WorldWideScience

Sample records for anterior cingulate activation

  1. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  2. Reduced Error-Related Activation in Two Anterior Cingulate Circuits Is Related to Impaired Performance in Schizophrenia

    Science.gov (United States)

    Polli, Frida E.; Barton, Jason J. S.; Thakkar, Katharine N.; Greve, Douglas N.; Goff, Donald C.; Rauch, Scott L.; Manoach, Dara S.

    2008-01-01

    To perform well on any challenging task, it is necessary to evaluate your performance so that you can learn from errors. Recent theoretical and experimental work suggests that the neural sequellae of error commission in a dorsal anterior cingulate circuit index a type of contingency- or reinforcement-based learning, while activation in a rostral…

  3. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  4. In-group and out-group membership mediates anterior cingulate activation to social exclusion

    Directory of Open Access Journals (Sweden)

    Austen Krill

    2009-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI was employed to examine sensitivity to social exclusion in three conditions: same-race, other-race, and self-resembling faces. The anterior cingulate cortex (ACC, specifically the dorsal ACC, has been targeted as a key substrate in the physical and social pain matrix and was hypothesized to regulate activation response to various facial conditions. We show that participants demonstrated greatest ACC activation when being excluded by self-resembling and same-race faces, relative to other-race faces. Additionally, participants expressed greater distress and showed increased ACC activation as a result of exclusion in the same-race condition relative to the other-race condition. A positive correlation between implicit racial bias and activation in the amygdala was also evident. Implicit attitude about other-race faces partly explains levels of concern about exclusion by out-group individuals. These findings suggest that individuals are more distressed and their brain (i.e. neural alarm system responds with greater activation when being excluded by individuals whom they are more likely to share group membership with.

  5. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response.

  6. Error Negativity Does Not Reflect Conflict: A Reappraisal of Conflict Monitoring and Anterior Cingulate Cortex Activity

    OpenAIRE

    2008-01-01

    Our ability to detect and correct errors is essential for our adaptive behavior. The conflict-loop theory states that the anterior cingulate cortex (ACC) plays a key role in detecting the need to increase control through conflict monitoring. Such monitoring is assumed to manifest itself in an electroencephalographic (EEG) component, the "error negativity" (Ne or "error-related negativity" [ERN]). We have directly tested the hypothesis that the ACC monitors conflict through simulation and expe...

  7. Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate.

    Science.gov (United States)

    Haas, Brian W; Omura, Kazufumi; Constable, R Todd; Canli, Turhan

    2007-04-01

    The amygdala and subgenual anterior cingulate (AC) have been associated with anxiety and mood disorders, for which trait neuroticism is a risk factor. Prior work has not related individual differences in amygdala or subgenual AC activation with neuroticism. Functional magnetic resonance imaging was used to investigate changes in blood oxygen level-dependent signal within the amygdala and subgenual AC associated with trait neuroticism in a nonclinical sample of 36 volunteers during an emotional conflict task. Neuroticism correlated positively with amygdala and subgenual AC activation during trials of high emotional conflict, compared with trials of low emotional conflict. The subscale of neuroticism that reflected the anxious form of neuroticism (N1) explained a greater proportion of variance within the observed clusters than the subscale of neuroticism that reflected the depressive form of neuroticism (N3). Using a task that is sensitive to individual differences in the detection of emotional conflict, the authors have provided a neural correlate of the link between neuroticism and anxiety and mood disorders. This effect was driven to a greater extent by the anxious relative to the depressive characteristics of neuroticism and may constitute vulnerability markers for anxiety-related disorders.

  8. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Science.gov (United States)

    Xie, Kun; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  9. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  10. Temporal and spatial dynamics of thalamus-evoked activity in the anterior cingulate cortex.

    Science.gov (United States)

    Chang, Wei-Chih; Lee, Chia-Ming; Shyu, Bai-Chuang

    2012-10-11

    In the present study, multielectrode array (MEA) recording was used to illustrate the spatial-temporal progression of anterior cingulate cortex (ACC) activity following stimulation of the thalamus in a thalamocingulate pathway-preserved slice. The MEA was placed under the slice that contained the ACC, and 60 channels of extracellular local field potentials evoked by bipolar electrical stimulation within the thalamus were analyzed. Several distinct thalamic-evoked responses were identified. The early negative component (N1; amplitude, -35.7 ± 5.9 μV) emerged in layer VI near the cingulum 8.4 ± 0.5 ms after stimulation. N1 progressed upward to layers V and II/III in a lateral-to-medial direction. Subsequently, a positive component (P; amplitude, 27.0 ± 3.2 μV) appeared 12.0 ± 0.6 ms after stimulation in layer VI. At 26.8 ± 1.1 ms, a second negative component (N2; amplitude, -20.9 ± 2.7 μV) became apparent in layers II/III and V, followed by a more ventrolateral component (N3; amplitude, -18.9 ± 2.9 μV) at 42.8 ± 2.6 ms. These two late components spread downward to layer VI in a medial-to-lateral direction. The trajectory paths of the evoked components were consistently represented with varied medial thalamic stimulation intensities and sites. Both AMPA/kainate and N-methyl-D-aspartate-type glutamate receptors involved in monosynaptic and polysynaptic transmission participated in this thalamocortical pathway. Morphine mainly diminished the two negative synaptic components, and this suppressive effect was reversed by naloxone. The present study confirmed that functional thalamocingulate activity was preserved in the brain-slice preparation. The thalamus-evoked responses were activated and progressed along a deep surface-deep trajectory loop across the ACC layers. Glutamatergic neurotransmitters were crucially involved in information processing. Opioid interneurons may play a modulatory role in regulating the signal flows in the cingulate cortex.

  11. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    Science.gov (United States)

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  12. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization.

  13. Activation of mu opioid receptor inhibits the excitatory glutamatergic transmission in the anterior cingulate cortex of the rats with peripheral inflammation.

    Science.gov (United States)

    Zheng, Weihong

    2010-02-25

    Emerging evidence recently indicates that the anterior cingulate cortex is critically involved in the central processing and modulation of noxious stimulus, although the neuroadaptation in the anterior cingulate cortex has not been well documented in the conditions of chronic pain. Meanwhile, the cellular mechanism underlying opiate analgesia in the anterior cingulate cortex remains unclear. To address these issues, the present study was undertaken to explore the adaptation of excitatory glutamatergic transmission and mu opioid receptor-mediated modulation of glutamatergic transmission in the anterior cingulate cortex slices from the complete Freund's adjuvant (CFA)-inflamed rats. The results demonstrated that glutamatergic paired-pulse facilitation was decreased in the anterior cingulate cortex neurons from the CFA-inflamed rats, indicating an enhanced presynaptic glutamate release. In addition, activation of mu opioid receptor significantly inhibited the glutamatergic excitatory postsynaptic currents (EPSCs) in the anterior cingulate cortex neurons, which was attained through the suppression of presynaptic glutamate release. Taken together, these findings provided the evidence for the functional adaptation of central glutamatergic transmission induced by peripheral inflammation, and elucidated the cellular mechanism underlying opiate analgesia in the anterior cingulate cortex.

  14. The Anterior Cingulate Cortex and Pain Processing

    Directory of Open Access Journals (Sweden)

    Perry Neil Fuchs

    2014-05-01

    Full Text Available The neural network that contributes to the suffering which accompanies persistent pain states involves a number of brain regions. Of primary interest is the contribution of the cingulate cortex in processing the affective component of pain. The purpose of this review is to summarize recent data obtained using novel behavioral paradigms in animals based on measuring escape and/or avoidance of a noxious stimulus. These paradigms have successfully been used to study the nature of the neuroanatomical and neurochemical contributions of the anterior cingulate cortex to higher order pain processing in rodents.

  15. Anterior cingulate cortex involvement in subclinical social anxiety.

    Science.gov (United States)

    Duval, Elizabeth R; Hale, Lisa R; Liberzon, Israel; Lepping, Rebecca; N Powell, Joshua; Filion, Diane L; Savage, Cary R

    2013-12-30

    We demonstrated differential activation in the anterior cingulate cortex (ACC) between subjects with high and low social anxiety in response to angry versus neutral faces. Activation in the ACC distinguished between facial expressions in the low, but not the high, anxious group. The ACC's role in threat processing is discussed.

  16. Cigarette smoking leads to persistent and dose-dependent alterations of brain activity and connectivity in anterior insula and anterior cingulate.

    Science.gov (United States)

    Zanchi, Davide; Brody, Arthur L; Montandon, Marie-Louise; Kopel, Rotem; Emmert, Kirsten; Preti, Maria Giulia; Van De Ville, Dimitri; Haller, Sven

    2015-11-01

    Although many smokers try to quit smoking, only about 20-25 percent will achieve abstinence despite 6 months or more of gold-standard treatment. This low success rate suggests long-term changes in the brain related to smoking, which remain poorly understood. We compared ex-smokers to both active smokers and non-smokers using functional magnetic resonance imaging (fMRI) to explore persistent modifications in brain activity and network organization. This prospective and consecutive study includes 18 non-smokers (29.5 ± 6.7 years of age, 11 women), 14 smokers (≥10 cigarettes a day >2 years of smoking, 29.3 ± 6.0 years of age, 10 women) and 14 ex-smokers (>1 year of quitting 30.5 ± 5.7 years of age, 10 women). Participants underwent a block-design fMRI study contrasting smoking cue with control (neutral cue) videos. Data analyses included task-related general linear model, seed-based functional connectivity, voxel-based morphometry (VBM) of gray matter and tract-based spatial statistics (TBSS) of white matter. Smoking cue videos versus control videos activated the right anterior insula in ex-smokers compared with smokers, an effect correlating with cumulative nicotine intake (pack-years). Moreover, ex-smokers had a persistent decrease in functional connectivity between right anterior insula and anterior cingulate cortex (ACC) compared with control participants, but similar to active smokers. Potentially confounding alterations in gray or white matter were excluded in VBM and TBSS analyses. In summary, ex-smokers with long-term nicotine abstinence have persistent and dose-dependent brain network changes notably in the right anterior insula and its connection to the ACC.

  17. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  18. Is dorsal anterior cingulate cortex activation in response to social exclusion due to expectancy violation? An fMRI study.

    Science.gov (United States)

    Kawamoto, Taishi; Onoda, Keiichi; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2012-01-01

    People are typically quite sensitive about being accepted or excluded by others. Previous studies have suggested that the dorsal anterior cingulate cortex (dACC) is a key brain region involved in the detection of social exclusion. However, this region has also been shown to be sensitive to non-social expectancy violations. We often expect other people to follow an unwritten rule in which they include us as they would expect to be included, such that social exclusion likely involves some degree of expectancy violation. The present event-related functional magnetic resonance imaging (fMRI) study sought to separate the effects of expectancy violation from those of social exclusion, such that we employed an "overinclusion" condition in which a player was unexpectedly overincluded in the game by the other players. With this modification, we found that the dACC and right ventrolateral prefrontal cortex (rVLPFC) were activated by exclusion, relative to overinclusion. In addition, we identified a negative correlation between exclusion-evoked brain activity and self-rated social pain in the rVLPFC, but not in the dACC. These findings suggest that the rVLPFC is critical for regulating social pain, whereas the dACC plays an important role in the detection of exclusion. The neurobiological basis of social exclusion is different from that of mere expectancy violation.

  19. A Chan Dietary Intervention Enhances Executive Functions and Anterior Cingulate Activity in Autism Spectrum Disorders: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Agnes S. Chan

    2012-01-01

    Full Text Available Executive dysfunctions have been found to be related to repetitive/disinhibited behaviors and social deficits in autism spectrum disorders (ASDs. This study aims to investigate the potential effect of a Shaolin-medicine-based dietary modification on improving executive functions and behavioral symptoms of ASD and exploring the possible underlying neurophysiological mechanisms. Twenty-four children with ASD were randomly assigned into the experimental (receiving dietary modification for one month and the control (no modification groups. Each child was assessed on his/her executive functions, behavioral problems based on parental ratings, and event-related electroencephalography (EEG activity during a response-monitoring task before and after the one month. The experimental group demonstrated significantly improved mental flexibility and inhibitory control after the diet modification, which continued to have a large effect size within the low-functioning subgroup. Such improvements coincided with positive evaluations by their parents on social communication abilities and flexible inhibitory control of daily behaviors and significantly enhanced event-related EEG activity at the rostral and subgenual anterior cingulate cortex. In contrast, the control group did not show any significant improvements. These positive outcomes of a one-month dietary modification on children with ASD have implicated its potential clinical applicability for patients with executive function deficits.

  20. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    Full Text Available Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM analyses: Individuals with higher Media Multitasking Index (MMI scores had smaller gray matter density in the anterior cingulate cortex (ACC. Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.

  1. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    Directory of Open Access Journals (Sweden)

    Hiroki eNakata

    2014-12-01

    Full Text Available Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI, and neurophysiological methods, such as magnetoencephalography (MEG and electroencephalography (EEG, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation’. In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation.

  2. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2015-10-01

    Full Text Available Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2 quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1 were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, with no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP.

  3. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem.

  4. Reduced event-related current density in the anterior cingulate cortex in schizophrenia.

    Science.gov (United States)

    Mulert, C; Gallinat, J; Pascual-Marqui, R; Dorn, H; Frick, K; Schlattmann, P; Mientus, S; Herrmann, W M; Winterer, G

    2001-04-01

    There is good evidence from neuroanatomic postmortem and functional imaging studies that dysfunction of the anterior cingulate cortex plays a prominent role in the pathophysiology of schizophrenia. So far, no electrophysiological localization study has been performed to investigate this deficit. We investigated 18 drug-free schizophrenic patients and 25 normal subjects with an auditory choice reaction task and measured event-related activity with 19 electrodes. Estimation of the current source density distribution in Talairach space was performed with low-resolution electromagnetic tomography (LORETA). In normals, we could differentiate between an early event-related potential peak of the N1 (90-100 ms) and a later N1 peak (120-130 ms). Subsequent current-density LORETA analysis in Talairach space showed increased activity in the auditory cortex area during the first N1 peak and increased activity in the anterior cingulate gyrus during the second N1 peak. No activation difference was observed in the auditory cortex between normals and patients with schizophrenia. However, schizophrenics showed significantly less anterior cingulate gyrus activation and slowed reaction times. Our results confirm previous findings of an electrical source in the anterior cingulate and an anterior cingulate dysfunction in schizophrenics. Our data also suggest that anterior cingulate function in schizophrenics is disturbed at a relatively early time point in the information-processing stream (100-140 ms poststimulus).

  5. Bilingualism tunes the anterior cingulate cortex for conflict monitoring.

    Science.gov (United States)

    Abutalebi, Jubin; Della Rosa, Pasquale Anthony; Green, David W; Hernandez, Mireia; Scifo, Paola; Keim, Roland; Cappa, Stefano F; Costa, Albert

    2012-09-01

    Monitoring and controlling 2 language systems is fundamental to language use in bilinguals. Here, we reveal in a combined functional (event-related functional magnetic resonance imaging) and structural neuroimaging (voxel-based morphometry) study that dorsal anterior cingulate cortex (ACC), a structure tightly bound to domain-general executive control functions, is a common locus for language control and resolving nonverbal conflict. We also show an experience-dependent effect in the same region: Bilinguals use this structure more efficiently than monolinguals to monitor nonlinguistic cognitive conflicts. They adapted better to conflicting situations showing less ACC activity while outperforming monolinguals. Importantly, for bilinguals, brain activity in the ACC, as well as behavioral measures, also correlated positively with local gray matter volume. These results suggest that early learning and lifelong practice of 2 languages exert a strong impact upon human neocortical development. The bilingual brain adapts better to resolve cognitive conflicts in domain-general cognitive tasks.

  6. Inhibition of p38 mitogen-activated protein kinase activation in the rostral anterior cingulate cortex attenuates pain-related negative emotion in rats.

    Science.gov (United States)

    Cao, Hong; Zang, Kai-Kai; Han, Mei; Zhao, Zhi-Qi; Wu, Gen-Cheng; Zhang, Yu-Qiu

    2014-08-01

    The emotional components of pain are far less studied than the sensory components. Previous studies have indicated that the rostral anterior cingulate cortex (rACC) is implicated in the affective response to noxious stimuli. Activation of p38 mitogen-activated protein kinase (MAPK) in the spinal cord has been documented to play an important role in diverse kinds of pathological pain states. We used formalin-induced conditioned place aversion (F-CPA) in rats, an animal model believed to reflect the emotional response to pain, to investigate the involvement of p38 MAPK in the rACC after the induction of affective pain. Intraplantar formalin injection produced a significant activation of p38 MAPK, as well as mitogen-activated kinase kinase (MKK) 3 and MKK6, its upstream activators, in the bilateral rACC. p38 MAPK was elevated in both NeuN-positive neurons and Iba1-positive microglia in the rACC, but not GFAP-positive cells. Blocking p38 MAPK activation in the bilateral rACC using its specific inhibitor SB203580 or SB239063 dose-dependently suppressed the formation of F-CPA. Inhibiting p38 MAPK activation did not affect formalin-induced two-phase spontaneous nociceptive response and low intensity electric foot-shock induced CPA. The present study demonstrated that p38 MAPK signaling pathway in the rACC contributes to pain-related negative emotion. Thus, a new pharmacological strategy targeted at the p38 MAPK cascade may be useful in treating pain-related emotional disorders.

  7. The use of sequential hippocampal-dependent and -non-dependent tasks to study the activation profile of the anterior cingulate cortex during recent and remote memory tests.

    Science.gov (United States)

    Wartman, Brianne C; Holahan, Matthew R

    2013-11-01

    Recent findings suggest that as time passes, cortical networks become recruited for memory storage. In animal models, this has been studied by exposing rodents to one task, allowing them to form a memory representation for the task then waiting different periods of time to determine, either through brain imaging or region-specific inactivation, the location of the memory representation. A number of reports show that 30 days after a memory has been encoded, it comes to be stored in cortical areas such as the anterior cingulate cortex. The present study sought to determine what factors, in addition to the passage of time, would influence whether memory retrieval was associated with cortical activation. To this end, rats were assigned to one of three behavioural groups: (1) Training on one hippocampal-dependent memory task, the water maze (WM); (2) Training on two, different hippocampal-dependent memory tasks, the WM followed by the radial arm maze; (3) Training on one hippocampal-dependent memory task (WM) followed by training on one, non-hippocampal-dependent task, operant conditioning. After training, each group received a recent (2d) or remote (31d) water maze probe test. The group trained on two different hippocampal-dependent tasks and tested 2d later, showed the strongest preference for the platform location during the probe test. This group also displayed a pattern of c-Fos staining in the anterior cingulate cortex similar to the pattern of staining observed in the remotely-tested groups and different from that seen in the other recently-tested groups. These results suggest the formation of multiple hippocampal-dependent memories accelerate the speed at which cortical network recruitment is seen and leads to enhanced behavioural performance in the recent term.

  8. Impaired cognitive control and reduced cingulate activity during mental fatigue

    NARCIS (Netherlands)

    Lorist, MM; Boksem, MAS; Ridderinkhof, KR

    2005-01-01

    Neurocognitive mechanisms underlying the effects of mental fatigue are poorly understood. Here, we examined whether error-related brain activity, indexing performance monitoring by the anterior cingulate cortex (ACC), and strategic behavioural adjustments were modulated by mental fatigue, as induced

  9. Motivation of extended behaviors by anterior cingulate cortex.

    Science.gov (United States)

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences.

  10. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  11. Value, search, persistence and model updating in anterior cingulate cortex

    NARCIS (Netherlands)

    Kolling, N.; Wittmann, M.K.; Behrens, T.E.J.; Boorman, E.D.; Mars, R.B.; Rushworth, M.F.S.

    2016-01-01

    Dorsal anterior cingulate cortex (dACC) carries a wealth of value-related information necessary for regulating behavioral flexibility and persistence. It signals error and reward events informing decisions about switching or staying with current behavior. During decision-making, it encodes the avera

  12. The val158met polymorphism of human catechol-O-methyltransferase (COMT affects anterior cingulate cortex activation in response to painful laser stimulation

    Directory of Open Access Journals (Sweden)

    Musso Francesco

    2010-05-01

    Full Text Available Abstract Background Pain is a complex experience with sensory, emotional and cognitive aspects. Genetic and environmental factors contribute to pain-related phenotypes such as chronic pain states. Genetic variations in the gene coding for catechol-O-methyltransferase (COMT have been suggested to affect clinical and experimental pain-related phenotypes including regional μ-opioid system responses to painful stimulation as measured by ligand-PET (positron emission tomography. The functional val158met single nucleotide polymorphism has been most widely studied. However, apart from its impact on pain-induced opioid release the effect of this genetic variation on cerebral pain processing has not been studied with activation measures such as functional magnetic resonance imaging (fMRI, PET or electroencephalography. In the present fMRI study we therefore sought to investigate the impact of the COMT val158met polymorphism on the blood oxygen level-dependent (BOLD response to painful laser stimulation. Results 57 subjects were studied. We found that subjects homozygous for the met158 allele exhibit a higher BOLD response in the anterior cingulate cortex (ACC, foremost in the mid-cingulate cortex, than carriers of the val158 allele. Conclusion This result is in line with previous studies that reported higher pain sensitivity in homozygous met carriers. It adds to the current literature in suggesting that this behavioral phenotype may be mediated by, or is at least associated with, increased ACC activity. More generally, apart from one report that focused on pain-induced opioid release, this is the first functional neuroimaging study showing an effect of the COMT val158met polymorphism on cerebral pain processing.

  13. Dysfunctional activation and brain network profiles in youth with Obsessive-Compulsive Disorder: A focus on the dorsal anterior cingulate during working memory

    Directory of Open Access Journals (Sweden)

    Vaibhav A. Diwadkar

    2015-03-01

    Full Text Available Brain network dysfunction is emerging as a central biomarker of interest in psychiatry, in large part because psychiatric conditions are increasingly seen as disconnection syndromes. Understanding dysfunctional brain network profiles in task-active states provides important information on network engagement in an experimental context. This in turn may be predictive of many of the cognitive and behavioral deficits associated with complex behavioral phenotypes. Here we investigated brain network profiles in youth with obsessive-compulsive disorder (OCD, contrasting them with a group of age-comparable controls. Network interactions were assessed during simple working memory: in particular, we focused on the modulation by the dorsal anterior cingulate cortex (dACC of cortical, striatal and thalamic regions. The focus on the dACC was motivated by its hypothesized role in the pathophysiology of OCD. However, its task-active network signatures have not been investigated before. Network interactions were modeled using psychophysiological interaction, a simple directional model of seed to target brain interactions. Our results indicate that OCD is characterized by significantly increased dACC modulation of cortical, striatal and thalamic targets during working memory, and that this aberrant increase in OCD patients is maintained regardless of working memory demand. The results constitute compelling evidence of dysfunctional brain network interactions in OCD and suggest that these interactions may be related to a combination of network inefficiencies and dACC hyper-activity that has been associated with the phenotype.

  14. Pleasant human touch is represented in pregenual anterior cingulate cortex.

    Science.gov (United States)

    Lindgren, Lenita; Westling, Göran; Brulin, Christine; Lehtipalo, Stefan; Andersson, Micael; Nyberg, Lars

    2012-02-15

    Touch massage (TM) is a form of pleasant touch stimulation used as treatment in clinical settings and found to improve well-being and decrease anxiety, stress, and pain. Emotional responses reported during and after TM have been studied, but the underlying mechanisms are still largely unexplored. In this study, we used functional magnetic resonance (fMRI) to test the hypothesis that the combination of human touch (i.e. skin-to-skin contact) with movement is eliciting a specific response in brain areas coding for pleasant sensations. The design included four different touch conditions; human touch with or without movement and rubber glove with or without movement. Force (2.5 N) and velocity (1.5 cm/s) were held constant across conditions. The pleasantness of the four different touch stimulations was rated on a visual analog scale (VAS-scale) and human touch was rated as most pleasant, particularly in combination with movement. The fMRI results revealed that TM stimulation most strongly activated the pregenual anterior cingulate cortex (pgACC). These results are consistent with findings showing pgACC activation during various rewarding pleasant stimulations. This area is also known to be activated by both opioid analgesia and placebo. Together with these prior results, our finding furthers the understanding of the basis for positive TM treatment effects.

  15. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory.

    Science.gov (United States)

    Corcoran, Kevin A; Frick, Brendan J; Radulovic, Jelena; Kay, Leslie M

    2016-01-01

    Memory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction. Specifically, exposure to a novel context and retrieval of recently acquired fear conditioning memory were associated with increased theta coherence between RSC and all three other structures. In contrast, RSC-DH and RSC-ADT theta coherence were decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote memory. Greater RSC-ADT theta and gamma coherence were observed during recent, compared to remote, extinction of freezing responses. Thus, the degree of coherence between RSC and connected brain areas may predict and contribute to context memory retrieval and retrieval-related phenomena such as fear extinction. Importantly, although theta coherence in this circuit increases during memory encoding and retrieval of recent memory, failure to decrease RSC-DH theta coherence might be linked to retrieval deficit in the long term, and possibly contribute to aberrant memory processing characteristic of neuropsychiatric disorders.

  16. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study.

    Science.gov (United States)

    Li, Xingbao; Hartwell, Karen J; Borckardt, Jeffery; Prisciandaro, James J; Saladin, Michael E; Morgan, Paul S; Johnson, Kevin A; Lematty, Todd; Brady, Kathleen T; George, Mark S

    2013-07-01

    Numerous research groups are now using analysis of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) results and relaying back information about regional activity in their brains to participants in the scanner in 'real time'. In this study, we explored the feasibility of self-regulation of frontal cortical activation using real-time fMRI (rtfMRI) neurofeedback in nicotine-dependent cigarette smokers during exposure to smoking cues. Ten cigarette smokers were shown smoking-related visual cues in a 3 Tesla MRI scanner to induce their nicotine craving. Participants were instructed to modify their craving using rtfMRI feedback with two different approaches. In a 'reduce craving' paradigm, participants were instructed to 'reduce' their craving, and decrease the anterior cingulate cortex (ACC) activity. In a separate 'increase resistance' paradigm, participants were asked to increase their resistance to craving and to increase middle prefrontal cortex (mPFC) activity. We found that participants were able to significantly reduce the BOLD signal in the ACC during the 'reduce craving' task (P=0.028). There was a significant correlation between decreased ACC activation and reduced craving ratings during the 'reduce craving' session (P=0.011). In contrast, there was no modulation of the BOLD signal in mPFC during the 'increase resistance' session. These preliminary results suggest that some smokers may be able to use neurofeedback via rtfMRI to voluntarily regulate ACC activation and temporarily reduce smoking cue-induced craving. Further research is needed to determine the optimal parameters of neurofeedback rtfMRI, and whether it might eventually become a therapeutic tool for nicotine dependence.

  17. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study

    Science.gov (United States)

    Slaats-Willemse, Dorine; Kan, Cornelis C.; Goebel, Rainer; Buitelaar, Jan K.

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study’s small sample size, potential clinical benefits need to be further investigated in future studies. Trial Registration: ISRCTN12390961 PMID:28125735

  18. Increased anterior cingulate and temporal lobe activity during visuospatial working memory in children and adolescents with schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); D. Hongwanishkul (Donaya); M. Schmidt (Manfred)

    2011-01-01

    textabstractObjective: Similar to adults, children and adolescents with schizophrenia present with significant working memory (WkM) deficits. However, unlike adults, findings of abnormal activity in the prefrontal cortex in early-onset schizophrenia (EOS) are not consistently reported. Since WkM con

  19. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.

    Science.gov (United States)

    Grossman, M; Crino, P; Reivich, M; Stern, M B; Hurtig, H I

    1992-01-01

    Parkinson's disease (PD) is a complex neurodegenerative condition involving a motor disorder that is related to reduced dopaminergic input to the striatum. Intellectual deficits are also seen in PD, but the pathophysiology of these difficulties is poorly understood. Regional cerebral blood flow (rCBF) was studied in neurologically intact subjects during the performance of attention-demanding, sentence processing tasks using positron emission tomography (PET). The results demonstrated significantly increased rCBF in a distributed set of cerebral regions during the detection of an adjective or a particular agent in a sentence, including anterior cingulate cortex, left inferior and middle frontal cortex, left inferior temporo-occipital cortex, posterolateral temporal cortex, left caudate, and left thalamus. We identified defects in this cerebral network by studying PD patients with two PET techniques. Resting PET studies revealed a significant correlation between regional cerebral glucose metabolism in anterior cingulate cortex and deficits in attending to subtle grammatical aspects of sentences. Studies of PD patients with the PET activation technique revealed little change in anterior cingulate and left frontal CBF during performance of the adjective detection or agent detection tasks. These data suggest that a defect in anterior cingulate cortex contributes to the cognitive impairments observed in PD.

  20. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  1. Anterior cingulate integrity: executive and neuropsychiatric features in Parkinson's disease.

    Science.gov (United States)

    Lewis, Simon J G; Shine, James M; Duffy, Shantel; Halliday, Glenda; Naismith, Sharon L

    2012-09-01

    Patients with advanced Parkinson's disease (PD) commonly suffer with significant executive dysfunction and concomitant visual hallucinations. Although the underlying pathophysiology remains poorly understood, numerous studies have highlighted the strong association between these neuropsychiatric features, suggesting common neural pathways. Although previous neuroimaging studies have identified widespread volume loss across a number of cortical regions, to date, no studies have utilized proton magnetic resonance spectroscopy to provide insights into how neurometabolic changes may relate to such symptoms. Twenty patients with PD and 20 healthy controls underwent spectroscopy to determine the N-acetyl aspartate/creatine (NAA/Cr) ratio, which reflects the degree of neuronal integrity in neurodegenerative diseases. Voxels were obtained from the anterior cingulate cortex (ACC), an area critical for a wide range of executive mechanisms as well as from a control volume in the posterior cingulate cortex (PCC). Compared to controls, patients with PD had lower NAA/Cr ratios in the ACC. In turn, lower NAA/Cr ratios significantly correlated with poorer executive function on tasks of attentional set-shifting and response inhibition, as well as more-severe psychotic symptoms and poorer performance on the Bistable Percept Paradigm, a neuropsychological probe of visual hallucinations. NAA/Cr ratios were significantly lower in hallucinators, compared to nonhallucinators, within the ACC, but did not differ in the PCC. These results suggest that loss of neuronal integrity within the ACC plays an important role in the pathophysiology underlying executive functioning and visual hallucinations in PD. © 2012 Movement Disorder Society.

  2. Action initiation in the human dorsal anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Lakshminarayan Srinivasan

    Full Text Available The dorsal anterior cingulate cortex (dACC has previously been implicated in processes that influence action initiation. In humans however, there has been little direct evidence connecting dACC to the temporal onset of actions. We studied reactive behavior in patients undergoing therapeutic bilateral cingulotomy to determine the immediate effects of dACC ablation on action initiation. In a simple reaction task, three patients were instructed to respond to a specific visual cue with the movement of a joystick. Within minutes of dACC ablation, the frequency of false starts increased, where movements occurred prior to presentation of the visual cue. In a decision making task with three separate patients, the ablation effect on action initiation persisted even when action selection was intact. These findings suggest that human dACC influences action initiation, apart from its role in action selection.

  3. Dorsal anterior cingulate cortex and the value of control.

    Science.gov (United States)

    Shenhav, Amitai; Cohen, Jonathan D; Botvinick, Matthew M

    2016-09-27

    Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the region's association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACC's involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACC's sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACC's particular involvement in decisions regarding foraging or otherwise altering one's behavior.

  4. Functional and structural amygdala - anterior cingulate connectivity correlates with attentional bias to masked fearful faces.

    Science.gov (United States)

    Carlson, Joshua M; Cha, Jiook; Mujica-Parodi, Lilianne R

    2013-10-01

    An attentional bias to threat has been causally related to anxiety. Recent research has linked nonconscious attentional bias to threat with variability in the integrity of the amygdala - anterior cingulate pathway, which sheds light on the neuroanatomical basis for a behavioral precursor to anxiety. However, the extent to which structural variability in amygdala - anterior cingulate integrity relates to the functional connectivity within this pathway and how such functional connectivity may relate to attention bias behavior, remain critical missing pieces of the puzzle. In 15 individuals we measured the structural integrity of the amygdala - prefrontal pathway with diffusion tensor-weighted MRI (magnetic resonance imaging), amygdala-seeded intrinsic functional connectivity to the anterior cingulate, and attentional bias toward backward masked fearful faces with a dot-probe task. We found that greater biases in attention to threat predicted greater levels of uncinate fasciculus integrity, greater positive amygdala - anterior cingulate functional connectivity, and greater amygdala coupling with a broader social perception network including the superior temporal sulcus, tempoparietal junction (TPJ), and somatosensory cortex. Additionally, greater levels of uncinate fasciculus integrity correlated with greater levels of amygdala - anterior cingulate intrinsic functional connectivity. Thus, high bias individuals displayed a heightened degree of amygdala - anterior cingulate connectivity during basal conditions, which we believe predisposes these individuals to focus their attention on signals of threat within their environment.

  5. Reduced Activation in Lateral Prefrontal Cortex and Anterior Cingulate during Attention and Cognitive Control Functions in Medication-Naive Adolescents with Depression Compared to Controls

    Science.gov (United States)

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M.; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-01-01

    Background: There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of…

  6. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  7. Practice explains abolished behavioural adaptation after human dorsal anterior cingulate cortex lesions

    OpenAIRE

    van Steenbergen, H.; E. Haasnoot; Bocanegra, B.R.; Berretty, E.W.; Hommel, B.

    2015-01-01

    The role of mid-cingulate cortex (MCC), also referred to as dorsal anterior cingulate cortex, in regulating cognitive control is a topic of primary importance in cognitive neuroscience. Although many studies have shown that MCC responds to cognitive demands, lesion studies in humans are inconclusive concerning the causal role of the MCC in the adaptation to these demands. By elegantly combining single-cell recordings with behavioural methods, Sheth et al. [Sheth, S. et al. Human dorsal anteri...

  8. Anterior Cingulate Volumetric Alterations in Treatment-Naive Adults with ADHD: A Pilot Study

    Science.gov (United States)

    Makris, Nikos; Seidman, Larry J.; Valera, Eve M.; Biederman, Joseph; Monuteaux, Michael C.; Kennedy, David N.; Caviness, Verne S., Jr.; Bush, George; Crum, Katherine; Brown, Ariel B.; Faraone, Stephen V.

    2010-01-01

    Objective: We sought to examine preliminary results of brain alterations in anterior cingulate cortex (ACC) in treatment-naive adults with ADHD. The ACC is a central brain node for the integration of cognitive control and allocation of attention, affect and drive. Thus its anatomical alteration may give rise to impulsivity, hyperactivity and…

  9. Errors without Conflict: Implications for Performance Monitoring Theories of Anterior Cingulate Cortex

    Science.gov (United States)

    van Veen, V.; Holroyd, C.B.; Cohen, J.D.; Stenger, V.A.; Carter, C.S.

    2004-01-01

    Recent theories of the neural basis of performance monitoring have emphasized a central role for the anterior cingulate cortex (ACC). Replicating an earlier event-related potential (ERP) study, which showed an error feedback negativity that was modeled as having an ACC generator, we used event-related fMRI to investigate whether the ACC would…

  10. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    NARCIS (Netherlands)

    Arns, M.W.; Etkin, A.; Hegerl, U.; Williams, L.M.; DeBattista, C.; Palmer, D.M.; Fitzgerald, P.B.; Harris, A.; deBeuss, R.; Gordon, E.

    2015-01-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been link

  11. Frontal and anterior cingulate activation during overt verbal fluency in patients with first episode psychosis Ativação frontal e do cíngulo anterior durante tarefa de fluência verbal em pacientes em primeiro episódio psicótico

    Directory of Open Access Journals (Sweden)

    Maristela Schaufelberger

    2005-09-01

    Full Text Available OBJECTIVE: Functional neuroimaging studies using phonological verbal fluency tasks allow the assessment of neural circuits relevant to the neuropsychology of psychosis. There is evidence that the prefrontal cortex and anterior cingulate gyrus present different activation patterns in subjects with chronic schizophrenia relative to healthy controls. We assessed the functioning in these brain regions during phonological verbal fluency in subjects with recent-onset functional psychoses, using functional magnetic resonance imaging (FMRI. METHODS: Seven patients with functional psychoses (3 schizophreniform, 4 affective and 9 healthy controls were studied. We compared functional magnetic resonance images acquired during articulation of words beginning with letters classified as easy for word production in Portuguese. Statistical comparisons were performed using non-parametric tests. RESULTS: There were no differences between patients and controls in task performance. Controls showed greater activation than patients in the left rostral anterior cingulate gyrus and right inferior prefrontal cortex, whereas patients showed stronger activation than controls in a more dorsal part of the anterior cingulate gyrus bilaterally and in a more superior portion of the right prefrontal cortex. CONCLUSION: Our preliminary findings of attenuated engagement of inferior prefrontal cortex and anterior cingulate gyrus in patients with recent onset psychosis during phonological verbal fluency are consistent with those of previous studies. The greater activation found in other parts of the anterior cingulate gyrus and prefrontal cortex in patients may be related to a compensatory response that is required to maintain normal task performance, and suggests a pattern of disorganized activity of different functional anterior cingulate gyrus units in association with psychotic conditions.OBJETIVO: Estudos de neuroimagem funcional empregando tarefa de fluência verbal fonol

  12. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: Implications for affective pain

    Institute of Scientific and Technical Information of China (English)

    Hong Cao; Wen-Hua Ren; Mu-Ye Zhu; Zhi-Qi Zhao; Yu-Qiu Zhang

    2012-01-01

    Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain.N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB).The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC.Methods Immunohistochemistry and Western blot analysis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo.Double immunostaining was also used to determine the colocalization of pERK and pCREB.Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC,which was inhibited by the NMDAR antagonist DL-2-amino-5-phospho-novaleric acid.Selective blockade of the NMDAR GluN2B subunit and the glycinebinding site,or degradation of endogenous D-serine,a co-agonist for the glycine site,significantly decreased the upregulation of pERK and pCREB expression in the rACC.Further,the activated ERK predominantly colocalized with CREB.Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats,and these might be fundamental molecular mechanisms underlying pain affect.

  13. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis

    Directory of Open Access Journals (Sweden)

    Jue Wang

    2015-10-01

    Full Text Available We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6–16 years, 42 boys. We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right in its superior part, rightward (left < right in its inferior part. Intrinsic connectivity analysis of these regions further revealed region-specific asymmetric connectivity profiles in dACC as well as their sex and age differences. Specifically, the superior dACC connectivity with frontoparietal network and the inferior dACC connectivity with visual network are rightward. The superior dACC connectivity with the default network (lateral temporal cortex was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure–function relationships during the development.

  14. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis.

    Science.gov (United States)

    Wang, Jue; Yang, Ning; Liao, Wei; Zhang, Han; Yan, Chao-Gan; Zang, Yu-Feng; Zuo, Xi-Nian

    2015-10-01

    We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6-16 years, 42 boys). We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right) in its superior part, rightward (left lateral temporal cortex) was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex) was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure-function relationships during the development.

  15. Reduced anterior cingulate gyrus volume correlates with executive dysfunction in men with first-episode schizophrenia.

    Science.gov (United States)

    Szeszko, P R; Bilder, R M; Lencz, T; Ashtari, M; Goldman, R S; Reiter, G; Wu, H; Lieberman, J A

    2000-06-16

    Although frontal lobe structural and functional abnormalities have been identified in schizophrenia, their relationship remains elusive. Because the frontal lobes are both structurally and functionally heterogeneous, it is possible that some measures of frontal lobe structure may not have accurately identified relevant frontal lobe subregions. The authors hypothesized that the volumes of two dorsal, 'archicortical' subregions (i.e. superior frontal gyrus and anterior cingulate gyrus), but not a ventral, 'paleocortical' subregion (i.e. orbital frontal region) would be significantly and selectively correlated with executive and motor dysfunction in patients with schizophrenia as previously reported for the anterior hippocampal region. Volumes of these frontal lobe subregions were measured from magnetic resonance images based on sulcal anatomy in 20 men and 15 women with first-episode schizophrenia. All patients completed a comprehensive neuropsychological test battery while clinically stabilized that encompassed six domains of functioning: attention, executive, motor, visuospatial, memory and language. Findings indicated that reduced anterior cingulate gyrus volume was significantly correlated with worse executive functioning in men; among women, there were no significant correlations. Among men, anterior cingulate gyrus volume was significantly more strongly correlated with executive functioning than with attention, visuospatial, memory, language and general intellectual functioning. Neither executive nor motor functioning was significantly more strongly correlated with the dorsal 'archicortical' volumes than with orbital frontal volume. These findings suggest a link between executive deficits and dysfunction of the dorsal 'archicortical' system and implicate sex differences in their relationship in first-episode schizophrenia.

  16. Cross-modal sensory processing in the anterior cingulate and medial prefrontal cortices.

    Science.gov (United States)

    Laurienti, Paul J; Wallace, Mark T; Maldjian, Joseph A; Susi, Christina M; Stein, Barry E; Burdette, Jonathan H

    2003-08-01

    One of the principal functions of the nervous system is to synthesize information from multiple sensory channels into a coherent behavioral and perceptual gestalt. A critical feature of this multisensory synthesis is the sorting and coupling of information derived from the same event. One of the singular features of stimuli conveying such information is their contextual or semantic congruence. Illustrating this fact, subjects are typically faster and more accurate when performing tasks that include congruent compared to incongruent cross-modal stimuli. Using functional magnetic resonance imaging, we demonstrate that activity in select brain areas is sensitive to the contextual congruence among cross-modal cues and to task difficulty. The anterior cingulate gyrus and adjacent medial prefrontal cortices showed significantly greater activity when visual and auditory stimuli were contextually congruent (i.e., matching) than when they were nonmatching. Although activity in these regions was also dependent on task difficulty, showing decreased activity with decreasing task difficulty, the activity changes associated with stimulus congruence predominated.

  17. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control.

    Science.gov (United States)

    Tolomeo, Serenella; Christmas, David; Jentzsch, Ines; Johnston, Blair; Sprengelmeyer, Reiner; Matthews, Keith; Douglas Steele, J

    2016-06-01

    Converging evidence has linked the anterior mid-cingulate cortex to negative affect, pain and cognitive control. It has previously been proposed that this region uses information about punishment to control aversively motivated actions. Studies on the effects of lesions allow causal inferences about brain function; however, naturally occurring lesions in the anterior mid-cingulate cortex are rare. In two studies we therefore recruited 94 volunteers, comprising 15 patients with treatment-resistant depression who had received bilateral anterior cingulotomy, which consists of lesions made within the anterior mid-cingulate cortex, 20 patients with treatment-resistant depression who had not received surgery and 59 healthy control subjects. Using the Ekman 60 faces paradigm and two Stroop paradigms, we tested the hypothesis that patients who received anterior cingulotomy were impaired in recognizing negative facial affect expressions but not positive or neutral facial expressions, and impaired in Stroop cognitive control, with larger lesions being associated with more impairment. Consistent with this hypothesis, we found that larger volume lesions predicted more impairment in recognizing fear, disgust and anger, and no impairment in recognizing facial expressions of surprise or happiness. However, we found no impairment in recognizing expressions of sadness. Also consistent with the hypothesis, we found that larger volume lesions predicted impaired Stroop cognitive control. Notably, this relationship was only present when anterior mid-cingulate cortex lesion volume was defined as the overlap between cingulotomy lesion volume and Shackman's meta-analysis-derived binary masks for negative affect and cognitive control. Given substantial evidence from healthy subjects that the anterior mid-cingulate cortex is part of a network associated with the experience of negative affect and pain, engaging cognitive control processes for optimizing behaviour in the presence of such

  18. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus.

    Science.gov (United States)

    Craigmyle, Nancy A

    2013-01-01

    During functional magnetic resonance imaging studies of meditation the cortical salience detecting and executive networks become active during "awareness of mind wandering," "shifting," and "sustained attention." The anterior cingulate (AC) is activated during "awareness of mind wandering." The AC modulates both the peripheral sympathetic nervous system (SNS) and the central locus coeruleus (LC) norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE) and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine and activates the LC, increasing C-NE. Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set-shifting, and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS, and LC with respect to their possible relevance to meditation.

  19. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus

    Directory of Open Access Journals (Sweden)

    Nancy Alker Craigmyle

    2013-10-01

    Full Text Available Abstract During fMRI studies of meditation the cortical salience detecting and executive networks become active during awareness of mind wandering, shifting and sustained attention. The anterior cingulate (AC is activated during awareness of mind wandering.The AC modulates both the peripheral sympathetic nervous system (SNS and the central locus coeruleus (LC norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine (P-NE and activates the LC, increasing C-NE.Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set shifting and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS and LC with respect to their possible relevance to meditation.

  20. Anterior cingulate dopamine turnover and behavior change in Parkinson’s disease

    Science.gov (United States)

    Gallagher, Catherine L; Bell, Brian; Palotti, Matthew; Oh, Jen; Christian, Bradley T.; Okonkwo, Ozioma; Sojkova, Jitka; Buyan-Dent, Laura; Nickles, Robert J.; Harding, Sandra J.; Stone, Charles K.; Johnson, Sterling C.; Holden, James E.

    2015-01-01

    Subtle cognitive and behavioral changes are common in early Parkinson’s disease. The cause of these symptoms is probably multifactorial but may in part be related to extra-striatal dopamine levels. 6-[18F]-Fluoro-L-dopa (FDOPA) positron emission tomography has been widely used to quantify dopamine metabolism in the brain; the most frequently measured kinetic parameter is the tissue uptake rate constant, Ki. However, estimates of dopamine turnover, which also account for the small rate of FDOPA loss from areas of specific trapping, may be more sensitive than Ki for early disease-related changes in dopamine biosynthesis. The purpose of the present study was to compare effective distribution volume ratio (eDVR), a metric for dopamine turnover, to cognitive and behavioral measures in Parkinson’s patients. We chose to focus the investigation on anterior cingulate cortex, which shows highest FDOPA uptake within frontal regions and has known roles in executive function. 15 Non-demented early-stage PD patients were pretreated with carbidopa and tolcapone, a central catechol-O-methyl transferase (COMT) inhibitor and then underwent extended imaging with FDOPA PET. Anterior cingulate eDVR was compared with composite scores for language, memory, and executive function measured by neuropsychological testing, and behavior change measured using two informant-based questionnaires, the Cambridge Behavioral Inventory and the Behavior Rating Inventory of Executive Function- Adult Version. Lower mean eDVR (thus higher dopamine turnover) in anterior cingulate cortex was related to lower (more impaired) behavior scores. We conclude that subtle changes in anterior cingulate dopamine metabolism may contribute to dysexecutive behaviors in Parkinson’s disease. PMID:25511521

  1. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    Science.gov (United States)

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  2. Excitation and inhibition in anterior cingulate predict use of past experiences

    Science.gov (United States)

    Nelissen, Natalie; Stagg, Charlotte J

    2017-01-01

    Dorsal anterior cingulate cortex (dACC) mediates updating and maintenance of cognitive models of the world used to drive adaptive reward-guided behavior. We investigated the neurochemical underpinnings of this process. We used magnetic resonance spectroscopy in humans, to measure levels of glutamate and GABA in dACC. We examined their relationship to neural signals in dACC, measured with fMRI, and cognitive task performance. Both inhibitory and excitatory neurotransmitters in dACC were predictive of the strength of neural signals in dACC and behavioral adaptation. Glutamate levels were correlated, first, with stronger neural activity representing information to be learnt about the tasks’ costs and benefits and, second, greater use of this information in the guidance of behavior. GABA levels were negatively correlated with the same neural signals and the same indices of behavioral influence. Our results suggest that glutamate and GABA in dACC affect the encoding and use of past experiences to guide behavior. DOI: http://dx.doi.org/10.7554/eLife.20365.001 PMID:28055824

  3. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity.

    Science.gov (United States)

    Sturm, Virginia E; Sollberger, Marc; Seeley, William W; Rankin, Katherine P; Ascher, Elizabeth A; Rosen, Howard J; Miller, Bruce L; Levenson, Robert W

    2013-04-01

    Self-conscious emotions such as embarrassment arise when one's actions fail to meet salient social expectations and are accompanied by marked physiological and behavioral activation. We investigated the neural correlates of self-conscious emotional reactivity in 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that disrupts self-conscious emotion and targets brain regions critical for emotional functioning early in the disease course, and in 33 healthy older controls. Subjects participated in an embarrassing karaoke task in which they watched a video clip of themselves singing. They also watched a sad film clip; these data were used to control for non-self-conscious emotional reactivity in response to audiovisual stimuli. Using Freesurfer to quantify regional brain volumes from structural magnetic resonance imaging, right pregenual anterior cingulate cortex (pACC) gray matter volume was the only brain region that was a significant predictor of self-conscious emotion. Smaller pACC volume was associated with attenuated physiological and behavioral self-conscious emotional reactivity, and this relationship was not specific to diagnosis. We argue that these results reflect the significant role that right pACC plays in the visceromotor responding that accompanies self-conscious emotion and that neurodegeneration in this region may underlie the self-conscious emotional decline seen in bvFTD.

  4. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    Science.gov (United States)

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders.

  5. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  6. Practice explains abolished behavioural adaptation after human dorsal anterior cingulate cortex lesions.

    Science.gov (United States)

    van Steenbergen, H; Haasnoot, E; Bocanegra, B R; Berretty, E W; Hommel, B

    2015-04-08

    The role of mid-cingulate cortex (MCC), also referred to as dorsal anterior cingulate cortex, in regulating cognitive control is a topic of primary importance in cognitive neuroscience. Although many studies have shown that MCC responds to cognitive demands, lesion studies in humans are inconclusive concerning the causal role of the MCC in the adaptation to these demands. By elegantly combining single-cell recordings with behavioural methods, Sheth et al. [Sheth, S. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218-22 (2012).] recently were able to show that neurons in MCC encode cognitive demand. Importantly, this study also claimed that focal lesions of the MCC abolished behavioural adaptation to cognitive demands. Here we show that the absence of post-cingulotomy behavioural adaptation reported in this study may have been due to practice effects. We run a control condition where we tested subjects before and after a dummy treatment, which substituted cingulotomy with a filler task (presentation of a documentary). The results revealed abolished behavioural adaptation following the dummy treatment. Our findings suggest that future work using proper experimental designs is needed to advance the understanding of the causal role of the MCC in behavioural adaptation.

  7. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

    Science.gov (United States)

    Caruana, Fausto; Avanzini, Pietro; Gozzo, Francesca; Francione, Stefano; Cardinale, Francesco; Rizzolatti, Giacomo

    2015-10-01

    Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions.

  8. Sleep debt elicits negative emotional reaction through diminished amygdala-anterior cingulate functional connectivity.

    Directory of Open Access Journals (Sweden)

    Yuki Motomura

    Full Text Available OBJECTIVES: Sleep debt reportedly increases emotional instability, such as anxiety and confusion, in addition to sleepiness and psychomotor impairment. However, the neural basis of emotional instability due to sleep debt has yet to be elucidated. This study investigated changes in emotional responses that are elicited by the simulation of short-term sleep loss and the brain regions responsible for these changes. SUBJECTS AND METHODS: Fourteen healthy adult men aged 24.1±3.3 years (range, 20-32 years participated in a within-subject crossover study consisting of 5-day sessions of both sleep debt (4 h for time in bed and sleep control (8 h for time in bed. On the last day of each session, participants underwent polysomnography and completed the State-Trait Anxiety Inventory and Profile of Mood States questionnaires. In addition, functional magnetic resonance imaging was conducted while performing an emotional face viewing task. RESULTS: Restricted sleep over the 5-day period increased the activity of the left amygdala in response to the facial expression of fear, whereas a happy facial expression did not change the activity. Restricted sleep also resulted in a significant decrease in the functional connectivity between the amygdala and the ventral anterior cingulate cortex (vACC in proportion to the degree of sleep debt (as indicated by the percentage of slow wave sleep and δ wave power. This decrease was significantly correlated with activation of the left amygdala and deterioration of subjective mood state. CONCLUSION: The results of this study suggest that continuous and accumulating sleep debt that can be experienced in everyday life can downregulate the functional suppression of the amygdala by the vACC and consequently enhance the response of the amygdala to negative emotional stimuli. Such functional alteration in emotional control may, in part, be attributed to the neural basis of emotional instability during sleep debt.

