WorldWideScience

Sample records for anterior cingulate activation

  1. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  2. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  3. Kainate-induced network activity in the anterior cingulate cortex.

    Science.gov (United States)

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Behavioral conflict, anterior cingulate cortex, and experiment duration: implications of diverging data.

    Science.gov (United States)

    Erickson, Kirk I; Milham, Michael P; Colcombe, Stanley J; Kramer, Arthur F; Banich, Marie T; Webb, Andrew; Cohen, Neal J

    2004-02-01

    We investigated the relationship between behavioral measures of conflict and the degree of activity in the anterior cingulate cortex (ACC). We reanalyzed an existing data set that employed the Stroop task using functional magnetic resonance imaging [Milham et al., Brain Cogn 2002;49:277-296]. Although we found no changes in the behavioral measures of conflict from the first to the second half of task performance, we found a reliable reduction in the activity of the anterior cingulate cortex. This result suggests the lack of a strong relationship between behavioral measurements of conflict and anterior cingulate activity. A concomitant increase in dorsolateral prefrontal cortex activity was also found, which may reflect a tradeoff in the neural substrates involved in supporting conflict resolution, detection, or monitoring processes. A second analysis of the data revealed that the duration of an experiment can dramatically affect interpretations of the results, including the roles in which particular regions are thought to play in cognition. These results are discussed in relation to current conceptions of ACC's role in attentional control. In addition, we discuss the implication of our results with current conceptions of conflict and of its instantiation in the brain. Hum. Brain Mapping 21:96-105, 2004. Copyright 2003 Wiley-Liss, Inc.

  5. The functional integration of the anterior cingulate cortex during conflict processing.

    Science.gov (United States)

    Fan, Jin; Hof, Patrick R; Guise, Kevin G; Fossella, John A; Posner, Michael I

    2008-04-01

    Although functional activation of the anterior cingulate cortex (ACC) related to conflict processing has been studied extensively, the functional integration of the subdivisions of the ACC and other brain regions during conditions of conflict is still unclear. In this study, participants performed a task designed to elicit conflict processing by using flanker interference on target response while they were scanned using event-related functional magnetic resonance imaging. The physiological response of several brain regions in terms of an interaction between conflict processing and activity of the anterior rostral cingulate zone (RCZa) of the ACC, and the effective connectivity between this zone and other regions were examined using psychophysiological interaction analysis and dynamic causal modeling, respectively. There was significant integration of the RCZa with the caudal cingulate zone (CCZ) of the ACC and other brain regions such as the lateral prefrontal, primary, and supplementary motor areas above and beyond the main effect of conflict and baseline connectivity. The intrinsic connectivity from the RCZa to the CCZ was modulated by the context of conflict. These findings suggest that conflict processing is associated with the effective contribution of the RCZa to the neuronal activity of CCZ, as well as other cortical regions.

  6. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  7. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia.

    Science.gov (United States)

    Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A

    2018-03-01

    Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected  state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.

  8. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  9. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  10. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem.

  11. Value, search, persistence and model updating in anterior cingulate cortex

    NARCIS (Netherlands)

    Kolling, N.; Wittmann, M.K.; Behrens, T.E.J.; Boorman, E.D.; Mars, R.B.; Rushworth, M.F.S.

    2016-01-01

    Dorsal anterior cingulate cortex (dACC) carries a wealth of value-related information necessary for regulating behavioral flexibility and persistence. It signals error and reward events informing decisions about switching or staying with current behavior. During decision-making, it encodes the

  12. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, P.J.; de Ruiter, M.B.; Elzinga, B.M.; van Balkom, A.J.L.M.; Smit, J.H.; Veltman, D.J.

    2012-01-01

    Background Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence

  13. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, N.; de Ruiter, M. B.; Elzinga, B. M.; van Balkom, A. J.; Smit, J. H.; Veltman, D. J.

    2012-01-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that

  14. Motivation of extended behaviors by anterior cingulate cortex.

    Science.gov (United States)

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A word expressing affective pain activates the anterior cingulate cortex in the human brain: an fMRI study.

    Science.gov (United States)

    Osaka, Naoyuki; Osaka, Mariko; Morishita, Masanao; Kondo, Hirohito; Fukuyama, Hidenao

    2004-08-12

    We present an fMRI study demonstrating that an onomatopoeia word highly suggestive of subjective pain, heard by the ear, significantly activates the anterior cingulate cortex (ACC) while hearing non-sense words that did not imply affective pain under the same task does not activate this area in humans. We concluded that the ACC would be a pivotal locus for perceiving affective pain evoked by an onomatopoeia word that implied affective pain closely associated with the unpleasantness of pain. We suggest that the pain affect sustained by pain unpleasantness may depend on ACC-prefrontal cortical interactions that modify cognitive evaluation of emotions associated with word-induced pain.

  16. Impaired cognitive control and reduced cingulate activity during mental fatigue

    NARCIS (Netherlands)

    Lorist, M.M.; Boksem, M.A.S.; Ridderinkhof, K.R.

    2005-01-01

    Neurocognitive mechanisms underlying the effects of mental fatigue are poorly understood. Here, we examined whether error-related brain activity, indexing performance monitoring by the anterior cingulate cortex (ACC), and strategic behavioural adjustments were modulated by mental fatigue, as induced

  17. Impaired cognitive control and reduced cingulate activity during mental fatigue

    NARCIS (Netherlands)

    Lorist, MM; Boksem, MAS; Ridderinkhof, KR

    Neurocognitive mechanisms underlying the effects of mental fatigue are poorly understood. Here, we examined whether error-related brain activity, indexing performance monitoring by the anterior cingulate cortex (ACC), and strategic behavioural adjustments were modulated by mental fatigue, as induced

  18. Conflict-related activity in the caudal anterior cingulate cortex in the absence of awareness

    Science.gov (United States)

    Ursu, Stefan; Clark, Kristi A.; Aizenstein, Howard J.; Stenger, V. Andrew; Carter, Cameron S.

    2009-01-01

    The caudal anterior cingulate cortex (cACC) is thought to be involved in performance monitoring, as conflict and error-related activity frequently co-localize in this area. Recent results suggest that these effects may be differentially modulated by awareness. To clarify the role of awareness in performance monitoring by the cACC, we used rapid event-related fMRI to examine the cACC activity while subjects performed a dual task: a delayed recognition task and a serial response task (SRT) with an implicit probabilistic learning rule (i.e. the stimulus location followed a probabilistic sequence of which the subjects were unaware). Task performance confirmed that the location sequence was learned implicitly. Even though we found no evidence of awareness for the presence of the sequence, imaging data revealed increased cACC activity during correct trials which violated the sequence (high conflict), relative to trials when stimuli followed the sequence (low conflict). Errors made with awareness also activated the same brain region. These results suggest that the performance monitoring function of the cACC extends beyond detection of errors made with or without awareness, and involves detection of multiple responses even when they are outside of awareness. PMID:19026710

  19. What role for the anterior cingulate in analogical reasoning?

    Science.gov (United States)

    O'Boyle, Michael W

    2010-06-01

    Abstract While prefrontal and frontal cortex of the brain are well documented to mediate many executive functions, including creativity, flexibility, and adaptability, the anterior cingulate cortex (ACC) is known to be involved in error detection and conflict resolution, and is crucial to reward-based learning. A case is made for the notion that any neural model of analogical reasoning must incorporate the critical (and specialized) contributions of the ACC.

  20. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-05-01

    Full Text Available Abstract Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC, in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice.

  1. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder.

    Science.gov (United States)

    Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne

    2012-11-01

    The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis

  2. Decreased NOS1 expression in the anterior cingulate cortex in depression

    NARCIS (Netherlands)

    Gao, Shang-Feng; Qi, Xin-Rui; Zhao, Juan; Balesar, Rawien; Bao, Ai-Min; Swaab, Dick F.

    2013-01-01

    Decreased function of the anterior cingulate cortex (ACC) is crucially involved in the pathogenesis of depression. A key role of nitric oxide (NO) has also been proposed. We aimed to determine the NO content in the cerebrospinal fluid (CSF) and the expression of NO synthase (NOS) isoforms, that is,

  3. Anterior cingulate activation is related to a positivity bias and emotional stability in successful aging.

    Science.gov (United States)

    Brassen, Stefanie; Gamer, Matthias; Büchel, Christian

    2011-07-15

    Behavioral studies consistently reported an increased preference for positive experiences in older adults. The socio-emotional selectivity theory explains this positivity effect with a motivated goal shift in emotion regulation, which probably depends on available cognitive resources. The present study investigates the neurobiological mechanism underlying this hypothesis. Functional magnetic resonance imaging data were acquired in 21 older and 22 young subjects while performing a spatial-cueing paradigm that manipulates attentional load on emotional face distracters. We focused our analyses on the anterior cingulate cortex as a key structure of cognitive control of emotion. Elderly subjects showed a specifically increased distractibility by happy faces when more attentional resources were available for face processing. This effect was paralleled by an increased engagement of the rostral anterior cingulate cortex, and this frontal engagement was significantly correlated with emotional stability. The current study highlights how the brain might mediate the tendency to preferentially engage in positive information processing in healthy aging. The finding of a resource-dependency of this positivity effect suggests demanding self-regulating processes that are related to emotional well-being. These findings are of particular relevance regarding implications for the understanding, treatment, and prevention of nonsuccessful aging like highly prevalent late-life depression. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Amygdala Reactivity and Anterior Cingulate Habituation Predict Posttraumatic Stress Disorder Symptom Maintenance After Acute Civilian Trauma.

    Science.gov (United States)

    Stevens, Jennifer S; Kim, Ye Ji; Galatzer-Levy, Isaac R; Reddy, Renuka; Ely, Timothy D; Nemeroff, Charles B; Hudak, Lauren A; Jovanovic, Tanja; Rothbaum, Barbara O; Ressler, Kerry J

    2017-06-15

    Studies suggest that exaggerated amygdala reactivity is a vulnerability factor for posttraumatic stress disorder (PTSD); however, our understanding is limited by a paucity of prospective, longitudinal studies. Recent studies in healthy samples indicate that, relative to reactivity, habituation is a more reliable biomarker of individual differences in amygdala function. We investigated reactivity of the amygdala and cortical areas to repeated threat presentations in a prospective study of PTSD. Participants were recruited from the emergency department of a large level I trauma center within 24 hours of trauma. PTSD symptoms were assessed at baseline and approximately 1, 3, 6, and 12 months after trauma. Growth curve modeling was used to estimate symptom recovery trajectories. Thirty-one individuals participated in functional magnetic resonance imaging around the 1-month assessment, passively viewing fearful and neutral face stimuli. Reactivity (fearful > neutral) and habituation to fearful faces was examined. Amygdala reactivity, but not habituation, 5 to 12 weeks after trauma was positively associated with the PTSD symptom intercept and predicted symptoms at 12 months after trauma. Habituation in the ventral anterior cingulate cortex was positively associated with the slope of PTSD symptoms, such that decreases in ventral anterior cingulate cortex activation over repeated presentations of fearful stimuli predicted increasing symptoms. Findings point to neural signatures of risk for maintaining PTSD symptoms after trauma exposure. Specifically, chronic symptoms were predicted by amygdala hyperreactivity, and poor recovery was predicted by a failure to maintain ventral anterior cingulate cortex activation in response to fearful stimuli. The importance of identifying patients at risk after trauma exposure is discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, P.J.; de Ruiter, M.B.; van Balkom, A.J.L.M.; Smit, J.H.; Veltman, D.J.

    2010-01-01

    Objective: Classic posttraumatic stress disorder (PTSD) is associated with smaller hippocampus, amygdala, and anterior cingulate cortex (ACC) volumes. We investigated whether child abuse-related complex PTSD - a severe form of PTSD with affect dysregulation and high comorbidity-showed similar brain

  6. Reduced Anterior Cingulate and Orbitofrontal Volumes in Child Abuse-Related Complex PTSD

    NARCIS (Netherlands)

    Thomaes, Kathleen; Dorrepaal, Ethy; Draijer, Nel; de Ruiter, Michiel B.; van Balkom, Anton J.; Smit, Johannes H.; Veltman, Dick J.

    2010-01-01

    Objective: Classic posttraumatic stress disorder (PTSD) is associated with smaller hippocampus, amygdala, and anterior cingulate cortex (ACC) volumes. We investigated whether child abuse-related complex PTSD a severe form of PTSD with affect dysregulation and high comorbidity-showed similar brain

  7. Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate.

    Science.gov (United States)

    Haas, Brian W; Omura, Kazufumi; Constable, R Todd; Canli, Turhan

    2007-04-01

    The amygdala and subgenual anterior cingulate (AC) have been associated with anxiety and mood disorders, for which trait neuroticism is a risk factor. Prior work has not related individual differences in amygdala or subgenual AC activation with neuroticism. Functional magnetic resonance imaging was used to investigate changes in blood oxygen level-dependent signal within the amygdala and subgenual AC associated with trait neuroticism in a nonclinical sample of 36 volunteers during an emotional conflict task. Neuroticism correlated positively with amygdala and subgenual AC activation during trials of high emotional conflict, compared with trials of low emotional conflict. The subscale of neuroticism that reflected the anxious form of neuroticism (N1) explained a greater proportion of variance within the observed clusters than the subscale of neuroticism that reflected the depressive form of neuroticism (N3). Using a task that is sensitive to individual differences in the detection of emotional conflict, the authors have provided a neural correlate of the link between neuroticism and anxiety and mood disorders. This effect was driven to a greater extent by the anxious relative to the depressive characteristics of neuroticism and may constitute vulnerability markers for anxiety-related disorders. (c) 2007 APA, all rights reserved

  8. Frontal and anterior cingulate activation during overt verbal fluency in patients with first episode psychosis Ativação frontal e do cíngulo anterior durante tarefa de fluência verbal em pacientes em primeiro episódio psicótico

    Directory of Open Access Journals (Sweden)

    Maristela Schaufelberger

    2005-09-01

    Full Text Available OBJECTIVE: Functional neuroimaging studies using phonological verbal fluency tasks allow the assessment of neural circuits relevant to the neuropsychology of psychosis. There is evidence that the prefrontal cortex and anterior cingulate gyrus present different activation patterns in subjects with chronic schizophrenia relative to healthy controls. We assessed the functioning in these brain regions during phonological verbal fluency in subjects with recent-onset functional psychoses, using functional magnetic resonance imaging (FMRI. METHODS: Seven patients with functional psychoses (3 schizophreniform, 4 affective and 9 healthy controls were studied. We compared functional magnetic resonance images acquired during articulation of words beginning with letters classified as easy for word production in Portuguese. Statistical comparisons were performed using non-parametric tests. RESULTS: There were no differences between patients and controls in task performance. Controls showed greater activation than patients in the left rostral anterior cingulate gyrus and right inferior prefrontal cortex, whereas patients showed stronger activation than controls in a more dorsal part of the anterior cingulate gyrus bilaterally and in a more superior portion of the right prefrontal cortex. CONCLUSION: Our preliminary findings of attenuated engagement of inferior prefrontal cortex and anterior cingulate gyrus in patients with recent onset psychosis during phonological verbal fluency are consistent with those of previous studies. The greater activation found in other parts of the anterior cingulate gyrus and prefrontal cortex in patients may be related to a compensatory response that is required to maintain normal task performance, and suggests a pattern of disorganized activity of different functional anterior cingulate gyrus units in association with psychotic conditions.OBJETIVO: Estudos de neuroimagem funcional empregando tarefa de fluência verbal fonol

  9. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  10. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness

    Directory of Open Access Journals (Sweden)

    Catherine eOrr

    2012-06-01

    Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

  11. Helping behavior induced by empathic concern attenuates anterior cingulate activation in response to others' distress.

    Science.gov (United States)

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sugawara, Sho K; Matsunaga, Masahiro; Makita, Kai; Hamano, Yuki H; Tanabe, Hiroki C; Sadato, Norihiro

    2016-01-01

    Helping behavior is motivated by empathic concern for others in distress. Although empathic concern is pervasive in daily life, its neural mechanisms remain unclear. Empathic concern involves the suppression of the emotional response to others' distress, which occurs when individuals distance themselves emotionally from the distressed individual. We hypothesized that helping behavior induced by empathic concern, accompanied by perspective-taking, would attenuate the neural activation representing aversive feelings. We also predicted reward system activation due to the positive feeling resulting from helping behavior. Participant underwent functional magnetic resonance imaging while playing a virtual ball-toss game. In some blocks ("concern condition"), one player ("isolated player") did not receive ball-tosses from other players. In this condition, participants increased ball-tosses to the isolated player (helping behavior). Participants then evaluated the improved enjoyment of the isolated player resulting from their helping behavior. Anterior cingulate activation during the concern condition was attenuated by the evaluation of the effect of helping behavior. The right temporoparietal junction, which is involved in perspective-taking and the dorsal striatum, part of the reward system, were also activated during the concern condition. These results suggest that humans can attenuate affective arousal by anticipating the positive outcome of empathic concern through perspective-taking.

  12. A functional dissociation of conflict processing within anterior cingulate cortex

    OpenAIRE

    Chobok Kim; James Kroger; Jeounghoon Kim

    2008-01-01

    Goal-directed behavior requires cognitive control to regulate neural processing when conflict is encountered. The dorsal anterior cingulate cortex (dACC) has been associated with detecting response conflict during conflict tasks. However, recent findings have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. We clarified a functional dissociation of the caudal dACC (cdACC) and t...

  13. Increased Task Demand during Spatial Memory Testing Recruits the Anterior Cingulate Cortex

    Science.gov (United States)

    Carr, Joshua K.; Fournier, Neil M.; Lehmann, Hugo

    2016-01-01

    We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was…

  14. Conflict processing in the anterior cingulate cortex constrains response priming.

    Science.gov (United States)

    Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T

    2010-05-01

    A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.

  15. Lack of paternal care affects synaptic development in the anterior cingulate cortex.

    Science.gov (United States)

    Ovtscharoff, Wladimir; Helmeke, Carina; Braun, Katharina

    2006-10-20

    Exposure to enriched or impoverished environmental conditions, experience and learning are factors which influence brain development, and it has been shown that neonatal emotional experience significantly interferes with the synaptic development of higher associative forebrain areas. Here, we analyzed the impact of paternal care, i.e. the father's emotional contribution towards his offspring, on the synaptic development of the anterior cingulate cortex. Our light and electron microscopic comparison of biparentally raised control animals and animals which were raised in single-mother families revealed no significant differences in spine densities on the apical dendrites of layer II/III pyramidal neurons and of asymmetric and symmetric spine synapses. However, significantly reduced densities (-33%) of symmetric shaft synapses were found in layer II of the fatherless animals compared to controls. This finding indicates an imbalance between excitatory and inhibitory synapses in the anterior cingulate cortex of father-deprived animals. Our results query the general assumption that a father has less impact on the synaptic maturation of his offspring's brain than the mother.

  16. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder.

    Science.gov (United States)

    Thomaes, K; Dorrepaal, E; Draijer, N; de Ruiter, M B; Elzinga, B M; van Balkom, A J; Smit, J H; Veltman, D J

    2012-11-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that treatment can normalize these activation patterns. At baseline, we compared classic and emotional Stroop performance and blood oxygenation level-dependent responses (functional magnetic resonance imaging) of 29 child abuse-related complex PTSD patients with 22 non-trauma-exposed healthy controls. In 16 of these patients, we studied treatment effects of psycho-educational and cognitive behavioural stabilizing group treatment (experimental treatment; EXP) added to treatment as usual (TAU) versus TAU only, and correlations with clinical improvement. At baseline, complex PTSD patients showed a trend for increased left anterior insula and dorsal ACC activation in the classic Stroop task. Only EXP patients showed decreased dorsal ACC and left anterior insula activation after treatment. In the emotional Stroop contrasts, clinical improvement was associated with decreased dorsal ACC activation and decreased left anterior insula activation. We found further evidence that successful treatment in child abuse-related complex PTSD is associated with functional changes in the ACC and insula, which may be due to improved selective attention and lower emotional arousal, indicating greater cognitive control over PTSD symptoms.

  17. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Inka Ristow

    Full Text Available A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC and in a control region, the pregenual anterior cingulate cortex (pgACC in pedophilic sex offenders (N = 13 and matched controls (N = 13 using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS. In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel (p < 0.04. Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = −0.689. In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control. Keywords: Child sexual abuse, Dorsal anterior cingulate cortex, GABA, Magnetic resonance spectroscopy, Pedophilic sex offenders

  18. Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Ruohe Zhao

    2018-04-01

    Full Text Available The anterior cingulate cortex (ACC is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. Calcium imaging in the dorsal ACC revealed robust somatic activity in layer 5 (L5 pyramidal neurons in response to peripheral noxious stimuli, and the degree of evoked activity was correlated with the intensity of noxious stimulation. Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.

  19. Anterior Cingulate Volumetric Alterations in Treatment-Naive Adults with ADHD: A Pilot Study

    Science.gov (United States)

    Makris, Nikos; Seidman, Larry J.; Valera, Eve M.; Biederman, Joseph; Monuteaux, Michael C.; Kennedy, David N.; Caviness, Verne S., Jr.; Bush, George; Crum, Katherine; Brown, Ariel B.; Faraone, Stephen V.

    2010-01-01

    Objective: We sought to examine preliminary results of brain alterations in anterior cingulate cortex (ACC) in treatment-naive adults with ADHD. The ACC is a central brain node for the integration of cognitive control and allocation of attention, affect and drive. Thus its anatomical alteration may give rise to impulsivity, hyperactivity and…

  20. Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion.

    Science.gov (United States)

    Ohmatsu, Satoko; Nakano, Hideki; Tominaga, Takanori; Terakawa, Yuzo; Murata, Takaho; Morioka, Shu

    2014-08-15

    Pedaling exercise (PE) of moderate intensity has been shown to ease anxiety and discomfort; however, little is known of the changes that occur in brain activities and in the serotonergic (5-HT) system after PE. Therefore, this study was conducted for the following reasons: (1) to localize the changes in the brain activities induced by PE using a distributed source localization algorithm, (2) to examine the changes in frontal asymmetry, as used in the Davidson model, with electroencephalography (EEG) activity, and (3) to examine the effect of PE on the 5-HT system. A 32-channel EEG was used to record before and after PE. Profile of Mood States tests indicated that there was a significant decrease in tension-anxiety and a significant increase in vigor after PE. A standardized low-resolution brain electromagnetic tomography analysis showed a significant decrease in brain activities after PE in the alpha-2 band (10-12.5 Hz) in the anterior cingulate cortex (ACC). Moreover, a significant increase in frontal EEG asymmetry was observed after PE in the alpha-1 band (7.5-10 Hz). Urine 5-HT levels significantly increased after PE. Urine 5-HT levels positively correlated with the degree of frontal EEG asymmetry in the alpha-1 band and negatively correlated with brain activity in ACC. Our results suggested that PE activates the 5-HT system and consequently induces increases in frontal EEG asymmetry in the alpha-1 band and reductions of brain activity in the alpha-2 band in the ACC region. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Anterior Cingulate Cortex γ-Aminobutyric Acid in Depressed Adolescents

    Science.gov (United States)

    Gabbay, Vilma; Mao, Xiangling; Klein, Rachel G.; Ely, Benjamin A.; Babb, James S.; Panzer, Aviva M.; Alonso, Carmen M.; Shungu, Dikoma C.

    2013-01-01

    Context Anhedonia, a core symptom of major depressive disorder (MDD) and highly variable among adolescents with MDD, may involve alterations in the major inhibitory amino acid neurotransmitter system of γ-aminobutyric acid (GABA). Objective To test whether anterior cingulate cortex (ACC) GABA levels, measured by proton magnetic resonance spectroscopy, are decreased in adolescents with MDD. The associations of GABA alterations with the presence and severity of anhedonia were explored. Design Case-control, cross-sectional study using single-voxel proton magnetic resonance spectroscopy at 3 T. Setting Two clinical research divisions at 2 teaching hospitals. Participants Twenty psychotropic medication-free adolescents with MDD (10 anhedonic, 12 female, aged 12–19 years) with episode duration of 8 weeks or more and 21 control subjects group matched for sex and age. Main Outcome Measures Anterior cingulate cortex GABA levels expressed as ratios relative to unsuppressed voxel tissue water (w) and anhedonia scores expressed as a continuous variable. Results Compared with control subjects, adolescents with MDD had significantly decreased ACC GABA/w (t= 3.2; PGABA/w levels compared with control subjects (t=4.08; PGABA/w levels were negatively correlated with anhedonia scores for the whole MDD group (r = −0.50; P = .02), as well as for the entire participant sample including the control subjects (r=−0.54; PGABA, the major inhibitory neurotransmitter in the brain, may be implicated in adolescent MDD and, more specifically, in those with anhedonia. In addition, use of a continuous rather than categorical scale of anhedonia, as in the present study, may permit greater specificity in evaluating this important clinical feature. PMID:21969419

  2. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

    Science.gov (United States)

    Caruana, Fausto; Avanzini, Pietro; Gozzo, Francesca; Francione, Stefano; Cardinale, Francesco; Rizzolatti, Giacomo

    2015-10-01

    Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    Science.gov (United States)

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  4. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain.

    Science.gov (United States)

    Navratilova, Edita; Xie, Jennifer Yanhua; Meske, Diana; Qu, Chaoling; Morimura, Kozo; Okun, Alec; Arakawa, Naohisa; Ossipov, Michael; Fields, Howard L; Porreca, Frank

    2015-05-06

    Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolimbic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopamine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC) inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal clonidine, an α2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free, animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness. Copyright © 2015 the authors 0270-6474/15/357264-08$15.00/0.

  5. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    Science.gov (United States)

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  6. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?

    Directory of Open Access Journals (Sweden)

    Mawrin Christian

    2011-08-01

    Full Text Available Abstract Background Immune dysfunction, including monocytosis and increased blood levels of interleukin-1, interleukin-6 and tumour necrosis factor α has been observed during acute episodes of major depression. These peripheral immune processes may be accompanied by microglial activation in subregions of the anterior cingulate cortex where depression-associated alterations of glutamatergic neurotransmission have been described. Methods Microglial immunoreactivity of the N-methyl-D-aspartate (NMDA glutamate receptor agonist quinolinic acid (QUIN in the subgenual anterior cingulate cortex (sACC, anterior midcingulate cortex (aMCC and pregenual anterior cingulate cortex (pACC of 12 acutely depressed suicidal patients (major depressive disorder/MDD, n = 7; bipolar disorder/BD, n = 5 was analyzed using immunohistochemistry and compared with its expression in 10 healthy control subjects. Results Depressed patients had a significantly increased density of QUIN-positive cells in the sACC (P = 0.003 and the aMCC (P = 0.015 compared to controls. In contrast, counts of QUIN-positive cells in the pACC did not differ between the groups (P = 0.558. Post-hoc tests showed that significant findings were attributed to MDD and were absent in BD. Conclusions These results add a novel link to the immune hypothesis of depression by providing evidence for an upregulation of microglial QUIN in brain regions known to be responsive to infusion of NMDA antagonists such as ketamine. Further work in this area could lead to a greater understanding of the pathophysiology of depressive disorders and pave the way for novel NMDA receptor therapies or immune-modulating strategies.

