independently, and the balance of these parallel pathways ultimately controls motivated behaviors. PMID:26169110

  7. Area-specific information processing in prefrontal cortex during a probabilistic inference task: a multivariate fMRI BOLD time series analysis.

    Directory of Open Access Journals (Sweden)

    Charmaine Demanuele

    Full Text Available Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC, anterior cingulate (ACC and orbitofrontal (OFC cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a "Jumping to Conclusions" probabilistic reasoning task.We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information, while for prefrontal areas a wider multivariate pattern of activity was maximally informative.We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable

  8. Loss of resting-state posterior cingulate flexibility is associated with memory disturbance in left temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Linda Douw

    Full Text Available The association between cognition and resting-state fMRI (rs-fMRI has been the focus of many recent studies, most of which use stationary connectivity. The dynamics or flexibility of connectivity, however, may be seminal for understanding cognitive functioning. In temporal lobe epilepsy (TLE, stationary connectomic correlates of impaired memory have been reported mainly for the hippocampus and posterior cingulate cortex (PCC. We therefore investigate resting-state and task-based hippocampal and PCC flexibility in addition to stationary connectivity in left TLE (LTLE patients. Sixteen LTLE patients were analyzed with respect to rs-fMRI and task-based fMRI (t-fMRI, and underwent clinical neuropsychological testing. Flexibility of connectivity was calculated using a sliding-window approach by determining the standard deviation of Fisher-transformed Pearson correlation coefficients over all windows. Stationary connectivity was also calculated. Disturbed memory was operationalized as having at least one memory subtest score equal to or below the 5th percentile compared to normative data. Lower PCC flexibility, particularly in the contralateral (i.e. right hemisphere, was found in memory-disturbed LTLE patients, who had up to 22% less flexible connectivity. No significant group differences were found with respect to hippocampal flexibility, stationary connectivity during both rs-fMRI and t-fMRI, or flexibility during t-fMRI. Contralateral resting-state PCC flexibility was able to classify all but one patient with respect to their memory status (94% accuracy. Flexibility of the PCC during rest relates to memory functioning in LTLE patients. Loss of flexible connectivity to the rest of the brain originating from the PCC, particularly contralateral to the seizure focus, is able to discern memory disturbed patients from their preserved counterparts. This study indicates that the dynamics of resting-state connectivity are associated with cognitive status

  9. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... and E-poly antioxidant-infused technology during a hip replacement through the anterior supine intramuscular approach. “OR- ... Dr. Keith Berend perform an anterior approach total hip replacement with the patient on a regular OR ...

  10. Cognition without Cortex.

    Science.gov (United States)

    Güntürkün, Onur; Bugnyar, Thomas

    2016-04-01

    Assumptions on the neural basis of cognition usually focus on cortical mechanisms. Birds have no cortex, but recent studies in parrots and corvids show that their cognitive skills are on par with primates. These cognitive findings are accompanied by neurobiological discoveries that reveal avian and mammalian forebrains are homologous, and show similarities in connectivity and function down to the cellular level. But because birds have a large pallium, but no cortex, a specific cortical architecture cannot be a requirement for advanced cognitive skills. During the long parallel evolution of mammals and birds, several neural mechanisms for cognition and complex behaviors may have converged despite an overall forebrain organization that is otherwise vastly different. PMID:26944218

  11. Context-specific behavioral surprise is differentially correlated with activity in anterior and posterior brain systems.

    Science.gov (United States)

    Tobia, Michael J; Gläscher, Jan; Sommer, Tobias

    2016-06-15

    This experiment investigated whether behavioral surprise, an information-theoretic measure of the amount of memory and information integration associated with a response, is correlated with neural activity during decision making. A total of 30 participants (age 18-30) were scanned with functional MRI while completing 240 trials of a sequential decision-making task in which they selected an amount to wager from four possible values on each trial. Behavioral surprise was computed trial by trial using both context-free and context-specific formulations, and was used as a parametric modulator in functional MRI analyses. Whereas context-free surprise was not significantly correlated, two sets of clusters (P156 voxels) were differentially modulated by context-specific behavioral surprise. An anterior system comprised of the inferior frontal gyrus and anterior cingulate (each bilaterally), and left caudate, was positively modulated. A posterior system comprised of the posterior cingulate, parahippocampal gyrus and posterior hippocampus (each bilaterally), and left angular gyrus, was negatively modulated. These anticorrelated systems indicate that more surprising (resource demanding) actions recruit greater activity from the anterior system and less activity from the posterior system and less surprising actions (memory-guided) recruit greater activity from the posterior system and less activity from the anterior system. These results show that context-specific behavioral surprise is a unique neural signal and may be related to mechanisms for both cognitive control and memory-guided behavior, and support contemporary theories that the brain is a statistical observer of external and internal events. PMID:27110868

  12. The anterior temporal lobes support residual comprehension in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Zahn, Roland; Keidel, James L; Binney, Richard J; Sage, Karen; Lambon Ralph, Matthew A

    2014-03-01

    Wernicke's aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke's aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke's aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke's aphasia and 12 control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke's aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke's aphasia group displayed an 'over-activation' in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke's aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions. PMID:24519979

  13. Improved anatomic delineation of the antidepressant response to partial sleep deprivation in medial frontal cortex using perfusion-weighted functional MRI

    OpenAIRE

    Clark, Camellia P.; Brown, Gregory G.; Frank, Lawrence; Thomas, Linda; Sutherland, Ashley N.; Gillin, J. Christian

    2006-01-01

    This study used functional magnetic resonance imaging (fMRI) to clarify the sites of brain activity associated with the antidepressant effects of sleep deprivation (SD). We hypothesized: 1) depressed responders’ baseline ventral anterior cingulate (AC) perfusion will be greater than that of nonresponders and controls; 2) following partial sleep deprivation (PSD), ventral AC perfusion will significantly decrease in responders only. Seventeen unmedicated outpatients with current major depressio...

  14. The Insular Cortex and the Regulation of Cardiac Function.

    Science.gov (United States)

    Oppenheimer, Stephen; Cechetto, David

    2016-04-01

    Cortical representation of the heart challenges the orthodox view that cardiac regulation is confined to stereotyped, preprogrammed and rigid responses to exteroceptive or interoceptive environmental stimuli. The insula has been the region most studied in this regard; the results of clinical, experimental, and functional radiological studies show a complex interweave of activity with patterns dynamically varying regarding lateralization and antero-posterior distribution of responsive insular regions. Either acting alone or together with other cortical areas including the anterior cingulate, medial prefrontal, and orbito-frontal cortices as part of a concerted network, the insula can imbue perceptions with autonomic color providing emotional salience, and aiding in learning and behavioral decision choice. In these functions, cardiovascular input and the right anterior insula appear to play an important, if not pivotal role. At a more basic level, the insula gauges cardiovascular responses to exteroceptive and interoceptive stimuli, taking into account memory, cognitive, and reflexive constructs thereby ensuring appropriate survival responses and maintaining emotional and physiological homeostasis. When acquired derangements to the insula occur after stroke, during a seizure or from abnormal central processing of interoceptive or exteroceptive environmental cues as in psychiatric disorders, serious consequences can arise including cardiac electrophysiological, structural and contractile dysfunction and sudden cardiac death. PMID:27065176

  15. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... Taperloc Microplasty stem and E-poly antioxidant-infused technology during a hip replacement through the anterior supine ... renewed interest at this time due to several advantages that it brings. The approach that is performed ...

  16. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... an anterior approach total hip replacement with the patient on a regular OR table supine. My name ... less invasive without being small incision surgery. Obese patients can be easier due to less distribution of ...

  17. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... it to have any real negative or deleterious effect by removing the anterior capsule. Now I would ... is what happens with one of the competitive designs. Like I told you, I just take a ...

  18. Anterior approach for knee arthrography

    International Nuclear Information System (INIS)

    Objective. To develop a new method of magnetic resonance arthrography (MRA) of the knee using an anterior approach analogous to the portals used for knee arthroscopy.Design. An anterior approach to the knee joint was devised mimicking anterior portals used for knee arthroscopy. Seven patients scheduled for routine knee MRA were placed in a decubitus position and under fluoroscopic guidance a needle was advanced from a position adjacent to the patellar tendon into the knee joint. After confirmation of the needle tip location, a dilute gadolinium solution was injected.Results and conclusion. All the arthrograms were technically successful. The anterior approach to knee MRA has greater technical ease than the traditional approach with little patient discomfort. (orig.)

  19. Travoprost Induced Granulomatous Anterior Uveitis

    OpenAIRE

    Patrick Chiam

    2011-01-01

    Purpose. To report a case of granulomatous anterior uveitis caused by travoprost. Methods. Single observational case report. Results. A 71-year-old who was fit and healthy presented with bilateral granulomatous anterior uveitis 2 months after he was started on travoprost in both eyes. There was no past history of uveitis. Blood test and radiological investigation were unremarkable. Travoprost was stopped. The uveitis resolved on topical steroid treatment. A rechallenge with travoprost was att...

  20. Update on anterior ankle impingement

    OpenAIRE

    Vaseenon, Tanawat; Amendola, Annunziato

    2012-01-01

    Anterior ankle impingement results from an impingement of the ankle joint by a soft tissue or osteophyte formation at the anterior aspect of the distal tibia and talar neck. It often occurs secondary to direct trauma (impaction force) or repetitive ankle dorsiflexion (repetitive impaction and traction force). Chronic ankle pain, swelling, and limitation of ankle dorsiflexion are common complaints. Imaging is valuable for diagnosis of the bony impingement but not for the soft tissue impingemen...

  1. Cingulate gyrus morphology in children and adolescents with fetal alcohol spectrum disorders

    OpenAIRE

    Bjorkquist, Olivia A.; Fryer, Susanna L.; Reiss, Allan L; Mattson, Sarah N.; Riley, Edward P.