  9. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  10. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  11. Self-esteem modulates dorsal anterior cingulate cortical response in self-referential processing.

    Science.gov (United States)

    Yang, Juan; Dedovic, Katarina; Chen, Weihai; Zhang, Qinglin

    2012-06-01

    Self-esteem can be defined as evaluations that individuals make about their worth as human beings. These evaluations are in part based on how we evaluate ourselves on our abilities, values, opinions, etc. compared with others or our past or ideal self; and they are also influenced by a thought that what others may think about us. Studies to date investigating the neural mechanisms underlying individual differences in self-esteem have focused mostly on the latter process (i.e. on how self-esteem is associated with neural correlates of processing feedback from others). However, given that people spend a lot of time thinking about themselves and evaluating their worth, we aimed to investigate neural mechanism underlying the association between levels of self-esteem and processing of self-relevant information. Seventeen participants completed a functional magnetic resonance imaging (fMRI) scan during which they were asked to evaluate whether a given statement is true about them (Self), an acquaintance of theirs (Other), or about general knowledge (Semantic). A whole brain correlational analysis revealed a significant negative correlation between levels of self-esteem and changes in activation of dorsal anterior cingulate gyrus (dACC, BA32) in response to evaluating self-relevant information (Self versus Other contrast). This result extends previous findings implicating this region in the association between processing evaluative feedback and levels of self-esteem and suggests that activity in this region is affected by self-esteem levels also when individuals are engaged in self-referencing and self-evaluation. Future studies should investigate whether these associations are affected differently based on valence of self-evaluations.

  12. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex.

    Science.gov (United States)

    Blom, Sigrid Marie; Pfister, Jean-Pascal; Santello, Mirko; Senn, Walter; Nevian, Thomas

    2014-04-23

    Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.

  13. Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study.

    Science.gov (United States)

    De Ridder, Dirk; Vanneste, Sven; Kovacs, Silvia; Sunaert, Stefan; Dom, Geert

    2011-05-27

    It has recently become clear that alcohol addiction might be related to a brain dysfunction, in which a genetic background and environmental factors shape brain mechanisms involved with alcohol consumption. Craving, a major component determining relapses in alcohol abuse has been linked to abnormal activity in the orbitofrontal cortex, dorsal anterior cingulated cortex (dACC) and amygdala. We report the results of a patient who underwent rTMS targeting the dACC using a double cone coil in an attempt to suppress very severe intractable alcohol craving. Functional imaging studies consisting of fMRI and resting state EEG were performed before rTMS, after successful rTMS and after unsuccessful rTMS with relapse. Craving was associated with EEG beta activity and connectivity between the dACC and PCC in the patient in comparison to a healthy population, which disappeared after successful rTMS. Cue induced worsening of craving pre-rTMS activated the ACC-vmPFC and PCC on fMRI, as well as the nucleus accumbens area, and lateral frontoparietal areas. The nucleus accumbens, ACC-vmPFC and PCC activation disappeared on fMRI following successful rTMS. Relapse was associated with recurrence of ACC and PCC EEG activity, but in gamma band, in comparison to a healthy population. On fMRI nucleus accumbens, ACC and PCC activation returned to the initial activation pattern. A pathophysiological approach is described to suppress alcohol craving temporarily by rTMS directed at the anterior cingulate. Linking functional imaging changes to craving intensity suggests this approach warrants further exploration.

  14. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WANG Ya-rong; QIN Wei; YUAN Kai; TIAN Jie; LI Qiang; YANG Lan-ying; LU Lin; GUO You-min

    2010-01-01

    Background Previous studies with animal experiments, autopsy, structural magnetic resonance imaging (MRI) and task-related functional MRI (fMRI) have confirmed that brain functional connectivity in addicts has become impaired. The goal of this study was to investigate the alteration of resting-state functional connectivity of the ventral anterior cingulate cortex (vACC) in the heroin abusers' brain.Methods Fifteen heroin abusers and fifteen matched healthy volunteers were studied using vACC as the region-of interest (ROI) seed. A 3.0 T scanner with a standard head coil was the imagining apparatus. T2*-weighted gradient-echo planar imaging (GRE-EPI) was the scanning protocol. A ROI seed based correlation analysis used a SPM5 software package as the tool for all images processing.Results This study showed a functional connection to the insula vACC in heroin abusers. Compared with controls,heroin users showed decreased functional connectivity between the nucleus accumbens (NAc) and vACC, between the parahippocampala gyrus/amgdala (PHC/amygdala) and vACC, between the thalamus and vACC, and between the posterior cingulated cortex/precuneus (PCC/pC) and vACC.Conclusion The altered resting-state functional connectivity to the vACC suggests the neural circuitry on which the addictive drug has an affect and reflects the dysfunction of the addictive brain.

  15. Abnormal Anterior Cingulate N-Acetylaspartate and Executive Functioning in Treatment-Resistant Depression After rTMS Therapy

    Science.gov (United States)

    Jia, Fujun; Guo, Guangquan; Quan, Dongming; Li, Gang; Wu, Huawang; Zhang, Bin; Fan, Changhe; He, Xiajun; Huang, Huiyan

    2015-01-01

    Background: Cognitive impairment is a key feature of treatment-resistant depression (TRD) and can be related to the anterior cingulate cortex (ACC) function. Repetitive transcranial magnetic stimulation (rTMS) as an antidepressant intervention has increasingly been investigated in the last two decades. However, no studies to date have investigated the association between neurobiochemical changes within the anterior cingulate and executive dysfunction measured in TRD being treated with rTMS. Methods: Thirty-two young depressed patients with treatment-resistant unipolar depression were enrolled in a double-blind, randomized study [active (n=18) vs. sham (n=14)]. ACC metabolism was investigated before and after high-frequency (15Hz) rTMS using 3-tesla proton magnetic resonance spectroscopy (1H-MRS). The results were compared with 28 age- and gender-matched healthy controls. Executive functioning was measured with the Wisconsin Card Sorting Test (WCST) among 34 subjects with TRD and 28 healthy subjects. Results: Significant reductions in N-acetylaspartate (NAA) and choline-containing Compound levels in the left ACC were found in subjects with TRD pre-rTMS when compared with healthy controls. After successful treatment, NAA levels increased significantly in the left ACC of subjects and were not different from those of age-matched controls. In the WCST, more perseverative errors and fewer correct numbers were observed in TRD subjects at baseline. Improvements in both perseverative errors and correct numbers occurred after active rTMS. In addition, improvement of perseverative errors was positively correlated with enhancement of NAA levels in the left ACC in the active rTMS group. Conclusions: Our results suggest that the NAA concentration in the left ACC is associated with an improvement in cognitive functioning among subjects with TRD response to active rTMS. PMID:26025780

  16. Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex.

    Science.gov (United States)

    Wallis, Jonathan D; Kennerley, Steven W

    2011-12-01

    Damage to the orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) impairs decision making, but the underlying value computations that cause such impairments remain unclear. Both the OFC and ACC encode a wide variety of signals correlated with decision making. The current challenge is to determine how these two different areas support decision-making processes. Here, we review a series of experiments that have helped define these roles. A special population of neurons in the ACC, but not the OFC, multiplex value information across decision parameters using a unified encoding scheme, and encode reward prediction errors. In contrast, neurons in the OFC, but not the ACC, encode the value of a choice relative to the recent history of choice values. Together, these results suggest complementary valuation processes: OFC neurons dynamically evaluate current choices relative to the value contexts recently experienced, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters.

  17. The expected value of control: an integrative theory of anterior cingulate cortex function.

    Science.gov (United States)

    Shenhav, Amitai; Botvinick, Matthew M; Cohen, Jonathan D

    2013-07-24

    The dorsal anterior cingulate cortex (dACC) has a near-ubiquitous presence in the neuroscience of cognitive control. It has been implicated in a diversity of functions, from reward processing and performance monitoring to the execution of control and action selection. Here, we propose that this diversity can be understood in terms of a single underlying function: allocation of control based on an evaluation of the expected value of control (EVC). We present a normative model of EVC that integrates three critical factors: the expected payoff from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in terms of cognitive effort. We propose that dACC integrates this information, using it to determine whether, where and how much control to allocate. We then consider how the EVC model can explain the diverse array of findings concerning dACC function.

  18. Anterior Cingulate Cortex and Cognitive Control: Neuropsychological and Electrophysiological Findings in Two Patients with Lesions to Dorsomedial Prefrontal Cortex

    Science.gov (United States)

    Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.

    2012-01-01

    Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…

  19. Resting-state functional connectivity in anterior cingulate cortex in normal aging

    Directory of Open Access Journals (Sweden)

    Weifang eCao

    2014-10-01

    Full Text Available Growing evidence suggests that normal aging is associated with cognitive decline and well-maintained emotional well-being. The anterior cingulate cortex (ACC is an important brain region involved in emotional and cognitive processing. We investigated resting-state functional connectivity (FC of two ACC subregions in 30 healthy older adults versus 33 healthy younger adults, by parcellating into rostral (rACC and dorsal (dACC ACC based on clustering of FC profiles. Compared with younger adults, older adults demonstrated greater connection between rACC and anterior insula, suggesting that older adults recruit more proximal dACC brain regions connected with insula to maintain a salient response. Older adults also demonstrated increased FC between rACC and superior temporal gyrus and inferior frontal gyrus, decreased integration between rACC and default mode, and decreased dACC-hippocampal and dACC-thalamic connectivity. These altered FCs reflected rACC and dACC reorganization, and might be related to well emotion regulation and cognitive decline in older adults. Our findings provide further insight into potential functional substrates of emotional and cognitive alterations in the aging brain.

  20. Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents

    Directory of Open Access Journals (Sweden)

    Justine Nienke Pannekoek

    2014-01-01

    Full Text Available Adolescent depression is associated with increased risk for suicidality, social and educational impairment, smoking, substance use, obesity, and depression in adulthood. It is of relevance to further our insight in the neurobiological mechanisms underlying this disorder in the developing brain, as this may be essential to optimize treatment and prevention of adolescent depression and its negative clinical trajectories. The equivocal findings of the limited number of studies on neural abnormalities in depressed youth stress the need for further neurobiological investigation of adolescent depression. We therefore performed a voxel-based morphometry study of the hippocampus, amygdala, superior temporal gyrus, and anterior cingulate cortex (ACC in 26 treatment-naïve, clinically depressed adolescents and 26 pair-wise matched healthy controls. Additionally, an exploratory whole-brain analysis was performed. Clinically depressed adolescents showed a volume reduction of the bilateral dorsal ACC compared to healthy controls. However, no association was found between gray matter volume of the ACC and clinical severity scores for depression or anxiety. Our finding of a smaller ACC in clinically depressed adolescents is consistent with literature on depressed adults. Future research is needed to investigate if gray matter abnormalities precede or follow clinical depression in adolescents.

  1. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Directory of Open Access Journals (Sweden)

    Lauren A Demers

    Full Text Available Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD. The dorsal anterior cingulate cortex (dACC has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC completed the Toronto Alexithymia Scale 20 (TAS-20 and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology.

  2. Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa

    Science.gov (United States)

    Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan

    2017-01-01

    Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813

  3. Functional Connectivity of the Caudal Anterior Cingulate Cortex Is Decreased in Autism.

    Science.gov (United States)

    Zhou, Yuanyue; Shi, Lijuan; Cui, Xilong; Wang, Suhong; Luo, Xuerong

    2016-01-01

    The anterior cingulate cortex (ACC) is frequently reported to have functionally distinct sub-regions that play key roles in different intrinsic networks. However, the contribution of the ACC, which is connected to several cortical areas and the limbic system, to autism is not clearly understood, although it may be involved in dysfunctions across several distinct but related functional domains. By comparing resting-state fMRI data from persons with autism and healthy controls, we sought to identify the abnormalities in the functional connectivity (FC) of ACC sub-regions in autism. The analyses found autism-related reductions in FC between the left caudal ACC and the right rolandic operculum, insula, postcentral gyrus, superior temporal gyrus, and the middle temporal gyrus. The FC (z-scores) between the left caudal ACC and the right insula was negatively correlated with the Stereotyped Behaviors and Restricted Interests scores of the autism group. These findings suggest that the caudal ACC is recruited selectively in the pathomechanism of autism.

  4. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  5. Decreased expression of axon-guidance receptors in the anterior cingulate cortex in autism

    Directory of Open Access Journals (Sweden)

    Suda Shiro

    2011-08-01

    Full Text Available Abstract Background Axon-guidance proteins play a crucial role in brain development. As the dysfunction of axon-guidance signaling is thought to underlie the microstructural abnormalities of the brain in people with autism, we examined the postmortem brains of people with autism to identify any changes in the expression of axon-guidance proteins. Results The mRNA and protein expression of axon-guidance proteins, including ephrin (EFNA4, eEFNB3, plexin (PLXNA4, roundabout 2 (ROBO2 and ROBO3, were examined in the anterior cingulate cortex and primary motor cortex of autistic brains (n = 8 and n = 7, respectively and control brains (n = 13 and n = 8, respectively using real-time reverse-transcriptase PCR (RT-PCR and western blotting. Real-time RT-PCR revealed that the relative expression levels of EFNB3, PLXNA4A and ROBO2 were significantly lower in the autistic group than in the control group. The protein levels of these three genes were further analyzed by western blotting, which showed that the immunoreactive values for PLXNA4 and ROBO2, but not for EFNB3, were significantly reduced in the ACC of the autistic brains compared with control brains. Conclusions In this study, we found decreased expression of axon-guidance proteins such as PLXNA4 and ROBO2 in the brains of people with autism, and suggest that dysfunctional axon-guidance protein expression may play an important role in the pathophysiology of autism.

  6. Upregulation of glutamatergic transmission in anterior cingulate cortex in the diabetic rats with neuropathic pain.

    Science.gov (United States)

    Li, Weifang; Wang, Peng; Li, Hua

    2014-05-07

    Peripheral neuropathic pain is a common complication in the diabetic patients, and the underlying central mechanism remains unclear. Forebrain anterior cingulate cortex (ACC) is critically involved in the supraspinal perception of physical and affective components of noxious stimulus and pain modulation. Excitatory glutamatergic transmission in the ACC extensively contributed to the maintenance of negative affective component of chronic pain. The present study examined the adaptation of glutamatergic transmission in the ACC in rats with diabetic neuropathic pain. Injection with streptozotocin (STZ) induced hyperglycemia, thermal hyperalgesia and mechanical allodynia in the rats. In these rats, significant enhanced basal glutamatergic transmission was observed in the ACC neurons. The increased presynaptic glutamate release and enhanced conductance of postsynaptic glutamate receptors were also observed in the ACC neurons of these modeled rats. Increased phosphorylation of PKMζ, but not the expression of total PKMζ, was also observed in the ACC. Microinjection of PKMζ inhibitor ZIP into ACC attenuated the upregulation of glutamate transmission and painful behaviors in STZ-injected rats. These results revealed a substantial central sensitization in the ACC neurons in the rodents with diabetic neuropathic pain, which may partially underlie the negative affective components of patients with diabetic neuropathic pain.

  7. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  8. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  9. Proton magnetic resonance spectroscopy of the anterior cingulate gyrus and caudate nucleus in schizophrenia patients versus healthy controls

    Institute of Scientific and Technical Information of China (English)

    Lutfi Incesu; Meral Baydin; Kerim Aslan; Baris Diren; Huseyin Sahin; Omer Boke; Senol Dane

    2011-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) permits the assessment of cerebral neurometabolites, such as N-acetylaspartate, choline, and creatine, in vivo and has been used to study schizophrenia. The present study used 1H-MRS to compare the spectroscopy change of N-acetylaspartate, creatine, and choline metabolite levels in the anterior cingulate and caudate nucleus of both schizophrenia patients and healthy controls, as well as between the left and right cerebral hemispheres in the schizophrenia patients. Results showed that N-acetylaspartate and creatine metabolite levels in the left anterior cingulate gyrus were significantly lower in the schizophrenia patients than in the healthy controls, indicating hypometabolism. In addition, choline concentration in the left caudate nucleus of schizophrenia patients was significantly lower than in the right caudate nucleus, indicating that it is necessary to study the cerebral lateralization of 1H-MRS in schizophrenia patients.

  10. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    Science.gov (United States)

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  11. Morphine decreases extracellular levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats

    Institute of Scientific and Technical Information of China (English)

    YueHAO; Jing-yuYANG; MingGUO; Chun-fuWU; Ming-fanWU

    2004-01-01

    AIM: The anterior cingulate cortex (ACC), an important region of prefrontal cortex for cognitive functions, has been implicated in drug abuse and addiction. In the present study, we intended to investigate the effect of morphine on the extracellular levels of glutamate in the ACC in freely moving rats. METHODS: In vivo microdialysis coupled to high performance liquid chromatography and electrochemical detection had been used for the

  12. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior

    Directory of Open Access Journals (Sweden)

    Avisa eAsemi

    2015-06-01

    Full Text Available Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC’s role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of fMRI BOLD signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA was compared to that between the dACC and Primary Motor Cortex (M1. The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior.

  13. Impact of the genome wide supported NRGN gene on anterior cingulate morphology in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Kazutaka Ohi

    Full Text Available BACKGROUND: The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls. METHODS: Genotype effects of rs12807809 were investigated on gray matter (GM and white matter (WM volumes using magnetic resonance imaging (MRI with a voxel-based morphometry (VBM technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls. RESULTS: Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC. Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32 than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls. CONCLUSIONS: Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.

  14. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?

    Directory of Open Access Journals (Sweden)

    Mawrin Christian

    2011-08-01

    Full Text Available Abstract Background Immune dysfunction, including monocytosis and increased blood levels of interleukin-1, interleukin-6 and tumour necrosis factor α has been observed during acute episodes of major depression. These peripheral immune processes may be accompanied by microglial activation in subregions of the anterior cingulate cortex where depression-associated alterations of glutamatergic neurotransmission have been described. Methods Microglial immunoreactivity of the N-methyl-D-aspartate (NMDA glutamate receptor agonist quinolinic acid (QUIN in the subgenual anterior cingulate cortex (sACC, anterior midcingulate cortex (aMCC and pregenual anterior cingulate cortex (pACC of 12 acutely depressed suicidal patients (major depressive disorder/MDD, n = 7; bipolar disorder/BD, n = 5 was analyzed using immunohistochemistry and compared with its expression in 10 healthy control subjects. Results Depressed patients had a significantly increased density of QUIN-positive cells in the sACC (P = 0.003 and the aMCC (P = 0.015 compared to controls. In contrast, counts of QUIN-positive cells in the pACC did not differ between the groups (P = 0.558. Post-hoc tests showed that significant findings were attributed to MDD and were absent in BD. Conclusions These results add a novel link to the immune hypothesis of depression by providing evidence for an upregulation of microglial QUIN in brain regions known to be responsive to infusion of NMDA antagonists such as ketamine. Further work in this area could lead to a greater understanding of the pathophysiology of depressive disorders and pave the way for novel NMDA receptor therapies or immune-modulating strategies.

  15. Cognitive MR spectroscopy of anterior cingulate cortex in ADHD: elevated choline signal correlates with slowed hit reaction times.

    Science.gov (United States)

    Colla, Michael; Ende, Gabriele; Alm, Barbara; Deuschle, Michael; Heuser, Isabella; Kronenberg, Golo

    2008-06-01

    The anterior cingulate cortex (ACC) plays a major role in modulating executive control of attention. Here, 15 medication-nai ve patients with attention deficit/hyperactivity disorder (ADHD) and 10 carefully matched healthy controls were studied with 2D (1)H-magnetic resonance spectroscopic imaging (MRSI) of the ACC [Brodmann areas 24b'-c' and 32']. Attentional skills were assessed using the identical pairs version of the continuous performance task (CPT-IP). Analysis of regional brain spectra revealed a significantly increased signal of choline-containing compounds (Ch) in the ACC of ADHD patients (p<0.05). Across and within groups, the Ch signal showed high correlations with slowed hit reaction times on the CPT-IP. No group differences in N-acetyl-aspartate (NAA) and creatine (tCr) were detectable. The combination of performance deficits and elevated Ch levels in the ACC supports the hypothesis that subtle structural abnormalities underlie the functional alterations in ACC activation previously observed in ADHD patients.

  16. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  17. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia.

    Science.gov (United States)

    Cordes, Julia S; Mathiak, Krystyna A; Dyck, Miriam; Alawi, Eliza M; Gaber, Tilman J; Zepf, Florian D; Klasen, Martin; Zvyagintsev, Mikhail; Gur, Ruben C; Mathiak, Klaus

    2015-01-01

    Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the brain regions known to be dysfunctional in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over 3 days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. In a stepwise regression analysis, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, patients with schizophrenia can learn to regulate localized brain activity. However, cognitive strategies and neural network location differ from healthy controls. These data emphasize that for therapeutic interventions in patients with schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social NF based on fMRI may be one method to accomplish precise learning targets.

  18. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  19. Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging

    Directory of Open Access Journals (Sweden)

    Dengler Reinhard

    2009-05-01

    Full Text Available Abstract Background Pathophysiological evidence suggests an involvement of fronto-striatal circuits in Tourette syndrome (TS. To identify TS related abnormalities in gray and white matter we used optimized voxel-based morphometry (VBM and magnetization transfer imaging (MTI which are more sensitive to tissue alterations than conventional MRI and provide a quantitative measure of macrostructural integrity. Methods Volumetric high-resolution anatomical T1-weighted MRI and MTI were acquired in 19 adult, unmedicated male TS patients without co-morbidities and 20 age- and sex-matched controls on a 1.5 Tesla neuro-optimized GE scanner. Images were pre-processed and analyzed using an optimized version of VBM in SPM2. Results Using VBM, TS patients showed significant decreases in gray matter volumes in prefrontal areas, the anterior cingulate gyrus, sensorimotor areas, left caudate nucleus and left postcentral gyrus. Decreases in white matter volumes were detected in the right inferior frontal gyrus, the left superior frontal gyrus and the anterior corpus callosum. Increases were found in the left middle frontal gyrus and left sensorimotor areas. In MTI, white matter reductions were seen in the right medial frontal gyrus, the inferior frontal gyrus bilaterally and the right cingulate gyrus. Tic severity was negatively correlated with orbitofrontal structures, the right cingulate gyrus and parts of the parietal-temporal-occipital association cortex bilaterally. Conclusion Our MRI in vivo neuropathological findings using two sensitive and unbiased techniques support the hypothesis that alterations in frontostriatal circuitries underlie TS pathology. We suggest that anomalous frontal lobe association and projection fiber bundles cause disinhibition of the cingulate gyrus and abnormal basal ganglia function.

  20. Anterior cingulate cortex mediates the relationship between O3PUFAs and executive functions in APOE e4 carriers

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2015-05-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between biomarkers of diet and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between omega-3 polyunsaturated fatty acids (O3PUFAs and executive functions in at-risk (APOE e4 carriers, cognitively intact older adults. We hypothesized that higher levels of O3PUFAs are associated with better performance in a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter volume of a specific region thought to be important for cognitive flexibility, the anterior cingulate cortex. Methods: We examined 40 cognitively intact adults between the ages of 65 and 75 with the APOE e4 polymorphism to investigate the relationship between biomarkers of O3PUFAs, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter volume within regions of the prefrontal cortex. Results: A mediation analysis revealed that gray matter volume within the left rostral anterior cingulate cortex partially mediates the relationship between O3PUFA biomarkers and cognitive flexibility. Conclusion: These results suggest that the anterior cingulate cortex acts as a mediator of the relationship between O3PUFAs and cognitive flexibility in cognitively intact adults thought to be at risk for cognitive decline. Through their link to executive functions and neuronal measures of prefrontal cortex volume, O3PUFAs show potential as a nutritional therapy to prevent dysfunction in the aging brain.

  1. Effects of serotonin depletion on punishment processing in the orbitofrontal and anterior cingulate cortices of healthy women.

    Science.gov (United States)

    Helmbold, K; Zvyagintsev, M; Dahmen, B; Bubenzer-Busch, S; Gaber, T J; Crockett, M J; Klasen, M; Sánchez, C L; Eisert, A; Konrad, K; Habel, U; Herpertz-Dahlmann, B; Zepf, F D

    2015-06-01

    Diminished synthesis of the neurotransmitter serotonin (5-HT) has been linked to disrupted impulse control in aversive contexts. However, the neural correlates underlying a serotonergic modulation of female impulsivity remain unclear. The present study investigated punishment-induced inhibition in healthy young women. Eighteen healthy female subjects (aged 20-31) participated in a double-blinded, counterbalanced, placebo-controlled, within subjects, repeated measures study. They were assessed on two randomly assigned occasions that were controlled for menstrual cycle phase. In a randomized order, one day, acute tryptophan depletion (ATD) was used to reduce 5-HT synthesis in the brain. On the other day, participants received a tryptophan-balanced amino acid load (BAL) as a control condition. Three hours after administration of ATD/BAL, neural activity was recorded during a modified Go/No-Go task implementing reward or punishment processes using functional magnetic resonance imaging (fMRI). Neural activation during No-Go trials in punishment conditions after BAL versus ATD administration correlated positively with the magnitude of central 5-HT depletion in the ventral and subgenual anterior cingulate cortices (ACC). Furthermore, neural activation in the medial orbitofrontal cortex (mOFC) and the dorsal ACC correlated positively with trait impulsivity. The results indicate reduced neural sensitivity to punishment after short-term depletion of 5-HT in brain areas related to emotion regulation (subgenual ACC) increasing with depletion magnitude and in brain areas related to appraisal and expression of emotions (mOFC and dorsal ACC), increasing with trait impulsivity. This suggests a serotonergic modulation of neural circuits related to emotion regulation, impulsive behavior, and punishment processing in females.

  2. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger's Syndrome with Proton Magnetic Resonance Spectroscopy (MRS)

    Science.gov (United States)

    Goji, Aya; Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-01-01

    Purpose Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor neurobiochemical profiles in the brain. Asperger’s syndrome (AS) is a type of autism spectrum disorder, which is characterized by impaired social skills and restrictive, repetitive patterns of interest and activities, while intellectual levels and language skills are relatively preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling in the brain of AS remains to be clear. The present study used proton magnetic resonance spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable neurometabolic abnormalities that can contribute new information on the neurobiological underpinnings of the disorder. Methods Study participants consisted of 34 children with AS (2–12 years old; mean age 5.2 (±2.0); 28 boys) and 19 typically developed children (2–11 years old; mean age 5.6 (±2.6); 12 boys) who served as the normal control group. The 1H MRS data were obtained from two regions of interest: the anterior cingulate cortex (ACC) and left cerebellum. Results In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS compared to controls. On the other hand, no significant group differences in any of the metabolites were found in the left cerebellum. Neither age nor sex accounted for the metabolic findings in the regions. Conclusion The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebellar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort compared to controls. PMID:28060873

  3. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    Science.gov (United States)

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  4. Exogenous Glucocorticoids Decrease Subgenual Cingulate Activity Evoked by Sadness

    Science.gov (United States)

    Sudheimer, Keith D; Abelson, James L; Taylor, Stephan F; Martis, Brian; Welsh, Robert C; Warner, Christine; Samet, Mira; Manduzzi, Andrea; Liberzon, Israel

    2013-01-01

    The glucocorticoid hormone cortisol is known to have wide-ranging effects on a variety of physiological systems, including the morphology and physiology of the amygdala and hippocampus. Disruptions of cortisol regulation and signaling are also linked with psychiatric disorders involving emotional disturbances. Although there is much evidence to suggest a relationship between cortisol signaling and the brain physiology underlying emotion, few studies have attempted to test for direct effects of cortisol on the neurophysiology of emotion. We administered exogenous synthetic cortisol (hydrocortisone, HCT) using two different dosing regimens (25 mg/day over 4 days, 100 mg single dose), in a double-blind placebo-controlled functional magnetic resonance imaging (fMRI) study. During fMRI scanning, healthy subjects viewed images designed to induce happy, sad, and neutral emotional states. Subjective emotional reactions were collected for each experimental stimulus after fMRI scanning. Mood ratings were also collected throughout the 4 days of the study. Both dose regimens of HCT resulted in decreased subgenual cingulate activation during sadness conditions. The 25 mg/day regimen also resulted in higher arousal ratings of sad stimuli. No effects of HCT were observed on any mood ratings. Few reliable effects of HCT were observed on brain activity patterns or subjective emotional responses to stimuli that were not sad. The inhibitory effects of cortisol on sadness-induced subgenual cingulate activity may have critical relevance to the pathophysiology of major depression, as both subgenual hyperactivity and decreased sensitivity to cortisol signaling have been documented in patients with depression. PMID:23303057

  5. Abulia following penetrating brain injury during endoscopic sinus surgery with disruption of the anterior cingulate circuit: Case report

    Directory of Open Access Journals (Sweden)

    Login Ivan S

    2006-01-01

    Full Text Available Abstract Background It is common knowledge that the frontal lobes mediate complex human behavior and that damage to these regions can cause executive dysfunction, apathy, disinhibition and personality changes. However, it is less well known that subcortical structures such as the caudate and thalamus are part of functionally segregated fronto-subcortical circuits, that can also alter behavior after injury. Case presentation We present a 57 year old woman who suffered penetrating brain injury during endoscopic sinus surgery causing right basal ganglia injury which resulted in an abulic syndrome. Conclusion Abulia does not result solely from cortical injury but can occur after disruption anywhere in the anterior cingulate circuit – in the case of our patient, most prominently at the right caudate.

  6. Reversible Akinetic Mutism after Aneurysmal Subarachnoid Haemorrhage in the Territory of the Anterior Cerebral Artery without Permanent Ischaemic Damage to Anterior Cingulate Gyri

    Directory of Open Access Journals (Sweden)

    François-Xavier Sibille

    2016-01-01

    Full Text Available We report on two cases of transient akinetic mutism after massive subarachnoid haemorrhage due to the rupture of an intracranial aneurysm of the anterior cerebral artery (ACA. In the two cases, vasospasm could not be demonstrated by imaging studies throughout the clinical course. Both patients shared common radiological features: a hydrocephalus due to haemorrhagic contamination of the ventricular system and a mass effect of a subpial hematoma on the borders of the corpus callosum. Patients were also investigated using auditory event-related evoked potentials at acute stage. In contrast to previous observations of akinetic mutism, P300 wave could not be recorded. Both patients had good recovery and we hypothesized that this unexpectedly favourable outcome was due to the absence of permanent structural damage to the ACA territory, with only transient dysfunction due to a reversible mass effect on cingulate gyri.

  7. Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency.

    NARCIS (Netherlands)

    S. Nieuwenhuis; N. Yeung; W. van den Wildenberg; K.R. Ridderinkhof

    2003-01-01

    Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a prepote

  8. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    Science.gov (United States)

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  9. Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring.

    Science.gov (United States)

    Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang

    2016-06-01

    Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.

  10. Development of anterior cingulate functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Kelly, A M Clare; Di Martino, Adriana; Uddin, Lucina Q; Shehzad, Zarrar; Gee, Dylan G; Reiss, Philip T; Margulies, Daniel S; Castellanos, F Xavier; Milham, Michael P

    2009-03-01

    Human cerebral development is remarkably protracted. Although microstructural processes of neuronal maturation remain accessible only to morphometric post-mortem studies, neuroimaging tools permit the examination of macrostructural aspects of brain development. The analysis of resting-state functional connectivity (FC) offers novel possibilities for the investigation of cerebral development. Using seed-based FC methods, we examined the development of 5 functionally distinct cingulate-based intrinsic connectivity networks (ICNs) in children (n = 14, 10.6 +/- 1.5 years), adolescents (n = 12, 15.4 +/- 1.2) and young adults (n=14, 22.4 +/- 1.2). Children demonstrated a more diffuse pattern of correlation with voxels proximal to the seed region of interest (ROI) ("local FC"), whereas adults exhibited more focal patterns of FC, as well as a greater number of significantly correlated voxels at long distances from the seed ROI. Adolescents exhibited intermediate patterns of FC. Consistent with evidence for different maturational time courses, ICNs associated with social and emotional functions exhibited the greatest developmental effects. Our findings demonstrate the utility of FC for the study of developing functional organization. Moreover, given that ICNs are thought to have an anatomical basis in neuronal connectivity, measures of FC may provide a quantitative index of brain maturation in healthy subjects and those with neurodevelopmental disorders.

  11. BOLD response to direct thalamic stimulation reveals a functional connection between the medial thalamus and the anterior cingulate cortex in the rat.

    Science.gov (United States)

    Shyu, Bai-Chung; Lin, Chun-Yu; Sun, Jyh-Jang; Chen, Shin-Lang; Chang, Chen

    2004-07-01

    Recent functional neuroimaging studies in humans and rodents have shown that the anterior cingulate cortex (ACC) is activated by painful stimuli, and plays an important role in the affective aspect of pain sensation. The aim of the present study was to develop a suitable stimulation method for direct activation of the brain in fMRI studies and to investigate the functional connectivity in the thalamo-cingulate pathway. In the first part of the study, tungsten, stainless steel, or glass-coated carbon fiber microelectrodes were implanted in the left medial thalamus (MT) of anesthetized rats, and T2*-weighted gradient-echo (GE) images were obtained in the sagittal plane on a 4.7 T system (Biospec BMT 47/40). Only the images obtained with the carbon fiber electrode were acceptable without a reduction of the signal-to-noise ratio (SNR) and image distortion. In the second part of the study, a series of two-slice GE images were acquired during electrical stimulation of the MT with the use of a carbon fiber electrode. A cross-correlation analysis showed that the signal intensities of activated areas in the ipsilateral ACC were significantly increased by about 4.5% during MT stimulation. Functional activation, as assessed by the distribution of c-Fos immunoreactivity, showed strong c-Fos expression in neurons in the ipsilateral ACC. The present study shows that glass-coated carbon fiber electrodes are suitable for fMRI studies and can be used to investigate functional thalamocortical activation.

  12. Role of the dorsal anterior cingulate cortex in obsessive-compulsive disorder: converging evidence from cognitive neuroscience and psychiatric neurosurgery.

    Science.gov (United States)

    McGovern, Robert A; Sheth, Sameer A

    2017-01-01

    OBJECTIVE Advances in understanding the neurobiological basis of psychiatric disorders will improve the ability to refine neuromodulatory procedures for treatment-refractory patients. One of the core dysfunctions in obsessive-compulsive disorder (OCD) is a deficit in cognitive control, especially involving the dorsal anterior cingulate cortex (dACC). The authors' aim was to derive a neurobiological understanding of the successful treatment of refractory OCD with psychiatric neurosurgical procedures targeting the dACC. METHODS First, the authors systematically conducted a review of the literature on the role of the dACC in OCD by using the search terms "obsessive compulsive disorder" and "anterior cingulate." The neuroscience literature on cognitive control mechanisms in the dACC was then combined with the literature on psychiatric neurosurgical procedures targeting the dACC for the treatment of refractory OCD. RESULTS The authors reviewed 89 studies covering topics that included structural and functional neuroimaging and electrophysiology. The majority of resting-state functional neuroimaging studies demonstrated dACC hyperactivity in patients with OCD relative to that in controls, while task-based studies were more variable. Electrophysiological studies showed altered dACC-related biomarkers of cognitive control, such as error-related negativity in OCD patients. These studies were combined with the cognitive control neurophysiology literature, including the recently elaborated expected value of control theory of dACC function. The authors suggest that a central feature of OCD pathophysiology involves the generation of mis-specified cognitive control signals by the dACC, and they elaborate on this theory and provide suggestions for further study. CONCLUSIONS Although abnormalities in brain structure and function in OCD are distributed across a wide network, the dACC plays a central role. The authors propose a theory of cognitive control dysfunction in OCD that

  13. Anterior cingulate hyperactivations during negative emotion processing among men with schizophrenia and a history of violent behavior

    Directory of Open Access Journals (Sweden)

    Tikàsz A

    2016-06-01

    Full Text Available Andràs Tikàsz,1,2 Stéphane Potvin,1,2 Ovidiu Lungu,2–4 Christian C Joyal,5,6 Sheilagh Hodgins,2,5 Adrianna Mendrek,1,7 Alexandre Dumais1,2,5 1Centre de recherche de l’Institut Universitaire en Santé Mentale de Montréal, 2Department of Psychiatry, University of Montreal, 3Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal, 4Centre for Research in Aging, Donald Berman Maimonides Geriatric Centre, 5Institut Philippe-Pinel de Montréal, 6Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, 7Department of Psychology, Bishop’s University, Sherbrooke, QC, Canada Background: Evidence suggests a 2.1–4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. Objective: The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Methods: Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Results: Negative images elicited hyperactivations in the anterior cingulate cortex (ACC, left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited

  14. Cortical thinning of the right anterior cingulate cortex in spider phobia: a magnetic resonance imaging and spectroscopy study.

    Science.gov (United States)

    Linares, I M P; Jackowski, A P; Trzesniak, C M F; Arrais, K C; Chagas, M H N; Sato, J R; Santos, A C; Hallak, J E C; Zuardi, A W; Nardi, A E; Coimbra, N C; Crippa, J A S

    2014-08-12

    There a lack of consistent neuroimaging data on specific phobia (SP) and a need to assess volumetric and metabolic differences in structures implicated in this condition. The aim of this study is investigate possible metabolic (via (1)H MRS) and cortical thickness abnormalities in spider-phobic patients compared to healthy volunteers. Participants were recruited via public advertisement and underwent clinical evaluations and MRI scans. The study started in 2010 and the investigators involved were not blind in respect to patient groupings. The study was conducted at the Ribeirão Preto Medical School University Hospital of the University of São Paulo, Brazil. Patients with spider phobia (n=19) were matched to 17 healthy volunteers with respect to age, education and socio-economic status. The spider SP group fulfilled the diagnostic criteria for spider phobia according to the Structured Clinical Interview for DSM-IV. None of the participants had a history of neurological, psychiatric or other relevant organic diseases, use of prescribed psychotropic medication or substance abuse. All imaging and spectroscopy data were collected with a 3 T MRI scanner equipped with 25 mT gradient coils in 30-minute scans. The Freesurfer image analysis package and LC Model software were used to analyze data. The hypothesis being tested was formulated before the data collection (neural correlates of SP would include the amygdala, insula, anterior cingulate gyrus and others). The results indicated the absence of metabolic alterations, but thinning of the right anterior cingulate cortex (ACC) in the SP group when compared to the healthy control group (mean cortical thickness±SD: SP=2.11±0.45 mm; HC=2.16±0.42 mm; t (34)=3.19, p=0.001 [-35.45, 71.00, -23.82]). In spectroscopy, the ratios between N-acetylaspartate and creatine and choline levels were measured. No significant effect or correlation was found between MRS metabolites and scores in the Spider Phobia Questionnaire and Beck

  15. Executive function and error detection: The effect of motivation on cingulate and ventral striatum activity.

    Science.gov (United States)

    Simões-Franklin, Cristina; Hester, Robert; Shpaner, Marina; Foxe, John J; Garavan, Hugh

    2010-03-01

    Reacting appropriately to errors during task performance is fundamental to successful negotiation of our environment. This is especially true when errors will result in a significant penalty for the person performing a given task, be they financial or otherwise. Error responses and monitoring states were manipulated in a GO/NOGO task by introducing a financial punishment for errors. This study employed a mixed block design alternating between punishment and no punishment (neutral) conditions, enabling an assessment of tonic changes associated with cognitive control as well as trial-specific effects. Behavioural results revealed slower responses and fewer commission errors in the punishment condition. The dorsal anterior cingulate cortex (ACC) had equal trial-specific activity for errors in the neutral and punishment conditions but had greater tonic activity throughout the punishment condition. A region of interest analysis revealed different activation patterns between the dorsal and the rostral parts of the ACC with the rostral ACC having only trial-specific activity for errors in the punishment condition, an activity profile similar to one observed in the nucleus accumbens. This study suggests that there is a motivational influence on cognitive processes in the ACC and nucleus accumbens and hints at a dissociation between tonic proactive activity and phasic reactive error-related activity.

  16. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  17. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropostero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on receptive fields of ON-OFF neurons showed that the excitation of the ACC could change an ON-response on the verge of a receptive field into an ON-OFF response. The above results suggest that the ACC modulation sharpens the response of a VB neuron to a moving stimulus within its receptive field, indicating that the limbic system can modulate tactile ascending sensory information.

  18. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    曹晓华; 卢湘岳; 周绍慈

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropos-tero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on rec

  19. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  20. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHENG XinLing; LIU Fang; WU XingWen; LI BaoMing

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolaterel nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at '0' or 6 h post-treining. Saline was administered as control. Memory retention was tested 48 h poet-training. In-tra-BLA or intra-ACC infusion of MPD '0' h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  1. Therapygenetics: anterior cingulate cortex-amygdala coupling is associated with 5-HTTLPR and treatment response in panic disorder with agoraphobia.

    Science.gov (United States)

    Lueken, Ulrike; Straube, Benjamin; Wittchen, Hans-Ulrich; Konrad, Carsten; Ströhle, Andreas; Wittmann, André; Pfleiderer, Bettina; Arolt, Volker; Kircher, Tilo; Deckert, Jürgen; Reif, Andreas

    2015-01-01

    Variation in the 5'-flanking promoter region of the serotonin transporter gene SLC6A4, the 5-HTT-linked polymorphic region (5-HTTLPR) has been inconclusively associated with response to cognitive-behavioural therapy (CBT). As genomic functions are stronger related to neural than to behavioural markers, we investigated the association of treatment response, 5-HTTLPR and functional brain connectivity in patients with panic disorder with agoraphobia (PD/AG). Within the national research network PANIC-NET 231 PD/AG patients who provided genetic information underwent a manualized exposure-based CBT. A subset of 41 patients participated in a functional magnetic resonance imaging (fMRI) add-on study prior to treatment applying a differential fear conditioning task. Neither the treatment nor the reduced fMRI sample showed a direct effect of 5-HTTLPR on treatment response as defined by a reduction in the Hamilton Anxiety Scale score ≥50 % from baseline to post assessment. On a neural level, inhibitory anterior cingulate cortex (ACC)-amygdala coupling during fear conditioning that had previously been shown to characterize treatment response in this sample was driven by responders with the L/L genotype. Building upon conclusive evidence from basic and preclinical findings on the association of the 5-HTTLPR polymorphism with emotion regulation and related brain connectivity patterns, present findings translate these to a clinical sample of PD/AG patients and point towards a potential intermediate connectivity phenotype modulating response to exposure-based CBT.

  2. Open label smoking cessation with varenicline is associated with decreased glutamate levels and functional changes in anterior cingulate cortex: preliminary findings

    Directory of Open Access Journals (Sweden)

    Muriah Dawn Wheelock

    2014-07-01

    Full Text Available Rationale: Varenicline, the most effective single agent for smoking cessation, is a partial agonist at α4β2 nicotinic acetylcholine receptors. Increasing evidence implicates glutamate in the pathophysiology of addiction and one of the benefits of treatment for smoking cessation is the ability to regain cognitive control. Objective: To evaluate the effects of 12 week varenicline administration on glutamate levels in the dorsal anterior cingulate cortex (dACC and functional changes within the cognitive control network.Methods: We used single-voxel proton magnetic resonance spectroscopy (1H-MRS in the dACC and functional MRI (fMRI during performance of a Stroop color-naming task before and after smoking cessation with varenicline in 11 healthy smokers (open label design. Using the dACC as a seed region, we evaluated functional connectivity changes using a psychophysiological interaction (PPI analysis. Results: We observed a significant decrease in dACC glutamate + glutamine (Glx/Cr levels as well as significant blood oxygen level-dependent signal (BOLD decreases in the rostral ACC/medial orbitofrontal cortex and precuneus/posterior cingulate cortex. These BOLD changes are suggestive of alterations in default mode network (DMN function and are further supported by the results of the PPI analysis that revealed changes in connectivity between the dACC and regions of the DMN. Baseline measures of nicotine dependence and craving positively correlated with baseline Glx/Cr levels.Conclusions: These results suggest possible mechanisms of action for varenicline such as reduction in Glx levels in dACC and shifts in BOLD activities between large scale brain networks. They also suggest a role for ACC Glx in the modulation of behavior. Due to the preliminary nature of this study (lack of control group and small sample size, future studies are needed to replicate these findings.

  3. Right anterior cingulate gyrus in encephalic region associated with integrating and processing Chinese words information in working memory: A functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Daxing Wu; Shuqiao Yao; Lirong Yan; Changlian Tan; Dewen Hu; Wai Cheong Carl Tam; Yadong Liu; Zongtan Zhou; Xiang Wang; Ding Liu

    2006-01-01

    BACKGROUND: Many experimental results have been found in previous studies on whether laterality of brain cingulate gyrus exists in processing Chinese words information. OBJECTIVE: To observe the function of right anterior cingulate gyrus and activation showed by MRI in processing Chinese words in a visual working memory judgment tasks, and evaluate the laterality of activated brain regions.DESIGN : Observation experiment.SETTING : The Medical Psychological Research Center, Second Xiangya Hospital of Central South University. PARTICIPANTS: Thirteen healthy volunteers (7 males and 6 females), aged (29±7)years ranging from 23 to 36 years old, participated in this fMRI study during August 2003 to Febuary 2004. They gave informed consent in accordance with guidelines set by Second Xiangya Hospital of Central South University. All subjects were native Chinese speakers and strongly right handed.METHODS: In this study, Chinese numeral words were used as test materials and test mode of Sternberg was used in cognitive task, it was aimed to investigate the encephalic region involved in the storage and processing of Chinese numerical information. ①The head of subject was fixed with dense foam pad. Visual working task was performed according to the requests. Verbal working task was that the subject saw target items for four numerals written in Chinese, presenting for 1.5 s and then, after a short time by blank for 3.0 s. The subject saw one numeral presenting for 1.5 s and had to press one button if it was one of the shown numbers and another button if it did not belong to the presented numbers. There were two visual working memory stimuli in each stimulation block. The experiment was conducted in a single run, which consisted of seven blocks of visual working memory tasks. Different Chinese numerals were displayed in each block to avoid any practice effect (The response rate of the whole working memory task was 50%). ②The activation of brain was scanned with a 1.5T MRI

  4. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Lee, Seojung; Ran Kim, Kyung; Ku, Jeonghun; Lee, Jung-Hyun; Namkoong, Kee; Jung, Young-Chul

    2014-01-30

    Cortical areas supporting cognitive control and salience demonstrate different neural responses to visual food cues in patients with eating disorders. This top-down cognitive control, which interacts with bottom-up appetitive responses, is tightly integrated not only in task conditions but also in the resting-state. The dorsal anterior cingulate cortex (dACC) is a key node of a large-scale network that is involved in self-referential processing and cognitive control. We investigated resting-state functional connectivity of the dACC and hypothesized that altered connectivity would be demonstrated in cortical midline structures involved in self-referential processing and cognitive control. Seed-based resting-state functional connectivity was analyzed in women with anorexia nervosa (N=18), women with bulimia nervosa (N=20) and age matched healthy controls (N=20). Between group comparisons revealed that the anorexia nervosa group exhibited stronger synchronous activity between the dACC and retrosplenial cortex, whereas the bulimia nervosa group showed stronger synchronous activity between the dACC and medial orbitofrontal cortex. Both groups demonstrated stronger synchronous activity between the dACC and precuneus, which correlated with higher scores of the Body Shape Questionnaire. The dACC-precuneus resting-state synchrony might be associated with the disorder-specific rumination on eating, weight and body shape in patients with eating disorders.

  5. Proton magnetic resonance spectroscopy assessment of metabolite status of the anterior cingulate cortex in chronic pain patients and healthy controls

    Directory of Open Access Journals (Sweden)

    Ito T

    2017-01-01

    Full Text Available Takahiro Ito,1 Sachiko Tanaka-Mizuno,2,3 Narihito Iwashita,4 Ikuo Tooyama,5 Akihiko Shiino,6 Katsuyuki Miura,1,7 Sei Fukui4 1Department of Public Health, Shiga University of Medical Science, 2Department of Medical Statistics, Shiga University of Medical Science, Otsu, Japan; 3The Center for Data Science Education and Research, Shiga University, Hikone, Japan; 4Department of Anesthesiology, Interdisciplinary Pain Management Center, Shiga University of Medical Science Hospital, 5Molecular Neuroscience Research Center, Shiga University of Medical Science, 6Biomedical MR Science Center, Shiga University of Medical Science, 7Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan Background: Chronic pain is a common cause of reduced quality of life. Recent studies suggest that chronic pain patients have a different brain neurometabolic status to healthy people. Proton magnetic resonance spectroscopy (1H-MRS can determine the concentrations of metabolites in a specific region of the brain without being invasive. Patients and methods: We recruited 56 chronic pain patients and 60 healthy controls to compare brain metabolic characteristics. The concentrations of glutamic acid (Glu, myo-inositol (Ins, N-acetylaspartate (NAA, Glu + glutamine (Glx, and creatine + phosphocreatine (total creatine [tCr] in the anterior cingulate cortex of participants were measured using 1H-MRS. We used age- and gender-adjusted general linear models and receiver-operating characteristic analyses for this investigation. Patients were also assessed using the Hospital Anxiety and Depression Scale (HADS to reveal the existence of any mental health issues. Results: Our analysis indicates that pain patients have statistically significantly higher levels of Glu/tCr (p=0.039 and Glx/tCr (p<0.001 and lower levels of NAA/tCr than controls, although this did not reach statistical significance (p=0.052. Receiver-operating characteristic analysis

  6. Error effects in anterior cingulate cortex reverse when error likelihood is high

    Science.gov (United States)

    Jessup, Ryan K.; Busemeyer, Jerome R.; Brown, Joshua W.

    2010-01-01

    Strong error-related activity in medial prefrontal cortex (mPFC) has been shown repeatedly with neuroimaging and event-related potential studies for the last several decades. Multiple theories have been proposed to account for error effects, including comparator models and conflict detection models, but the neural mechanisms that generate error signals remain in dispute. Typical studies use relatively low error rates, confounding the expectedness and the desirability of an error. Here we show with a gambling task and fMRI that when losses are more frequent than wins, the mPFC error effect disappears, and moreover, exhibits the opposite pattern by responding more strongly to unexpected wins than losses. These findings provide perspective on recent ERP studies and suggest that mPFC error effects result from a comparison between actual and expected outcomes. PMID:20203206

  7. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  8. Inactivation of the anterior cingulate reveals enhanced reliance on cortical networks for remote spatial memory retrieval after sequential memory processing.

    Directory of Open Access Journals (Sweden)

    Brianne C Wartman

    Full Text Available One system consolidation model suggests that as time passes, ensembles of cortical neurons form strong connections to represent remote memories. In this model, the anterior cingulate cortex (ACC serves as a cortical region that represents remote memories. However, there is debate as to whether remote spatial memories go through this systems consolidation process and come to rely on the ACC. The present experiment examined whether increasing the processing demand on the hippocampus, by sequential training on two spatial tasks, would more fully engage the ACC during retrieval of a remote spatial memory. In this scenario, inactivation of the ACC at a remote time point was hypothesized to produce a severe memory deficit if rats had been trained on two, sequential spatial tasks. Rats were trained on a water maze (WM task only or a WM task followed by a radial arm maze task. A WM probe test was given recently or remotely to all rats. Prior to the probe test, rats received an injection of saline or muscimol into the ACC. A subtle deficit in probe performance was found at the remote time point in the group trained on only one spatial task and treated with muscimol. In the group trained on two spatial tasks and treated with muscimol, a subtle deficit in probe performance was noted at the recent time point and a substantial deficit in probe performance was observed at the remote time point. c-Fos labeling in the hippocampus revealed more labeling in the CA1 region in all remotely tested groups than recently tested groups. Findings suggest that spatial remote memories come to rely more fully on the ACC when hippocampal processing requirements are increased. Results also suggest continued involvement of the hippocampus in spatial memory retrieval along with a progressive strengthening of cortical connections as time progresses.