  7. Dissociating response conflict and error likelihood in anterior cingulate cortex.

    Science.gov (United States)

    Yeung, Nick; Nieuwenhuis, Sander

    2009-11-18

    Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.

  8. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control.

    Science.gov (United States)

    Silton, Rebecca Levin; Heller, Wendy; Towers, David N; Engels, Anna S; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-04-15

    A network of brain regions has been implicated in top-down attentional control, including left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC). The present experiment evaluated predictions of the cascade-of-control model (Banich, 2009), which predicts that during attentionally-demanding tasks, LDLPFC imposes a top-down attentional set which precedes late-stage selection performed by dACC. Furthermore, the cascade-of-control model argues that dACC must increase its activity to compensate when top-down control by LDLPFC is poor. The present study tested these hypotheses using fMRI and dense-array ERP data collected from the same 80 participants in separate sessions. fMRI results guided ERP source modeling to characterize the time course of activity in LDLPFC and dACC. As predicted, dACC activity subsequent to LDLPFC activity distinguished congruent and incongruent conditions on the Stroop task. Furthermore, when LDLPFC activity was low, the level of dACC activity was related to performance outcome. These results demonstrate that dACC responds to attentional demand in a flexible manner that is dependent on the level of LDLPFC activity earlier in a trial. Overall, results were consistent with the temporal course of regional brain function proposed by the cascade-of-control model. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls.

    Science.gov (United States)

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-03-01

    There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of cognitive control functions, however, exist in paediatric depression. This study investigated whether medication-naïve adolescents with MDD show abnormal brain activation of fronto-striatal and fronto-cingulate networks when performing tasks of attentional and cognitive control. Event-related functional magnetic resonance imaging was used to compare brain activation between 21 medication-naïve adolescents with a first-episode of MDD aged 14-17 years and 21 healthy adolescents, matched for handedness, age, sex, demographics and IQ. Activation paradigms were tasks of selective attention (Simon task), attentional switching (Switch task), and motor response inhibition and error detection (Stop task). In all three tasks, adolescents with depression compared to healthy controls demonstrated reduced activation in task-relevant right dorsolateral (DLPFC), inferior prefrontal cortex (IFC) and anterior cingulate gyrus (ACG). Additional areas of relatively reduced activation were in the parietal lobes during the Stop and Switch tasks, putamen, insula and temporal lobes during the Switch task and precuneus during the Simon task. This study shows first evidence that medication-naïve adolescents with MDD are characterised by abnormal function in ACG and right lateral prefrontal cortex during tasks of attention and performance monitoring, suggesting an early pathogenesis of these functional abnormalities attributed to MDD.

  10. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  11. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum.

    Science.gov (United States)

    Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.

  12. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    Science.gov (United States)

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  13. Pica in a Child with Anterior Cingulate Gyrus Oligodendroglioma: Case Report.

    Science.gov (United States)

    Rangwala, Shivani D; Tobin, Matthew K; Birk, Daniel M; Butts, Jonathan T; Nikas, Dimitrios C; Hahn, Yoon S

    2017-01-01

    The anterior cingulate gyrus (ACG) is a continued focus of research as its exact role in brain function and vast connections with other anatomical locations is not fully understood. A review of the literature illustrates the role the ACG likely plays in cognitive and emotional processing, as well as a modulating role in motor function and goal-oriented behaviors. While lesions of the cingulate gyrus are rare, each new case broadens our understanding of its role in cognitive neuroscience and higher order processing. The authors present the case of an 8-year-old boy with a 1-month history of staring spells, agitated personality, and hyperphagia notable for the consumption of paper, who was found to have a 3-cm tumor in the left ACG. Following surgical resection of the tumor, his aggressive behavior and pica were ameliorated and the patient made an uneventful recovery, with no evidence of recurrence over the last 6 years since surgical resection. Here we discuss a unique behavioral presentation of pica, along with a review of the current literature, to illustrate functions of the ACG relevant to the location of the lesion. © 2017 S. Karger AG, Basel.

  14. A functional dissociation of conflict processing within anterior cingulate cortex.

    Science.gov (United States)

    Kim, Chobok; Kroger, James K; Kim, Jeounghoon

    2011-02-01

    Goal-directed behavior requires cognitive control to regulate the occurrence of conflict. The dorsal anterior cingulate cortex (dACC) has been suggested in detecting response conflict during various conflict tasks. Recent findings, however, have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. In this study, we sought to examine whether perceptual and response conflicts are functionally dissociated in dACC. Thirteen healthy subjects performed a version of the Stroop task during functional magnetic resonance imaging (fMRI) scanning. We identified a functional dissociation of the caudal dACC (cdACC) and the rostral dACC (rdACC) in their responses to different sources of conflict. The cdACC was selectively engaged in perceptual conflict whereas the rdACC was more active in response conflict. Further, the dorsolateral prefrontal cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest that cdACC plays an important role in regulative processing of perceptual conflict whereas rdACC is involved in detecting response conflict. Copyright © 2010 Wiley-Liss, Inc.

  15. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.

  17. Exposure to blue wavelength light modulates anterior cingulate cortex activation in response to 'uncertain' versus 'certain' anticipation of positive stimuli.

    Science.gov (United States)

    Alkozei, Anna; Smith, Ryan; Killgore, William D S

    2016-03-11

    Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder

    NARCIS (Netherlands)

    Kennis, Mitzy; Rademaker, Arthur R.; van Rooij, Sanne J H; Kahn, René S.; Geuze, Elbert

    2015-01-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that is associated with structural and functional alterations in several brain areas, including the anterior cingulate cortex (ACC). Here, we examine resting state functional connectivity of ACC subdivisions in PTSD, using a seed-based

  19. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex.

    Science.gov (United States)

    Ristow, Inka; Li, Meng; Colic, Lejla; Marr, Vanessa; Födisch, Carina; von Düring, Felicia; Schiltz, Kolja; Drumkova, Krasimira; Witzel, Joachim; Walter, Henrik; Beier, Klaus; Kruger, Tillmann H C; Ponseti, Jorge; Schiffer, Boris; Walter, Martin

    2018-01-01

    A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders ( N  = 13) and matched controls ( N  = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel ( p  < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.

  20. Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control

    Directory of Open Access Journals (Sweden)

    Michael G. White

    2018-01-01

    Full Text Available Summary: Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action. : White et al. show that anterior cingulate cortex (ACC input to the claustrum encodes a top-down preparatory signal on a 5-choice response assay that is critical for task performance. Claustrum microcircuitry amplifies top-down ACC input in a frequency-dependent manner for eventual propagation to the cortex for cognitive control of action. Keywords: 5CSRTT, optogenetics, fiber photometry, microcircuit, attention, bottom-up, sensory cortices, motor cortices

  1. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Kakigi, Ryusuke

    2014-01-01

    Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging, and neurophysiological methods, such as magnetoencephalography and electroencephalography, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC) and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation.’ In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation. PMID:25566158

  2. Role of the Anterior Cingulate Cortex in the Retrieval of Novel Object Recognition Memory after a Long Delay

    Science.gov (United States)

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C. F.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and…

  3. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    Science.gov (United States)

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Distributed representations of action sequences in anterior cingulate cortex: A recurrent neural network approach.

    Science.gov (United States)

    Shahnazian, Danesh; Holroyd, Clay B

    2018-02-01

    Anterior cingulate cortex (ACC) has been the subject of intense debate over the past 2 decades, but its specific computational function remains controversial. Here we present a simple computational model of ACC that incorporates distributed representations across a network of interconnected processing units. Based on the proposal that ACC is concerned with the execution of extended, goal-directed action sequences, we trained a recurrent neural network to predict each successive step of several sequences associated with multiple tasks. In keeping with neurophysiological observations from nonhuman animals, the network yields distributed patterns of activity across ACC neurons that track the progression of each sequence, and in keeping with human neuroimaging data, the network produces discrepancy signals when any step of the sequence deviates from the predicted step. These simulations illustrate a novel approach for investigating ACC function.

  5. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    Full Text Available Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM analyses: Individuals with higher Media Multitasking Index (MMI scores had smaller gray matter density in the anterior cingulate cortex (ACC. Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.

  6. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    Science.gov (United States)

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  7. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus

    Directory of Open Access Journals (Sweden)

    Nancy Alker Craigmyle

    2013-10-01

    Full Text Available Abstract During fMRI studies of meditation the cortical salience detecting and executive networks become active during awareness of mind wandering, shifting and sustained attention. The anterior cingulate (AC is activated during awareness of mind wandering.The AC modulates both the peripheral sympathetic nervous system (SNS and the central locus coeruleus (LC norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine (P-NE and activates the LC, increasing C-NE.Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set shifting and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS and LC with respect to their possible relevance to meditation.

  8. A Chan Dietary Intervention Enhances Executive Functions and Anterior Cingulate Activity in Autism Spectrum Disorders: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Agnes S. Chan

    2012-01-01

    Full Text Available Executive dysfunctions have been found to be related to repetitive/disinhibited behaviors and social deficits in autism spectrum disorders (ASDs. This study aims to investigate the potential effect of a Shaolin-medicine-based dietary modification on improving executive functions and behavioral symptoms of ASD and exploring the possible underlying neurophysiological mechanisms. Twenty-four children with ASD were randomly assigned into the experimental (receiving dietary modification for one month and the control (no modification groups. Each child was assessed on his/her executive functions, behavioral problems based on parental ratings, and event-related electroencephalography (EEG activity during a response-monitoring task before and after the one month. The experimental group demonstrated significantly improved mental flexibility and inhibitory control after the diet modification, which continued to have a large effect size within the low-functioning subgroup. Such improvements coincided with positive evaluations by their parents on social communication abilities and flexible inhibitory control of daily behaviors and significantly enhanced event-related EEG activity at the rostral and subgenual anterior cingulate cortex. In contrast, the control group did not show any significant improvements. These positive outcomes of a one-month dietary modification on children with ASD have implicated its potential clinical applicability for patients with executive function deficits.

  9. The role of the anterior cingulate cortex in women's sexual decision making.

    Science.gov (United States)

    Rupp, Heather A; James, Thomas W; Ketterson, Ellen D; Sengelaub, Dale R; Janssen, Erick; Heiman, Julia R

    2009-01-02

    Women's sexual decision making is a complex process balancing the potential rewards of conception and pleasure against the risks of possible low paternal care or sexually transmitted infection. Although neural processes underlying social decision making are suggested to overlap with those involved in economic decision making, the neural systems associated with women's sexual decision making are unknown. Using fMRI, we measured the brain activation of 12 women while they viewed photos of men's faces. Face stimuli were accompanied by information regarding each man's potential risk as a sexual partner, indicated by a written description of the man's number of previous sexual partners and frequency of condom use. Participants were asked to evaluate how likely they would be to have sex with the man depicted. Women reported that they would be more likely to have sex with low compared to high risk men. Stimuli depicting low risk men also elicited stronger activation in the anterior cingulate cortex (ACC), midbrain, and intraparietal sulcus, possibly reflecting an influence of sexual risk on women's attraction, arousal, and attention during their sexual decision making. Activation in the ACC was positively correlated with women's subjective evaluations of sex likelihood and response times during their evaluations of high, but not low risk men. These findings provide evidence that neural systems involved in sexual decision making in women overlap with those described previously to underlie nonsexual decision making.

  10. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    Science.gov (United States)

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.

    Science.gov (United States)

    Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M

    2011-03-01

    Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier

  12. Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency.

    NARCIS (Netherlands)

    Nieuwenhuis, S.; Yeung, N.; van den Wildenberg, W.; Ridderinkhof, K.R.

    2003-01-01

    Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a

  13. Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task.

    Science.gov (United States)

    Kanske, Philipp; Kotz, Sonja A

    2011-02-01

    Coherent behavior depends on attentional control that detects and resolves conflict between opposing actions. The current functional magnetic resonance imaging study tested the hypothesis that emotion triggers attentional control to speed up conflict processing in particularly salient situations. Therefore, we presented emotionally negative and neutral words in a version of the flanker task. In response to conflict, we found activation of the dorsal anterior cingulate cortex (ACC) and of the amygdala for emotional stimuli. When emotion and conflict coincided, a region in the ventral ACC was activated, which resulted in faster conflict processing in reaction times. Emotion also increased functional connectivity between the ventral ACC and activation of the dorsal ACC and the amygdala in conflict trials. These data suggest that the ventral ACC integrates emotion and conflict and prioritizes the processing of conflict in emotional trials. This adaptive mechanism ensures rapid detection and resolution of conflict in potentially threatening situations signaled by emotional stimuli. Copyright © 2010 Wiley-Liss, Inc.

  14. Decision Making in the Balloon Analogue Risk Task (BART): Anterior Cingulate Cortex Signals Loss-Aversion but not the Infrequency of Risky Choices

    Science.gov (United States)

    Fukunaga, Rena; Brown, Joshua W.; Bogg, Tim

    2012-01-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision-making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether ACC and IFG/AI regions correspond to loss-aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss-aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward-seeking. However, in the cingulate and mainly bilateral IFG regions, BOLD activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings consistent with a reduced loss-aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision-making, as well as the importance of distinguishing decision and feedback signals. PMID:22707378

  15. Decision making in the Balloon Analogue Risk Task (BART): anterior cingulate cortex signals loss aversion but not the infrequency of risky choices.

    Science.gov (United States)

    Fukunaga, Rena; Brown, Joshua W; Bogg, Tim

    2012-09-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., Journal of Experimental Psychology: Applied, 8, 75-84, 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursue a gain as the probability of loss increased parametrically. Specifically, we set out to test whether the ACC and IFG/AI regions correspond to loss aversion at the time of decision making in a way that is not confounded with either reward-seeking or infrequency effects. When participants chose to discontinue inflating the balloon (win option), we observed greater ACC and mainly bilateral IFG/AI activity at the time of decision as the probability of explosion increased, consistent with increased loss aversion but inconsistent with an infrequency effect. In contrast, we found robust vmPFC activity when participants chose to continue inflating the balloon (risky option), consistent with reward seeking. However, in the cingulate and in mainly bilateral IFG regions, blood-oxygenation-level-dependent activation decreased when participants chose to inflate the balloon as the probability of explosion increased, findings that are consistent with a reduced loss aversion signal. Our results highlight the existence of distinct reward-seeking and loss-averse signals during decision making, as well as the importance of distinguishing between decision and feedback signals.

  16. Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder.

    Science.gov (United States)

    Rogers, Mark A; Yamasue, Hidenori; Abe, Osamu; Yamada, Haruyasu; Ohtani, Toshiyuki; Iwanami, Akira; Aoki, Shigeki; Kato, Nobumasa; Kasai, Kiyoto

    2009-12-30

    Although post-traumatic stress disorder (PTSD) may be seen to represent a failure to extinguish learned fear, significant aspects of the pathophysiology relevant to this hypothesis remain unknown. Both the amygdala and hippocampus are necessary for fear extinction occur, and thus both regions may be abnormal in PTSD. Twenty-five people who experienced the Tokyo subway sarin attack in 1995, nine who later developed PTSD and 16 who did not, underwent magnetic resonance imaging (MRI) with manual tracing to determine bilateral amygdala and hippocampus volumes. At the time of scanning, one had PTSD and eight had a history of PTSD. Results indicated that the group with a history of PTSD had significantly smaller mean bilateral amygdala volume than did the group that did not develop PTSD. Furthermore, left amygdala volume showed a significant negative correlation with severity of PTSD symptomatology as well as reduced gray matter density in the left anterior cingulate cortex. To our knowledge, this is the first observation of an association between PTSD and amygdala volume. Furthermore the apparent interplay between amygdala and anterior cingulate cortex represents support at the level of gross brain morphology for the theory of PTSD as a failure of fear extinction.

  17. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study

    Czech Academy of Sciences Publication Activity Database

    Rusnáková-Aulická, Š.; Jurák, Pavel; Chládek, Jan; Daniel, P.; Halámek, Josef; Baláž, M.; Bočková, M.; Chrastina, J.; Rektor, I.

    2014-01-01

    Roč. 121, č. 10 (2014), s. 1287-1296 ISSN 0300-9564 R&D Projects: GA ČR GAP103/11/0933 Institutional support: RVO:68081731 Keywords : ERD/S * Anterior cingulate cortex * Subthalamic nucleus * Flanker test * Executive functions Subject RIV: BD - Theory of Information Impact factor: 2.402, year: 2014

  18. Inflexible Functional Connectivity of the Dorsal Anterior Cingulate Cortex in Adolescent Major Depressive Disorder.

    Science.gov (United States)

    Ho, Tiffany C; Sacchet, Matthew D; Connolly, Colm G; Margulies, Daniel S; Tymofiyeva, Olga; Paulus, Martin P; Simmons, Alan N; Gotlib, Ian H; Yang, Tony T

    2017-11-01

    Recent evidence suggests that anterior cingulate cortex (ACC) maturation during adolescence contributes to or underlies the development of major depressive disorder (MDD) during this sensitive period. The ACC is a structure that sits at the intersection of several task-positive networks (eg, central executive network, CEN), which are still developing during adolescence. While recent work using seed-based approaches indicate that depressed adolescents show limited task-evoked vs resting-state connectivity (termed 'inflexibility') between the ACC and task-negative networks, no study has used network-based approaches to investigate inflexibility of the ACC in task-positive networks to understand adolescent MDD. Here, we used graph theory to compare flexibility of network-level topology in eight subregions of the ACC (spanning three task-positive networks) in 42 unmedicated adolescents with MDD and 53 well-matched healthy controls. All participants underwent fMRI scanning during resting state and a response inhibition task that robustly engages task-positive networks. Relative to controls, depressed adolescents were characterized by inflexibility in local efficiency of a key ACC node in the CEN: right dorsal anterior cingulate cortex/medial frontal gyrus (R dACC/MFG). Furthermore, individual differences in flexibility of local efficiency of R dACC/MFG significantly predicted inhibition performance, consistent with current literature demonstrating that flexible network organization affords successful cognitive control. Finally, reduced local efficiency of dACC/MFG during the task was significantly associated with an earlier age of depression onset, consistent with prior work suggesting that MDD may alter functional network development. Our results support a neurodevelopmental hypothesis of MDD wherein dysfunctional self-regulation is potentially reflected by altered ACC maturation.

  19. Perceptual load modulates anterior cingulate cortex response to threat distractors in generalized social anxiety disorder.

    Science.gov (United States)

    Wheaton, Michael G; Fitzgerald, Daniel A; Phan, K Luan; Klumpp, Heide

    2014-09-01

    Generalized social anxiety disorder (gSAD) is associated with impoverished anterior cingulate cortex (ACC) engagement during attentional control. Attentional Control Theory proposes such deficiencies may be offset when demands on resources are increased to execute goals. To test the hypothesis attentional demands affect ACC response 23 patients with gSAD and 24 matched controls performed an fMRI task involving a target letter in a string of identical targets (low load) or a target letter in a mixed letter string (high load) superimposed on fearful, angry, and neutral face distractors. Regardless of load condition, groups were similar in accuracy and reaction time. Under low load gSAD patients showed deficient rostral ACC recruitment to fearful (vs. neutral) distractors. For high load, increased activation to fearful (vs. neutral) distractors was observed in gSAD suggesting a compensatory function. Results remained after controlling for group differences in depression level. Findings indicate perceptual demand modulates ACC in gSAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    Science.gov (United States)

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  1. Glutamatergic activation of anterior cingulate cortex mediates the affective component of visceral pain memory in rats.

    Science.gov (United States)

    Yan, Ni; Cao, Bing; Xu, Jiahe; Hao, Chun; Zhang, Xu; Li, Ying

    2012-01-01

    Studies of both humans and animals suggest that anterior cingulate cortex (ACC) is important for processing pain perception. We identified that perigenul ACC (pACC) sensitization and enhanced visceral pain in a visceral hypersensitive rat in previous studies. Pain contains both sensory and affective dimensions. Teasing apart the mechanisms that control the neural pathways mediating pain affect and sensation in nociceptive behavioral response is a challenge. In this study, using a rodent visceral pain assay that combines the colorectal distension (CRD)-induced visceromotor response (VMR) with the conditioning place avoidance (CPA), we measured a learned behavior that directly reflects the affective component of visceral pain. When CRD was paired with a distinct environment context, the rats spent significantly less time in this compartment on the post-conditioning test days as compared with the pre-conditioning day. Effects were lasted for 14 days. Bilateral pACC lesion significantly reduced CPA scores without reducing acute visceral pain behaviors (CRD-induced VMR). Bilateral administration of non-NMDA receptor antagonist CNQX or NMDA receptor antagonist AP5 into the pACC decreased the CPA scores. AP5 or CNQX at dose of 400 mM produced about 70% inhibition of CRD-CPA in the day 1, 4 and 7, and completely abolished the CPA in the day 14 after conditioning. We concluded that neurons in the pACC are necessary for the "aversiveness" of visceral nociceptor stimulation. pACC activation is critical for the memory processing involved in long-term negative affective state and prediction of aversive stimuli by contextual cue. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. From Thirst to Satiety: The Anterior Mid-Cingulate Cortex and Right Posterior Insula Indicate Dynamic Changes in Incentive Value

    Directory of Open Access Journals (Sweden)

    Christoph A. Becker

    2017-05-01

    Full Text Available The cingulate cortex and insula are among the neural structures whose activations have been modulated in functional imaging studies examining discrete states of thirst and drinking to satiation. Building upon these findings, the present study aimed to identify neural structures that change their pattern of activation elicited by water held in the mouth in relation to the internal body state, i.e., proportional to continuous water consumption. Accordingly, participants in a thirsty state were scanned while receiving increments of water until satiety was reached. As expected, fluid ingestion led to a clear decrease in self-reported thirst and the pleasantness ratings of the water ingested. Furthermore, linear decreases in the blood oxygenation level dependent (BOLD response to water ingestion were observed in the anterior mid-cingulate cortex (aMCC and right posterior insula as participants shifted towards the non-thirsty state. In addition, regions in the superior temporal gyrus (STG, supplementary motor area (SMA, superior parietal lobule (SPL, precuneus and calcarine sulcus also showed a linear decrease with increasing fluid consumption. Further analyses related single trial BOLD responses of associated regions to trial-by-trial ratings of thirst and pleasantness. Overall, the aMCC and posterior insula may be key sites of a neural network representing the motivation for drinking based on the dynamic integration of internal state and external stimuli.

  3. Activation of anterior insula during self-reflection.

    Science.gov (United States)

    Modinos, Gemma; Ormel, Johan; Aleman, André

    2009-01-01

    Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  4. Ultrastructural Alterations of Von Economo Neurons in the Anterior Cingulate Cortex in Schizophrenia.

    Science.gov (United States)

    Krause, Martin; Theiss, Carsten; Brüne, Martin

    2017-11-01

    Von Economo neurons (VENs) are large bipolar projection neurons mainly located in layer Vb of anterior cingulate cortex (ACC) and anterior insula. Both regions are involved in cognitive and emotional procedures and are functionally and anatomically altered in schizophrenia. Although the detailed function of VEN remains unclear, it has been suggested that these neurons are involved in the pathomechanism of schizophrenia. Here, we were interested in the question whether or not the VEN of schizophrenia patients would show abnormalities at the ultrastructural level. Accordingly, we examined the amount of lysosomal aggregations of the VEN in post-mortem tissue of patients with schizophrenia, bipolar disorder and psychologically unaffected individuals, and compared the findings with aggregations in adjacent pyramidal cells in layer Vb of the ACC. VEN of patients with schizophrenia, and to a lesser degree individuals with bipolar disorder contained significantly more lysosomal aggregations compared with tissue from unaffected controls. Specifically, the larger amount of lysosomal aggregations in schizophrenia seemed to be selective for VEN, with no differences occurring in pyramidal cells. These findings may indicate that the VEN of schizophrenia patients are selectively vulnerable to neuronal damage. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2017-2024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Combat Veterans with Comorbid PTSD and Mild TBI Exhibit a Greater Inhibitory Processing ERP from the Dorsal Anterior Cingulate Cortex

    Science.gov (United States)

    2014-08-08

    emotion processing biases in depressed undergraduates. Biological Psychology 81, 153–163. Krompinger, J.W., Simons, R.F., 2011. Cognitive inefficiency...in depressive under- graduates: stroop processing and ERPs. Biological Psychology 86, 239–246. Lanius, R.A., Vermetten, E., Loewenstein, R.J., Brand...prefrontal cortex and anterior cingulate during error processing. Psychosomatic Medicine 74, 471–475. I.-W. Shu et al. / Psychiatry Research: Neuroimaging 224

  6. The political (and physiological) divide: Political orientation, performance monitoring, and the anterior cingulate response.

    Science.gov (United States)

    Weissflog, Meghan; Choma, Becky L; Dywan, Jane; van Noordt, Stefon J R; Segalowitz, Sidney J

    2013-01-01

    Our goal was to test a model of sociopolitical attitudes that posits a relationship between individual differences in liberal versus conservative political orientation and differential levels of anterior cingulate cortex (ACC) responsivity. We recorded event-related potentials (ERPs) while participants who varied along a unidimensional liberal-conservative continuum engaged in a standard Go/NoGo task. We also measured component attitudes of political orientation in the form of traditionalism (degree of openness to social change) and egalitarianism (a preference for social equality). Generally, participants who reported a more liberal political orientation made fewer errors and produced larger ACC-generated ERPs (the error-related negativity, or ERN and the NoGo N2). This ACC activation, especially as indicated by a larger NoGo N2, was most strongly associated with greater preference for social equality. Performance accuracy, however, was most strongly associated with greater openness to social change. These data are consistent with a social neuroscience view that sociopolitical attitudes are related to aspects of neurophysiological responsivity. They also indicate that a bidimensional model of political orientation can enhance our interpretation of the nature of these associations.

  7. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study.

    Science.gov (United States)

    Zilverstand, Anna; Sorger, Bettina; Slaats-Willemse, Dorine; Kan, Cornelis C; Goebel, Rainer; Buitelaar, Jan K

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study's small sample size, potential clinical benefits need to be further investigated in future studies. ISRCTN12390961.