    2010-01-01

    Alcohol consumption during pregnancy can lead to a variety of cognitive and other birth defects, collectively termed fetal alcohol spectrum disorders (FASD), which includes the Fetal Alcohol Syndrome (FAS). This study examined the impact of gestational alcohol exposure on the morphology of the cingulate gyrus, given this region’s role in cognitive control, attention, and emotional regulation, all of which are affected in children with FASD. Thirty-one youth (ages 8–16) with histories of heavy...

  2. Posterior Cingulate, Precuneal & Retrosplenial Cortices: Cytology & Components of the Neural Network Correlates of Consciousness*

    OpenAIRE

    Vogt, Brent A.; Laureys, Steven

    2005-01-01

    Neuronal aggregates involved in conscious awareness are not evenly distributed throughout the CNS but are comprised of key components referred to as the neural network correlates of consciousness (NNCC). A critical node in this network is the retrosplenial, posterior cingulate, and precuneal cortices (RSC/PCC/PrCC). The cytological and neurochemical composition of this region is reviewed in relation to the Brodmann map. This region has the highest level of brain glucose metabolism and cytochr...

  3. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  4. Chemical shift magnetic resonance spectroscopy of cingulate grey matter in patients with minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Minimal hepatic encephalopathy (MHE) is frequently diagnosed in patients with liver cirrhosis who do not show overt clinical cirrhosis-associated neurological deficits. This condition manifests primarily with visuo-motor and attention deficits. We studied the association between visuo-motor deficits and magnetic resonance spectroscopic parameters in cingulate grey matter and white matter of centrum semiovale in patients with liver cirrhosis. The data revealed an increase in the glutamate-glutamine/creatine ratio and a decrease in choline/creatine and inositol/creatine ratios in patients with liver cirrhosis. The analysis of the data showed that cirrhosis-associated deterioration of the visuo-motor function significantly correlates with a decrease in the choline/creatine ratio and an increase in N-acetylaspartate/choline in cingulate grey matter but not in the neighbouring white matter. Furthermore, the increase in the glutamate-glutamine/creatine ratio correlated significantly with the increase in the N-acetylaspartate/creatine ratio. These data suggest an association between altered choline, glutamate-glutamine and NAA metabolism in cingulate grey matter and symptoms of MHE, and underline the importance of differentiation between grey and white matter in magnetic resonance spectroscopic studies on patients with cirrhosis-associated brain dysfunction. (orig.)

  5. Immuno-localisation of anti-thyroid antibodies in adult human cerebral cortex.

    Science.gov (United States)

    Moodley, Kogie; Botha, Julia; Raidoo, Deshandra Munsamy; Naidoo, Strinivasen

    2011-03-15

    Expression of thyroid-stimulating hormone receptor (TSH-R) has been demonstrated in adipocytes, lymphocytes, bone, kidney, heart, intestine and rat brain. Immuno-reactive TSH-R has been localised in rat brain and human embryonic cerebral cortex but not in adult human brain. We designed a pilot study to determine whether anti-thyroid auto-antibodies immuno-localise in normal adult human cerebral cortex. Forensic samples from the frontal, motor, sensory, occipital, cingulate and parieto-occipito-temporal association cortices were obtained from five individuals who had died of trauma. Although there were no head injuries, the prior psychiatric history of patients was unknown. The tissues were probed with commercial antibodies against both human TSH-R and human thyroglobulin (TG). Anti-TSH-R IgG immuno-localised to cell bodies and axons of large neurones in all 6 regions of all 5 brains. The intensity and percentage of neurones labelled were similar in all tissue sections. TSH-R immuno-label was also observed in vascular endothelial cells in the cingulate gyrus. Although also found in all 5 brains and all six cortical regions, TG localised exclusively in vascular smooth muscle cells and not on neurones. Although limited by the small sample size and number of brain areas examined, this is the first study describing the presence of antigenic targets for anti-TSH-R IgG on human cortical neurons, and anti-TG IgG in cerebral vasculature. PMID:21196016

  6. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  7. Hemispheric differences in amygdala contributions to response monitoring

    Science.gov (United States)

    Polli, Frida E.; Wright, Christopher I.; Milad, Mohammed R.; Dickerson, Bradford C.; Vangel, Mark; Barton, Jason J.S.; Rauch, Scott L.; Manoach, Dara S.

    2009-01-01

    The amygdala detects aversive events and coordinates with rostral anterior cingulate cortex to adapt behavior. We assessed error-related activation in these regions and its relation to task performance using functional MRI and a saccadic paradigm. Both amygdalae showed increased activation during error versus correct antisaccade trials that was correlated with error-related activation in the corresponding rostral anterior cingulate cortex. Together, activation in right amygdala and right rostral anterior cingulate cortex predicted greater accuracy. In contrast, left amygdala activation predicted a higher error rate. These findings support a role for amygdala in response monitoring. Consistent with proposed specializations of right and left amygdala in aversive conditioning, we hypothesize that right amygdala-rostral anterior cingulate cortex interactions mediate learning to avoid errors, while left error-related amygdala activation underpins detrimental negative affect. PMID:19218865

  8. Emotional valence modulates brain functional abnormalities in depression : Evidence from a meta-analysis of fMRI studies

    NARCIS (Netherlands)

    Groenewold, Nynke A.; Opmeer, Esther M.; de Jonge, Peter; Aleman, Andre; Costafreda, Sergi G.

    2013-01-01

    Models describing the neural correlates of biased emotion processing in depression have focused on increased activation of anterior cingulate and amygdala and decreased activation of striatum and dorsolateral prefrontal cortex. However, neuroimaging studies investigating emotion processing in depres

  9. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  10. The Behavioral Relevance of Task Information in Human Prefrontal Cortex.

    Science.gov (United States)

    Cole, Michael W; Ito, Takuya; Braver, Todd S

    2016-06-01

    Human lateral prefrontal cortex (LPFC) is thought to play a critical role in enabling cognitive flexibility, particularly when performing novel tasks. However, it remains to be established whether LPFC representation of task-relevant information in such situations actually contributes to successful performance. We utilized pattern classification analyses of functional MRI activity to identify novelty-sensitive brain regions as participants rapidly switched between performance of 64 complex tasks, 60 of which were novel. In three of these novelty-sensitive regions-located within distinct areas of left anterior LPFC-trial-evoked activity patterns discriminated correct from error trials. Further, these regions also contained information regarding the task-relevant decision rule, but only for successfully performed trials. This suggests that left anterior LPFC may be particularly important for representing task information that contributes to the cognitive flexibility needed to perform successfully in novel task situations. PMID:25870233

  11. Visual Cortex Plasticity Following Peripheral Damage To The Visual System: fMRI Evidence.

    Science.gov (United States)

    Lemos, João; Pereira, Daniela; Castelo-Branco, Miguel

    2016-10-01

    Over the last two decades, functional magnetic resonance imaging (fMRI) has become a powerful research method to investigate cortical visual plasticity. Abnormal fMRI response patterns have been occasionally detected in the visually deprived cortex of patients with bilateral retinal diseases. Controversy remains whether these observations indicate structural reorganization of the visual cortex or unmasking of previously silent cortico-cortical connections. In optic nerve diseases, there is weak evidence showing that early visual cortex seems to lack reorganization, while higher-order visual areas undergo plastic changes which may contribute to optimise visual function. There is however accumulating imaging evidence demonstrating trans-synaptic degeneration of the visual cortex in patients with disease of the anterior visual pathways. This may preclude the use of restorative treatments in these patients. Here, we review and update the body of fMRI evidence on visual cortical plasticity. PMID:27542799

  12. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    Science.gov (United States)

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  13. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  14. Travoprost Induced Granulomatous Anterior Uveitis

    Science.gov (United States)

    Chiam, Patrick

    2011-01-01

    Purpose. To report a case of granulomatous anterior uveitis caused by travoprost. Methods. Single observational case report. Results. A 71-year-old who was fit and healthy presented with bilateral granulomatous anterior uveitis 2 months after he was started on travoprost in both eyes. There was no past history of uveitis. Blood test and radiological investigation were unremarkable. Travoprost was stopped. The uveitis resolved on topical steroid treatment. A rechallenge with travoprost was attempted in one eye. The inflammation recurred in this eye only. This subsided with the cessation of travoprost alone without topical steroid. Conclusion. This is the first case report of travoprost causing granulomatous anterior uveitis. The uveitis recurred with a rechallenge. Changing the prostaglandin analogue to another topical treatment may be adequate to cease the inflammation. PMID:22606464

  15. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease?

    International Nuclear Information System (INIS)

    Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia.We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions. (orig.)

  16. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease?

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Stefan [University of Rostock, Department of Psychosomatic Medicine, Rostock (Germany); DZNE, German Center for Neurodegenerative Diseases, Rostock (Germany); Alzheimer' s Disease Neuroimaging Initiative (United States); Grothe, Michel J. [DZNE, German Center for Neurodegenerative Diseases, Rostock (Germany); Alzheimer' s Disease Neuroimaging Initiative (United States)

    2016-03-15

    Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia.We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions. (orig.)

  17. Functional connectivity of the amygdala and subgenual cingulate during cognitive reappraisal of emotions in children with MDD history is associated with rumination.

    Science.gov (United States)

    Murphy, Eric R; Barch, Deanna M; Pagliaccio, David; Luby, Joan L; Belden, Andy C

    2016-04-01

    Major Depressive Disorder (MDD) is characterized by poor emotion regulation. Rumination, a maladaptive strategy for dealing with negative emotions, is common in MDD, and is associated with impaired inhibition and cognitive inflexibility that may contribute to impaired emotion regulation abilities. However, it is unclear whether rumination is differently associated with emotion regulation in individuals with MDD history (MDD-ever) and healthy individuals. In this study, children (8-15 years old) performed a cognitive reappraisal task in which they attempted to decrease their emotional response to sad images during fMRI scanning. Functional connectivity (FC) between both the amygdala and subgenual anterior cingulate (sACC) increased with cortical control regions during reappraisal as rumination increased in MDD-ever, while connectivity between those regions decreased during reappraisal as rumination increased in healthy controls. As the role of cortical control regions is to down-regulate activity of emotion processing regions during reappraisal, this suggests that rumination in MDD-ever, but not controls, is associated with inefficient regulation. This finding suggests that rumination may be particularly associated with poor emotion regulation in MDD-ever, and may also indicate qualitative group differences in whether rumination is maladaptive. These differences in rumination may provide important insight into depressive risk and potential avenues for treatment. PMID:26746624

  18. Emotional moments across time: a possible neural basis for time perception in the anterior insula

    OpenAIRE

    Craig, A.D. (Bud)

    2009-01-01

    A model of awareness based on interoceptive salience is described, which has an endogenous time base that might provide a basis for the human capacity to perceive and estimate time intervals in the range of seconds to subseconds. The model posits that the neural substrate for awareness across time is located in the anterior insular cortex, which fits with recent functional imaging evidence relevant to awareness and time perception. The time base in this model is adaptive and emotional, and th...