  9. Inactivation of the anterior cingulate reveals enhanced reliance on cortical networks for remote spatial memory retrieval after sequential memory processing.

    Science.gov (United States)

    Wartman, Brianne C; Gabel, Jennifer; Holahan, Matthew R

    2014-01-01

    One system consolidation model suggests that as time passes, ensembles of cortical neurons form strong connections to represent remote memories. In this model, the anterior cingulate cortex (ACC) serves as a cortical region that represents remote memories. However, there is debate as to whether remote spatial memories go through this systems consolidation process and come to rely on the ACC. The present experiment examined whether increasing the processing demand on the hippocampus, by sequential training on two spatial tasks, would more fully engage the ACC during retrieval of a remote spatial memory. In this scenario, inactivation of the ACC at a remote time point was hypothesized to produce a severe memory deficit if rats had been trained on two, sequential spatial tasks. Rats were trained on a water maze (WM) task only or a WM task followed by a radial arm maze task. A WM probe test was given recently or remotely to all rats. Prior to the probe test, rats received an injection of saline or muscimol into the ACC. A subtle deficit in probe performance was found at the remote time point in the group trained on only one spatial task and treated with muscimol. In the group trained on two spatial tasks and treated with muscimol, a subtle deficit in probe performance was noted at the recent time point and a substantial deficit in probe performance was observed at the remote time point. c-Fos labeling in the hippocampus revealed more labeling in the CA1 region in all remotely tested groups than recently tested groups. Findings suggest that spatial remote memories come to rely more fully on the ACC when hippocampal processing requirements are increased. Results also suggest continued involvement of the hippocampus in spatial memory retrieval along with a progressive strengthening of cortical connections as time progresses.

  10. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  11. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  12. Impact of family history of alcoholism on glutamine/glutamate ratio in anterior cingulate cortex in substance-naïve adolescents

    Directory of Open Access Journals (Sweden)

    Julia E. Cohen-Gilbert

    2015-12-01

    Full Text Available Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+ for alcoholism exhibit increased impulsivity compared to family history negative (FH− peers in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC. This study examined glutamate (Glu and glutamine (Gln, amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC using magnetic resonance spectroscopy (MRS at 4T. Participants were 28 adolescents (13 male, 12–14 yrs and 31 emerging adults (16 male, 18–25 yrs, stratified into FH− and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH− but not FH+ groups. In FH− adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life.

  13. Distribution of D1 and D2-dopamine receptors in calcium-binding-protein expressing interneurons in rat anterior cingulate cortex.

    Science.gov (United States)

    Xu, Lei; Zhang, Xue-Han

    2015-04-25

    Dopamine plays an important role in cognitive functions including decision making, attention, learning and memory in the anterior cingulate cortex (ACC). However, little is known about dopamine receptors (DAR) expression patterns in ACC neurons, especially GABAergic interneurons. The aim of the present study was to investigate the expression of the most abundant DAR subtypes, D1 receptors (D1Rs) and D2 receptors (D2Rs), in major types of GABAergic interneurons in rat ACC, including parvalbumin (PV)-, calretinin (CR)-, and calbindin D-28k (CB)-containing interneurons. Double immunofluorescence staining and confocal scanning were used to detect protein expression in rat brain sections. The results showed a high proportion of PV-containing interneurons express D1Rs and D2Rs, while a low proportion of CR-positive interneurons express D1Rs and D2Rs. D1R- and D2R-expressing PV interneurons are more prevalently distributed in deep layers than superficial layers of ACC. Moreover, we found the proportion of D2Rs expressed in CR cells is much greater than that of D1Rs. These regional and interneuron type-specific differences of D1Rs and D2Rs indicate functionally distinct roles for dopamine in modulating ACC activities via stimulating D1Rs and D2Rs.

  14. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    Victoria eHolec

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., courage. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to certain

  15. Segregated and integrated coding of reward and punishment in the cingulate cortex.

    Science.gov (United States)

    Fujiwara, Juri; Tobler, Philippe N; Taira, Masato; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2009-06-01

    Reward and punishment have opposite affective value but are both processed by the cingulate cortex. However, it is unclear whether the positive and negative affective values of monetary reward and punishment are processed by separate or common subregions of the cingulate cortex. We performed a functional magnetic resonance imaging study using a free-choice task and compared cingulate activations for different levels of monetary gain and loss. Gain-specific activation (increasing activation for increasing gain, but no activation change in relation to loss) occurred mainly in the anterior part of the anterior cingulate and in the posterior cingulate cortex. Conversely, loss-specific activation (increasing activation for increasing loss, but no activation change in relation to gain) occurred between these areas, in the middle and posterior part of the anterior cingulate. Integrated coding of gain and loss (increasing activation throughout the full range, from biggest loss to biggest gain) occurred in the dorsal part of the anterior cingulate, at the border with the medial prefrontal cortex. Finally, unspecific activation increases to both gains and losses (increasing activation to increasing gains and increasing losses, possibly reflecting attention) occurred in dorsal and middle regions of the cingulate cortex. Together, these results suggest separate and common coding of monetary reward and punishment in distinct subregions of the cingulate cortex. Further meta-analysis suggested that the presently found reward- and punishment-specific areas overlapped with those processing positive and negative emotions, respectively.

  16. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  17. 4-Methylcatechol prevents derangements of brain-derived neurotrophic factor and TrkB-related signaling in anterior cingulate cortex in chronic pain with depression-like behavior.

    Science.gov (United States)

    Ishikawa, Kozo; Yasuda, Seiko; Fukuhara, Kayoko; Iwanaga, Yasutake; Ida, Yuika; Ishikawa, Junko; Yamagata, Hirotaka; Ono, Midori; Kakeda, Takahiro; Ishikawa, Toshizo

    2014-03-05

    Chronic pain with mood disorder, resulting from a peripheral nerve injury, is a serious clinical problem affecting the quality of life. A lack of brain-derived neurotrophic factor (BDNF) and abnormal intercellular signaling in the brain can mediate this symptom. BDNF is induced in cultured neurons by 4-methylcatechol (4-MC), but little is known about its role in pain-emotion. Thus, we characterized the actions of 4-MC on TrkB receptor-related pERK and BDNF mRNA in discreet brain regions related to pain-emotion after chronic pain in rat. Rats implanted with a stainless steel cannula into the lateral ventricular were subjected to chronic constriction injury (CCI). Pain was assessed by changes in paw withdrawal latency (PWL) to heat stimuli after CCI. Immobility time during the forced swimming testing was measured for depression-like behavior. Analgesic and antidepression modulations with 4-MC were examined by an anti-BDNF antibody (K252a, a TrkB receptor inhibitor). The animals were perfused and fixed (4% paraformaldehyde) for immunohistochemistry analysis (c-FOS/pERK). BDNF mRNA expression (anterior cingulate cortex) was determined using reverse transcription-PCR. Rats showed a sustained decrease in PWL, associated with a prolonged immobility time after CCI. 4-MC reduced decreases in PWL and increased immobility time. 4-MC reduced increases in pERK immunoreactivity and decreases in BDNF mRNA expression in regions related to pain and the limbic system. Anti-BDNF blocked effects induced by 4-MC. We suggest that a lack of BDNF associated with activated extracellular signal-regulated kinase in the pain-emotion network may be involved in depression-like behavior during chronic pain. 4-MC ameliorates pain-emotion symptoms by inducing BDNF and normalizing pERK activities.

  18. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  19. Towards clinically useful neuroimaging in depression treatment: Is subgenual cingulate activity robustly prognostic for depression outcome in Cognitive Therapy across studies, scanners, and patient characteristics?

    Science.gov (United States)

    Siegle, Greg J.; Thompson, Wesley K.; Collier, Amanda; Berman, Susan R.; Feldmiller, Joshua; Thase, Michael E.; Friedman, Edward S.

    2013-01-01

    Context 40–60% of unmedicated depressed individuals respond to Cognitive Therapy (CT) in controlled trials. Multiple previous studies suggest that activity in the subgenual anterior cingulate predicts outcome in CT for depression, but there have been no prospective replications. Objective This study prospectively examined whether subgenual cingulate activity is a reliable and robust prognostic outcome marker for CT for depression and whether its activity changes in treatment. Design Two inception cohorts were assessed with fMRI on different scanners on a task sensitive to sustained emotional information processing before and after 16–20 sessions of CT, along with a sample of control participants tested at comparable intervals. Setting Therapy took place in a hospital outpatient clinic. Patients Participants included 49 unmedicated depressed adults and 35 healthy control participants. Main Outcome Measures Pre-treatment subgenual anterior cingulate activity in an a priori region in response to negative words was correlated with residual severity and used to classify response and remission. Results As expected, in both samples, participants with the lowest pre-treatment sustained subgenual cingulate (sgACC; BA25) reactivity in response to negative words displayed the most improvement in CT (R2=.29, >75% correct classification of response, >70% correct classification of remission). Other a priori regions explained additional variance. Response/Remission in Cohort 2 was predicted based on thresholds from Cohort 1. sgACC activity remained low for remitters following treatment. Conclusions Neuroimaging provides a quick, valid, and clinically applicable way of assessing neural systems associated with treatment response/remission. sgACC activity, in particular, may reflect processes which interfere with treatment, e.g,. emotion generation in addition to its putative regulatory role; alternately, its absence may facilitate treatment response. PMID:22945620

  20. Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients

    Science.gov (United States)

    2013-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) has shown promise in the alleviation of acute and chronic pain by altering the activity of cortical areas involved in pain sensation. However, current single-coil rTMS technology only allows for effects in surface cortical structures. The ability to affect activity in certain deep brain structures may however, allow for a better efficacy, safety, and tolerability. This study used PET imaging to determine whether a novel multi-coil rTMS would allow for preferential targeting of the dorsal anterior cingulate cortex (dACC), an area always activated with pain, and to provide preliminary evidence as to whether this targeted approach would allow for efficacious, safe, and tolerable analgesia both in a volunteer/acute pain model as well as in fibromyalgia chronic pain patients. Methods Part 1: Different coil configurations were tested in a placebo-controlled crossover design in volunteers (N = 16). Tonic pain was induced using a capsaicin/thermal pain model and functional brain imaging was performed by means of H215O positron emission tomography – computed tomography (PET/CT) scans. Differences in NRS pain ratings between TMS and sham treatment (NRSTMS-NRSplacebo) which were recorded each minute during the 10 minute PET scans. Part 2: 16 fibromyalgia patients were subjected to 20 multi-coil rTMS treatments over 4 weeks and effects on standard pain scales (Brief Pain Inventory, item 5, i.e. average pain NRS over the last 24 hours) were recorded. Results A single 30 minute session using one of 3 tested rTMS coil configurations operated at 1 Hz consistently produced robust reduction (mean 70% on NRS scale) in evoked pain in volunteers. In fibromyalgia patients, the 20 rTMS sessions also produced a significant pain inhibition (43% reduction in NRS pain over last 24 hours), but only when operated at 10 Hz. This degree of pain control was maintained for at least 4 weeks after the final session

  1. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  2. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    Science.gov (United States)

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  3. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Science.gov (United States)

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; ppropagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  4. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  5. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Science.gov (United States)

    2016-01-01

    Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav) subunits by real time polymerase chain reaction (PCR) in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct) values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP) there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain. PMID:27896032

  6. Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without past history of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katarina eDedovic

    2016-03-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD, as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels. Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the

  7. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  8. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    Science.gov (United States)

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  9. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  10. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T.

    Science.gov (United States)

    Chiu, Pui-Wai; Mak, Henry Ka-Fung; Yau, Kelvin Kai-Wing; Chan, Queenie; Chang, Raymond Chuen-Chung; Chu, Leung-Wing

    2014-02-01

    Magnetic resonance spectroscopy (MRS) can explore aging at a molecular level. In this study, we investigated the relationships between regional concentrations of metabolites (such as choline, creatine, myo-inositol, and N-acetyl-aspartate) and normal aging in 30 cognitively normal subjects (15 women and 15 men, age range 22-82, mean = 49.9 ± 18.3 years) using quantitative proton magnetic resonance spectroscopy. All MR scans were performed using a 3 T scanner. Point resolved spectroscopy was used as the volume selection method for the region-of-interest and the excitation method for water suppression. Single voxel spectroscopy with short echo time of 39 ms and repetition time of 2,000 ms was employed. Single voxels were placed in the limbic regions, i.e., anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and left and right hippocampi. Cerebrospinal fluid normalization and T1 and T2 correction factors were implemented in the calculation of absolute metabolite concentrations. A standardized T1W 3D volumetric fast field echo and axial T2-weighted fast spin-echo images were also acquired. Our results showed significant positive correlation of choline (r = 0.545, p = 0.002), creatine (r = 0.571, p = 0.001), and N-acetyl-aspartate (r = 0.674, p age. No significant gender effect on metabolite concentrations was found. In aging, increases in choline and creatine might suggest glial proliferation, and an increase in N-acetyl-aspartate might indicate neuronal hypertrophy. Such findings highlight the metabolic changes of ACC and PCC with age, which could be compensatory to an increased energy demand coupled with a lower cerebral blood flow.

  11. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, d.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  12. Asymmetry of the endogenous opioid system in the human anterior cingulate: a putative molecular basis for lateralization of emotions and pain.

    Science.gov (United States)

    Watanabe, Hiroyuki; Fitting, Sylvia; Hussain, Muhammad Z; Kononenko, Olga; Iatsyshyna, Anna; Yoshitake, Takashi; Kehr, Jan; Alkass, Kanar; Druid, Henrik; Wadensten, Henrik; Andren, Per E; Nylander, Ingrid; Wedell, Douglas H; Krishtal, Oleg; Hauser, Kurt F; Nyberg, Fred; Karpyak, Victor M; Yakovleva, Tatjana; Bakalkin, Georgy

    2015-01-01

    Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the μ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and 5 "classical" neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg (LER) and Met-enkephalin-Arg-Phe, preferential δ-/μ- and κ-/μ-opioid agonists, demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B (Dyn B) strongly correlated with LER in the left, but not in the right ACC suggesting different mechanisms of the conversion of this κ-opioid agonist to δ-/μ-opioid ligand in the 2 hemispheres; in the right ACC, Dyn B may be cleaved by PACE4, a proprotein convertase regulating left-right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlies in part lateralization of higher functions, including positive and negative emotions and pain in the human brain.

  13. Mechanical Stimulus-Induced Wthdrawal Behavior Increases Subsequent Pre-Stimulus Local Field Potential Power in the Rostral Anterior Cingulate Cortex in Unanesthetized Rats.

    Science.gov (United States)

    Shen, Zui; Sun, Jing; Liu, Boyi; Jiang, Yongliang; Wu, Yuanyuan; Wang, Jialing; Shao, Xiaomei; Fang, Jianqiao

    2017-03-02

    BACKGROUND The rostral anterior cingulate cortex (rACC) is important in pain expectation. Previous studies demonstrated that mechanical stimulus-induced withdrawal behaviors are spinally-mediated nocifensive reflexes in rats, but it is not known whether pain expectation is influenced by withdrawal behaviors. MATERIAL AND METHODS We reanalyzed previous mechanosensitivity measurements of 244 rats measured 5 times in succession. To study neural oscillation in the rACC, 1 recording microwire array was surgically implanted. Then, we simultaneously recorded the local field potential (LFP) of the rACC over the course of multiple withdrawal behaviors in unanesthetized rats. RESULTS From our previous withdrawal behavioral data in 244 rats, we observed that the distributions of paw withdrawal thresholds (PWTs) were denser and more concentrated after the first withdrawal behavior. Compared to the first mechanical stimulus, increased neuronal synchrony and a stronger delta band component existed in each pre-stimulus LFP in the rACC during subsequent stimuli. CONCLUSIONS Pain expectation could be involved in withdrawal behaviors, which is related to increased total power and delta band power of the subsequent pre-stimulus LFPs in the rACC.

  14. Identification of atrophy of the subgenual anterior cingulate cortex, in particular the subcallosal area, as an effective auxiliary means of diagnosis for major depressive disorder

    Directory of Open Access Journals (Sweden)

    Niida A

    2012-08-01

    cingulate cortex (sACC on the z-score map obtained.Results: No significant difference in atrophy was noted between the left and right sACCs. The VSRAD advance used in the present study was more effective than the VSRAD plus for diagnosis of MDD, with a sensitivity of 90.7%, specificity of 86.7%, accuracy of 89.5%, a positive predictive value of 94.4%, and a negative predictive value of 78.8%. In particular, atrophy was observed in the subcallosal area of the sACC.Conclusion: The identification of atrophy in the sACC, in particular of the subcallosal area, with the use of updated voxel-based morphometric software proved to be effective as an auxiliary diagnostic method for MDD.Keywords: major depressive disorder, magnetic resonance imaging, subgenual anterior cingulate cortex, voxel-based morphometry, VSRAD

  15. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    Science.gov (United States)

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  16. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  17. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  18. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points.

    Science.gov (United States)

    Wartman, Brianne C; Holahan, Matthew R

    2014-01-01

    Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC) may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioral procedures. Rats were trained on one hippocampal-dependent task only (a water maze task), two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task), or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task). Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA). Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioral group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories.

  19. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points.

    Directory of Open Access Journals (Sweden)

    Brianne Courtney Wartman

    2014-04-01

    Full Text Available Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioural procedures.Rats were trained on one hippocampal-dependent task only (a water maze task, two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task, or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task. Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA. Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioural group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories.

  20. Relationship of γ-aminobutyric acid and glutamate+glutamine concentrations in the perigenual anterior cingulate cortex with performance of Cambridge Gambling Task.

    Science.gov (United States)

    Fujihara, Kazuyuki; Narita, Kosuke; Suzuki, Yusuke; Takei, Yuichi; Suda, Masashi; Tagawa, Minami; Ujita, Koichi; Sakai, Yuki; Narumoto, Jin; Near, Jamie; Fukuda, Masato

    2015-04-01

    The anterior cingulate cortex (ACC), consisting of the perigenual ACC (pgACC) and mid-ACC (i.e., affective and cognitive areas, respectively), plays a significant role in the performance of gambling tasks, which are used to measure decision-making behavior under conditions of risk. Although recent neuroimaging studies have suggested that the γ-aminobutyric acid (GABA) concentration in the pgACC is associated with decision-making behavior, knowledge regarding the relationship of GABA concentrations in subdivisions of the ACC with gambling task performance is still limited. The aim of our magnetic resonance spectroscopy study is to investigate in 20 healthy males the relationship of concentrations of GABA and glutamate+glutamine (Glx) in the pgACC, mid-ACC, and occipital cortex (OC) with multiple indexes of decision-making behavior under conditions of risk, using the Cambridge Gambling Task (CGT). The GABA/creatine (Cr) ratio in the pgACC negatively correlated with delay aversion score, which corresponds to the impulsivity index. The Glx/Cr ratio in the pgACC negatively correlated with risk adjustment score, which is reported to reflect the ability to change the amount of the bet depending on the probability of winning or losing. The scores of CGT did not significantly correlate with the GABA/Cr or Glx/Cr ratio in the mid-ACC or OC. Results of this study suggest that in the pgACC, but not in the mid-ACC or OC, GABA and Glx concentrations play a distinct role in regulating impulsiveness and risk probability during decision-making behavior under conditions of risk, respectively.

  1. Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report.

    Directory of Open Access Journals (Sweden)

    Kathleen eGarrison

    2013-08-01

    Full Text Available Neurophenomenological studies seek to utilize first-person self-report to elucidate cognitive processes related to physiological data. Grounded theory offers an approach to the qualitative analysis of self-report, whereby theoretical constructs are derived from empirical data. Here we used grounded theory methodology to assess how the first-person experience of meditation relates to neural activity in a core region of the default mode network –the posterior cingulate cortex. We analyzed first-person data consisting of meditators’ accounts of their subjective experience during runs of a real-time fMRI neurofeedback study of meditation, and third-person data consisting of corresponding feedback graphs of posterior cingulate cortex activity during the same runs. We found that for meditators, the subjective experiences of ‘undistracted awareness’ such as ‘concentration’ and ‘observing sensory experience’, and ‘effortless doing’ such as ‘observing sensory experience’, ‘not efforting’, and ‘contentment’, correspond with posterior cingulate cortex deactivation. Further, the subjective experiences of ‘distracted awareness’ such as ‘distraction’ and ‘interpreting’, and ‘controlling’ such as ‘efforting’ and ‘discontentment’, correspond with posterior cingulate cortex activation. Moreover, we derived several novel hypotheses about how specific qualities of cognitive processes during meditation relate to posterior cingulate cortex activity, such as the difference between meditation and ‘trying to meditate’. These findings offer novel insights into the relationship between meditation and self-related thinking and neural activity in the default mode network, driven by the first-person experience.

  2. Rule activity related to spatial and numerical magnitudes: comparison of prefrontal, premotor, and cingulate motor cortices.

    Science.gov (United States)

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2014-05-01

    In everyday situations, quantitative rules, such as "greater than/less than," need to be applied to a multitude of magnitude comparisons, be they sensory, spatial, temporal, or numerical. We have previously shown that rules applied to different magnitudes are encoded in the lateral PFC. To investigate if and how other frontal lobe areas also contribute to the encoding of quantitative rules applied to multiple magnitudes, we trained monkeys to switch between "greater than/less than" rules applied to either line lengths (spatial magnitudes) or dot numerosities (discrete numerical magnitudes). We recorded single-cell activity from the dorsal premotor cortex (dPMC) and cingulate motor cortex (CMA) and compared it with PFC activity. We found the largest proportion of quantitative rule-selective cells in PFC (24% of randomly selected cells), whereas neurons in dPMC and CMA rarely encoded the rule (6% of the cells). In addition, rule selectivity of individual cells was highest in PFC neurons compared with dPMC and CMA neurons. Rule-selective neurons that simultaneously represented the "greater than/less than" rules applied to line lengths and numerosities ("rule generalists") were exclusively present in PFC. In dPMC and CMA, however, neurons primarily encoded rules applied to only one of the two magnitude types ("rule specialists"). Our data suggest a special involvement of PFC in representing quantitative rules at an abstract level, both in terms of the proportion of neurons engaged and the coding capacities.

  3. Nociceptive responses of anterior cingulate cortical ensembles in behaving rats%清醒大鼠前扣带皮层神经元群的伤害性反应

    Institute of Scientific and Technical Information of China (English)

    王锦琰; 罗非; 张含荑; 张景渝; Donald J.WOODWARD; 韩济生

    2004-01-01

    目的:利用多通道记录技术在清醒大鼠前扣带回(ACC)记录神经元群的痛反应模式,以证实ACC在痛觉情绪编码中的作用.方法:在5只成年雄性SD大鼠的双侧ACC脑区植入微电极阵列,在大鼠术后清醒状态下给予尾部及四肢足底伤害性辐射热刺激,神经元的放电信号经由电缆和连接器传送至多通道记录系统.结果:伤害性辐射热刺激在大鼠ACC引起以兴奋为主的反应,该反应持续时间较长,可能与痛情绪有关;刺激开始附近ACC神经元有与痛刺激相关的预期性反应,可能与准备逃避的动机有关;同侧和对侧肢体刺激引起的ACC神经元的反应差别不显著,表明神经元感受野大,不适合精确定位.结论:ACC主要参与编码痛觉的情绪动机成分.%Objective: To confirm the role of anterior cingulated cortices (ACC) in the coding of pain affect by exploring the neural ensemble coding pattern within the anterior cingulate cortex in behaving rats with a multichannel recording technique. Methods: In five adult male Sprague-Dawley rats, two arrays of eight stainless steel microwires were bilaterally implanted into ACC. Noxious radiant heat stimulation was applied to the tail, bilateral fore-paws and hind-paws of freely moving rats. Neuroelectric signals were obtained from the microwires and sent to a multichannel recording device via cables and connectors. The time stamps of neuronal activities were stored on a personal computer for off-line analysis. Results:Noxious heat stimuli evoked predominantly excitatory and sustained neural activity within ACC, reflecting the processing of pain unpleasantness; pain-related anticipatory responses could be seen near the stimulation start, indicating the behavioral preparation for escape; ACC neurons had broad receptive fields by showing quite similar pain-related responses to stimuli on either side of the hind-paw, suggesting that they are not eligible for the localization of a stimulus

  4. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    OpenAIRE

    LIU Yi; DU, LIAN; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; FU, YIXIAO; QIU, HAITANG; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately be...

  5. Early adverse events, HPA activity and rostral anterior cingulate volume in MDD.

    Directory of Open Access Journals (Sweden)

    Michael T Treadway

    Full Text Available BACKGROUND: Prior studies have independently reported associations between major depressive disorder (MDD, elevated cortisol concentrations, early adverse events and region-specific decreases in grey matter volume, but the relationships among these variables are unclear. In the present study, we sought to evaluate the relationships between grey matter volume, early adverse events and cortisol levels in MDD. METHODS/RESULTS: Grey matter volume was compared between 19 controls and 19 individuals with MDD using voxel-based morphometry. A history of early adverse events was assessed using the Childhood Trauma Questionnaire. Subjects also provided salivary cortisol samples. Depressed patients showed decreased grey matter volume in the rostral ACC as compared to controls. Rostral ACC volume was inversely correlated with both cortisol and early adverse events. CONCLUSIONS: These findings suggest a key relationship between ACC morphology, a history of early adverse events and circulating cortisol in the pathophysiology of MDD.

  6. Stimulus-Outcome Learnability Differentially Activates Anterior Cingulate and Hippocampus at Feedback Processing

    Science.gov (United States)

    Rodriguez, Paul F.

    2009-01-01

    Memory systems are known to be influenced by feedback and error processing, but it is not well known what aspects of outcome contingencies are related to different memory systems. Here we use the Rescorla-Wagner model to estimate prediction errors in an fMRI study of stimulus-outcome association learning. The conditional probabilities of outcomes…

  7. 芍药苷对急性缺氧前扣带回锥体神经元的影响%Effect of Paeoniflorin on Anterior Cingulate Cortex Pyramidal Neurons After Acute Hypoxia

    Institute of Scientific and Technical Information of China (English)

    李果; 杜永平; 张月萍; 徐晖; 胡三觉

    2011-01-01

    Objective: To investigate the neuroprotective effect of paeoniflorin (PF) on the anterior cingulate cortex(ACC) pyramidal neurons after acute hypoxia. Methods: Before and after the application of PF,variations of frequencies on the neuronal miniature excitatory postsynaptic current (mEPSC) in ACC were recorded by the whole-cell patch clamp techniques of rat brain slices following acute hypoxia. Results: After acute hypoxic insult,the frequence of the mEPSC was significantly increased in the pyramidal neurons of the ACC. When perfusion with 300μmol/L PF of artificial cerebrospinal fluid,the frequency of the mEPSC was remarkably reduced in comparison with the frequency determined following acute hypoxia. Conclusion: PF may modulate the plasticity of synaptic activities through decreasing the frequency of the neuronal mEPSC induced by acute hypoxic insult. All these results indicate that PF may have neuroprotective effects.%目的 探讨芍药昔对急性缺氧形成的前扣带回(ACC)锥体神经元损伤的保护作用.方法 应用全细胞膜片钳技术记录急性缺氧ACC锥体神经元微小兴奋性突触后电流(mEPSC)频率的变化,观察芍药苷对急性缺氧后mEPSC的影响.结果 急性缺氧后,ACC锥体神经元的mEPSC频率明显增加;灌流含有芍药苷(300μmol/L)的正常人工脑脊液(ACSF),神经元的mEPSC频率与急性缺氧后相比明显降低.结论 芍药苷可能通过抑制急性缺氧ACC锥体神经元mEPSC的频率,调节突触活动的可塑性变化,达到神经保护作用.

  8. NMDA receptors contribute to synaptic transmission in anterior cingulate cortex of adult mice%NMDA受体参与小鼠的前额扣带回的神经突触传递

    Institute of Scientific and Technical Information of China (English)

    Jason LIAUW; 王过渡; 卓敏

    2003-01-01

    谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触.在正常条件下, 大多数的突触反应是由谷氨酸的AMPA受体传递的.NMDA受体在静息电位下为镁离子抑制.在被激活时, NMDA受体主要参与突触的可塑性变化.但是, 许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应, 提示NMDA受体可能参与静息状态的生理功能.此文中, 我们在离体的前额扣带回脑片上进行电生理记录, 发现NMDA受体参与前额扣带回的突触传递.在重复刺激或近于生理性温度时, NMDA受体传递的反应更为明显.本文直接显示了NMDA受体参与前额扣带回的突触传递, 并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用.%Glutamatergic synapses are common excitatory chemical connections in mammalian central nervous system. At these synapses, most of baseline synaptic transmission is mediated by glutamate AMPA receptors. NMDA receptors that are sensitive to voltage-dependent magnesium blockade selectively contribute to activity-dependent synaptic plasticity. However, inhibition of NMDA receptors by systemic or local administration of NMDA receptor antagonists produced significant effects on different physiological functions that are not believed to depend on NMDA receptor related synaptic plasticity. Here we show that NMDA receptors contribute to synaptic responses in the anterior cingulate cortex (ACC), a region important for cognitive and other brain functions. The contribution of NMDA receptors became more prominent when synapses are stimulated at higher frequencies. Furthermore, at temperatures more close to physiological brain temperatures, more NMDA receptor mediated responses were recorded as compared to the room temperature. These data suggest a new function for NMDA receptors in the ACC as important postsynaptic receptors involved in synaptic transmission, in particular when cells are firing at high frequencies.

  9. NK-3 receptor activation depolarizes and induces an after-depolarization in pyramidal neurons in gerbil cingulate cortex

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2004-01-01

    The involvement of tachykinins in cortical function is poorly understood. To study the actions of neurokinin-3 (NK3) receptor activation in frontal cortex, whole cell patch clamp recordings were performed from pyramidal neurons in slices of cingulate cortex from juvenile gerbils. Senktide (500n......M), a selective NK3 receptor agonist, induced a transient increase in spontaneous EPSPs in layer V pyramidal neurons, accompanied by a small depolarization ( approximately 4 mV). EPSPs during senktide had a larger amplitude and faster 10-90% rise time than during control. Senktide induced a transient...... depolarization in layer II/III pyramidal neurons, which often reached threshold for spikes. The depolarization ( approximately 6 mV) persisted in TTX, and was accompanied by an increase in input resistance. Senktide also transiently induced a slow after-depolarization, which appeared following a depolarizing...

  10. Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex.

    Science.gov (United States)

    Toledo-Rodriguez, Maria; Pitiot, Alain; Paus, Tomáš; Sandi, Carmen

    2012-07-01

    Adolescence is characterized by major developmental changes that may render the individual vulnerable to stress and the development of psychopathologies in a sex-specific manner. Earlier we reported lower anxiety-like behavior and higher risk-taking and novelty seeking in rats previously exposed to peri-pubertal stress. Here we studied whether peri-pubertal stress affected the acquisition and extinction of fear memories and/or the associated functional engagement of various brain regions, as assessed with 2-deoxyglucose. We showed that while peri-pubertal stress reduced freezing during the acquisition of fear memories (training) in both sexes, it had a sex-specific effect on extinction of these memories. Moreover hippocampus, basal amygdala and cingulate and motor cortices showed higher metabolic rates during extinction in rats exposed to peri-pubertal stress. Interestingly, activation of the infralimbic cortex was negatively correlated with freezing during extinction only in control males, while only males stressed during puberty showed a significant correlation between behavior during extinction and metabolic activation of hippocampus, amygdala and paraventricular nucleus. No correlations between brain activation and behavior during extinction were observed in females (control or stress). These results indicate that exposure to peri-pubertal stress affects behavior and brain metabolism when the individual is exposed to an additional stressful challenge. Some of these effects are sex-specific.

  11. 电针改变CFA炎症痛大鼠前扣带回脑区神经元放电活动%ELECTRO-ACUPUNCTURE MODULATES THE NEURONAL FIRINGS OF ANTERIOR CINGULATE CORTEX IN RATS WITH INFLAMMATORY PAIN

    Institute of Scientific and Technical Information of China (English)

    周萌萌; 刘风雨; 岳路鹏; 蔡捷; 廖斐斐; 朱兵; 景向红; 万有; 伊鸣

    2016-01-01

    目的:研究电针对炎症痛大鼠前扣带回(anterior cingulate cortex,ACC)神经元放电的影响.方法:实验大鼠分为4组:CFA炎症痛模型组加电针,CFA炎症痛模型组加假电针,对照组加电针,对照组加假电针.应用多通道在体记录技术,记录在电针前、后1h内以及给予激光痛刺激前、后ACC神经元的放电,处理记录到的神经信号并进行统计分析.结果:电针后,CFA炎症痛组和对照组大鼠ACC神经元的平均放电率均增高,CFA炎症痛组大鼠ACC脑区内对激光痛刺激有反应的兴奋性神经元反应性降低.结论:电针激活炎症痛大鼠ACC脑区的神经元,但抑制ACC脑区内对痛刺激起兴奋性反应的神经元.推测电针通过调节ACC脑区神经元活动而镇痛.

  12. Stress-Related Functional Connectivity Changes Between Auditory Cortex and Cingulate in Tinnitus.

    Science.gov (United States)

    Vanneste, Sven; De Ridder, Dirk

    2015-08-01

    The question arises whether functional connectivity (FC) changes between the distress and tinnitus loudness network during resting state depends on the amount of distress tinnitus patients' experience. Fifty-five patients with constant chronic tinnitus were included in this study. Electroencephalography (EEG) recordings were performed and seed-based (at the auditory cortex) source localized FC (lagged phase synchronization) was computed for the different EEG frequency bands. Results initially demonstrate that the correlation between loudness and distress is nonlinear. Loudness correlates with beta3 and gamma band activity in the auditory cortices, and distress with alpha1 and beta3 changes in the subgenual, dorsal anterior, and posterior cingulate cortex. In comparison to nontinnitus controls, seed-based FC differed between the left auditory cortices for the alpha1 and beta3 bands in a network encompassing the posterior cingulate cortex extending into the parahippocampal area, the anterior cingulate, and insula. Furthermore, distress changes the FC between the auditory cortex, encoding loudness, and different parts of the cingulate, encoding distress: the subgenual anterior, the dorsal anterior, and the posterior cingulate. These changes are specific for the alpha1 and beta3 frequency bands. These results fit with a recently proposed model that states that tinnitus is generated by multiple dynamically active separable but overlapping networks, each characterizing a specific aspect of the unified tinnitus percept, but adds to this concept that the interaction between these networks is a complex interplay of correlations and anti-correlations between areas involved in distress and loudness depending on the distress state of the tinnitus patient.

  13. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    Science.gov (United States)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  14. Approach to the active patient with chronic anterior knee pain.

    Science.gov (United States)

    Atanda, Alfred; Ruiz, Devin; Dodson, Christopher C; Frederick, Robert W

    2012-02-01

    The diagnosis and management of chronic anterior knee pain in the active individual can be frustrating for both the patient and physician. Pain may be a result of a single traumatic event or, more commonly, repetitive overuse. "Anterior knee pain," "patellofemoral pain syndrome," and "chondromalacia" are terms that are often used interchangeably to describe multiple conditions that occur in the same anatomic region but that can have significantly different etiologies. Potential pain sources include connective or soft tissue irritation, intra-articular cartilage damage, mechanical irritation, nerve-mediated abnormalities, systemic conditions, or psychosocial issues. Patients with anterior knee pain often report pain during weightbearing activities that involve significant knee flexion, such as squatting, running, jumping, and walking up stairs. A detailed history and thorough physical examination can improve the differential diagnosis. Plain radiographs (anteroposterior, anteroposterior flexion, lateral, and axial views) can be ordered in severe or recalcitrant cases. Treatment is typically nonoperative and includes activity modification, nonsteroidal anti-inflammatory drugs, supervised physical therapy, orthotics, and footwear adjustment. Patients should be informed that it may take several months for symptoms to resolve. It is important for patients to be aware of and avoid aggravating activities that can cause symptom recurrence. Patients who are unresponsive to conservative treatment, or those who have an underlying systemic condition, should be referred to an orthopedic surgeon or an appropriate medical specialist.

  15. 双相抑郁患者前额叶和前扣带回皮质氢质子波谱研究%A 1H magnetic resonance spectroscopy imaging study on prefrontal cortex and anterior cingulate cortex in patients with bipolar depression

    Institute of Scientific and Technical Information of China (English)

    马海波; 宁厚梅; 李国海; 王冬青; 李一云; 张礼荣

    2013-01-01

    Objective: To measure the levels of metabolites in the prefrontal cortex and anterior cingulate cortex of patients with bipolar depression. Method:1 H-MRS was performed on prefrontal cortex and anterior cingulated cortex in 30 unmedicated patients with bipolar depression and 30 healthy controls. The patients underwent 1 H-MRS again after six weeks of drug treatment. The compounds measured were N-acetylaspartate (NAA) ,choline (Cho) , glutamate/glutamine (Glx) and creatine (Cr). Results: Bipolar depressive patients had significantly lower NAA/Cr ratios in left prefrontal cortex and bilateral anterior cingulate cortex than healthy controls (P 0. 05). After drug treatment , the ratios of NAA/Cr in left prefrontal cortex and bilateral anterior cingulate cortex were significantly increased compared with those before treatment (P <0. 05) , and the ratios of Cho/Cr, Glx/Cr in left prefrontal cortex and bilateral anterior cingulate cortex were significantly decreased compared with those before treatment (P<0.05). Conclusion:Alterations in the levels of NAA,Cho,Glx in prefrontal cortex and anterior cingulated cortex may be implicated in the pathogenesis of bipolar depression and are related to the efficacy of drug. A%目的:研究双相抑郁患者前额叶皮质、前扣带回皮质代谢物的相对含量. 方法:对30例未服药双相抑郁患者和30名健康志愿者的前额叶皮质、前扣带回皮质进行氢质子波谱(1 H-MRS)扫描,双相抑郁患者经6周药物治疗后再次做1 H-MRS扫描,检测N-乙酰天门冬氨酸(NAA)、胆碱(Cho)、谷氨酸复合物(Glx)、肌酸(Cr)4种代谢物. 结果:双相抑郁组左侧前额叶皮质、双侧前扣带回皮质NAA/Cr值均显著低于正常对照组(P<0.05),Cho/Cr值、Glx/Cr值均显著高于正常对照组(P<0.05),双相抑郁组右侧前额叶皮质NAA/Cr、Cho/Cr、Glx/Cr值两组比较差异无统计学意义(P>0.05).经药物治疗后,左侧前额叶皮质、双侧前扣带回皮质NAA/Cr值较

  16. Monetary reward suppresses anterior insula activity during social pain.

    Science.gov (United States)

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion.

  17. Pain and Emotion Interactions in Subregions of the Cingulate Gyrus

    OpenAIRE

    Vogt, Brent A.

    2005-01-01

    Acute pain and emotion are processed in two forebrain networks and cingulate cortex is in both. Although Brodmann’s cingulate gyrus had two divisions and was not based on any functional criteria, functional imaging reports the location of activity by this model. Recent cingulate cytoarchitectural studies support a four-region model with subregions based on connections and qualitatively unique functions. Although pain and emotion activity have been widely reported, some view these as emergent ...

  18. Temporal prediction errors modulate cingulate-insular coupling.

    Science.gov (United States)

    Limongi, Roberto; Sutherland, Steven C; Zhu, Jian; Young, Michael E; Habib, Reza

    2013-05-01

    Prediction error (i.e., the difference between the expected and the actual event's outcome) mediates adaptive behavior. Activity in the anterior mid-cingulate cortex (aMCC) and in the anterior insula (aINS) is associated with the commission of prediction errors under uncertainty. We propose a dynamic causal model of effective connectivity (i.e., neuronal coupling) between the aMCC, the aINS, and the striatum in which the task context drives activity in the aINS and the temporal prediction errors modulate extrinsic cingulate-insular connections. With functional magnetic resonance imaging, we scanned 15 participants when they performed a temporal prediction task. They observed visual animations and predicted when a stationary ball began moving after being contacted by another moving ball. To induced uncertainty-driven prediction errors, we introduced spatial gaps and temporal delays between the balls. Classical and Bayesian fMRI analyses provided evidence to support that the aMCC-aINS system along with the striatum not only responds when humans predict whether a dynamic event occurs but also when it occurs. Our results reveal that the insula is the entry port of a three-region pathway involved in the processing of temporal predictions. Moreover, prediction errors rather than attentional demands, task difficulty, or task duration exert an influence in the aMCC-aINS system. Prediction errors debilitate the effect of the aMCC on the aINS. Finally, our computational model provides a way forward to characterize the physiological parallel of temporal prediction errors elicited in dynamic tasks.

  19. Systematic Regional Variations of GABA, Glutamine, and Glutamate Concentrations Follow Receptor Fingerprints of Human Cingulate Cortex

    NARCIS (Netherlands)

    Dou, Weiqiang; Palomero-Gallagher, Nicola; van Tol, Marie-Jose; Kaufmann, Joern; Zhong, Kai; Bernstein, Hans-Gert; Heinze, Hans-Jochen; Speck, Oliver; Walter, Martin

    2013-01-01

    Magnetic resonance spectroscopy (MRS) of glutamatergic or GABAergic measures in anterior cingulate cortex (ACC) was found altered in psychiatric disorders and predictive of interindividual variations of functional responses in healthy populations. Several ACC subregions have been parcellated into re

  20. 广泛性焦虑症患者额中回、扣带回、海马磁共振质子波谱成像研究%A 1H-magnetic resonance spectroscopy imaging study on frontal gyrus, anterior cingulate cortex and hippocampus of patients with generalized anxiety disorder

    Institute of Scientific and Technical Information of China (English)

    魏杰; 王建安; 杨庚林; 张薇

    2013-01-01

    Objective To study the feature of brain functional in front gyrus,anterior cingulate cortex and hippocampus of patients with generalized anxiety disorder (GAD).Methods 19 patients with GAD and 20 healthy volunteers were scanned on brain using proton magnetic resonance spectroscopic imaging (1H-MRS).The levels of Choline (Cho),Creatine (Cr),N-acetyl-aspartate (NAA) were measured in the frontal gyrus,anterior cingulate cortex and hippocampus of all subjects.The 1H-MRS data were compared between two groups.Results Compared with the healthy matched control,the levels of Cho (7.22 ± 1.99),Cr (5.44 ± 1.68),NAA (12.09 ±2.30)in right frontal gyrus white matter,the levels of Cho(9.89 ±2.40),Cr(8.59 ± 1.71) in right anterior cingulate cortex and the levels of NAA in left anterior cingulate cortex were significantly high (P < 0.05).The ratio of NAA/Cr and Cho/Cr were not difference in two groups.In the hippocampus of the patients,the Cho,Cr,NAA,NAA/Cr and Cho/Cr ratio were not significantly higher or lower than those in control (P > 0.05).Conclusion The brain substance metabolisms of the patients with GAD are abnormal and asymmetrical between left and right brain,especially occurred in right brain.%目的 探讨广泛性焦虑症患者(Generalized Anxiety Disorder,GAD)脑额中回、扣带回和海马功能.方法 19名符合ICD-10诊断标准的GAD患者为试验组,20名条件匹配的健康志愿者为对照组,用磁共振质子波谱成像技术(1 H-Magnetic Resonance Spectroscopy,1H-MRS)对所有入组者行脑额中回、扣带回和海马中胆碱化合物(Cho)、肌酸(Cr)、N-乙酰天冬氨酸(NAA)物质水平测定,并行两组间比较.结果 GAD组右额中回白质Cho(7.22±1.99)、Cr(5.44 ±1.68)、NAA(12.09±2.30)及右扣带回皮质Cho(9.89±2.40)、Cr(8.59±1.71)、左扣带回皮质NAA(13.49±2.27)明显高于对照组,差异具有统计学意义(P<0.05);两组右扣带回皮质NAA、左扣带回皮质Cho、Cr及左额中回白质Cho、Cr

  1. Cytoarchitecture of mouse and rat cingulate cortex with human homologies.

    Science.gov (United States)

    Vogt, Brent A; Paxinos, George

    2014-01-01

    A gulf exists between cingulate area designations in human neurocytology and those used in rodent brain atlases with a major underpinning of the former being midcingulate cortex (MCC). The present study used images extracted from the Franklin and Paxinos mouse atlas and Paxinos and Watson rat atlas to demonstrate areas comprising MCC and modifications of anterior cingulate (ACC) and retrosplenial cortices. The laminar architecture not available in the atlases is also provided for each cingulate area. Both mouse and rat have a MCC with neurons in all layers that are larger than in ACC and layer Va has particularly prominent neurons and reduced neuron densities. An undifferentiated ACC area 33 lies along the rostral callosal sulcus in rat but not in mouse and area 32 has dorsal and ventral subdivisions with the former having particularly large pyramidal neurons in layer Vb. Both mouse and rat have anterior and posterior divisions of retrosplenial areas 29c and 30, although their cytology is different in rat and mouse. Maps of the rodent cingulate cortices provide for direct comparisons with each region in the human including MCC and it is significant that rodents do not have a posterior cingulate region composed of areas 23 and 31 like the human. It is concluded that rodents and primates, including humans, possess a MCC and this homology along with those in ACC and retrosplenial cortices permit scientists inspired by human considerations to test hypotheses on rodent models of human diseases.

  2. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    Science.gov (United States)

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research.

  3. Posterior cingulate cortex-related co-activation patterns: a resting state FMRI study in propofol-induced loss of consciousness.

    Directory of Open Access Journals (Sweden)

    Enrico Amico

    Full Text Available BACKGROUND: Recent studies have been shown that functional connectivity of cerebral areas is not a static phenomenon, but exhibits spontaneous fluctuations over time. There is evidence that fluctuating connectivity is an intrinsic phenomenon of brain dynamics that persists during anesthesia. Lately, point process analysis applied on functional data has revealed that much of the information regarding brain connectivity is contained in a fraction of critical time points of a resting state dataset. In the present study we want to extend this methodology for the investigation of resting state fMRI spatial pattern changes during propofol-induced modulation of consciousness, with the aim of extracting new insights on brain networks consciousness-dependent fluctuations. METHODS: Resting-state fMRI volumes on 18 healthy subjects were acquired in four clinical states during propofol injection: wakefulness, sedation, unconsciousness, and recovery. The dataset was reduced to a spatio-temporal point process by selecting time points in the Posterior Cingulate Cortex (PCC at which the signal is higher than a given threshold (i.e., BOLD intensity above 1 standard deviation. Spatial clustering on the PCC time frames extracted was then performed (number of clusters = 8, to obtain 8 different PCC co-activation patterns (CAPs for each level of consciousness. RESULTS: The current analysis shows that the core of the PCC-CAPs throughout consciousness modulation seems to be preserved. Nonetheless, this methodology enables to differentiate region-specific propofol-induced reductions in PCC-CAPs, some of them already present in the functional connectivity literature (e.g., disconnections of the prefrontal cortex, thalamus, auditory cortex, some others new (e.g., reduced co-activation in motor cortex and visual area. CONCLUSION: In conclusion, our results indicate that the employed methodology can help in improving and refining the characterization of local

  4. CNQX对伤害性电刺激隐神经引起大鼠扣带回前部多巴胺含量变化的影响%Effect of CNQX on the Change of Dopamine Content in Anterior Cingulate Gyrus of Rats Induced by Noxious Electrical Stimulation of Saphenous Nerve

    Institute of Scientific and Technical Information of China (English)

    吴敏范; 刘忠; 杨宇; 商丽宏; 陈魁敏; 张坤松

    2011-01-01

    目的 研究谷氨酸A MPA/Kainate受体拮抗剂CNQX对伤害性电刺激隐神经引起大鼠扣带回前部(ACG)多巴胺含量变化的影响.方法 用高效液相色谱-电化学检测技术研究伤害性电刺激隐神经后不同时间,ACG多巴胺含量的变化,以及静脉注射CNQX对多巴胺含量变化的影响.结果 伤害性电刺激隐神经后15 min,ACG多巴胺含量显著增高,30 min后增高最明显,1h后开始恢复,2h后逐渐恢复接近对照水平;静脉注射CNQX拮抗了伤害性电刺激隐神经引起的ACG多巴胺含量的显著增高.结论 伤害性电刺激隐神经能够引起ACG多巴胺含量呈时间依赖性增高,提示ACG接受隐神经伤害性信息的传入,引起ACG多巴胺能神经元功能活动增强.CNQX能拮抗伤害性电刺激隐神经引起的ACG多巴胺含量的增高,提示AMPA/Kainate受体参与隐神经伤害性信息传入引起的ACG多巴胺含量增高的过程.%Objective To study the effect of glutamic acid receptor antagonist,CNQX on the change of dopamine content in anterior cingu-late gyrus (ACG) of rats induced by nociceptive electrical stimulation of saphenous nerve (SN). Methods High performance liquid chro-matography-electrochemical detection was used to study effect of different time after electrical stimulation of SN on dopamine content in ACG of rats, and the influence of CNQX intravenous injection to the change of dopamine content in ACG of rats induced by electrical stimulation of SN. Results Dopamine content in ACG significantly increased at 15min after electrical stimulation of SN.andit reached its peak at 30min after the stimulation of SN,and started to decrease at lh after the stimulation of SN ,and recovered gradually 2h after the stimulation of SN. In addition, intravenous injection of CNQX antagonized significant increase in dopamine content in ACG caused by nociceptive electrical stimulation of SN. Conclusion Significant time dependent increase in dopamine content in ACG

  5. The use of EMG biofeedback for learning of selective activation of intra-muscular parts within the serratus anterior muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Mork, P J; Andersen, L L;

    2010-01-01

    anterior can be learned with electromyographical (EMG) biofeedback, and whether the lower serratus anterior and the lower trapezius muscle comprise the lower scapula rotation force couple by synergistic activation. Nine healthy males practiced selective activation of intra-muscular parts within...... the serratus anterior with visual EMG biofeedback, while the activity of four parts of the serratus anterior and four parts of the trapezius muscle was recorded. One subject was able to selectively activate both the upper and the lower serratus anterior respectively. Moreover, three subjects managed.......05). The learning of complete selective activation of both the lower and the upper serratus anterior of one subject, and selective activation of either the upper or lower serratus anterior by five subjects designates the promising clinical application of EMG biofeedback for restoring scapular muscle balance...