  8. Assessing the Molecular Genetics of the Development of Executive Attention in Children: Focus on Genetic Pathways Related to the Anterior Cingulate Cortex and Dopamine

    Science.gov (United States)

    Brocki, Karin; Clerkin, Suzanne M.; Guise, Kevin G.; Fan, Jin; Fossella, John A.

    2009-01-01

    It is well-known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and fronto-striatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to-date that employs both adult and child-friendly versions of the Attention Network Task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention. PMID:19344637

  9. Activation of anterior insula during self-reflection.

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    Full Text Available BACKGROUND: Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging (fMRI, we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC and the anterior cingulate cortex (ACC. Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. CONCLUSIONS/SIGNIFICANCE: The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.

  10. Anterior paracingulate and cingulate cortex mediates the effects of cognitive load on speech sound discrimination.

    Science.gov (United States)

    Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L

    2018-06-11

    Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018. Published by Elsevier Inc.

  11. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  12. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Science.gov (United States)

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  13. Computational Models of Anterior Cingulate Cortex: At the Crossroads between Prediction and Effort

    Directory of Open Access Journals (Sweden)

    Eliana Vassena

    2017-06-01

    Full Text Available In the last two decades the anterior cingulate cortex (ACC has become one of the most investigated areas of the brain. Extensive neuroimaging evidence suggests countless functions for this region, ranging from conflict and error coding, to social cognition, pain and effortful control. In response to this burgeoning amount of data, a proliferation of computational models has tried to characterize the neurocognitive architecture of ACC. Early seminal models provided a computational explanation for a relatively circumscribed set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent models have focused on ACC's contribution to effortful control. In parallel to these developments, several proposals attempted to explain within a single computational framework a wider variety of empirical findings that span different cognitive processes and experimental modalities. Here we critically evaluate these modeling attempts, highlighting the continued need to reconcile the array of disparate ACC observations within a coherent, unifying framework.

  14. Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations.

    Science.gov (United States)

    Oliveira, Flavio T P; McDonald, John J; Goodman, David

    2007-12-01

    Several converging lines of evidence suggest that the anterior cingulate cortex (ACC) is selectively involved in error detection or evaluation of poor performance. Here we challenge this notion by presenting event-related potential (ERP) evidence that the feedback-elicited error-related negativity, an ERP component attributed to the ACC, can be elicited by positive feedback when a person is expecting negative feedback and vice versa. These results suggest that performance monitoring in the ACC is not limited to error processing. We propose that the ACC acts as part of a more general performance-monitoring system that is activated by violations in expectancy. Further, we propose that the common observation of increased ACC activity elicited by negative events could be explained by an overoptimistic bias in generating expectations of performance. These results could shed light into neurobehavioral disorders, such as depression and mania, associated with alterations in performance monitoring and also in judgments of self-related events.

  15. Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning.

    Science.gov (United States)

    Zhang, Xu; Cao, Bing; Wang, Jun; Liu, Jin; Tung, Vivian Oi Vian; Lam, Paul Kwan Sing; Chan, Leo Lai; Li, Ying

    2013-06-01

    Ciguatoxins (CTXs) cause long-term disturbance of cerebral functions. The primary mechanism of neurotoxicity is related to their interaction with voltage-gated sodium channels. However, until now, the neurological targets for CTXs in the brain of intact animals have not been described. In our study, 1 day following oral exposure to 0.26 ng/g of Pacific ciguatoxin 1 (P-CTX-1), we performed in vivo electrophysiological recordings in the rat anterior cingulate cortex (ACC) and identified the increase in spontaneous firings and enhanced responses to visceral noxious stimulation. Local field recordings characterized the P-CTX-1-induced synaptic potentiation and blockage of the induction of electrical stimulation-induced long-term potentiation in the medial thalamus (MT)-ACC pathway. Furthermore, intracerebroventricular administration of P-CTX-1 at doses of 1.0, 5.0, and 10 nM produced a dose-dependent increase in ACC neuronal firings and MT-ACC synaptic transmission. Further studies showed upregulated Na(+) channel expression in astrocytes under pathological conditions. We hypothesized that the astrocytes might have been activated in the ciguatera poisoning in vivo. Increases in glial fibrillary acid protein expression were detected in reactive astrocytes in the rat ACC. The activation of astroglia was further indicated by activation of the gap junction protein connexin 43 and upregulation of excitatory amino acid transporter 2 expression suggesting that glutamate was normally rapidly cleared from the synaptic cleft during acute ciguatera poisoning. However, neurotoxicity and reactive astrogliosis were not detected in the ACC after 7 days of P-CTX-1 exposure. The present results are the first characterization of P-CTX-1-invoked brain cortex neuronal excitotoxicity in vivo and supported the theme that neuron and astroglia signals might play roles in acute ciguatera poisoning.

  16. Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Koike, Takahiko; Yoshihara, Kazufumi; Yoshida, Yumiko; Takahashi, Haruka K; Nakagawa, Eri; Sadato, Norihiro

    2016-07-01

    Happiness is one of the most fundamental human goals, which has led researchers to examine the source of individual happiness. Happiness has usually been discussed regarding two aspects (a temporary positive emotion and a trait-like long-term sense of being happy) that are interrelated; for example, individuals with a high level of trait-like subjective happiness tend to rate events as more pleasant. In this study, we hypothesized that the interaction between the two aspects of happiness could be explained by the interaction between structure and function in certain brain regions. Thus, we first assessed the association between gray matter density (GMD) of healthy participants and trait-like subjective happiness using voxel-based morphometry (VBM). Further, to assess the association between the GMD and brain function, we conducted functional magnetic resonance imaging (MRI) using the task of positive emotion induction (imagination of several emotional life events). VBM indicated that the subjective happiness was positively correlated with the GMD of the rostral anterior cingulate cortex (rACC). Functional MRI demonstrated that experimentally induced temporal happy feelings were positively correlated with subjective happiness level and rACC activity. The rACC response to positive events was also positively correlated with its GMD. These results provide convergent structural and functional evidence that the rACC is related to happiness and suggest that the interaction between structure and function in the rACC may explain the trait-state interaction in happiness. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Unawareness of deficits in Alzheimer's disease: role of the cingulate cortex.

    Science.gov (United States)

    Amanzio, Martina; Torta, Diana M E; Sacco, Katiuscia; Cauda, Franco; D'Agata, Federico; Duca, Sergio; Leotta, Daniela; Palermo, Sara; Geminiani, Giuliano C

    2011-04-01

    Unawareness of deficits is a symptom of Alzheimer's disease that can be observed even in the early stages of the disease. The frontal hypoperfusion associated with reduced awareness of deficits has led to suggestions of the existence of a hypofunctioning prefrontal pathway involving the right dorsolateral prefrontal cortex, inferior parietal lobe, anterior cingulate gyri and limbic structures. Since this network plays an important role in response inhibition competence and patients with Alzheimer's disease who are unaware of their deficits exhibit impaired performance in response inhibition tasks, we predicted a relationship between unawareness of deficits and cingulate hypofunctionality. We tested this hypothesis in a sample of 29 patients with Alzheimer's disease (15 aware and 14 unaware of their disturbances), rating unawareness according to the Awareness of Deficit Questionnaire-Dementia scale. The cognitive domain was investigated by means of a wide battery including tests on executive functioning, memory and language. Neuropsychiatric aspects were investigated using batteries on behavioural mood changes, such as apathy and disinhibition. Cingulate functionality was assessed with functional magnetic resonance imaging, while patients performed a go/no-go task. In accordance with our hypotheses, unaware patients showed reduced task-sensitive activity in the right anterior cingulate area (Brodmann area 24) and in the rostral prefrontal cortex (Brodmann area 10). Unaware patients also showed reduced activity in the right post-central gyrus (Brodmann area 2), in the associative cortical areas such as the right parietotemporal-occipital junction (Brodmann area 39) and the left temporal gyrus (Brodmann areas 21 and 38), in the striatum and in the cerebellum. These findings suggest that the unawareness of deficits in early Alzheimer's disease is associated with reduced functional recruitment of the cingulofrontal and parietotemporal regions. Furthermore, in line with

  18. Impaired learning from errors in cannabis users: Dorsal anterior cingulate cortex and hippocampus hypoactivity.

    Science.gov (United States)

    Carey, Susan E; Nestor, Liam; Jones, Jennifer; Garavan, Hugh; Hester, Robert

    2015-10-01

    The chronic use of cannabis has been associated with error processing dysfunction, in particular, hypoactivity in the dorsal anterior cingulate cortex (dACC) during the processing of cognitive errors. Given the role of such activity in influencing post-error adaptive behaviour, we hypothesised that chronic cannabis users would have significantly poorer learning from errors. Fifteen chronic cannabis users (four females, mean age=22.40 years, SD=4.29) and 15 control participants (two females, mean age=23.27 years, SD=3.67) were administered a paired associate learning task that enabled participants to learn from their errors, during fMRI data collection. Compared with controls, chronic cannabis users showed (i) a lower recall error-correction rate and (ii) hypoactivity in the dACC and left hippocampus during the processing of error-related feedback and re-encoding of the correct response. The difference in error-related dACC activation between cannabis users and healthy controls varied as a function of error type, with the control group showing a significantly greater difference between corrected and repeated errors than the cannabis group. The present results suggest that chronic cannabis users have poorer learning from errors, with the failure to adapt performance associated with hypoactivity in error-related dACC and hippocampal regions. The findings highlight a consequence of performance monitoring dysfunction in drug abuse and the potential consequence this cognitive impairment has for the symptom of failing to learn from negative feedback seen in cannabis and other forms of dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development

    Directory of Open Access Journals (Sweden)

    A. Cachia

    2016-06-01

    Full Text Available Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events – under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC – an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show – without exception–that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life.

  20. Amygdala and dorsal anterior cingulate connectivity during an emotional working memory task in borderline personality disorder patients with interpersonal trauma history

    Directory of Open Access Journals (Sweden)

    Annegret eKrause-Utz

    2014-10-01

    Full Text Available Emotion dysregulation and stress-related cognitive disturbances including dissociation are key features of Borderline Personality Disorder (BPD. Previous research suggests that amygdala hyperreactivity along with a failure to activate frontal brain areas implicated in inhibitory control (e.g., anterior cingulate cortex, ACC may underlie core symptoms of BPD. However, studies investigating interactions of fronto-limbic brain areas during cognitive inhibition of interfering emotional stimuli in BPD patients are still needed. Moreover, very little is known about how dissociation modulates fronto-limbic connectivity during emotional distraction in BPD. We used Psychophysiological Interaction (PPI to analyse amygdala and dorsal ACC (dACC connectivity in 22 un-medicated BPD patients with interpersonal trauma history and 22 healthy controls (HC, who performed a working memory task, while either no distractors or neutral vs. negative interpersonal pictures were presented. A measure of state dissociation was used to predict amygdala as well as dACC connectivity in the BPD group. During emotional distraction, both groups showed disrupted amygdala connectivity with dorsolateral prefrontal cortex, which was more pronounced in the BPD group. Patients further showed stronger amygdala-hippocampus and dACC-insula connectivity during emotional interference and demonstrated a stronger coupling of the dACC with nodes of the default mode network (e.g. posterior cingulate. Dissociation positively predicted amygdala-dACC connectivity and negatively predicted dACC connectivity with insula and posterior cingulate. Our results suggest aberrant connectivity patterns involving brain regions associated with emotion processing, salience detection, and self-referential processes, which may be modulated by dissociation, in BPD. Findings might be related to difficulties in shifting attention away from external (distracting emotional stimuli as well as internal emotional states

  1. Nonlinear response of the anterior cingulate and prefrontal cortex in schizophrenia as a function of variable attentional control.

    Science.gov (United States)

    Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Caforio, Grazia; Romano, Raffaella; Lobianco, Luciana; Fazio, Leonardo; Di Giorgio, Annabella; Latorre, Valeria; Sambataro, Fabio; Popolizio, Teresa; Nardini, Marcello; Mattay, Venkata S; Weinberger, Daniel R; Bertolino, Alessandro

    2010-04-01

    Previous studies have reported abnormal prefrontal and cingulate activity during attentional control processing in schizophrenia. However, it is not clear how variation in attentional control load modulates activity within these brain regions in this brain disorder. The aim of this study in schizophrenia is to investigate the impact of increasing levels of attentional control processing on prefrontal and cingulate activity. Blood oxygen level-dependent (BOLD) responses of 16 outpatients with schizophrenia were compared with those of 21 healthy subjects while performing a task eliciting increasing levels of attentional control during event-related functional magnetic resonance imaging at 3 T. Results showed reduced behavioral performance in patients at greater attentional control levels. Imaging data indicated greater prefrontal activity at intermediate attentional control levels in patients but greater prefrontal and cingulate responses at high attentional control demands in controls. The BOLD activity profile of these regions in controls increased linearly with increasing cognitive loads, whereas in patients, it was nonlinear. Correlation analysis consistently showed differential region and load-specific relationships between brain activity and behavior in the 2 groups. These results indicate that varying attentional control load is associated in schizophrenia with load- and region-specific modification of the relationship between behavior and brain activity, possibly suggesting earlier saturation of cognitive capacity.

  2. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    Science.gov (United States)

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  4. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  5. The Integration of Negative Affect, Pain, and Cognitive Control in the Cingulate Cortex

    Science.gov (United States)

    Shackman, Alexander J.; Salomons, Tim V.; Slagter, Heleen A.; Fox, Andrew S.; Winter, Jameel J.; Davidson, Richard J.

    2011-01-01

    Preface It has been argued that emotion, pain, and cognitive control are functionally segregated in distinct subdivisions of the cingulate cortex. But recent observations encourage a fundamentally different view. Imaging studies indicate that negative affect, pain, and cognitive control activate an overlapping region of dorsal cingulate, the anterior midcingulate cortex (aMCC). Anatomical studies reveal that aMCC constitutes a hub where information about reinforcers can be linked to motor centers responsible for expressing affect and executing goal-directed behavior. Computational modeling and other kinds of evidence suggest that this intimacy reflects control processes that are common to all three domains. These observations compel a reconsideration of dorsal cingulate’s contribution to negative affect and pain. PMID:21331082

  6. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Zavitsanou, K.; Huang, X.-F.

    2002-01-01

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [ 3 H]MK801, [ 3 H]AMPA and [ 3 H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [ 3 H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [ 3 H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [ 3 H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [ 3 H]AMPA and [ 3 H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  7. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla.

    Science.gov (United States)

    Brandt, Allison S; Unschuld, Paul G; Pradhan, Subechhya; Lim, Issel Anne L; Churchill, Gregory; Harris, Ashley D; Hua, Jun; Barker, Peter B; Ross, Christopher A; van Zijl, Peter C M; Edden, Richard A E; Margolis, Russell L

    2016-04-01

    The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Long-Biao eCui

    2015-11-01

    Full Text Available Understanding the neural basis of schizophrenia (SZ is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC, dorsolateral prefrontal cortex (DLPFC, hippocampus, and medial prefrontal cortex (MPFC have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI. Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA in addition to classical inference (t-test. In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, sDCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions.

  9. The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Francisco Velasquez

    2017-04-01

    Full Text Available Social deficits in autism spectrum disorder (ASD are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task.

  10. Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option.

    Science.gov (United States)

    Hart, Evan E; Gerson, Julian O; Zoken, Yael; Garcia, Marisella; Izquierdo, Alicia

    2017-07-01

    The anterior cingulate cortex (ACC) is known to be involved in effortful choice, yet its role in cost-benefit evaluation of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. Selecting between qualitatively different options is a decision type commonly faced by humans. Here, we assessed the role of ACC on a task that has primarily been used to probe striatal function in motivation. Rats were trained to stable performance on a progressive ratio schedule for sucrose pellets and were then given sham surgeries (control) or excitotoxic NMDA lesions of ACC. Subsequently, a choice was introduced: chow was concurrently available while animals could work for the preferred sucrose pellets. ACC lesions produced a significant decrease in lever presses for sucrose pellets compared to control, whereas chow consumption was unaffected. Lesions had no effect on sucrose pellet preference when both options were freely available. When laboratory chow was not concurrently available, ACC-lesioned rats exhibited similar lever pressing as controls. During a test under specific satiety for sucrose pellets, ACC-lesioned rats also showed intact devaluation effects. The effects of ACC lesions in our task are not mediated by decreased appetite, a change in food preference, a failure to update value or a learning deficit. Taken together, we found that ACC lesions decreased effort for a qualitatively preferred option. These results are discussed with reference to effects of striatal manipulations and our recent report of a role for basolateral amygdala in effortful choice. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  12. Neurocognitive and neuroinflammatory correlates of PDYN and OPRK1 mRNA expression in the anterior cingulate in postmortem brain of HIV-infected subjects.

    Science.gov (United States)

    Yuferov, Vadim; Butelman, Eduardo R; Ho, Ann; Morgello, Susan; Kreek, Mary Jeanne

    2014-01-09

    Chronic inflammation may contribute to neuropsychological impairments in individuals with HIV, and modulation of this inflammatory response by opiate receptor ligands is important in light of the prevalence of drug use in HIV populations. Exogenous MOR and KOR agonists have differential effects on central nervous system (CNS) immunity and, while some data suggest KOR agonists are immunosuppressive, the KOR agonist dynorphin has been shown to stimulate human monocyte chemotaxis. In this study, we examined mRNA levels of endogenous opioid receptors OPRK1 and OPRM1, prodynorphin (PDYN), macrophage scavenger receptor CD163, and microglia/macrophage marker CD68 in the caudate and anterior cingulate of postmortem brains from HIV-positive and HIV-negative subjects. Brain tissues of HIV-infected (n = 24) and control subjects (n = 15) were obtained from the Manhattan HIV Brain Bank. Quantification of the gene mRNA was performed using SYBR Green RT-PCR. CD68 and CD163 were increased in HIV-positive (HIV+) compared to HIV-negative (HIV-) individuals in both brain regions. There were higher OPRK1 (P <0.005), and lower PDYN mRNA (P <0.005) levels in the anterior cingulate of HIV+ compared to HIV- subjects. This difference between the clinical groups was not found in the caudate. There was no difference in the levels of OPRM1 mRNA between HIV+ and HIV- subjects. Using linear regression analysis, we examined the relationship of OPRK1 and PDYN mRNA levels in the HIV+ subjects with seven cognitive domain T scores of a neuropsychological test battery. Within the HIV+ subjects, there was a positive correlation between anterior cingulate PDYN mRNA levels and better T-scores in the motor domain. Within the HIV+ subjects there were also positive correlations of both OPRK1 and PDYN mRNA levels with the anti-inflammatory marker CD163, but not with proinflammatory CD68 levels. In this setting, decreased PDYN mRNA may reflect a homeostatic mechanism to reduce monocyte

  13. Activation of anterior paralimbic structures during guilt-related script-driven imagery.

    Science.gov (United States)

    Shin, L M; Dougherty, D D; Orr, S P; Pitman, R K; Lasko, M; Macklin, M L; Alpert, N M; Fischman, A J; Rauch, S L

    2000-07-01

    Several recent neuroimaging studies have examined the neuroanatomical correlates of normal emotional states, such as happiness, sadness, fear, anger, anxiety, and disgust; however, no previous study has examined the emotional state of guilt. In the current study, we used positron emission tomography and the script-driven imagery paradigm to study regional cerebral blood flow (rCBF) during the transient emotional experience of guilt in eight healthy male participants. In the Guilt condition, participants recalled and imagined participating in a personal event involving the most guilt they had ever experienced. In the Neutral condition, participants recalled and imagined participating in an emotionally neutral personal event. In the Guilt versus Neutral comparison, rCBF increases occurred in anterior paralimbic regions of the brain: bilateral anterior temporal poles, anterior cingulate gyrus, and left anterior insular cortex/inferior frontal gyrus. These results, along with those of previous studies, are consistent with the notion that anterior paralimbic regions of the brain mediate negative emotional states in healthy individuals.

  14. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  15. Anterior Cingulate Cortex Contributes to Alcohol Withdrawal- Induced and Socially Transferred Hyperalgesia.

    Science.gov (United States)

    Smith, Monique L; Walcott, Andre T; Heinricher, Mary M; Ryabinin, Andrey E

    2017-01-01

    Pain is often described as a "biopsychosocial" process, yet social influences on pain and underlying neural mechanisms are only now receiving significant experimental attention. Expression of pain by one individual can be communicated to nearby individuals by auditory, visual, and olfactory cues. Conversely, the perception of another's pain can lead to physiological and behavioral changes in the observer, which can include induction of hyperalgesia in "bystanders" exposed to "primary" conspecifics in which hyperalgesia has been induced directly. The current studies were designed to investigate the neural mechanisms responsible for the social transfer of hyperalgesia in bystander mice housed and tested with primary mice in which hyperalgesia was induced using withdrawal (WD) from voluntary alcohol consumption. Male C57BL/6J mice undergoing WD from a two-bottle choice voluntary alcohol-drinking procedure served as the primary mice. Mice housed in the same room served as bystanders. Naïve, water-drinking controls were housed in a separate room. Immunohistochemical mapping identified significantly enhanced Fos immunoreactivity (Fos-ir) in the anterior cingulate cortex (ACC) and insula (INS) of bystander mice compared to naïve controls, and in the dorsal medial hypothalamus (DMH) of primary mice. Chemogenetic inactivation of the ACC but not primary somatosensory cortex reversed the expression of hyperalgesia in both primary and bystander mice. These studies point to an overlapping neural substrate for expression of socially transferred hyperalgesia and that expressed during alcohol WD.

  16. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Lee, Seojung; Ran Kim, Kyung; Ku, Jeonghun; Lee, Jung-Hyun; Namkoong, Kee; Jung, Young-Chul

    2014-01-30

    Cortical areas supporting cognitive control and salience demonstrate different neural responses to visual food cues in patients with eating disorders. This top-down cognitive control, which interacts with bottom-up appetitive responses, is tightly integrated not only in task conditions but also in the resting-state. The dorsal anterior cingulate cortex (dACC) is a key node of a large-scale network that is involved in self-referential processing and cognitive control. We investigated resting-state functional connectivity of the dACC and hypothesized that altered connectivity would be demonstrated in cortical midline structures involved in self-referential processing and cognitive control. Seed-based resting-state functional connectivity was analyzed in women with anorexia nervosa (N=18), women with bulimia nervosa (N=20) and age matched healthy controls (N=20). Between group comparisons revealed that the anorexia nervosa group exhibited stronger synchronous activity between the dACC and retrosplenial cortex, whereas the bulimia nervosa group showed stronger synchronous activity between the dACC and medial orbitofrontal cortex. Both groups demonstrated stronger synchronous activity between the dACC and precuneus, which correlated with higher scores of the Body Shape Questionnaire. The dACC-precuneus resting-state synchrony might be associated with the disorder-specific rumination on eating, weight and body shape in patients with eating disorders. © 2013 Published by Elsevier Ireland Ltd.

  17. Neural representation of cost-benefit selections in rat anterior cingulate cortex in self-paced decision making.

    Science.gov (United States)

    Wang, Shuai; Shi, Yi; Li, Bao-Ming

    2017-03-01

    The anterior cingulate cortex (ACC) is crucial for decision making which involves the processing of cost-benefit information. Our previous study has shown that ACC is essential for self-paced decision making. However, it is unclear how ACC neurons represent cost-benefit selections during the decision-making process. In the present study, we trained rats on the same "Do More Get More" (DMGM) task as in our previous work. In each trial, the animals stand upright and perform a sustained nosepoke of their own will to earn a water reward, with the amount of reward positively correlated to the duration of the nosepoke (i.e., longer nosepokes earn larger rewards). We then recorded ACC neuronal activity on well-trained rats while they were performing the DMGM task. Our results show that (1) approximately 3/5 ACC neurons (296/496, 59.7%) exhibited changes in firing frequency that were temporally locked with the main events of the DMGM task; (2) about 1/5 ACC neurons (101/496, 20.4%) or 1/3 of the event-modulated neurons (101/296, 34.1%) showed differential firing rate changes for different cost-benefit selections; and (3) many ACC neurons exhibited linear encoding of the cost-benefit selections in the DMGM task events. These results suggest that ACC neurons are engaged in encoding cost-benefit information, thus represent the selections in self-paced decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Paroxysmal arousal in epilepsy associated with cingulate hyperperfusion.

    Science.gov (United States)

    Vetrugno, R; Mascalchi, M; Vella, A; Della Nave, R; Provini, F; Plazzi, G; Volterrani, D; Bertelli, P; Vattimo, A; Lugaresi, E; Montagna, P

    2005-01-25

    A patient with nocturnal frontal lobe epilepsy characterized by paroxysmal motor attacks during sleep had brief paroxysmal arousals (PAs), complex episodes of nocturnal paroxysmal dystonia, and epileptic nocturnal wandering since childhood. Ictal SPECT during an episode of PA demonstrated increased blood flow in the right anterior cingulate gyrus and cerebellar cortex with hypoperfusion in the right temporal and frontal associative cortices.

  19. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  20. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Directory of Open Access Journals (Sweden)

    Lauren A Demers

    Full Text Available Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD. The dorsal anterior cingulate cortex (dACC has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC completed the Toronto Alexithymia Scale 20 (TAS-20 and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology.

  1. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Science.gov (United States)

    Demers, Lauren A; Olson, Elizabeth A; Crowley, David J; Rauch, Scott L; Rosso, Isabelle M

    2015-01-01

    Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD). The dorsal anterior cingulate cortex (dACC) has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC) completed the Toronto Alexithymia Scale 20 (TAS-20) and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology.

  2. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    Science.gov (United States)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and

  3. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  4. Open label smoking cessation with varenicline is associated with decreased glutamate levels and functional changes in anterior cingulate cortex: preliminary findings

    Directory of Open Access Journals (Sweden)

    Muriah Dawn Wheelock

    2014-07-01

    Full Text Available Rationale: Varenicline, the most effective single agent for smoking cessation, is a partial agonist at α4β2 nicotinic acetylcholine receptors. Increasing evidence implicates glutamate in the pathophysiology of addiction and one of the benefits of treatment for smoking cessation is the ability to regain cognitive control. Objective: To evaluate the effects of 12 week varenicline administration on glutamate levels in the dorsal anterior cingulate cortex (dACC and functional changes within the cognitive control network.Methods: We used single-voxel proton magnetic resonance spectroscopy (1H-MRS in the dACC and functional MRI (fMRI during performance of a Stroop color-naming task before and after smoking cessation with varenicline in 11 healthy smokers (open label design. Using the dACC as a seed region, we evaluated functional connectivity changes using a psychophysiological interaction (PPI analysis. Results: We observed a significant decrease in dACC glutamate + glutamine (Glx/Cr levels as well as significant blood oxygen level-dependent signal (BOLD decreases in the rostral ACC/medial orbitofrontal cortex and precuneus/posterior cingulate cortex. These BOLD changes are suggestive of alterations in default mode network (DMN function and are further supported by the results of the PPI analysis that revealed changes in connectivity between the dACC and regions of the DMN. Baseline measures of nicotine dependence and craving positively correlated with baseline Glx/Cr levels.Conclusions: These results suggest possible mechanisms of action for varenicline such as reduction in Glx levels in dACC and shifts in BOLD activities between large scale brain networks. They also suggest a role for ACC Glx in the modulation of behavior. Due to the preliminary nature of this study (lack of control group and small sample size, future studies are needed to replicate these findings.