  19. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus

    OpenAIRE

    KAY, RACHEL B.; Brunjes, Peter C

    2014-01-01

    Understanding the cellular components of neural circuits is an essential step in discerning regional function. The anterior olfactory nucleus (AON) is reciprocally connected to both the ipsi- and contralateral olfactory bulb (OB) and piriform cortex (PC), and, as a result, can broadly influence the central processing of odor information. While both the AON and PC are simple cortical structures, the regions differ in many ways including their general organization, internal wiring and synaptic ...

  20. The contribution of intracranial eeg to research on the empathy for pain

    Czech Academy of Sciences Publication Activity Database

    Brázdil, M.; Riecanski, I.; Roman, R.; Chládek, Jan; Mareček, R.; Shaw, D. J.; Lamm, C.

    Elsevier. Roč. 126, č. 3 (2015), e35. ISSN 1388-2457. [Congress of the Czech and Slovak Society of Clinical Neurophysiology /61./. 15.10.2015-18.10.2015, Olomouc] Institutional support: RVO:68081731 Keywords : bilateral anterior insular cortex * medial/anterior cingulate cortex * pain * empathy * ERP * intracranial * intracerebral * subdural * EEG Subject RIV: BH - Optics, Masers, Lasers

  1. Transient Global Amnesia Associated with an Acute Infarction at the Cingulate Gyrus

    OpenAIRE

    Alejandro Gallardo-Tur; Jorge Romero-Godoy; Carlos de la Cruz Cosme; Adriá Arboix

    2014-01-01

    Background. Transient global amnesia (TGA) is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small...

  2. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  3. Dissociation of object and spatial visual processing pathways in human extrastriate cortex.

    Science.gov (United States)

    Haxby, J V; Grady, C L; Horwitz, B; Ungerleider, L G; Mishkin, M; Carson, R E; Herscovitch, P; Schapiro, M B; Rapoport, S I

    1991-01-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas. Images PMID:2000370

  4. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    International Nuclear Information System (INIS)

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas

  5. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... during a hip replacement through the anterior supine intramuscular approach. “OR-Live,” the vision of improving health. ... the approach are operating through an internervous and intramuscular anatomic interval. It’s not necessary to detach any ...

  6. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... got coming out in “JBJS,” the early six-week recovery is dramatically different between a direct lateral abductor splitting approach and this anterior supine approach. Let me get this head on. My experience, these patients have full leg control in about 24 hours. Yeah. They can get out of bed and ...

  7. Anterior Approach Total Hip Replacement

    Medline Plus

    Full Text Available ... the anterior supine intramuscular approach. “OR-Live,” the vision of improving health. Good evening and welcome to ... should know that this is done under direct vision. Yeah. You are seeing everything you’re doing. ...

  8. Music perception and cognition following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Tramo, M J; Bharucha, J J; Musiek, F E

    1990-01-01

    We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250-8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies

  9. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  10. Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models

    OpenAIRE

    Penner, Jacob; Ford, Kristen A.; Taylor, Reggie; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W. J.; Osuch, Elizabeth A.; Menon, Ravi S.; Rajakumar, Nagalingam; Allman, John M.; Williamson, Peter C.

    2016-01-01

    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using...

  11. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  12. 38 CFR 3.379 - Anterior poliomyelitis.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Anterior poliomyelitis. 3... Specific Diseases § 3.379 Anterior poliomyelitis. If the first manifestations of acute anterior poliomyelitis present themselves in a veteran within 35 days of termination of active military service, it...

  13. Cognitive Strategy Use as an Index of Developmental Differences in Neural Responses to Feedback

    Science.gov (United States)

    Andersen, Lau M.; Visser, Ingmar; Crone, Eveline A.; Koolschijn, P. Cédric M. P.; Raijmakers, Maartje E. J.

    2014-01-01

    Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie, Leijenhorst, Westenberg, & Rombouts, 2008). Both…

  14. Olfactory Predictive Codes and Stimulus Templates in Piriform Cortex

    Science.gov (United States)

    Zelano, Christina; Mohanty, Aprajita; Gottfried, Jay A.

    2011-01-01

    Summary Neuroscientific models of sensory perception suggest that the brain utilizes predictive codes in advance of a stimulus encounter, enabling organisms to infer forthcoming sensory events. However, it is poorly understood how such mechanisms are implemented in the olfactory system. Combining high-resolution functional magnetic resonance imaging with multivariate (pattern-based) analyses, we examined the spatiotemporal evolution of odor perception in the human brain during an olfactory search task. Ensemble activity patterns in anterior piriform cortex (APC) and orbitofrontal cortex (OFC) reflected the attended odor target both before and after stimulus onset. In contrast, pre-stimulus ensemble representations of the odor target in posterior piriform cortex (PPC) gave way to post-stimulus representations of the odor itself. Critically, the robustness of target-related patterns in PPC predicted subsequent behavioral performance. Our findings directly show that the brain generates predictive templates or “search images” in PPC, with physical correspondence to odor-specific pattern representations, to augment olfactory perception. PMID:21982378

  15. Pediatric anterior cruciate ligament reconstruction

    OpenAIRE

    McConkey, Mark O.; Bonasia, Davide Edoardo; Amendola, Annunziato

    2011-01-01

    An increasing number of anterior cruciate ligament (ACL) injuries are seen in children now than in the past due to increased sports participation. The natural history of ACL deficient knees in active individuals, particularly in children is poor. Surgical management of ACL deficiency in children is complex due to the potential risk of injury to the physis and growth disturbance. Delaying ACL reconstruction until maturity is possible but risks instability episodes and intra-articular damage. S...

  16. Anterior impingement syndrome in dancers

    OpenAIRE

    O’Kane, John William; Kadel, Nancy

    2007-01-01

    Anterior impingement is a common problem in dancers occurring primarily secondary to the repetitive forced ankle dorsiflexion inherent in ballet. Symptoms generally occur progressively and may respond to conservative treatment including addressing biomechanical faults that contribute to the problem. As impingement progresses, movements essential to ballet may become impossible and arthroscopic ankle surgery is often effective for both diagnosis and treatment, allowing athletes to return to da...

  17. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions

    Science.gov (United States)

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana

    2016-01-01

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions

  18. Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle

    OpenAIRE

    Protopopescu, Xenia; Pan, Hong; Altemus, Margaret; Tuescher, Oliver; Polanecsky, Margaret; McEwen, Bruce; Silbersweig, David; Stern, Emily

    2005-01-01

    The orbitofrontal cortex (OFC) has been implicated in the representation of emotional stimuli, assignment of emotional valence/salience to stimuli, stimulus-reinforcement association learning, motivation, and socio-emotional control. Using functional magnetic resonance imaging in female subjects without premenstrual mood symptoms, we found that OFC activity to emotional linguistic stimuli varies depending on the menstrual cycle phase. Specifically, anterior-medial OFC activity for negative vs...

  19. Neurometabolic characteristics in the anterior cingulate gyrus of Alzheimer’s disease patients with depression: a 1H magnetic resonance spectroscopy study

    OpenAIRE

    Guo, Zhongwei; Zhang, Jiangtao; Liu, Xiaozheng; Hou, Hongtao; Cao, Yulin; Wei, Fuquan; Li, Japeng; Chen, Xingli; Shen, Yuedi; Chen, Wei

    2015-01-01

    Background Depression is a common comorbid psychiatric symptom in patients with Alzheimer’s disease (AD), and the prevalence of depression is higher among people with AD compared with healthy older adults. Comorbid depression in AD may increase the risk of cognitive decline, impair patients’ function, and reduce their quality of life. However, the mechanisms of depression in AD remain unclear. Here, our aim was to identify neurometabolic characteristics in the brain that are associated with d...

  20. Amygdala and dorsal anterior cingulate connectivity during an emotional working memory task in borderline personality disorder patients with interpersonal trauma history

    NARCIS (Netherlands)

    A Krause-Utz; B.M. Elzinga; N.Y.L. Oei; C. Paret; I. Niedtfeld; Ph. Spinhoven; M. Bohus; C. Schmahl

    2014-01-01

    Working memory is critically involved in ignoring emotional distraction while maintaining goal-directed behavior. Antagonistic interactions between brain regions implicated in emotion processing, e.g., amygdala, and brain regions involved in cognitive control, e.g., dorsolateral and dorsomedial pref

  1. Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS

    Directory of Open Access Journals (Sweden)

    Christian J. Hartmann

    2016-01-01

    Full Text Available Background: Medication resistant obsessive-compulsive disorder (OCD patients can be successfully treated with Deep Brain Stimulation (DBS which targets the anterior limb of the internal capsule (ALIC and the nucleus accumbens (NA. Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating clinical effects of ALIC-NA DBS.Methods: We created computational models of ALIC-NA DBS to simulate the activation of fiber tracts and to identify connected cerebral regions. The pattern of activated axons and their cortical targets was investigated in six OCD patients who underwent ALIC-NA DBS. Results: Modulation of the right anterior middle frontal gyrus (dorsolateral prefrontal cortex was associated with an excellent response. In contrast, non-responders showed high activation in the orbital part of the right inferior frontal gyrus (lateral orbitofrontal cortex/anterior ventrolateral prefrontal cortex. Factor analysis followed by step-wise linear regression indicated that YBOCS improvement was inversely associated with factors that were predominantly determined by gray matter activation results.Discussion: Our findings support the hypothesis that optimal therapeutic results are associated with the activation of distinct fiber pathways. This suggests that in DBS for OCD, focused stimulation of specific fiber pathways, which would allow for stimulation with lower amplitudes, may be superior to activation of a wide array of pathways, typically associated with higher stimulation amplitudes.