  6. Bone cancer pain induce anxiety-like behavior and high expression of NR2B subunit in anterior cingulate cortex of rats%骨癌痛诱发大鼠焦虑样行为和前扣带回脑区NR2B 的上调表达

    Institute of Scientific and Technical Information of China (English)

    赵宇; 刘瑾瑜

    2016-01-01

    Objective To investigate the effect of bone cancer pain on emotion and NMDA re-ceptor NR2B subunit expression level in anterior cingulate cortex (ACC)in rats.Methods One hun-dred and fifty healthy male Wistar rats weighing 200-250 g aged 3 months old were randomly divided into 3 groups (n = 50 in each group):sham operation group (group S),bone cancer pain group (group BCP),RO25-6981 group (group RO).The BCP model was established by inoculating Walker 256 breast cancer cells into right intra-tibial.Rats in group S were given the same dose of d-hanks. Group RO was injected intraperitoneally with RO25-6981 (5 mg/kg/d)on the day of inoculation, while rats in the group S and group BCP were given the same dose of normal saline.Mechanical with-drawal threshold (MWT)and thermal withdrawal latency (TWL)of right hind legs were measured on day 7,10,14 after inoculation respectively.Elevated plus-maze test was carried out to investigate the effect of bone cancer pain on emotion in rats after pain threshold detection,then the percentage of the times entering the open arms (OE)and the percentage of the time staying in the open arms (OT) duration the total period were evaluated.Then the anterior cingulate cortex tissue was removed to e-valuate the NR2B protein and mRNA expression levels by RT-PCR,Western blot and immunofluo-rescence methods on day 14 after elevated plus-maze test.Results All the parameters did not differ with significant difference between group S and group RO.MWT decreased and TWL shortened on day 7,10,14 after inoculation in group BCP compared with those before inoculation and those of group S and group RO.OE and OT in group BCP reduced remarkably than those before inoculation and those of group S and group RO.Relative absorbance of NR2B mRNA,the expression of NR2B pro-tein,average NR2B relative fluorescence intensity value is obviously higher than that of group S and group RO (P <0.05).Conclusion Bone cancer pain can induce pain-related aversion and anxiety

  7. [Effects of activator and activator + anterior high-pull headgear on the growth direction of Class 2 cases].

    Science.gov (United States)

    Uner, O; Akkaya, S; Buyruk, F

    1989-04-01

    In this study which the effects of activator and activator + anterior high-pull headgear on the growth direction of skeletal class 2 cases for a period of approximately 9 months; 33 cases having a mean age of 10.59 years; ANB angles 4.5 degrees and over were studied. Activator treatment has been applied to the 11 of the 22 treatment cases, the others have had the activator + anterior high-pull headgear treatment. The control group, 11 patients, has only been observed in terms of the growth and development without having any treatment. At the end of the study; it was found that the decrease in ANB angle and the increase in SL dimension in the treatment groups; the increase in anterior lower face height in the activator group and the increase in the ratio of posterior to anterior face height were statistically significant.

  8. Improvement of cognitive flexibility and cingulate blood flow correlates after atypical antipsychotic treatment in drug-naive patients with first-episode schizophrenia.

    Science.gov (United States)

    Pardo, Bernardo M; Garolera, Maite; Ariza, Mar; Pareto, Deborah; Salamero, Manel; Valles, Vicenç; Delgado, Luis; Alberni, Joan

    2011-12-30

    The aim of this study was to examine the changes in cognitive flexibility and associated cerebral blood flow in the anterior cingulate lobe of drug-naive patients with first-episode schizophrenia who were treated with atypical antipsychotics for 6 weeks. Single photon emission computed tomography (SPECT) images were obtained from 8 healthy subjects both at rest and while performing the flexibility subtest of the TAP (Test for Attentional Performance). SPECT images were obtained in parallel from 8 first-episode drug-naive schizophrenic patients while they were performing the same task both before and after 6 weeks of neuroleptic treatment. In the control group, an increase in the perfusion indices of the dorsal section of the anterior cingulate gyrus was observed in the activation condition. Task performance was altered and the level of perfusion of the brain region related to the task execution was significantly decreased in the patients at baseline. After treatment, there was a significant improvement in both task performance and the level of perfusion of the dorsal section of the anterior cingulate. We conclude that treatment with second-generation neuroleptics improves cognitive flexibility, and there was a relationship between such improvements and normalization of perfusion indices of the involved brain areas.

  9. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  10. Ketamine modulates subgenual cingulate connectivity with the memory-related neural circuit—a mechanism of relevance to resistant depression?

    Directory of Open Access Journals (Sweden)

    Jing J. Wong

    2016-02-01

    Full Text Available Background. Ketamine has been reported to have efficacy as an antidepressant in several studies of treatment-resistant depression. In this study, we investigate whether an acute administration of ketamine leads to reductions in the functional connectivity of subgenual anterior cingulate cortex (sgACC with other brain regions. Methods. Thirteen right-handed healthy male subjects underwent a 15 min resting state fMRI with an infusion of intravenous ketamine (target blood level = 150 ng/ml starting at 5 min. We used a seed region centred on the sgACC and assessed functional connectivity before and during ketamine administration. Results. Before ketamine administration, positive coupling with the sgACC seed region was observed in a large cluster encompassing the anterior cingulate and negative coupling was observed with the anterior cerebellum. Following ketamine administration, sgACC activity became negatively correlated with the brainstem, hippocampus, parahippocampal gyrus, retrosplenial cortex, and thalamus. Discussion. Ketamine reduced functional connectivity of the sgACC with brain regions implicated in emotion, memory and mind wandering. It is possible the therapeutic effects of ketamine may be mediated via this mechanism, although further work is required to test this hypothesis.

  11. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism

    OpenAIRE

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken’ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-01-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then...

  12. N-acetylaspartate levels in the prefrontal cortex,anterior cingulate cortex and hippocampus of major depressive patients:A proton magnetic resonance spectroscopy study%抑郁症患者额叶、前扣带回、海马N-乙酰天冬氨酸磁共振质子波谱研究

    Institute of Scientific and Technical Information of China (English)

    李国海; 刘珺; 申变红; 张礼荣; 尉传社

    2009-01-01

    目的 探讨抑郁症患者额叶、前扣带回皮质、海马N-乙酰天冬氨酸(NAA)的相对含量.方法 对13例未服药的抑郁症患者及13位健康志愿者前扣带回行多体素磁共振氢质子波谱(1H-MRS)扫描,抑郁症患者经6周抗抑郁治疗后再次作1H-MRS扫描,测定的生化物质为NAA和肌酸(Cr).结果 抑郁症组左侧和右侧额前皮质、左侧和右侧海马NAA/Cr值[分别为(1.29±0.18),(1.33±0.23),(0.93±0.21),(0.96±0.19)]低于正常对照组,差异有显著性(均P <0.01),双侧前扣带回皮质NAA/Cr值与正常对照组差异无显著性( P >0.05).抗抑郁治疗后,左侧额前皮质NAA/Cr值(1.63±0.42)较治疗前(1.29±0.18)升高( P =0.010);右侧额前皮质、双侧海马、右侧前扣带回皮质NAA/Cr值较治疗前均有所升高,但无统计学意义( P >0.05);双侧额前皮质、双侧前扣带回皮质、左侧海马NAA/Cr值治疗后与正常对照组无显著差异( P >0.05).结论 额前皮质和海马N-乙酰天冬氨酸的含量改变与抑郁症的发生和抗抑郁剂的疗效有关.%Objective To measure the levels of N-acetylaspartate (NAA) in the prefrontal cortex,anterior cingulate cortex and hippocampus of major depressive patients. Methods Multi voxel proton magnetic resonance spectroscopy (1H-MRS) was performed to assess NAA levels in 13 unmedicated patients with major depressive disorder and 13 healthy controls. The patients underwent 1H-MRS again after six weeks of antidepressant treatment. The compounds measured were NAA and creatine (Cr). Results Depressive patients had significantly lower NAA/Cr ratios in left and right prefrontal cortex,and left and right hippocampus (1.29±0.18,1.33±0.23,0.93±0.21,0.96±0.19,respectively)than healthy controls( P =0.00). No significant difference was found in the N-acetylaspartate levels in bilateral anterior cingulate cortex between depressive patients and healthy controls( P >0.05). After antidepressant treatment,N-acetylaspartate level

  13. Inferior Frontal Gyrus Activity Triggers Anterior Insula Response to Emotional Facial Expressions

    NARCIS (Netherlands)

    Jabbi, Mbemba; Keysers, Christian

    2008-01-01

    The observation of movies of facial expressions of others has been shown to recruit similar areas involved in experiencing one's own emotions: the inferior frontal gyrus (IFG). the anterior insula and adjacent frontal operculum (IFO). The Causal link bet between activity in these 2 regions, associat

  14. Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency

    NARCIS (Netherlands)

    Boerboom, AL; Hof, AL; Halbertsma, JPK; van Raaij, JJAM; Schenk, W; Diercks, RL; van Horn, [No Value; van Horn, J.R.

    2001-01-01

    Anterior cruciate ligament (ACL) deficiency may cause functional instability of the knee (noncopers), while other patients compensate and perform at the same level as before injury (copers). This pilot study investigated whether there is a compensatory electromyographic (EMG) activity of the hamstri

  15. Muscle activation characteristics in cross-country skiers with a history of anterior compartment pain.

    Science.gov (United States)

    Federolf, Peter; Bakker, Emily

    2012-11-01

    A large proportion of elite cross-country skiers suffer from chronic anterior compartment syndrome (CACS). This study used surface electromyograms (EMGs) to investigate whether differences existed in the activation characteristics of the tibialis anterior muscle between elite cross-country skiers with a history of anterior compartment pain (symptomatic group) and a pain-free control group. Based on self-reported pain symptoms, twelve young, national-level cross-country ski athletes were assigned to a symptomatic group (N = 5), a control group (N = 4), or analyzed individually if their diagnosis was not certain (N = 3). During skating, EMGs were recorded on five lower leg muscles. The relative increase in EMG power per step when increasing the effort level of skating was larger in the symptomatic group than in the control group for tibialis anterior (143 +/- 12% vs. 125 +/- 23%; Cohen's d = 1.17), peroneus longus (123 +/- 24% vs. 107 +/- 6%; d = 0.91), and gastrocnemius lateralis (167 +/- 51% vs. 117 +/- 12%; d = 1.64). The symptomatic group showed more power in the lower frequency bands of the tibialis anterior's EMG spectra (p 0.2). Within the step cycle, these differences appeared in the swing phase and in the gliding phase during single leg support. The observed differences in the EMG spectra may serve as an early identification of athletes who are at risk of developing CACS.

  16. Anterior temporalis and suprahyoid EMG activity during jaw clenching and tooth grinding.

    Science.gov (United States)

    Aldana, Karina; Miralles, Rodolfo; Fuentes, Aler; Valenzuela, Saúl; Fresno, María Javiera; Santander, Hugo; Gutiérrez, Mario Felipe

    2011-10-01

    The aim of this study was to evaluate the anterior temporalis and suprahyoid electromyographic (EMG) activity during jaw clenching and tooth grinding at different jaw posture tasks. The study included 30 healthy subjects with natural dentition and bilateral molar support, incisive protrusive guidance and bilateral laterotrusive canine guidance. Bipolar surface electrodes were located on the right anterior temporalis and suprahyoid muscles. Three EMG recordings in the standing position were performed in the following tasks: C. clenching in the intercuspal position (IP); P1. eccentric grinding from IP to protrusive edge-to-edge contact position; P2. clenching in protrusive edge-to-edge contact position; P3. concentric grinding from protrusive edge-to-edge contact position to IP; L1. eccentric grinding from IP to laterotrusive edge-to-edge contact position; L2. clenching in laterotrusive edge-to-edge contact position; L3. concentric grinding from laterotrusive edge-to-edge contact position to IP. EMG activity during protrusive and laterotrusive tasks was lower than intercuspal position in the anterior temporalis, whereas an opposite EMG pattern was observed in the suprahyoid muscles activity, excepting recorded activity in L2 (mixed model with unstructured covariance matrix). Anterior temporalis activity was higher during P3 than P1 and P2 tasks and during L3 than L1 and L2 tasks, whereas in the suprahyoid muscles, activity was higher during P1 than P2 tasks and during L1 than L2 and L3 tasks. These results could support the idea of a differential modulation of the motor neuron pools of anterior temporalis and suprahyoid muscles of peripheral and/or central origin.

  17. Feelings of warmth correlate with neural activity in right anterior insular cortex.

    Science.gov (United States)

    Olausson, H; Charron, J; Marchand, S; Villemure, C; Strigo, I A; Bushnell, M C

    2005-11-25

    The neural coding of perception can differ from that for the physical attributes of a stimulus. Recent studies suggest that activity in right anterior insular cortex may underlie thermal perception, particularly that of cold. We now examine whether this region is also important for the perception of warmth. We applied cutaneous warm stimuli on the left leg (warmth) in normal subjects (n = 7) during functional magnetic resonance imaging (fMRI). After each stimulus, subjects rated their subjective intensity of the stimulus using a visual analogue scale (VAS), and correlations were determined between the fMRI signal and the VAS ratings. We found that intensity ratings of warmth correlated with the fMRI signal in the right (contralateral to stimulation) anterior insular cortex. These results, in conjunction with previous reports, suggest that the right anterior insular cortex is important for different types of thermal perception.

  18. Extraversion and anterior vs. posterior DMN activity during self-referential thoughts.

    Science.gov (United States)

    Knyazev, Gennady G

    2012-01-01

    Recent studies show that fronto-posterior electroencephalogram (EEG) spectral power distribution is associated with personality. Specifically, extraversion is associated with an increase of spectral power in posterior cortical regions that overlap with the posterior default mode network (DMN) hub and a decrease of spectral power in anterior regions that overlap with the anterior DMN hub. Although there is evidence that dopaminergic neurotransmission may be involved, psychological processes that underlie these associations remain unclear. I hypothesize that these processes may have something to do with spontaneous self-referential thoughts. Specifically, I hypothesize that in extraverts self-referential thoughts may be associated with an increase of spectral power in the posterior DMN hub, whereas in introverts they may be associated with an increase of spectral power in the anterior DMN hub. After spontaneous EEG registration, participants were asked to fill in a questionnaire describing their thoughts during the registration. An item describing self-referential positive expectations (SRPE) was used to measure individual differences in the intensity of these processes. Source localization and independent component analyses were applied to EEG data to reveal oscillatory activity associated with the anterior and the posterior DMN hubs. Hierarchical regression analysis showed a significant interaction between extraversion scores and anterior vs. posterior DMN alpha activity in predicting individual differences in SRPE scores. In extraverts, high SRPE scores were associated with an increase of alpha power in the posterior DMN hub, whereas in introverts they were associated with an increase of alpha power in the anterior DMN hub. Results are discussed in terms of differential involvement of the two DMN hubs in self-related reward processes in extraverts and introverts.

  19. Extraversion and anterior vs. posterior DMN activity during self-referential thoughts.

    Directory of Open Access Journals (Sweden)

    Gennady G. Knyazev

    2013-01-01

    Full Text Available Recent studies show that fronto-posterior electroencephalogram (EEG spectral power distribution is associated with personality. Specifically, extraversion is associated with an increase of spectral power in posterior cortical regions that overlap with the posterior default mode network (DMN hub and a decrease of spectral power in anterior regions that overlap with the anterior DMN hub. Although there is evidence that dopaminergic neurotransmission may be involved, psychological processes that underlie these associations remain unclear. We hypothesize that these processes may have something to do with spontaneous self-referential thoughts. Specifically, we hypothesize that in extraverts self-referential thoughts may be associated with an increase of spectral power in the posterior DMN hub, whereas in introverts they may be associated with an increase of spectral power in the anterior DMN hub. After spontaneous EEG registration, participants were asked to fill in a questionnaire describing their thoughts during the registration. An item describing self-referential positive expectations (SRPE was used to measure individual differences in the intensity of these processes. Source localization and independent component analyses were applied to EEG data to reveal oscillatory activity associated with the anterior and the posterior DMN hubs. Hierarchical regression analysis showed a significant interaction between extraversion scores and anterior vs. posterior DMN alpha activity in predicting individual differences in SRPE scores. In extraverts, high SRPE scores were associated with an increase of alpha power in the posterior DMN hub, whereas in introverts they were associated with an increase of alpha power in the anterior DMN hub. Results are discussed in terms of differential involvement of the two DMN hubs in self-related reward processes in extraverts and introverts.

  20. Temporalis and masseter muscle activity in patients with anterior open bite and craniomandibular disorders

    DEFF Research Database (Denmark)

    Bakke, Merete; Michler, L

    1991-01-01

    values, particularly in subjects with muscular affection, but maximal activity increased significantly when biting on the splint. Maximal voluntary contraction was positively correlated to molar contact and negatively to anterior face height, mandibular inclination, vertical jaw relation and gonial angle......, occlusal stability by tooth contacts, and craniomandibular function by clinical and radiological examination. Electromyographic activity was recorded by surface electrodes after primary treatment with a reflex-releasing, stabilizing splint. Maximal voluntary contraction was reduced compared to reference...

  1. EMG analysis of peroneal and tibialis anterior muscle activity prior to foot contact during functional activities.

    Science.gov (United States)

    McLoda, T A; Hansen, A J; Birrer, D A

    2004-06-01

    The purpose of this investigation was to determine the pre-activity of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) prior to foot contact during three conditions. Twenty-six subjects (age 22 +/- 2 yrs; 15 male, 11 female) with no lower extremity injuries reported for data collection. Data were collected from each subject's dominant leg using surface electromyography (EMG). EMG electrodes were applied over the test muscles using a standard protocol. A heel-toe strike transducer was affixed to the bottom of the subject's shoe. The subject completed two randomized trials of walking on a treadmill (5.6 kph), jogging on a treadmill (9.3 kph) and drop landing from a 38 cm box. Isometric reference positions (IRPs) were recorded for the TA, PL, and PB. Muscle data were normalized to IRPs and the average processed EMG for the 200 ms prior to heel strike during walking and jogging and prior to toe strike when dropping from the box was used for analysis. A one-way repeated measures MANOVA was used to detect differences in pre-activity of the muscles between the three conditions. Univariate tests were used to determine differences for each muscle and Tukey's was applied post hoc to determine individual effect differences. The MANOVA revealed significant differences among the three conditions (F2.50 = 10.770; P < .0005). Average TA activity was significantly higher during jogging (Tukey's; P < .0005). Significant differences existed between each condition for the TA. Average PL and PB activity was significantly higher when drop landing (Tukey's; P < .0005). There was no significant difference between walking and jogging for the PL and PB. The amount of muscle pre-activity occurring before heel or toe strike provides useful information for the examination of reaction times to unexpected inversion during dynamic activities.

  2. Impaired anterior insular activation during risky decision making in young adults with internet gaming disorder.

    Science.gov (United States)

    Lee, Deokjong; Lee, Junghan; Yoon, Kang Joon; Kee, Namkoong; Jung, Young-Chul

    2016-05-25

    Internet gaming disorder is defined as excessive and compulsive use of the internet to engage in games that leads to clinically significant psychosocial impairment. We tested the hypothesis that individuals with internet gaming disorder would be less sensitive to high-risk situations and show aberrant brain activation related to risk prediction processing. Young adults with internet gaming disorder underwent functional MRI while performing a risky decision-making task. The healthy control group showed stronger activations within the dorsal attention network and the anterior insular cortex, which were not found in the internet gaming disorder group. Our findings imply that young adults with internet gaming disorder show impaired anterior insular activation during risky decision making, which might make them vulnerable when they need to adapt new behavioral strategies in high-risk situations.

  3. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation.

    Science.gov (United States)

    Sperling, Reisa; Chua, Elizabeth; Cocchiarella, Andrew; Rand-Giovannetti, Erin; Poldrack, Russell; Schacter, Daniel L; Albert, Marilyn

    2003-10-01

    The ability to form associations between previously unrelated items of information, such as names and faces, is an essential aspect of episodic memory function. The neural substrate that determines success vs. failure in learning these associations remains to be elucidated. Using event-related functional MRI during the encoding of novel face-name associations, we found that successfully remembered face-name pairs showed significantly greater activation in the anterior hippocampal formation bilaterally and left inferior prefrontal cortex, compared to pairs that were forgotten. Functional connectivity analyses revealed significant correlated activity between the right and left hippocampus and neocortical regions during successful, but not attempted, encoding. These findings suggest that anterior regions of the hippocampal formation, in particular, are crucial for successful associative encoding and that the degree of coordination between hippocampal and neocortical activity may predict the likelihood of subsequent memory.

  4. Effects of functional connectivity between anterior cingulate cortex and dorsolateral prefrontal cortex on executive control of attention in healthy individuals%前扣带回与背外侧额前皮质的功能连接影响执行控制

    Institute of Scientific and Technical Information of China (English)

    韩燕; 徐君海; 尹训涛; 张栋; 徐文坚; 逄增昌; 葛海涛; 刘树伟

    2013-01-01

    目的 探讨执行控制过程中健康人大脑前扣带回(ACC)与背外侧额前皮质(DLPFC)之间的功能连接及其与行为学表现之间的关系.方法 2011年1至5月25名17~20岁的健康志愿者在青岛大学医学院附属医院放射科进行3.0T功能磁共振扫描,采用注意网络测试(ANT)作为试验范式,计算ACC和DLPFC之间的功能连接,并与ANT的行为学得分做相关分析.结果 在执行控制过程中,背侧ACC(dACC)与两侧的DLPFC之间存在显著的功能连接,其中左侧的dACC和DLPFC之间的功能连接系数与执行控制的行为学得分存在显著负相关(r=-0.63;P <0.01).结论 ACC与DLPFC之间存在功能连接,并对注意的执行控制功能存在有利的影响,这有助于我们理解注意功能中相关脑区的功能整合作用.%Objective To explore the presence of functional connectivity between anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) during the manipulation of attentional network test (ANT) and its relationship with behavioral performance.Methods Functional magnetic resonance imaging was performed on 25 healthy subjects aged 17-20 years.And ANT was used as a paradigm.Functional connectivity between ACC-DLPFC was tested and correlation analysis conducted between functional connectivity coefficients and behavioral scores of ANT.Results Significant functional connectivity between the dorsal ACC (dACC) with bilateral DLPFC was found.Furthermore,event-related functional connectivity coefficients between left dACC and lefi DLPFC were negatively associated with the behavioral scores of executive control (r =-0.63 ; P < 0.01).Conclusion Our findings provide new evidence that ACC and DLPFC are functionally connected and such functional connectivity has advantageous influence on executive control function of attention so as to contribute to our understanding of the integrated role of these brain regions in attentional network.

  5. Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning

    Science.gov (United States)

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus. Rabbits were trained in an interstimulus interval discrimination procedure in which one tone signaled a 250-msec conditioned stimulus-unconditioned stimulus (CS-US) interval and a second tone signaled a 750-msec CS-US interval. All rabbits showed conditioned responses to each CS with mean onset and peak latencies that coincided with the CS-US interval. Many anterior lobe Purkinje cells showed significant learning-related activity after eyeblink conditioning to one or both of the CSs. More Purkinje cells responded with inhibition than with excitation to CS presentation. In addition, when the firing patterns of all conditioning-related Purkinje cells were pooled, it appeared that the population showed a pattern of excitation followed by inhibition during the CS-US interval. Using cholera toxin-conjugated horseradish peroxidase, Purkinje cells in recording areas were found to project to the interpositus nucleus. These data support previous studies that have suggested a role for the anterior cerebellar cortex in eyeblink conditioning as well as models of cerebellar-mediated CR timing that postulate that Purkinje cell activity inhibits conditioned response (CR) generation during the early portion of a trial by inhibiting the deep cerebellar nuclei and permits CR generation during the later portion of a trial through disinhibition of the cerebellar nuclei. PMID:15897252

  6. 认知行为治疗对首次发病轻中度抑郁症患者膝下前扣带回功能连接的影响%The effect of cognitive behavior therapy on functional connectivity of subgenual anterior cingulated cortex in first-episode treatment-na(i)ve mild to moderate patients with major depressive disorder

    Institute of Scientific and Technical Information of China (English)

    滕昌军; 王纯; 张宁; 马辉; 谭雅容; 肖朝勇; 高帅; 李鸿磊; 张文瑄

    2016-01-01

    目的 通过静息态功能连接探讨认知行为治疗(cognitive behavior therapy,CBT)早期对首次发病轻中度抑郁症患者膝下前扣带回(subgenual anterior cingulated cortex,sgACC)功能连接的影响,初步探讨CBT对抑郁症患者的神经作用机制.方法 对18例首次发病未服药轻中度抑郁症患者(抑郁症组)及相匹配的20名健康对照者(对照组)进行静息态功能磁共振扫描.抑郁症组接受6周CBT后进行第2次扫描.采用DPARSF和REST软件以sgACC为种子点进行基于感兴趣区的全脑功能连接分析并比较差异.结果 治疗前,抑郁症组sgACC与左侧额上回(t=-5.50)、左侧额中回(t=-3.78)、左侧角回(t=-3.38)功能连接低于对照组(均P<0.05).治疗后,抑郁症组sgACC与右侧额下回(蒙特利尔神经科学研究所坐标:x=42,y=33,z=6;t=3.61)、右侧小脑(蒙特利尔神经科学研究所坐标:x=36,y=-42,z=-48;t=4.08)功能连接较对照组增高(均P<0.05),与右侧额上回(t=-4.02)、左侧额上回(t=-3.67)、左侧内侧额上回(t=-4.38)、右侧楔前叶(t=-4.59)、左侧角回(t=-4.71)功能连接低于对照组(均P<0.05).治疗后,抑郁症组sgACC与左侧额下回(t=6.22)、右侧额下回(t=4.66)、左侧颞中回(t=4.76)、右侧颞中回(t=4.43)、左侧颞下回(t=5.33)、右侧缘上回(t=5.51)、左侧中央前回(t=4.68)和右侧小脑(t=3.88)功能连接较治疗前增加(均P<0.05).结论 CBT早期可能通过直接调节sgACC与额下回、默认网络内节点的功能连接而改善抑郁症患者反应抑制功能、降低自我参照性加工和反刍.%Objective To explore the neurobiological mechanism of cognitive behavior therapy(CBT) by detecting alterations of resting state functional connectivitiy of subgenual anterior cingulate cortex (sgACC) of CBT for first episode patients with mild to moderate depression.Methods Resting state fMRI data were collected from 18 first-episode treatment na(i)ve patients who suffered from major

  7. Anterior Cruciate Ligament Injury: Compensation during Gait using Hamstring Muscle Activity.

    Science.gov (United States)

    Catalfamo, Paola Formento; Aguiar, Gerardo; Curi, Jorge; Braidot, Ariel

    2010-06-10

    Previous research has shown that an increase in hamstring activation may compensate for anterior tibial transalation (ATT) in patients with anterior cruciate ligament deficient knee (ACLd); however, the effects of this compensation still remain unclear. The goals of this study were to quantify the activation of the hamstring muscles needed to compensate the ATT in ACLd knee during the complete gait cycle and to evaluate the effect of this compensation on quadriceps activation and joint contact forces. A two dimensional model of the knee was used, which included the tibiofemoral and patellofemoral joints, knee ligaments, the medial capsule and two muscles units. Simulations were conducted to determine the ATT in healthy and ACLd knee and the hamstring activation needed to correct the abnormal ATT to normal levels (100% compensation) and to 50% compensation. Then, the quadriceps activation and the joint contact forces were calculated. Results showed that 100% compensation would require hamstring and quadriceps activations larger than their maximum isometric force, and would generate an increment in the peak contact force at the tibiofemoral (115%) and patellofemoral (48%) joint with respect to the healthy knee. On the other hand, 50% compensation would require less force generated by the muscles (less than 0.85 of maximum isometric force) and smaller contact forces (peak tibiofemoral contact force increased 23% and peak patellofemoral contact force decreased 7.5% with respect to the healthy knee). Total compensation of ATT by means of increased hamstring activity is possible; however, partial compensation represents a less deleterious strategy.

  8. Altered SPECT 123I iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2016-02-01

    Full Text Available Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN in children. The purpose of this study was to examine cortical GABA(A-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single photon emission computed tomography (SPECT measurements using 123I iomazenil, which binds to GABA(A-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26 and the short form of the Profile of Mood States (POMS. Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil binding activity in cortical regions of interest (ROIs and psychometric profiles, and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil binding activity in the anterior posterior cingulate cortex (ACC. Higher POMS subscale scores were significantly associated with lower iomazenil binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC. Depression-Dejection, and Confusion POMS subscale scores, and total POMS score, showed interaction effects with brain regions in iomazenil binding activity. Decreased binding in the ACC and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in children

  9. Cognitive Control Signals in Posterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2010-12-01

    Full Text Available Efficiently shifting between tasks is a central function of cognitive control. The role of the default network—a constellation of areas with high baseline activity that declines during task performance—in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing towards the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the CGp. To test this idea, we recorded the activity of single neurons in posterior cingulate cortex (CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex (LIP, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain..

  10. Functional magnetic resonance imaging evaluation of visual cortex activation in patients with anterior visual pathway lesions

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Song; Guohua Wang; Tong Zhang; Lei Feng; Peng An; Yueli Zhu

    2012-01-01

    The aim of this study was to examine the secondary visual cortex functional disorder in patients with glaucoma and large pituitary adenoma by functional magnetic resonance imaging, and to determine the correlation between visual field defect and primary visual cortex activation. Results showed that single eye stimulation resulted in bilateral visual cortex activation in patients with glaucoma or large pituitary adenoma. Compared with the normal control group, the extent and intensity of visual cortex activation was decreased after left and right eye stimulation, and functional magnetic resonance imaging revealed a correlation between visual field defects and visual cortex activation in patients with glaucoma and large pituitary adenoma. These functional magnetic resonance imaging data suggest that anterior optic pathway lesions can cause secondary functional disorder of the visual cortex, and that visual defects are correlated with visual cortex activation.

  11. Propagation of seizures in a case of lesional mid-cingulate gyrus epilepsy studied by stereo-EEG.

    Science.gov (United States)

    Alkawadri, Rafeed; Gonzalez-Martinez, Jorge; Gaspard, Nicolas; Alexopoulos, Andreas V

    2016-12-01

    Little is known about the propagation of seizures arising from the cingulate gyrus, as cingulate coverage with interhemispheric subdural electrodes is usually challenging and incomplete due to inherent anatomical and vascular limitations. We present a case of lesional mid-cingulate epilepsy confirmed by stereotactically implanted intracranial depth electrodes and subsequent surgical resection. Hypermotor symptomatology was seen during the first seven seconds of seizure onset while the seizure was still confined to the mid-cingulate gyrus contacts. The patient had brief contralateral clonic movements as seizure propagated to the primary motor cortex. There was a high concordance between the primary propagation contacts, as delineated by intracranial EEG, and the contacts, with higher coherence values in the connectivity matrix. Interestingly, cingulate-extra-cingulate connectivity and spread to the primary motor, premotor, and prefrontal cortex was seen preceding spread to other cingulate contacts, of which one was less than 15 mm from the onset contact. This report is one of a few published, documenting propagation of seizures arising from the mid-cingulate cortex. As illustrated by these data, hypermotor semiology correlated with direct activation of the cingulate cortex. Subsequent seizure propagation activated an extensive extra-cingulate rather than an intra-cingulate epileptogenic network. Interestingly, had the region of onset not sampled, the seizure onset would have appeared as non-localizing widespread rhythms over the fronto-parietal convexities. Further studies to explore the propagation of seizures arising from the cingulate gyrus and the physiological and pathological connectivity patterns within the cingulate gyrus in humans are needed, preferably using stereotactic implantation. Specific targets to be investigated are also discussed.

  12. Anterior cruciate ligament injury after more than 20 years: I. Physical activity level and knee function.

    Science.gov (United States)

    Tengman, E; Brax Olofsson, L; Nilsson, K G; Tegner, Y; Lundgren, L; Häger, C K

    2014-12-01

    Little is known about physical activity level and knee function including jump capacity and fear of movement/reinjury more than 20 years after injury of the anterior cruciate ligament (ACL). Seventy persons with unilateral ACL injury participated (23 ± 2 years post-injury): 33 treated with physiotherapy in combination with surgical reconstruction (ACLR ), and 37 treated with physiotherapy alone (ACLPT ). These were compared with 33 age- and gender-matched controls. Assessment included knee-specific and general physical activity level [Tegner activity scale, International Physical Activity Questionnaire (IPAQ)], knee function [Lysholm score, Knee injury and Osteoarthritis Outcome Score (KOOS)], jump capacity (one-leg hop, vertical jump, side hops), and fear of movement/reinjury [Tampa Scale for Kinesiophobia (TSK)]. Outcomes were related to degree of osteoarthritis (OA). ACL-injured had lower Lysholm, KOOS, and Tegner scores than controls (P knee-related effects of ACL injury more than 20 years later.

  13. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    Science.gov (United States)

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-03

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion.

  14. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    Science.gov (United States)

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  15. Migration abnormality in the left cingulate gyrus presenting with autistic disorder.

    Science.gov (United States)

    Korkmaz, Bariş; Benbir, Gülçin; Demirbilek, Veysi

    2006-07-01

    Autism, characterized by an impairment in communication, including language, narrowly focused interests, and poor sociability, is a neurodevelopmental disorder of still largely unknown pathogenesis. In children with autistic symptomatology, the most consistent functional or anatomic abnormalities are found in the cingulate gyrus, particularly in the anterior regions. Neuronal migration malformations caused by incomplete neuronal migration and characterized by loss of the normal gyral patterns in the cerebral hemispheres and prominent disorganization of the cerebral cortical cytoarchitecture are generally associated with profound neurologic deficits, epilepsy, and autism. In this report, we present a case with an isolated migration abnormality located in the anterior part of the left cingulate gyrus who was admitted with the complaints of epileptic seizures and autism. In addition, the role of the localization of the migration abnormality in the appearance of autistic symptomatology is discussed.

  16. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament.

    Science.gov (United States)

    Lebon, Florent; Guillot, Aymeric; Collet, Christian

    2012-03-01

    Motor imagery (MI) is the mental representation of an action without any concomitant movement. MI has been used frequently after peripheral injuries to decrease pain and facilitate rehabilitation. However, little is known about the effects of MI on muscle activation underlying the motor recovery. This study aimed to assess the therapeutic effects of MI on the activation of lower limb muscles, as well as on the time course of functional recovery and pain after surgery of the anterior cruciate ligament (ACL). Twelve patients with a torn ACL were randomly assigned to a MI or control group, who both received a series of physiotherapy. Electromyographic activity of the quadriceps, pain, anthropometrical data, and lower limb motor ability were measured throughout a 12-session therapy. The data provided evidence that MI elicited greater muscle activation, even though imagery practice did not result in pain decrease. Muscle activation increase might originate from a redistribution of the central neuronal activity, as there was no anthropometric change in lower limb muscles after imagery practice. This study confirmed the effectiveness of integrating MI in a rehabilitation process by facilitating muscular properties recovery following motor impairment. MI may thus be considered a reliable adjunct therapy to help injured patients to recover motor functions after reconstructive surgery of ACL.

  17. Modulation of tibialis anterior muscle activity changes with upright stance width.

    Science.gov (United States)

    Lemos, Thiago; Imbiriba, Luís A; Vargas, Claudia D; Vieira, Taian M

    2015-02-01

    When individuals stand with their feet apart, activation of tibialis anterior (TA) muscle seems to slightly exceed rest levels. In narrow stances, conversely, the stabilization of body lateral sways may impose marked, active demand on ankle inversors/eversors. In this study we investigate how much the modulation in TA activity, associated to center of pressure (COP) lateral sways, changes when stance width reduces. Surface EMG and COP coordinates were collected from 17 subjects at three different stances: feet apart, feet together and tandem. Pearson correlation analysis was applied to check whether the expected greater modulations in TA activity corresponded to a stronger association between fluctuations in EMG amplitude and COP lateral sways. When standing at progressively narrower stances participants showed larger fluctuations in COP lateral sways (pEMG-COP association (pmodulations in TA activity were observed for subjects showing greater association between EMG amplitude and COP sways in feet together and tandem stance (Pearson R>0.56, p<0.02), though not when standing with feet apart (R=-0.22, p=0.40). These results indicate that the contribution of TA activity to lateral sway control increases for narrower stances.

  18. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Susanna A Walter

    Full Text Available Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD responses in functional magnetic resonance imaging (fMRI is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.

  19. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    Science.gov (United States)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and

  20. Changing the criteria for old/new recognition judgments can modulate activity in the anterior hippocampus.

    Science.gov (United States)

    Hashimoto, Ryusaku; Abe, Nobuhito; Ueno, Aya; Fujii, Toshikatsu; Takahashi, Shoki; Mori, Etsuro

    2012-02-01

    Numerous functional magnetic resonance imaging (fMRI) studies have reported that the medial temporal lobe (MTL) is activated to a greater extent when subjects encounter novel items as compared with familiar ones. However, it remains unclear whether the novelty signals in the MTL are modulated by the criteria for old/new recognition judgments. In this study, we used fMRI to test our hypothesis that when subjects encounter items similar to previously encountered ones, the novelty signals in the MTL will differ depending on whether the subjects focus on the perceptual features or the semantic aspects of the items. The subjects studied a series of photographs and were later asked to make a recognition judgment of (a) Same items (items identical to those seen during encoding), (b) Similar items (items similar to but not identical to those seen during encoding), and (c) New items (unstudied items) in two types of tasks: Perceptual and Semantic. The subjects judged whether the items were perceptually identical to those seen during encoding in the Perceptual task and whether the items were semantically identical to those seen during encoding in the Semantic task. The left anterior hippocampus was activated when subjects were presented with New items relative to Same items in both tasks. In addition, the hippocampal activity in response to the Similar items was increased only in the Perceptual, but not the Semantic task. Our results indicate that the novelty signals in the hippocampus can be modulated by criteria for old/new recognition judgments.

  1. Immediate restoration of NobelActive implants placed into fresh extraction sites in the anterior maxilla.

    Science.gov (United States)

    Bell, Christopher; Bell, Robert E

    2014-08-01

    The aim of this study is to compare the success rates of immediately placed and loaded NobelActive implants with the success rate of immediately placed implants that were allowed to osseointigrate prior to loading. The charts of all patients in a private oral surgery office receiving single-unit dental implants in the maxillary anterior region in fresh extraction sites from 2008-2011 were evaluated. All patients receiving NobelActive implants and immediate restorations were included in the study group, while those receiving implants with delayed restorations were included in the control group. Patient records were evaluated for variables such as age, gender, torque values at time of implant placement, smoking habits, use of bisphosphonates, and other significant diseases such as diabetes. The success rate of the study group was 92.9%, whereas the success rate of the control group was 97.6%. This was not statistically significant. Torque values of the failed implants of the study group were similar to those of successful implants in the study group. All implants placed in patients scheduled for immediate loading achieved high torque values and were able to be restored immediately. NobelActive implants were able to obtain high torque values for predictable immediate restoration in fresh extraction sites. Acceptable success rates with excellent soft tissue healing were achieved.

  2. Cervicoplastia anterior Anterior cervicoplasty

    Directory of Open Access Journals (Sweden)

    Lucas Gomes Patrocínio

    2004-10-01

    Full Text Available Muitos pacientes buscam correção estética da frouxidão da pele do pescoço, depósito de gordura na região submentoneana ou bandas de platisma. Em grande parte dos casos a ação medial, via cervicoplastia anterior é necessária. OBJETIVO: Demonstrar a casuística e avaliar os resultados e complicações com a técnica de cervicoplastia anterior no Serviço de Otorrinolaringologia da Universidade Federal de Uberlândia. FORMA DE ESTUDO: Relato de série. PACIENTES E MÉTODOS: Quarenta e dois pacientes, entre 39 e 65 anos de idade, sendo 40 (95,2% do sexo feminino e 2 (4,8% do masculino, foram submetidos a cervicoplastia anterior. Retrospectivamente foram avaliados resultados e complicações. RESULTADOS: Destes, 34 apresentaram resultados satisfatórios, 4 apresentaram déficit estético notado somente pelo cirurgião, 3 apresentaram déficit estético notado somente pelo paciente e 1 apresentou déficit estético necessitando cirurgia revisional. Ao estudo fotográfico, todos os pacientes apresentaram melhora do perfil cervical, redução das bandas de platisma e da frouxidão da pele, estabilização da musculatura cervical e acentuação do ângulo cervicomental, em graus variados. Houve complicação em 2 casos (discreto serohematoma e cicatriz um pouco alargada. CONCLUSÃO: A cervicoplastia, associada ou não à tração lateral pela ritidoplastia, é uma técnica que produz resultados satisfatórios na grande maioria dos casos.Many patients look for aesthetic correction of the laxity of neck skin, submandibular fat deposit or platisma bands. In a large part of the cases, medial action, through anterior cervicoplasty is necessary. AIM: To demonstrate the casuistic and to evaluate the results and complications with anterior cervicoplasty technique in the Otorhinolaryngology Service of the Federal University of Uberlândia. STUDY DESIGN: Serie report. PATIENTS AND METHODS: Forty-two patients, between 39 and 65 years of age, being 40 (95

  3. Resting state functional connectivity within the cingulate cortex jointly predicts agreeableness and stressor-evoked cardiovascular reactivity.

    Science.gov (United States)

    Ryan, John P; Sheu, Lei K; Gianaros, Peter J

    2011-03-01

    Exaggerated cardiovascular reactivity to stress is a risk factor for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of corticolimbic brain systems, particularly areas of the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20-37 years) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31-BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity.

  4. Depressant effect of active shortening in the anterior byssus retractor muscle of Mytilus edulis.

    Science.gov (United States)

    Ekelund, M C

    1983-03-01

    The effect of shortening during activity, previously characterized in vertebrate striated muscle, was investigated in the anterior byssus retractor muscle (ABRM) of the mollusc Mytilus edulis. This muscle is considered to have an essentially myosin-linked Ca2+-regulatory system. Release steps of different amplitude were performed during isometric phasic contraction, and force redevelopment was recorded at a muscle length L1, defined as 90% of the muscle length at which a slight resting tension, approximately 1 mN, appeared in the presence of 2.5 X 10(-5) M 5-HT. Active shortening caused a graded depression of the contractile force without affecting the total duration of the mechanical response. Peak redeveloped force after muscle shortening of 0.06 L1 and 0.18 L1 was reduced by approximately 1.5% and 7.0%, respectively, of the isometric tension value at L1. The shortening effect was fully reversible, and had a lifetime of approximately 8 to 9 s. The depressant effect of active shortening was augmented at a reduced degree of activation of the muscle. The presence of caffeine and dantrolene and altered tonicity of the extracellular medium (0.9 T-1.2 T) did not significantly affect the shortening induced depression obtained at maximum phasic activation of the preparation. The nature of the shortening effect is compared to that obtained in vertebrate striated muscle and is discussed on the basis of differences in Ca2+-regulation of the contractile system in these two muscles.

  5. Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior

    Science.gov (United States)

    Ishihara, A.; Roy, R. R.; Edgerton, V. R.

    1995-01-01

    The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data

  6. Posterior cingulate cortex: adapting behavior to a changing world.

    Science.gov (United States)

    Pearson, John M; Heilbronner, Sarah R; Barack, David L; Hayden, Benjamin Y; Platt, Michael L

    2011-04-01

    When has the world changed enough to warrant a new approach? The answer depends on current needs, behavioral flexibility and prior knowledge about the environment. Formal approaches solve the problem by integrating the recent history of rewards, errors, uncertainty and context via Bayesian inference to detect changes in the world and alter behavioral policy. Neuronal activity in posterior cingulate cortex - a key node in the default network - is known to vary with learning, memory, reward and task engagement. We propose that these modulations reflect the underlying process of change detection and motivate subsequent shifts in behavior.

  7. PARCELLATION OF THE CINGULATE CORTEX AT REST AND DURING TASKS: A META-ANALYTIC CLUSTERING AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Diana M.E. Torta

    2013-06-01

    Full Text Available Anatomical, morphological and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The experimental studies, which included two active tasks and a resting state protocol, were used to control the results obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by applying a meta-analytic clustering (MaC to papers retrieved from the BrainMap database. The MaC is a meta-analytic connectivity driven parcellation technique recently developed by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern of co-activations during active tasks. The MaC results indicated that the cingulate cortex can be parcellated into three clusters. These clusters covered different percentages of the cingulate parenchyma and had a different density of foci, with the first cluster being more densely connected. The control experiments showed different clusterization results, suggesting that the co-activations of the cingulate cortex are highly dependent on the task that is tested. Our results highlight the importance of the cingulate cortex as a hub, which modifies its pattern of co-activations depending on the task requests and on the level of task complexity. The neurobiological meaning of these results is discussed.

  8. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP.

    Directory of Open Access Journals (Sweden)

    Sebastian J Lehmann

    Full Text Available The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013, and in particular in the anterior intraparietal cortex (AIP. To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta how different frequency bands of the local field potential (LFP in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively. Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  9. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP).

    Science.gov (United States)

    Lehmann, Sebastian J; Scherberger, Hansjörg

    2015-01-01

    The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand) has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013), and in particular in the anterior intraparietal cortex (AIP). To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta) how different frequency bands of the local field potential (LFP) in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively). Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach) information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  10. Excitatory and inhibitory effects of prolactin release activated by nerve stimulation in rat anterior pituitary

    Directory of Open Access Journals (Sweden)

    Gao Li-Zhi

    2009-12-01

    Full Text Available Abstract Background A series of studies showed the presence of substantial amount of nerve fibers and their close relationship with the anterior pituitary gland cells. Our previous studies have suggested that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present study was aimed at investigating the physiological significance of this synaptic relationship on prolactin release. Methods The anterior pituitary of rat was sliced and stimulated with electrical field in a self-designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin concentrations within and between groups were outlined. Results The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and frequency dependent. Conclusions The present in vitro study offers the first physiological evidence that stimulation of nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation enhances prolactin release and high frequency mainly inhibits it.

  11. Response to the Dorsal Anterior Gradient of EGFR Signaling in Drosophila Oogenesis Is Prepatterned by Earlier Posterior EGFR Activation

    Directory of Open Access Journals (Sweden)

    Mariana Fregoso Lomas

    2013-08-01

    Full Text Available Spatially restricted epidermal growth factor receptor (EGFR activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.

  12. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats

    Science.gov (United States)

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry

  13. Visual processing of optic flow and motor control in the human posterior cingulate sulcus.

    Science.gov (United States)

    Field, David T; Inman, Laura A; Li, Li

    2015-10-01

    Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.

  14. Influence of different levels of sports activities on the quality of life after the reconstruction of anterior cruciate ligament

    Directory of Open Access Journals (Sweden)

    Ninković Srđan

    2015-01-01

    Full Text Available Introduction. The goal of this study was to examine the nature and presence of influence of different levels of sports activity on the life quality of the patients a year after the reconstruction of anterior cruciate ligament. Material and Methods. The study included 185 patients operated at the Department of Orthopedic Surgery and Traumatology of the Clinical Centre of Vojvodina, who were followed for twelve months. Data were collected using the modified Knee Injury and Osteoarthritis Outcome Score questionnaire which included the Lysholm scale. Results. This study included 146 male and 39 female subjects. The reconstruction of anterior cruciate ligament was equally successful in both gender groups. In relation to different types of sports activity, there were no differences in the overall life quality measured by the questionnaire and its subscales, regardless of the level (professional or recreational. However, regarding the level of sports activities, there were differences among the subjects engaged in sports activities at the national level as compared with those going in for sports activities at the recreational level, and particularly in comparison with physically inactive population. A significant correlation was not found by examining the aforementioned relationship between sports activities. Conclusions. This study has shown that the overall life quality a year after the reconstruction of the anterior cruciate ligament does not differ in relation to either the gender of the subjects or the type of sports activity, while the level of sports activity does have some influence on the quality of life. Professional athletes have proved to train significantly more intensively after this reconstruction than those going in for sports recreationally.

  15. Positive Association Between Posterior Subgenual Cingulate and Pituitary Volumes in Psychotic Major Depression

    Directory of Open Access Journals (Sweden)

    Konstantina Vassilopoulou

    2015-03-01

    Full Text Available Posterior subgenual cingulate cortex has been consistently linked with the pathophysiology of major depression in both structural and functional brain imaging studies. Likewise, the hyperactivity of the hypothalamic-pituitary-adrenal axis in major depression is well established, especially in its psychotic subtype. Moreover, posterior subgenual cingulate cortex exerts an inhibitory effect on the hypothalamic-pituitary-adrenal axis. While studies show pituitary volume to be a valid marker of hypothalamic-pituitary-adrenal axis activity, none have investigated the volumetric relationships between posterior subgenual cingulate cortex and pituitary volume in subtypes of major depressive disorder, which was precisely the aim of our study. We hypothesized a differential volumetric relationship in psychotic depression. We assessed posterior subgenual cingulate and pituitary volume using Magnetic Resonance Imaging scanning and investigated their volumetric relationships in 39 patients with major depressive disorder (17 psychotic and 22 melancholic and 18 normal controls. We found strong positive correlations between both left and right posterior subgenual volumes and pituitary volume only in the psychotic depression group (left: rs=0.77, p<0.001, right: rs=0.67, p=0.003. These positive associations were confirmed by regression analyses controlling for patient’s age and type of medications. By contrast, no significant volumetric associations were detected in the groups of melancholic patients and normal controls. Our findings provide support to the hypothesis that posterior subgenual cingulate is differentially involved in the pathophysiology of psychotic symptoms in major depressive disorder.

  16. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players

    DEFF Research Database (Denmark)

    Zebis, M K; Bencke, J; Andersen, L L

    2011-01-01

    In sports, like team handball, fatigue has been associated with an increased risk of anterior cruciate ligament (ACL) injury. While effects of fatigue on muscle function are commonly assessed during maximal isometric voluntary contraction (MVC), such measurements may not relate to the muscle...... for neuromuscular activity [electromyography (EMG)] during a sidecutting maneuver on a force plate, pre and post a simulated handball match. MVC was obtained during maximal isometric quadriceps and hamstring contraction. The simulated handball match consisted of exercises mimicking handball match activity. Whereas...... the simulated handball match induced a decrease in MVC strength for both the quadriceps and hamstring muscles (P

  17. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  18. Specialized core stability exercise: a neglected component of anterior cruciate ligament rehabilitation programs.

    Science.gov (United States)

    Shi, Dong-liang; Li, Jing-long; Zhai, Hua; Wang, Hui-fang; Meng, Han; Wang, Yu-bin

    2012-01-01

    The incidence of anterior cruciate ligament injury has continued to increase over the last two decades. This injury is associated with abnormal gait patterns and osteoarthritis of the knee. In order to accelerate recovery, the introduction of core stability exercises into the rehabilitation program is proposed. The theory underlying the use of core stability exercise relates to the neuroplasticity that follows anterior cruciate ligament injury. Neuroplasticity in lumbar, thoracic, cervical and brain regions diminish activation in the contralateral thalamus, postparietal cortex, SM1, basal ganglia-external globus pallidus, SII, cingulated motor area, premotor cortex, and in the ipsilateral cerebellum and SM1 and increase activation in pre-SMA, SIIp, and pITG, indicating modifications of the CNS. In addition, the neuroplasticity can regulate the movement of trunk muscles, for example, sternocleidomastoid and lower trapezius muscles. Core stability also demonstrates a negative correlation with the incidence of anterior cruciate ligament injury. Therefore, we propose that core stability exercises may improve the rehabilitation of anterior cruciate ligament injuries by increasing core motor control. Specialized core stability exercises aimed at rectifying biomechanical problems associated with gait and core stability may play a key role in the management of anterior cruciate ligament injury.

  19. Cortical activation by tactile stimulation to face and anterior neck areas: an fMRI study with three analytic methods.

    Science.gov (United States)

    Lin, Chou-Ching K; Sun, Yung-Nien; Huang, Chung-I; Yu, Chin-Yin; Ju, Ming-Shaung

    2010-12-01

    The main purpose of this study was to investigate the sensory cortical activation of the anterior neck region and the relationship between the neck and face representation areas. Functional MRI by blood oxygenation level dependent measurements was performed while tactile stimulation was applied to the face or neck area. Nonpainful tactile stimuli were manually delivered by an experimenter at a frequency of ∼1 Hz. Block (epoch) design was adopted with a block duration of 30 s and a whole run duration of 6 min. For each location, two runs were performed. After the image data were preprocessed, both parameteric and nonparametric methods were performed to test the group results. The results showed that (1) unilateral face or neck stimulation could elicit bilateral cortical activation, (2) mainly the face representation and face-hand junction areas, but not the conventional neck representation area, were activated by face or neck stimulation, and (3) the activation areas were larger when right face or neck was stimulated. In conclusion, the sensory cortical representation area of the anterior neck region was mainly at the junction of hand and face representation area and the activated area was larger when the right face or neck was stimulated.