  5. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    Science.gov (United States)

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  6. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients.

    Science.gov (United States)

    Carmi, Lior; Alyagon, Uri; Barnea-Ygael, Noam; Zohar, Joseph; Dar, Reuven; Zangen, Abraham

    Obsessive Compulsive Disorder (OCD) is a chronic and disabling disorder with poor response to pharmacological treatments. Converging evidences suggest that OCD patients suffer from dysfunction of the cortico-striato-thalamo-cortical (CSTC) circuit, including in the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC). To examine whether modulation of mPFC-ACC activity by deep transcranial magnetic stimulation (DTMS) affects OCD symptoms. Treatment resistant OCD participants were treated with either high-frequency (HF; 20 Hz), low-frequency (LF; 1 Hz), or sham DTMS of the mPFC and ACC for five weeks, in a double-blinded manner. All treatments were administered following symptoms provocation, and EEG measurements during a Stroop task were acquired to examine changes in error-related activity. Clinical response to treatment was determined using the Yale-Brown-Obsessive-Compulsive Scale (YBOCS). Interim analysis revealed that YBOCS scores were significantly improved following HF (n = 7), but not LF stimulation (n = 8), compared to sham (n = 8), and thus recruitment for the LF group was terminated. Following completion of the study, the response rate in the HF group (n = 18) was significantly higher than that of the sham group (n = 15) for at least one month following the end of the treatment. Notably, the clinical response in the HF group correlated with increased Error Related Negativity (ERN) in the Stroop task, an electrophysiological component that is attributed to ACC activity. HF DTMS over the mPFC-ACC alleviates OCD symptoms and may be used as a novel therapeutic intervention. Notwithstanding alternative explanations, this may stem from DTMS ability to directly modify ACC activity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  8. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  9. Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex.

    Science.gov (United States)

    Jiang, Yaoguang; Platt, Michael L

    2018-05-29

    The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence social functions in many mammals. In humans and rhesus macaques, OT delivered intranasally can promote prosocial behavior in certain contexts. Yet the precise neural mechanisms mediating these behavioral effects remain unclear. Here we show that treating a group of male macaque monkeys intranasally with aerosolized OT relaxes their spontaneous social interactions with other monkeys. OT reduces differences in social behavior between dominant and subordinate monkeys, thereby flattening the status hierarchy. OT also increases behavioral synchrony within a pair. Intranasal delivery of aerosolized AVP reproduces the effects of OT with greater efficacy. Remarkably, all behavioral effects are replicated when OT or AVP is injected focally into the anterior cingulate gyrus (ACCg), a brain area linked to empathy and other-regarding behavior. ACCg lacks OT receptors but is rich in AVP receptors, suggesting exogenous OT may shape social behavior, in part, via nonspecific binding. Notably, OT and AVP alter behaviors of both the treated monkey and his untreated partner, consistent with enhanced feedback through reciprocal social interactions. These findings bear important implications for use of OT in both basic research and as a therapy for social impairments in neurodevelopmental disorders.

  10. Impact of family history of alcoholism on glutamine/glutamate ratio in anterior cingulate cortex in substance-naïve adolescents.

    Science.gov (United States)

    Cohen-Gilbert, Julia E; Sneider, Jennifer T; Crowley, David J; Rosso, Isabelle M; Jensen, J Eric; Silveri, Marisa M

    2015-12-01

    Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+) for alcoholism exhibit increased impulsivity compared to family history negative (FH-) peers in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC). This study examined glutamate (Glu) and glutamine (Gln), amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC) using magnetic resonance spectroscopy (MRS) at 4T. Participants were 28 adolescents (13 male, 12-14 yrs) and 31 emerging adults (16 male, 18-25 yrs), stratified into FH- and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH- but not FH+ groups. In FH- adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson's disease with depression.

    Science.gov (United States)

    Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong

    2018-07-16

    Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Mindfulness meditation regulates anterior insula activity during empathy for social pain.

    Science.gov (United States)

    Laneri, Davide; Krach, Sören; Paulus, Frieder M; Kanske, Philipp; Schuster, Verena; Sommer, Jens; Müller-Pinzler, Laura

    2017-08-01

    Mindfulness has been shown to reduce stress, promote health, and well-being, as well as to increase compassionate behavior toward others. It reduces distress to one's own painful experiences, going along with altered neural responses, by enhancing self-regulatory processes and decreasing emotional reactivity. In order to investigate if mindfulness similarly reduces distress and neural activations associated with empathy for others' socially painful experiences, which might in the following more strongly motivate prosocial behavior, the present study compared trait, and state effects of long-term mindfulness meditation (LTM) practice. To do so we acquired behavioral data and neural activity measures using functional magnetic resonance imaging (fMRI) during an empathy for social pain task while manipulating the meditation state between two groups of LTM practitioners that were matched with a control group. The results show increased activations of the anterior insula (AI) and anterior cingulate cortex (ACC) as well as the medial prefrontal cortex and temporal pole when sharing others' social suffering, both in LTM practitioners and controls. However, in LTM practitioners, who practiced mindfulness meditation just prior to observing others' social pain, left AI activation was lower and the strength of AI activation following the mindfulness meditation was negatively associated with trait compassion in LTM practitioners. The findings suggest that current mindfulness meditation could provide an adaptive mechanism in coping with distress due to the empathic sharing of others' suffering, thereby possibly enabling compassionate behavior. Hum Brain Mapp 38:4034-4046, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Dorsal Anterior Cingulate Cortices Differentially Lateralize Prediction Errors and Outcome Valence in a Decision-Making Task

    Directory of Open Access Journals (Sweden)

    Alexander R. Weiss

    2018-05-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is proposed to facilitate learning by signaling mismatches between the expected outcome of decisions and the actual outcomes in the form of prediction errors. The dACC is also proposed to discriminate outcome valence—whether a result has positive (either expected or desirable or negative (either unexpected or undesirable value. However, direct electrophysiological recordings from human dACC to validate these separate, but integrated, dimensions have not been previously performed. We hypothesized that local field potentials (LFPs would reveal changes in the dACC related to prediction error and valence and used the unique opportunity offered by deep brain stimulation (DBS surgery in the dACC of three human subjects to test this hypothesis. We used a cognitive task that involved the presentation of object pairs, a motor response, and audiovisual feedback to guide future object selection choices. The dACC displayed distinctly lateralized theta frequency (3–8 Hz event-related potential responses—the left hemisphere dACC signaled outcome valence and prediction errors while the right hemisphere dACC was involved in prediction formation. Multivariate analyses provided evidence that the human dACC response to decision outcomes reflects two spatiotemporally distinct early and late systems that are consistent with both our lateralized electrophysiological results and the involvement of the theta frequency oscillatory activity in dACC cognitive processing. Further findings suggested that dACC does not respond to other phases of action-outcome-feedback tasks such as the motor response which supports the notion that dACC primarily signals information that is crucial for behavioral monitoring and not for motor control.

  14. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    Science.gov (United States)

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research. (c) 2016 APA, all rights reserved).

  15. Glutamate/glutamine concentrations in the dorsal anterior cingulate vary with Post-Traumatic Stress Disorder symptoms.

    Science.gov (United States)

    Harnett, Nathaniel G; Wood, Kimberly H; Ference, Edward W; Reid, Meredith A; Lahti, Adrienne C; Knight, Amy J; Knight, David C

    2017-08-01

    Trauma and stress-related disorders (e.g., Acute Stress Disorder; ASD and Post-Traumatic Stress Disorder; PTSD) that develop following a traumatic event are characterized by cognitive-affective dysfunction. The cognitive and affective functions disrupted by stress disorder are mediated, in part, by glutamatergic neural systems. However, it remains unclear whether neural glutamate concentrations, measured acutely following trauma, vary with ASD symptoms and/or future PTSD symptom expression. Therefore, the current study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to investigate glutamate/glutamine (Glx) concentrations within the dorsal anterior cingulate cortex (ACC) of recently (i.e., within one month) traumatized individuals and non-traumatized controls. Although Glx concentrations within dorsal ACC did not differ between recently traumatized and non-traumatized control groups, a positive linear relationship was observed between Glx concentrations and current stress disorder symptoms in traumatized individuals. Further, Glx concentrations showed a positive linear relationship with future stress disorder symptoms (i.e., assessed 3 months post-trauma). The present results suggest glutamate concentrations may play a role in both acute and future post-traumatic stress symptoms following a traumatic experience. The current results expand our understanding of the neurobiology of stress disorder and suggest glutamate within the dorsal ACC plays an important role in cognitive-affective dysfunction following a traumatic experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  17. Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study.

    Science.gov (United States)

    Chen, Mu-Hong; Li, Cheng-Ta; Lin, Wei-Chen; Hong, Chen-Jee; Tu, Pei-Chi; Bai, Ya-Mei; Cheng, Chih-Ming; Su, Tung-Ping

    2018-01-01

    A single low-dose ketamine infusion exhibited a rapid antidepressant effect within 1h. Despite its short biological half-life (approximately 3h), the antidepressant effect of ketamine has been demonstrated to persist for several days. However, changes in brain function responsible for the persistent antidepressant effect of a single low-dose ketamine infusion remain unclear METHODS: Twenty-four patients with treatment-resistant depression (TRD) were randomized into three groups according to the treatment received: 0.5mg/kg ketamine, 0.2mg/kg ketamine, and normal saline infusion. Standardized uptake values (SUVs) of glucose metabolism measured through 18 F-FDG positron-emission-tomography before infusion and 1day after a 40-min ketamine or normal saline infusion were used for subsequent whole-brain voxel-wise analysis and were correlated with depressive symptoms, as defined using the Hamilton Depression Rating Scale-17 (HDRS-17) score RESULTS: The voxel-wise analysis revealed that patients with TRD receiving the 0.5mg/kg ketamine infusion had significantly higher SUVs (corrected for family-wise errors, P = 0.014) in the supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC) than did those receiving the 0.2mg/kg ketamine infusion. The increase in the SUV in the dACC was negatively correlated with depressive symptoms at 1day after ketamine infusion DISCUSSION: The persistent antidepressant effect of a 0.5mg/kg ketamine infusion may be mediated by increased activation in the SMA and dACC. The higher increase in dACC activation was related to the reduction in depressive symptoms after ketamine infusion. A 0.5mg/kg ketamine infusion facilitated the glutamatergic neurotransmission in the SMA and dACC, which may be responsible for the persistent antidepressant effect of ketamine much beyond its half-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    Science.gov (United States)

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. [Gelastic seizures as the presenting symptom of infarction of the cingulate gyrus].

    Science.gov (United States)

    Egea-Lucas, I; Martinez-Mondejar, E; Piqueres-Vidal, C F; Frutos-Alegria, M T

    2015-09-01

    Gelastic seizures are infrequent epileptic seizures in which the main manifestation is inappropriate laughter. They have a variety of causations. A search of the literature did not reveal any cases of pathological laughter that was clearly related with strokes, although there a numerous reports of non-epileptic pathological laughter as a prodromal symptom in stroke patients (fou rire prodromique). We report the case of a patient with infarcted cingulate gyrus who progressed with gelastic seizures at onset and during the course of the clinical process. An 81-year-old female who suddenly presented bouts of difficulties in verbal expression with disconnection from the milieu that were accompanied by fits of unmotivated and uncontrollable laughter that lasted less than five minutes. Following the attacks, her level of consciousness had dropped. In some of the attacks there were also involuntary movements of the upper limbs. Resonance imaging revealed the existence of an acute ischaemic lesion in the left territory of the cingulate gyrus and an electroencephalogram revealed the existence of epileptogenic activity in the left-hand anterior temporal and frontal regions. The clinical profile, the results of the complementary examinations and the response to the antiepileptic treatment allow us to state that in the episode reported in this patient we are dealing with gelastic seizures related to an acute ischaemic lesion in the left cingulate gyrus.

  20. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  1. Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice.

    Science.gov (United States)

    Ito, Hiroshi; Nagano, Masatoshi; Suzuki, Hidenori; Murakoshi, Takayuki

    2010-01-01

    The anterior cingulate cortex (ACC) is involved in the pathophysiology of a variety of mental disorders, many of which are exacerbated by stress. There are few studies, however, of stress-induced modification of synaptic function in the ACC that is relevant to emotional behavior. We investigated the effects of chronic restraint stress (CRS) on behavior and synaptic function in layers II/III of the ACC in mice. The duration of field excitatory postsynaptic potentials (fEPSPs) was longer in CRS mice than in control mice. The frequency of miniature inhibitory postsynaptic currents (mIPSCs) recorded by whole-cell patch-clamping was reduced in CRS mice, while miniature excitatory postsynaptic currents (mEPSCs) remained unchanged. Paired-pulse ratios (PPRs) of the fEPSP and evoked EPSC were larger in CRS. There was no difference in NMDA component of evoked EPSCs between the groups. Both long-term potentiation (LTP) and long-term depression of fEPSP were larger in CRS mice than in control mice. The differences between the groups in fEPSP duration, PPRs and LTP level were not observed when the GABA(A) receptor was blocked by bicuculline. Compared to control mice, CRS mice exhibited hyper-locomotive activity in an open field test, while no difference was observed between the groups in anxiety-like behavior in a light/dark choice test. CRS mice displayed decreased freezing behavior in fear conditioning tests compared to control mice. These findings suggest that CRS facilitates synaptic plasticity in the ACC via increased excitability due to disinhibition of GABA(A) receptor signalling, which may underlie induction of behavioral hyper-locomotive activity after CRS. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Optical inactivation of the anterior cingulate cortex modulate descending pain pathway in a rat model of trigeminal neuropathic pain created via chronic constriction injury of the infraorbital nerve

    Directory of Open Access Journals (Sweden)

    Moon HC

    2017-10-01

    Full Text Available Hyeong Cheol Moon,1 Won Ik Heo,2 Yon Ji Kim,3 Daae Lee,4 So Yoon Won,5 Hong Rae Kim,1 Seung Man Ha,1 Youn Joo Lee,6 Young Seok Park1 1Department of Medical Neuroscience and Neurosurgery, College of Medicine, 2Department of Veterinary, College of Veterinary Medicine, 3Department of Biology, College of Natural Sciences, 4Department of Advanced Material Engineering, College of Engineering, 5Biochemistry and Medical Research Center, Chungbuk National University, Cheongju, 6Department of Radiology, Daejoen St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea Purpose: The anterior cingulate cortex (ACC plays a critical role in the initiation, development, and maintenance of neuropathic pain. Recently, the effects of optical stimulation on pain have been investigated, but the therapeutic effects of optical stimulation on trigeminal neuralgia (TN have not been clearly shown. Here, we investigated the effects of optical inhibition of the ACC on TN lesions to determine whether the alleviation of pain affects behavior performance and thalamic neuron signaling.Materials and methods: TN lesions were established in animals by generating a chronic constriction injury of the infraorbital nerve, and the animals received injections of AAV-hSyn-eNpHR3.0-EYFP or a vehicle (phosphate-buffered saline [PBS] in the ACC. The optical fiber was fixed into the ipsilateral ACC after the injection of adeno-associated virus plasmids or vehicle. Behavioral testing, consisting of responses to an air puff and cold allodynia, was performed, and thalamic neuronal activity was monitored following optical stimulation in vivo. Optical stimulation experiments were executed in three steps: during pre-light-off, stimulation-light-on, and post-light-off states. The role of the optical modulation of the ACC in response to pain was shown using a combination of optical stimulation and electrophysiological recordings in vivo.Results: Mechanical thresholds and

  3. Impact of the genome wide supported NRGN gene on anterior cingulate morphology in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Kazutaka Ohi

    Full Text Available BACKGROUND: The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls. METHODS: Genotype effects of rs12807809 were investigated on gray matter (GM and white matter (WM volumes using magnetic resonance imaging (MRI with a voxel-based morphometry (VBM technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls. RESULTS: Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC. Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32 than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls. CONCLUSIONS: Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.

  4. Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report.

    Directory of Open Access Journals (Sweden)

    Kathleen eGarrison

    2013-08-01

    Full Text Available Neurophenomenological studies seek to utilize first-person self-report to elucidate cognitive processes related to physiological data. Grounded theory offers an approach to the qualitative analysis of self-report, whereby theoretical constructs are derived from empirical data. Here we used grounded theory methodology to assess how the first-person experience of meditation relates to neural activity in a core region of the default mode network –the posterior cingulate cortex. We analyzed first-person data consisting of meditators’ accounts of their subjective experience during runs of a real-time fMRI neurofeedback study of meditation, and third-person data consisting of corresponding feedback graphs of posterior cingulate cortex activity during the same runs. We found that for meditators, the subjective experiences of ‘undistracted awareness’ such as ‘concentration’ and ‘observing sensory experience’, and ‘effortless doing’ such as ‘observing sensory experience’, ‘not efforting’, and ‘contentment’, correspond with posterior cingulate cortex deactivation. Further, the subjective experiences of ‘distracted awareness’ such as ‘distraction’ and ‘interpreting’, and ‘controlling’ such as ‘efforting’ and ‘discontentment’, correspond with posterior cingulate cortex activation. Moreover, we derived several novel hypotheses about how specific qualities of cognitive processes during meditation relate to posterior cingulate cortex activity, such as the difference between meditation and ‘trying to meditate’. These findings offer novel insights into the relationship between meditation and self-related thinking and neural activity in the default mode network, driven by the first-person experience.

  5. Cingulate Alpha-2A Adrenoceptors Mediate the Effects of Clonidine on Spontaneous Pain Induced by Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Yong-Jie Wang

    2017-09-01

    Full Text Available The anterior cingulate cortex (ACC is an important brain area for the regulation of neuropathic pain. The α2A adrenoceptor is a good target for pain management. However, the role of cingulate α2A adrenoceptors in the regulation of neuropathic pain has been less studied. In this study, we investigated the involvement of cingulate α2A adrenoceptors in the regulation of neuropathic pain at different time points after peripheral nerve injury in mice. The application of clonidine, either systemically (0.5 mg/kg intraperitoneally or specifically to the ACC, increased paw withdrawal thresholds (PWTs and induced conditioned place preference (CPP at day 7 after nerve injury, suggesting that cingulate α2 adrenoceptors are involved in the regulation of pain-like behaviors. Quantitative real-time PCR data showed that α2A adrenoceptors are the dominant α2 adrenoceptors in the ACC. Furthermore, the expression of cingulate α2A adrenoceptors was increased at day 3 and day 7 after nerve injury, but decreased at day 14, while no change was detected in the concentration of adrenaline or noradrenaline. BRL-44408 maleate, a selective antagonist of α2A adrenoceptors, was microinfused into the ACC. This blocking of cingulate α2A adrenoceptors activity abolished the CPP induced by clonidine (0.5 mg/kg intraperitoneally but not the effects on PWTs at day 7. However, clonidine applied systemically or specifically to the ACC at day 14 increased the PWTs but failed to induce CPP; this negative effect was reversed by the overexpression of cingulate α2A adrenoceptors. These results suggest that cingulate α2A adrenoceptors are necessary for the analgesic effects of clonidine on spontaneous pain.

  6. Pregenual Anterior Cingulate Dysfunction Associated with Depression in OCD: An Integrated Multimodal fMRI/1H MRS Study.

    Science.gov (United States)

    Tadayonnejad, Reza; Deshpande, Rangaprakash; Ajilore, Olusola; Moody, Teena; Morfini, Francesca; Ly, Ronald; O'Neill, Joseph; Feusner, Jamie D

    2018-04-01

    Depression is a commonly occurring symptom in obsessive-compulsive disorder (OCD), and is associated with worse functional impairment, poorer quality of life, and poorer treatment response. Understanding the underlying neurochemical and connectivity-based brain mechanisms of this important symptom domain in OCD is necessary for development of novel, more globally effective treatments. To investigate biopsychological mechanisms of comorbid depression in OCD, we examined effective connectivity and neurochemical signatures in the pregenual anterior cingulate cortex (pACC), a structure known to be involved in both OCD and depression. Resting-state functional magnetic resonance imaging (fMRI) and 1 H magnetic resonance spectroscopy (MRS) data were obtained from participants with OCD (n=49) and healthy individuals of equivalent age and sex (n=25). Granger causality-based effective (directed) connectivity was used to define causal networks involving the right and left pACC. The interplay between fMRI connectivity, 1 H MRS and clinical data was explored by applying moderation and mediation analyses. We found that the causal influence of the right dorsal anterior midcingulate cortex (daMCC) on the right pACC was significantly lower in the OCD group and showed significant correlation with depressive symptom severity in the OCD group. Lower and moderate levels of glutamate (Glu) in the right pACC significantly moderated the interaction between right daMCC-pACC connectivity and depression severity. Our results suggest a biochemical-connectivity-psychological model of pACC dysfunction contributing to depression in OCD, particularly involving intracingulate connectivity and glutamate levels in the pACC. These findings have implications for potential molecular and network targets for treatment of this multi-faceted psychiatric condition.

  7. Task-dependent response conflict monitoring and cognitive control in anterior cingulate and dorsolateral prefrontal cortices.

    Science.gov (United States)

    Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon

    2013-11-06

    Previous experience affects our behavior in terms of adjustments. It has been suggested that the conflict monitor-controller system implemented in the prefrontal cortex plays a critical role in such adjustments. Previous studies suggested that there exists multiple conflict monitor-controller systems associated with the level of information (i.e., stimulus and response levels). In this study, we sought to test whether different types of conflicts occur at the same information processing level (i.e., response level) are independently processed. For this purpose, we designed a task paradigm to measure two different types of response conflicts using color-based and location-based conflict stimuli and measured the conflict adaptation effects associated with the two types of conflicts either independently (i.e., single conflict conditions) or simultaneously (i.e., a double-conflict condition). The behavioral results demonstrated that performance on current incongruent trials was faster only when the preceding trial was the same type of response conflict regardless of whether they included a single- or double-conflict. Imaging data also showed that anterior cingulate and dorsolateral prefrontal cortices operate in a task-specific manner. These findings suggest that there may be multiple monitor-controller loops for color-based and location-based conflicts even at the same response level. Importantly, our results suggest that double-conflict processing is qualitatively different from single-conflict processing although double-conflict shares the same sources of conflict with two single-conflict conditions. © 2013 Published by Elsevier B.V.

  8. Changed hub and corresponding functional connectivity of subgenual anterior cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Huawang Wu

    2016-12-01

    Full Text Available Major depressive disorder (MDD is one of the most prevalent mental disorders. In the brain, the hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of MDD remains unclear. Using resting-state functional magnetic resonance imaging and graph theory methods, we investigated whether alterations of hubs can be detected in MDD. First, we constructed the whole-brain voxel-wise functional networks and calculated a functional connectivity strength (FCS map in each subject in 34 MDD patients and 34 gender-, age-, and education level-matched healthy controls (HC. Next, the two-sample t-test was applied to compare the FCS maps between HC and MDD patients and identified significant decreased FCS in subgenual anterior cingulate cortex (sgACC in MDD patients. Subsequent functional connectivity analyses of sgACC showed disruptions in functional connectivity with posterior insula, middle and inferior temporal gyrus, lingual gyrus, and cerebellum in MDD patients. Furthermore, the changed FCS of sgACC and functional connections to sgACC were significantly correlated with the Hamilton Depression Rating Scale (HDRS scores in MDD patients. The results of the present study revealed the abnormal hub of sgACC and its corresponding disrupted frontal-limbic-visual cognitive-cerebellum functional networks in MDD. These findings may provide a new insight for the diagnosis and treatment of MDD.

  9. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain

    Directory of Open Access Journals (Sweden)

    Mariela eRance

    2014-10-01

    Full Text Available The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC and the left posterior insula (pInsL on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1 or the pInsL (state 2 being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: (rACC – pInsL increase (state 1, rACC – pInsL decrease (state 2, pInsL – rACC increase (state 2, pInsL – rACC decrease (state 1. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e. learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of

  10. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  11. Fish Oil Supplementation Increases Event-Related Posterior Cingulate Activation in Older Adults with Subjective Memory Impairment.

    Science.gov (United States)

    Boespflug, E L; McNamara, R K; Eliassen, J C; Schidler, M D; Krikorian, R

    2016-02-01

    To determine the effects of long-chain omega-3 (LCn-3) fatty acids found in fish oil, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on cortical blood oxygen level-dependent (BOLD) activity during a working memory task in older adults with subjective memory impairment. Randomized, double-blind, placebo-controlled study. Academic medical center. Healthy older adults (62-80 years) with subjective memory impairment, but not meeting criteria for mild cognitive impairment or dementia. Fish oil (EPA+DHA: 2.4 g/d, n=11) or placebo (corn oil, n=10) for 24 weeks. Cortical BOLD response patterns during performance of a sequential letter n-back working memory task were determined at baseline and week 24 by functional magnetic resonance imaging (fMRI). At 24 weeks erythrocyte membrane EPA+DHA composition increased significantly from baseline in participants receiving fish oil (+31%, p ≤ 0.0001) but not placebo (-17%, p=0.06). Multivariate modeling of fMRI data identified a significant interaction among treatment, visit, and memory loading in the right cingulate (BA 23/24), and in the right sensorimotor area (BA 3/4). In the fish oil group, BOLD increases at 24 weeks were observed in the right posterior cingulate and left superior frontal regions during memory loading. A region-of-interest analysis indicated that the baseline to endpoint change in posterior cingulate cortex BOLD activity signal was significantly greater in the fish oil group compared with the placebo group during the 1-back (p=0.0003) and 2-back (p=0.0005) conditions. Among all participants, the change in erythrocyte EPA+DHA during the intervention was associated with performance in the 2-back working memory task (p = 0.01), and with cingulate BOLD signal during the 1-back (p = 0.005) with a trend during the 2-back (p = 0.09). Further, cingulate BOLD activity was related to performance in the 2-back condition. Dietary fish oil supplementation increases red blood cell omega-3 content

  12. The Neural Correlates of Mindful Awareness: A Possible Buffering Effect on Anxiety-Related Reduction in Subgenual Anterior Cingulate Cortex Activity

    Science.gov (United States)

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Background Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Methods Resting brain glucose metabolism (GM) was measured using [18F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Results Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = −0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = −8, y = 32, z = −8, k = 423, Z = 4.41, corrected p FDR = 0.030). Conclusion The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in

  13. The neural correlates of mindful awareness: a possible buffering effect on anxiety-related reduction in subgenual anterior cingulate cortex activity.