  2. Thicker temporal cortex associates with a developmental trajectory for psychopathic traits in adolescents.

    Science.gov (United States)

    Yang, Yaling; Wang, Pan; Baker, Laura A; Narr, Katherine L; Joshi, Shantanu H; Hafzalla, George; Raine, Adrian; Thompson, Paul M

    2015-01-01

    Psychopathy is a clinical condition characterized by a failure in normal social interaction and morality. Recent studies have begun to reveal brain structural abnormalities associated with psychopathic tendencies in children. However, little is known about whether variations in brain morphology are linked to the developmental trajectory of psychopathic traits over time. In this study, structural magnetic resonance imaging (sMRI) data from 108 14-year-old adolescents with no history of substance abuse (54 males and 54 females) were examined to detect cortical thickness variations associated with psychopathic traits and individual rates of change in psychopathic traits from ages 9 to 18. We found cortical thickness abnormalities to correlate with psychopathic traits both cross-sectionally and longitudinally. Specifically, at age 14, higher psychopathic scores were correlated with thinner cortex in the middle frontal gyrus, particularly in females, and thicker cortex in the superior temporal gyrus, middle temporal gyrus, and parahippocampal gyrus, particularly in males. Longitudinally, individual rates of change in psychopathic tendency over time were correlated with thicker cortex in the superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, and posterior cingulate gyrus, particularly in males. Findings suggest that abnormal cortical thickness may reflect a delay in brain maturation, resulting in disturbances in frontal and temporal functioning such as impulsivity, sensation-seeking, and emotional dysregulation in adolescents. Thus, findings provide initial evidence supporting that abnormal cortical thickness may serve as a biomarker for the development of psychopathic propensity in adolescents. PMID:26017779

  3. Thicker temporal cortex associates with a developmental trajectory for psychopathic traits in adolescents.

    Directory of Open Access Journals (Sweden)

    Yaling Yang

    Full Text Available Psychopathy is a clinical condition characterized by a failure in normal social interaction and morality. Recent studies have begun to reveal brain structural abnormalities associated with psychopathic tendencies in children. However, little is known about whether variations in brain morphology are linked to the developmental trajectory of psychopathic traits over time. In this study, structural magnetic resonance imaging (sMRI data from 108 14-year-old adolescents with no history of substance abuse (54 males and 54 females were examined to detect cortical thickness variations associated with psychopathic traits and individual rates of change in psychopathic traits from ages 9 to 18. We found cortical thickness abnormalities to correlate with psychopathic traits both cross-sectionally and longitudinally. Specifically, at age 14, higher psychopathic scores were correlated with thinner cortex in the middle frontal gyrus, particularly in females, and thicker cortex in the superior temporal gyrus, middle temporal gyrus, and parahippocampal gyrus, particularly in males. Longitudinally, individual rates of change in psychopathic tendency over time were correlated with thicker cortex in the superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, and posterior cingulate gyrus, particularly in males. Findings suggest that abnormal cortical thickness may reflect a delay in brain maturation, resulting in disturbances in frontal and temporal functioning such as impulsivity, sensation-seeking, and emotional dysregulation in adolescents. Thus, findings provide initial evidence supporting that abnormal cortical thickness may serve as a biomarker for the development of psychopathic propensity in adolescents.

  4. Canonical computations of cerebral cortex.

    Science.gov (United States)

    Miller, Kenneth D

    2016-04-01

    The idea that there is a fundamental cortical circuit that performs canonical computations remains compelling though far from proven. Here we review evidence for two canonical operations within sensory cortical areas: a feedforward computation of selectivity; and a recurrent computation of gain in which, given sufficiently strong external input, perhaps from multiple sources, intracortical input largely, but not completely, cancels this external input. This operation leads to many characteristic cortical nonlinearities in integrating multiple stimuli. The cortical computation must combine such local processing with hierarchical processing across areas. We point to important changes in moving from sensory cortex to motor and frontal cortex and the possibility of substantial differences between cortex in rodents vs. species with columnar organization of selectivity. PMID:26868041

  5. The role of the prefrontal cortex in controlling gender-stereotypical associations: a TMS investigation.

    Science.gov (United States)

    Cattaneo, Zaira; Mattavelli, Giulia; Platania, Elisa; Papagno, Costanza

    2011-06-01

    Stereotypes associated with gender, race, ethnicity and religion are powerful forces in human social interactions. Previous neuroimaging and neuropsychological studies point to a role of the prefrontal cortex in controlling stereotypical responses. Here we used transcranial magnetic stimulation (TMS) in combination with an Implicit Association Test (IAT) to highlight the possible causal role of the left dorsolateral prefrontal cortex (DLPFC) and the right anterior dorsomedial prefrontal cortex (aDMPFC) in controlling gender-stereotypical responses. Young male and female participants were tested. Our results showed that applying TMS over the left DLPFC and the right aDMPFC increased the gender-stereotypical bias in male participants compared to when TMS was applied to a control site (vertex). This suggests that both the left DLPFC and the right aDMPFC play a direct role in stereotyping. Females did not show a significant gender bias on the IAT; correspondingly their responses were unaffected by TMS. PMID:21338690

  6. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer`s disease by means of H{sub 2}{sup 15}O positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazunari [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (HI-ABCD), Himeji (Japan); Sasaki, Masahiro [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (HI-ABCD), Himeji (Japan); Yamaji, Shigeru [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (HI-ABCD), Himeji (Japan); Sakamoto, Setsu [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (HI-ABCD), Himeji (Japan)]|[Department of Radiology, Kobe University School of Medicine, Kobe (Japan); Kitagaki, Hajime [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (HI-ABCD), Himeji (Japan); Mori, Etsuro [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders (HI-ABCD), Himeji (Japan)

    1997-06-10

    Although decreased posterior cingulate metabolism in Alzheimer`s disease (AD) has been previously reported, there have been no reports on posterior cingulate perfusion. In this study we evaluated posterior cingulate perfusion as a relative value using statistical parametric maps (SPMs) and as an absolute value using conventional region of interest (ROI) settings. Twenty-eight subjects, including 14 patients with mild AD (mean age: 66.4{+-}12.1 years) and 14 normal controls (65.9{+-}7.3 years) were studied. Regional cerebral blood flow (CBF) was measured with H{sub 2}{sup 15}O and positron emission tomography (PET). In the SPM analysis, the left posterior cingulate and left parietotemporal CBFs were significantly decreased in the patients with mild AD (P<0.001). At a lower statistical threshold (P<0.05), the right posterior cingulate and right parietotemporal CBFs were also significantly decreased in the AD patients. In the ROI studies, the left parietal and posterior cingulate CBFs in the patients with mild AD were significantly lower than those of the normal controls by analysis of variance and post-hoc Scheffe`s test (P<0.001). We conclude that posterior cingulate perfusion is decreased in mild AD, reflecting the pathological changes and metabolic reduction in the posterior cingulate gyrus that have previously been reported to occur in mild AD. (orig.). With 1 fig., 2 tabs.

  7. Absence of scalenus anterior muscle.

    OpenAIRE

    Murakami S; Horiuchi K; Yamamoto C; Ohtsuka A; Murakami T.

    2003-01-01

    A rare anomaly of the scalenus muscles is described. In this case, the right scalenus anterior muscle was absent. As a substitute for this muscle, some aberrant muscle slips arose from the lower vertebrae and descended in front of the ventral rami of the lower cervical nerves. These aberrant slips then ran between the ventral rami of the the eighth cervical and first thoracic nerves, and were fused with the right scalenus medius muscle. Thus, the subclavian artery and vein ran in front of the...

  8. Lesiones del ligamento cruzado anterior

    OpenAIRE

    Alejandro Álvarez López; Yenima García Lorenzo

    2015-01-01

    Fundamento: el ligamento cruzado anterior desempeña un papel muy importante en la estabili-dad de la rodilla. La incidencia de esta afección es alta en pacientes que practican deportes de contacto y de no ser tratados de forma adecuada, los resultados son desfavorables. Objetivo: profundizar en los factores necesarios para el tratamiento adecuado de enfermos con esta lesión y evitar las complicaciones. Método: se realizó una revisión bibliográfica de un total de 300 artículos publicados en Pu...