  20. The anterior insular cortex represents breaches of taste identity expectation.

    Science.gov (United States)

    Veldhuizen, Maria G; Douglas, Danielle; Aschenbrenner, Katja; Gitelman, Darren R; Small, Dana M

    2011-10-12

    Despite the importance of breaches of taste identity expectation for survival, its neural correlate is unknown. We used fMRI in 16 women to examine brain response to expected and unexpected receipt of sweet taste and tasteless/odorless solutions. During expected trials (70%), subjects heard "sweet" or "tasteless" and received the liquid indicated by the cue. During unexpected trials (30%), subjects heard sweet but received tasteless or they heard tasteless but received sweet. After delivery, subjects indicated stimulus identity by pressing a button. Reaction time was faster and more accurate after valid cuing, indicating that the cues altered expectancy as intended. Tasting unexpected versus expected stimuli resulted in greater deactivation in fusiform gyri, possibly reflecting greater suppression of visual object regions when orienting to, and identifying, an unexpected taste. Significantly greater activation to unexpected versus expected stimuli occurred in areas related to taste (thalamus, anterior insula), reward [ventral striatum (VS), orbitofrontal cortex], and attention [anterior cingulate cortex, inferior frontal gyrus, intraparietal sulcus (IPS)]. We also observed an interaction between stimulus and expectation in the anterior insula (primary taste cortex). Here response was greater for unexpected versus expected sweet compared with unexpected versus expected tasteless, indicating that this region is preferentially sensitive to breaches of taste expectation. Connectivity analyses confirmed that expectation enhanced network interactions, with IPS and VS influencing insular responses. We conclude that unexpected oral stimulation results in suppression of visual cortex and upregulation of sensory, attention, and reward regions to support orientation, identification, and learning about salient stimuli.

  1. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Directory of Open Access Journals (Sweden)

    Chen Tao

    2009-12-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i regular spiking (RS cells (24.7%, intrinsic bursting (IB cells (30.9%, and intermediate (IM cells (44.4%. In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5% and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner.

  2. The use of EMG biofeedback for learning of selective activation of intra-muscular parts within the serratus anterior muscle: a novel approach for rehabilitation of scapular muscle imbalance.

    Science.gov (United States)

    Holtermann, A; Mork, P J; Andersen, L L; Olsen, H B; Søgaard, K

    2010-04-01

    Motor control and learning possibilities of scapular muscles are of clinical interest for restoring scapular muscle balance in patients with neck and shoulder disorders. The aim of the study was to investigate whether selective voluntary activation of intra-muscular parts within the serratus anterior can be learned with electromyographical (EMG) biofeedback, and whether the lower serratus anterior and the lower trapezius muscle comprise the lower scapula rotation force couple by synergistic activation. Nine healthy males practiced selective activation of intra-muscular parts within the serratus anterior with visual EMG biofeedback, while the activity of four parts of the serratus anterior and four parts of the trapezius muscle was recorded. One subject was able to selectively activate both the upper and the lower serratus anterior respectively. Moreover, three subjects managed to selectively activate the lower serratus anterior, and two subjects learned to selectively activate the upper serratus anterior. During selective activation of the lower serratus anterior, the activity of this muscle part was 14.4+/-10.3 times higher than the upper serratus anterior activity (P<0.05). The corresponding ratio for selective upper serratus vs. lower serratus anterior activity was 6.4+/-1.7 (P<0.05). Moreover, selective activation of the lower parts of the serratus anterior evoked 7.7+/-8.5 times higher synergistic activity of the lower trapezius compared with the upper trapezius (P<0.05). The learning of complete selective activation of both the lower and the upper serratus anterior of one subject, and selective activation of either the upper or lower serratus anterior by five subjects designates the promising clinical application of EMG biofeedback for restoring scapular muscle balance. The synergistic activation between the lower serratus anterior and the lower trapezius muscle was observed in only a few subjects, and future studies including more subjects are required

  3. μ- and m-calpain expression and activity changes following diethylstilbestrol injection in the rat anterior pituitary

    Institute of Scientific and Technical Information of China (English)

    Weijiang Zhao; Zhongfang Shi; Fang Yuan; Guilin Li; Yazhuo Zhang; Zhongcheng Wang

    2011-01-01

    Little is known about changes in calpain activity in the pituitary gland.In the present study,μ- and m-calpain activity changes were detected in the rat anterior pituitary following intraperitoneal injection of diethylstilbestrol.Double-immunofluorescence labeling confirmed colocalization of μ - and m-calpain in prolactin-secreting cells (lactotrophs).Western blot analysis revealed significantly increased expression of both calpains,which accompanied upregulated cytosol and membrane zymographic activities at 12 weeks following diethylstilbestrol injection,compared with rats injected with sunflower oil.Moreover,following estrogen injection,pituitary gland pathological damage gradually worsened with increasing time.Results demonstrated that estrogen regulated calpain expression and activity,and both calpains participated in the pathophysiological processes of the pituitary gland.Ubiquitous calpain expression could serve as an effective target for anti-estrogen drugs.

  4. Relationship between Occlusal Force Distribution and the Activity of Masseter and Anterior Temporalis Muscles in Asymptomatic Young Adults

    Directory of Open Access Journals (Sweden)

    Aneta Wieczorek

    2013-01-01

    Full Text Available Healthy subjects have a prevalent side on which they display higher-muscle activity during clenching. The relationship between symmetry of masseter muscle (MM and anterior temporalis (TA muscle activities and occlusion has been evaluated on the basis of physiological parameters. The aim of the present study was to investigate whether the symmetry of surface EMG (sEMG activity in asymptomatic young adults is related to symmetry of occlusal contacts. Material. The study population consisted of seventy-two 18-year-old subjects with no temporomandibular disorder (TMD symptoms. Method. All the participants underwent an sEMG recording with an 8-channel electromyograph (BioEMG III. A T-Scan III evolution 7.01 device was used to analyze the occlusal contact points. Results. The correlation between the activity of right (R and left (L TA and the percentage of occlusal contacts was assessed, but no significant differences were found between the RMM and LMM muscles. The differences in the medium values of sEMG between males and females were not statistically significant. Equilibrated muscular activity between RTA and LTA occurred when occlusal contacts reached the percentage of 65% on the left side. Conclusion. The symmetry of sEMG activity in asymptomatic young adults is not related to symmetry of occlusal contacts.

  5. 猫扣带回前部内脏与躯体伤害感受神经元膜电学特性的对比研究%A Comparative Study of Membrane Electrical Properties of Visceral and Somatic Nociceptive Neurons of Anterior Cingulate Gyrus in Cats

    Institute of Scientific and Technical Information of China (English)

    吴敏范; 张勇; 杨宇; 姚阳; 马积昊; 商丽宏

    2015-01-01

    Objective To perform a comparative study on membrane electrical properties of visceral and somatic nociceptive neurons of anterior cin⁃gulate gyrus(ACG)in cats,so as to provide the experimental basis for elucidating the mechanism of differences in perceptual qualities between vis⁃ceral pain and somatic pain from the membrane electrical aspects. Methods A total of 77 adult cats,female or male,weighting 2.0 to 3.5 kg were selected for the study. According to the properties of the greater splanchnic nerve(GSN)or saphenous nerve(SN)evoked responses of neurons in ACG and effect of morphine on the evoked responses,visceral nociceptive neurons(VNNs)having the long latency(≥50 ms)GSN evoked re⁃sponses or somatic nociceptive neurons(SNNs)having the long latency(≥50 ms)SN evoked responses were detected. With a glass microelectrode in vivo,a series of polarizing current of different intensity from-5 nA to+5 nA with a 50 ms duration were injected to these neurons in ACG,and the membrane electrical responses of these neurons were recorded. Finally,the membrane electrical parameters of these neurons were calculated. Re⁃sults Totally 254 VNNs and 172 SNNs were recorded in ACG. GSN evoked response threshold of VNNs were higher than SN evoked response threshold of SNNs. Compared with SNNs,the membrane resistance,the membrane capacity and the time constant of VNNs were larger. Conclusion Our data proved that there are some differences in the membrane electrical properties between VNNs and SNNs in ACG,which might be the mem⁃brane electrical basis for differences in perceptual qualities between visceral pain and somatic pain.%目的:对比研究猫扣带回前部内脏伤害感受神经元与躯体伤害感受神经元膜电学特性,从膜电学方面为阐明内脏痛与躯体痛具有不同感受特性的机制提供实验依据。方法选择成龄猫77只,体质量2.0~3.5 kg,雄雌不限。根据在体微电极记录的扣带回前部神经元对电刺激

  6. Correlations between social-emotional feelings and anterior insula activity are independent from visceral states but influenced by culture

    Directory of Open Access Journals (Sweden)

    Mary Helen eImmordino-Yang

    2014-09-01

    Full Text Available The anterior insula (AI maps visceral states and is active during emotional experiences, a functional confluence that is central to neurobiological accounts of feelings. Yet, it is unclear how AI activity correlates with feelings during social emotions, and whether this correlation may be influenced by culture, as studies correlating real-time AI activity with visceral states and feelings have focused on Western subjects feeling physical pain or basic disgust. Given psychological evidence that social-emotional feelings are cognitively constructed within cultural frames, we asked Chinese and American participants to report their feeling strength to admiration and compassion-inducing narratives during fMRI with simultaneous electrocardiogram recording. Trial-by-trial, cardiac arousal and feeling strength correlated with ventral and dorsal AI activity bilaterally but predicted different variance, suggesting that interoception and social-emotional feeling construction are concurrent but dissociable AI functions. Further, although the variance that correlated with cardiac arousal did not show cultural effects, the variance that correlated with feelings did. Feeling strength was especially associated with ventral AI activity (the autonomic modulatory sector in the Chinese group but with dorsal AI activity (the visceral-somatosensory/cognitive sector in an American group not of Asian descent. This cultural group difference held after controlling for posterior insula activity and was replicated. A bi-cultural East-Asian American group showed intermediate results. The findings help elucidate how the AI supports feelings and suggest that previous reports that dorsal AI activation reflects feeling strength are culture related. More broadly, the results suggest that the brain’s ability to construct conscious experiences of social emotion is less closely tied to visceral processes than neurobiological models predict and at least partly open to cultural

  7. Abnormal function of the posterior cingulate cortex in heroin addicted users during resting-state and drug-cue stimulation task

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; YANG Wei-chuan; WANG Ya-rong; HUANG Yu-fang; LI Wei; ZHU Jia

    2013-01-01

    Background Previous animal and neuroimaging studies have demonstrated that brain function in heroin addicted users is impaired.However,the posterior cingulate cortex (PCC) has not received much attention.The purpose of this study was to investigate whether chronic heroin use is associated with craving-related changes in the functional connectivity of the PCC of heroin addicted users.Methods Fourteen male adult chronic heroin users and fifteen age and gender-matched healthy subjects participated in the present study.The participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and a cue-induced craving task fMRI scan.The activated PCC was identified in the cue-induced craving task by means of a group contrast test.Functional connectivity was analyzed based on resting-state fMRI data in order to determine the correlation between brain regions.The relationship between the connectivity of specific regions and heroin dependence was investigated.Results The activation of PCC,bilateral anterior cingulate cortex,caudate,putamen,precuneus,and thalamus was significant in the heroin group compared to the healthy group in the cue-induced craving task.The detectable functional connectivity of the heroin users was stronger between the PCC and bilateral insula,bilateral dorsal striatum,right inferior parietal Iobule (IPL) and right supramarginal gyrus (P<0.001) compared to that of the healthy subjects in the resting-state data analysis.The strength of the functional connectivity,both for the PCC-insula (r=0.60,P <0.05) and for PCC-striatum (r=0.58,P<0.05),was positively correlated with the duration of heroin use.Conclusion The altered functional connectivity patterns in the PCC-insula and PCC-striatum areas may be regarded as biomarkers of brain damage severity in chronic heroin users.

  8. Effects of estradiol benzoate on 5'-iodothyronine deiodinase activities in female rat anterior pituitary gland, liver and thyroid gland

    Directory of Open Access Journals (Sweden)

    Lisbôa P.C.

    1997-01-01

    Full Text Available There is little information on the possible effects of estrogen on the activity of 5'-deiodinase (5'-ID, an enzyme responsible for the generation of T3, the biologically active thyroid hormone. In the present study, anterior pituitary sonicates or hepatic and thyroid microsomes from ovariectomized (OVX rats treated or not with estradiol benzoate (EB, 0.7 or 14 µg/100 g body weight, sc, for 10 days were assayed for type I 5'-ID (5'-ID-I and type II 5'-ID (5'-ID-II, only in pituitary activities. The 5'-ID activity was evaluated by the release of 125I from deiodinated 125I rT3, using specific assay conditions for type I or type II. Serum TSH and free T3 and free T4 were measured by radioimmunoassay. OVX alone induced a reduction in pituitary 5'-ID-I (control = 723.7 ± 67.9 vs OVX = 413.9 ± 26.9; P<0.05, while the EB-treated OVX group showed activity similar to that of the normal group. Thyroid 5'-ID-I showed the same pattern of changes, but these changes were not statistically significant. Pituitary and hepatic 5'-ID-II did not show major alterations. The treatment with the higher EB dose (14 µg, contrary to the results obtained with the lower dose, had no effect on the reduced pituitary 5'-ID-I of OVX rats. However, it induced an important increment of 5'-ID-I in the thyroid gland (0.8 times higher than that of the normal group: control = 131.9 ± 23.7 vs ovx + EB 14 µg = 248.0 ± 31.2; P<0.05, which is associated with increased serum TSH (0.6-fold vs OVX, P<0.05 but normal serum free T3 and free T4. The data suggest that estrogen is a physiological stimulator of anterior pituitary 5'-ID-I and a potent stimulator of the thyroid enzyme when employed at high doses

  9. Cingulate metabolites during pain and morphine treatment as assessed by magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Hansen TM

    2014-05-01

    Full Text Available Tine Maria Hansen,1 Anne Estrup Olesen,2 Carsten Wiberg Simonsen,1 Asbjørn Mohr Drewes,2,3 Jens Brøndum Frøkjær11Mech-Sense, Department of Radiology, 2Mech-Sense, Department of Gastroenterology, 3Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, DenmarkBackground: Experimental investigation of cerebral mechanisms underlying pain and analgesia are important in the development of methods for diagnosis and treatment of pain. The aim of the current study was to explore brain metabolites in response to pain and treatment with morphine.Methods: Proton magnetic resonance spectroscopy of the anterior cingulate cortex was performed in 20 healthy volunteers (13 males and seven females, aged 24.9±2.6 years during rest and acute pain before and during treatment with 30 mg of oral morphine or placebo in a randomized, double-blinded, cross-over study design. Pain was evoked by skin stimulation applied to the right upper leg using a contact heat-evoked potential stimulator.Results: Data from 12 subjects were valid for analysis. Painful stimulation induced an increase in N-acetylaspartate/creatine compared with rest (F=5.5, P=0.04. During treatment with morphine, painful stimulation induced decreased glutamate/creatine (F=7.3, P=0.02, myo-inositol/creatine (F=8.38, P=0.02, and N-acetylaspartate/creatine (F=13.8, P=0.004 concentrations, whereas an increase in the pain-evoked N-acetylaspartate/creatine concentration (F=6.1, P=0.04 was seen during treatment with placebo.Conclusion: This explorative study indicates that neuronal metabolites in the anterior cingulate cortex, such as N-acetylaspartate, glutamate, and myo-inositol, could be related to the physiology of pain and treatment with morphine. This experimental method has the potential to enable the study of brain metabolites involved in pain and its treatment, and may in the future be used to provide further insight into these mechanisms

  10. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe [CHNO des Quinze-Vingts, UPMC Paris 6, Service de NeuroImagerie, Paris (France)

    2010-01-15

    Three cingulate motor areas have been described in monkeys, the rostral, dorsal, and ventral cingulate motor areas, and would control limbic-related motor activity. However, little anatomical data are available in human about the functional networks these cingulate areas underlie. Therefore, networks anchored in the rostral and caudal cingulate motor areas (rCMA and cCMA, respectively) were studied in human using functional connectivity during the brain resting state. Since the rCMA and cCMA are located just under the pre-supplementary and supplementary motor areas (pre-SMA and SMA), the pre-SMA- and SMA-centered networks were also studied to ensure that these four circuits were correctly dissociated. Data from 14 right-handed healthy volunteers were acquired at rest and analyzed by region of interest (ROI)-based functional connectivity. The blood oxygenation level-dependent (BOLD) signal fluctuations of separate ROIs located in rCMA, cCMA, pre-SMA, and SMA were successively used to identify significant temporal correlations with BOLD signal fluctuations of other brain regions. Low-frequency BOLD signal of the CMA was correlated with signal fluctuations in the prefrontal, cingulate, insular, premotor, motor, medial and inferior parietal cortices, putamen and thalamus, and anticorrelated with the default-mode network. rCMA was more in relation with prefrontal, orbitofrontal, and language-associated cortices than cCMA more related to sensory cortex. These cingulate networks were very similar to the pre-SMA- and SMA-centered networks, although pre-SMA and SMA showed stronger correlation with the prefrontal and inferior parietal cortices and with the cerebellum and the superior parietal cortex, respectively. The human cingulate motor areas constitute an interface between sensorimotor, limbic and executive systems, sharing common cortical, striatal, and thalamic relays with the overlying premotor medial areas. (orig.)

  11. Mirror observation of finger action enhances activity in anterior intraparietal sulcus: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Numata, Kenji; Murayama, Takashi; Takasugi, Jun; Monma, Masahiko; Oga, Masaru

    2013-01-01

    Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions related to visual information processing during mirror image movement observation. Thirteen healthy subjects performed a finger-thumb opposition task with the left and right hands separately, with or without access to mirror observation. In the mirror condition, one hand was reflected in a mirror placed above the abdomen in the MRI scanner. In the masked mirror condition, subjects performed the same task but with the mirror obscured. In both conditions, the other hand was held at rest behind the mirror. A between-task comparison (mirror versus masked mirror) revealed significant activation in the ipsilateral hemisphere in the anterior intraparietal sulcus (aIP) while performing all tasks, regardless of which hand was used. The right aIP was significantly activated while moving the right hand. In contrast, in the left aIP, a small number of voxels showed a tendency toward activation during both left and right hand movement. The enhancement of ipsilateral aIP activity by the mirror image observation of finger action suggests that bimodal aIP neurons can be activated by visual information. We propose that activation in the M1 ipsilateral to the moving hand can be induced by information passing through the ventral premotor area from the aIP.

  12. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals

    Directory of Open Access Journals (Sweden)

    Yasmin Zakiniaeiz

    2017-01-01

    Full Text Available Alcohol dependence is a chronic relapsing illness. Alcohol and stress cues have consistently been shown to increase craving and relapse risk in recovering alcohol dependent (AUD patients. However, differences in functional connectivity in response to these cues have not been studied using data-driven approaches. Here, voxel-wise connectivity is used in a whole-brain investigation of functional connectivity differences associated with alcohol and stress cues and to examine whether these differences are related to subsequent relapse. In Study 1, 45, 4- to 8-week abstinent, recovering AUD patients underwent functional magnetic resonance imaging during individualized imagery of alcohol, stress, and neutral cues. Relapse measures were collected prospectively for 90 days post-discharge from inpatient treatment. AUD patients showed blunted anterior (ACC, mid (MCC and posterior cingulate cortex (PCC, voxel-wise connectivity responses to stress compared to neutral cues and blunted PCC response to alcohol compared to neutral cues. Using Cox proportional hazard regression, weaker connectivity in ACC and MCC during neutral exposure was associated with longer time to relapse (better recovery outcome. Similarly, greater connectivity in PCC during alcohol-cue compared to stress cue was associated with longer time to relapse. In Study 2, a sub-group of 30 AUD patients were demographically-matched to 30 healthy control (HC participants for group comparisons. AUD compared to HC participants showed reduced cingulate connectivity during alcohol and stress cues. Using novel data-driven approaches, the cingulate cortex emerged as a key region in the disruption of functional connectivity during alcohol and stress-cue processing in AUD patients and as a marker of subsequent alcohol relapse.

  13. Mg-ATPase activity and motility of native thick filaments isolated from the anterior byssus retractor muscle of Mytilus edulis.

    Science.gov (United States)

    Yamada, A; Ishii, N; Shimmen, T; Takahashi, K

    1989-04-01

    A method for isolating native thick filaments from the anterior byssus retractor muscle (ABRM) of Mytilus edulis is described. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the isolated thick filament preparation contained mainly paramyosin and myosin but almost no actin. Electron microscopy of negatively stained preparations showed that the isolated thick filaments were tapered at both ends and of various sizes, in the range 5-31 microns in length and 51-94nm in width in the central region. Central bare zones were observed in the smaller filaments, but were not clearly seen in the larger filaments. Mg-ATPase activity of the isolated thick filaments was activated by skeletal muscle F-actin in a Ca2+-dependent manner. The maximal activity was about 20 nmol min-1 mg-1 thick filaments (20 degrees C, pH7.0). Motility of the thick filaments attached to latex beads (diameter, 2 microns) was also studied using the native actin cables of the freshwater alga, Chara. In the presence of Mg-ATP and Ca2+, the beads moved along the actin cables at a maximal velocity of about 1 micron s-1. In the absence of Ca2+, almost no movement was observed. These results show that the isolated thick filaments are structurally intact and retain the essential mechanochemical characteristics of the ABRM myosin.

  14. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players.

    Science.gov (United States)

    Zebis, M K; Bencke, J; Andersen, L L; Alkjaer, T; Suetta, C; Mortensen, P; Kjaer, M; Aagaard, P

    2011-12-01

    In sports, like team handball, fatigue has been associated with an increased risk of anterior cruciate ligament (ACL) injury. While effects of fatigue on muscle function are commonly assessed during maximal isometric voluntary contraction (MVC), such measurements may not relate to the muscle function during match play. The purpose of this study was to investigate the effect of muscle fatigue induced by a simulated handball match on neuromuscular strategy during a functional sidecutting movement, associated with the incidence of ACL injury. Fourteen female team handball players were tested for neuromuscular activity [electromyography (EMG)] during a sidecutting maneuver on a force plate, pre and post a simulated handball match. MVC was obtained during maximal isometric quadriceps and hamstring contraction. The simulated handball match consisted of exercises mimicking handball match activity. Whereas the simulated handball match induced a decrease in MVC strength for both the quadriceps and hamstring muscles (Phandball match play. Thus, screening procedures should involve functional movements to reveal specific fatigue-induced deficits in ACL-agonist muscle activation during high-risk phases of match play.

  15. Anterior asymetrical alpha activity predicts Iowa gambling performance: distinctly but reversed.

    Science.gov (United States)

    Schutter, Dennis J L G; de Haan, Edward H F; van Honk, Jack

    2004-01-01

    Animal research indicates that the prefrontal cortex (PFC) plays a crucial role in decision making. In concordance, deficits in decision making have been observed in human patients with damage to the PFC. Contemporary accounts of decision making suggest that emotion guides the process of decision making by ways of providing for reward-punishment contingencies. A task capable of assessing the influence of reward and punishment on decision making is the Iowa gambling task. In this task decisions become motivated by inherent punishment and reward schedules. Insensitivity for punishment together with a strong reward dependency results in risk taking, which is in the gambling task the disadvantageous strategy. Interestingly, the processing of punishment and reward is argued to be lateralized over the right and left PFC, respectively. Here we investigated whether more relative left compared to right-sided frontal brain activity (left-sided dominance) quantified as reduced alpha (8-12 Hz) activity in the electroencephalogram (EEG) would lead to a more risky, disadvantageous pattern of decision making. Contrary to what was expected, relatively more right compared to left frontal brain activity was strongly associated with the disadvantageous strategy. The results are discussed in terms of recent theoretical accounts which argue that the functional interpretation of baseline frontal alpha activity depends on the mental operation involved and does not necessarily imply inactivity.

  16. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anteri

  17. Muscle Activity Onset Prior to Landing in Patients after Anterior Cruciate Ligament Injury: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Theisen, Daniel; Rada, Isabel; Brau, Amélie; Gette, Paul; Seil, Romain

    2016-01-01

    Muscle activation during landing is paramount to stabilise lower limb joints and avoid abnormal movement patterns. Delayed muscle activity onset measured by electromyography (EMG) has been suggested to be associated with anterior cruciate ligament (ACL) injury. Therefore, the aim of this systematic review and meta-analysis was to test the hypothesis if ACL-injured patients display different results for muscle onset timing during standard deceleration tasks compared to healthy control participants. PubMed, Embase, Scopus and ScienceDirect databases were systematically searched over the period from January 1980 to February 2015, yielding a total of 1461 citations. Six studies meeting inclusion criteria underwent quality assessment, data extraction and re-computing procedures for the meta-analysis. The quality was rated “moderate” for 2 studies and “poor” for 4. Patients included and procedures used were highly heterogeneous. The tasks investigated were single leg hopping, decelerating from running or walking, tested on a total of 102 ACL-injured participants and 86 controls. EMG analyses of the muscles vastus lateralis, vastus medialis, lateral and medial hamstrings revealed trivial and non-significant standardised mean differences (SMD0.05) between patients and control participants. Furthermore, no differences were found between the contralateral leg of patients and controls for muscle activity onset of the medial and lateral gastrocnemius (SMD0.05). Based on 3 studies, the involved legs of ACL-injured patients showed overall earlier muscle activity onset compared to control participants for the medial gastrocnemius (SMD = 0.5; p = 0.05). Similar results were found for the lateral gastrocnemius (SMD = 2.1; p<0.001), with a greater effect size but based only on a single study. We conclude that there are no differences between leg muscles of ACL-injured patients and healthy controls regarding the muscle activity onset during landing. However, current evidence

  18. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory.

    Science.gov (United States)

    Hales, J B; Brewer, J B

    2011-04-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance.

  19. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    NARCIS (Netherlands)

    Piai, V.; Roelofs, A.P.A.; Acheson, D.J.; Takashima, A.

    2013-01-01

    ulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and mon

  20. Metabolite Concentrations in the Anterior Cingulate Cortex Predict High Neuropathic Pain Impact After Spinal Cord Injury

    Science.gov (United States)

    2013-02-01

    domains of pain severity, pain interference, and emotional function recommended by the Initiative on Methods, Measurement, and Pain Assessment in Clinical...with depressed patients described in the psychiatric literature. The BDI has been recommended specifically for use in assessing emotional function in...Project. References 1. Waring WP 3rd, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A, Jones L, Kirshblum S, Marino R, Mulcahey MJ, Reeves R, Scelza

  1. Effects of nicorandil on cardiac sympathetic nerve activity after reperfusion therapy in patients with first anterior acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Suzuki, Tadashi; Kurabayashi, Masahiko [Gunma University School of Medicine, Department of Cardiovascular Medicine, Maebashi (Japan); Kumakura, Hisao; Takayama, Yoshiaki; Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan, Gunma (Japan)

    2005-03-01

    Ischaemic preconditioning (PC) is a cardioprotective phenomenon in which short periods of myocardial ischaemia result in resistance to decreased contractile dysfunction during a subsequent period of sustained ischaemia. Nicorandil, an ATP-sensitive potassium channel opener, can induce PC effects on sympathetic nerves during myocardial ischaemia. However, its effects on cardiac sympathetic nerve activity (CSNA) and left ventricular remodelling have not been determined. In this study, we sought to determine whether nicorandil administration improves CSNA in patients with acute myocardial infarction (AMI). We studied 58 patients with first anterior AMI, who were randomly assigned to receive nicorandil (group A) or isosorbide dinitrate (group B) after primary coronary angioplasty. The nicorandil or isosorbide dinitrate was continuously infused for >48 h. The extent score (ES) was determined from {sup 99m}Tc-pyrophosphate scintigraphy, and the total defect score (TDS) was determined from {sup 201}Tl scintigraphy 3-5 days after primary angioplasty. The left ventricular end-diastolic volume (LVEDV) and left ventricular ejection fraction (LVEF) were determined by left ventriculography 2 weeks later. The delayed heart/mediastinum count (H/M) ratio, delayed TDS and washout rate (WR) were determined from {sup 123}I-meta-iodobenzylguanidine (MIBG) images 3 weeks later. The left ventriculography results were re-examined 6 months after treatment. Fifty patients originally enrolled in the trial completed the entire protocol. After treatment, no significant differences were observed in ES or left ventricular parameters between the two groups. However, in group A (n=25), the TDSs determined from {sup 201}Tl and {sup 123}I-MIBG were significantly lower (26{+-}6 vs 30{+-}5, P<0.01, and 32{+-}8 vs 40{+-}6, P<0.0001, respectively), the H/M ratio significantly higher (1.99{+-}0.16 vs 1.77{+-}0.30, P<0.005) and the WR significantly lower (36%{+-}8% vs 44%{+-}12%, P<0.005) than in group B

  2. Effects of bupropion SR on anterior paralimbic function during waking and REM sleep in depression: preliminary findings using.

    Science.gov (United States)

    Nofzinger, E A; Berman, S; Fasiczka, A; Miewald, J M; Meltzer, C C; Price, J C; Sembrat, R C; Wood, A; Thase, M E

    2001-04-10

    This study sought to clarify the effects of bupropion SR on anterior paralimbic function in depressed patients by studying changes in the activation of these structures from waking to REM sleep both before and after treatment. Twelve depressed patients underwent concurrent EEG sleep studies and [18F]fluoro-2-deoxy-D-glucose ([18F]-FDG) positron emission tomography (PET) scans during waking and during their second REM period of sleep before and after treatment with bupropion SR. Nine subjects completed pre- and post-treatment waking PET studies. Five subjects completed pre- and post-treatment waking and REM sleep PET studies. Bupropion SR treatment did not suppress electrophysiologic measures of REM sleep, nor did it alter an indirect measure of global metabolism during either waking or REM sleep. Bupropion SR treatment reversed the previously observed deficit in anterior cingulate, medial prefrontal cortex and right anterior insula activation from waking to REM sleep. In secondary analyses, this effect was related to a reduction in waking relative metabolism in these structures following treatment in the absence of a significant effect on REM sleep relative metabolism. The implications of these findings for the relative importance of anterior paralimbic function in REM sleep in depression and for the differential effects of anti-depressant treatment on brain function during waking vs. REM sleep are discussed.

  3. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.

    Science.gov (United States)

    Heinzle, Bigna Katrin Bölsterli; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard

    2017-02-01

    Background Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed.We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. Findings In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1-13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. Conclusions We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, "hyper-synchronized slow waves" may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization.

  4. Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex.

    Science.gov (United States)

    Osmanski, B F; Martin, C; Montaldo, G; Lanièce, P; Pain, F; Tanter, M; Gurden, H

    2014-07-15

    Topographic representation of the outside world is a key feature of sensory systems, but so far it has been difficult to define how the activity pattern of the olfactory information is distributed at successive stages in the olfactory system. We studied odor-evoked activation patterns in the main olfactory bulb and the anterior piriform cortex of rats using functional ultrasound (fUS) imaging. fUS imaging is based on the use of ultrafast ultrasound scanners and detects variations in the local blood volume during brain activation. It makes deep brain imaging of ventral structures, such as the piriform cortex, possible. Stimulation with two different odors (hexanal and pentylacetate) induced the activation of odor-specific zones that were spatially segregated in the main olfactory bulb. Interestingly, the same odorants triggered the activation of the entire anterior piriform cortex, in all layers, with no distinguishable odor-specific areas detected in the power Doppler images. These fUS imaging results confirm the spatial distribution of odor-evoked activity in the main olfactory bulb, and furthermore, they reveal the absence of such a distribution in the anterior piriform cortex at the macroscopic scale in vivo.

  5. Tourette's syndrome: a disorder of cingulate and orbitofrontal function?

    Science.gov (United States)

    Weeks, R A; Turjanski, N; Brooks, D J

    1996-06-01

    We discuss the clinical characteristics of tics and Tourette's syndrome (TS) and also possible treatment options. Based upon an overview of published pathophysiological and PET data, and the results of a recent PET study of changes in opioid receptor binding in TS, we hypothesize that the disease arises due to dysfunction within the cingulate and orbitofrontal cortex. The beneficial effects of dopamine receptor antagonists and dopamine-depleting agents in TS are suggested to be mediated via basal ganglia-thalamofrontal circuits, while opioid agents may act directly on the cingulate.

  6. 38 CFR 3.379 - Anterior poliomyelitis.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Anterior poliomyelitis. 3... Specific Diseases § 3.379 Anterior poliomyelitis. If the first manifestations of acute anterior poliomyelitis present themselves in a veteran within 35 days of termination of active military service, it...

  7. Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament injured subjects.

    Science.gov (United States)

    Dingenen, Bart; Janssens, Luc; Luyckx, Thomas; Claes, Steven; Bellemans, Johan; Staes, Filip F

    2015-12-01

    The goal of this study was to evaluate muscle activation onset times (MAOT) of both legs during a transition task from double-leg stance (DLS) to single-leg stance (SLS) in anterior cruciate ligament injured (ACLI) (n=15) and non-injured control subjects (n=15) with eyes open and eyes closed. Significantly delayed MAOT were found in the ACLI group compared to the control group for vastus lateralis, vastus medialis obliquus, hamstrings medial, hamstrings lateral, tibialis anterior, peroneus longus and gastrocnemius in both vision conditions, for gluteus maximus and gluteus medius with eyes open and for tensor fascia latae with eyes closed. Within the ACLI group, delayed MAOT of tibialis anterior with eyes open and gastrocnemius with eyes closed were found in the injured leg compared to the non-injured leg. All other muscles were not significantly different between legs. In conclusion, the ACLI group showed delayed MAOT not only around the knee, but also at the hip and ankle muscles compared to the non-injured control group. No differences between both legs of the ACLI group were found, except for tibialis anterior and gastrocnemius. These findings indirectly support including central nervous system re-education training to target the underlying mechanisms of these altered MAOT after ACL injury.

  8. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance.

  9. Mining the posterior cingulate: Segregation between memory and pain components

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2005-01-01

    We present a general method for automatic meta-analyses in neuroscience and apply it on text data from published functional imaging studies to extract main functions associated with a brain area --- the posterior cingulate cortex. Abstracts from PubMed are downloaded, words extracted and converted...

  10. Affective resonance in response to others' emotional faces varies with affective ratings and psychopathic traits in amygdala and anterior insula.

    Science.gov (United States)

    Seara-Cardoso, Ana; Sebastian, Catherine L; Viding, Essi; Roiser, Jonathan P

    2016-01-01

    Despite extensive research on the neural basis of empathic responses for pain and disgust, there is limited data about the brain regions that underpin affective response to other people's emotional facial expressions. Here, we addressed this question using event-related functional magnetic resonance imaging to assess neural responses to emotional faces, combined with online ratings of subjective state. When instructed to rate their own affective response to others' faces, participants recruited anterior insula, dorsal anterior cingulate, inferior frontal gyrus, and amygdala, regions consistently implicated in studies investigating empathy for disgust and pain, as well as emotional saliency. Importantly, responses in anterior insula and amygdala were modulated by trial-by-trial variations in subjective affective responses to the emotional facial stimuli. Furthermore, overall task-elicited activations in these regions were negatively associated with psychopathic personality traits, which are characterized by low affective empathy. Our findings suggest that anterior insula and amygdala play important roles in the generation of affective internal states in response to others' emotional cues and that attenuated function in these regions may underlie reduced empathy in individuals with high levels of psychopathic traits.

  11. COMT Val158Met genotypes differentially influence subgenual cingulate functional connectivity in healthy females

    Directory of Open Access Journals (Sweden)

    Chris eBaeken

    2014-06-01

    Full Text Available Brain imaging studies have consistently shown subgenual Anterior Cingulate Cortical (sgACC involvement in emotion processing. COMT Val158 and Met158 polymorphisms may influence such emotional brain processes in specific ways. Given that resting-state fMRI (rsfMRI may increase our understanding on brain functioning, we integrated genetic and rsfMRI data and focused on sgACC functional connections. No studies have yet investigated the influence of the COMT Val158Met polymorphism (rs4680 on sgACC resting-state functional connectivity (rsFC in healthy individuals. A homogeneous group of sixty-one Caucasian right-handed healthy female university students, all within the same age range, underwent rsfMRI. Compared to Met158 homozygotes, Val158 allele carriers displayed significantly stronger rsFC between the sgACC and the left parahippocampal gyrus, ventromedial parts of the inferior frontal gyrus, and the nucleus accumbens (NAc. On the other hand, compared to Val158 homozygotes, we found in Met158 allele carriers stronger sgACC rsFC with the medial frontal gyrus, more in particular the anterior parts of the medial orbitofrontal cortex. Although we did not use emotional or cognitive tasks, our sgACC rsFC results point to possible distinct differences in emotional and cognitive processes between Val158 and Met158 allele carriers. However, the exact nature of these directions remains to be determined.

  12. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2015-01-01

    Full Text Available Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM treatment for erectile dysfunction (ED. This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC, and middle cingulate cortex (MCC. Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP, the patients with kidney-yang deficiency pattern (KDP showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P<0.005. Conclusions. The ED patients with different TCM patterns showed different brain activities. The differences in cerebral activity between LSSDP and KDP were mainly in the emotion-related regions, including prefrontal cortex and cingulated cortex.

  13. Anterior insula coordinates hierarchical processing of tactile mismatch responses.

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J; Hillebrandt, Hauke; Friston, Karl J; Rees, Geraint; Roepstorff, Andreas

    2016-02-15

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace.

  14. Anterior insula coordinates hierarchical processing of tactile mismatch responses

    Science.gov (United States)

    Allen, Micah; Fardo, Francesca; Dietz, Martin J.; Hillebrandt, Hauke; Friston, Karl J.; Rees, Geraint; Roepstorff, Andreas

    2016-01-01

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy—projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace. PMID:26584870

  15. Single- vs. double-bundle anterior cruciate ligament reconstruction: a new aspect of knee assessment during activities involving dynamic knee rotation.

    Science.gov (United States)

    Czamara, Andrzej; Królikowska, Aleksandra; Szuba, Łukasz; Widuchowski, Wojciech; Kentel, Maciej

    2015-02-01

    Few studies have compared single-bundle (SB) and double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) in the knee joint during activities involving change-of-direction maneuvers and knee rotation. This study examined whether the type of ACLR contributes to postphysiotherapy outcomes, with an emphasis on knee function assessment during activities involving dynamic knee rotation. Fifteen male patients after SB ACLR and 15 male patients after DB ACLR took part in the same physiotherapy program. Twenty-four weeks after ACLR, both groups underwent anterior laxity measurement, pivot shift tests, range of movement and joint circumference measurements, subjective assessment of pain and stability levels in the knee joint, peak torque measurement of the muscles rotating the tibia toward the femur, and a run test with maximal speed and change-of-direction maneuvers. Comparative analysis did not show any differences between the results of anterior tibial translation, pivot shift test, range of movement and joint circumference, and subjective assessment of pain and knee joint stability levels. No differences were noted between the groups in peak torque values obtained from the muscles responsible for internal and external tibial rotation or results of the run test. The data obtained from this study can be used by research teams to monitor and compare the effectiveness of various study protocols involving surgical and physiotherapy treatment. The data are especially useful when combined with the clinical assessment of patients who would like to return to sport.

  16. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Christopher G Davey

    2012-02-01

    Full Text Available Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected by depression.Methods: Eighteen patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterised task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task; MSIT. We used a psycho-physiological interactions (PPI approach to examine functional connectivity changes with subgenual ACC. Voxelwise statistical maps for each analysis were compared between the patient and control groups.Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive control regions in depressed patients.Conclusions: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes.

  17. Precuneus and Cingulate Cortex Atrophy and Hypometabolism in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: MRI and 18F-FDG PET Quantitative Analysis Using FreeSurfer

    Directory of Open Access Journals (Sweden)

    Matthieu Bailly

    2015-01-01

    Full Text Available Objective. The objective of this study was to compare glucose metabolism and atrophy, in the precuneus and cingulate cortex, in patients with Alzheimer’s disease (AD and mild cognitive impairment (MCI, using FreeSurfer. Methods. 47 individuals (17 patients with AD, 17 patients with amnestic MCI, and 13 healthy controls (HC were included. MRI and PET images using 18F-FDG (mean injected dose of 185 MBq were acquired and analyzed using FreeSurfer to define regions of interest in the hippocampus, amygdala, precuneus, and anterior and posterior cingulate cortex. Regional volumes were generated. PET images were registered to the T1-weighted MRI images and regional uptake normalized by cerebellum uptake (SUVr was measured. Results. Mean posterior cingulate volume was reduced in MCI and AD. SUVr were different between the three groups: mean precuneus SUVr was 1.02 for AD, 1.09 for MCI, and 1.26 for controls (p<0.05; mean posterior cingulate SUVr was 0.96, 1.06, and 1.22 for AD, MCI, and controls, respectively (p<0.05. Conclusion. We found graduated hypometabolism in the posterior cingulate cortex and the precuneus in prodromal AD (MCI and AD, whereas atrophy was not significant. This suggests that the use of 18F-FDG in these two regions could be a neurodegenerative biomarker.

  18. Anterior knee pain

    Energy Technology Data Exchange (ETDEWEB)

    LLopis, Eva [Hospital de la Ribera, Alzira, Valencia (Spain) and Carretera de Corbera km 1, 46600 Alzira Valencia (Spain)]. E-mail: ellopis@hospital-ribera.com; Padron, Mario [Clinica Cemtro, Ventisquero de la Condesa no. 42, 28035 Madrid (Spain)]. E-mail: mario.padron@clinicacemtro.com

    2007-04-15

    Anterior knee pain is a common complain in all ages athletes. It may be caused by a large variety of injuries. There is a continuum of diagnoses and most of the disorders are closely related. Repeated minor trauma and overuse play an important role for the development of lesions in Hoffa's pad, extensor mechanism, lateral and medial restrain structures or cartilage surface, however usually an increase or change of activity is referred. Although the direct relation of cartilage lesions, especially chondral, and pain is a subject of debate these lesions may be responsible of early osteoarthrosis and can determine athlete's prognosis. The anatomy and biomechanics of patellofemoral joint is complex and symptoms are often unspecific. Transient patellar dislocation has MR distinct features that provide evidence of prior dislocation and rules our complication. However, anterior knee pain more often is related to overuse and repeated minor trauma. Patella and quadriceps tendon have been also implicated in anterior knee pain, as well as lateral or medial restraint structures and Hoffa's pad. US and MR are excellent tools for the diagnosis of superficial tendons, the advantage of MR is that permits to rule out other sources of intraarticular derangements. Due to the complex anatomy and biomechanic of patellofemoral joint maltracking is not fully understood; plain films and CT allow the study of malalignment, new CT and MR kinematic studies have promising results but further studies are needed. Our purpose here is to describe how imaging techniques can be helpful in precisely defining the origin of the patient's complaint and thus improve understanding and management of these injuries.

  19. β-Adrenoceptor activation enhances L-type calcium channel currents in anterior piriform cortex pyramidal cells of neonatal mice: implication for odor learning.

    Science.gov (United States)

    Ghosh, Abhinaba; Mukherjee, Bandhan; Chen, Xihua; Yuan, Qi

    2017-03-01

    Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. β-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether β-adrenoceptors interact directly with LTCCs in aPC pyramidal cells is unknown. Here we show that pyramidal cells expressed significant LTCC currents that declined with age. β-Adrenoceptor activation via isoproterenol age-dependently enhanced LTCC currents. Nifedipine-sensitive, isoproterenol enhancement of calcium currents was only observed in post-natal day 7-10 mice. APC β-adrenoceptor activation induced early odor preference learning was blocked by nifedipine coinfusion.

  20. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex.

    Science.gov (United States)

    Littlefield, Melissa M; Dietz, Martin J; Fitzgerald, Des; Knudsen, Kasper J; Tonks, James

    2015-01-01

    "Truth" has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person's mental state, a phenomenon known as Theory of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in-group and out-group members. Participants were asked to be honest and were told that their evaluations would be made public. We found increased BOLD responses in the medial prefrontal cortex, bilateral anterior insula and precuneus when participants were asked to tell social truths compared to simple truths about another person. At the behavioral level, participants were slower at responding to social compared to simple questions about another person. These findings suggest that telling the truth is a nuanced cognitive operation that is dependent on the degree of mentalizing. Importantly, we show that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning.

  1. Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.

    Science.gov (United States)

    Lawrence, Emma J; Su, Li; Barker, Gareth J; Medford, Nick; Dalton, Jeffrey; Williams, Steve C R; Birbaumer, Niels; Veit, Ralf; Ranganatha, Sitaram; Bodurka, Jerzy; Brammer, Michael; Giampietro, Vincent; David, Anthony S

    2014-03-01

    The anterior insula (AI) plays a key role in affective processing, and insular dysfunction has been noted in several clinical conditions. Real-time functional MRI neurofeedback (rtfMRI-NF) provides a means of helping people learn to self-regulate activation in this brain region. Using the Blood Oxygenated Level Dependant (BOLD) signal from the right AI (RAI) as neurofeedback, we trained participants to increase RAI activation. In contrast, another group of participants was shown 'control' feedback from another brain area. Pre- and post-training affective probes were shown, with subjective ratings and skin conductance response (SCR) measured. We also investigated a reward-related reinforcement learning model of rtfMRI-NF. In contrast to the controls, we hypothesised a positive linear increase in RAI activation in participants shown feedback from this region, alongside increases in valence ratings and SCR to affective probes. Hypothesis-driven analyses showed a significant interaction between the RAI/control neurofeedback groups and the effect of self-regulation. Whole-brain analyses revealed a significant linear increase in RAI activation across four training runs in the group who received feedback from RAI. Increased activation was also observed in the caudate body and thalamus, likely representing feedback-related learning. No positive linear trend was observed in the RAI in the group receiving control feedback, suggesting that these data are not a general effect of cognitive strategy or control feedback. The control group did, however, show diffuse activation across the putamen, caudate and posterior insula which may indicate the representation of false feedback. No significant training-related behavioural differences were observed for valence ratings, or SCR. In addition, correlational analyses based on a reinforcement learning model showed that the dorsal anterior cingulate cortex underpinned learning in both groups. In summary, these data demonstrate that it

  2. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion.

    Science.gov (United States)

    Rolls, E T

    2008-06-01

    Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature, and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. The representation of taste and other food-related stimuli in the orbitofrontal cortex of macaques is found from its lateral border throughout area 13 to within 7 mm of the midline, and in humans the representation of food-related and other pleasant stimuli is found particularly in the medial orbitofrontal cortex. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour, and the activation produced by the odour in the orbitofrontal cortex. Food intake is thus controlled by building a multimodal representation of the sensory properties of food in the orbitofrontal cortex, and gating this representation by satiety signals to produce a representation of the pleasantness or reward value of food which drives food intake. A neuronal representation of taste is also found in the pregenual cingulate cortex, which receives inputs from the orbitofrontal cortex, and in humans many pleasant

  3. CONGENITAL ANTERIOR TIBIOFEMURAL SUBLUXATION

    Directory of Open Access Journals (Sweden)

    A. Shahla

    2008-06-01

    Full Text Available Congenital anterior tibiofemoral subluxation is an extremely rare disorder. All reported cases accompanied by other abnormalities and syndromes. A 16-year-old high school girl referred to us with bilateral anterior tibiofemoral subluxation as the knees were extended and reduced at more than 30 degrees flexion. Deformities were due to tightness of the iliotibial band and biceps femuris muscles and corrected by surgical release. Associated disorders included bilateral anterior shoulders dislocation, short metacarpals and metatarsals, and right calcaneuvalgus deformity.

  4. The neural mechanisms of affect infusion in social economic decision-making: a mediating role of the anterior insula.

    Science.gov (United States)

    Harlé, Katia M; Chang, Luke J; van 't Wout, Mascha; Sanfey, Alan G

    2012-05-15

    Though emotions have been shown to have sometimes dramatic effects on decision-making, the neural mechanisms mediating these biases are relatively unexplored. Here, we investigated how incidental affect (i.e. emotional states unrelated to the decision at hand) may influence decisions, and how these biases are implemented in the brain. Nineteen adult participants made decisions which involved accepting or rejecting monetary offers from others in an Ultimatum Game while undergoing functional magnetic resonance imaging (fMRI). Prior to each set of decisions, participants watched a short video clip aimed at inducing either a sad or neutral emotional state. Results demonstrated that, as expected, sad participants rejected more unfair offers than those in the neutral condition. Neuroimaging analyses revealed that receiving unfair offers while in a sad mood elicited activity in brain areas related to aversive emotional states and somatosensory integration (anterior insula) and to cognitive conflict (anterior cingulate cortex). Sad participants also showed a diminished sensitivity in neural regions associated with reward processing (ventral striatum). Importantly, insular activation uniquely mediated the relationship between sadness and decision bias. This study is the first to reveal how subtle mood states can be integrated at the neural level to influence decision-making.

  5. Involvement of nitric oxide pathways in short term modulation of tyrosine hydroxylase activity by endothelins 1 and 3 in the rat anterior hypothalamus.

    Science.gov (United States)

    Morgazo, Carolina; Perfume, Guadalupe; Legaz, Guillermina; di Nunzio, Andrea; Hope, Sandra I; Bianciotti, Liliana G; Vatta, Marcelo S

    2005-09-02

    The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.

  6. Correlation between the result from arthroscopic reconstruction of the anterior cruciate ligament of the knee and the return to sports activity

    Directory of Open Access Journals (Sweden)

    Alexandre Almeida

    2014-06-01

    Full Text Available OBJECTIVE:To evaluate the return to pre-injury sports activity in a group of patients who underwent anterior cruciate ligament (ACL reconstruction, in relation to age, sex, body mass index (BMI and associations with upper-limb fractures.METHODS:A group of 265 patients who underwent ACL reconstruction using an ipsilateral graft from the thigh flexor tendons, between July 2000 and November 2007, was analyzed.RESULTS:A total of 176 patients was evaluated after a mean period of 34.95 ± 18.8 months (median: 31 months (interquartile range: 20-48 months. The minimum evaluation period was 12 months and the maximum was 87 months. The number of patients who returned to their sports activity prior to tearing the ACL was 121/176 (68.8%. Patients under 30 years of age more frequently returned to sports activity and this was considered significant: p = 0.016; odds ratio, OR = 0.44 (95% confidence interval, CI: 0.22-0.86. Returning to previous sports activity more frequently was not considered significant for male sex (p = 0.273, individuals with BMI < 25 (p = 0.280 or patients with an ACL injury unrelated to an initial traumatic episode with upper-limb fracturing (p = 0.353.CONCLUSIONS:The rate of return to the sports activity prior to ACL injury was 68.8%. It was found that patients under the age of 30 years had a significantly greater rate of return to sports activity after the surgery. In relation to sex, BMI and association with an initial traumatic episode of upper-limb fracturing, there was no statistical difference in the return to sports activity.

  7. Improving anterior deltoid activity in a musculoskeletal shoulder model - an analysis of the torque-feasible space at the sternoclavicular joint.