    Science.gov (United States)

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Resting brain glucose metabolism (GM) was measured using [(18)F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = -0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = -8, y = 32, z = -8, k = 423, Z = 4.41, corrected p (FDR) = 0.030). The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in individuals with a risk for or having

  14. Anterior cingulate cortex instigates adaptive switches in choice by integrating immediate and delayed components of value in ventromedial prefrontal cortex.

    Science.gov (United States)

    Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J

    2014-02-26

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.

  15. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  16. Changes in cue-induced, prefrontal cortex activity with video-game play.

    Science.gov (United States)

    Han, Doug Hyun; Kim, Yang Soo; Lee, Yong Sik; Min, Kyung Joon; Renshaw, Perry F

    2010-12-01

    Brain responses, particularly within the orbitofrontal and cingulate cortices, to Internet video-game cues in college students are similar to those observed in patients with substance dependence in response to the substance-related cues. In this study, we report changes in brain activity between baseline and following 6 weeks of Internet video-game play. We hypothesized that subjects with high levels of self-reported craving for Internet video-game play would be associated with increased activity in the prefrontal cortex, particularly the orbitofrontal and anterior cingulate cortex. Twenty-one healthy university students were recruited. At baseline and after a 6-week period of Internet video-game play, brain activity during presentation of video-game cues was assessed using 3T blood oxygen level dependent functional magnetic resonance imaging. Craving for Internet video-game play was assessed by self-report on a 7-point visual analogue scale following cue presentation. During a standardized 6-week video-game play period, brain activity in the anterior cingulate and orbitofrontal cortex of the excessive Internet game-playing group (EIGP) increased in response to Internet video-game cues. In contrast, activity observed in the general player group (GP) was not changed or decreased. In addition, the change of craving for Internet video games was positively correlated with the change in activity of the anterior cingulate in all subjects. These changes in frontal-lobe activity with extended video-game play may be similar to those observed during the early stages of addiction.

  17. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  18. Differential encoding of factors influencing predicted reward value in monkey rostral anterior cingulate cortex.

    Science.gov (United States)

    Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka

    2012-01-01

    The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.

  19. Exploring individual differences in task switching: Persistence and other personality traits related to anterior cingulate cortex function.

    Science.gov (United States)

    Umemoto, A; Holroyd, C B

    2016-01-01

    Anterior cingulate cortex (ACC) is involved in cognitive control and decision-making but its precise function is still highly debated. Based on evidence from lesion, neurophysiological, and neuroimaging studies, we have recently proposed a critical role for ACC in motivating extended behaviors according to learned task values (Holroyd and Yeung, 2012). Computational simulations based on this theory suggest a hierarchical mechanism in which a caudal division of ACC selects and applies control over task execution, and a rostral division of ACC facilitates switches between tasks according to a higher task strategy (Holroyd and McClure, 2015). This theoretical framework suggests that ACC may contribute to personality traits related to persistence and reward sensitivity (Holroyd and Umemoto, 2016). To explore this possibility, we carried out a voluntary task switching experiment in which on each trial participants freely chose one of two tasks to perform, under the condition that they try to select the tasks "at random" and equally often. The participants also completed several questionnaires that assessed personality trait related to persistence, apathy, anhedonia, and rumination, in addition to the Big 5 personality inventory. Among other findings, we observed greater compliance with task instructions by persistent individuals, as manifested by a greater facility with switching between tasks, which is suggestive of increased engagement of rostral ACC. © 2016 Elsevier B.V. All rights reserved.

  20. Age-related changes in the functional network underlying specific and general autobiographical memory retrieval: a pivotal role for the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Pénélope Martinelli

    Full Text Available Age-related changes in autobiographical memory (AM recall are characterized by a decline in episodic details, while semantic aspects are spared. This deleterious effect is supposed to be mediated by an inefficient recruitment of executive processes during AM retrieval. To date, contrasting evidence has been reported on the neural underpinning of this decline, and none of the previous studies has directly compared the episodic and semantic aspects of AM in elderly. We asked 20 young and 17 older participants to recall specific and general autobiographical events (i.e., episodic and semantic AM elicited by personalized cues while recording their brain activity by means of fMRI. At the behavioral level, we confirmed that the richness of episodic AM retrieval is specifically impoverished in aging and that this decline is related to the reduction of executive functions. At the neural level, in both age groups, we showed the recruitment of a large network during episodic AM retrieval encompassing prefrontal, cortical midline and posterior regions, and medial temporal structures, including the hippocampus. This network was very similar, but less extended, during semantic AM retrieval. Nevertheless, a greater activity was evidenced in the dorsal anterior cingulate cortex (dACC during episodic, compared to semantic AM retrieval in young participants, and a reversed pattern in the elderly. Moreover, activity in dACC during episodic AM retrieval was correlated with inhibition and richness of memories in both groups. Our findings shed light on the direct link between episodic AM retrieval, executive control, and their decline in aging, proposing a possible neuronal signature. They also suggest that increased activity in dACC during semantic AM retrieval in the elderly could be seen as a compensatory mechanism underpinning successful AM performance observed in aging. These results are discussed in the framework of recently proposed models of neural

  1. Functional connectivity and neuronal variability of resting state activity in bipolar disorder--reduction and decoupling in anterior cortical midline structures.

    Science.gov (United States)

    Magioncalda, Paola; Martino, Matteo; Conio, Benedetta; Escelsior, Andrea; Piaggio, Niccolò; Presta, Andrea; Marozzi, Valentina; Rocchi, Giulio; Anastasio, Loris; Vassallo, Linda; Ferri, Francesca; Huang, Zirui; Roccatagliata, Luca; Pardini, Matteo; Northoff, Georg; Amore, Mario

    2015-02-01

    The cortical midline structures seem to be involved in the modulation of different resting state networks, such as the default mode network (DMN) and salience network (SN). Alterations in these systems, in particular in the perigenual anterior cingulate cortex (PACC), seem to play a central role in bipolar disorder (BD). However, the exact role of the PACC, and its functional connections to other midline regions (within and outside DMN) still remains unclear in BD. We investigated functional connectivity (FC), standard deviation (SD, as a measure of neuronal variability) and their correlation in bipolar patients (n = 40) versus healthy controls (n = 40), in the PACC and in its connections in different frequency bands (standard: 0.01-0.10 Hz; Slow-5: 0.01-0.027 Hz; Slow-4: 0.027-0.073 Hz). Finally, we studied the correlations between FC alterations and clinical-neuropsychological parameters and we explored whether subgroups of patients in different phases of the illness present different patterns of FC abnormalities. We found in BD decreased FC (especially in Slow-5) from the PACC to other regions located predominantly in the posterior DMN (such as the posterior cingulate cortex (PCC) and inferior temporal gyrus) and in the SN (such as the supragenual anterior cingulate cortex and ventrolateral prefrontal cortex). Second, we found in BD a decoupling between PACC-based FC and variability in the various target regions (without alteration in variability itself). Finally, in our subgroups explorative analysis, we found a decrease in FC between the PACC and supragenual ACC (in depressive phase) and between the PACC and PCC (in manic phase). These findings suggest that in BD the communication, that is, information transfer, between the different cortical midline regions within the cingulate gyrus does not seem to work properly. This may result in dysbalance between different resting state networks like the DMN and SN. A deficit in the anterior DMN-SN connectivity

  2. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia.

    Science.gov (United States)

    Reid, Meredith A; Salibi, Nouha; White, David M; Gawne, Timothy J; Denney, Thomas S; Lahti, Adrienne C

    2018-01-29

    Recent magnetic resonance spectroscopy (MRS) studies suggest that abnormalities of the glutamatergic system in schizophrenia may be dependent on illness stage, medication status, and symptomatology. Glutamatergic metabolites appear to be elevated in the prodromal and early stages of schizophrenia but unchanged or reduced below normal in chronic, medicated patients. However, few of these studies have measured metabolites with high-field 7T MR scanners, which offer higher signal-to-noise ratio and better spectral resolution than 3T scanners and facilitate separation of glutamate and glutamine into distinct signals. In this study, we examined glutamate and other metabolites in the dorsal anterior cingulate cortex (ACC) of first-episode schizophrenia patients. Glutamate and N-acetylaspartate (NAA) were significantly lower in schizophrenia patients vs controls. No differences were observed in levels of glutamine, GABA, or other metabolites. In schizophrenia patients but not controls, GABA was negatively correlated with the total score on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) as well as the immediate memory and language subscales. Our findings suggest that glutamate and NAA reductions in the ACC may be present early in the illness, but additional large-scale studies are needed to confirm these results as well as longitudinal studies to determine the effect of illness progression and treatment. The correlation between GABA and cognitive function suggests that MRS may be an important technique for investigating the neurobiology underlying cognitive deficits in schizophrenia. © The Author(s) 2018. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Disrupted functional connectivity of the anterior cingulate cortex in cirrhotic patients without overt hepatic encephalopathy: a resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Long Jiang Zhang

    Full Text Available BACKGROUND: To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC in patients with cirrhosis without overt hepatic encephalopathy (HE using resting state functional MRI. METHODOLOGY/PRINCIPAL FINDINGS: Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE and 40 cirrhotic patients without MHE (non-HE, and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST] scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC, bilateral middle cingulate cortex (MCC, bilateral superior temporal gyri (STG/middle temporal gyri (MTG, bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients. CONCLUSIONS

  4. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    Science.gov (United States)

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  5. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood.

    Science.gov (United States)

    Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao

    2017-10-03

    Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Role for the Ventral Posterior Medial/Posterior Lateral Thalamus and Anterior Cingulate Cortex in Affective/Motivation Pain Induced by Varicella Zoster Virus

    Directory of Open Access Journals (Sweden)

    Phillip R. Kramer

    2017-10-01

    Full Text Available Varicella zoster virus (VZV infects the face and can result in chronic, debilitating pain. The mechanism for this pain is unknown and current treatment is often not effective, thus investigations into the pain pathway become vital. Pain itself is multidimensional, consisting of sensory and affective experiences. One of the primary brain substrates for transmitting sensory signals in the face is the ventral posterior medial/posterior lateral thalamus (VPM/VPL. In addition, the anterior cingulate cortex (ACC has been shown to be vital in the affective experience of pain, so investigating both of these areas in freely behaving animals was completed to address the role of the brain in VZV-induced pain. Our lab has developed a place escape avoidance paradigm (PEAP to measure VZV-induced affective pain in the orofacial region of the rat. Using this assay as a measure of the affective pain experience a significant response was observed after VZV injection into the whisker pad and after VZV infusion into the trigeminal ganglion. Local field potentials (LFPs are the summed electrical current from a group of neurons. LFP in both the VPM/VPL and ACC was attenuated in VZV injected rats after inhibition of neuronal activity. This inhibition of VPM/VPL neurons was accomplished using a designer receptor exclusively activated by a designer drug (DREADD. Immunostaining showed that cells within the VPM/VPL expressed thalamic glutamatergic vesicle transporter-2, NeuN and DREADD suggesting inhibition occurred primarily in excitable neurons. From these results we conclude: (1 that VZV associated pain does not involve a mechanism exclusive to the peripheral nerve terminals, and (2 can be controlled, in part, by excitatory neurons within the VPM/VPL that potentially modulate the affective experience by altering activity in the ACC.

  7. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    Science.gov (United States)

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (pchronic pain at T2 (p'schronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals.

    Science.gov (United States)

    Fornito, Alex; Yung, Alison R; Wood, Stephen J; Phillips, Lisa J; Nelson, Barnaby; Cotton, Sue; Velakoulis, Dennis; McGorry, Patrick D; Pantelis, Christos; Yücel, Murat

    2008-11-01

    Abnormalities of the anterior cingulate cortex (ACC) are frequently implicated in the pathophysiology of psychotic disorders, but whether such changes are apparent before psychosis onset remains unclear. In this study, we characterized prepsychotic ACC abnormalities in a sample of individuals at ultra-high-risk (UHR) for psychosis. Participants underwent baseline magnetic resonance imaging and were followed-up over 12-24 months to ascertain diagnostic outcomes. Baseline ACC morphometry was then compared between UHR individuals who developed psychosis (UHR-P; n = 35), those who did not (UHR-NP; n = 35), and healthy control subjects (n = 33). Relative to control subjects, UHR-P individuals displayed bilateral thinning of a rostral paralimbic ACC region that was negatively correlated with negative symptoms, whereas UHR-NP individuals displayed a relative thickening of dorsal and rostral limbic areas that was correlated with anxiety ratings. Baseline ACC differences between the two UHR groups predicted time to psychosis onset, independently of symptomatology. Subdiagnostic comparisons revealed that changes in the UHR-P group were driven by individuals subsequently diagnosed with a schizophrenia spectrum psychosis. These findings indicate that anatomic abnormalities of the ACC precede psychosis onset and that baseline ACC differences distinguish between UHR individuals who do and do not subsequently develop frank psychosis. They also indicate that prepsychotic changes are relatively specific to individuals who develop a schizophrenia spectrum disorder, suggesting they may represent a diagnostically specific risk marker.

  9. Anterior insula activation during inhibition to smoking cues is associated with ability to maintain tobacco abstinence

    Directory of Open Access Journals (Sweden)

    Jodi M. Gilman

    2018-06-01

    Full Text Available Relapse to smoking after initial abstinence is a major clinical challenge with significant public health consequences. At the brain and behavioral level, those who relapse to tobacco smoking have both greater cue-reactivity and lower inhibitory control than those who remain abstinent. Little is known about neural activation during inhibitory control tasks in the presence of drug-related cues. In the current study, tobacco smokers (SMK; n = 22 and non-smoking controls (CON; n = 19 completed a Go/NoGo task involving smoking cues during a functional magnetic resonance imaging (fMRI scan. Following the scan session, smokers were required to quit smoking, and maintenance of abstinence was evaluated as part of a 12-week smoking cessation trial. We evaluated pre-cessation brain activity during NoGo trials in smokers who were versus were not able to quit smoking. We then compared fMRI and inhibitory control measures between smokers and non-smokers. We did not find differences between SMK and CON in performance or activation to smoking or neutral cues. However, compared to SMK who relapsed, SMK who attained biochemically-validated abstinence at the end of the smoking cessation trial had greater neural activation in the anterior insula during NoGo trials specifically with smoking-related cues. Results indicate that within SMK, decreased inhibitory control activation during direct exposure to drug-related stimuli may be a marker of difficulty quitting and relapse vulnerability. Keywords: Smoking cessation, Tobacco, fMRI, Insula, Cue, Relapse, Anterior cingulate cortex, ACC

  10. Medial cortex activity, self-reflection and depression.

    Science.gov (United States)

    Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael

    2009-12-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so.

  11. Default-mode-like network activation in awake rodents.

    Directory of Open Access Journals (Sweden)

    Jaymin Upadhyay

    Full Text Available During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN, an intrinsic central nervous system (CNS network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain. However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess 'DMN-like' functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8. At Day 8, significant (p<0.05 functional connectivity was observed amongst structures such as the anterior cingulate (seed region, retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2, functional connectivity was only detected (p<0.05 amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region, posterior hypothalamic area, amygdala and parabracial nucleus. In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = -0.65, p = 0.0004 was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks.

  12. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    Science.gov (United States)

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-03

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion.

  13. Inhibition of the cAMP/PKA/CREB Pathway Contributes to the Analgesic Effects of Electroacupuncture in the Anterior Cingulate Cortex in a Rat Pain Memory Model.

    Science.gov (United States)

    Shao, Xiao-Mei; Sun, Jing; Jiang, Yong-Liang; Liu, Bo-Yi; Shen, Zui; Fang, Fang; Du, Jun-Ying; Wu, Yuan-Yuan; Wang, Jia-Ling; Fang, Jian-Qiao

    2016-01-01

    Pain memory is considered as endopathic factor underlying stubborn chronic pain. Our previous study demonstrated that electroacupuncture (EA) can alleviate retrieval of pain memory. This study was designed to observe the different effects between EA and indomethacin (a kind of nonsteroid anti-inflammatory drugs, NSAIDs) in a rat pain memory model. To explore the critical role of protein kinase A (PKA) in pain memory, a PKA inhibitor was microinjected into anterior cingulate cortex (ACC) in model rats. We further investigated the roles of the cyclic adenosine monophosphate (cAMP), PKA, cAMP response element-binding protein (CREB), and cAMP/PKA/CREB pathway in pain memory to explore the potential molecular mechanism. The results showed that EA alleviates the retrieval of pain memory while indomethacin failed. Intra-ACC microinjection of a PKA inhibitor blocked the occurrence of pain memory. EA reduced the activation of cAMP, PKA, and CREB and the coexpression levels of cAMP/PKA and PKA/CREB in the ACC of pain memory model rats, but indomethacin failed. The present findings identified a critical role of PKA in ACC in retrieval of pain memory. We propose that the proper mechanism of EA on pain memory is possibly due to the partial inhibition of cAMP/PKA/CREB signaling pathway by EA.

  14. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  15. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    Science.gov (United States)

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights

  16. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis.

    Directory of Open Access Journals (Sweden)

    Gabriela Cruz

    Full Text Available Time-based prospective memory (PM, remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention plus target checking (intermittent time checks. The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks.24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis.Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC, showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se.The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task and anticipatory/decision making processing associated with clock-checks.

  17. Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2011-01-01

    Full Text Available Abstract Background Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation. However, it is still poorly understood whether gene expression in brain regions other than the amygdala/hippocampus is required for the consolidation of fear memory; however, several brain regions are known to play modulatory roles in fear memory formation. Results To further understand the mechanisms underlying the formation of fear memory, we first identified brain regions where gene expression is activated after learning inhibitory avoidance (IA by analyzing the expression of the immediately early genes c-fos and Arc as markers. Similarly with previous findings, the induction of c-fos and Arc expression was observed in the amygdala and hippocampus. Interestingly, we also observed the induction of c-fos and Arc expression in the medial prefrontal cortex (mPFC: prelimbic (PL and infralimbic (IL regions and Arc expression in the anterior cingulate cortex (ACC. We next examined the roles of these brain regions in the consolidation of IA memory. Consistent with previous findings, inhibiting protein synthesis in the hippocampus blocked the consolidation of IA memory. More importantly, inhibition in the mPFC or ACC also blocked the formation of IA memory. Conclusion Our observations indicated that the formation of IA memory requires gene expression in the ACC and mPFC as well as in the amygdala and hippocampus, suggesting essential roles of the ACC and mPFC in IA memory formation.

  18. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.

    Science.gov (United States)

    Hosking, Jay G; Cocker, Paul J; Winstanley, Catharine A

    2014-06-01

    Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.

  19. Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.

    Science.gov (United States)

    de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2017-01-01

    In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2  = 0.070) and p = 0.001 (β = - 0.264, η p 2  = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.

  20. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    Science.gov (United States)

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Neural activity predicts attitude change in cognitive dissonance.

    Science.gov (United States)

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  2. PARCELLATION OF THE CINGULATE CORTEX AT REST AND DURING TASKS: A META-ANALYTIC CLUSTERING AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Diana M.E. Torta

    2013-06-01

    Full Text Available Anatomical, morphological and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The experimental studies, which included two active tasks and a resting state protocol, were used to control the results obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by applying a meta-analytic clustering (MaC to papers retrieved from the BrainMap database. The MaC is a meta-analytic connectivity driven parcellation technique recently developed by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern of co-activations during active tasks. The MaC results indicated that the cingulate cortex can be parcellated into three clusters. These clusters covered different percentages of the cingulate parenchyma and had a different density of foci, with the first cluster being more densely connected. The control experiments showed different clusterization results, suggesting that the co-activations of the cingulate cortex are highly dependent on the task that is tested. Our results highlight the importance of the cingulate cortex as a hub, which modifies its pattern of co-activations depending on the task requests and on the level of task complexity. The neurobiological meaning of these results is discussed.

  3. Paclitaxel Causes Electrophysiological Changes in the Anterior Cingulate Cortex via Modulation of the γ-Aminobutyric Acid-ergic System.

    Science.gov (United States)

    Nashawi, Houda; Masocha, Willias; Edafiogho, Ivan O; Kombian, Samuel B

    The aim of this study was to elucidate any electrophysiological changes that may contribute to the development of neuropathic pain during treatment with the anticancer drug paclitaxel, particularly in the γ-aminobutyric acid (GABA) system. One hundred and eight Sprague-Dawley rats were used (untreated control: 43; vehicle-treated: 21, and paclitaxel-treated: 44). Paclitaxel (8 mg/kg) was administered intraperitoneally on 2 alternate days to induce mechanical allodynia. The rats were sacrificed 7 days after treatment to obtain slices of the anterior cingulate cortex (ACC), a brain region involved in the central processing of pain. Field excitatory postsynaptic potentials (fEPSPs) were recorded in layer II/III of ACC slices, and stimulus-response curves were constructed. The observed effects were pharmacologically characterized by bath application of GABA and appropriate drugs to the slices. The paclitaxel-treated rats developed mechanical allodynia (i.e. reduced withdrawal threshold to mechanical stimuli). Slices from paclitaxel-treated rats produced a significantly higher maximal response (Emax) than those from untreated rats (p GABA (0.4 µM) reversed this effect and returned the excitability to a level similar to control. Pretreatment of the slices with the GABAB receptor blocker CGP 55845 (50 µM) increased Emax in slices from untreated rats (p GABA deficit in paclitaxel-treated rats compared to untreated ones. Such a deficit could contribute to the pathophysiology of paclitaxel-induced neuropathic pain (PINP). Thus, the GABAergic system might be a potential therapeutic target for managing PINP. © 2016 S. Karger AG, Basel.

  4. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats.

    Science.gov (United States)

    Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J

    2002-08-01

    The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.

  5. Association of a History of Child Abuse With Impaired Myelination in the Anterior Cingulate Cortex: Convergent Epigenetic, Transcriptional, and Morphological Evidence.

    Science.gov (United States)

    Lutz, Pierre-Eric; Tanti, Arnaud; Gasecka, Alicja; Barnett-Burns, Sarah; Kim, John J; Zhou, Yi; Chen, Gang G; Wakid, Marina; Shaw, Meghan; Almeida, Daniel; Chay, Marc-Aurele; Yang, Jennie; Larivière, Vanessa; M'Boutchou, Marie-Noël; van Kempen, Léon C; Yerko, Volodymyr; Prud'homme, Josée; Davoli, Maria Antonietta; Vaillancourt, Kathryn; Théroux, Jean-François; Bramoullé, Alexandre; Zhang, Tie-Yuan; Meaney, Michael J; Ernst, Carl; Côté, Daniel; Mechawar, Naguib; Turecki, Gustavo

    2017-12-01

    Child abuse has devastating and long-lasting consequences, considerably increasing the lifetime risk of negative mental health outcomes such as depression and suicide. Yet the neurobiological processes underlying this heightened vulnerability remain poorly understood. The authors investigated the hypothesis that epigenetic, transcriptomic, and cellular adaptations may occur in the anterior cingulate cortex as a function of child abuse. Postmortem brain samples from human subjects (N=78) and from a rodent model of the impact of early-life environment (N=24) were analyzed. The human samples were from depressed individuals who died by suicide, with (N=27) or without (N=25) a history of severe child abuse, as well as from psychiatrically healthy control subjects (N=26). Genome-wide DNA methylation and gene expression were investigated using reduced representation bisulfite sequencing and RNA sequencing, respectively. Cell type-specific validation of differentially methylated loci was performed after fluorescence-activated cell sorting of oligodendrocyte and neuronal nuclei. Differential gene expression was validated using NanoString technology. Finally, oligodendrocytes and myelinated axons were analyzed using stereology and coherent anti-Stokes Raman scattering microscopy. A history of child abuse was associated with cell type-specific changes in DNA methylation of oligodendrocyte genes and a global impairment of the myelin-related transcriptional program. These effects were absent in the depressed suicide completers with no history of child abuse, and they were strongly correlated with myelin gene expression changes observed in the animal model. Furthermore, a selective and significant reduction in the thickness of myelin sheaths around small-diameter axons was observed in individuals with history of child abuse. The results suggest that child abuse, in part through epigenetic reprogramming of oligodendrocytes, may lastingly disrupt cortical myelination, a

  6. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type.

    Science.gov (United States)

    Rajmohan, Ravi; Anderson, Ronald C; Fang, Dan; Meyer, Austin G; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P Hemachandra; O'Boyle, Michael W

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  7. Attenuation of pCREB and Egr1 expression in the insular and anterior cingulate cortices associated with enhancement of CFA-evoked mechanical hypersensitivity after repeated forced swim stress.

    Science.gov (United States)

    Imbe, Hiroki; Kimura, Akihisa

    2017-09-01

    The perception and response to pain are severely impacted by exposure to stressors. In some animal models, stress increases pain sensitivity, which is termed stress-induced hyperalgesia (SIH). The insular cortex (IC) and anterior cingulate cortex (ACC), which are typically activated by noxious stimuli, affect pain perception through the descending pain modulatory system. In the present study, we examined the expression of phospho-cAMP response element-binding protein (pCREB) and early growth response 1 (Egr1) in the IC and ACC at 3h (the acute phase of peripheral tissue inflammation) after complete Freund's adjuvant (CFA) injection in naïve rats and rats preconditioned with forced swim stress (FS) to clarify the effect of FS, a stressor, on cortical cell activities in the rats showing SIH induced by FS. The CFA injection into the hindpaw induced mechanical hypersensitivity and increased the expression of the pCREB and Egr1 in the IC and ACC at 3h after the injection. FS (day 1, 10min; days 2-3, 20min) prior to the CFA injection enhanced the CFA-induced mechanical hypersensitivity and attenuated the increase in the expression of pCREB and Egr1 in the IC and ACC. These findings suggested that FS modulates the CFA injection-induced neuroplasticity in the IC and ACC to enhance the mechanical hypersensitivity. These findings are thought to signify stressor-induced dysfunction of the descending pain modulatory system. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Neural activity associated with self-reflection.