  9. A comparative study of the width of the anterior interhemispheric fissure in schizophrenia and senile dementia by cranial computed tomography (CCT)

    International Nuclear Information System (INIS)

    CCT pictures were used to obtain comparative measurements of morphologic changes in the prefrontal lobes in schizophrenics and senile dementia patients as well as in an age-matched control group. A Statistically significant widening of the distance between the inner surfaces of both superior frontal gyri and between anterior surfaces of both cingulate gyri were noted in the diseased group. As to the schizophrenic group, a greater distance between the inner surfaces of both frontal gyri was noted, while a generalized atrophic change of frontal lobes was rather common in the senile dementia group. (author)

  10. CT patellar cortex tilt angle: A radiological method to measure patellar tilt

    International Nuclear Information System (INIS)

    Background/Objectives: the role of patellar tilt in the anterior knee pain is indisputable. Traditionally. the lateral patello-femoral angle of Laurin has been defined in both the axial view and CT images for measuring the tilt of patella. We present a new angle. which is independent of the morphology of patella and directly relates to clinical assessment of the tilt. which is appreciated from palpation of the edges of the patella. Patients and Methods: 38 patients with anterior knee pain and forty normal control subjects were examined using CT scan of patello-femoral joint in 15 degrees of knee flexion. The amount of lateral patellar tilt was quantitatively assessed using the lateral patello-femoral angle, as described by Laurin et al, and the newly defined patellar cortex tilt angle. This angle is subtended by the line drawn along the posterior femoral condyles and the one parallel to the subchondral bone of patellar cortex. The fifteen-degree tilt was taken as normal cut-off point for patellar cortex tilt angle in the control group. Results: in patients, the average tilt of patella. using the patellar cortex tilt angle was 15.26 versus 7.05 in the control group. Using Student's t test, the difference between the two means was significant (P<0.001). The sensitivity and specificity of patellar cortex tilt angle were 40 and 90 percent, respectively There was a moderate agreement between our presented test and the lateral tilt angle test (kappa=0.40. P<0.001). Conclusion: our results indicate that patellar tilt can also be detected using patellar cortex tilt angle. We need more specific studies ta determine the validity of the test

  11. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    Directory of Open Access Journals (Sweden)

    Jorge A Larriva-Sahd

    2012-06-01

    Full Text Available This study describes the microscopic organization of a wedge-shaped area at the intersection of the main and accessory olfactory bulbs, or olfactory limbus , and an additional component of the anterior olfactory nucleus or alpha accessory olfactory bulb that lies underneath of the accessory olfactory bulb. The olfactory limbus consists of a modified bulbar cortex bounded anteriorly by the main olfactory bulb and posteriorly by the accessory olfactory bulb. In Nissl-stained specimens the olfactory limbus differs from the main olfactory bulb by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the olfactory limbus is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area, a second or necklace glomerular area, and a wedge-shaped or interstitial area crowned by the so-called modified glomeruli that appear to belong to the anterior accessory olfactory bulb. The strategic location and interactions with the main and accessory olfactory bulbs, together with the previously noted functional and connectional evidence, suggest that the olfactory limbus may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 x 150 µm paralleling the base of the accessory olfactory bulb, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells organize into a single bundle that ascends avoiding the accessory olfactory bulb to resolve in a trigone bounded by the edge of the olfactory limbus, the accessory olfactory bulb and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67.

  12. Anterior chest wall examination reviewed

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.

  13. Dolor anterior de la rodilla

    Directory of Open Access Journals (Sweden)

    Alejandro Álvarez López

    2010-01-01

    Full Text Available Introducción:el dolor anterior de la rodilla constituye una importante causa de consulta en la especialidad de Ortopedia y Traumatología. La incidencia de otras enfermedades relacionadas con este síntoma es cada vez mayor, ejemplo de ello es la condromalacia de rótula, tendinitis patelar, osteoartritis patelofemoral entre otras, el diagnóstico de estas enfermedades se debe al cúmulo de experiencia y a la introducción de técnicas y equipos imagenológicos de avanzada. Desarrollo: se realizó una revisión bibliográfica sobre el dolor anterior de la rodilla, con especial énfasis en las teorías involucradas en su fisiopatología, entre las que se encuentran la mala-alineación patelo-femoral, equilibrio de la homeostasis tisular y aumento de la presión intra-ósea, además de brindar brevemente el cuadro clínico de la enfermedad. Para finalizar se expone el enfoque terapéutico que se basa fundamentalmente en el tratamiento conservador, se mencionan además las modalidades de tratamiento quirúrgico.

  14. The default modes of reading: Modulation of posterior cingulate and medial prefrontal cortex connectivity associated with subjective and objective differences in reading experience

    OpenAIRE

    Jonathan eSmallwood; Gorgolewski, Krzysztof J; Johannes eGolchert; Ruby, Florence J.M; Haakon G. Engen; Benjamin eBaird; Melaina eVinski; Jonathan eSchooler; Margulies, Daniel S.

    2013-01-01

    Reading is a fundamental human capacity and yet it can easily be derailed by the simple act of mind-wandering. A large-scale brain network, referred to as the default mode network (DMN), has been shown to be involved in both mind-wandering and reading, raising the question as to how the same neural system could be implicated in processes with both costs and benefits to narrative comprehension. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to explore whether the intrin...

  15. The default modes of reading: modulation of posterior cingulate and medial prefrontal cortex connectivity associated with comprehension and task focus while reading

    OpenAIRE

    Smallwood, Jonathan; Gorgolewski, Krzysztof J; Golchert, Johannes; Ruby, Florence J.M; Engen, Haakon; Baird, Benjamin; Vinski, Melaina T.; Schooler, Jonathan W.; Margulies, Daniel S.

    2013-01-01

    Reading is a fundamental human capacity and yet it can easily be derailed by the simple act of mind-wandering. A large-scale brain network, referred to as the default mode network (DMN), has been shown to be involved in both mind-wandering and reading, raising the question as to how the same neural system could be implicated in processes with both costs and benefits to narrative comprehension. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to explore whether the intrin...

  16. The Effects of The COMT val108/158met Polymorphism on BOLD Activation During Working Memory, Planning, and Response Inhibition: A Role for The Posterior Cingulate Cortex?

    OpenAIRE

    Stokes, Paul Robert Alexander; Rhodes, Rebecca Anne; Grasby, Paul M.; Mehta, Mitul A

    2010-01-01

    Abstract Catechol-O-methyl transferase (COMT) val108/158met polymorphism impacts upon cortical dopamine levels and may influence functional magnetic resonance (fMRI) measures of task-related neuronal activity. Here, we investigate whether COMT genotype influences cortical activations, particularly prefrontal activations, by interrogating its effect across three tasks that have been associated with the dopaminergic system in a large cohort of healthy volunteers. 58 participants (13 ...

  17. From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis.

    Science.gov (United States)

    Evensmoen, Hallvard Røe; Ladstein, Jarle; Hansen, Tor Ivar; Møller, Jarle Alexander; Witter, Menno P; Nadel, Lynn; Håberg, Asta K

    2015-01-01

    In rodents representations of environmental positions follow a granularity gradient along the hippocampal and entorhinal anterior-posterior axis; with fine-grained representations most posteriorly. To investigate if such a gradient exists in humans, functional magnetic resonance imaging data were acquired during virtual environmental learning of the objects' positions and the association between the objects and room geometry. The Objects-room geometry binding led to increased activation throughout the hippocampus and in the posterior entorhinal cortex. Within subject comparisons related specifically to the level of spatial granularity of the object position encoding showed that activation in the posterior and intermediate hippocampus was highest for fine-grained and medium-grained representations, respectively. In addition, the level of fine granularity in the objects' positions encoded between subjects correlated with posterior hippocampal activation. For the anterior hippocampus increased activation was observed for coarse-grained representations as compared to failed encoding. Activation in anterior hippocampus correlated with the number of environments in which the objects positions were remembered when permitting a coarse representation of positions. In the entorhinal cortex, activation in the posterior part correlated with level of fine granularity for the objects' positions encoded between subjects, and activation in the posterior and intermediate entorhinal cortex increased for medium-grained representations. This demonstrates directly that positional granularity is represented in a graded manner along the anterior-posterior axis of the human hippocampus, and to some extent entorhinal cortex, with most fine-grained positional representations posteriorly. PMID:25155295

  18. Positioning of anterior teeth in removable dentures

    Directory of Open Access Journals (Sweden)

    Strajnić Ljiljana

    2002-01-01

    Full Text Available Introduction The aim of this paper was to present methods of placement of artificial anterior teeth in edentulous individuals. The following review takes account of the majority of papers published during the last 100 years. The review has been divided into sections regarding the method used to determine the position of artificial anterior teeth. Geometric aspect Gysi (1895-1920 produced the first scientific theory about the position of artificial anterior teeth. Physiognomic theory The aim of this theory is to find the most natural position for artificial anterior teeth for each individual. Camper's "face angle" as a physiognomic criterion, has been introduced in papers of Wehrli (1961, Marxhors (1966, Tanzer (1968, Lombardi (1973. Esthetic aspect Important names in the field of dental esthetics are: Schön and Singer (1961, Arnheim (1965, Krajiček (1969, Tanzer (1968, Lombardi (1973, Goldstein (1976. They have introduced principles of visual aspects for selection of contours, dimension and position of artificial anterior teeth. Constitution aspect Flagg (1880, Williams (1913 and Hrauf (1957, 1958, have considered body constitution and individual characteristics regarding position of artificial anterior teeth. Physiological theory In 1971, Marxhors pointed to the fact that the position of artificial teeth corresponds with the function of the surrounding soft tissue and from the aspect of physiognomy as well. Phonetic aspect According to Silverman (1962 artificial anterior teeth are nearest when we pronounce the sound "S". Cephalometrical research Rayson (1970, Watson (1989, Strajnić Lj. (1999, Bassi F. (2001 have presented cephalometric radiographic analyses of natural anterior teeth compared with cephalometric radiographic analyses of artificial anterior teeth. A review of dental literature shows several factors suggesting modalities which should determine the position of artificial anterior teeth. Numerous methods have been designed for

  19. Pharyngocutaneous fistula after anterior cervical spine surgery

    OpenAIRE

    Sansur, Charles A.; Early, Stephen; Reibel, James; Arlet, Vincent

    2009-01-01

    Pharyngocutaneous fistulae are rare complications of anterior spine surgery occurring in less than 0.1% of all anterior surgery cases. We report a case of a 19 year old female who sustained a C6 burst fracture with complete quadriplegia. She was treated urgently with a C6 corpectomy with anterior cage and plating followed by posterior cervical stabilization at another institution. Post operatively she developed a pharyngocutaneous fistula that failed to heal despite several attempts of closu...

  20. Structural basis of empathy and the domain general region in the anterior insular cortex

    OpenAIRE

    Mutschler, Isabella; Reinbold, Céline; Wankerl, Johanna; Seifritz, Erich; Ball, Tonio

    2013-01-01

    Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises of emotional and cognitive components and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person's feelings. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmenta...

  1. Structural basis of empathy and the domain general region in the anterior insular cortex

    OpenAIRE

    Isabella Mutschler; Erich Seifritz; Tonio Ball

    2013-01-01

    Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises emotional and cognitive components, such as feeling and knowing what another person is feeling, and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person’s feelings and to reduce another person’s pain. There is growing evidence for loca...