    Science.gov (United States)

    Ingram, David; Engelhardt, Christoph; Farron, Alain; Terrier, Alexandre; Müllhaupt, Philippe

    2016-01-01

    Modelling the shoulder's musculature is challenging given its mechanical and geometric complexity. The use of the ideal fibre model to represent a muscle's line of action cannot always faithfully represent the mechanical effect of each muscle, leading to considerable differences between model-estimated and in vivo measured muscle activity. While the musculo-tendon force coordination problem has been extensively analysed in terms of the cost function, only few works have investigated the existence and sensitivity of solutions to fibre topology. The goal of this paper is to present an analysis of the solution set using the concepts of torque-feasible space (TFS) and wrench-feasible space (WFS) from cable-driven robotics. A shoulder model is presented and a simple musculo-tendon force coordination problem is defined. The ideal fibre model for representing muscles is reviewed and the TFS and WFS are defined, leading to the necessary and sufficient conditions for the existence of a solution. The shoulder model's TFS is analysed to explain the lack of anterior deltoid (DLTa) activity. Based on the analysis, a modification of the model's muscle fibre geometry is proposed. The performance with and without the modification is assessed by solving the musculo-tendon force coordination problem for quasi-static abduction in the scapular plane. After the proposed modification, the DLTa reaches 20% of activation.

  8. Abnormalities of cingulate cortex in antipsychotic-naïve chronic schizophrenia.

    Science.gov (United States)

    Liu, Xiaoyi; Wang, Xijin; Lai, Yunyao; Hao, Chuanxi; Chen, Lei; Zhou, Zhenyu; Yu, Xin; Hong, Nan

    2016-05-01

    While several morphometric studies have postulated a critical contribution of the cingulate cortex (CC) to the pathophysiology of schizophrenia based on abnormalities in CC volume, other studies have been inconclusive. Most such studies have focused only on changes in cortical volume, whereas other morphometric parameters such as surface area and cortical thickness could be more relevant and possibly account for these discrepancies. Furthermore, factors such as antipsychotic drug use and treatment duration may also influence cortical morphology. To clarify the association between schizophrenia and CC deficits, we investigated morphometric abnormalities of the CC in antipsychotic drug (AD)-naïve chronic schizophrenia patients by comparing T1-weighted magnetic resonance images (T1WI-MRI) from patients (n=17) to healthy controls (n=17) using the surface-based morphometry program FreeSurfer. Partial correlations were examined between abnormal morphometric measures and both clinical variables and cognitive performance scores. Compared to healthy controls, drug-naïve schizophrenia patients exhibited significantly lower volumes in both left rostral anterior CC (rACC) and left posterior CC (PCC). These reductions in CC volume resulted from reduced surface area rather than reduced cortical thickness. There was also a significant relationship between left PCC volume and working memory in patients. No significant correlations were observed between CC volume and clinical variables. The results suggest that abnormalities in the CC as manifested by reduced surface area may contribute to cognitive dysfunction in schizophrenia. This article is part of a Special Issue entitled SI: PSC and the brain.

  9. Surgical treatment of anterior cruciate ligament injury in adults.

    Science.gov (United States)

    Alazzawi, Sulaiman; Sukeik, Mohamed; Ibrahim, Mazin; Haddad, Fares S

    2016-04-01

    Anterior cruciate ligament injury is among the most common soft tissue injuries of the knee joint and reconstruction of the anterior cruciate ligament is the gold standard treatment for young active symptomatic patients. This review summarizes the surgical treatment of anterior cruciate ligament injury.

  10. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja

    2011-01-01

    in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self......-awareness. Autobiographic memory retrieval of previous personal judgments of visually presented words was used as stimuli. It is demonstrated that the prestimulus condition is characterized by causal, recurrent oscillations which are maximal in the lower gamma range. When retrieving previous judgments of visually presented...

  11. What about the self is processed in the posterior cingulate cortex?

    Directory of Open Access Journals (Sweden)

    Judson eBrewer

    2013-10-01

    Full Text Available In the past decade, neuroimaging research has begun to identify key brain regions involved in self-referential processing, most consistently midline structures such as the posterior cingulate cortex (PCC. The majority of studies have employed cognitive tasks such as judgment about trait adjectives or mind-wandering, that have been associated with increased PCC activity. Conversely, tasks that share an element of present centered attention (being on task, ranging from working memory to meditation, have been associated with decreased PCC activity. Given the complexity of cognitive processes that likely contribute to these tasks, the specific contribution of the PCC to self-related processes still remains unknown. Building on this prior literature, recent studies have employed sampling methods that more precisely link subjective experience to brain activity, such as real-time fMRI neurofeedback. This recent work suggests that PCC activity may represent a sub-component cognitive process of self-reference – getting caught up in one’s experience. For example, getting caught up in a drug craving or a particular viewpoint. In this paper, we will review evidence across a number of different domains of cognitive neuroscience that converges in activation and deactivation of the PCC including recent neurophenomenological studies of PCC activity using real-time fMRI neurofeedback.

  12. Mirror Observation of Finger Action Enhances Activity in Anterior Intraparietal Sulcus: A Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Numata, Kenji; Murayama, Takashi; Takasugi, Jun; Monma, Masahiko; Oga, Masaru

    2013-01-01

    Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions rela...

  13. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network

    Science.gov (United States)

    Binney, Richard J.; Lambon Ralph, Matthew A.

    2015-01-01

    By developing and applying a method which combines fMRI and rTMS to explore semantic cognition, we identified both intrinsic (related to automatic changes in task/stimulus-related processing) and induced (i.e., associated with the effect of TMS) activation changes in the core, functionally-coupled network elements. Low-frequency rTMS applied to the human anterior temporal lobe (ATL) induced: (a) a local suppression at the site of stimulation; (b) remote suppression in three other ipsilateral semantic regions; and (c) a compensatory up-regulation in the contralateral ATL. Further examination of activity over time revealed that the compensatory changes appear to be a modulation of intrinsic variations that occur within the unperturbed network. As well as providing insights into the dynamic collaboration between core regions, the ability to observe intrinsic and induced changes in vivo may provide an important opportunity to understand the key mechanisms that underpin recovery of function in neurological patient groups. PMID:25448851

  14. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent

    Directory of Open Access Journals (Sweden)

    Angela eVandenberg

    2015-02-01

    Full Text Available The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSC and mEPSCs in Layer 5 cell-types in the mouse anterior cingulate across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral cingulate and ipsilateral pons. We found that YFP- neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21-25. YFP- neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21-25 vs. P40-50, which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB signaling during P23-50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs. Our data suggest that the maturation of inhibitory inputs onto layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.

  15. Armodafinil promotes wakefulness and activates Fos in rat brain.

    Science.gov (United States)

    Fiocchi, Elaine M; Lin, Yin-Guo; Aimone, Lisa; Gruner, John A; Flood, Dorothy G

    2009-05-01

    Modafinil increases waking and labeling of Fos, a marker of neuronal activation. In the present study, armodafinil, the R-enantiomer of racemic modafinil, was administered to rats at 30 or 100 mg/kg i.p. about 5 h after lights on (circadian time 5 and near the midpoint of the sleep phase of the sleep:wake cycle) to assess its effects on sleep/wake activity and Fos activation. Armodafinil at 100 mg/kg increased wakefulness for 2 h, while 30 mg/kg armodafinil only briefly increased wakefulness. Armodafinil (30 and 100 mg/kg) also increased latencies to the onset of sleep and motor activity. Armodafinil had differential effects in increasing neuronal Fos immunolabeling 2 h after administration. Armodafinil at 100 mg/kg increased numbers of Fos-labeled neurons in striatum and anterior cingulate cortex, without affecting nucleus accumbens. Armodafinil at 30 mg/kg only increased numbers of light Fos-labeled neurons in the anterior cingulate cortex. In brainstem arousal centers, 100 mg/kg armodafinil increased numbers of Fos-labeled neurons in the tuberomammillary nucleus, pedunculopontine tegmentum, laterodorsal tegmentum, locus coeruleus, and dorsal raphe nucleus. Fos activation of these brainstem arousal centers, as well as of the cortex and striatum, is consistent with the observed arousal effects of armodafinil.

  16. The structural involvement of the cingulate cortex in premanifest and early Huntington's disease.

    Science.gov (United States)

    Hobbs, Nicola Z; Pedrick, Amy V; Say, Miranda J; Frost, Chris; Dar Santos, Rachelle; Coleman, Allison; Sturrock, Aaron; Craufurd, David; Stout, Julie C; Leavitt, Blair R; Barnes, Josephine; Tabrizi, Sarah J; Scahill, Rachael I

    2011-08-01

    The impact of Huntington's disease neuropathology on the structure of the cingulate is uncertain, with evidence of both cortical enlargement and atrophy in this structure in early clinical disease. We sought to determine differences in cingulate volume between premanifest Huntington's disease and early Huntington's disease groups compared with controls using detailed manual measurements. Thirty controls, 30 subjects with premanifest Huntington's disease, and 30 subjects with early Huntington's disease were selected from the Vancouver site of the TRACK-HD study. Subjects underwent 3 Tesla magnetic resonance imaging and motor, cognitive, and neuropsychiatric assessment. The cingulate was manually delineated and subdivided into rostral, caudal, and posterior segments. Group differences in volume and associations with performance on 4 tasks thought to utilize cingulate function were examined, with adjustment for appropriate covariates. Cingulate volumes were, on average, 1.7 mL smaller in early Huntington's disease (P=.001) and 0.9 mL smaller in premanifest Huntington's disease (P=.1) compared with controls. Smaller volumes in subsections of the cingulate were associated with impaired recognition of negative emotions (P=.04), heightened depression (P=.009), and worse visual working memory performance (P=.01). There was no evidence of associations between volume and ability on a performance-monitoring task. This study disputes previous findings of enlargement of the cingulate cortex in Huntington's disease and instead suggests that the cingulate undergoes structural degeneration during early Huntington's disease with directionally consistent, nonsignificant differences seen in premanifest Huntington's disease. Cingulate atrophy may contribute to deficits in mood, emotional processing, and visual working memory in Huntington's disease.

  17. Anterior Cruciate Ligament (ACL) Injuries

    Science.gov (United States)

    ... Week of Healthy Breakfasts Shyness Anterior Cruciate Ligament (ACL) Injuries KidsHealth > For Teens > Anterior Cruciate Ligament (ACL) ... and Recovery Coping With an ACL Injury About ACL Injuries A torn anterior cruciate ligament (ACL) is ...

  18. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    Directory of Open Access Journals (Sweden)

    Laura eChaddock-Heyman

    2013-03-01

    Full Text Available This study used functional magnetic resonance imaging (fMRI to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ minutes of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control.

  19. Anterior cervical plating

    Directory of Open Access Journals (Sweden)

    Gonugunta V

    2005-01-01

    Full Text Available Although anterior cervical instrumentation was initially used in cervical trauma, because of obvious benefits, indications for its use have been expanded over time to degenerative cases as well as tumor and infection of the cervical spine. Along with a threefold increase in incidence of cervical fusion surgery, implant designs have evolved over the last three decades. Observation of graft subsidence and phenomenon of stress shielding led to the development of the new generation dynamic anterior cervical plating systems. Anterior cervical plating does not conclusively improve clinical outcome of the patients, but certainly enhances the efficacy of autograft and allograft fusion and lessens the rate of pseudoarthrosis and kyphosis after multilevel discectomy and fusions. A review of biomechanics, surgical technique, indications, complications and results of various anterior cervical plating systems is presented here to enable clinicians to select the appropriate construct design.

  20. EFFECT OF AUDITORY & VISUAL BIOFEEDBACK WITH ELECTRICAL STIMULATION OF THE TIBIALIS ANTERIOR MUSCLE ON ACTIVE ROM & SELECTIVE MOTOR CONTROL OF ANKLE OF CHILDREN WITH SPASTIC CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Mayuri Sharma

    2015-06-01

    Full Text Available Background & Objective: Cerebral palsy (CP is the most common cause of movement disability in childhood, with an incidence of 1.5–2.5 per 1000 live born children. It is a non-progressive disorder that covers a number of neurological conditions, resulting in an abnormal development of movement and postural control. It is believed that an inability to maximally activate their muscles contributed to this weakness. Visual and auditory feedback cues have been shown to improve ROM & VMC in patients with movement disorders. The aim of this work was to investigate the efficacy of using biofeedback and neuromuscular electrical stimulation applied on tibialis anterior in children with cerebral palsy. The present work was designed to compare the effect of treatment with or without biofeedback applied to children with diplegic CP. Materials and Method: The 30 children with CP were divided in to 2 groups(experimental & control.The control group received NMES on tibialis anterior for 20 min. a day ,6 days in a week for a period of 6 weeks.the experimental group received NMES +biofeedback +conventional treatment.pre and post treatment evaluation included range of motion ,VMC and GMFM scoring. Results: Results showed that there was main effect for time, f(1,28;0.05=4.37, p<0.046 & a main effect for time, f(1,28;0.05=1.30, p<0.00,however there main effects were qualified by a group × time interaction, f (1,28;0.05=219.37, p<0.00.There was main effect for time, f(1,28;0.05=4.64. p<0.04 & a main effect for group, f(1,28;0.05=485.96, p<0.00,however there main effects were qualified by a group × time interaction, f (1,28;0.05=65.96, p <0.00 in right and left ankle joint. Conclusion: A significant improvement in range of motion, VMC & GMFM in experimental group as compare to control group. The study determined that biofeedback have positive clinical effects on the ROM & VMC of ankle of spastic diplegic.

  1. Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat

    Science.gov (United States)

    Shiba, Yoshiro; Kim, Charissa; Santangelo, Andrea M.; Roberts, Angela C.

    2015-01-01

    The ventral prefrontal cortex is an integral part of the neural circuitry that is dysregulated in mood and anxiety disorders. However, the contribution of its distinct sub-regions to the regulation of negative emotion are poorly understood. Recently we implicated both the ventrolateral prefrontal cortex (vlPFC) and anterior orbitofrontal cortex (antOFC) in the regulation of conditioned fear and anxiety responses to a social stimulus, i.e., human intruder, in the marmoset monkey. In the present study we extend our investigations to determine the role of these two regions in regulating innate responses and coping strategies to a predator stimulus, i.e., a model snake. Both the vlPFC and antOFC lesioned groups exhibited enhanced anxiety-related responses to the snake in comparison to controls. Both groups also showed a reduction in active coping behavior. These results indicate that the vlPFC and antOFC contribute independently to the regulation of both innate fear and, as previously reported, conditioned fear, and highlight the importance of these regions in producing stimulus-appropriate coping responses. The finding that dysregulation in two distinct prefrontal regions produces the apparently similar behavioral phenotype of heightened negative emotion provides insight into the varied etiology that may underlie this symptom across a wide variety of neuropsychiatric conditions with implications for personalized treatment strategies. PMID:25653599

  2. Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat

    Directory of Open Access Journals (Sweden)

    Yoshiro eShiba

    2015-01-01

    Full Text Available The ventral prefrontal cortex is an integral part of the neural circuitry that is dysregulated in mood and anxiety disorders. However, the contribution of its distinct sub-regions to the regulation of negative emotion are poorly understood. Recently we implicated both the ventrolateral PFC (vlPFC and anterior orbitofrontal cortex (antOFC in the regulation of conditioned fear and anxiety responses to a social stimulus, i.e. human intruder, in the marmoset monkey. In the present study we extend our investigations to determine the role of these two regions in regulating innate responses and coping strategies to a predator stimulus, i.e. a model snake. Both the vlPFC and antOFC lesioned groups exhibited enhanced anxiety-related responses to the snake in comparison to controls. Both groups also showed a reduction in active coping behavior. These results indicate that the vlPFC and antOFC contribute independently to the regulation of both innate fear and, as previously reported, conditioned fear, and highlight the importance of these regions in producing stimulus-appropriate coping responses. The finding that dysregulation in two distinct prefrontal regions produces the apparently similar behavioral phenotype of heightened negative emotion provides insight into the varied aetiology that may underlie this symptom across a wide variety of neuropsychiatric conditions with implications for personalized treatment strategies.

  3. Combat Veterans with Comorbid PTSD and Mild TBI Exhibit a Greater Inhibitory Processing ERP from the Dorsal Anterior Cingulate Cortex

    Science.gov (United States)

    2014-08-08

    bipolar disorder , attention deficit hyperactivity disorder , or psychotic disorders ; or (4) acute medical problems. Included subjects returned for Session...event-related potential study of attention deficits in posttraumatic stress disorder during auditory and visual Go/NoGo continuous performance tasks...varying effects of depressive symptoms on N200 amplitudes likely arise from depression being a heterogeneous disorder , with some patients exhibiting

  4. Heritability of brain structure and glutamate levels in the anterior cingulate and left thalamus assessed with MR: A twin study

    DEFF Research Database (Denmark)

    Broberg, Brian Villumsen; Legind, Christian Stefan; Mandl, Rene C W;

    . Outliers detected by Tukey’s outlier labelling were discarded from further analyses. Results Brain volumes: ANOVA revealed a significant effect of group (probands, healthy co-twins, healthy controls) for normalized WM (F2,119 = 3.18; p = 0.0453) and TB (F2,119 = 3.49; p = 0.0338). No group effects were...

  5. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions

    Directory of Open Access Journals (Sweden)

    Simon M. Scheck

    2015-01-01

    Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function.

  6. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals.

    Science.gov (United States)

    Rothemund, Yvonne; Preuschhof, Claudia; Bohner, Georg; Bauknecht, Hans-Christian; Klingebiel, Randolf; Flor, Herta; Klapp, Burghard F

    2007-08-15

    The neural systems regulating food intake in obese individuals remain poorly understood. Previous studies applied positron emission tomography and manipulated hunger and satiety to investigate differences in appetitive processing between obese and normal-weight individuals. However, it is not known whether manipulation of stimulus value may yield different neural activity in obese as compared to control subjects when intrinsic physiological states are kept constant. We used functional magnetic resonance imaging to investigate 13 obese and 13 normal-weight subjects and manipulated food motivation by presenting visual food stimuli differing in their caloric content and energy density. In contrast to controls, obese women selectively activated the dorsal striatum while viewing high-caloric foods. Moreover, in the high-calorie condition body mass index (BMI) predicted activation in the dorsal striatum, anterior insula, claustrum, posterior cingulate, postcentral and lateral orbitofrontal cortex. The results indicate that in obese individuals simple visual stimulation with food stimuli activates regions related to reward anticipation and habit learning (dorsal striatum). Additionally, high-calorie food images yielded BMI-dependent activations in regions associated with taste information processing (anterior insula and lateral orbitofrontal cortex), motivation (orbitofrontal cortex), emotion as well as memory functions (posterior cingulate). Collectively, the results suggest that the observed activation is independent of the physiological states of hunger and satiation, and thus may contribute to pathological overeating and obesity. Some of the observed activations (dorsal striatum, orbitofrontal cortex) are likely to be dopamine-mediated.

  7. Meditation leads to reduced default mode network activity beyond an active task.

    Science.gov (United States)

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  8. Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity.

    Science.gov (United States)

    Puttemans, Veerle; Wenderoth, Nicole; Swinnen, Stephan P

    2005-04-27

    Little is known about activation changes reflecting overlearning, i.e., extensive motor training beyond asymptotic performance. Here we used functional magnetic resonance imaging to trace the neural shifts from an initial to a skilled (learning) and finally overlearned stage (automatization). Scanning occurred before training (PRE) and after 1 (MID) and 2 weeks (POST) of intensive practice on a new bimanual coordination task (>10,500 cycles). Kinematics revealed major improvements between PRE and MID sessions, whereas MID to POST session performance leveled off, indicative of learning and automatization, respectively. Imaging findings showed that activation decreased in bilateral opercular areas, bilateral ventrolateral prefrontal cortex, the right ventral premotor and supramarginal gyrus, and the anterior cingulate sulcus during the learning stage and in the supplementary motor area during the automatization stage. These changes are hypothesized to reflect decreases in attention-demanding sensory processing, as well as suppression of preferred coordination tendencies as a prelude to acquiring new coordination modes. Conversely, learning-related increases were observed in the primary motor cortex (M1), posterior cingulate zone (PCZ), putamen, and right anterior cerebellum. Importantly, both M1 and PCZ activation decreased again to initial level (PRE) during automated performance (POST). Only the putamen and anterior cerebellum remained more activated across both learning and automatization stages, supporting their crucial role in long-term motor memory formation for coordination tasks.

  9. Abnormal Spontaneous Neural Activity in Obsessive-Compulsive Disorder: A Resting-State Functional Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Li Ping

    Full Text Available Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.

  10. Changes of resting cerebral activities in subacute ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2015-01-01

    Full Text Available This study aimed to detect the difference in resting cerebral activities between ischemic stroke patients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efficacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunction and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks and 15 age-matched healthy participants. A resting-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental findings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely potential targets for the neural regeneration of subacute ischemic stroke patients.

  11. Changes of resting cerebral activities in subacute ischemic stroke patients

    Institute of Scientific and Technical Information of China (English)

    Ping Wu; Fang Zeng; Yong-xin Li; Bai-li Yu; Li-hua Qiu; Wei Qin; Ji Li; Yu-mei Zhou; Fan-rong Liang

    2015-01-01

    This study aimed to detect the difference in resting cerebral activities between ischemic stroke pa-tients and healthy participants, deifne the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efifcacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunc-tion and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks) and 15 age-matched healthy participants. A rest-ing-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental ifndings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely po-tential targets for the neural regeneration of subacute ischemic stroke patients.

  12. Evidence of a posterior cingulate involvement (Brodmann area 31) in dyslexia: a study based on source localization algorithm of event-related potentials.

    Science.gov (United States)

    Stoitsis, John; Giannakakis, Giorgos A; Papageorgiou, Charalabos; Nikita, Konstantina S; Rabavilas, Andreas; Anagnostopoulos, Dimitris

    2008-04-01

    The study investigates the differences regarding the position of intracranial generators of P50 component of ERPs in 38 dyslexic children aged 11.47+/-2.12 years compared with their 19 healthy siblings aged 12.21+/-2.25. The dipoles were extracted by solving the inverse electromagnetic problem according to the recursively applied and projected multiple signal classification (RAP-MUSIC) algorithm approach. For improved localization of the main dipole the solutions were optimized using genetic algorithms. The statistical analysis revealed differences regarding the position of intracranial generators of low frequency of P50. Particularly, dyslexics showed main activity being located at posterior cingulate cortex (Brodmann's area 31) while controls exhibited main activity being located at retrosplenial cortex (Brodmann's area 30). These results may indicate a role for the posterior cingulate cortex in the pre-attentive processing operation of dyslexia beyond of its traditional function in terms of spatial attention and motor intention.

  13. Simulated activity but real trauma: a systematic review on Nintendo Wii injuries based on a case report of an acute anterior cruciate ligament rupture.

    Science.gov (United States)

    Müller, Sebastian A; Vavken, Patrick; Pagenstert, Geert

    2015-03-01

    Video gaming injuries are classically regarded as eccentric accidents and novelty diagnoses. A case of an anterior cruciate ligament (ACL) tear sustained during Wii boxing spurned us to review the literature for other Wii-related injuries and Wii-based posttraumatic rehabilitation. The English literature listed in PubMed was systematically reviewed by searching for "Wii (trauma or injury or fracture)." Full-text articles were included after duplicate, blinded review. The type and treatment of injury as well as the Wii-based rehabilitation programs found were analyzed. Additionally, a new case of an acute ACL tear-sustained playing, Wii boxing, is additionally presented. After exclusion of irrelevant articles, 13 articles describing Wii-related injuries were included reporting on 3 fractures, 6 nonosseous, 2 overuse injuries, and 2 rehabilitation programs using Wii for posttraumatic rehabilitation. Among the presented Wii-related injuries, only 12.5% were treated conservatively, whereas 87.5% underwent either surgical or interventional treatment. Because of the reported case, the literature search was limited to Wii-related injuries excluding other video games. Another limitation of this article lies in the fact that mainly case reports but no controlled trials exist on the topic. Assumingly, primarily the more severe injuries are reported in the literature with an unknown number of possibly minor injuries. Motion-controlled video games, such as Wii, are becoming increasingly popular as a recreational entertainment. Because of their wide acceptance and entertaining nature, they are also increasingly recognized as a tool in rehabilitation. However, although the activity is simulated, injuries are real. Our systematic review shows that Wii gaming can lead to severe injuries, sometimes with lasting limitations.

  14. Sustained attention to spontaneous thumb sensations activates brain somatosensory and other proprioceptive areas.

    Science.gov (United States)

    Bauer, Clemens C C; Díaz, José-Luis; Concha, Luis; Barrios, Fernando A

    2014-06-01

    The present experiment was designed to test if sustained attention directed to the spontaneous sensations of the right or left thumb in the absence of any external stimuli is able to activate corresponding somatosensory brain areas. After verifying in 34 healthy volunteers that external touch stimuli to either thumb effectively activate brain contralateral somatosensory areas, and after subtracting attention mechanisms employed in both touch and spontaneous-sensation conditions, fMRI evidence was obtained that the primary somatosensory cortex (specifically left BA 3a/3b) becomes active when an individual is required to attend to the spontaneous sensations of either thumb in the absence of external stimuli. In addition, the left superior parietal cortex, anterior cingulate gyrus, insula, motor and premotor cortex, left dorsolateral prefrontal cortex, Broca's area, and occipital cortices were activated. Moreover, attention to spontaneous-sensations revealed an increased connectivity between BA 3a/3b, superior frontal gyrus (BA 9) and anterior cingulate cortex (BA 32), probably allowing top-down activations of primary somatosensory cortex. We conclude that specific primary somatosensory areas in conjunction with other left parieto-frontal areas are involved in processing proprioceptive and interoceptive bodily information that underlies own body-representations and that these networks and cognitive functions can be modulated by top-down attentional processes.

  15. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    Science.gov (United States)

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.

  16. Digital morphometric study of the extrasulcal surface of the cingulate gyrus in man

    Directory of Open Access Journals (Sweden)

    Spasojević Goran

    2010-01-01

    Full Text Available Introduction. The frequency of different morphological types and extrasulcal (visible surface area of the cingulate gyms, were measured and analyzed in order to obtain more precise data about morphology, right/left and sex differences in the human brain. Material and methods. The study included 42 brains (84 hemispheres from persons of both sexes and of different age (26 males, 16 females, 20-65 years old, without neuropathological changes. After fixation in 10% formaline (3-4 weeks and removal of meninges the brains were photographed under standard conditions by digital camera. Following determination of morphological type, regions of interest of cingulate gyrus were determined in stereotactic system system of coordinates and the extrasulcal surface was measured by digital AutoCAD planimetry. Results and discussion. Three basic morphological types of cingulate gyrus were found: the continuous type (34.5%, segmented type (35.7% and double paralel type (29.8%. There was no statistically significant difference in the frequency of morphological types related to the side (right/left or sex (p>0.05. The area of extrasulcal cortex of cingulate gyrus was statistically significantly (p<0.O5 larger on the left hemispheres (for 1.13 cm than on the right (left: 14.58 cm; right: 13.45 cm. The extrasulcal surface of the left cingulate gyrus was significantly larger (p0.05 in males (males 15.9 cm: females - 13.6 cm, while for the right cingulate gyrus this difference was not significant. Conclusion. Morphometry indicated sex and right/left differences of extrasulcal surface area of the human cingulate gyrus. However, the morphological analysis itself did not indicate corresponding differences, suggesting complexity of the problem of sex dimorphism and of right/left asymmetries in the domain of limbic cortex.

  17. The impact of anterior thalamic lesions on active and passive spatial learning in stimulus controlled environments: geometric cues and pattern arrangement.

    Science.gov (United States)

    Dumont, Julie R; Wright, Nicholas F; Pearce, John M; Aggleton, John P

    2014-04-01

    The anterior thalamic nuclei are vital for many spatial tasks. To determine more precisely their role, the present study modified the conventional Morris watermaze task. In each of 3 experiments, rats were repeatedly placed on a submerged platform in 1 corner (the 'correct' corner) of either a rectangular pool (Experiment 1) or a square pool with walls of different appearances (Experiments 2 and 3). The rats were then released into the pool for a first test trial in the absence of the platform. In Experiment 1, normal rats distinguished the 2 sets of corners in the rectangular pool by their geometric properties, preferring the correct corner and its diagonally opposite partner. Anterior thalamic lesions severely impaired this discrimination. In Experiments 2 and 3, normal rats typically swam directly to the correct corner of the square pool on the first test trial. Rats with anterior thalamic lesions, however, often failed to initially select the correct corner, taking more time to reach that location. Nevertheless, the lesioned rats still showed a subsequent preference for the correct corner. The same lesioned rats also showed no deficits in Experiments 2 and 3 when subsequently trained to swim to the correct corner over repeated trials. The findings show how the anterior thalamic nuclei contribute to multiple aspects of spatial processing. These thalamic nuclei may be required to distinguish relative dimensions (Experiment 1) as well as translate the appearance of spatial cues when viewed for the first time from different perspectives (Experiments 2, 3).

  18. An anterior cruciate ligament injury does not affect the neuromuscular function of the non-injured leg except for dynamic balance and voluntary quadriceps activation

    NARCIS (Netherlands)

    Zult, Tjerk; Gokeler, Alli; van Raay, Jos J A M; Brouwer, Reinoud W; Zijdewind, Inge; Hortobágyi, Tibor

    2016-01-01

    PURPOSE: The function of the anterior cruciate ligament (ACL) patients' non-injured leg is relevant in light of the high incidence of secondary ACL injuries on the contralateral side. However, the non-injured leg's function has only been examined for a selected number of neuromuscular outcomes and o

  19. Analysis of the presence or absence of atrophy of the subgenual and subcallosal cingulate cortices using voxel-based morphometry on MRI is useful to select prescriptions for patients with depressive symptoms

    Directory of Open Access Journals (Sweden)

    Niida A

    2014-12-01

    Full Text Available Akira Niida,1 Richi Niida,2 Hiroshi Matsuda,3 Makoto Motomura,4 Akihiko Uechi5 1Department of Radiology, Nanbu Hospital, Itoman City, Okinawa, Japan; 2Department of Psychiatry, Nanto Clinic, Urasoe City, Okinawa, Japan; 3Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan; 4Department of Human Sciences, University of the Ryukyus, Nakagami County, Okinawa, Japan; 5Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata City, Osaka, Japan Objective: We objectively evaluated the presence or absence of atrophy of the subgenual anterior cingulate cortex (sgACC and the subcallosal anterior cingulate cortex (scACC, using new voxel-based morphometry (VBM software employing Statistical Parametric Mapping software v8 and diffeomorphic anatomic registration through an exponentiated lie algebra. We prepared a database covering young-mature adulthood and investigated the clinical usefulness of the evaluation. Subjects and methods: One hundred seven patients with major depressive disorder (MDD, 74 patients with bipolar disorder (BD, and 240 healthy control subjects underwent 1.5T magnetic resonance imaging scanning. Using new VBM software and databases covering young-mature adults and the elderly, target volumes of interest were set in the sgACC and scACC, four indicators (severity, extent, ratio, and whole-brain extent were determined, and the presence or absence of atrophy of the sgACC and scACC was evaluated on the basis of the indicators. In addition, the relationships between the presence or absence of atrophy of the sgACC and scACC and performance of diagnosing MDD and BD and therapeutic drugs were investigated. Results: It was clarified that the disease is likely to be MDD when atrophy is detected in the sgACC, and likely to be BD when no atrophy is detected in the sgACC but is detected in the scACC. Regarding the relationship with therapeutic drugs, it was clarified that, when

  20. Atividade eletromiográfica dos músculos do joelho em indivíduos com reconstrução do ligamento cruzado anterior sob diferentes estímulos sensório-motores: relato de casos Electromyographic activity of knee muscles in individuals with anterior cruciate ligament reconstruction under different perturbations: case report

    Directory of Open Access Journals (Sweden)

    Jefferson Rosa Cardoso

    2008-01-01

    Full Text Available O objetivo deste foi descrever a atividade eletromiográfica dos músculos estabilizadores do joelho de indivíduos que receberam diferentes enxertos na cirurgia de reconstrução do ligamento cruzado anterior (LCA. Foram avaliados dois casos de enxerto patelar, dois de enxerto posterior e dois controle, durante seis estímulos proprioceptivos ao indivíduo em apoio unipodal (em solo, prancha inclinada, prancha redonda, balancinho e rollerboard em sentido ântero-posterior, AP, e médio-lateral, ML. O sinal eletromiográfico normalizado foi captado durante contração isométrica voluntária máxima (CIVM de cada músculo (vasto medial oblíquo, vasto lateral, semitendinoso, bíceps femoral e gastrocnêmio. Ao comparar os músculos vasto medial oblíquo e vasto lateral entre os casos, foi encontrada porcentagem da CIVM maior na amostra com enxerto patelar durante os estímulos solo, prancha inclinada e rollerboard AP, enquanto nos casos de enxerto posterior isso ocorreu sob os estímulos de balancinho e prancha redonda. Ao analisar somente os músculos flexores, os sujeitos com enxerto posterior apresentaram maior atividade sob os estímulos de balancinho e rollerboard ML. Conclui-se que os casos com enxerto patelar ativam mais sua musculatura que aqueles com enxerto posterior; e a quantidade de ativação muscular parece variar para cada estímulo sensório-motor, conforme o tipo de enxerto usado. Estes achados podem orientar a reabilitação de indivíduos submetidos à cirurgia de reconstrução do LCA.The aim of this case study was to describe electromyographic (EMG activity of the knee stabilizing muscles in subjects having received different autografts in anterior cruciate ligament (ACL surgical reconstruction: two subjects with anterior bone-tendon-bone graft, two with hamstring graft and two controls. Normalised EMG signal was collected during maximum voluntary isometric contraction (MVIC of each muscle (vastus medialis obliques, vastus

  1. Anterior crucate ligament (ACL) injury

    Science.gov (United States)

    ... An anterior cruciate ligament injury is the over-stretching or tearing of the anterior cruciate ligament (ACL) ... may be injured. This is a medical emergency. Prevention Use proper techniques when playing sports or exercising. ...

  2. Transient Global Amnesia Associated with an Acute Infarction at the Cingulate Gyrus

    Directory of Open Access Journals (Sweden)

    Alejandro Gallardo-Tur

    2014-01-01

    Full Text Available Background. Transient global amnesia (TGA is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct.

  3. Altered oscillation and synchronization of default-mode network activity in mild Alzheimer's disease compared to mild cognitive impairment: an electrophysiological study.

    Directory of Open Access Journals (Sweden)

    Fu-Jung Hsiao

    Full Text Available Some researchers have suggested that the default mode network (DMN plays an important role in the pathological mechanisms of Alzheimer's disease (AD. To examine whether the cortical activities in DMN regions show significant difference between mild AD from mild cognitive impairment (MCI, electrophysiological responses were analyzed from 21 mild Alzheimer's disease (AD and 21 mild cognitive impairment (MCI patients during an eyes closed, resting-state condition. The spectral power and functional connectivity of the DMN were estimated using a minimum norm estimate (MNE combined with fast Fourier transform and imaginary coherence analysis. Our results indicated that source-based EEG maps of resting-state activity showed alterations of cortical spectral power in mild AD when compared to MCI. These alterations are characteristic of attenuated alpha or beta activities in the DMN, as are enhanced delta or theta activities in the medial temporal, inferior parietal, posterior cingulate cortex and precuneus. With regard to altered synchronization in AD, altered functional interconnections were observed as specific connectivity patterns of connection hubs in the precuneus, posterior cingulate cortex, anterior cingulate cortex and medial temporal regions. Moreover, posterior theta and alpha power and altered connectivity in the medial temporal lobe correlated significantly with scores obtained on the Mini-Mental State Examination (MMSE. In conclusion, EEG is a useful tool for investigating the DMN in the brain and differentiating early stage AD and MCI patients. This is a promising finding; however, further large-scale studies are needed.

  4. Facetas em dentes anteriores

    OpenAIRE

    Veloso, Helena Rafaela Lourenço Martins

    2015-01-01

    Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária A presente revisão bibliográfica aborda as facetas estéticas em dentes anteriores, pela crescente valorização de um sorriso esteticamente agradável, facto que faz com que as pessoas procurem cada vez mais alternativas de tratamento para melhorar a aparência do seu sorriso. Os dentes anteriores são decisivos na aparência estética e, c...

  5. Neural Activities Underlying the Feedback Express Salience Prediction Errors for Appetitive and Aversive Stimuli

    Science.gov (United States)

    Gu, Yan; Hu, Xueping; Pan, Weigang; Yang, Chun; Wang, Lijun; Li, Yiyuan; Chen, Antao

    2016-01-01

    Feedback information is essential for us to adapt appropriately to the environment. The feedback-related negativity (FRN), a frontocentral negative deflection after the delivery of feedback, has been found to be larger for outcomes that are worse than expected, and it reflects a reward prediction error derived from the midbrain dopaminergic projections to the anterior cingulate cortex (ACC), as stated in reinforcement learning theory. In contrast, the prediction of response-outcome (PRO) model claims that the neural activity in the mediofrontal cortex (mPFC), especially the ACC, is sensitive to the violation of expectancy, irrespective of the valence of feedback. Additionally, increasing evidence has demonstrated significant activities in the striatum, anterior insula and occipital lobe for unexpected outcomes independently of their valence. Thus, the neural mechanism of the feedback remains under dispute. Here, we investigated the feedback with monetary reward and electrical pain shock in one task via functional magnetic resonance imaging. The results revealed significant prediction-error-related activities in the bilateral fusiform gyrus, right middle frontal gyrus and left cingulate gyrus for both money and pain. This implies that some regions underlying the feedback may signal a salience prediction error rather than a reward prediction error. PMID:27694920

  6. Intradural anterior transpetrosal approach.

    Science.gov (United States)

    Ichimura, Shinya; Hori, Satoshi; Hecht, Nils; Czabanka, Marcus; Vajkoczy, Peter

    2016-10-01

    The standard anterior transpetrosal approach (ATPA) for petroclival lesions is fundamentally an epidural approach and has been practiced for many decades quite successfully. However, this approach has some disadvantages, such as epidural venous bleeding around foramen ovale. We describe here our experience with a modified technique for anterior petrosectomy via an intradural approach that overcomes these disadvantages. Five patients with petroclival lesions underwent surgery via the intradural ATPA. The intraoperative hallmarks are detailed, and surgical results are reported. Total removal of the lesions was achieved in two patients with petroclival meningioma and two patients with pontine cavernoma, whereas subtotal removal was achieved in one patient with petroclival meningioma without significant morbidity. No patient experienced cerebrospinal fluid leakage. The intradural approach is allowed to tailor the extent of anterior petrosectomy to the individually required exposure, and the surgical procedure appeared to be more straightforward than via the epidural route. Caveats encountered with the approach were the temporal basal veins that could be spared as well as identification of the petrous apex due to the lack of familial epidural landmarks. The risk of injury to the temporal bridging veins is higher in this approach than in the epidural approach. Intradural approach is recommended in patients with a large epidural venous route, such as sphenobasal and sphenopetrosal vein. Navigation via bone-window computed tomography is useful to identify the petrous apex.

  7. Pregnancy and maternal behavior induce changes in glia, glutamate and its metabolism within the cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Natalina Salmaso

    Full Text Available An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2 occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS, and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience.

  8. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal.

    Science.gov (United States)

    Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio

    2013-12-01

    Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs.

  9. Causes of anterior cruciate ligament injuries

    Directory of Open Access Journals (Sweden)

    Ristić Vladimir

    2010-01-01

    Full Text Available In order to prevent anterior cruciate ligament injuries it is necessary to define risk factors and to analyze the most frequent causes of injuries - that being the aim of this study. The study sample consisted of 451 surgically treated patients, including 400 sportsmen (65% of them being active and 35% recreational sportsmen, 29% female and 71% male; of whom 90% were younger than 35. Sports injuries, as the most frequent cause of anterior cruciate ligament injuries, were recorded in 88% of patients (non-contact ones in 78% and contact ones in 22%, injuries occurring in everyday activities in 11% and in traffic in 1%. Among sportsmen, reconstruction of the anterior cruciate ligament was most frequently performed in football players (48%, then in handball players (22%, basketball players (13%, volleyball players (8%, martial arts fighters (4%. However, the injury incidence was the highest among the active basketball players (1 injured among 91 active players. Type of footwear, warming up before the activity, genetic predisposition and everyday therapy did not have a significant influence on getting injured. Anterior cruciate ligament injuries happened three times more often during matches, in the middle and at the end of a match and training session (79%, at landing after the jump or when changing direction of movement (75% without a contact with other competitors, on dry surfaces (79%, among not so well prepared sportsmen.

  10. Recognition of Mother's voice evokes metabolic activation in the medial prefrontal cortex and lateral thalamus of Octodon degus pups.

    Science.gov (United States)

    Braun, K; Poeggel, G

    2001-01-01

    In a variety of animal species, including primates, vocal communication is an essential part to establish and maintain social interactions, including the emotional bond between the newborn, its parents and siblings. The aim of this study in pups of the trumpet-tailed rat, Octodon degus, was to identify cortical and subcortical brain regions, which are involved in the perception of vocalizations uttered by the mother. In this species, which is characterized by an elaborated vocal repertoire, the (14C)-2-fluoro-deoxyglucose autoradiography was applied to measure region-specific metabolic activation in response to the presentation of a learned emotionally relevant acoustic stimulus, the maternal calls. Already at the age of eight days the precentral medial cortex, anterior cingulate cortex and the lateral thalamus could be identified by their enhanced metabolic activation in response to the presentation of the emotionally relevant maternal nursing calls, whereas other brain areas, such as the hippocampus and amygdala did not show stimulus-induced activation. Since in humans changes of activity patterns in relation to the emotional content of spoken language have been observed in similar brain regions, e.g. in the anterior cingulate cortex, Octodon degus may provide a suitable animal model to study the cellular and synaptic mechanisms underlying perception, production and processing of conspecific vocalizations.

  11. Anterior chest wall examination reviewed

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.

  12. Anterior Chamber Live Loa loa: Case Report.

    Science.gov (United States)

    Kagmeni, G; Cheuteu, R; Bilong, Y; Wiedemann, P

    2016-01-01

    We reported a case of unusual intraocular Loa loa in a 27-year-old patient who presented with painful red eye. Biomicroscopy revealed a living and active adult worm in the anterior chamber of the right eye. After surgical extraction under local anesthesia, parasitological identification confirmed L. loa filariasis.

  13. Treatment for acute anterior cruciate ligament tear

    DEFF Research Database (Denmark)

    Frobell, Richard B; Roos, Harald P; Roos, Ewa M;

    2013-01-01

    To compare, in young active adults with an acute anterior cruciate ligament (ACL) tear, the mid-term (five year) patient reported and radiographic outcomes between those treated with rehabilitation plus early ACL reconstruction and those treated with rehabilitation and optional delayed ACL...

  14. Treatment for acute anterior cruciate ligament tear

    DEFF Research Database (Denmark)

    Frobell, Richard B; Roos, Harald P; Roos, Ewa M;

    2015-01-01

    STUDY QUESTION: In young active adults with an acute anterior cruciate ligament (ACL) rupture, do patient reported or radiographic outcomes after five years differ between those treated with rehabilitation plus early ACL reconstruction and those treated with rehabilitation and optional delayed ACL...

  15. Resting State Functional Connectivity within the Cingulate Cortex Jointly Predicts Agreeableness and Stressor-Evoked Cardiovascular Reactivity

    OpenAIRE

    Ryan, John P.; Sheu, Lei K.; Peter J Gianaros

    2010-01-01

    Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the association...

  16. Posterior cingulated cortex functional connectivity in deficit schizophrenia: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    唐小伟

    2014-01-01

    Objective To explore the discrepancies of the network of resting brain functional connectivity related to posterior cingulated cortex(PCC)between deficit schizophrenia patients and normal control.Methods Thirty male patients of deficit schizophrenia,nondeficit schizophrenia and 30 healthy controls were enrolled,and the age,education level and sex were matched between three

  17. Adaptive coding of action values in the human rostral cingulate zone

    NARCIS (Netherlands)

    Jocham, G.; Neumann, J.; Klein, T.A.; Danielmeier, C.; Ullsperger, M.

    2009-01-01

    Correctly selecting appropriate actions in an uncertain environment requires gathering experience about the available actions by sampling them over several trials. Recent findings suggest that the human rostral cingulate zone (RCZ) is important for the integration of extended action-outcome associat

  18. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects Ativação do córtex frontopolar e temporal anterior em uma tarefa de julgamento moral: resultados preliminares de ressonância magnética funcional em indivíduos normais

    Directory of Open Access Journals (Sweden)

    Jorge Moll

    2001-09-01

    Full Text Available OBJECTIVE: To study the brain areas which are activated when normal subjects make moral judgments. METHOD: Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI during the auditory presentation of sentences that they were instructed to silently judge as either "right" or "wrong". Half of the sentences had an explicit moral content ("We break the law when necessary", the other half comprised factual statements devoid of moral connotation ("Stones are made of water". After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemodynamically modeled for event-related fMRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. RESULTS: Regions activated during moral judgment included the frontopolar cortex (FPC, medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (BA 10/46 and 9 were largely independent of emotional experience and represented the largest areas of activation. CONCLUSIONS: These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct.OBJETIVO: Estudar, com ressonância magnética funcional (RMf, as áreas cerebrais normalmente ativadas por julgamentos morais em tarefa de verificação de sentenças. MÉTODO: Dez adultos normais foram estudados com RMf-BOLD durante a apresentação auditiva de sentenças cujo conteúdo foram instruídos a julgar como "certo" ou "errado". Metade das sentenças possuía um conteúdo moral explícito ("Transgredimos a lei se necess

  19. A biased activation theory of the cognitive and attentional modulation of emotion

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2013-03-01

    Full Text Available Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex. The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex. Similar effects are found for selective attention, to for example the pleasantness vs the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype.

  20. A biased activation theory of the cognitive and attentional modulation of emotion.

    Science.gov (United States)

    Rolls, Edmund T

    2013-01-01

    Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex (OFC). The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex (ACC). Similar effects are found for selective attention, to for example the pleasantness vs. the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype.

  1. Witnessing hateful people in pain modulates brain activity in regions associated with physical pain and reward.

    Directory of Open Access Journals (Sweden)

    Glenn Ryan Fox

    2013-10-01

    Full Text Available How does witnessing a hateful person in pain compare to witnessing a likable person in pain? The current study compared the brain bases for how we perceive likable people in pain with those of viewing hateful people in pain. While social bonds are built through sharing the plight and pain of others in the name of empathy, viewing a hateful person in pain also has many potential ramifications. In this functional Magnetic Resonance Imaging (fMRI study, Caucasian Jewish male participants viewed videos of (1 disliked, hateful, anti-Semitic individuals, and (2 liked, non-hateful, tolerant individuals in pain. The results showed that, compared with viewing liked people, viewing hateful people in pain elicited increased responses in regions associated with observation of physical pain (the insular cortex, the anterior cingulate cortex, and the somatosensory cortex, reward processing (the striatum, and frontal regions associated with emotion regulation. Functional connectivity analyses revealed connections between seed regions in the left anterior cingulate cortex and right insular cortex with reward regions, the amygdala, and frontal regions associated with emotion regulation. These data indicate that regions of the brain active while viewing someone in pain may be more active in response to the danger or threat posed by witnessing the pain of a hateful individual more so than the desire to empathize with a likable person’s pain.

  2. Generalized anxiety modulates frontal and limbic activation in major depression

    Directory of Open Access Journals (Sweden)

    Schlund Michael W

    2012-02-01

    Full Text Available Abstract Background Anxiety is relatively common in depression and capable of modifying the severity and course of depression. Yet our understanding of how anxiety modulates frontal and limbic activation in depression is limited. Methods We used functional magnetic resonance imaging and two emotional information processing tasks to examine frontal and limbic activation in ten patients with major depression and comorbid with preceding generalized anxiety (MDD/GAD and ten non-depressed controls. Results Consistent with prior studies on depression, MDD/GAD patients showed hypoactivation in medial and middle frontal regions, as well as in the anterior cingulate, cingulate and insula. However, heightened anxiety in MDD/GAD patients was associated with increased activation in middle frontal regions and the insula and the effects varied with the type of emotional information presented. Conclusions Our findings highlight frontal and limbic hypoactivation in patients with depression and comorbid anxiety and indicate that anxiety level may modulate frontal and limbic activation depending upon the emotional context. One implication of this finding is that divergent findings reported in the imaging literature on depression could reflect modulation of activation by anxiety level in response to different types of emotional information.

  3. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions.

  4. Multidisciplinary management of anterior diastemata

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; Herkrath, Fernando José; Franco, Eduardo Jacomino

    2007-01-01

    Anterior diastemata may compromise the harmony of a patient's smile. Consideration of etiologic factors, previous gingival conditioning, and individual treatment planning are essential in the proper management of anterior diastemata. An integrated orthodontic-restorative approach may enhance...... the aesthetic results when orthodontic therapy itself is not feasible. This article presents integrated orthodonticrestorative solutions of anterior diastemata, associated with the conditioning of the gingival tissue with composite resin, and discusses the most relevant aspects related to their etiology...

  5. Activity preferences, lifestyle modifications and re-injury fears influence longer-term quality of life in people with knee symptoms following anterior cruciate ligament reconstruction: a qualitative study

    Directory of Open Access Journals (Sweden)

    Stephanie R Filbay

    2016-04-01

    Full Text Available Questions: How do people with knee symptoms describe their quality of life and experiences 5 to 20 years after anterior cruciate ligament reconstruction (ACLR? What factors impact upon the quality of life of these people? Design: Qualitative study. Participants: Seventeen people with knee symptoms 5 to 20 years after ACLR and high (n = 8 or low (n = 9 quality of life scores were recruited from a cross-sectional study. Methods: Semi-structured telephone interviews were conducted and transcribed. The data obtained from the interventions underwent inductive coding and thematic analysis. Results: Four consistent themes emerged from the interviews as common determinants of quality of life following ACLR: physical activity preferences; lifestyle modifications; adaptation and acceptance; and fear of re-injury. All participants described the importance of maintaining a physically active lifestyle and the relationship between physical activity and quality of life. Participants who avoided sport or activity reported experiencing reduced quality of life. Participants who suppressed or overcame re-injury fears to continue sport participation described experiencing a satisfactory quality of life while taking part in sport despite knee symptoms. For some participants, resuming competitive sport resulted in subsequent knee trauma, anterior cruciate ligament re-rupture or progressive deterioration of knee function, with negative impacts on quality of life following sport cessation. Participants who enjoyed recreational exercise often adapted their lifestyle early after ACLR, while others described adapting their lifestyle at a later stage to accommodate knee impairments; this was associated with feelings of acceptance and satisfaction, irrespective of knee symptoms. Conclusion: Activity preferences, lifestyle modifications and fear of re-injury influenced quality of life in people with knee symptoms up to 20 years following ACLR. People with a preference

  6. Mecanismos de ativação agonista e antagonista no joelho de indivíduos com reconstrução de ligamento cruzado anterior: estudo cinético e eletromiográfico Mechanisms of agonist and antagonist activation in the knee of individuals with anterior cruciate ligament reconstruction: kinetic and eletromyographic study

    Directory of Open Access Journals (Sweden)

    Anice de Campos Pássaro

    2008-01-01

    Full Text Available OBJETIVO: Avaliar e comparar o torque e a atividade eletromiográfica dos músculos vasto lateral e bíceps femoral durante a extensão e a flexão do joelho em cadeia cinética aberta. MÉTODO: 15 sujeitos do sexo masculino, distribuídos em: cinco no Grupo Teste (GT (32,2 ± 7,1 anos com reconstrução do ligamento cruzado anterior via artroscópica (tendão patelar, e dez no Grupo Controle (GC sem lesão (30,1 ± 10,7 anos. Foi utilizado o Cybex 6000 a 100°.s-1 e eletrodos bipolares diferenciais ativos (Delsys-Bagnoli 8, com a freqüência de amostragem de 1000 Hz e tempo de aquisição de 10 segundos. Foram considerados os valores do Root Mean Square (RMS e o padrão temporal de ativação dos músculos em função da fase do movimento (envoltório linear. RESULTADOS: O lado lesado apresentou maior pico de torque flexor e menor pico de torque extensor. Maior ativação agonista e menor ativação antagonista para o bíceps femoral e menor ativação agonista para o vasto lateral. Pelo envoltório linear a ativação do vasto lateral no grupo teste foi diminuindo. CONCLUSÃO: Apesar de reabilitados, o membro lesado permaneceu com déficits no torque extensor, apresentando menor, mais precoce e decrescente ativação do músculo vasto lateral e menor ativação antagonista do músculo bíceps femoral, apesar do maior torque flexor e da maior ativação de unidades motoras durante a flexão do joelho. Estes déficits podem explicar algumas queixas clínicas que permaneceram nestes indivíduos.PURPOSE: To assess and compare torque and electromyographic activity of the vastus lateralis and biceps femoris muscles upon knee extension and flexion in open kinetic chain. METHODS: Fifteen male subjects were distributed in two groups: Test Group (TG (32.2 ± 7.1 years composed by five subjects who had previously been submitted to anterior cruciate ligament arthroscopic reconstruction (patellar tendon; and Control Group (CG (30.1 ± 10.7 years composed

  7. [Anterior cervical hypertrichosis: case report].