    Science.gov (United States)

    Herwig, Uwe; Kaffenberger, Tina; Schell, Caroline; Jäncke, Lutz; Brühl, Annette B

    2012-05-24

    Self-referential cognitions are important for self-monitoring and self-regulation. Previous studies have addressed the neural correlates of self-referential processes in response to or related to external stimuli. We here investigated brain activity associated with a short, exclusively mental process of self-reflection in the absence of external stimuli or behavioural requirements. Healthy subjects reflected either on themselves, a personally known or an unknown person during functional magnetic resonance imaging (fMRI). The reflection period was initialized by a cue and followed by photographs of the respective persons (perception of pictures of oneself or the other person). Self-reflection, compared with reflecting on the other persons and to a major part also compared with perceiving photographs of one-self, was associated with more prominent dorsomedial and lateral prefrontal, insular, anterior and posterior cingulate activations. Whereas some of these areas showed activity in the "other"-conditions as well, self-selective characteristics were revealed in right dorsolateral prefrontal and posterior cingulate cortex for self-reflection; in anterior cingulate cortex for self-perception and in the left inferior parietal lobe for self-reflection and -perception. Altogether, cingulate, medial and lateral prefrontal, insular and inferior parietal regions show relevance for self-related cognitions, with in part self-specificity in terms of comparison with the known-, unknown- and perception-conditions. Notably, the results are obtained here without behavioural response supporting the reliability of this methodological approach of applying a solely mental intervention. We suggest considering the reported structures when investigating psychopathologically affected self-related processing.

  9. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  10. Women with multiple chemical sensitivity have increased harm avoidance and reduced 5-HT(1A receptor binding potential in the anterior cingulate and amygdala.

    Directory of Open Access Journals (Sweden)

    Lena Hillert

    Full Text Available Multiple chemical sensitivity (MCS is a common condition, characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the underlying mechanisms are unknown. Contrary to the expectations it was recently found that persons with MCS activate the odor-processing brain regions less than controls, while their activation of the anterior cingulate cortex (ACC is increased. The present follow-up study was designed to test the hypotheses that MCS subjects have increased harm avoidance and deviations in the serotonin system, which could render them intolerant to environmental odors. Twelve MCS and 11 control subjects, age 22-44, all working or studying females, were included in a PET study where 5-HT(1A receptor binding potential (BP was assessed after bolus injection of [(11C]WAY100635. Psychological profiles were assessed by the Temperament and Character Inventory and the Swedish universities Scales of Personality. All MCS and 12 control subjects were also tested for emotional startle modulation in an acoustic startle test. MCS subjects exhibited significantly increased harm avoidance, and anxiety compared to controls. They also had a reduced 5-HT(1A receptor BP in amygdala (p = 0.029, ACC (p = 0.005 (planned comparisons, significance level 0.05, and insular cortex (p = 0.003; significance level p<0.005 with Bonferroni correction, and showed an inverse correlation between degree of anxiety and the BP in the amygdala (planned comparison. No group by emotional category difference was found in the startle test. Increased harm avoidance and the observed changes in the 5-HT(1A receptor BP in the regions processing harm avoidance provides a plausible pathophysiological ground for the symptoms described in MCS, and yields valuable information for our general understanding of idiopathic environmental intolerances.

  11. Dorsal anterior cingulate cortex responses to repeated social evaluative feedback in young women with and without past history of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Katarina eDedovic

    2016-03-01

    Full Text Available The dorsal anterior cingulate cortex (dACC is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD, as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels. Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the

  12. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  13. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure.

    Science.gov (United States)

    Migliorini, Robyn; Moore, Eileen M; Glass, Leila; Infante, M Alejandra; Tapert, Susan F; Jones, Kenneth Lyons; Mattson, Sarah N; Riley, Edward P

    2015-10-01

    Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Altered SPECT 123I iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2016-02-01

    Full Text Available Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN in children. The purpose of this study was to examine cortical GABA(A-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single photon emission computed tomography (SPECT measurements using 123I iomazenil, which binds to GABA(A-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26 and the short form of the Profile of Mood States (POMS. Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil binding activity in cortical regions of interest (ROIs and psychometric profiles, and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil binding activity in the anterior posterior cingulate cortex (ACC. Higher POMS subscale scores were significantly associated with lower iomazenil binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC. Depression-Dejection, and Confusion POMS subscale scores, and total POMS score, showed interaction effects with brain regions in iomazenil binding activity. Decreased binding in the ACC and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in children

  15. Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining.

    Science.gov (United States)

    Gittins, Rebecca; Harrison, Paul J

    2004-03-15

    There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.

  16. Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children.

    Science.gov (United States)

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif

    2011-08-01

    The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats.

    Science.gov (United States)

    Kokane, Saurabh S; Gong, Kerui; Jin, Jianhui; Lin, Qing

    2017-09-01

    Ketamine is a commonly used anesthetic among pediatric patients due to its high efficacy. However, it has been demonstrated by several preclinical studies that, widespread accelerated programmed death of neurons (neuroapoptosis) occurs due to prolonged or repeated exposure to ketamine specifically in the neonatal brain. Therefore, an emphasis on understanding the molecular mechanisms underlying this selective vulnerability of the neonatal brain to ketamine-induced neuroapoptosis becomes important in order to identify potential therapeutic targets, which would help prevent or at least ameliorate this neuroapoptosis. In this study, we demonstrated that repeated ketamine administration (6 injections of 20mg/kg dose given over 12h time period) in neonatal (postnatal day 7; PND 7) Sprague-Dawley rats induced a progressive increase in N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) in the neurons of the anterior cingulate cortex (ACC) for up to 6h after the last ketamine dose. Specifically, we observed that the increased EPSCs were largely mediated by GluN2B-containing NMDARs in the neurons of the ACC. Along with increased synaptic transmission, there was also a significant increase in the expression of the GluN2B-containing NMDARs as well. Taken together, these results showed that after repeated exposure to ketamine, the synaptic transmission mediated by GluN2B-containing NMDARs was significantly increased in the neonatal brain. This was significant as it showed for the first time that ketamine had subunit-specific effects on GluN2B-containing NMDARs, potentially implicating the involvement of these subunits in the increased vulnerability of immature neurons of the neonatal brain to ketamine-induced neuroapoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type

    Directory of Open Access Journals (Sweden)

    Ravi Rajmohan

    2017-05-01

    Full Text Available Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT through the use of the sex determination test (SDT. In the current study, four (1 female, 3 males CDDAT and nine (4 females, 5 males age-matched neurotypicals (NT completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA and anterior cingulate cortex (ACC. DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC, but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  19. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    International Nuclear Information System (INIS)

    Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, D.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-01-01

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  20. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, d.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  1. Conflict-related anterior cingulate functional connectivity is associated with past suicidal ideation and behavior in recent-onset schizophrenia.

    Science.gov (United States)

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy; Carter, Cameron S

    2015-06-01

    Suicide is highly prevalent in schizophrenia (SZ), yet it remains unclear how suicide risk factors such as past suicidal ideation or behavior relate to brain function. Circuits modulated by the prefrontal cortex (PFC) are altered in SZ, including in dorsal anterior cingulate cortex (dACC) during conflict-monitoring (an important component of cognitive control), and dACC changes are observed in post-mortem studies of heterogeneous suicide victims. We tested whether conflict-related dACC functional connectivity is associated with past suicidal ideation and behavior in SZ. 32 patients with recent-onset of DSM-IV-TR-defined SZ were evaluated with the Columbia Suicide Severity Rating Scale and functional MRI during cognitive control (AX-CPT) task performance. Group-level regression models relating past history of suicidal ideation or behavior to dACC-seeded functional connectivity during conflict-monitoring controlled for severity of depression, psychosis and impulsivity. Past suicidal ideation was associated with relatively higher functional connectivity of the dACC with the precuneus during conflict-monitoring. Intensity of worst-point past suicidal ideation was associated with relatively higher dACC functional connectivity in medial parietal lobe and striato-thalamic nuclei. In contrast, among those with past suicidal ideation (n = 17), past suicidal behavior was associated with lower conflict-related dACC connectivity with multiple lateral and medial PFC regions, parietal and temporal cortical regions. This study provides unique evidence that recent-onset schizophrenia patients with past suicidal ideation or behavior show altered dACC-based circuit function during conflict-monitoring. Suicidal ideation and suicidal behavior have divergent patterns of associated dACC functional connectivity, suggesting a differing pattern of conflict-related brain dysfunction with these two distinct features of suicide phenomenology. Published by Elsevier Ltd.

  2. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals

    Directory of Open Access Journals (Sweden)

    Yasmin Zakiniaeiz

    2017-01-01

    Full Text Available Alcohol dependence is a chronic relapsing illness. Alcohol and stress cues have consistently been shown to increase craving and relapse risk in recovering alcohol dependent (AUD patients. However, differences in functional connectivity in response to these cues have not been studied using data-driven approaches. Here, voxel-wise connectivity is used in a whole-brain investigation of functional connectivity differences associated with alcohol and stress cues and to examine whether these differences are related to subsequent relapse. In Study 1, 45, 4- to 8-week abstinent, recovering AUD patients underwent functional magnetic resonance imaging during individualized imagery of alcohol, stress, and neutral cues. Relapse measures were collected prospectively for 90 days post-discharge from inpatient treatment. AUD patients showed blunted anterior (ACC, mid (MCC and posterior cingulate cortex (PCC, voxel-wise connectivity responses to stress compared to neutral cues and blunted PCC response to alcohol compared to neutral cues. Using Cox proportional hazard regression, weaker connectivity in ACC and MCC during neutral exposure was associated with longer time to relapse (better recovery outcome. Similarly, greater connectivity in PCC during alcohol-cue compared to stress cue was associated with longer time to relapse. In Study 2, a sub-group of 30 AUD patients were demographically-matched to 30 healthy control (HC participants for group comparisons. AUD compared to HC participants showed reduced cingulate connectivity during alcohol and stress cues. Using novel data-driven approaches, the cingulate cortex emerged as a key region in the disruption of functional connectivity during alcohol and stress-cue processing in AUD patients and as a marker of subsequent alcohol relapse.

  3. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.

    Science.gov (United States)

    Umemoto, Akina; Inzlicht, Michael; Holroyd, Clay B

    2018-06-14

    Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2hours in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels foster rapid improvements in task performance, and a later phase in which high control levels were necessary to maintain stable task performance, perhaps counteracting waning reward valuation. Copyright © 2018. Published by Elsevier Ltd.

  4. Altered Connectivity of the Anterior Cingulate and the Posterior Superior Temporal Gyrus in a Longitudinal Study of Later-life Depression.

    Science.gov (United States)

    Harada, Kenichiro; Ikuta, Toshikazu; Nakashima, Mami; Watanuki, Toshio; Hirotsu, Masako; Matsubara, Toshio; Yamagata, Hirotaka; Watanabe, Yoshifumi; Matsuo, Koji

    2018-01-01

    Patients with later-life depression (LLD) show abnormal gray matter (GM) volume, white matter (WM) integrity and functional connectivity in the anterior cingulate cortex (ACC) and posterior superior temporal gyrus (pSTG), but it remains unclear whether these abnormalities persist over time. We examined whether structural and functional abnormalities in these two regions are present within the same subjects during depressed vs. remitted phases. Sixteen patients with LLD and 30 healthy subjects were studied over a period of 1.5 years. Brain images obtained with a 3-Tesla magnetic resonance imaging (MRI) system were analyzed by voxel-based morphometry of the GM volume, and diffusion tensor imaging (DTI) and resting-state functional MRI were used to assess ACC-pSTG connectivity. Patients with LLD in the depressed and remitted phases showed significantly smaller GM volume in the left ACC and left pSTG than healthy subjects. Both patients with LLD in the depressed and remitted phases had significantly higher diffusivities in the WM tract of the left ACC-pSTG than healthy subjects. Remitted patients with LLD showed lower functional ACC-pSTG connectivity compared to healthy subjects. No difference was found in the two regions between depressed and remitted patients in GM volume, structural or functional connectivity. Functional ACC-pSTG connectivity was positively correlated with lower global function during remission. Our preliminary data show that structural and functional abnormalities of the ACC and pSTG occur during LLD remission. Our findings tentatively reveal the brain pathophysiology involved in LLD and may aid in developing neuroanatomical biomarkers for this condition.

  5. Abnormal Spontaneous Neural Activity in Obsessive-Compulsive Disorder: A Resting-State Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Ping, Li; Su-Fang, Li; Hai-Ying, Han; Zhang-Ye, Dong; Jia, Luo; Zhi-Hua, Guo; Hong-Fang, Xiong; Yu-Feng, Zang; Zhan-Jiang, Li

    2013-01-01

    Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.

  6. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients.

    Science.gov (United States)

    Liu, Qi; Zhang, Peihai; Pan, Junjie; Li, Zhengjie; Liu, Jixin; Li, Guangsen; Qin, Wei; You, Yaodong; Yu, Xujun; Sun, Jinbo; Dong, Minghao; Gong, Qiyong; Guo, Jun; Chang, Degui

    2015-01-01

    Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM) treatment for erectile dysfunction (ED). This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS) were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF) was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC), and middle cingulate cortex (MCC). Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP), the patients with kidney-yang deficiency pattern (KDP) showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P emotion-related regions, including prefrontal cortex and cingulated cortex.

  7. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Directory of Open Access Journals (Sweden)

    Chen Tao

    2009-12-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i regular spiking (RS cells (24.7%, intrinsic bursting (IB cells (30.9%, and intermediate (IM cells (44.4%. In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5% and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner.

  8. Altered Connectivity of the Anterior Cingulate and the Posterior Superior Temporal Gyrus in a Longitudinal Study of Later-life Depression

    Directory of Open Access Journals (Sweden)

    Kenichiro Harada

    2018-02-01

    Full Text Available Patients with later-life depression (LLD show abnormal gray matter (GM volume, white matter (WM integrity and functional connectivity in the anterior cingulate cortex (ACC and posterior superior temporal gyrus (pSTG, but it remains unclear whether these abnormalities persist over time. We examined whether structural and functional abnormalities in these two regions are present within the same subjects during depressed vs. remitted phases. Sixteen patients with LLD and 30 healthy subjects were studied over a period of 1.5 years. Brain images obtained with a 3-Tesla magnetic resonance imaging (MRI system were analyzed by voxel-based morphometry of the GM volume, and diffusion tensor imaging (DTI and resting-state functional MRI were used to assess ACC–pSTG connectivity. Patients with LLD in the depressed and remitted phases showed significantly smaller GM volume in the left ACC and left pSTG than healthy subjects. Both patients with LLD in the depressed and remitted phases had significantly higher diffusivities in the WM tract of the left ACC–pSTG than healthy subjects. Remitted patients with LLD showed lower functional ACC–pSTG connectivity compared to healthy subjects. No difference was found in the two regions between depressed and remitted patients in GM volume, structural or functional connectivity. Functional ACC–pSTG connectivity was positively correlated with lower global function during remission. Our preliminary data show that structural and functional abnormalities of the ACC and pSTG occur during LLD remission. Our findings tentatively reveal the brain pathophysiology involved in LLD and may aid in developing neuroanatomical biomarkers for this condition.

  9. The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost-benefit decision making in rats.

    Science.gov (United States)

    Wang, Shuai; Hu, Shan-Hu; Shi, Yi; Li, Bao-Ming

    2017-03-01

    It has been shown that the anterior cingulate cortex (ACC) and its dopamine system are crucial for decision making that requires physical/emotional effort, but not for all forms of cost-benefit decision making. Previous studies had mostly employed behavioral tasks with two competing cost-reward options that were preset by the experimenters. However, few studies have been conducted using scenarios in which the subjects have full control over the energy/time expenditure required to obtain a proportional reward. Here, we assessed the roles of the ACC and its dopamine system in cost-benefit decision making by utilizing a "do more get more" (DMGM) task and a time-reward trade-off (TRTO) task, wherein the animals were able to self-determine how much effort or time to expend at a nosepoke operandum for a proportional reward. Our results showed that (1) ACC inactivation severely impaired DMGM task performance, with a reduction in the rate of correct responses and a decrease in the effort expended, but did not affect the TRTO task; and (2) blocking ACC D2 receptors had no impact on DMGM task performance in the baseline cost-benefit scenario, but it significantly reduced the attempts to invest increased effort for a large reward when the benefit-cost ratio was reduced by half. In contrast, blocking ACC D1 receptors had no effect on DMGM task performance. These findings suggest that the ACC is required for self-paced effort-based but not for time-reward trade-off decision making. Furthermore, ACC dopamine D2 but not D1 receptors are involved in DMGM decision making.

  10. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Vogt, B.A.; Gabriel, M.; Vogt, L.J.; Poremba, A.; Jensen, E.L.; Kubota, Y.; Kang, E.

    1991-01-01

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  11. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  12. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Science.gov (United States)

    Sequeira, Adolfo; Morgan, Ling; Walsh, David M; Cartagena, Preston M; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda; Myers, Richard M; Jones, Edward G; Bunney, William E; Vawter, Marquis P

    2012-01-01

    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  13. Abnormal Functional Connectivity of Anterior Cingulate Cortex in Patients With Primary Insomnia: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Chao-Qun Yan

    2018-06-01

    Full Text Available Background: Recently, there have been many reports about abnormalities regarding structural and functional brain connectivity of the patients with primary insomnia. However, the alterations in functional interaction between the left and right cerebral hemispheres have not been well understood. The resting-state fMRI approach, which reveals spontaneous neural fluctuations in blood-oxygen-level-dependent signals, offers a method to quantify functional interactions between the hemispheres directly.Methods: We compared interhemispheric functional connectivity (FC between 26 patients with primary insomnia (48.85 ± 12.02 years and 28 healthy controls (49.07 ± 11.81 years using a voxel-mirrored homotopic connectivity (VMHC method. The patients with primary insomnia and healthy controls were matched for age, gender, and education. Brain regions, which had significant differences in VMHC maps between the primary insomnia and healthy control groups, were defined as seed region of interests. A seed-based approach was further used to reveal significant differences of FC between the seeds and the whole contralateral hemisphere.Results: The patients with primary insomnia showed higher VMHC than healthy controls in the anterior cingulate cortex (ACC bilaterally. The seed-based analyses demonstrated increased FC between the left ACC and right thalamus (and the right ACC and left orbitofrontal cortex in patients with primary insomnia, revealing abnormal connectivity between the two cerebral hemispheres. The VMHC values in the ACC were positively correlated with the time to fall asleep and Self-Rating Depression Scale scores (SDS.Conclusions: The results demonstrate that there is abnormal interhemispheric resting-state FC in the brain regions of patients with primary insomnia, especially in the ACC. Our finding demonstrates valid evidence that the ACC is an area of interest in the neurobiology of primary insomnia.

  14. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja

    2011-01-01

    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity...... in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self...

  15. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    Directory of Open Access Journals (Sweden)

    Laura eChaddock-Heyman

    2013-03-01

    Full Text Available This study used functional magnetic resonance imaging (fMRI to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ minutes of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control.

  16. Anterior cingulate cortex is crucial for contra- but not ipsi-lateral electro-acupuncture in the formalin-induced inflammatory pain model of rats

    Directory of Open Access Journals (Sweden)

    Xing Guo-Gang

    2011-08-01

    Full Text Available Abstract Acupuncture and electro-acupuncture (EA are now widely used to treat disorders like pain. We and others have shown previously that current frequency, intensity and treatment duration all significantly influence the anti-nociceptive effects of EA. There is evidence that stimulating sites also affect the antinociception, with EA applied ipsilaterally to the pain site being more effective under some pain states but contralateral EA under others. It was recently reported that local adenosine A1 receptors were responsible for ipsilateral acupuncture, but what mechanisms specifically mediate the anti-nociceptive effects of contralateral acupuncture or EA remains unclear. In the present study, we applied 100 Hz EA on the ipsi- or contra-lateral side of rats with inflammatory pain induced by intra-plantar injection of formalin, and reported distinct anti-nociceptive effects and mechanisms between them. Both ipsi- and contra-lateral EA reduced the paw lifting time in the second phase of the formalin test and attenuated formalin-induced conditioned place aversion. Contralateral EA had an additional effect of reducing paw licking time, suggesting a supraspinal mechanism. Lesions of rostral anterior cingulate cortex (ACC completely abolished the anti-nociceptive effects of contra- but not ipsi-lateral EA. These findings were not lateralized effects, since injection of formalin into the left or right hind paws produced similar results. Overall, these results demonstrated distinct anti-nociceptive effects and mechanisms between different stimulating sides and implied the necessity of finding the best stimulating protocols for different pain states.

  17. The neural basis for novel semantic categorization.

    Science.gov (United States)

    Koenig, Phyllis; Smith, Edward E; Glosser, Guila; DeVita, Chris; Moore, Peachie; McMillan, Corey; Gee, Jim; Grossman, Murray

    2005-01-15

    We monitored regional cerebral activity with BOLD fMRI during acquisition of a novel semantic category and subsequent categorization of test stimuli by a rule-based strategy or a similarity-based strategy. We observed different patterns of activation in direct comparisons of rule- and similarity-based categorization. During rule-based category acquisition, subjects recruited anterior cingulate, thalamic, and parietal regions to support selective attention to perceptual features, and left inferior frontal cortex to helps maintain rules in working memory. Subsequent rule-based categorization revealed anterior cingulate and parietal activation while judging stimuli whose conformity with the rules was readily apparent, and left inferior frontal recruitment during judgments of stimuli whose conformity was less apparent. By comparison, similarity-based category acquisition showed recruitment of anterior prefrontal and posterior cingulate regions, presumably to support successful retrieval of previously encountered exemplars from long-term memory, and bilateral temporal-parietal activation for perceptual feature integration. Subsequent similarity-based categorization revealed temporal-parietal, posterior cingulate, and anterior prefrontal activation. These findings suggest that large-scale networks support relatively distinct categorization processes during the acquisition and judgment of semantic category knowledge.

  18. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2015-01-01

    Full Text Available Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM treatment for erectile dysfunction (ED. This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC, and middle cingulate cortex (MCC. Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP, the patients with kidney-yang deficiency pattern (KDP showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P<0.005. Conclusions. The ED patients with different TCM patterns showed different brain activities. The differences in cerebral activity between LSSDP and KDP were mainly in the emotion-related regions, including prefrontal cortex and cingulated cortex.

  19. Different activation of opercular and posterior cingulate cortex (PCC) in patients with complex regional pain syndrome (CRPS I) compared with healthy controls during perception of electrically induced pain: a functional MRI study.

    Science.gov (United States)

    Freund, Wolfgang; Wunderlich, Arthur P; Stuber, Gregor; Mayer, Florian; Steffen, Peter; Mentzel, Martin; Weber, Frank; Schmitz, Bernd

    2010-05-01

    Although the etiology of complex regional pain syndrome type 1 (CRPS 1) is still debated, many arguments favor central maladaptive changes in pain processing as an important causative factor. To look for the suspected alterations, 10 patients with CRPS affecting the left hand were explored with functional magnetic resonance imaging during graded electrical painful stimulation of both hands subsequently and compared with healthy participants. Activation of the anterior insula, posterior cingulate cortex (PCC), and caudate nucleus was seen in patients during painful stimulation. Compared with controls, CRPS patients had stronger activation of the PCC during painful stimulation of the symptomatic hand. The comparison of insular/opercular activation between controls and patients with CRPS I during painful stimulation showed stronger (posterior) opercular activation in controls than in patients. Stronger PCC activation during painful stimulation may be interpreted as a correlate of motor inhibition during painful stimuli different from controls. Also, the decreased opercular activation in CRPS patients shows less sensory-discriminative processing of painful stimuli.These results show that changed cerebral pain processing in CRPS patients is less sensory-discriminative but more motor inhibition during painful stimuli. These changes are not limited to the diseased side but show generalized alterations of cerebral pain processing in chronic pain patients.

  20. Cerebral activation associated with visually evoked sexual arousal in the limbic system: functional MR imaging

    International Nuclear Information System (INIS)

    Eun, Sung Jong; Kong, Gwang Woo; Kim, Hyung Joong; Seo, Jeong Jin; Kang, Heoung Keun; Cho, Ki Hyun; Yoon, Ka Hyun; Kim, Kyung Yo

    2004-01-01

    To identify the brain centers associated with visually evoked sexual arousal in the human brain, and to investigate the neural mechanism for sexual arousal using functional MRI (fMRI). A total of 20 sexually potent volunteers consisting of 10 males (mean age: 24) and 10 females (mean age: 23) underwent fMRI on a 1.5T MR scanner (GE Signa Horizon). The fMRI data were obtained from 7 slices (10 mm slice thickness) parallel to the AC-PC (anterior commissure and posterior commissure) line, giving a total of 511 MR images. The sexual stimulation consisted of a 1-minute rest with black screen, followed by a 4-minute stimulation by an erotic video film, and concluded with a 2-minute rest. The brain activation maps and their quantification were analyzed by the statistical parametric mapping (SPM 99) program. The brain activation regions associated with visual sexual arousal in the limbic system are the posterior cingulate gyrus, parahippocampal gyrus, hypothalamus, medial cingulate gyrus, thalamus, amygdala, anterior cingulate gyrus, insula, hippocampus, caudate nucleus, globus pallidus and putamen. Especially, the parahippocampal gyrus, cingulate gyrus, thalamus and hypothalamus were highly activated in comparison with other areas. The overall activities of the limbic lobe, diencephalon, and basal ganglia were 11.8%, 10.5%, and 3.4%, respectively. In the correlation test between brain activity and sexual arousal, the hypothalamus and thalamus showed positive correlation, but the other brain areas showed no correlation. The fMRI is useful to quantitatively evaluate the cerebral activation associated with visually evoked, sexual arousal in the human brain. This result may be helpful by providing clinically valuable information on sexual disorder in humans as well as by increasing the understanding of the neuroanatomical correlates of sexual arousal

  1. Cerebral activation associated with visually evoked sexual arousal in the limbic system: functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eun, Sung Jong; Kong, Gwang Woo; Kim, Hyung Joong; Seo, Jeong Jin; Kang, Heoung Keun; Cho, Ki Hyun; Yoon, Ka Hyun [School of Medicine, Chonnam National Univ., Kwangju (Korea, Republic of); Kim, Kyung Yo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-08-01

    To identify the brain centers associated with visually evoked sexual arousal in the human brain, and to investigate the neural mechanism for sexual arousal using functional MRI (fMRI). A total of 20 sexually potent volunteers consisting of 10 males (mean age: 24) and 10 females (mean age: 23) underwent fMRI on a 1.5T MR scanner (GE Signa Horizon). The fMRI data were obtained from 7 slices (10 mm slice thickness) parallel to the AC-PC (anterior commissure and posterior commissure) line, giving a total of 511 MR images. The sexual stimulation consisted of a 1-minute rest with black screen, followed by a 4-minute stimulation by an erotic video film, and concluded with a 2-minute rest. The brain activation maps and their quantification were analyzed by the statistical parametric mapping (SPM 99) program. The brain activation regions associated with visual sexual arousal in the limbic system are the posterior cingulate gyrus, parahippocampal gyrus, hypothalamus, medial cingulate gyrus, thalamus, amygdala, anterior cingulate gyrus, insula, hippocampus, caudate nucleus, globus pallidus and putamen. Especially, the parahippocampal gyrus, cingulate gyrus, thalamus and hypothalamus were highly activated in comparison with other areas. The overall activities of the limbic lobe, diencephalon, and basal ganglia were 11.8%, 10.5%, and 3.4%, respectively. In the correlation test between brain activity and sexual arousal, the hypothalamus and thalamus showed positive correlation, but the other brain areas showed no correlation. The fMRI is useful to quantitatively evaluate the cerebral activation associated with visually evoked, sexual arousal in the human brain. This result may be helpful by providing clinically valuable information on sexual disorder in humans as well as by increasing the understanding of the neuroanatomical correlates of sexual arousal.