  2. Correlating anterior insula gray matter volume changes in young people with clinical and neurocognitive outcomes: an MRI study

    Directory of Open Access Journals (Sweden)

    Hatton Sean N

    2012-05-01

    Full Text Available Abstract Background The anterior insula cortex is considered to be both the structural and functional link between experience, affect, and behaviour. Magnetic resonance imaging (MRI studies have shown changes in anterior insula gray matter volume (GMV in psychosis, bipolar, depression and anxiety disorders in older patients, but few studies have investigated insula GMV changes in young people. This study examined the relationship between anterior insula GMV, clinical symptom severity and neuropsychological performance in a heterogeneous cohort of young people presenting for mental health care. Methods Participants with a primary diagnosis of depression (n = 43, bipolar disorder (n = 38, psychosis (n = 32, anxiety disorder (n = 12 or healthy controls (n = 39 underwent structural MRI scanning, and volumetric segmentation of the bilateral anterior insula cortex was performed using the FreeSurfer application. Statistical analysis examined the linear and quadratic correlations between anterior insula GMV and participants’ performance in a battery of clinical and neuropsychological assessments. Results Compared to healthy participants, patients had significantly reduced GMV in the left anterior insula (t = 2.05, p = .042 which correlated with reduced performance on a neuropsychological task of attentional set-shifting (ρ = .32, p = .016. Changes in right anterior insula GMV was correlated with increased symptom severity (r = .29, p = .006 and more positive symptoms (r = .32, p = .002. Conclusions By using the novel approach of examining a heterogeneous cohort of young depression, anxiety, bipolar and psychosis patients together, this study has demonstrated that insula GMV changes are associated with neurocognitive deficits and clinical symptoms in such young patients.

  3. Perawatan Gigitan Terbalik Anterior Dengan Menggunakan Inclined Plane

    OpenAIRE

    Siregar, Wilda A.

    2008-01-01

    Gigitan terbalik anterior adalah suatu anomali posisi gigi anterior atas yang lebih ke lingual dibandingkan gigi anterior bawah. Anomali gigitan terbalik anterior dapat ditemui pada periode gigi sulung, gigi bercampur, dan gigi permanen. Faktor etiologi gigitan terbalik anterior dibedakan atas dental, fungsional atau skeletal. Untuk menentukan etiologi dari anomali gigitan terbalik anterior perlu dilakukan diagnosa yang tepat. Perawatan gigitan terbalik anterior ini dapat dilakukan de...

  4. Absence of scalenus anterior muscle.

    Directory of Open Access Journals (Sweden)

    Murakami S

    2003-06-01

    Full Text Available A rare anomaly of the scalenus muscles is described. In this case, the right scalenus anterior muscle was absent. As a substitute for this muscle, some aberrant muscle slips arose from the lower vertebrae and descended in front of the ventral rami of the lower cervical nerves. These aberrant slips then ran between the ventral rami of the the eighth cervical and first thoracic nerves, and were fused with the right scalenus medius muscle. Thus, the subclavian artery and vein ran in front of the aberrant slips, together with the ventral ramus of the first thoracic nerve. The aberrant muscle slips issued 2 accessory bundles. One bundle ran between the ventral rami of the fourth and fifth cervical nerves and was fused with the scalenus medius muscle; the other bundle ran between the ventral rami of the fifth and sixth cervical nerves and was fused with the scalenus medius muscle.

  5. Toxic Anterior Segment Syndrome (TASS

    Directory of Open Access Journals (Sweden)

    Özlem Öner

    2011-12-01

    Full Text Available Toxic anterior segment syndrome (TASS is a sterile intraocular inflammation caused by noninfectious substances, resulting in extensive toxic damage to the intraocular tissues. Possible etiologic factors of TASS include surgical trauma, bacterial endotoxin, intraocular solutions with inappropriate pH and osmolality, preservatives, denatured ophthalmic viscosurgical devices (OVD, inadequate sterilization, cleaning and rinsing of surgical devices, intraocular lenses, polishing and sterilizing compounds which are related to intraocular lenses. The characteristic signs and symptoms such as blurred vision, corneal edema, hypopyon and nonreactive pupil usually occur 24 hours after the cataract surgery. The differential diagnosis of TASS from infectious endophthalmitis is important. The main treatment for TASS formation is prevention. TASS is a cataract surgery complication that is more commonly seen nowadays. In this article, the possible underlying causes as well as treatment and prevention methods of TASS are summarized. (Turk J Oph thal mol 2011; 41: 407-13

  6. Mild toxic anterior segment syndrome mimicking delayed onset toxic anterior segment syndrome after cataract surgery

    Directory of Open Access Journals (Sweden)

    Su-Na Lee

    2014-01-01

    Full Text Available Toxic anterior segment syndrome (TASS is an acute sterile postoperative anterior segment inflammation that may occur after anterior segment surgery. I report herein a case that developed mild TASS in one eye after bilateral uneventful cataract surgery, which was masked during early postoperative period under steroid eye drop and mimicking delayed onset TASS after switching to weaker steroid eye drop.

  7. Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex

    OpenAIRE

    Conway, Bevil R.; Tsao, Doris Y

    2009-01-01

    Large islands of extrastriate cortex that are enriched for color-tuned neurons have recently been described in alert macaque using a combination of functional magnetic resonance imaging (fMRI) and single-unit recording. These millimeter-sized islands, dubbed “globs,” are scattered throughout the posterior inferior temporal cortex (PIT), a swath of brain anterior to area V3, including areas V4, PITd, and posterior TEO. We investigated the micro-organization of neurons within the globs. We used...

  8. Posterior Cingulate Lactate as a Metabolic Biomarker in Amnestic Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Kurt E. Weaver

    2015-01-01

    Full Text Available Mitochondrial dysfunction represents a central factor within the pathogenesis of the Alzheimer’s disease (AD spectrum. We hypothesized that in vivo measurements of lactate (lac, a by-product of glycolysis, would correlate with functional impairment and measures of brain health in a cohort of 15 amnestic mild cognitive impairment (aMCI individuals. Lac was quantified from the precuneus/posterior cingulate (PPC using 2-dimensional J-resolved magnetic resonance spectroscopy (MRS. Additionally, standard behavioral and imaging markers of aMCI disease progression were acquired. PPC lac was negatively correlated with performance on the Wechsler logical memory tests and on the minimental state examination even after accounting for gray matter, cerebral spinal fluid volume, and age. No such relationships were observed between lac and performance on nonmemory tests. Significant negative relationships were also noted between PPC lac and hippocampal volume and PPC functional connectivity. Together, these results reveal that aMCI individuals with a greater disease progression have increased concentrations of PPC lac. Because lac is upregulated as a compensatory response to mitochondrial impairment, we propose that J-resolved MRS of lac is a noninvasive, surrogate biomarker of impaired metabolic function and would provide a useful means of tracking mitochondrial function during therapeutic trials targeting brain metabolism.

  9. Addiction and the adrenal cortex

    OpenAIRE

    Vinson, Gavin P; Brennan, Caroline H.

    2013-01-01

    Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or mice) increase on drug withdrawal in a manner that suggests correlation with the behavioural and symptomatic sequelae both in man and in experimental animals. Corticosteroid levels fall back to normal values in resumptio...

  10. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  11. Anterior capsular rupture following blunt ocular injury

    OpenAIRE

    Gremida, Anas; Kassem, Iris; Traish, Aisha

    2011-01-01

    A 10-year-old boy suffered a large, oblique anterior capsular tear following blunt injury to his right eye. The boy was followed daily for hyphema resolution and progressive traumatic cataract formation. After the hyphema had resolved, the lens was removed using an anterior approach and an intraocular lens was placed with excellent visual outcome.

  12. Dentulous Appliance for Upper Anterior Edentulous Span

    OpenAIRE

    Chalakkal, Paul; Devi, Ramisetty Sabitha; Srinivas, G Vijay; Venkataramana, Pammi

    2013-01-01

    This article discusses about a fixed dentulous appliance that was constructed to replace the primary upper anterior edentulous span in a four year old girl. It constituted a design, whereby the maxillary primary second molars were used to support the appliance through bands and a wire that contained an acrylic flange bearing trimmed acrylic teeth, anteriorly. The appliance was functionally and aesthetically compliant.

  13. Anterior cervical hypertrichosis: a sporadic case.

    Science.gov (United States)

    Bostan, Sezen; Yaşar, Şirin; Serdar, Zehra Aşiran; Gizlenti, Sevda

    2016-03-01

    Anterior cervical hypertrichosis is a very rare form of primary localized hypertrichosis. It consists of a tuft of terminal hair on the anterior neck just above the laryngeal prominence. The etiology is still unknown. In this article, we reported a 15-year-old female patient who presented to our clinic with a complaint of hypertrichosis on the anterior aspect of the neck for the last five years. Her past medical history revealed no pathology except for vesicoureteral reflux. On the basis of clinical presentation, our patient was diagnosed with anterior cervical hypertrichosis and she was considered to be a sporadic case due to lack of other similar cases in familial history. To date, 33 patients with anterior cervical hypertrichosis have been reported. Anterior cervical hypertrichosis can be associated with other abnormalities, but it frequently presents as an isolated defect (70%). The association of vesicoureteral reflux and anterior cervical hypertrichosis which was observed in our patient might be coincidental. So far, no case of anterior cervical hypertrichosis associated with vesicoureteral reflux has been reported in the literature. PMID:27103865

  14. Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex.

    Science.gov (United States)

    Large, Adam M; Vogler, Nathan W; Mielo, Samantha; Oswald, Anne-Marie M

    2016-02-23

    Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features--balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class--suggest mechanisms for olfactory processing that may extend to other sensory cortices. PMID:26858458

  15. Optophysiological analysis of associational circuits in the olfactory cortex

    Directory of Open Access Journals (Sweden)

    Akari eHagiwara

    2012-04-01

    Full Text Available Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortex (aPC and pPC using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON, a major hub in olfactory cortical circuits. The local recurrent connectivity within the aPC, long invoked in cortical autoassociative models, is sparse and weak. By contrast, the pPC receives negligible input from the AON, but has dense connections from the aPC as well as more local recurrent connections than the aPC. Finally, there are negligible functional connections from the pPC to aPC. Our study provides a circuit basis for a more sensory role for the aPC in odor processing and an associative role for the pPC.