    Science.gov (United States)

    Orozco-Gutiérrez, Mario H; Sánchez-Corona, José; García-Ortiz, José E; Castañeda-Cisneros, Gema; Dávalos-Rodríguez, Nory O; Corona-Rivera, Jorge R; García-Cruz, Diana

    2016-10-01

    The non-syndromic anterior cervical hypertrichosis (OMIM N° 600457) is a genetic disorder characterized by a patch of hair at the level of the laryngeal prominence. We present a 12-year-old boy with anterior cervical hypertrichosis and mild generalized hypertrichosis. He has no neurological, ophthalmological or skeletal anomalies. The clinical follow up is 10 years.

  8. Anterior endoderm and head induction in early vertebrate embryos.

    Science.gov (United States)

    de Souza, F S; Niehrs, C

    2000-05-01

    Early work on the formation of the vertebrate body axis indicated the existence of separate head- and trunk-inducing regions in Spemann's organizer of the amphibian gastrula. In mammals some head-organizing activity may be located in anterior visceral (extraembryonic) endoderm (AVE). By analogy, the equivalent structure in the Xenopus laevis gastrula, the anterior endoderm, has been proposed to be the amphibian head organizer. Here we review recent data that challenge this notion and indicate that the involvement of AVE in head induction seems to be an exclusively mammalian characteristic. In X. laevis and chick, it is the prechordal endomesoderm that is the dominant source of head-inducing signals during early gastrulation. Furthermore, head induction in mammals needs a combination of signals from anterior primitive endoderm, prechordal plate, and anterior ectoderm. Thus, despite the homology of vertebrate anterior primitive endoderm, a role in head induction seems not to be conserved.

  9. Inestabilidad Anterior de Hombro

    Directory of Open Access Journals (Sweden)

    Pablo David Flint Kuran

    2013-11-01

    Full Text Available In­tro­duc­ción La luxación recidivante de hombro es una patología frecuente en pacientes jóvenes, laboralmente activos. Existen numerosas técnicas quirúrgicas para la inestabilidad glenohumeral. La técnica de Bristow, discutida por no ser anatómica y por sus complicaciones, continúa vigente debido al bajo índice de reluxaciones. Los objetivos fueron determinar el índice de recidiva, alteraciones funcionales e índice de consolidación del injerto. Materiales­ y­ Métodos Se evaluaron 24 pacientes del sexo masculino, de entre 19 y 40 años, operados por luxación anterior recidivante de hombro según la técnica de Bristow, entre enero de 2003 y agosto de 2011. Se evaluó la tasa de reluxación, la función articular según el puntaje de Constant y el posicionamiento del injerto con respecto a la superficie articular con tomografía y radiografías para evaluar la consolidación del injerto. Se registraron las complicaciones quirúrgicas. Resultados ­Todos los pacientes eran hombres, con rango de edad de 19 a 40 años. La causa fue traumática en 24 pacientes. Dieciséis pacientes presentaron más de 3 episodios de luxación prequirúrgicos. Según la escala de Constant, 21 obtuvieron entre 96 y 100 puntos, y los restantes, entre 90 y 95 puntos. No hubo nuevos episodios de luxaciones. La tomografía mostró la consolidación en todos los casos. Un paciente tuvo una imagen osteolítica alrededor del tornillo, sin compromiso funcional del hombro. Conclusión La técnica de Bristow para tratar la luxación anterior recidivante de hombro provocó un bajo índice de complicaciones, con resultados funcionales entre excelentes y buenos. No hubo episodios de reluxación y se logró la consolidación del injerto óseo en todos los casos.

  10. Chemical shift magnetic resonance spectroscopy of cingulate grey matter in patients with minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Mechtcheriakov, Sergei; Kugener, Andre; Mattedi, Michael; Hinterhuber, Hartmann; Marksteiner, Josef [Innsbruck Medical University, Department of General Psychiatry, Innsbruck (Austria); Schocke, Michael [Innsbruck Medical University, Department of Radiology I, Innsbruck (Austria); Graziadei, Ivo W.; Vogel, Wolfgang [Innsbruck Medical University, Department of Gastroenterology, Innsbruck (Austria)

    2005-01-01

    Minimal hepatic encephalopathy (MHE) is frequently diagnosed in patients with liver cirrhosis who do not show overt clinical cirrhosis-associated neurological deficits. This condition manifests primarily with visuo-motor and attention deficits. We studied the association between visuo-motor deficits and magnetic resonance spectroscopic parameters in cingulate grey matter and white matter of centrum semiovale in patients with liver cirrhosis. The data revealed an increase in the glutamate-glutamine/creatine ratio and a decrease in choline/creatine and inositol/creatine ratios in patients with liver cirrhosis. The analysis of the data showed that cirrhosis-associated deterioration of the visuo-motor function significantly correlates with a decrease in the choline/creatine ratio and an increase in N-acetylaspartate/choline in cingulate grey matter but not in the neighbouring white matter. Furthermore, the increase in the glutamate-glutamine/creatine ratio correlated significantly with the increase in the N-acetylaspartate/creatine ratio. These data suggest an association between altered choline, glutamate-glutamine and NAA metabolism in cingulate grey matter and symptoms of MHE, and underline the importance of differentiation between grey and white matter in magnetic resonance spectroscopic studies on patients with cirrhosis-associated brain dysfunction. (orig.)

  11. Forebrain activation in REM sleep: an FDG PET study.

    Science.gov (United States)

    Nofzinger, E A; Mintun, M A; Wiseman, M; Kupfer, D J; Moore, R Y

    1997-10-03

    Rapid eye movement (REM) sleep is a behavioral state characterized by cerebral cortical activation with dreaming as an associated behavior. The brainstem mechanisms involved in the generation of REM sleep are well-known, but the forebrain mechanisms that might distinguish it from waking are not well understood. We report here a positron emission tomography (PET) study of regional cerebral glucose utilization in the human forebrain during REM sleep in comparison to waking in six healthy adult females using the 18F-deoxyglucose method. In REM sleep, there is relative activation, shown by increased glucose utilization, in phylogenetically old limbic and paralimbic regions which include the lateral hypothalamic area, amygdaloid complex, septal-ventral striatal areas, and infralimbic, prelimbic, orbitofrontal, cingulate, entorhinal and insular cortices. The largest area of activation is a bilateral, confluent paramedian zone which extends from the septal area into ventral striatum, infralimbic, prelimbic, orbitofrontal and anterior cingulate cortex. There are only small and scattered areas of apparent deactivation. These data suggest that an important function of REM sleep is the integration of neocortical function with basal forebrain-hypothalamic motivational and reward mechanisms. This is in accordance with views that alterations in REM sleep in psychiatric disorders, such as depression, may reflect dysregulation in limbic and paralimbic structures.

  12. Forebrain overexpression of CaMKII abolishes cingulate long term depression and reduces mechanical allodynia and thermal hyperalgesia

    Directory of Open Access Journals (Sweden)

    Tsien Joe Z

    2006-06-01

    Full Text Available Abstract Activity-dependent synaptic plasticity is known to be important in learning and memory, persistent pain and drug addiction. Glutamate NMDA receptor activation stimulates several protein kinases, which then trigger biochemical cascades that lead to modifications in synaptic efficacy. Genetic and pharmacological techniques have been used to show a role for Ca2+/calmodulin-dependent kinase II (CaMKII in synaptic plasticity and memory formation. However, it is not known if increasing CaMKII activity in forebrain areas affects behavioral responses to tissue injury. Using genetic and pharmacological techniques, we were able to temporally and spatially restrict the over expression of CaMKII in forebrain areas. Here we show that genetic overexpression of CaMKII in the mouse forebrain selectively inhibits tissue injury-induced behavioral sensitization, including allodynia and hyperalgesia, while behavioral responses to acute noxious stimuli remain intact. CaMKII overexpression also inhibited synaptic depression induced by a prolonged repetitive stimulation in the ACC, suggesting an important role for CaMKII in the regulation of cingulate neurons. Our results suggest that neuronal CaMKII activity in the forebrain plays a role in persistent pain.

  13. Increased CD40 ligand in patients with acute anterior uveitis

    DEFF Research Database (Denmark)

    Øgard, Carsten; Sørensen, Torben Lykke; Krogh, Erik

    2005-01-01

    The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis.......The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis....

  14. Brain activity in advantageous and disadvantageous situations: implications for reward/punishment sensitivity in different situations.

    Directory of Open Access Journals (Sweden)

    Guangheng Dong

    Full Text Available OBJECTIVE: This study modeled win and lose trials in a simple gambling task to examine the effect of entire win-lose situations (WIN, LOSS, or TIE on single win/lose trials and related neural underpinnings. METHODS: The behavior responses and brain activities of 17 participants were recorded by an MRI scanner while they performed a gambling task. Different conditions were compared to determine the effect of the task on the behavior and brain activity of the participants. Correlations between brain activity and behavior were calculated to support the imaging results. RESULTS: In win trials, LOSS caused less intense posterior cingulate activity than TIE. In lose trials, LOSS caused more intense activity in the right superior temporal gyrus, bilateral superior frontal gyrus, bilateral anterior cingulate, bilateral insula cortex, and left orbitofrontal cortex than WIN and TIE. CONCLUSIONS: The experiences of the participants in win trials showed great similarity among different win-lose situations. However, the brain activity and behavior responses of the participants in lose trials indicated that they experienced stronger negative emotion in LOSS. The participants also showed an increased desire to win in LOSS than in WIN or TIE conditions.

  15. Anterior segment spectral domain optical coherence tomography imaging of patients with anterior scleritis.

    Science.gov (United States)

    Levison, Ashleigh L; Lowder, Careen Y; Baynes, Kimberly M; Kaiser, Peter K; Srivastava, Sunil K

    2016-08-01

    The purpose of the study was to describe the findings seen on anterior segment spectral domain optical coherence tomography (SD-OCT) in patients with anterior scleritis and determine the feasibility of using SD-OCT to image and grade the degree of scleral inflammation and monitor response to treatment. All patients underwent slit lamp examination by a uveitis specialist, and the degree of scleral inflammation was recorded. Spectral domain OCT imaging was then performed of the conjunctiva and scleral tissue using a standardized acquisition protocol. The scans were graded and compared to clinical findings. Twenty-eight patients with anterior scleritis and ten patients without ocular disease were included in the study. Seventeen of the scleritis patients were followed longitudinally. Common findings on SD-OCT in patients with active scleritis included changes in hyporeflectivity within the sclera, nodules, and visible vessels within the sclera. There was significant variation in findings on SD-OCT within each clinical grade of active scleritis. These changes on SD-OCT improved with treatment and clinical improvement. SD-OCT imaging provided various objective measures that could be used in the future to grade inflammatory activity in patients with anterior scleritis. Longitudinal imaging of patients with active scleritis demonstrated that SD-OCT may have great utility in monitoring response to treatment.

  16. [Facilitation of the retention and acceleration of operant conditioning extinction after cingulate cortex lesions in BALB/c mice].

    Science.gov (United States)

    Destrade, C; Gauthier, M

    1981-12-21

    One week after receiving bilateral electrolytic lesions of the cingulate cortex, BALB/c Mice underwent acquisition, retention and extinction of an appetitive operant-conditioning task in a Skinner box. There was no significant difference between lesioned and control animals in acquisition; however, lesioned mice exhibited improved retention and faster extinction. These results suggest a possible involvement of the cingulate cortex in memory processes.

  17. Unlike adults, children and adolescents show predominantly increased neural activation to social exclusion by members of the opposite gender.

    Science.gov (United States)

    Bolling, Danielle Z; Pelphrey, Kevin A; Vander Wyk, Brent C

    2016-10-01

    The effects of group membership on brain responses to social exclusion have been investigated in adults, revealing greater anterior cingulate responses to exclusion by members of one's in-group (e.g., same-gender). However, social exclusion is a critical aspect of peer relations in youth and reaches heightened salience during adolescence, a time when social anxiety disorders are also emergent. While the behavioral and neural correlates of social exclusion in adolescence have been extensively explored, the effects of group membership on peer rejection are less clear. The current study used functional magnetic resonance imaging (fMRI) to investigate the differential neural correlates of being excluded by peers of one's same- versus opposite-gender during an online ball-toss game. Participants were a group of typically developing children and adolescents (7-17 years). As predicted, anterior cingulate cortex showed a main effect of social exclusion versus fair play. However, unlike a previous adult study, this region did not show increased activation to same-gender exclusion. Instead, several regions differentiating same- versus opposite-gender exclusion were exclusively more sensitive to exclusion by one's opposite gender. These results are discussed in the context of adolescent socio-emotional development.

  18. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    Science.gov (United States)

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  19. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  20. Diffuse anterior retinoblastoma: current concepts

    Directory of Open Access Journals (Sweden)

    Yang J

    2015-07-01

    Full Text Available Jing Yang,1–3 Yalong Dang,1–3 Yu Zhu,1 Chun Zhang2,3 1Department of Ophthalmology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou City, Henan Province, 2Department of Ophthalmology, Peking University Third Hospital, 3Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People’s Republic of China Abstract: Diffuse anterior retinoblastoma is a rare variant of retinoblastoma seeding in the area of the vitreous base and anterior chamber. Patients with diffuse anterior retinoblastoma are older than those with the classical types, with the mean age being 6.1 years. The original cells of diffuse anterior retinoblastoma are supposed to be cone precursor. Patients most commonly present with pseudouveitis, pseudohypopyon, and increased intraocular pressure. The retina under fundus examination is likely to be normal, and the clinical features mimic the inflammation progress, which can often lead to misdiagnosis. The published diffuse anterior retinoblastoma cases were diagnosed after fine-needle aspiration biopsy running the potential risk of inducing metastasis. The most common treatment for diffuse anterior retinoblastoma is enucleation followed by systematic chemotherapy according to the patient’s presentation and clinical course. This review summarizes the recent advances in etiology (including tumorigenesis and cell origin, pathology, diagnosis, differential diagnosis, and new treatment. The challenges of early diagnosis and prospects are also discussed. Keywords: pathology, microenvironment, treatment, diagnosis 

  1. A ‘complex’ of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients

    Directory of Open Access Journals (Sweden)

    L. Becerra

    2016-01-01

    Full Text Available Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy (1H-MRS data were acquired on a 3 Tesla (3 T MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years. Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA was performed to test for group differences for all metabolites/creatine (Cre ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE. The 3 selected metabolite ratios were aspartate (Asp/Cre, N-acetyl aspartate (NAA/Cre, and glutamine (Gln/Cre. These findings are in support of a ‘complex’ of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite ‘complex’ may confer more subtle but biological processes that are ongoing. The data also support the current theory

  2. Single subject pharmacological-MRI (phMRI study: Modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor

    Directory of Open Access Journals (Sweden)

    Chialvo DR

    2005-11-01

    Full Text Available Abstract We use fMRI to examine brain activity for pain elicited by palpating joints in a single patient suffering from psoriatic arthritis. Changes in these responses are documented when the patient ingested a single dose of a selective cyclooxygenase-2 inhibitor (COX-2i. We show that mechanical stimulation of the painful joints exhibited a cortical activity pattern similar to that reported for acute pain, with activity primarily localized to the thalamus, insular, primary and secondary somatosensory cortices and the mid anterior cingulum. COX-2i resulted in significant decreased in reported pain intensity and in brain activity after 1 hour of administration. The anterior insula and SII correlated with pain intensity, however no central activation site for the drug was detected. We demonstrate the similarity of the activation pattern for palpating painful joints to brain activity in normal subjects in response to thermal painful stimuli, by performing a spatial conjunction analysis between these maps, where overlap is observed in the insula, thalamus, secondary somatosensory cortex, and anterior cingulate. The results demonstrate that one can study effects of pharmacological manipulations in a single subject where the brain activity for a clinical condition is delineated and its modulation by COX-2i demonstrated. This approach may have diagnostic and prognostic utility.

  3. Gender differences in BOLD activation to face photographs and video vignettes.

    Science.gov (United States)

    Fine, Jodene Goldenring; Semrud-Clikeman, Margaret; Zhu, David C

    2009-07-19

    Few neuroimaging studies have reported gender differences in response to human emotions, and those that have examined such differences have utilized face photographs. This study presented not only human face photographs of positive and negative emotions, but also video vignettes of positive and negative social human interactions in an attempt to provide a more ecologically appropriate stimuli paradigm. Ten male and 10 female healthy right-handed young adults were shown positive and negative affective social human faces and video vignettes to elicit gender differences in social/emotional perception. Conservative ROI (region of interest) analysis indicated greater male than female activation to positive affective photos in the anterior cingulate, medial frontal gyrus, superior frontal gyrus and superior temporal gyrus, all in the right hemisphere. No significant ROI gender differences were observed to negative affective photos. Male greater than female activation was seen in ROIs of the left posterior cingulate and the right inferior temporal gyrus to positive social videos. Male greater than female activation occurred in only the left middle temporal ROI for negative social videos. Consistent with previous findings, males were more lateralized than females. Although more activation was observed overall to video compared to photo conditions, males and females appear to process social video stimuli more similarly to one another than they do for photos. This study is a step forward in understanding the social brain with more ecologically valid stimuli that more closely approximates the demands of real-time social and affective processing.

  4. Functional Activation and Effective Connectivity Differences in Adolescent Marijuana Users Performing a Simulated Gambling Task

    Directory of Open Access Journals (Sweden)

    Ashley Acheson

    2015-01-01

    Full Text Available Background. Adolescent marijuana use is associated with structural and functional differences in forebrain regions while performing memory and attention tasks. In the present study, we investigated neural processing in adolescent marijuana users experiencing rewards and losses. Fourteen adolescents with frequent marijuana use (>5 uses per week and 14 nonuser controls performed a computer task where they were required to guess the outcome of a simulated coin flip while undergoing magnetic resonance imaging. Results. Across all participants, “Wins” and “Losses” were associated with activations including cingulate, middle frontal, superior frontal, and inferior frontal gyri and declive activations. Relative to controls, users had greater activity in the middle and inferior frontal gyri, caudate, and claustrum during “Wins” and greater activity in the anterior and posterior cingulate, middle frontal gyrus, insula, claustrum, and declive during “Losses.” Effective connectivity analyses revealed similar overall network interactions among these regions for users and controls during both “Wins” and “Losses.” However, users and controls had significantly different causal interactions for 10 out of 28 individual paths during the “Losses” condition. Conclusions. Collectively, these results indicate adolescent marijuana users have enhanced neural responses to simulated monetary rewards and losses and relatively subtle differences in effective connectivity.

  5. Effects of lorazepam on brain activity pattern during an anxiety symptom provocation challenge.

    Science.gov (United States)

    Schunck, T; Mathis, A; Erb, G; Namer, I J; Demazières, A; Luthringer, R

    2010-05-01

    Human models of anxiety are useful to develop new effective anxiolytics. The objective of this study was to use functional magnetic resonance imaging (fMRI) to test the hypothesis that a single dose of lorazepam modifies brain activation during an anxiety challenge. Eighteen healthy male subjects underwent fMRI associated with a challenge based on the anticipation of aversive electrical stimulations after pretreatment, either with placebo or with 1.0 mg of oral lorazepam. Anxiety was rated before fMRI and after, referring to the threat condition periods, using State Trait Anxiety Inventory (STAI) and Hamilton scales. The conditioning procedure induced anxiety, as indicated by clinical rating score changes. Lorazepam did not modify anxiety rating as compared to placebo. Lorazepam reduced cerebral activity in superior frontal gyrus, anterior insula/inferior frontal gyrus and cingulate gyrus. The current finding provides the first evidence of the modulatory effects of an established anxiolytic agent on brain activation related to anticipatory anxiety.

  6. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    Directory of Open Access Journals (Sweden)

    Vatthauer KE

    2015-11-01

    Full Text Available Karlyn E Vatthauer,1 Jason G Craggs,1 Michael E Robinson,1 Roland Staud,2 Richard B Berry,2 William M Perlstein,1 Christina S McCrae11Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; 2Department of Medicine, University of Florida, Gainesville, FL, USAAbstract: Patients with chronic pain exhibit altered default mode network (DMN activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN.Keywords: insomnia, fibromyalgia, neuroimaging, task-negative, brain activity, comorbidity

  7. In vivo whole-cell patch-clamp recording of sensory synaptic responses of cingulate pyramidal neurons to noxious mechanical stimuli in adult mice

    Directory of Open Access Journals (Sweden)

    Descalzi Giannina

    2010-09-01

    Full Text Available Abstract The anterior cingulate cortex (ACC plays important roles in emotion, learning, memory and persistent pain. Our previous in vitro studies have demonstrated that pyramidal neurons in layer II/III of the adult mouse ACC can be characterized into three types: regular spiking (RS, intermediate (IM and intrinsic bursting (IB cells, according to their action potential (AP firing patterns. However, no in vivo information is available for the intrinsic properties and sensory responses of ACC neurons of adult mice. Here, we performed in vivo whole-cell patch-clamp recordings from pyramidal neurons in adult mice ACC under urethane anesthetized conditions. First, we classified the intrinsic properties and analyzed their slow oscillations. The population ratios of RS, IM and IB cells were 10, 62 and 28%, respectively. The mean spontaneous APs frequency of IB cells was significantly greater than those of RS and IM cells, while the slow oscillations were similar among ACC neurons. Peripheral noxious pinch stimuli induced evoked spike responses in all three types of ACC neurons. Interestingly, IB cells showed significantly greater firing frequencies than RS and IM cells. In contrast, non-noxious brush did not induce any significant response. Our studies provide the first in vivo characterization of ACC neurons in adult mice, and demonstrate that ACC neurons are indeed nociceptive. These findings support the critical roles of ACC in nociception, from mice to humans.

  8. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study.

    Directory of Open Access Journals (Sweden)

    Kei Omata

    Full Text Available The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04-0.167 Hz and slow fluctuation (0-0.04 Hz. Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.

  9. Individual differences in epistemic motivation and brain conflict monitoring activity.

    Science.gov (United States)

    Kossowska, Małgorzata; Czarnek, Gabriela; Wronka, Eligiusz; Wyczesany, Miroslaw; Bukowski, Marcin

    2014-06-06

    It is well documented that motivation toward closure (NFC), defined as a desire for a quick and unambiguous answer to a question and an aversion to uncertainty, is linked to more structured, rigid, and persistent cognitive styles. However, the neurocognitive correlates of NFC have never been tested. Thus, using event-related potentials, we examined the hypothesis that NFC is associated with the neurocognitive process for detecting discrepancies between response tendencies and higher level intentions. We found that greater NFC is associated with lower conflict-related anterior cingulate activity, suggesting lower sensitivity to cues for altering a habitual response pattern and lower sensitivity to committing errors. This study provides evidence that high NFC acts as a bulwark against anxiety-producing uncertainty and minimizes the experience of error.

  10. Single-cell coding of sensory, spatial and numerical magnitudes in primate prefrontal, premotor and cingulate motor cortices.

    Science.gov (United States)

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2016-01-01

    The representation of magnitude information enables humans and animal species alike to successfully interact with the external environment. However, how various types of magnitudes are processed by single neurons to guide goal-directed behavior remains elusive. Here, we recorded single-cell activity from the dorsolateral prefrontal (PFC), dorsal premotor (PMd) and cingulate motor (CMA) cortices in monkeys discriminating discrete numerical (numerosity), continuous spatial (line length) and basic sensory (spatial frequency) stimuli. We found that almost exclusively PFC neurons represented the different magnitude types during sample presentation and working memory periods. The frequency of magnitude-selective cells in PMd and CMA did not exceed chance level. The proportion of PFC neurons selectively tuned to each of the three magnitude types were comparable. Magnitude coding was mainly dissociated at the single-neuron level, with individual neurons representing only one of the three tested magnitude types. Neuronal magnitude discriminability, coding strength and temporal evolution were comparable between magnitude types encoded by PFC neuron populations. Our data highlight the importance of PFC neurons in representing various magnitude categories. Such magnitude representations are based on largely distributed coding by single neurons that are anatomically intermingled within the same cortical area.

  11. Pons to Posterior Cingulate Functional Projections Predict Affective Processing Changes in the Elderly Following Eight Weeks of Meditation Training.

    Science.gov (United States)

    Shao, Robin; Keuper, Kati; Geng, Xiujuan; Lee, Tatia M C

    2016-08-01

    Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders.

  12. The catch state of mollusc catch muscle is established during activation: experiments on skinned fibre preparations of the anterior byssus retractor muscle of Mytilus edulis L. using the myosin inhibitors orthovanadate and blebbistatin.

    Science.gov (United States)

    Andruchov, Oleg; Andruchova, Olena; Galler, Stefan

    2006-11-01

    Catch is a holding state of muscle where tension is maintained passively for long time periods in the absence of stimulation. The catch state becomes obvious after termination of activation; however, it is possible that catch linkages are already established during activation. To investigate this, skinned fibre bundles of the anterior byssus retractor muscle of Mytilus edulis were maximally activated with Ca(2+) and subsequently exposed to 10 mmol l(-1) orthovanadate (V(i)) or 5 mumol l(-1) blebbistatin to inhibit the force-generating myosin head cross-bridges. Repetitive stretches of about 0.1% fibre bundle length were applied to measure stiffness. Inhibitor application depressed force substantially but never resulted in a full relaxation. The remaining force was further decreased by moderate alkalization (change of pH from 6.7 to 7.4) or by cAMP. Furthermore, the stiffness/force ratio was higher during exposure to V(i) or blebbistatin than during partial Ca(2+) activation producing the same submaximal force. The increased stiffness/force ratio was abolished by moderate alkalization or cAMP. Finally, the stretch-induced delayed force increase (stretch activation) disappeared, and the force recovery following a quick release of the fibre length, was substantially reduced when the force was depressed by V(i) or blebbistatin. All these findings suggest that catch linkages are already established during maximal Ca(2+) activation. They seem to exhibit ratchet properties because they allow shortening and resist stretches. In isometric experiments a force decrease is needed to stress the catch linkages in the high resistance direction so that they contribute to force.

  13. Accuracy of Lachman and Anterior Drawer Tests for Anterior Cruciate Ligament Injuries

    Directory of Open Access Journals (Sweden)

    Hadi Makhmalbaf

    2013-12-01

    Full Text Available   Background: The knee joint is prone to injury because of its complexity and weight-bearing function. Anterior cruciate ligament (ACL ruptures happen in young and physically active population and can result in instability, meniscal tears, and articular cartilage damage. The aim of this study is to evaluate the accuracy of Lachman and anterior drawer test in ACL injury in compare with arthroscopy.   Methods: In a descriptive, analytical study from 2009 to 2013, 653 patients who were suspected to ACL rapture were entered the study. Statistical analysis was performed by the usage of SPSS 19.0. Multiple comparison procedure was performed for comparing data between clinical examination and arthroscopic findings and their relation with age and sex. Results: Mean age of patients was 28.3±7.58 years (range from 16 to 68 years. From 428 patients, 41.2% (175 patients were between 26 and 35, 38.8% (165 ones between 15 and 25 and 20% (85 patients over 36 years. 414 patients were male (97.2% and 12 were female (2.8%. Sensitivity of anterior drawer test was 94.4% and sensitivity of Lachman test was 93.5%. Conclusion: The diagnosis and decision to reconstruct ACL injury can be reliably made regard to the anterior drawer and Lachman tests result. The tests did not have privilege to each other. These test accuracy increased considerably under anesthesia especially in women.

  14. Accuracy of Lachman and Anterior Drawer Tests for Anterior Cruciate Ligament Injuries

    Directory of Open Access Journals (Sweden)

    Hadi Makhmalbaf

    2013-12-01

    Full Text Available Background: The knee joint is prone to injury because of its complexity and weight-bearing function. Anterior cruciate ligament (ACL ruptures happen in young and physically active population and can result in instability, meniscal tears, and articular cartilage damage. The aim of this study is to evaluate the accuracy of Lachman and anterior drawer test in ACL injury in compare with arthroscopy.   Methods: In a descriptive, analytical study from 2009 to 2013, 653 patients who were suspected to ACL rapture were entered the study. Statistical analysis was performed by the usage of SPSS 19.0. Multiple comparison procedure was performed for comparing data between clinical examination and arthroscopic findings and their relation with age and sex. Results: Mean age of patients was 28.3±7.58 years (range from 16 to 68 years. From 428 patients, 41.2% (175 patients were between 26 and 35, 38.8% (165 ones between 15 and 25 and 20% (85 patients over 36 years. 414 patients were male (97.2% and 12 were female (2.8%. Sensitivity of anterior drawer test was 94.4% and sensitivity of Lachman test was 93.5%. Conclusion: The diagnosis and decision to reconstruct ACL injury can be reliably made regard to the anterior drawer and Lachman tests result. The tests did not have privilege to each other. These test accuracy increased considerably under anesthesia especially in women.

  15. Spontaneous brain activity as a biomarker for schizophrenia

    DEFF Research Database (Denmark)

    Anhøj, Simon Jesper; Glenthøj, Birte Yding; Rostrup, Egill

    and Independent Component Analysis (ICA). Results: Using ICA we were able to detect several significant group differences at baseline in areas mapping out the DEN and RN e.g. frontal pole (corr. P = 0,0046) and anterior cingulate gyrus (corr. P = 0,011). In these areas patients showed a higher connectivity...

  16. The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate

    Directory of Open Access Journals (Sweden)

    Esteve Pilar

    2008-08-01

    Full Text Available Abstract Background Secreted frizzled related proteins (SFRPs are multifunctional modulators of Wnt and BMP (Bone Morphogenetic Protein signalling necessary for the development of most organs and the homeostasis of different adult tissues. SFRPs fold in two independent domains: the cysteine rich domain (SfrpCRD related to the extracellular portion of Frizzled (Fz, Wnt receptors and the Netrin module (SfrpNTR defined by homologies with molecules such as Netrin-1, inhibitors of metalloproteinases and complement proteins. Due to its structural relationship with Fz, it is believed that SfrpCRD interferes with Wnt signalling by binding and sequestering the ligand. In contrast, the functional relevance of the SfrpNTR has been barely addressed. Results Here, we combine biochemical studies, mutational analysis and functional assays in cell culture and medaka-fish embryos to show that the Sfrp1NTR mimics the function of the entire molecule, binds to Wnt8 and antagonizes Wnt canonical signalling. This activity requires intact tertiary structure and is shared by the distantly related Netrin-1NTR. In contrast, the Sfrp1CRD cannot mirror the function of the entire molecule in vivo but interacts with Fz receptors and antagonizes Wnt8-mediated β-catenin transcriptional activity. Conclusion On the basis of these results, we propose that SFRP modulation of Wnt signalling may involve multiple and differential interactions among Wnt, Fz and SFRPs.

  17. Changes of cognition and regional cerebral activity during acute hypoglycemia in normal subjects: A H2 15O positron emission tomographic study

    DEFF Research Database (Denmark)

    Bie Olsen, Lise Grimmeshave; Bie-Olsen, Lise G; Kjaer, Troels W;

    2009-01-01

    temporal gyrus. Visual impairment during hypoglycemia was associated with deactivation in the ventral visual stream. The anterior cingulate gyrus was activated during hypoglycemia in a load-dependent manner. Areas on the frontal convexity were differentially activated in response to the cognitive load...... during hypoglycemia. Our findings suggest that hypoglycemia induces changes in sensory processing in a cognition-independent manner, whereas activation of areas of higher order functions is influenced by cognitive load as well as hypoglycemia.......Blurred vision and cognitive difficulties are prominent symptoms during acute insulin-induced hypoglycemia. Our hypothesis was that changes in cerebral activity reflect these symptoms. Positron emission tomography (PET) with oxygen-15-labelled water was used to measure relative changes in regional...

  18. Biological fixation in anterior cruciate ligament surgery

    Directory of Open Access Journals (Sweden)

    Chih-Hwa Chen

    2014-04-01

    Full Text Available Successful anterior cruciate ligament (ACL reconstruction with tendon graft requires extensive tendon-to-bone healing in the bone tunnels and progressive graft ligamentization for biological, structural, and functional recovery of the ACL. Improvement in graft-to-bone healing is crucial for facilitating early, aggressive rehabilitation after surgery to ensure an early return to pre-injury activity levels. The use of various biomaterials for enhancing the healing of tendon grafts in bone tunnels has been developed. With the biological enhancement of tendon-to-bone healing, biological fixation of the tendon graft in the tunnel can be achieved in ACL reconstruction.

  19. Anterior cruciate ligament - updating article.

    Science.gov (United States)

    Luzo, Marcus Vinicius Malheiros; Franciozi, Carlos Eduardo da Silveira; Rezende, Fernando Cury; Gracitelli, Guilherme Conforto; Debieux, Pedro; Cohen, Moisés

    2016-01-01

    This updating article on the anterior cruciate ligament (ACL) has the aim of addressing some of the most interesting current topics in this field. Within this stratified approach, it contains the following sections: ACL remnant; anterolateral ligament and combined intra and extra-articular reconstruction; fixation devices; and ACL femoral tunnel creation techniques.

  20. Anterior cruciate ligament - updating article

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Malheiros Luzo

    2016-08-01

    Full Text Available ABSTRACT This updating article on the anterior cruciate ligament (ACL has the aim of addressing some of the most interesting current topics in this field. Within this stratified approach, it contains the following sections: ACL remnant; anterolateral ligament and combined intra and extra-articular reconstruction; fixation devices; and ACL femoral tunnel creation techniques.

  1. It's in the eye of the beholder: selective attention to drink properties during tasting influences brain activation in gustatory and reward regions.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2017-03-20

    Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the attention consumers pay to such characteristics during consumption. There is little research on the effects of selective attention on taste perception and associated brain activation in regular drinks. The aim of this study was to investigate the effect of selective attention on hedonics, intensity and caloric content on brain responses during tasting drinks. Using functional MRI brain responses of 27 women were measured while they paid attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and water. Brain activation during tasting largely overlapped between the three selective attention conditions and was found in the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior cingulate cortex and middle orbitofrontal cortex (OFC). Brain activation was higher during selective attention to taste intensity compared to calories in the right middle OFC and during selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle insula. Intensity ratings correlated with brain activation during selective attention to taste intensity in the anterior insula and lateral OFC. Our data suggest that not only the anterior insula but also the middle and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to pleasantness engaged regions associated with food reward. Overall, our results indicate that selective attention to food properties can alter the activation of gustatory and reward regions. This may underlie effects of food labels on the consumption experience of consumers.

  2. Cerebral activation during unilateral clenching in patients with temporomandibular joint synovitis and biting pain: an functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-ping; MA Xu-chen; JIN Zhen; LI Ke; LIU Gang; ZENG Ya-wei

    2011-01-01

    Background Functional magnetic resonance is a non-invasive method that can examine brain activity and has been widely used in various fields including jaw movement and pain processing. Temporomandibular disorder (TMD) is one of the most frequent facial pain problems. The objective of this study was to investigate the brain activities using functional magnetic resonance imaging (fMRI) during unilateral maximal voluntary clenching tasks in the TMD synovitis patients with biting pain.Methods Fourteen TMD synovitis patients with unilateral biting pain and 14 controls were included in the study.Contralateral biting pain was defined as right molar clenching causing left temporomandibular joint (TMJ) pain. Ipsilateral biting pain was defined as right molar clenching causing right TMJ pain. Symptom Check List-90 (SCL-90) was administered to the patients and controls. Independent sample t-test was used to compare the SCL-90 subscales between the two groups. Unilateral clenching tasks were performed by the patients and controls. Imaging data were analyzed using SPM99.Results Patients were divided into contralateral TMD biting pain group (n=8) and ipsilateral TMD biting pain group (n=6). The SCL-90 subscales were significantly different between the two groups for somatization, depression, anxiety,phobic anxiety, and paranoid ideation. Group analysis of the controls demonstrated brain activations in the inferior frontal gyrus, precentral gyrus, middle frontal gyrus, superior temporal gyrus, and insular. The areas of activation were different between right and left clenching task. In TMJ synovitis patients with contralateral or ipsilateral biting pain, the group analysis showed activations in the inferior frontal gyrus, superior temporal gyrus, medium frontal gyrus, precentral gyrus,and anterior cingulate cortex.Conclusions The inferior frontal gyrus and precentral gyrus play essential roles during the unilateral clenching task.Activation of anterior cingulate cortex in the

  3. Válvula de uretra anterior Anterior urethral valves

    Directory of Open Access Journals (Sweden)

    Silvio Tucci Jr.

    2003-02-01

    Full Text Available Objetivo: apresentar os aspectos clínicos, diagnósticos e terapêuticos de pacientes portadores de válvula da uretra anterior. Descrição: em dois neonatos, o diagnóstico presuntivo de patologia obstrutiva do trato urinário foi sugerido pela ultra-sonografia realizada no período pré-natal, confirmando-se o diagnóstico de válvula de uretra anterior pela avaliação pós-natal. Os pacientes foram submetidos a tratamento cirúrgico paliativo, com vesicostomia temporária e, posteriormente, definitivo, pela fulguração endoscópica das válvulas. Ambos evoluíram com função renal normal. Comentários: a válvula da uretra anterior é anomalia rara que deve ser considerada em meninos com quadro radiológico pré-natal sugestivo de obstrução infravesical, secundariamente à hipótese mais comum de válvula da uretra posterior. Ressaltamos a utilização da vesicostomia como derivação urinária temporária nestes casos, prevenindo potenciais complicações pela manipulação da uretra do recém-nascido.Objective: to discuss clinical signs, diagnostic tools and therapeutics of anterior urethral valves, an obstructive anomaly of the urinary system in males. Description: signs of urinary tract obstruction were identified on pre-natal ultrasound in two male fetuses and the diagnosis of anterior urethral valves was made through post-natal evaluation. As an initial treatment, vesicostomy was performed in both patients. Later, the valves were fulgurated using an endoscopic procedure. During the follow-up period both patients presented normal renal function. Comments: anterior urethral valves are a rare form of urethral anomaly that must be ruled out in boys with pre-natal ultrasound indicating infravesical obstruction. Vesicostomy used as an initial treatment rather than transurethral fulguration may prevent potential complications that can occur due to the small size of the neonatal urethra.

  4. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts.

    Science.gov (United States)

    Dong, Guangheng; DeVito, Elise; Huang, Jie; Du, Xiaoxia

    2012-09-01

    Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with internet gaming addiction (IGA) using diffusion tensor imaging (DTI). IGA subjects (N = 16) showed higher fractional anisotropy (FA), indicating greater white matter integrity, in the thalamus and left posterior cingulate cortex (PCC) relative to healthy controls (N = 15). Higher FA in the thalamus was associated with greater severity of internet addiction. Increased regional FA in individuals with internet gaming addiction may be a pre-existing vulnerability factor for IGA, or may arise secondary to IGA, perhaps as a direct result of excessive internet game playing.

  5. 前扣带皮层的痛觉情绪感知作用%Pain-related effect of the anterior cingulate cortex on emotion

    Institute of Scientific and Technical Information of China (English)

    王学斌; 张德宽

    2011-01-01

    @@ 痛觉(pain)是由于潜在的或者实际的伤害性刺激作用于机体所引起的不愉快的主观感受.由于这样的刺激可能导致组织和机体的损伤或危害,因此痛觉的产生可以使动物处于防御、抵抗或退缩等状态,是一种生理性的防御反应和保护性感觉.

  6. Working Memory Performance Is Correlated with Local Brain Morphology in the Medial Frontal and Anterior Cingulate Cortex in Fibromyalgia Patients: Structural Correlates of Pain-Cognition Interaction

    Science.gov (United States)

    Luerding, R.; Weigand, T.; Bogdahn, U.; Schmidt-Wilcke, T.

    2008-01-01

    Fibromyalgia (FM) is a disorder of unknown aetiology, characterized by chronic widespread pain, stiffness and sleep disturbances. In addition, patients frequently complain of memory and attention deficits. Accumulating evidence suggests that FM is associated with CNS dysfunction and with an altered brain morphology. However, few studies have…

  7. Diversity of cingulate xenarthrans in the middle-late Eocene of Northwestern Argentina

    Directory of Open Access Journals (Sweden)

    Martín R. Ciancio

    2016-08-01

    Full Text Available The study of Paleogene mammals of intermediate and low latitudes has increased in the last decades and has been clearly demonstrated their importance in the comprehension of the evolution and faunistic changes outside Patagonia. The study of these faunas permits establishing new comparisons among contemporaneous faunistic associations, completing the distributional patterns, and evaluating evolutionary changes in the lineages in relation to climatic conditions prevailing in each of the different regions. In this work we study the diversity of Dasypodidae recovered from the Geste Formation (Northwestern Argentina. Bearing levels of Geste Formation were referred alternatively to a Barrancan subage of Casamayoran SALMA (middle Eocene, Lutetian–Bartonian or a Mustersan SALMA (middle–late Eocene, Bartonian–Priabonian on faunistic comparations with their equivalent in Patagonia, although absolute isotopic data indicates ca. 37–35 Ma (late Eocene, Priabonian. We described the following taxa of Dasypodidae: (i Dasypodinae Astegotheriini: cf. Astegotherium sp., ?Prostegotherium sp., Parastegosimpsonia cf. P. peruana; (ii Dasypodinae indet.; (iii Euphractinae Euphractini: Parutaetus punaensis sp. nov.; (iv Dasypodidae incertae sedis: Pucatherium parvum, Punatherium catamarcensis gen. et sp. nov. In comparison with other beds bearing Eocene cingulate faunas from Northwestern Argentina, Geste Formation presents the greatest diversity of dasypodids. This association is consistent with a late Eocene age and shows a taxonomic and biogeographic relevant features given by a unique specific composition: (i it differs from that known for contemporaneous faunas from Southern latitudes and younger associations from more tropical areas; (ii it includes genera with close affinities to those distant areas; (iii it presents unique taxa typical from Eocene units exposed at Northwestern Argentina. This highlights the evolutionary and biogeographic meaning of the

  8. Microglial activation in healthy aging.

    Science.gov (United States)

    Schuitemaker, Alie; van der Doef, Thalia F; Boellaard, Ronald; van der Flier, Wiesje M; Yaqub, Maqsood; Windhorst, Albert D; Barkhof, Frederik; Jonker, Cees; Kloet, Reina W; Lammertsma, Adriaan A; Scheltens, Philip; van Berckel, Bart N M

    2012-06-01

    Healthy brain aging is characterized by neuronal loss and decline of cognitive function. Neuronal loss is closely associated with microglial activation and postmortem studies have indeed suggested that activated microglia may be present in the aging brain. Microglial activation can be quantified in vivo using (R)-[(11)C]PK11195 and positron emission tomography. The purpose of this study was to measure specific binding of (R)-[(11)C]PK11195 in healthy subjects over a wide age range. Thirty-five healthy subjects (age range 19-79 years) were included. In all subjects 60-minute dynamic (R)-[(11)C]PK11195 scans were acquired. Specific binding of (R)-[(11)C]PK11195 was calculated using receptor parametric mapping in combination with supervised cluster analysis to extract the reference tissue input function. Increased binding of (R)-[(11)C]PK11195 with aging was found in frontal lobe, anterior and posterior cingulate cortex, medial inferior temporal lobe, insula, hippocampus, entorhinal cortex, thalamus, parietal and occipital lobes, and cerebellum. This indicates that activated microglia appear in several cortical and subcortical areas during healthy aging, suggesting widespread neuronal loss.

  9. A case of anterior cerebral artery dissection caused by scuba diving.

    Science.gov (United States)

    Fukuoka, Takuya; Kato, Yuji; Ohe, Yasuko; Deguchi, Ichiro; Maruyama, Hajime; Hayashi, Takeshi; Tanahashi, Norio

    2014-08-01

    A 51-year-old man was admitted with right hemiparesis during scuba diving, without headache. Brain magnetic resonance (MR) imaging depicted high-intensity areas in the left superior frontal and cingulate gyri on diffusion-weighted imaging. Dissection of the anterior cerebral artery (ACA) was detected using axial MR angiography and 3-dimensional MR cisternography. Dissection of the ACA during and after scuba diving has not been reported before. Dissection of the arteries should be included in the differential diagnosis when neurologic symptoms occur both during and after scuba diving, even if the patient does not experience headache. Furthermore, the combination of MR cisternography and MR angiography is useful to detect ACA dissection.

  10. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    Science.gov (United States)

    Li, Lin; Men, Wei-Wei; Chang, Yu-Kai; Fan, Ming-Xia; Ji, Liu; Wei, Gao-Xia

    2014-01-01

    There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.

  11. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81 were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.

  12. FSH and LH Secretion from in-vitro Cultured Buffalo Anterior Pituitary Cells Following Treatment with Diethyl-Stilbestrol and Medroxy-Progesterone and Their Effects on Ovarian Activity and Hematological Variables of Female Rabbits

    Directory of Open Access Journals (Sweden)

    Kaleem Iqbal1, Nafees Akhtar1*, Nazir Ahmad1 and Sajjad-ur-Rahman2

    2016-11-01

    Full Text Available Aims of this study were: to investigate whether FSH and LH secretion from in-vitro cultured buffalo adenohypophyseal cells can be increased by supplementing culture media with diethyl-stilbestrol and medroxy-progesterone, respectively; to monitor bioactivity of these in-vitro produced gonadotropins and to see if these gonadotropins have any adverse effects on hematology and internal body organs of female rabbits. Pituitary glands collected from 36 adult buffaloes slaughtered at a local abattoir were used. The anterior pituitary cells were cultured in-vitro using medium RPMI-1640 (code R6504-Sigma enriched with 10% fetal calf serum and GnRH and treated with 0.5 or 1.0 mg/100 ml diethyl-stilbestrol, and 2.5 or 5.0 mg/ml medroxy-progesterone, or left as untreated control. The results showed that FSH and LH concentrations from cultures treated with low or high dose of respective steroids were higher (P<0.05 than those for controls. Treatment of pre-pubertal female rabbits with in-vitro extracted FSH increased serum FSH and LH concentrations, ovarian size and number of developing follicles (GFs on the ovaries compared to controls (P<0.01. However, rabbits treated with in-vitro produced extract of LH showed increased serum FSH and LH, while there was no effect on ovarian size and number of GFs. Moreover, treatment of rabbits with both gonadotropins had no effects on body weight, hematological variables and internal body organs. In conclusion, diethyl-stilbestrol and medroxy-progesterone enhanced the secretion of FSH and LH, respectively, from cultured pituitary cells. Moreover, in-vitro produced FSH increased ovarian size, serum FSH and LH and stimulated ovarian activity, while in-vitro produced LH neither increased ovarian size nor stimulated ovarian activity.

  13. Fenestration of the anterior cerebral artery

    Energy Technology Data Exchange (ETDEWEB)

    Ito, J.; Washiyama, K.; Hong, K.C.; Ibuchi, Y.

    1981-08-01

    Three cases of angiographically demonstrated fenestration of the anterior cerebral artery are reported. Fenestration occurred at the medial half of the horizontal segment of the anterior cerebral artery in all cases. Its embryology and clinical significance are briefly discussed, and the anatomical and radiological literature on fenestration of the anterior cerebral artery is reviewed.

  14. Epidermoid cyst in Anterior, Middle

    Directory of Open Access Journals (Sweden)

    Kankane Vivek Kumar

    2016-09-01

    Full Text Available Epidermoid cysts are benign slow growing more often extra-axial tumors that insinuate between brain structures, we present the clinical, imaging, and pathological findings in 35 years old female patients with atypical epidermoid cysts which was situated anterior, middle & posterior cranial fossa. NCCT head revealed hypodense lesion over right temporal and perisylvian region with extension in prepontine cistern with mass effect & midline shift and MRI findings revealed a non-enhancing heterogeneous signal intensity cystic lesion in right frontal & temporal region extending into prepontine cistern with restricted diffusion. Patient was detoriated in night of same day of admission, emergency Fronto-temporal craniotomy with anterior peterousectomy and subtotal resection was done. The histological examination confirms the epidermoid cyst. The timing of ectodermal tissue sequestration during fetal development may account for the occurrence of atypical epidermoid cysts.

  15. Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure.

    Science.gov (United States)

    Kubota, Y; Sato, W; Toichi, M; Murai, T; Okada, T; Hayashi, A; Sengoku, A

    2001-04-01

    Frontal midline theta rhythm (Fm theta), recognized as distinct theta activity on EEG in the frontal midline area, reflects mental concentration as well as meditative state or relief from anxiety. Attentional network in anterior frontal lobes including anterior cingulate cortex is suspected to be the generator of this activity, and the regulative function of the frontal neural network over autonomic nervous system (ANS) during cognitive process is suggested. However no studies have examined peripheral autonomic activities during Fm theta induction, and interaction of central and peripheral mechanism associated with Fm theta remains unclear. In the present study, a standard procedure of Zen meditation requiring sustained attention and breath control was employed as the task to provoke Fm theta, and simultaneous EEG and ECG recordings were performed. For the subjects in which Fm theta activities were provoked (six men, six women, 48% of the total subjects), peripheral autonomic activities were evaluated during the appearance of Fm theta as well as during control periods. Successive inter-beat intervals were measured from the ECG, and a recently developed method of analysis by Toichi et al. (J. Auton. Nerv. Syst. 62 (1997) 79-84) based on heart rate variability was used to assess cardiac sympathetic and parasympathetic functions separately. Both sympathetic and parasympathetic indices were increased during the appearance of Fm theta compared with control periods. Theta band activities in the frontal area were correlated negatively with sympathetic activation. The results suggest a close relationship between cardiac autonomic function and activity of medial frontal neural circuitry.

  16. Spatiotemporal cortical activation underlies mental preparation for successful riddle solving: an event-related potential study.

    Science.gov (United States)

    Qiu, Jiang; Li, Hong; Jou, Jerwen; Wu, Zhenzhen; Zhang, Qinglin

    2008-04-01

    Recently, Kounios J, Frymiare JL, Bowden EM, Fleck JI, Subramaniam K, Parrish TB et al. (2006) found that the mental preparation leading to insight involves heightened activity in medial frontal areas and temporal areas. In the present study, the electrophysiological correlates of successful and unsuccessful Chinese logogriph solving (riddles in which writing characters undergo several changes brought about by the addition, subtraction, omission or substitution of strokes or components of the characters) were studied in 18 healthy subjects using high-density event-related potentials (ERPs). Results show that the mental preparation for successful logogriphs elicited a more positive ERP deflection than unsuccessful logogriphs from -1,000 to -800 ms before onset of the target logogriphs. Dipole analysis localized the generators of the positive component primarily in the anterior cingulate cortex (ACC). This result is consistent with Kounios' view that general mental preparatory mechanisms modulate problem-solving strategy.