  2. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    Victoria eHolec

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., courage. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to certain

  3. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms.

    Science.gov (United States)

    Müller-Vahl, Kirsten R; Grosskreutz, Julian; Prell, Tino; Kaufmann, Jörn; Bodammer, Nils; Peschel, Thomas

    2014-01-07

    Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.

  4. Hypnosis and pain perception: An Activation Likelihood Estimation (ALE) meta-analysis of functional neuroimaging studies.

    Science.gov (United States)

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; De Rossi, Pietro; Angeletti, Gloria; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-12-01

    Several studies reported that hypnosis can modulate pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. We conducted an Activation Likelihood Estimation (ALE) meta-analysis on functional neuroimaging studies of pain perception under hypnosis to identify brain activation-deactivation patterns occurring during hypnotic suggestions aiming at pain reduction, including hypnotic analgesic, pleasant, or depersonalization suggestions (HASs). We searched the PubMed, Embase and PsycInfo databases; we included papers published in peer-reviewed journals dealing with functional neuroimaging and hypnosis-modulated pain perception. The ALE meta-analysis encompassed data from 75 healthy volunteers reported in 8 functional neuroimaging studies. HASs during experimentally-induced pain compared to control conditions correlated with significant activations of the right anterior cingulate cortex (Brodmann's Area [BA] 32), left superior frontal gyrus (BA 6), and right insula, and deactivation of right midline nuclei of the thalamus. HASs during experimental pain impact both cortical and subcortical brain activity. The anterior cingulate, left superior frontal, and right insular cortices activation increases could induce a thalamic deactivation (top-down inhibition), which may correlate with reductions in pain intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  6. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    Science.gov (United States)

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  7. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  8. The use of EMG biofeedback for learning of selective activation of intra-muscular parts within the serratus anterior muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Mork, P J; Andersen, L L

    2010-01-01

    the serratus anterior with visual EMG biofeedback, while the activity of four parts of the serratus anterior and four parts of the trapezius muscle was recorded. One subject was able to selectively activate both the upper and the lower serratus anterior respectively. Moreover, three subjects managed...... to selectively activate the lower serratus anterior, and two subjects learned to selectively activate the upper serratus anterior. During selective activation of the lower serratus anterior, the activity of this muscle part was 14.4+/-10.3 times higher than the upper serratus anterior activity (P....05). The corresponding ratio for selective upper serratus vs. lower serratus anterior activity was 6.4+/-1.7 (Ptimes higher synergistic activity of the lower trapezius compared with the upper trapezius (P

  9. Analysis of the presence or absence of atrophy of the subgenual and subcallosal cingulate cortices using voxel-based morphometry on MRI is useful to select prescriptions for patients with depressive symptoms

    Directory of Open Access Journals (Sweden)

    Niida A

    2014-12-01

    Full Text Available Akira Niida,1 Richi Niida,2 Hiroshi Matsuda,3 Makoto Motomura,4 Akihiko Uechi5 1Department of Radiology, Nanbu Hospital, Itoman City, Okinawa, Japan; 2Department of Psychiatry, Nanto Clinic, Urasoe City, Okinawa, Japan; 3Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan; 4Department of Human Sciences, University of the Ryukyus, Nakagami County, Okinawa, Japan; 5Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata City, Osaka, Japan Objective: We objectively evaluated the presence or absence of atrophy of the subgenual anterior cingulate cortex (sgACC and the subcallosal anterior cingulate cortex (scACC, using new voxel-based morphometry (VBM software employing Statistical Parametric Mapping software v8 and diffeomorphic anatomic registration through an exponentiated lie algebra. We prepared a database covering young-mature adulthood and investigated the clinical usefulness of the evaluation. Subjects and methods: One hundred seven patients with major depressive disorder (MDD, 74 patients with bipolar disorder (BD, and 240 healthy control subjects underwent 1.5T magnetic resonance imaging scanning. Using new VBM software and databases covering young-mature adults and the elderly, target volumes of interest were set in the sgACC and scACC, four indicators (severity, extent, ratio, and whole-brain extent were determined, and the presence or absence of atrophy of the sgACC and scACC was evaluated on the basis of the indicators. In addition, the relationships between the presence or absence of atrophy of the sgACC and scACC and performance of diagnosing MDD and BD and therapeutic drugs were investigated. Results: It was clarified that the disease is likely to be MDD when atrophy is detected in the sgACC, and likely to be BD when no atrophy is detected in the sgACC but is detected in the scACC. Regarding the relationship with therapeutic drugs, it was clarified that, when

  10. Is running away right? The behavioral activation-behavioral inhibition model of anterior asymmetry.

    Science.gov (United States)

    Wacker, Jan; Chavanon, Mira-Lynn; Leue, Anja; Stemmler, Gerhard

    2008-04-01

    The measurement of anterior electroencephalograph (EEG) asymmetries has become an important standard paradigm for the investigation of affective states and traits. Findings in this area are typically interpreted within the motivational direction model, which suggests a lateralization of approach and withdrawal motivational systems to the left and right anterior region, respectively. However, efforts to compare this widely adopted model with an alternative account-which relates the left anterior region to behavioral activation independent of the direction of behavior (approach or withdrawal) and the right anterior region to goal conflict-induced behavioral inhibition-are rare and inconclusive. Therefore, the authors measured the EEG in a sample of 93 young men during emotional imagery designed to provide a critical test between the 2 models. The results (e.g., a correlation between left anterior activation and withdrawal motivation) favor the alternative model on the basis of the concepts of behavioral activation and behavioral inhibition. In addition, the present study also supports an association of right parietal activation with physiological arousal and the conceptualization of parietal EEG asymmetry as a mediator of emotion-related physiological arousal. (Copyright) 2008 APA.

  11. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis

    Directory of Open Access Journals (Sweden)

    Jue Wang

    2015-10-01

    Full Text Available We aimed to elucidate the dACC laterality in typically developing children and their sex/age-related differences with a sample of 84 right-handed children (6–16 years, 42 boys. We first replicated the previous finding observed in adults that gray matter density asymmetry in the dACC was region-specific: leftward (left > right in its superior part, rightward (left < right in its inferior part. Intrinsic connectivity analysis of these regions further revealed region-specific asymmetric connectivity profiles in dACC as well as their sex and age differences. Specifically, the superior dACC connectivity with frontoparietal network and the inferior dACC connectivity with visual network are rightward. The superior dACC connectivity with the default network (lateral temporal cortex was more involved in the left hemisphere. In contrast, the inferior dACC connectivity with the default network (anterior medial prefrontal cortex was more lateralized towards the right hemisphere. The superior dACC connectivity with lateral visual cortex was more distinct across two hemispheres in girls than that in boys. This connection in boys changed with age from right-prominent to left-prominent asymmetry whereas girls developed the connection from left-prominent to no asymmetry. These findings not only highlight the complexity and laterality of the dACC but also provided insights into dynamical structure–function relationships during the development.

  12. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms

    Science.gov (United States)

    2014-01-01

    Background Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Results Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Conclusions Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded. PMID:24397347

  13. Meditation experience is associated with differences in default mode network activity and connectivity

    Science.gov (United States)

    Brewer, Judson A.; Worhunsky, Patrick D.; Gray, Jeremy R.; Tang, Yi-Yuan; Weber, Jochen; Kober, Hedy

    2011-01-01

    Many philosophical and contemplative traditions teach that “living in the moment” increases happiness. However, the default mode of humans appears to be that of mind-wandering, which correlates with unhappiness, and with activation in a network of brain areas associated with self-referential processing. We investigated brain activity in experienced meditators and matched meditation-naive controls as they performed several different meditations (Concentration, Loving-Kindness, Choiceless Awareness). We found that the main nodes of the default-mode network (medial prefrontal and posterior cingulate cortices) were relatively deactivated in experienced meditators across all meditation types. Furthermore, functional connectivity analysis revealed stronger coupling in experienced meditators between the posterior cingulate, dorsal anterior cingulate, and dorsolateral prefrontal cortices (regions previously implicated in self-monitoring and cognitive control), both at baseline and during meditation. Our findings demonstrate differences in the default-mode network that are consistent with decreased mind-wandering. As such, these provide a unique understanding of possible neural mechanisms of meditation. PMID:22114193

  14. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. T174. STRUCTURAL ABNORMALITIES IN THE CINGULATE CORTEX IN ADOLESCENTS AT ULTRA-HIGH RISK WHO LATER DEVELOP PSYCHOSIS

    Science.gov (United States)

    Fortea, Adriana; van Eindhjoven, Phillip; Pariente, Jose; Calvo, Anna; Batalla, Albert; de la Serna, Elena; Ilzarbe, Daniel; Tor, Jordina; Dolz, Montserrat; Baeza, Inmaculada; Sugranyes, Gisela

    2018-01-01

    -NP (2.56 ± 0.11mm) and HC (2.58 ± 0.09mm) were found. There was a significant group effect on the right cingulate cortex (F=6.6, pFDR=.024): UHR-P showed lower CTH in this area relative to controls (p=.007 uncorrected). Within the right cingulate cortex, a significant group effect was found in the posterior cingulate (F=5.7, pFDR=.016) and isthmus (F=4.6, pFDR=.024), and a trend level in the caudal anterior cingulate (F=2.9, p=.057): with smaller CTH in UHR-P relative to HC in the isthmus cingulate (p=.025) and the posterior cingulate (p=.066). No significant differences were observed between UHR-P and UHR-NP groups. Discussion UHR-P showed significant cortical thinning in several regions of the right cingulate cortex in comparison to HC, giving support to the notion that structural alterations in the cingulate cortex may be present in children and adolescents prior the onset of psychosis. Longitudinal changes in CTH have the potential to increase understanding of changes related to transition to clinical illness.

  16. A preliminary report on the use of functional magnetic resonance imaging with simultaneous urodynamics to record brain activity during micturition.

    Science.gov (United States)

    Krhut, Jan; Tintera, Jaroslav; Holý, Petr; Zachoval, Roman; Zvara, Peter

    2012-08-01

    We mapped brain activity during micturition using functional magnetic resonance imaging with simultaneous recording of urodynamic properties during slow bladder filling and micturition. We evaluated 12 healthy female volunteers 20 to 68 years old. Eight subjects could urinate while supine. Meaningful data were obtained on 6 of these subjects. Brain activity was recorded continuously during bladder filling and micturition. Functional magnetic resonance imaging measurements made during the micturition phase were used for the final analysis. Using group statistics we identified clusters of brain activity in the parahippocampal gyrus, anterior cingulate gyrus, inferior temporal gyrus and inferior frontal gyrus during micturition. At the individual level we also observed activation in the upper pontine region, thalamus and posterior cingulum. In subjects unable to void brain activation was documented in the frontal lobe and posterior cingulate gyrus but not in the pons, thalamus or anterior cingulate gyrus. In 5 subjects we identified a relevant pattern of brain activity during the terminal portion of the filling phase when the patient reported a strong desire to urinate. This new protocol allows for the localization of brain structures that are active during micturition. Data suggest that additional validation studies are needed. Future studies will test modifications that include more detailed monitoring of bladder sensation, stratifying subjects based on age and gender, and increasing the number of data points by adding subjects and the number of micturitions recorded in a single subject. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Cannabis use and brain structural alterations of the cingulate cortex in early psychosis.

    Science.gov (United States)

    Rapp, Charlotte; Walter, Anna; Studerus, Erich; Bugra, Hilal; Tamagni, Corinne; Röthlisberger, Michel; Borgwardt, Stefan; Aston, Jacqueline; Riecher-Rössler, Anita

    2013-11-30

    As cannabis use is more frequent in patients with psychosis than in the general population and is known to be a risk factor for psychosis, the question arises whether cannabis contributes to recently detected brain volume reductions in schizophrenic psychoses. This study is the first to investigate how cannabis use is related to the cingulum volume, a brain region involved in the pathogenesis of schizophrenia, in a sample of both at-risk mental state (ARMS) and first episode psychosis (FEP) subjects. A cross-sectional magnetic resonance imaging (MRI) study of manually traced cingulum in 23 FEP and 37 ARMS subjects was performed. Cannabis use was assessed with the Basel Interview for Psychosis. By using repeated measures analyses of covariance, we investigated whether current cannabis use is associated with the cingulum volume, correcting for age, gender, alcohol consumption, whole brain volume and antipsychotic medication. There was a significant three-way interaction between region (anterior/posterior cingulum), hemisphere (left/right cingulum) and cannabis use (yes/no). Post-hoc analyses revealed that this was due to a significant negative effect of cannabis use on the volume of the posterior cingulum which was independent of the hemisphere and diagnostic group and all other covariates we controlled for. In the anterior cingulum, we found a significant negative effect only for the left hemisphere, which was again independent of the diagnostic group. Overall, we found negative associations of current cannabis use with grey matter volume of the cingulate cortex, a region rich in cannabinoid CB1 receptors. As this finding has not been consistently found in healthy controls, it might suggest that both ARMS and FEP subjects are particularly sensitive to exogenous activation of these receptors. © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Emotion disrupts neural activity during selective attention in psychopathy.

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M; Heller, Wendy; Herrington, John D; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A

    2013-03-01

    Dimensions of psychopathy are theorized to be associated with distinct cognitive and emotional abnormalities that may represent unique neurobiological risk factors for the disorder. This hypothesis was investigated by examining whether the psychopathic personality dimensions of fearless-dominance and impulsive-antisociality moderated neural activity and behavioral responses associated with selective attention and emotional processing during an emotion-word Stroop task in 49 adults. As predicted, the dimensions evidenced divergent selective-attention deficits and sensitivity to emotional distraction. Fearless-dominance was associated with disrupted attentional control to positive words, and activation in right superior frontal gyrus mediated the relationship between fearless-dominance and errors to positive words. In contrast, impulsive-antisociality evidenced increased behavioral interference to both positive and negative words and correlated positively with recruitment of regions associated with motivational salience (amygdala, orbitofrontal cortex, insula), emotion regulation (temporal cortex, superior frontal gyrus) and attentional control (dorsal anterior cingulate cortex). Individuals high on both dimensions had increased recruitment of regions related to attentional control (temporal cortex, rostral anterior cingulate cortex), response preparation (pre-/post-central gyri) and motivational value (orbitofrontal cortex) in response to negative words. These findings provide evidence that the psychopathy dimensions represent dual sets of risk factors characterized by divergent dysfunction in cognitive and affective processes.

  19. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.

    Science.gov (United States)

    Conklin, Sarah M; Runyan, Caroline A; Leonard, Sherry; Reddy, Ravinder D; Muldoon, Matthew F; Yao, Jeffrey K

    2010-01-01

    Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Delta5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships. Published by Elsevier Ltd.

  20. Errors Recruit both Cognitive and Emotional Monitoring Systems: Simultaneous Intracranial Recordings in the Dorsal Anterior Cingulate Gyrus and Amygdala Combined with fMRI

    Science.gov (United States)

    Pourtois, Gilles; Vocat, Roland; N'Diaye, Karim; Spinelli, Laurent; Seeck, Margitta; Vuilleumier, Patrik

    2010-01-01

    We studied error monitoring in a human patient with unique implantation of depth electrodes in both the left dorsal cingulate gyrus and medial temporal lobe prior to surgery. The patient performed a speeded go/nogo task and made a substantial number of commission errors (false alarms). As predicted, intracranial Local Field Potentials (iLFPs) in…

  1. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  2. Posttraumatic stress and alcohol use among veterans: Amygdala and anterior cingulate activation to emotional cues.

    Science.gov (United States)

    Simons, Raluca M; Simons, Jeffrey S; Olson, Dawne; Baugh, Lee; Magnotta, Vincent; Forster, Gina

    2016-11-01

    This fMRI study tested a model of combat trauma, posttraumatic stress symptoms (PTSS), alcohol use, and behavioral and neural responses to emotional cues in 100 OIF/OEF/OND veterans. Multilevel structural equation models were tested for left and right dorsal ACC (dACC), rostral ACC (rACC), and amygdala blood-oxygen- level dependent responses during the emotional counting Stroop test and masked faces task. In the Stroop task, combat exposure moderated the effect of combat stimuli resulting in hyperactivation in the rACC and dACC. Activation in the left amygdala also increased in response to combat stimuli, but effects did not vary as a function of combat severity. In the masked faces task, activation patterns did not vary as a function of stimulus. However, at the between-person level, amygdala activation during the masked faces task was inversely associated with PTSS. In respect to behavioral outcomes, higher PTSS were associated with a stronger Stroop effect, suggesting greater interference associated with combat words. Results are consistent with the premise that combat trauma results in hyperactivation in the ACC in response to combat stimuli, and, via its effect on PTSS, is associated with deficits in cognitive performance in the presence of combat stimuli. Across tasks, predeployment drinking was inversely associated with activation in the dACC but not the rACC or amygdala. Drinking may be a buffering factor, or negatively reinforcing in part because of its effects on normalizing brain response following trauma exposure. Alternatively, drinking may undermine adaptive functioning of the dACC when responding to traumatic stress cues. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Changes of resting cerebral activities in subacute ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2015-01-01

    Full Text Available This study aimed to detect the difference in resting cerebral activities between ischemic stroke patients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efficacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunction and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks and 15 age-matched healthy participants. A resting-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental findings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely potential targets for the neural regeneration of subacute ischemic stroke patients.

  4. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.

    Science.gov (United States)

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy

    2018-02-01

    Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.

  5. Anterior insula signals inequalities in a modified Ultimatum Game.

    Science.gov (United States)

    Cheng, Xuemei; Zheng, Li; Li, Lin; Zheng, Yijie; Guo, Xiuyan; Yang, Guang

    2017-04-21

    Studies employing the Ultimatum Game (UG) which involves two parties (i.e., proposers and responders) splitting some money have suggested the role that anterior insula (AI) plays in detecting fairness norm violation, i.e., violation of the responder's expectation of receiving equal splits from the proposer. In this study, we explored how AI would respond when there existed simultaneously another expectation of being treated equivalently as others. Participants acted as responders and would be informed about both the offers they received and the average amount of money the same proposer offered to others. Hence we introduced different conditions where participants were treated equivalently or not equivalently as other responders in UG. Participants could decide to accept or reject the offer with acceptance leading to the suggested split and rejection leaving both parties nothing. Behavioral results showed that participants rejected more unfair offers and reacted more slowly during acceptance (vs. rejection) of offers when they were offered less than others. At the neural level, stronger AI activation was observed when participants received unfair relative to fair offers, as well as when they received unequal relative to equal offers. Moreover, dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) exhibited greater activity during receiving unequal (vs. equal) offers and during acceptance (vs. rejection) of offers which were less than others'. Taken together, the present study demonstrated that the treatment of others modulated both behavioral responses to unfairness and neural correlates of the fairness-related decision-making process, and that AI played a general role in detecting norm violations. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Increased nuclear Olig1-expression in the pregenual anterior cingulate white matter of patients with major depression: a regenerative attempt to compensate oligodendrocyte loss?

    Science.gov (United States)

    Mosebach, Jennifer; Keilhoff, Gerburg; Gos, Tomasz; Schiltz, Kolja; Schoeneck, Linda; Dobrowolny, Henrik; Mawrin, Christian; Müller, Susan; Schroeter, Matthias L; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2013-08-01

    Structural and functional oligodendrocyte deficits as well as impaired myelin integrity have been described in affective disorders and schizophrenia, and may disturb the connectivity between disease-relevant brain regions. Olig1, an oligodendroglial transcription factor, might be important in this context, but has not been systematically studied so far. Nissl- and Olig1-stained oligodendrocytes were quantified in the pregenual anterior cingulate (pACC)/dorsolateral prefrontal cortex (DLPFC), and adjacent white matter of patients with major depressive disorder (MDD, n = 9), bipolar disorder (BD, n = 8), schizophrenia (SZ, n = 13), and matched controls (n = 16). Potential downstream effects of increased Olig1-expression were analyzed. Antidepressant drug effects on Olig1-expression were further explored in OLN-93 oligodendrocyte cultures. Nissl-stainings of both white matter regions showed a 19-27% reduction of total oligodendrocyte densities in MDD and BD, but not in SZ. In contrast, nuclear Olig1-immunoreactivity was elevated in MDD in the pACC-adjacent white matter (left: p = 0.008; right: p = 0.018); this effect tended to increase with antidepressant dosage (r = 0.631, p = 0.069). This reactive increase of Olig1 was confirmed by partly dose-dependent effects of imipramine and amitriptyline in oligodendrocyte cultures. Correspondingly, MBP expression in the pACC-adjacent white matter tended to increase with antidepressant dosage (r = 0.637, p = 0.065). Other tested brain regions showed no diagnosis-dependent differences regarding Olig1-immunoreactivity. Since nuclear Olig1-expression marks oligodendrocyte precursor cells, its increased expression along with reduced total oligodendrocyte densities (Nissl-stained) in the pACC-adjacent white matter of MDD patients might indicate a (putatively medication-boosted) regenerative attempt to compensate oligodendrocyte loss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. An FMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD

    DEFF Research Database (Denmark)

    Peterson, Bradley S; Potenza, Marc N; Wang, Zhishun

    2009-01-01

    in the ADHD group. When off medication, youths with ADHD were unable to suppress default-mode activity to the same degree as comparison subjects, whereas when on medication, they suppressed this activity to comparison group levels. Greater activation of the lateral prefrontal cortex when off medication...... predicted a greater reduction in ADHD symptoms when on medication. Granger causality analyses demonstrated that activity in the lateral prefrontal and ventral anterior cingulate cortices mutually influenced one another but that the influence of the ventral anterior cingulate cortex on the lateral prefrontal...... cortex was significantly reduced in youths with ADHD off medication relative to comparison subjects and increased significantly to normal levels when ADHD youths were on medication. CONCLUSIONS: Psychostimulants in youths with ADHD improved suppression of default-mode activity in the ventral anterior...

  8. Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress

    Directory of Open Access Journals (Sweden)

    Sven Vanneste

    2018-02-01

    Full Text Available Background: In this study we are using source localized neurofeedback to moderate tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network. Hypothesis: We hypothesize that up-training alpha and down-training beta and gamma activity in the posterior cingulate cortex has a moderating effect on tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network and other functionally connected brain areas. Methods: Fifty-eight patients with chronic tinnitus were included in the study. Twenty-three tinnitus patients received neurofeedback training of the posterior cingulate cortex with the aim of up-training alpha and down-training beta and gamma activity, while 17 patients underwent training of the lingual gyrus as a control situation. A second control group consisted of 18 tinnitus patients on a waiting list for future tinnitus treatment. Results: This study revealed that neurofeedback training of the posterior cingulate cortex results in a significant decrease of tinnitus related distress. No significant effect on neural activity of the target region could be obtained. However, functional and effectivity connectivity changes were demonstrated between remote brain regions or functional networks as well as by altering cross frequency coupling of the posterior cingulate cortex. Conclusion: This suggests that neurofeedback could remove the information, processed in beta and gamma, from the carrier wave, alpha, which transports the high frequency information and influences the salience attributed to the tinnitus sound. Based on the observation that much pathology is the result of an abnormal functional connectivity within and between neural networks various pathologies should be considered eligible candidates for the application of source localized EEG based neurofeedback training. Keywords: Posterior cingulate

  9. A biased activation theory of the cognitive and attentional modulation of emotion.

    Science.gov (United States)

    Rolls, Edmund T

    2013-01-01

    Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex (OFC). The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex (ACC). Similar effects are found for selective attention, to for example the pleasantness vs. the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype.

  10. A biased activation theory of the cognitive and attentional modulation of emotion

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2013-03-01

    Full Text Available Cognition can influence emotion by biasing neural activity in the first cortical region in which the reward value and subjective pleasantness of stimuli is made explicit in the representation, the orbitofrontal cortex. The same effect occurs in a second cortical tier for emotion, the anterior cingulate cortex. Similar effects are found for selective attention, to for example the pleasantness vs the intensity of stimuli, which modulates representations of reward value and affect in the orbitofrontal and anterior cingulate cortices. The mechanisms for the effects of cognition and attention on emotion are top-down biased competition and top-down biased activation. Affective and mood states can in turn influence memory and perception, by backprojected biasing influences. Emotion-related decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty. Reasoning processes capable of planning ahead with multiple steps held in working memory in the explicit system can allow the gene-specified rewards not to be selected, or to be deferred. The stochastic, noisy, dynamics of decision-making systems in the brain may influence whether decisions are made by the selfish-gene-specified reward emotion system, or by the cognitive reasoning system that explicitly calculates reward values that are in the interests of the individual, the phenotype.

  11. Treatment with selective serotonin reuptake inhibitors and mirtapazine results in differential brain activation by visual erotic stimuli in patients with major depressive disorder.

    Science.gov (United States)

    Kim, Won; Jin, Bo-Ra; Yang, Wan-Seok; Lee, Kyuong-Uk; Juh, Ra-Hyung; Ahn, Kook-Jin; Chung, Yong-An; Chae, Jeong-Ho

    2009-06-01

    The objective of this study was to identify patterns of brain activation elicited by erotic visual stimuli in patients treated with either Selective Serotonin Reuptake Inhibitors (SSRIs) or mirtazipine. Nine middle-aged men with major depressive disorder treated with an SSRI and ten middle-aged men with major depressive disorder treated with mirtazapine completed the trial. Ten subjects with no psychiatric illness were included as a control group. We conducted functional brain magnetic resonance imaging (fMRI) while a film alternatively played erotic and non-erotic contents for 14 minutes and 9 seconds. The control group showed activation in the occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, and caudate nucleus. For subjects treated with SSRIs, the intensity of activity in these regions was much lower compared to the control group. Intensity of activation in the group treated with mirtazapine was less than the control group but grea-ter than those treated with SSRIs. Using subtraction analysis, the SSRI group showed significantly lower activation than the mirtazapine group in the anterior cingulate gyrus and the caudate nucleus. Our study suggests that the different rates of sexual side effects between the patients in the SSRI-treated group and the mirtazapine-treated group may be due to different effects on brain activation.