  16. Anterior Shoulder Instability with Concomitant Superior Labrum from Anterior to Posterior (SLAP) Lesion Compared to Anterior Instability without SLAP Lesion

    Science.gov (United States)

    Durban, Claire Marie C.; Kim, Je Kyun; Kim, Sae Hoon

    2016-01-01

    Background The aims of this study were to investigate the clinical characteristics of patients with combined anterior instability and superior labrum from anterior to posterior (SLAP) lesions, and to analyze the effect of concomitant SLAP repair on surgical outcomes. Methods We retrospectively reviewed patients who underwent arthroscopic stabilization for anterior shoulder instability between January 2004 and March 2013. A total of 120 patients were available for at least 1-year follow-up. Forty-four patients with reparable concomitant detached SLAP lesions (group I) underwent combined SLAP and anterior stabilization, and 76 patients without SLAP lesions (group II) underwent anterior stabilization alone. Patient characteristics, preoperative and postoperative pain scores, Rowe scores, and shoulder ranges of motion were compared between the 2 groups. Results Patients in group I had higher incidences of high-energy trauma (p = 0.03), worse preoperative pain visual analogue scale (VAS) (p = 0.02), and Rowe scores (p = 0.04). The postoperative pain VAS and Rowe scores improved equally in both groups without significant differences. Limitation in postoperative range of motion was similar between the groups (all p-value > 0.05). Conclusions Anterior instability with SLAP lesion may not be related to frequent episodes of dislocation but rather to a high-energy trauma. SLAP fixation with anterior stabilization procedures did not lead to poor functional outcomes if appropriate surgical techniques were followed. PMID:27247742

  17. Impaired anterior insular activation during risky decision making in young adults with internet gaming disorder.

    Science.gov (United States)

    Lee, Deokjong; Lee, Junghan; Yoon, Kang Joon; Kee, Namkoong; Jung, Young-Chul

    2016-05-25

    Internet gaming disorder is defined as excessive and compulsive use of the internet to engage in games that leads to clinically significant psychosocial impairment. We tested the hypothesis that individuals with internet gaming disorder would be less sensitive to high-risk situations and show aberrant brain activation related to risk prediction processing. Young adults with internet gaming disorder underwent functional MRI while performing a risky decision-making task. The healthy control group showed stronger activations within the dorsal attention network and the anterior insular cortex, which were not found in the internet gaming disorder group. Our findings imply that young adults with internet gaming disorder show impaired anterior insular activation during risky decision making, which might make them vulnerable when they need to adapt new behavioral strategies in high-risk situations. PMID:27092470

  18. Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma.

    Directory of Open Access Journals (Sweden)

    Shaojia Lu

    Full Text Available BACKGROUND: Preclinical studies have demonstrated the relationship between stress-induced increased cortisol levels and atrophy of specific brain regions, however, this association has been less revealed in clinical samples. The aim of the present study was to investigate the changes and associations of the hypothalamic-pituitary-adrenal (HPA axis activity and gray matter volumes in young healthy adults with self-reported childhood trauma exposures. METHODS: Twenty four healthy adults with childhood trauma and 24 age- and gender-matched individuals without childhood trauma were recruited. Each participant collected salivary samples in the morning at four time points: immediately upon awakening, 30, 45, and 60 min after awakening for the assessment of cortisol awakening response (CAR. The 3D T1-weighted magnetic resonance imaging data were obtained on a Philips 3.0 Tesla scanner. Voxel-based morphometry analyses were conducted to compare the gray matter volume between two groups. Correlations of gray matter volume changes with severity of childhood trauma and CAR data were further analyzed. RESULTS: Adults with self-reported childhood trauma showed an enhanced CAR and decreased gray matter volume in the right middle cingulate gyrus. Moreover, a significant association was observed between salivary cortisol secretions after awaking and the right middle cingulate gyrus volume reduction in subjects with childhood trauma. CONCLUSIONS: The present research outcomes suggest that childhood trauma is associated with hyperactivity of the HPA axis and decreased gray matter volume in the right middle cingulate gyrus, which may represent the vulnerability for developing psychosis after childhood trauma experiences. In addition, this study demonstrates that gray matter loss in the cingulate gyrus is related to increased cortisol levels.

  19. Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers.

    Science.gov (United States)

    Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden

    2016-07-01

    Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865

  20. Heterogeneous and nonlinear development of human posterior parietal cortex function.

    Science.gov (United States)

    Chang, Ting-Ting; Metcalfe, Arron W S; Padmanabhan, Aarthi; Chen, Tianwen; Menon, Vinod

    2016-02-01

    Human cognitive problem solving skills undergo complex experience-dependent changes from childhood to adulthood, yet most neurodevelopmental research has focused on linear changes with age. Here we challenge this limited view, and investigate spatially heterogeneous and nonlinear neurodevelopmental profiles between childhood, adolescence, and young adulthood, focusing on three cytoarchitectonically distinct posterior parietal cortex (PPC) regions implicated in numerical problem solving: intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SMG). Adolescents demonstrated better behavioral performance relative to children, but their performance was equivalent to that of adults. However, all three groups differed significantly in their profile of activation and connectivity across the PPC subdivisions. Activation in bilateral ventral IPS subdivision IPS-hIP1, along with adjoining anterior AG subdivision, AG-PGa, and the posterior SMG subdivision, SMG-PFm, increased linearly with age, whereas the posterior AG subdivision, AG-PGp, was equally deactivated in all three groups. In contrast, the left anterior SMG subdivision, SMG-PF, showed an inverted U-shaped profile across age groups such that adolescents exhibited greater activation than both children and young adults. Critically, greater SMG-PF activation was correlated with task performance only in adolescents. Furthermore, adolescents showed greater task-related functional connectivity of the SMG-PF with ventro-temporal, anterior temporal and prefrontal cortices, relative to both children and adults. These results suggest that nonlinear up-regulation of SMG-PF and its interconnected functional circuits facilitate adult-level performance in adolescents. Our study provides novel insights into heterogeneous age-related maturation of the PPC underlying cognitive skill acquisition, and further demonstrates how anatomically precise analysis of both linear and nonlinear neurofunctional changes with age is

  1. Anterior retropharyngeal approach to the cervical spine.

    OpenAIRE

    Behari S; Banerji D; Trivedi P; Jain V; Chhabra D

    2001-01-01

    The anterior retropharyngeal approach (ARPA) accesses anteriorly situated lesions from the clivus to C3, in patients with a short neck, Klippel Feil anomaly or those in whom the C2-3 and C3-4 disc spaces are situated higher in relation to the hyoid bone and the angle of mandible where it is difficult to approach this region using the conventional anterior approach, due to the superomedial obliquity of the trajectory. The ARPA avoids the potentially contaminated oropharyngeal cavity providing ...

  2. Mini-open anterior lumbar interbody fusion.

    Science.gov (United States)

    Gandhoke, Gurpreet S; Ricks, Christian; Tempel, Zachary; Zuckerbraun, Brian; Hamilton, D Kojo; Okonkwo, David O; Kanter, Adam S

    2016-07-01

    In deformity surgery, anterior lumbar interbody fusion provides excellent biomechanical support, creates a broad surface area for arthrodesis, and induces lordosis in the lower lumbar spine. Preoperative MRI, plain radiographs, and, when available, CT scan should be carefully assessed for sacral slope as it relates to pubic symphysis, position of the great vessels (especially at L4/5), disc space height, or contraindication to an anterior approach. This video demonstrates the steps in an anterior surgical procedure with minimal open exposure. The video can be found here: https://youtu.be/r3bC4_vu1hQ . PMID:27364424

  3. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback

    OpenAIRE

    Berman, Brian D.; Horovitz, Silvina G.; Hallett, Mark

    2013-01-01

    The capacity for subjects to learn to volitionally control localized brain activity using neurofeedback is actively being investigated. We aimed to investigate the ability of healthy volunteers to quickly learn to use visual feedback during real-time functional MRI (rtfMRI) to modulate brain activity within their anterior right insular cortex (RIC) localized during a blink suppression task, an approach of possible interest in the use of rtfMRI to reduce urges. The RIC region of interest (RIC-...

  4. Secondary anterior crocodile shagreen of Vogt.

    Science.gov (United States)

    Tripathi, R C; Bron, A J

    1975-01-01

    The clincopathological features and pathogenesis of secondary mosaic degeneration of the cornea (anterior crocodile shagreen of Vogt) are described. The structural basis for the normal anterior corneal mosaic pattern seems to lie in the particular arrangement of many prominent collagen lamellae of the anterior stroma that thake an oblique course to gain insertion into Bowman's layer. Since, at normal intraocular pressure, Bowman's layer is under tension, when viewed from the anterior surface the cornea appears smooth. By releasing the tension, however, a reproducible polygonal ridge pattern becomes manifest. It is suggested that a prolonged phthisical state of the eye is one condition wherein the mosaic pattern may become permanent and that, as a secondary event, this is followed by irregular calcification of Bowman's layer which particularly involves the ridges projecting into the epithelium. Biomicroscopically these ridges corresponded to the branching reticular arrangement of the mosaic opacities. Images PMID:1079137

  5. Anterior Cervical Discectomy and Fusion with Plating

    Medline Plus

    Full Text Available Anterior Cervical Discectomy and Fusion with Plating Broward Health Medical Center Fort Lauderdale, FL November 17, 2011 I'm Dr. Matthew Moore, head of the Spine Care Center here at North Broward Medical Center. And ...