  17. Functional correlates of instrumental activities of daily living in mild Alzheimer's disease.

    Science.gov (United States)

    Nadkarni, Neelesh K; Levy-Cooperman, Naama; Black, Sandra E

    2012-01-01

    Instrumental activities of daily living (IADL) includes the integration of task-initiation, -planning, and -performance. Little is known on the cerebral perfusion correlates of these subcomponents of IADL in Alzheimer's disease (AD). In 121 AD patients, cerebral perfusion, using single-photon emission computed tomography, in 13 bilateral regions of interest (ROI) and the perfusion correlates of IADL subcomponents, rated on the Disability Assessment in Dementia scale, were explored. Significant correlations were observed between IADL initiation and multiple bilateral prefrontal-striatal-anterior cingulate ROI (p IADL planning and right occipital ROI (p IADL performance and right parietal ROI (p IADL-initiation (R = 0.6, R(2) = 0.39, F(4,117) = 17.8, SE = 1.56; p IADL-planning (R = 0.6, R(2) = 0.34, F(4,117) = 19.5, SE = 1.47; p IADL.

  18. Social exclusion in middle childhood: rejection events, slow-wave neural activity, and ostracism distress.

    Science.gov (United States)

    Crowley, Michael J; Wu, Jia; Molfese, Peter J; Mayes, Linda C

    2010-01-01

    This study examined neural activity with event-related potentials (ERPs) in middle childhood during a computer-simulated ball-toss game, Cyberball. After experiencing fair play initially, children were ultimately excluded by the other players. We focused specifically on “not my turn” events within fair play and rejection events within social exclusion. Dense-array ERPs revealed that rejection events are perceived rapidly. Condition differences (“not my turn” vs. rejection) were evident in a posterior ERP peaking at 420 ms consistent, with a larger P3 effect for rejection events indicating that in middle childhood rejection events are differentiated in ostracism, including subgenual cortex, ventral anterior cingulate cortex, and insula, was greater for rejection events vs. “not my turn” events.

  19. Role of fusiform and anterior temporal cortical areas in facial recognition.

    Science.gov (United States)

    Nasr, Shahin; Tootell, Roger B H

    2012-11-15

    Recent fMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus ('AT'; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex.

  20. Interactivity and reward-related neural activation during a serious videogame.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    Full Text Available This study sought to determine whether playing a "serious" interactive digital game (IDG--the Re-Mission videogame for cancer patients--activates mesolimbic neural circuits associated with incentive motivation, and if so, whether such effects stem from the participatory aspects of interactive gameplay, or from the complex sensory/perceptual engagement generated by its dynamic event-stream. Healthy undergraduates were randomized to groups in which they were scanned with functional magnetic resonance imaging (FMRI as they either actively played Re-Mission or as they passively observed a gameplay audio-visual stream generated by a yoked active group subject. Onset of interactive game play robustly activated mesolimbic projection regions including the caudate nucleus and nucleus accumbens, as well as a subregion of the parahippocampal gyrus. During interactive gameplay, subjects showed extended activation of the thalamus, anterior insula, putamen, and motor-related regions, accompanied by decreased activation in parietal and medial prefrontal cortex. Offset of interactive gameplay activated the anterior insula and anterior cingulate. Between-group comparisons of within-subject contrasts confirmed that mesolimbic activation was significantly more pronounced in the active playgroup than in the passive exposure control group. Individual difference analyses also found the magnitude of parahippocampal activation following gameplay onset to correlate with positive attitudes toward chemotherapy assessed both at the end of the scanning session and at an unannounced one-month follow-up. These findings suggest that IDG-induced activation of reward-related mesolimbic neural circuits stems primarily from participatory engagement in gameplay (interactivity, rather than from the effects of vivid and dynamic sensory stimulation.

  1. Interactivity and reward-related neural activation during a serious videogame.

    Science.gov (United States)

    Cole, Steven W; Yoo, Daniel J; Knutson, Brian

    2012-01-01

    This study sought to determine whether playing a "serious" interactive digital game (IDG)--the Re-Mission videogame for cancer patients--activates mesolimbic neural circuits associated with incentive motivation, and if so, whether such effects stem from the participatory aspects of interactive gameplay, or from the complex sensory/perceptual engagement generated by its dynamic event-stream. Healthy undergraduates were randomized to groups in which they were scanned with functional magnetic resonance imaging (FMRI) as they either actively played Re-Mission or as they passively observed a gameplay audio-visual stream generated by a yoked active group subject. Onset of interactive game play robustly activated mesolimbic projection regions including the caudate nucleus and nucleus accumbens, as well as a subregion of the parahippocampal gyrus. During interactive gameplay, subjects showed extended activation of the thalamus, anterior insula, putamen, and motor-related regions, accompanied by decreased activation in parietal and medial prefrontal cortex. Offset of interactive gameplay activated the anterior insula and anterior cingulate. Between-group comparisons of within-subject contrasts confirmed that mesolimbic activation was significantly more pronounced in the active playgroup than in the passive exposure control group. Individual difference analyses also found the magnitude of parahippocampal activation following gameplay onset to correlate with positive attitudes toward chemotherapy assessed both at the end of the scanning session and at an unannounced one-month follow-up. These findings suggest that IDG-induced activation of reward-related mesolimbic neural circuits stems primarily from participatory engagement in gameplay (interactivity), rather than from the effects of vivid and dynamic sensory stimulation.

  2. Pain modulation in waking and hypnosis in women: event-related potentials and sources of cortical activity.

    Directory of Open Access Journals (Sweden)

    Vilfredo De Pascalis

    Full Text Available Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA method revealed significant activations of the bilateral primary somatosensory (BA3, middle frontal gyrus (BA6 and anterior cingulate cortices (BA24. Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32, while for the P200 wave, activity was increased in the superior (BA22, middle (BA37, inferior temporal (BA19 gyri and superior parietal lobule (BA7. Hypnotic hypoalgesia in

  3. Pain modulation in waking and hypnosis in women: event-related potentials and sources of cortical activity.

    Science.gov (United States)

    De Pascalis, Vilfredo; Varriale, Vincenzo; Cacace, Immacolata

    2015-01-01

    Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs) whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs) during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA) method revealed significant activations of the bilateral primary somatosensory (BA3), middle frontal gyrus (BA6) and anterior cingulate cortices (BA24). Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32), while for the P200 wave, activity was increased in the superior (BA22), middle (BA37), inferior temporal (BA19) gyri and superior parietal lobule (BA7). Hypnotic hypoalgesia in HHs, for N

  4. Androstenol--a steroid derived odor activates the hypothalamus in women.

    Directory of Open Access Journals (Sweden)

    Ivanka Savic

    Full Text Available BACKGROUND: Whether pheromone signaling exists in humans is still a matter of intense discussion. In the present study we tested if smelling of Androstenol, a steroid produced by the human body and reported to affect human behavior, may elicit cerebral activation. A further issue was to evaluate whether the pattern of activation resembles the pattern of common odors. METHODOLOGY: PET measurements of regional cerebral blood flow (rCBF were conducted in 16 healthy heterosexual women during passive smelling of Androstenol, four ordinary odors (OO, and odorless air (the base line condition. PRINCIPAL FINDINGS: Smelling Androstenol caused activation of a portion of the hypothalamus, which according to animal data mediates the pheromone triggered mating behavior. Smelling of OO, on the other hand, engaged only the classical olfactory regions (the piriform cortex, lateral amygdala, anterior insular and anterior cingulate cortex. CONCLUSIONS: The observed pattern of activation is very similar to the pattern previously detected with 4,16-androstadien-3-one in heterosexual females. It suggests that several compounds released by human body may activate cerebral networks involved in human reproduction.

  5. Editorial Commentary: Anterior Cruciate Ligament Reconstruction: Auto or Allo?

    Science.gov (United States)

    Verma, Nikhil N

    2016-01-01

    Considerable controversy exists regarding appropriate graft choice for patients undergoing anterior cruciate ligament reconstruction. Allografts pretreated with high-dose irradiation should be avoided. Otherwise, multiple factors should be considered to individualize patient decision making, including patient age and activity level, graft type, and fixation type.

  6. Absence of sensory function in the reconstructed anterior cruciate ligament

    DEFF Research Database (Denmark)

    Krogsgaard, Michael R; Fischer-Rasmussen, Torsten; Dyhre-Poulsen, Poul

    2011-01-01

    Cruciate ligaments provide sensory information that cause excitatory as well as inhibitory effects to the activity of the muscles around the knee. The aim of the study was to determine whether these muscular reflexes are reestablished after anterior cruciate ligament (ACL) re-construction. Wire e...

  7. The effect of anterior cruciate ligament injury on bone curvature

    DEFF Research Database (Denmark)

    Hunter, D J; Lohmander, Stefan; Makovey, J;

    2014-01-01

    OBJECTIVE: Investigate the 5-year longitudinal changes in bone curvature after acute anterior cruciate ligament (ACL) injury, and identify predictors of such changes. METHODS: In the KANON-trial (ISRCTN 84752559), 111/121 young active adults with an acute ACL tear to a previously un-injured knee...

  8. Peripheral physiological reactivity and brain activity in specific phobias - Reactividad fisiológica periférica y actividad cerebral en las fobias específicas

    Directory of Open Access Journals (Sweden)

    José María Martínez Selva

    2009-12-01

    Full Text Available Specific phobias are exaggerated and irrational fears caused by specific stimuli. These anxiety disorders can appear together with physiological reactions and fight or flight responses. At a peripheral level the phobic response is featured by an increase in somatic and autonomic reactivity as shown by different physiological indices (heart rate, electrodermal activity and a potentiation of defensive reflexes, such as the cardiac defense response and the blink reflex. At a central level it has been described a network of brain structures that are involved both in the processing of the phobic stimulus and in the reaction that it provokes. This brain network is composed by the amygdala, the orbitofrontal and cingulate cortices and the anterior insula. An increase in the activity of these brain regions occurs during the phobic reaction that can be associated with the somatic and autonomic changes, the subjective experience of intense fear and the avoidance behavior elicited by the phobic stimulus.

  9. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  10. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    Science.gov (United States)

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC.

  11. Relation of obesity to neural activation in response to food commercials.

    Science.gov (United States)

    Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D

    2014-07-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors.

  12. Positioning of anterior teeth in removable dentures

    Directory of Open Access Journals (Sweden)

    Strajnić Ljiljana

    2002-01-01

    Full Text Available Introduction The aim of this paper was to present methods of placement of artificial anterior teeth in edentulous individuals. The following review takes account of the majority of papers published during the last 100 years. The review has been divided into sections regarding the method used to determine the position of artificial anterior teeth. Geometric aspect Gysi (1895-1920 produced the first scientific theory about the position of artificial anterior teeth. Physiognomic theory The aim of this theory is to find the most natural position for artificial anterior teeth for each individual. Camper's "face angle" as a physiognomic criterion, has been introduced in papers of Wehrli (1961, Marxhors (1966, Tanzer (1968, Lombardi (1973. Esthetic aspect Important names in the field of dental esthetics are: Schön and Singer (1961, Arnheim (1965, Krajiček (1969, Tanzer (1968, Lombardi (1973, Goldstein (1976. They have introduced principles of visual aspects for selection of contours, dimension and position of artificial anterior teeth. Constitution aspect Flagg (1880, Williams (1913 and Hrauf (1957, 1958, have considered body constitution and individual characteristics regarding position of artificial anterior teeth. Physiological theory In 1971, Marxhors pointed to the fact that the position of artificial teeth corresponds with the function of the surrounding soft tissue and from the aspect of physiognomy as well. Phonetic aspect According to Silverman (1962 artificial anterior teeth are nearest when we pronounce the sound "S". Cephalometrical research Rayson (1970, Watson (1989, Strajnić Lj. (1999, Bassi F. (2001 have presented cephalometric radiographic analyses of natural anterior teeth compared with cephalometric radiographic analyses of artificial anterior teeth. A review of dental literature shows several factors suggesting modalities which should determine the position of artificial anterior teeth. Numerous methods have been designed for

  13. Incidental Anterior Cruciate Ligament Calcification: Case Report.

    Science.gov (United States)

    Hayashi, Hisami; Fischer, Hans

    2016-03-01

    The calcification of knee ligaments is a finding noted only in a handful of case reports. The finding of an anterior cruciate ligament calcification has been reported once in the literature. Comparable studies involving the posterior cruciate ligament, medial collateral ligament and an ossicle within the anterior cruciate ligament are likewise discussed in reports of symptomatic patients. We report a case of incidentally discovered anterior cruciate ligament calcification. We discuss the likely etiology and clinical implications of this finding.

  14. Cognitive functioning after deep brain stimulation in subcallosal cingulate gyrus for treatment-resistant depression: an exploratory study.

    Science.gov (United States)

    Serra-Blasco, Maria; de Vita, Sol; Rodríguez, Mar Rivas; de Diego-Adeliño, Javier; Puigdemont, Dolors; Martín-Blanco, Ana; Pérez-Egea, Rosario; Molet, Joan; Álvarez, Enric; Pérez, Victor; Portella, Maria J

    2015-02-28

    Deep brain stimulation (DBS) is being investigated as a therapeutic alternative for patients with treatment-resistant depression (TRD), but its cognitive safety has been scarcely explored. The aim of this exploratory study is to evaluate cognitive function of patients before and after deep brain stimulation of the subgenual cingulate gyrus (SCG). Eight treatment-resistant depressed patients were implanted in subgenual cingulate gyrus. A neuropsychological battery was used to evaluate patients before surgery and 1-year after. A matched group of eight first-episode patients was also assessed. A MANOVA was performed for each cognitive domain and those tests showing main time effects were then correlated with depressive symptoms and with medication load. There were significant group and time effects for memory and a group effect for language. No significant interactions between groups or cognitive domains were observed. Medication load was negatively correlated with memory at time 1, and clinical change negatively correlated with memory improvement. These findings support the cognitive safety of DBS of subgenual cingulate gyrus, as cognitive function did not worsen after chronic stimulation and memory performance even improved. The results, though, should be interpreted cautiously given the small sample size and the fact that some treatment-resistant patients received electroconvulsive therapy (ECT) before implantation.

  15. Akinetic Mutism Following Bilateral Anterior Cerebral Artery Territory Infarction Due to Aneurysm: A Case Report

    Directory of Open Access Journals (Sweden)

    Zeynep Özözen Ayas

    2014-04-01

    Full Text Available BACKGROUND AND PURPOSE: Bilateral anterior cerebral artery (ACA territory infarction is rare localization in stroke which should always prompt a search for an anterior communicating artery (ACoA aneurysm. The common neurological manifestations are contralateral weakness predominate in the lower extremite, behavior disturbance, motor inertia, muteness, incontinence, grasp reflex, diffuse rigidity, akinetic mutism. CASE DESCRIPTION: We describe a 38-year-old woman presented with a left sided hemiparesia and decrease of speech for last days. She was a smoker and morbide obese. She had no any diagnosed disease. Her neurological examination had weakness of left extremites affected leg more than the arm and akinetic mutism like as no spontaneously speech and move and grasp reflex. CT showed bilateral ACA infarction which included cingulate gyrus, the right side more than left and subarachnoid hemorrhage in the interhemispheric fissure. MRI angiography showed the appearance of AcoA aneurysm. CONCLUSION: We report a patient with bilateral infarction in the ACA which a rare localization and clinicians must be alert to exist AcoA aneurysm which may bleed, different symptoms and signs like as akinetic mutism, primitive reflexes.

  16. Toxic Anterior Segment Syndrome (TASS

    Directory of Open Access Journals (Sweden)

    Özlem Öner

    2011-12-01

    Full Text Available Toxic anterior segment syndrome (TASS is a sterile intraocular inflammation caused by noninfectious substances, resulting in extensive toxic damage to the intraocular tissues. Possible etiologic factors of TASS include surgical trauma, bacterial endotoxin, intraocular solutions with inappropriate pH and osmolality, preservatives, denatured ophthalmic viscosurgical devices (OVD, inadequate sterilization, cleaning and rinsing of surgical devices, intraocular lenses, polishing and sterilizing compounds which are related to intraocular lenses. The characteristic signs and symptoms such as blurred vision, corneal edema, hypopyon and nonreactive pupil usually occur 24 hours after the cataract surgery. The differential diagnosis of TASS from infectious endophthalmitis is important. The main treatment for TASS formation is prevention. TASS is a cataract surgery complication that is more commonly seen nowadays. In this article, the possible underlying causes as well as treatment and prevention methods of TASS are summarized. (Turk J Oph thal mol 2011; 41: 407-13

  17. Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer's disease.

    Science.gov (United States)

    Scheff, Stephen W; Price, Douglas A; Ansari, Mubeen A; Roberts, Kelly N; Schmitt, Frederick A; Ikonomovic, Milos D; Mufson, Elliott J

    2015-01-01

    Mild cognitive impairment (MCI) is considered to be an early stage in the progression of Alzheimer's disease (AD) providing an opportunity to investigate brain pathogenesis prior to the onset of dementia. Neuroimaging studies have identified the posterior cingulate gyrus (PostC) as a cortical region affected early in the onset of AD. This association cortex is involved in a variety of different cognitive tasks and is intimately connected with the hippocampal/entorhinal cortex region, a component of the medial temporal memory circuit that displays early AD pathology. We quantified the total number of synapses in lamina 3 of the PostC using unbiased stereology coupled with electron microscopy from short postmortem autopsy tissue harvested from cases at different stage of AD progression. Individuals in the early stages of AD showed a significant decline in synaptic numbers compared to individuals with no cognitive impairment (NCI). Subjects with MCI exhibited synaptic numbers that were between the AD and NCI cohorts. Adjacent tissue was evaluated for changes in both pre and postsynaptic proteins levels. Individuals with MCI demonstrated a significant loss in presynaptic markers synapsin-1 and synaptophysin and postsynaptic markers PSD-95 and SAP-97. Levels of [3H]PiB binding was significantly increased in MCI and AD and correlated strongly with levels of synaptic proteins. All synaptic markers showed a significant association with Mini-Mental Status Examination scores. These results support the idea that the PostC synaptic function is affected during the prodromal stage of the disease and may underlie some of the early clinical sequelae associated with AD.

  18. Neurocognitive Predictors of Response in Treatment Resistant Depression to Subcallosal Cingulate Gyrus Deep Brain Stimulation

    Science.gov (United States)

    McInerney, Shane J.; McNeely, Heather E.; Geraci, Joseph; Giacobbe, Peter; Rizvi, Sakina J.; Ceniti, Amanda K.; Cyriac, Anna; Mayberg, Helen S.; Lozano, Andres M.; Kennedy, Sidney H.

    2017-01-01

    Background: Deep brain stimulation (DBS) is a neurosurgical intervention with demonstrated effectiveness for treatment resistant depression (TRD), but longitudinal studies on the stability of cognitive parameters following treatment are limited. The objectives of this study are to (i) identify baseline cognitive predictors of treatment response to subcallosal cingulate gyrus (SCG) DBS for unipolar TRD and (ii) compare neurocognitive performance prior to and 12 months after DBS implantation. Methods: Twenty unipolar TRD patients received SCG DBS for 12 months. A standardized neuropsychological battery was used to assess a range of neurocognitive abilities at baseline and after 12 months. Severity of depression was evaluated using the 17 item Hamilton Rating Scale for Depression. Results: Finger Tap-Dominant Hand Test and total number of errors made on the Wisconsin Card Sorting Test predicted classification of patients as treatment responders or non-responders, and were independent of improvement in mood. Change in verbal fluency was the only neuropsychological test that correlated with change in mood from baseline to the follow up period. None of the neuropsychological measures displayed deterioration in cognitive functioning from baseline to repeat testing at 12 months. Limitations: This was an open label study with a small sample size which limits predictive analysis. Practice effects of the neuropsychological testing could explain the improvement from baseline to follow up on some tasks. Replication using a larger sample of subjects who received neuropsychological testing before and at least 12 months after DBS surgery is required. Conclusion: These preliminary results (i) suggest that psychomotor speed may be a useful baseline predictor of response to SCG DBS treatment and (ii) support previous suggestions that SCG DBS has no deleterious effects on cognition. PMID:28286473

  19. Scene construction impairments in Alzheimer's disease - A unique role for the posterior cingulate cortex.

    Science.gov (United States)

    Irish, Muireann; Halena, Stephanie; Kamminga, Jody; Tu, Sicong; Hornberger, Michael; Hodges, John R

    2015-12-01

    Episodic memory dysfunction represents one of the most prominent and characteristic clinical features of patients with Alzheimer's disease (AD), attributable to the degeneration of medial temporal and posterior parietal regions of the brain. Recent studies have demonstrated marked impairments in the ability to envisage personally relevant events in the future in AD. It remains unclear, however, whether AD patients can imagine fictitious scenes free from temporal constraints, a process that is proposed to rely fundamentally upon the integrity of the hippocampus. The objective of the present study was to investigate the capacity for atemporal scene construction, and its associated neural substrates, in AD. Fourteen AD patients were tested on the scene construction task and their performance was contrasted with 14 age- and education-matched healthy older Control participants. Scene construction performance was strikingly compromised in the AD group, with significant impairments evident for provision of contextual details, spatial coherence, and the overall richness of the imagined experience. Voxel-based morphometry analyses based on structural MRI revealed significant associations between scene construction capacity and atrophy in posterior parietal and lateral temporal brain structures in AD. In contrast, scene construction performance in Controls was related to integrity of frontal, parietal, and medial temporal structures, including the parahippocampal gyrus and posterior hippocampus. The posterior cingulate cortex (PCC) emerged as the common region implicated for scene construction performance across participant groups. Our study highlights the importance of regions specialised for spatial and contextual processing for the construction of atemporal scenes. Damage to these regions in AD compromises the ability to construct novel scenes, leading to the recapitulation of content from previously experienced events.

  20. Mild toxic anterior segment syndrome mimicking delayed onset toxic anterior segment syndrome after cataract surgery

    Directory of Open Access Journals (Sweden)

    Su-Na Lee

    2014-01-01

    Full Text Available Toxic anterior segment syndrome (TASS is an acute sterile postoperative anterior segment inflammation that may occur after anterior segment surgery. I report herein a case that developed mild TASS in one eye after bilateral uneventful cataract surgery, which was masked during early postoperative period under steroid eye drop and mimicking delayed onset TASS after switching to weaker steroid eye drop.

  1. The TALE class homeobox gene Smed-prep defines the anterior compartment for head regeneration.

    Directory of Open Access Journals (Sweden)

    Daniel A Felix

    2010-04-01

    Full Text Available Planaria continue to blossom as a model system for understanding all aspects of regeneration. They provide an opportunity to understand how the replacement of missing tissues from preexisting adult tissue is orchestrated at the molecular level. When amputated along any plane, planaria are capable of regenerating all missing tissue and rescaling all structures to the new size of the animal. Recently, rapid progress has been made in understanding the developmental pathways that control planarian regeneration. In particular Wnt/beta-catenin signaling is central in promoting posterior fates and inhibiting anterior identity. Currently the mechanisms that actively promote anterior identity remain unknown. Here, Smed-prep, encoding a TALE class homeodomain, is described as the first gene necessary for correct anterior fate and patterning during planarian regeneration. Smed-prep is expressed at high levels in the anterior portion of whole animals, and Smed-prep(RNAi leads to loss of the whole brain during anterior regeneration, but not during lateral regeneration or homeostasis in intact worms. Expression of markers of different anterior fated cells are greatly reduced or lost in Smed-prep(RNAi animals. We find that the ectopic anterior structures induced by abrogation of Wnt signaling also require Smed-prep to form. We use double knockdown experiments with the S. mediterranea ortholog of nou-darake (that when knocked down induces ectopic brain formation to show that Smed-prep defines an anterior fated compartment within which stem cells are permitted to assume brain fate, but is not required directly for this differentiation process. Smed-prep is the first gene clearly implicated as being necessary for promoting anterior fate and the first homeobox gene implicated in establishing positional identity during regeneration. Together our results suggest that Smed-prep is required in stem cell progeny as they form the anterior regenerative blastema and is

  2. Combining classical and molecular approaches elaborates on the complexity of mechanisms underpinning anterior regeneration.

    Directory of Open Access Journals (Sweden)

    Deborah J Evans

    Full Text Available The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi or Smed-ptc(RNAi lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new

  3. Combining classical and molecular approaches elaborates on the complexity of mechanisms underpinning anterior regeneration.

    Science.gov (United States)

    Evans, Deborah J; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A Aziz

    2011-01-01

    The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then

  4. The TALE class homeobox gene Smed-prep defines the anterior compartment for head regeneration.

    Science.gov (United States)

    Felix, Daniel A; Aboobaker, A Aziz

    2010-04-22

    Planaria continue to blossom as a model system for understanding all aspects of regeneration. They provide an opportunity to understand how the replacement of missing tissues from preexisting adult tissue is orchestrated at the molecular level. When amputated along any plane, planaria are capable of regenerating all missing tissue and rescaling all structures to the new size of the animal. Recently, rapid progress has been made in understanding the developmental pathways that control planarian regeneration. In particular Wnt/beta-catenin signaling is central in promoting posterior fates and inhibiting anterior identity. Currently the mechanisms that actively promote anterior identity remain unknown. Here, Smed-prep, encoding a TALE class homeodomain, is described as the first gene necessary for correct anterior fate and patterning during planarian regeneration. Smed-prep is expressed at high levels in the anterior portion of whole animals, and Smed-prep(RNAi) leads to loss of the whole brain during anterior regeneration, but not during lateral regeneration or homeostasis in intact worms. Expression of markers of different anterior fated cells are greatly reduced or lost in Smed-prep(RNAi) animals. We find that the ectopic anterior structures induced by abrogation of Wnt signaling also require Smed-prep to form. We use double knockdown experiments with the S. mediterranea ortholog of nou-darake (that when knocked down induces ectopic brain formation) to show that Smed-prep defines an anterior fated compartment within which stem cells are permitted to assume brain fate, but is not required directly for this differentiation process. Smed-prep is the first gene clearly implicated as being necessary for promoting anterior fate and the first homeobox gene implicated in establishing positional identity during regeneration. Together our results suggest that Smed-prep is required in stem cell progeny as they form the anterior regenerative blastema and is required for

  5. Anterior urethral diverticulum: A rare presentation

    Directory of Open Access Journals (Sweden)

    Annavarupu Gopalkrishna

    2016-01-01

    Full Text Available Congenital anomalies of the urogenital tract are the most common anomalies found in the foetus, neonates and infants, but anterior urethral valves and diverticula are rare. Here, we present a case with congenital anterior urethral diverticulum associated with patent ductus arteriosus and polydactyly.

  6. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  7. Anterior segment complications of retinal photocoagulation.

    Science.gov (United States)

    Kanski, J J

    1975-03-01

    Seven patients had anterior segment complications following xenon arc retinal photocoagulation. Irreversible keratopathy was induced in two cases; all patients showed evidence of iris injury. The absorption of radiation by the iris was considered the main factor in producing overheating of the anterior segment.

  8. Anterior cervical hypertrichosis: a sporadic case.

    Science.gov (United States)

    Bostan, Sezen; Yaşar, Şirin; Serdar, Zehra Aşiran; Gizlenti, Sevda

    2016-03-01

    Anterior cervical hypertrichosis is a very rare form of primary localized hypertrichosis. It consists of a tuft of terminal hair on the anterior neck just above the laryngeal prominence. The etiology is still unknown. In this article, we reported a 15-year-old female patient who presented to our clinic with a complaint of hypertrichosis on the anterior aspect of the neck for the last five years. Her past medical history revealed no pathology except for vesicoureteral reflux. On the basis of clinical presentation, our patient was diagnosed with anterior cervical hypertrichosis and she was considered to be a sporadic case due to lack of other similar cases in familial history. To date, 33 patients with anterior cervical hypertrichosis have been reported. Anterior cervical hypertrichosis can be associated with other abnormalities, but it frequently presents as an isolated defect (70%). The association of vesicoureteral reflux and anterior cervical hypertrichosis which was observed in our patient might be coincidental. So far, no case of anterior cervical hypertrichosis associated with vesicoureteral reflux has been reported in the literature.

  9. FUNCTIONAL OUTCOME OF ARTHROSCOPIC RECONSTRUCTION OF ANTERIOR CRUCIATE LIGAMENT TEARS

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2016-02-01

    Full Text Available BACKGROUND Anterior Cruciate Ligament (ACL tear is the most common serious ligamentous injury to the knee joint. Anterior Cruciate Ligament (ACL injury is quite common among young active population, athletes and contact sports. The exact incidence of anterior cruciate ligament tears is not known as the cases are being under reported. The ACL is the primary stabilizer against anterior translation of the tibia on the femur and is important in counteracting rotation and valgus stress. MATERIALS AND METHODS Between November 2012 to October 2014, 34 consecutive patients who underwent arthroscopic assisted ACL reconstructions in the Department of Orthopedics and Traumatology, King George Hospital, Visakhapatnam were the material in our study. Age groups between 18 to 45 years considered. We utilised both BPTB and Quadrupled hamstring graft depending on the patient’s age, outcome testing in all cases was performed at the latest follow-up (at least 6 months. Post-operative physiotherapy rehabilitation protocol followed for 06 months. RESULTS Standard protocol of Lysholm and IKDC knee scoring system were used for evaluation of the results of the surgery during followup. Patients were evaluated periodically at preop, 3 months, 6 months, 12 months, 18 months and 24 months. CONCLUSION Patients with isolated ACL injury had better outcome compared to patients who underwent associated meniscectomy. Most common mechanism of injury was activity of sports in 20 patients. Postoperatively at 3 months, anterior drawer’s was 1+ in 6, 29 (85.2% patients had normal range of motion; 29 (85.29% patients had 5/5 quadriceps power (MRC grading 94% of them had 5/5 power at latest followup. No significant difference between outcomes of BPTB and Hamstrings graft. Functional outcome of our study were similar to the previously published studies.

  10. Anterior and posterior centers jointly regulate Bombyx embryo body segmentation.

    Science.gov (United States)

    Nakao, Hajime

    2012-11-15

    Insect embryo segmentation is largely divided into long and short germ types. In the long germ type, each segment primordium is represented on a large embryonic rudiment of the blastoderm, and segmental patterning occurs nearly simultaneously in the syncytium. In the short germ type, however, only anterior segments are represented in the small embryonic rudiment, usually located on the egg posterior, and the rest of the segments are added sequentially from the posterior growth zone in a cellular context. The long germ type is thought to have evolved from the short germ type. It is proposed that this transition, which appears to have occurred multiple times over the course of evolution, was realized through the acquisition of a localized anterior instruction center. Here, I examined the early segmentation process in the silkmoth Bombyx mori, a lepidopteran insect, in which the mechanisms of anterior-posterior (AP) axis formation have not been well analyzed. In this insect, both the long germ and short germ features have been reported. The mRNAs for two key genes involved in insect AP axis formation, orthodenticle (Bm-otd) and caudal (Bm-cad), are localized maternally in the germ anlage, where they act as anterior and posterior instruction centers, respectively. RNAi studies indicate that, while Bm-cad affects the formation of all the even skipped (Bm-eve) stripes, there is also anterior Bm-eve stripe formation activity that involves Bm-otd. Thus, there is redundancy in Bm-eve stripe formation activity that must be coordinated. Some genetic interactions, identified either experimentally or hypothetically, are also introduced, which might enable robust AP formation in this organism.

  11. Comparação entre a atividade EMG do peitoral maior, deltóide anterior e tríceps braquial durante os exercícios supino reto e crucifixo Comparación entre la actividad EMG del pectoral mayor, deltoide anterior y tríceps braquial durante los ejercicios supino recto y cruz Comparison among the EMG activity of the pectoralis major, anterior deltoidis and triceps brachii during the bench press and peck deck exercises (200/2005

    Directory of Open Access Journals (Sweden)

    Valdinar de Araújo Rocha Júnior

    2007-02-01

    máquina (CR. Las actividades EMG de los músculos PM, DA y TB fueron evaluados durante la realización de 10 repeticiones máximas en CR y SP en 13 hombres entrenados. Los resultados no revelaron diferencias en la actividad de PM y DA entre los ejercicios. La actividad de TB fue mayor en la realización de SP en comparación con CR. Durante SP, la actividad de PM fue mayor en relación a TB, sin diferencias entre PM y DA o DA y TB. En CR, la actividad de PM y DA fueron mayores en relación a TB, sin diferencias entre DA y PM. De acuerdo con los resultados obtenidos en el presente estudio se puede concluir que en caso de que el objetivo de entrenamiento sea promover estímulos para DA o PM, ambos ejercicios pueden ser usados, dependiendo de la disponibilidad de materiales y/o de la especificidad de la actividad motora en la cual se procure mejorar el desempeño.The identification of the characteristics of each movement and its adjustment to the training goals are tasks that demand the interaction of many knowledge areas. These tasks are essential to the success in sports activities and training programs designed with athletic, aesthetic or healthy purposes. The objective of the present study was to compare the electromyograhic (EMG activity of the pectoralis major (PM, anterior deltoids (DA and triceps brachii (TB muscles during the barbell bench press (SP and the peck deck (PD exercises. EMG activity of TB, PM and DA were assessed during 10 maximum repetitions performed in SP and PD in 13 trained men. The results did not show any differences between exercises for PM and DA activity; however, TB activity was higher for SP than PD exercise. During SP, the PM muscle activity was higher than TB. There were no differences between PM and DA, or between DA and TB. During the PD exercise, the PM and DA muscle activities were higher than TB. There were no differences between PM and DA. It was concluded that the prime movers of both exercise are DA and PM, and there are no

  12. Time, space and emotion: fMRI reveals content-specific activation during text comprehension.

    Science.gov (United States)

    Ferstl, Evelyn C; von Cramon, D Yves

    2007-11-12

    Story comprehension involves building a situation model of the text, i.e., a representation containing information on the who, where, when and why of the story. Using fMRI at 3T, domain-specific activations for three different information aspects were sought. Twenty participants read two sentence stories half of which contained inconsistencies concerning emotional, temporal or spatial information. Partly replicating previous results [E.C. Ferstl, M. Rinck, D.Y. von Cramon, Emotional and temporal aspects of situation model processing during text comprehension: an event-related fMRI study, J. Cogn. Neurosci. 17 (2005) 724-739], the anterior lateral prefrontal cortex/orbito-frontal cortex proved important for processing temporal information. The left anterior temporal lobe was particularly important during emotional stories. Most importantly, spatial information elicited bilateral activation in the collateral sulci and the posterior cingulate cortex, areas important for visuo-spatial cognition. These findings provide further evidence for content-specific processes during text comprehension.

  13. Distinct resting-state brain activity in patients with functional constipation.

    Science.gov (United States)

    Zhu, Qiang; Cai, Weiwei; Zheng, Jianyong; Li, Guanya; Meng, Qianqian; Liu, Qiaoyun; Zhao, Jizheng; von Deneen, Karen M; Wang, Yuanyuan; Cui, Guangbin; Duan, Shijun; Han, Yu; Wang, Huaning; Tian, Jie; Zhang, Yi; Nie, Yongzhan

    2016-10-01

    Functional constipation (FC) is a common functional gastrointestinal disorder (FGID) with a higher prevalence in clinical practice. The primary brain regions involved in emotional arousal regulation, somatic, sensory and motor control processing have been identified with neuroimaging in FGID. It remains unclear how these factors interact to influence the baseline brain activity of patients with FC. In the current study, we combined resting-state fMRI (RS-fMRI) with Granger causality analysis (GCA) to investigate the causal interactions of the brain areas in 14 patients with FC and in 26 healthy controls (HC). Our data showed significant differences in baseline brain activities in a number of major brain regions implicated in emotional process modulation (i.e. dorsal anterior cingulate cortex-dACC, anterior insula-aINS, orbitofrontal cortex-OFC, hippocampus-HIPP), somatic and sensory processing, and motor control (i.e., supplementary motor area-SMA, precentral gyrus-PreCen) (Ppropel limbic regions at the aINS and HIPP to induce abnormal emotional processing regulating visceral responses; and weaker effective connectivity from the SMA and PreCen, which are regions involved with somatic, sensory and motor control, propel the aINS and HIPP, suggesting abnormalities of sensory and behavioral responses. Such information of basal level functional abnormalities expands our current understanding of neural mechanisms underlying functional constipation.

  14. EEG source activity during processing of neutral stimuli in subjects with anxiety disorders.

    Science.gov (United States)

    Gmaj, Bartłomiej; Januszko, Piotr; Kamiński, Jan; Drozdowicz, Ewa; Kopera, Maciej; Wołyńczyk-Gmaj, Dorota; Szelenberger, Waldemar; Wojnar, Marcin

    2016-01-01

    Anxiety disorders are a social problem due to their prevalence and consequences. It is crucial to explore the influence of anxiety on cognitive processes. In this study we recorded EEG activity from 73 subjects (35 patients, 38 controls, matched for age and education) during performance of the Continuous Attention Task. We used low resolution electromagnetic tomography (LORETA) for evaluation of mechanisms of impaired cognitive performance in anxiety disorders. Analysis showed that patients with anxiety disorders committed more errors than the controls, had a short latency of P300 and higher amplitude of ERPs at all steps of stimulus processing. Furthermore, we showed that there was a relationship between the scores of Hamilton Anxiety Scale and Beck Depression Inventory, and amplitudes and latencies of ERPs. The results of LORETA analysis showed that enhanced neural responses were found within circuits mediating visual information processing, sustained attention and anxiety. Also, we found higher current density within areas playing an important role in the brain fear network - anterior cingulate and anterior part of insula. Electrophysiological neuroimaging showed greater recruitment of cognitive resources in anxiety disorders, evidenced by higher current density and activation of greater number of brain areas. Despite the strategy employed to compensate for cognitive problems, the anxiety patients did not achieve the same performance as controls. Present study demonstrates that anxiety disorders influence processing of neutral stimuli and this influence is observable at both behavioral and electrophysiological level. The data suggests instability of neural systems responsible for information selection, working memory, engagement and focusing of attention.

  15. Isokinetic profile of subjects with the ruptured anterior cruciated ligament

    OpenAIRE

    Drapšin Miodrag; Lukač Damir; Rašović Predrag; Drid Patrik; Klašnja Aleksandar; Lalić Ivica

    2016-01-01

    Background/Aim. All changes in the knee that appear after anterior cruciate ligament (ACL) lesion lead to difficulties in walking, running, jumping especially during sudden changes of the line of movement. This significantly impairs quality of life of these subjects and leads to decrease in physical activity. Knee injuries make 5% of all most severe acute sport injuries. The aim of the study was to determine strength of the thigh muscles in persons with uni...

  16. Psychopaths Show Enhanced Amygdala Activation during Fear Conditioning.

    Science.gov (United States)

    Schultz, Douglas H; Balderston, Nicholas L; Baskin-Sommers, Arielle R; Larson, Christine L; Helmstetter, Fred J

    2016-01-01

    Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into "primary" and "secondary" psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional "fearlessness," while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC) for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  17. Psychopaths show enhanced amygdala activation during fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas eSchultz

    2016-03-01

    Full Text Available Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into primary and secondary psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional fearlessness, while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  18. Mini-open anterior lumbar interbody fusion.

    Science.gov (United States)

    Gandhoke, Gurpreet S; Ricks, Christian; Tempel, Zachary; Zuckerbraun, Brian; Hamilton, D Kojo; Okonkwo, David O; Kanter, Adam S

    2016-07-01

    In deformity surgery, anterior lumbar interbody fusion provides excellent biomechanical support, creates a broad surface area for arthrodesis, and induces lordosis in the lower lumbar spine. Preoperative MRI, plain radiographs, and, when available, CT scan should be carefully assessed for sacral slope as it relates to pubic symphysis, position of the great vessels (especially at L4/5), disc space height, or contraindication to an anterior approach. This video demonstrates the steps in an anterior surgical procedure with minimal open exposure. The video can be found here: https://youtu.be/r3bC4_vu1hQ .

  19. Anterior hippocampus and goal-directed spatial decision making.

    Science.gov (United States)

    Viard, Armelle; Doeller, Christian F; Hartley, Tom; Bird, Chris M; Burgess, Neil

    2011-03-23

    Planning spatial paths through our environment is an important part of everyday life and is supported by a neural system including the hippocampus and prefrontal cortex. Here we investigated the precise functional roles of the components of this system in humans by using fMRI as participants performed a simple goal-directed route-planning task. Participants had to choose the shorter of two routes to a goal in a visual scene that might contain a barrier blocking the most direct route, requiring a detour, or might be obscured by a curtain, requiring memory for the scene. The participant's start position was varied to parametrically manipulate their proximity to the goal and the difference in length of the two routes. Activity in medial prefrontal cortex, precuneus, and left posterior parietal cortex was associated with detour planning, regardless of difficulty, whereas activity in parahippocampal gyrus was associated with remembering the spatial layout of the visual scene. Activity in bilateral anterior hippocampal formation showed a strong increase the closer the start position was to the goal, together with medial prefrontal, medial and posterior parietal cortices. Our results are consistent with computational models in which goal proximity is used to guide subsequent navigation and with the association of anterior hippocampal areas with nonspatial functions such as arousal and reward expectancy. They illustrate how spatial and nonspatial functions combine within the anterior hippocampus, and how these functions interact with parahippocampal, parietal, and prefrontal areas in decision making and mnemonic function.

  20. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  1. A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study

    Directory of Open Access Journals (Sweden)

    Takeshima Yasuyuki

    2008-12-01

    Full Text Available Abstract Background To investigate the long-latency activities common to all sensory modalities, electroencephalographic responses to auditory (1000 Hz pure tone, tactile (electrical stimulation to the index finger, visual (simple figure of a star, and noxious (intra-epidermal electrical stimulation to the dorsum of the hand stimuli were recorded from 27 scalp electrodes in 14 healthy volunteers. Results Results of source modeling showed multimodal activations in the anterior part of the cingulate cortex (ACC and hippocampal region (Hip. The activity in the ACC was biphasic. In all sensory modalities, the first component of ACC activity peaked 30–56 ms later than the peak of the major modality-specific activity, the second component of ACC activity peaked 117–145 ms later than the peak of the first component, and the activity in Hip peaked 43–77 ms later than the second component of ACC activity. Conclusion The temporal sequence of activations through modality-specific and multimodal pathways was similar among all sensory modalities.

  2. How I do it: Anterior pull-through tympanoplasty for anterior eardrum perforations.

    Science.gov (United States)

    Harris, Jeffrey P; Wong, Yu-Tung; Yang, Tzong-Hann; Miller, Mia

    2016-01-01

    Conclusions This technique is offered as a convenient and reliable method for cases with anterior TM perforation and inadequate anterior remnant. Objectives Chronic otitis media surgery is one of the most common procedures in otology. Anterior tympanic membrane (TM) perforation with inadequate anterior remnant is associated with higher rates of graft failure. It was the goal of this series to evaluate the anatomical and functional outcomes of a modified underlay myringoplasty technique-the anterior pull-through method. Materials and methods In a retrospective clinical study, 13 patients with anterior TM perforations with inadequate anterior remnants underwent tympanoplasty with anterior pull-through technique. The anterior tip of the temporalis fascia was pulled through and secured in a short incision lateral to the anterior part of the annulus. Data on graft take rate, pre-operative, and post-operative hearing status were analyzed. Results A graft success rate of 84.6% (11 out of 13) was achieved, without lateralization, blunting, atelectasia, or epithelial pearls. The air-bone gap was 21.5 ± 6.8 dB before intervention and 11.75 ± 5.7 dB after surgery (p = 0.003).

  3. Quadriceps muscle contraction protects the anterior cruciate ligament during anterior tibial translation.

    Science.gov (United States)

    Aune, A K; Cawley, P W; Ekeland, A

    1997-01-01

    The proposed skiing injury mechanism that suggests a quadriceps muscle contraction can contribute to anterior cruciate ligament rupture was biomechanically investigated. The effect of quadriceps muscle force on a knee specimen loaded to anterior cruciate ligament failure during anterior tibial translation was studied in a human cadaveric model. In both knees from six donors, average age 41 years (range, 31 to 65), the joint capsule and ligaments, except the anterior cruciate ligament, were cut. The quadriceps tendon, patella, patellar tendon, and menisci were left intact. One knee from each pair was randomly selected to undergo destructive testing of the anterior cruciate ligament by anterior tibial translation at a displacement rate of 30 mm/sec with a simultaneously applied 889 N quadriceps muscle force. The knee flexion during testing was 30 degrees. As a control, the contralateral knee was loaded correspondingly, but only 5 N of quadriceps muscle force was applied. The ultimate load for the knee to anterior cruciate ligament failure when tested with 889 N quadriceps muscle force was 22% +/- 18% higher than that of knees tested with 5 N of force. The linear stiffness increased by 43% +/- 30%. These results did not support the speculation that a quadriceps muscle contraction contributes to anterior cruciate ligament failure. In this model, the quadriceps muscle force protected the anterior cruciate ligament from injury during anterior tibial translation.

  4. FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration.

    Science.gov (United States)

    Nacu, Eugeniu; Gromberg, Elena; Oliveira, Catarina R; Drechsel, David; Tanaka, Elly M

    2016-05-19

    In salamanders, grafting of a left limb blastema onto a right limb stump yields regeneration of three limbs, the normal limb and two 'supernumerary' limbs. This experiment and other research have shown that the juxtaposition of anterior and posterior limb tissue plus innervation are necessary and sufficient to induce complete limb regeneration in salamanders. However, the cellular and molecular basis of the requirement for anterior-posterior tissue interactions were unknown. Here we have clarified the molecular basis of the requirement for both anterior and posterior tissue during limb regeneration and supernumerary limb formation in axolotls (Ambystoma mexicanum). We show that the two tissues provide complementary cross-inductive signals that are required for limb outgrowth. A blastema composed solely of anterior tissue normally regresses rather than forming a limb, but activation of hedgehog (HH) signalling was sufficient to drive regeneration of an anterior blastema to completion owing to its ability to maintain fibroblast growth factor (FGF) expression, the key signalling activity responsible for blastema outgrowth. In blastemas composed solely of posterior tissue, HH signalling was not sufficient to drive regeneration; however, ectopic expression of FGF8 together with endogenous HH signalling was sufficient. In axolotls, FGF8 is expressed only in the anterior mesenchyme and maintenance of its expression depends on sonic hedgehog (SHH) signalling from posterior tissue. Together, our findings identify key anteriorly and posteriorly localized signals that promote limb regeneration and show that these single factors are sufficient to drive non-regenerating blastemas to complete regeneration with full elaboration of skeletal elements.

  5. Identifying minimal hepatic encephalopathy in cirrhotic patients by measuring spontaneous brain activity.

    Science.gov (United States)

    Chen, Hua-Jun; Zhang, Ling; Jiang, Long-Feng; Chen, Qiu-Feng; Li, Jun; Shi, Hai-Bin

    2016-08-01

    It has been demonstrated that minimal hepatic encephalopathy (MHE) is associated with aberrant regional intrinsic brain activity in cirrhotic patients. However, few studies have investigated whether altered intrinsic brain activity can be used as a biomarker of MHE among cirrhotic patients. In this study, 36 cirrhotic patients (with MHE, n = 16; without MHE [NHE], n = 20) underwent resting-state functional magnetic resonance imaging (fMRI). Spontaneous brain activity was measured by examining the amplitude of low-frequency fluctuations (ALFF) in the fMRI signal. MHE was diagnosed based on the Psychometric Hepatic Encephalopathy Score (PHES). A two-sample t-test was used to determine the regions of interest (ROIs) in which ALFF differed significantly between the two groups; then, ALFF values within ROIs were selected as classification features. A linear discriminative analysis was used to differentiate MHE patients from NHE patients. The leave-one-out cross-validation method was used to estimate the performance of the classifier. The classification analysis was 80.6 % accurate (81.3 % sensitivity and 80.0 % specificity) in terms of distinguishing between the two groups. Six ROIs were identified as the most discriminative features, including the bilateral medial frontal cortex/anterior cingulate cortex, posterior cingulate cortex/precuneus, left precentral and postcentral gyrus, right lingual gyrus, middle frontal gyrus, and inferior/superior parietal lobule. The ALFF values within ROIs were correlated with PHES in cirrhotic patients. Our findings suggest that altered regional brain spontaneous activity is a useful biomarker for MHE detection among cirrhotic patients.

  6. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  7. FUNCTIONAL OUTCOME OF ARTHROSCOPY ASSISTED ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION USING BONE PATELLAR TENDON BONE AUTOGRAFT

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2015-04-01

    cruciate ligament reconstruction with Bone Patellar tendon Bone autograft is excellent too good. The functional outcome of arthroscopy assisted anterior cruciate ligament reconstruction with Bone Patellar tendon Bone autograft is excellent to good and allows the patients to return to pre injury level of activity.

  8. Verum and sham acupuncture exert distinct cerebral activation in pain processing areas: a crossover fMRI investigation in healthy volunteers.

    Science.gov (United States)

    Usichenko, Taras I; Wesolowski, Toni; Lotze, Martin

    2015-06-01

    Although acupuncture is effective for treating pain, its site-specificity is questioned. The aim was to compare the cerebral responses of needling applied to an acupuncture point to the needling of a sham point, using functional magnetic resonance imaging (fMRI). Twenty-one healthy male volunteers were enrolled. Manual stimulation of the acupuncture (ST44) and sham points on the dorsum of the left foot was applied during fMRI in a crossover manner. fMRI data analysis was performed contrasting the ST44 and the sham conditions. Stimulation intensity, subjective discrimination of the needling site and the incidence of "Qi" sensation were additionally recorded. Stimulation of ST44 acupoint, in comparison to the sham procedure, was associated with an increased fMRI-activation in the primary somatosensory, the inferior parietal and the prefrontal cortex and the posterior insula. Sham needling was associated with increased activation in the anterior cingulate cortex and the anterior insula. Verum acupuncture increased the activity of discriminative somatosensory and cognitive pain processing areas of the brain, whereas sham needling activated the areas responsible for affective processing of pain. This may explain favorable effects of verum acupuncture in clinical studies about treatment of chronic pain patients.

  9. The default modes of reading: Modulation of posterior cingulate and medial prefrontal cortex connectivity associated with subjective and objective differences in reading experience

    Directory of Open Access Journals (Sweden)

    Jonathan eSmallwood

    2013-11-01

    Full Text Available Reading is a fundamental human capacity and yet it can easily be derailed by the simple act of mind-wandering. A large-scale brain network, referred to as the default mode network (DMN, has been shown to be involved in both mind-wandering and reading, raising the question as to how the same neural system could be implicated in processes with both costs and benefits to narrative comprehension. Resting-state functional magnetic resonance imaging (rs-fMRI was used to explore whether the intrinsic functional connectivity of the two key midline hubs of the DMN — the posterior cingulate (PCC and medial prefrontal cortex (aMPFC — was predictive of individual differences in reading effectiveness (better comprehension, superior and task focus recorded outside of the scanner. Worse comprehension was associated with greater functional connectivity between the PCC and a region of the ventral striatum. By contrast reports of increasing task focus were associated with functional connectivity from the aMPFC to clusters in the PCC, the left parietal and temporal cortex, and the cerebellum. Our results suggest that the DMN has both costs (such as poor comprehension and benefits to reading (such as an on-task focus because its midline core can couple its activity with other regions to form distinct functional communities that allow seemingly opposing mental states to occur. This flexible coupling allows the DMN to participate in cognitive states that complement the act of reading as well as others that do not.

  10. Guideline on anterior cruciate ligament injury

    NARCIS (Netherlands)

    D.E. Meuffels (Duncan); M.T. Poldervaart (Michelle T.); R.L. Diercks (Ron L.); A.W.F.M. Fievez (Alex W.F.M.); T.W. Patt (Thomas W.); C.P. van der Hart (Cor P.); E.R. Hammacher (Eric); F. van der Meer (Fred); E.A. Goedhart (Edwin A.); A.F. Lenssen (Anton F); S.B. Muller-Ploeger (Sabrina B); M.A. Pols (Margreet); D