  6. Emotion Regulation in the Brain: Conceptual Issues and Directions for Developmental Research

    Science.gov (United States)

    Lewis, Marc D.; Stieben, Jim

    2004-01-01

    Emotion regulation cannot be temporally distinguished from emotion in the brain, but activation patterns in prefrontal cortex appear to mediate cognitive control during emotion episodes. Frontal event-related potentials (ERPs) can tap cognitive control hypothetically mediated by the anterior cingulate cortex, and developmentalists have used these…

  7. The Significance of Human-Animal Relationships as Modulators of Trauma Effects in Children: A Developmental Neurobiological Perspective

    Science.gov (United States)

    Yorke, Jan

    2010-01-01

    Emotional stress and trauma impacts the neurobiology of children. They are especially vulnerable given the developmental plasticity of the brain. The neural synaptic circular processes between the anterior cingulated cortex, prefrontal cortex, amygdala and the hypothalamus are altered. Trauma results in the release of the peptide glucocortisoid,…

  8. Trypan blue dye for anterior segment surgeries

    OpenAIRE

    Jhanji, V; Chan, E.; Das, S.; Zhang, H; Vajpayee, R B

    2011-01-01

    Use of vital dyes in ophthalmic surgery has gained increased importance in the past few years. Trypan blue (TB) has been a popular choice among anterior segment surgeons mainly due to its safety, ease of availability, and remarkable ability to enable an easy surgery in difficult situations mostly related to visibility of the targeted tissue. It is being used in cataract surgery since nearly a decade and its utilization has been extended to other anterior segment surgeries like trabeculectomy ...

  9. Functional Outcomes of Primary Anterior Cruciate Ligament Reconstruction with Tibialis Anterior Allograft

    OpenAIRE

    Başar, Selda; Büyükafşar, Enes; Hazar, Zeynep; Ataoğlu, Baybars; Kanatlı, Ulunay

    2014-01-01

    Objectives: Allografts have potential advantages in primary anterior cruciate ligament reconstruction (ACLR), including the absence of donor site morbidity, shorter operative times, improved cosmesis, and easier rehabilitation. There is limited and conflicting outcome data for ACLR with tibialis anterior allograft. The purpose of this study was to evaluate the functional outcomes of ACLR with tibialis anterior allograft. Methods: We retrospectively evaluated patients underwent ACLR using with...

  10. The interactive effect of social pain and executive functioning on aggression: An fMRI experiment

    OpenAIRE

    Chester, DS; Eisenberger, NI; Pond, RS; Richman, SB; Bushman, BJ; Dewall, CN

    2014-01-01

    Social rejection often increases aggression, but the neural mechanisms underlying this effect remain unclear. This experiment tested whether neural activity in the dorsal anterior cingulate cortex (dACC) and anterior insula in response to social rejection predicted greater subsequent aggression. Additionally, it tested whether executive functioning moderated this relationship. Participants completed a behavioral measure of executive functioning, experienced social rejection while undergoing f...

  11. Anterior Eye Imaging with Optical Coherence Tomography

    Science.gov (United States)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  12. Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network.

    Science.gov (United States)

    Volkow, N D; Tomasi, D; Wang, G-J; Fowler, J S; Telang, F; Goldstein, R Z; Alia-Klein, N; Woicik, P; Wong, C; Logan, J; Millard, J; Alexoff, D

    2011-08-01

    Positive emotionality (PEM) (personality construct of well-being, achievement/motivation, social and closeness) has been associated with striatal dopamine D2 receptor availability in healthy controls. As striatal D2 receptors modulate activity in orbitofrontal cortex (OFC) and cingulate (brain regions that process natural and drug rewards), we hypothesized that these regions underlie PEM. To test this, we assessed the correlation between baseline brain glucose metabolism (measured with positron emission tomography and [(18)F]fluoro-deoxyglucose) and scores on PEM (obtained from the multidimensional personality questionnaire or MPQ) in healthy controls (n = 47). Statistical parametric mapping (SPM) analyses revealed that PEM was positively correlated (P(c)trait that protects against substance use disorders. As dysfunction of OFC and cingulate is a hallmark of addiction, these findings support a common neural basis underlying protective personality factors and brain dysfunction underlying substance use disorders. In addition, we also uncovered an association between PEM and baseline metabolism in regions from the DMN, which suggests that PEM may relate to global cortical processes that are active during resting conditions (introspection, mind wandering). PMID:21483434

  13. Lesiones del ligamento cruzado anterior

    Directory of Open Access Journals (Sweden)

    Alejandro Álvarez López

    2015-01-01

    Full Text Available Fundamento: el ligamento cruzado anterior desempeña un papel muy importante en la estabili-dad de la rodilla. La incidencia de esta afección es alta en pacientes que practican deportes de contacto y de no ser tratados de forma adecuada, los resultados son desfavorables. Objetivo: profundizar en los factores necesarios para el tratamiento adecuado de enfermos con esta lesión y evitar las complicaciones. Método: se realizó una revisión bibliográfica de un total de 300 artículos publicados en Pubmed, Hinari y Medline mediante el localizador de información Endnote, de ellos se utilizaron 52 citas selecciona-das para realizar la revisión, 48 de ellas de los últimos cinco años donde se incluyeron seis libros. Desarrollo: se discuten los aspectos relacionados con el diagnóstico clínico e imaginológico. Se aborda la clasificación de esta lesión en cuanto a varios aspectos como: tiempo, lesión de ligamentos u ósea, aislada o combinada y parcial o total. Se mencionan los parámetros para obtener resultados satisfac-torios al considerar factores como la edad del enfermo, lesiones asociadas y tiempo de la lesión. Se relacio-nan los requisitos para la selección del implante y se mostró las ventajas y desventajas de cada tipo de in-jerto. Las complicaciones de esta cirugía están relacionadas con la técnica quirúrgica y médicas. Conclusiones: las lesiones del ligamento son entidades traumáticas que afectan por lo general a pacientes jóvenes. Para lograr un resultado satisfactorio en el tratamiento es necesario el conocimiento de su anatomía, clasificación, tipo de injerto a emplear según sus ventajas y desventajas.

  14. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    Directory of Open Access Journals (Sweden)

    Crystal T Engineer

    2014-08-01

    Full Text Available Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes.

  15. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  16. The activity in the anterior insulae is modulated by perceptual decision-making difficulty.

    Science.gov (United States)

    Lamichhane, Bidhan; Adhikari, Bhim M; Dhamala, Mukesh

    2016-07-01

    Previous neuroimaging studies provide evidence for the involvement of the anterior insulae (INSs) in perceptual decision-making processes. However, how the insular cortex is involved in integration of degraded sensory information to create a conscious percept of environment and to drive our behaviors still remains a mystery. In this study, using functional magnetic resonance imaging (fMRI) and four different perceptual categorization tasks in visual and audio-visual domains, we measured blood oxygen level dependent (BOLD) signals and examined the roles of INSs in easy and difficult perceptual decision-making. We created a varying degree of degraded stimuli by manipulating the task-specific stimuli in these four experiments to examine the effects of task difficulty on insular cortex response. We hypothesized that significantly higher BOLD response would be associated with the ambiguity of the sensory information and decision-making difficulty. In all of our experimental tasks, we found the INS activity consistently increased with task difficulty and participants' behavioral performance changed with the ambiguity of the presented sensory information. These findings support the hypothesis that the anterior insulae are involved in sensory-guided, goal-directed behaviors and their activities can predict perceptual load and task difficulty. PMID:27095712

  17. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    Directory of Open Access Journals (Sweden)

    Yu-Feng Shao

    Full Text Available Neuropeptide S (NPS is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR. High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v. injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir neurons that also bear NPSR. NPS (0.1-1 nmol i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON, piriform cortex (Pir, ventral tenia tecta (VTT, the anterior cortical amygdaloid nucleus (ACo and lateral entorhinal cortex (LEnt. The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.

  18. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    International Nuclear Information System (INIS)

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer

  19. The Altered Functional Connectivity of Prefrontal Cortex in Heroin Dependent Individuals:fMRI Study%慢性海洛因依赖患者前额叶皮质功能连接变化的fMRI研究

    Institute of Scientific and Technical Information of China (English)

    杨伟川; 王亚蓉; 李强; 李玮; 朱佳; 黄玉芳; 王玮

    2011-01-01

    目的 通过分析慢性海洛因成瘾者认知抑制性控制环路的关键脑区-前额叶功能连接的变化,探讨其在成瘾中的作用.方法 慢性海洛因依赖男性患者12例,与之年龄、受教育程度和尼古丁依赖水平匹配的健康被试12例参加本研究.采用3.0 T磁共振扫描仪,8通道头线圈,对被试分别进行头颅结构和静息态功能磁共振扫描,后利用SPM8软件以双侧前额叶为感兴趣区,分别进行组内和组间前额叶静息态功能网络分析.结果 与对照组比较,慢性海洛因依赖组前额叶与额眶回、角回、颞中回、双侧苍白球功能连接度显著上升,与前扣带回的功能连接显著下降(t=3.5,P5).结论慢性海洛因依赖者认知抑制性控制功能的神经环路受损,而奖赏以及动机驱动环路功能出现异常强化.%Objective To investigate whether the functional connectivity of the brain region, prefrontal cortex (PFC), which implicated in cognition and inhibitory control, changed in chronic heroin dependent individuals. Methods Twelve male chronic heroin users and 12 age- , gender- and nicotine dependence- matched healthy subjects participated in the present study. The participants received a resting state fMRI scan with a General Electric 3.0 Tesla scanner and a 8-channel birdcage head coil. Functional connectivity was analyzed based on resting state fMRI data in order to determine the temporal correlation between PFC and the other regions on the whole brain scale. Finally, one-sample t-test and two-sample t-test were applied to observe the change of functional connectivity of PFC between the two groups. Results The PFC of heroin group showed higher strength of functional connectivity between PFC and orbitofrontal cortex ( OFC), pallium, but lower between PFC and anterior cingulate cortex ( ACC) in chronic heroin users than that in healthy subjects (t= 3.52 P<0. 001). Conclusion Dysfunctional connectivity of PFC-OFC, PFC- lentiform

  20. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…