  12. Cognitive Control Signals in Posterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2010-12-01

    Full Text Available Efficiently shifting between tasks is a central function of cognitive control. The role of the default network—a constellation of areas with high baseline activity that declines during task performance—in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing towards the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the CGp. To test this idea, we recorded the activity of single neurons in posterior cingulate cortex (CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex (LIP, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain..

  13. Meditation leads to reduced default mode network activity beyond an active task.

    Science.gov (United States)

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  14. A direct comparison of appetitive and aversive anticipation: Overlapping and distinct neural activation.

    Science.gov (United States)

    Sege, Christopher T; Bradley, Margaret M; Weymar, Mathias; Lang, Peter J

    2017-05-30

    fMRI studies of reward find increased neural activity in ventral striatum and medial prefrontal cortex (mPFC), whereas other regions, including the dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), and anterior insula, are activated when anticipating aversive exposure. Although these data suggest differential activation during anticipation of pleasant or of unpleasant exposure, they also arise in the context of different paradigms (e.g., preparation for reward vs. threat of shock) and participants. To determine overlapping and unique regions active during emotional anticipation, we compared neural activity during anticipation of pleasant or unpleasant exposure in the same participants. Cues signalled the upcoming presentation of erotic/romantic, violent, or everyday pictures while BOLD activity during the 9-s anticipatory period was measured using fMRI. Ventral striatum and a ventral mPFC subregion were activated when anticipating pleasant, but not unpleasant or neutral, pictures, whereas activation in other regions was enhanced when anticipating appetitive or aversive scenes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The neural mechanisms of affect infusion in social economic decision-making: a mediating role of the anterior insula.

    Science.gov (United States)

    Harlé, Katia M; Chang, Luke J; van 't Wout, Mascha; Sanfey, Alan G

    2012-05-15

    Though emotions have been shown to have sometimes dramatic effects on decision-making, the neural mechanisms mediating these biases are relatively unexplored. Here, we investigated how incidental affect (i.e. emotional states unrelated to the decision at hand) may influence decisions, and how these biases are implemented in the brain. Nineteen adult participants made decisions which involved accepting or rejecting monetary offers from others in an Ultimatum Game while undergoing functional magnetic resonance imaging (fMRI). Prior to each set of decisions, participants watched a short video clip aimed at inducing either a sad or neutral emotional state. Results demonstrated that, as expected, sad participants rejected more unfair offers than those in the neutral condition. Neuroimaging analyses revealed that receiving unfair offers while in a sad mood elicited activity in brain areas related to aversive emotional states and somatosensory integration (anterior insula) and to cognitive conflict (anterior cingulate cortex). Sad participants also showed a diminished sensitivity in neural regions associated with reward processing (ventral striatum). Importantly, insular activation uniquely mediated the relationship between sadness and decision bias. This study is the first to reveal how subtle mood states can be integrated at the neural level to influence decision-making. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Human brain activity associated with painful mechanical stimulation to muscle and bone.

    Science.gov (United States)

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-08-01

    The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain activation in response to mechanical nociceptive stimulation targeting muscle and bone were measured by fMRI and analyzed. Painful mechanical stimulation targeting muscle and bone activated the common areas including bilateral insula, anterior cingulate cortex, posterior cingulate cortex, secondary somatosensory cortex (S2), inferior parietal lobe, and basal ganglia. The contralateral S2 was more activated by strong stimulation than by weak stimulation. Some areas in the basal ganglia (bilateral putamen and caudate nucleus) were more activated by muscle stimulation than by bone stimulation. The putamen and caudate nucleus may have a more significant role in brain processing of muscle pain compared with bone pain.

  17. Using fMRI to investigate a component process of reflection: prefrontal correlates of refreshing a just-activated representation.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Greene, Erich J; Cunningham, William A; Sanislow, Charles A

    2005-09-01

    Using fMRI, we investigated the functional organization of prefrontal cortex (PFC) as participants briefly thought of a single just-experienced item (i.e., refreshed an active representation). The results of six studies, and a meta-analysis including previous studies, identified regions in left dorsolateral, anterior, and ventrolateral PFC associated in varying degrees with refreshing different types of information (visual and auditory words, drawings, patterns, people, places, or locations). In addition, activity increased in anterior cingulate with selection demands and in orbitofrontal cortex when a nonselected item was emotionally salient, consistent with a role for these areas in cognitive control (e.g., overcoming "mental rubbernecking"). We also found evidence that presenting emotional information disrupted an anterior component of the refresh circuit. We suggest that refreshing accounts for some neural activity observed in more complex tasks, such as working memory, long-term memory, and problem solving, and that its disruption (e.g., from aging or emotion) could have a broad impact.

  18. Brain Responses during the Anticipation of Dyspnea.

    Science.gov (United States)

    Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  19. Strategic Motives Drive Proposers to Offer Fairly in Ultimatum Games: An fMRI Study.

    Science.gov (United States)

    Chen, Yin-Hua; Chen, Ying-Chun; Kuo, Wen-Jui; Kan, Kamhon; Yang, C C; Yen, Nai-Shing

    2017-04-03

    The hypothesis of strategic motives postulates that offering fairly in the Ultimatum Game (UG) is to avoid rejection and receive money. In this fMRI study, we used a modified UG to elucidate how proposers reached decisions of offering fairly and to what extent they considered offering selfishly with different stakes. We had proposers choose between a fair and a selfish offer with different degrees of selfishness and stake sizes. Proposers were less likely and spent more time choosing the fair offer over a slightly-selfish offer than a very selfish offer independent of stakes. Such choices evoked greater activation in the dorsal anterior cingulate cortices that typically involve in allocation of cognitive control for cost/benefit decision making. Choosing a fair offer in higher stakes evoked greater activation in the anterior cingulate gyrus (ACCg) and the areas that previously have been implicated in reward and theory of mind. Furthermore, choosing a slightly selfish offer over a fair offer evoked greater activation in the anterior cingulate sulcus, ACCg, ventral tegmental area (or substantia nigra) and anterior insular cortex signalling the higher gain and implying higher rejection risk. In conclusion, our findings favoured the hypothesis that proposers offer fairly based on the strategic motives.

  20. Anterior tibial stress fractures treated with anterior tension band plating in high-performance athletes.

    Science.gov (United States)

    Cruz, Alexandre Santa; de Hollanda, João Paris Buarque; Duarte, Aires; Hungria Neto, José Soares

    2013-06-01

    The non-surgical treatment of anterior tibial cortex stress fractures requires long periods of abstention from sports activities and often results in non-union. Many different surgical techniques have already been previously described to treat these fractures, but there is no consensus on the best treatment. We describe the outcome of treatment using anterior tibial tension band plating in three high-performance athletes (4 legs) with anterior tibial cortex stress fractures. Tibial osteosynthesis with a 3.5-mm locking compression plate in the anterolateral aspect of the tibia was performed in all patients diagnosed with anterior tibial stress fracture after September 2010 at Santa Casa Hospital. All of the fractures were consolidated within a period of 3 months after surgery, allowing for an early return to pre-injury levels of competitive sports activity. There were no infection, non-union, malunion or anterior knee pain complications. Anterior tibial tension band plating leads to prompt fracture consolidation and is a good alternative for the treatment of anterior tibial cortex stress fractures. Bone grafts were shown to be unnecessary.

  1. Retrieval Search and Strength Evoke Dissociable Brain Activity during Episodic Memory Recall

    Science.gov (United States)

    Reas, Emilie T.; Brewer, James B.

    2014-01-01

    Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks. PMID:23190328

  2. Reduced muscarinic receptors in the cingulate cortex in mild Alzheimer's disease demonstrated with 123I iodo-dexetamide SPECT

    International Nuclear Information System (INIS)

    Rowe, C.C.; Barnden, L.R.; Nicholas, C.; Nowakowski, K.; Boundy, K.

    2000-01-01

    Full text: Parietal hypoperfusion/hypometabolism is a feature of Alzheimer's disease (AD). In early AD this may be preceded by changes in the posterior cingulate cortex, part of the cortico-limbic circuit with connections to the medial temporal lobes. Because cholinergic function is affected in early AD, we aimed to investigate the binding of the muscarinic receptor label, I-123 iodo-dexetamide (IDEX). We recruited 11 mild (MiniMental State Examination 27-24) and 11 moderate (MMSE 23-16) Alzheimer's patients and 10 age and sex-matched normal subjects. SPECT was performed six hours after injection of 185 MBq IDEX. Sections were reconstructed with attenuation correction using an iterative algorithm (OSEM). Statistical Parametric Mapping (SPM 99) was used to analyse the data. Because there is very little IDEX uptake in the cerebellum and thalamus it was necessary to edit them from the SPM PET template. Facial and scalp activity was also edited. Global scaling relative to the basal ganglia was used. Significant areas of decreased IDEX binding were found in the mild Alzheimer's group in the cingulate cortex with pvoxel = .08 and pcluster < 0.001, (particularly the posterior cingulate), left parietotemporal junction (pcluster = 0.01) and posteromedial left temporal lobe (pcluster = 0.03). In moderate AD extensive areas of decreased binding were found in the posterior cingulate, parietal and temporal lobes. The difference between the group-means at the posterior cingulate was 14% (mild AD) and 22% (moderate AD). Hypoperfusion, hypometabolism and now reduced cholinergic receptors have been demonstrated in the posterior cingulate in mild AD. Greater attention to this area may enhance the diagnostic value of functional imaging in early AD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  3. Neural activation during imitation with or without performance feedback: An fMRI study.

    Science.gov (United States)

    Zhang, Kaihua; Wang, Hui; Dong, Guangheng; Wang, Mengxing; Zhang, Jilei; Zhang, Hui; Meng, Weixia; Du, Xiaoxia

    2016-08-26

    In our daily lives, we often receive performance feedback (PF) during imitative learning, and we adjust our behaviors accordingly to improve performance. However, little is known regarding the neural mechanisms underlying this learning process. We hypothesized that appropriate PF would enhance neural activation or recruit additional brain areas during subsequent action imitation. Pictures of 20 different finger gestures without any social meaning were shown to participants from the first-person perspective. Imitation with or without PF was investigated by functional magnetic resonance imaging in 30 healthy subjects. The PF was given by a real person or by a computer. PF from a real person induced hyperactivation of the parietal lobe (precuneus and cuneus), cingulate cortex (posterior and anterior), temporal lobe (superior and transverse temporal gyri), and cerebellum (posterior and anterior lobes) during subsequent imitation. The positive PF and negative PF from a real person, induced the activation of more brain areas during the following imitation. The hyperactivation of the cerebellum, posterior cingulate cortex, precuneus, and cuneus suggests that the subjects exhibited enhanced motor control and visual attention during imitation after PF. Additionally, random PF from a computer had a small effect on the next imitation. We suggest that positive and accurate PF may be helpful for imitation learning. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.

    Science.gov (United States)

    Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel

    2014-07-01

    Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Androstenol--a steroid derived odor activates the hypothalamus in women.

    Directory of Open Access Journals (Sweden)

    Ivanka Savic

    Full Text Available BACKGROUND: Whether pheromone signaling exists in humans is still a matter of intense discussion. In the present study we tested if smelling of Androstenol, a steroid produced by the human body and reported to affect human behavior, may elicit cerebral activation. A further issue was to evaluate whether the pattern of activation resembles the pattern of common odors. METHODOLOGY: PET measurements of regional cerebral blood flow (rCBF were conducted in 16 healthy heterosexual women during passive smelling of Androstenol, four ordinary odors (OO, and odorless air (the base line condition. PRINCIPAL FINDINGS: Smelling Androstenol caused activation of a portion of the hypothalamus, which according to animal data mediates the pheromone triggered mating behavior. Smelling of OO, on the other hand, engaged only the classical olfactory regions (the piriform cortex, lateral amygdala, anterior insular and anterior cingulate cortex. CONCLUSIONS: The observed pattern of activation is very similar to the pattern previously detected with 4,16-androstadien-3-one in heterosexual females. It suggests that several compounds released by human body may activate cerebral networks involved in human reproduction.

  6. Functional magnetic resonance imaging of hippocampal activation during silent mantra meditation.

    Science.gov (United States)

    Engström, Maria; Pihlsgård, Johan; Lundberg, Peter; Söderfeldt, Birgitta

    2010-12-01

    The objective of the present study was to investigate whether moderately experienced meditators activate hippocampus and the prefrontal cortex during silent mantra meditation, as has been observed in earlier studies on subjects with several years of practice. Subjects with less than 2 years of meditation practice according to the Kundalini yoga or Acem tradition were examined by functional magnetic resonance imaging during silent mantra meditation, using an on-off block design. Whole-brain as well as region-of-interest analyses were performed. The most significant activation was found in the bilateral hippocampus/parahippocampal formations. Other areas with significant activation were the bilateral middle cingulate cortex and the bilateral precentral cortex. No activation in the anterior cingulate cortex was found, and only small activation clusters were observed in the prefrontal cortex. In conclusion, the main finding in this study was the significant activation in the hippocampi, which also has been correlated with meditation in several previous studies on very experienced meditators. We propose that the hippocampus is activated already after moderate meditation practice and also during different modes of meditation, including relaxation. The role of hippocampal activity during meditation should be further clarified in future studies, especially by investigating whether the meditation-correlated hippocampal activity is related to memory consolidation.

  7. Decision salience signals in posterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Sarah eHeilbronner

    2011-04-01

    Full Text Available Despite its phylogenetic antiquity and clinical importance, the posterior cingulate cortex (CGp remains an enigmatic nexus of attention, memory, motivation, and decision making. Here we show that CGp neurons track decision salience—the degree to which an option differs from a standard—but not the subjective value of a decision. To do this, we recorded the spiking activity of CGp neurons in monkeys choosing between options varying in reward-related risk, delay to reward, and social outcomes, each of which varied in level of decision salience. Firing rates were higher when monkeys chose the risky option, consistent with their risk-seeking preferences, but were also higher when monkeys chose the delayed and social options, contradicting their preferences. Thus, across decision contexts, neuronal activity was uncorrelated with how much monkeys valued a given option, as inferred from choice. Instead, neuronal activity signaled the deviation of the chosen option from the standard, independently of how it differed. The observed decision salience signals suggest a role for CGp in the flexible allocation of neural resources to motivationally significant information, akin to the role of attention in selective processing of sensory inputs.

  8. Altered cingulo-striatal function underlies reward drive deficits in schizophrenia.

    Science.gov (United States)

    Park, Il Ho; Chun, Ji Won; Park, Hae-Jeong; Koo, Min-Seong; Park, Sunyoung; Kim, Seok-Hyeong; Kim, Jae-Jin

    2015-02-01

    Amotivation in schizophrenia is assumed to involve dysfunctional dopaminergic signaling of reward prediction or anticipation. It is unclear, however, whether the translation of neural representation of reward value to behavioral drive is affected in schizophrenia. In order to examine how abnormal neural processing of response valuation and initiation affects incentive motivation in schizophrenia, we conducted functional MRI using a deterministic reinforcement learning task with variable intervals of contingency reversals in 20 clinically stable patients with schizophrenia and 20 healthy controls. Behaviorally, the advantage of positive over negative reinforcer in reinforcement-related responsiveness was not observed in patients. Patients showed altered response valuation and initiation-related striatal activity and deficient rostro-ventral anterior cingulate cortex activation during reward approach initiation. Among these neural abnormalities, rostro-ventral anterior cingulate cortex activation was correlated with positive reinforcement-related responsiveness in controls and social anhedonia and social amotivation subdomain scores in patients. Our findings indicate that the central role of the anterior cingulate cortex is in translating action value into driving force of action, and underscore the role of the cingulo-striatal network in amotivation in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Temporalis and masseter muscle activity in patients with anterior open bite and craniomandibular disorders

    DEFF Research Database (Denmark)

    Bakke, Merete; Michler, L

    1991-01-01

    values, particularly in subjects with muscular affection, but maximal activity increased significantly when biting on the splint. Maximal voluntary contraction was positively correlated to molar contact and negatively to anterior face height, mandibular inclination, vertical jaw relation and gonial angle......Activity in temporalis and masseter muscles, and traits of facial morphology and occlusal stability were studied in 22 patients (19 women, 3 men; 15-45 yr of age) with anterior open bite and symptoms and signs of craniomandibular disorders. Facial morphology was assessed by profile radiographs......, occlusal stability by tooth contacts, and craniomandibular function by clinical and radiological examination. Electromyographic activity was recorded by surface electrodes after primary treatment with a reflex-releasing, stabilizing splint. Maximal voluntary contraction was reduced compared to reference...

  10. Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients: a combined EEG study using LORETA and Omega complexity : reversible alterations of brain activity in OSAS.

    Science.gov (United States)

    Toth, Marton; Faludi, Bela; Kondakor, Istvan

    2012-10-01

    Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long

  11. Neural circuits of eye movements during performance of the visual exploration task, which is similar to the responsive search score task, in schizophrenia patients and normal subjects

    International Nuclear Information System (INIS)

    Nemoto, Yasundo; Matsuda, Tetsuya; Matsuura, Masato

    2004-01-01

    Abnormal exploratory eye movements have been studied as a biological marker for schizophrenia. Using functional MRI (fMRI), we investigated brain activations of 12 healthy and 8 schizophrenic subjects during performance of a visual exploration task that is similar to the responsive search score task to clarify the neural basis of the abnormal exploratory eye movement. Performance data, such as the number of eye movements, the reaction time, and the percentage of correct answers showed no significant differences between the two groups. Only the normal subjects showed activations at the bilateral thalamus and the left anterior medial frontal cortex during the visual exploration tasks. In contrast, only the schizophrenic subjects showed activations at the right anterior cingulate gyms during the same tasks. The activation at the different locations between the two groups, the left anterior medial frontal cortex in normal subjects and the right anterior cingulate gyrus in schizophrenia subjects, was explained by the feature of the visual tasks. Hypoactivation at the bilateral thalamus supports a dysfunctional filtering theory of schizophrenia. (author)

  12. Loss anticipation and outcome during the Monetary Incentive Delay Task: a neuroimaging systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Jules R. Dugré

    2018-05-01

    Full Text Available Background Reward seeking and avoidance of punishment are key motivational processes. Brain-imaging studies often use the Monetary Incentive Delay Task (MIDT to evaluate motivational processes involved in maladaptive behavior. Although the bulk of research has been done on the MIDT reward events, little is known about the neural basis of avoidance of punishment. Therefore, we conducted a meta-analysis of brain activations during anticipation and receipt of monetary losses in healthy controls. Methods All functional neuro-imaging studies using the MIDT in healthy controls were retrieved using PubMed, Google Scholar & EMBASE databases. Functional neuro-imaging data was analyzed using the Seed-based d Mapping Software. Results Thirty-five studies met the inclusion criteria, comprising 699 healthy adults. In both anticipation and loss outcome phases, participants showed large and robust activations in the bilateral striatum, (anterior insula, and anterior cingulate gyrus relatively to Loss > Neutral contrast. Although relatively similar activation patterns were observed during the two event types, they differed in the pattern of prefrontal activations: ventro-lateral prefrontal activations were observed during loss anticipation, while medial prefrontal activations were observed during loss receipt. Discussion Considering that previous meta-analyses highlighted activations in the medial prefrontal cortex/anterior cingulate cortex, the anterior insula and the ventral striatum, the current meta-analysis highlighted the potential specificity of the ventro-lateral prefrontal regions, the median cingulate cortex and the amygdala in the loss events. Future studies can rely on these latter results to examine the neural correlates of loss processing in psychiatric populations characterized by harm avoidance or insensitivity to punishment.

  13. Loss anticipation and outcome during the Monetary Incentive Delay Task: a neuroimaging systematic review and meta-analysis

    Science.gov (United States)

    Dugré, Jules R.; Dumais, Alexandre; Bitar, Nathalie

    2018-01-01

    Background Reward seeking and avoidance of punishment are key motivational processes. Brain-imaging studies often use the Monetary Incentive Delay Task (MIDT) to evaluate motivational processes involved in maladaptive behavior. Although the bulk of research has been done on the MIDT reward events, little is known about the neural basis of avoidance of punishment. Therefore, we conducted a meta-analysis of brain activations during anticipation and receipt of monetary losses in healthy controls. Methods All functional neuro-imaging studies using the MIDT in healthy controls were retrieved using PubMed, Google Scholar & EMBASE databases. Functional neuro-imaging data was analyzed using the Seed-based d Mapping Software. Results Thirty-five studies met the inclusion criteria, comprising 699 healthy adults. In both anticipation and loss outcome phases, participants showed large and robust activations in the bilateral striatum, (anterior) insula, and anterior cingulate gyrus relatively to Loss > Neutral contrast. Although relatively similar activation patterns were observed during the two event types, they differed in the pattern of prefrontal activations: ventro-lateral prefrontal activations were observed during loss anticipation, while medial prefrontal activations were observed during loss receipt. Discussion Considering that previous meta-analyses highlighted activations in the medial prefrontal cortex/anterior cingulate cortex, the anterior insula and the ventral striatum, the current meta-analysis highlighted the potential specificity of the ventro-lateral prefrontal regions, the median cingulate cortex and the amygdala in the loss events. Future studies can rely on these latter results to examine the neural correlates of loss processing in psychiatric populations characterized by harm avoidance or insensitivity to punishment. PMID:29761060

  14. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent

    Directory of Open Access Journals (Sweden)

    Angela eVandenberg

    2015-02-01

    Full Text Available The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSC and mEPSCs in Layer 5 cell-types in the mouse anterior cingulate across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral cingulate and ipsilateral pons. We found that YFP- neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21-25. YFP- neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21-25 vs. P40-50, which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB signaling during P23-50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs. Our data suggest that the maturation of inhibitory inputs onto layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.

  15. Brain activity in advantageous and disadvantageous situations: implications for reward/punishment sensitivity in different situations.

    Directory of Open Access Journals (Sweden)

    Guangheng Dong

    Full Text Available OBJECTIVE: This study modeled win and lose trials in a simple gambling task to examine the effect of entire win-lose situations (WIN, LOSS, or TIE on single win/lose trials and related neural underpinnings. METHODS: The behavior responses and brain activities of 17 participants were recorded by an MRI scanner while they performed a gambling task. Different conditions were compared to determine the effect of the task on the behavior and brain activity of the participants. Correlations between brain activity and behavior were calculated to support the imaging results. RESULTS: In win trials, LOSS caused less intense posterior cingulate activity than TIE. In lose trials, LOSS caused more intense activity in the right superior temporal gyrus, bilateral superior frontal gyrus, bilateral anterior cingulate, bilateral insula cortex, and left orbitofrontal cortex than WIN and TIE. CONCLUSIONS: The experiences of the participants in win trials showed great similarity among different win-lose situations. However, the brain activity and behavior responses of the participants in lose trials indicated that they experienced stronger negative emotion in LOSS. The participants also showed an increased desire to win in LOSS than in WIN or TIE conditions.

  16. Anterior/posterior competitive deactivation/activation dichotomy in the human hippocampus as revealed by a 3D navigation task.

    Directory of Open Access Journals (Sweden)

    Isabel Catarina Duarte

    Full Text Available Anterior/posterior long axis specialization is thought to underlie the organization of the hippocampus. However it remains unclear whether antagonistic mechanisms differentially modulate processing of spatial information within the hippocampus. We used fMRI and a virtual reality 3D paradigm to study encoding and retrieval of spatial memory during active visuospatial navigation, requiring positional encoding and retrieval of object landmarks during the path. Both encoding and retrieval elicited BOLD activation of the posterior most portion of hippocampus, while concurrent deactivations (recently shown to reflect decreases in neural responses were found in the most anterior regions. Encoding elicited stronger activity in the posterior right than the left hippocampus. The former structure also showed significantly stronger activity for allocentric vs. egocentric processing during retrieval. The anterior vs. posterior pattern mimics, from a functional point, although at much distinct temporal scales, the previous anatomical findings in London taxi drivers, whereby posterior enlargement was found at the cost of an anterior decrease, and the mirror symmetric findings observed in blind people, in whom the right anterior hippocampus was found to be larger, at the cost of a smaller posterior hippocampus, as compared with sighted people. In sum, we found a functional dichotomy whereby the anterior/posterior hippocampus shows antagonistic processing patterns for spatial encoding and retrieval of 3D spatial information. To our knowledge, this is the first study reporting such a dynamical pattern in a functional study, which suggests that differential modulation of neural responses within the human hippocampus reflects distinct roles in spatial memory processing.

  17. Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects.

    Science.gov (United States)

    Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui; Bull, Anthony M J

    2018-01-01

    The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.

  18. Inferior Frontal Gyrus Activity Triggers Anterior Insula Response to Emotional Facial Expressions

    NARCIS (Netherlands)

    Jabbi, Mbemba; Keysers, Christian

    2008-01-01

    The observation of movies of facial expressions of others has been shown to recruit similar areas involved in experiencing one's own emotions: the inferior frontal gyrus (IFG). the anterior insula and adjacent frontal operculum (IFO). The Causal link bet between activity in these 2 regions,

  19. Specific Changes in Brain Activity During Urgency in Women with Overactive Bladder after Successful Sacral Neuromodulation: An fMRI Study.

    Science.gov (United States)

    Weissbart, Steven J; Bhavsar, Rupal; Rao, Hengyi; Wein, Alan J; Detre, John A; Arya, Lily A; Smith, Ariana L

    2018-04-06

    The mechanism of sacral neuromodulation is poorly understood. We compared brain activity during urgency before and after sacral neuromodulation in women with overactive bladder and according to response to treatment. Women with refractory overactive bladder who elected for sacral neuromodulation were invited to undergo a functional magnetic resonance imaging exam before and after treatment. During the imaging exams, the bladder was filled until urgency was experienced. Regions of interest were identified a priori, and brain activity in these regions of interest was compared before and after treatment as well as according to treatment response. A whole brain exploratory analysis with an uncorrected voxel level threshold of pbrain regions that changed after sacral neuromodulation. Among 12 women who underwent a pretreatment functional magnetic resonance imaging exam, seven were successfully treated with sacral neuromodulation and underwent a posttreatment exam. After sacral neuromodulation, brain activity decreased in the left anterior cingulate cortex, bilateral insula, left dorsolateral prefrontal cortex and bilateral orbitofrontal cortex (all pbrain regions with increased activity after sacral neuromodulation. Pretreatment brain activity levels in the bilateral anterior cingulate cortex, right insula, bilateral dorsolateral prefrontal cortex, right orbitofrontal cortex, right supplementary motor area, and right sensorimotor cortex were higher in women who underwent successful treatment (all pBrain activity during urgency changes after successful sacral neuromodulation. Sacral neuromodulation may be more effective in women with higher levels of pretreatment brain activity during urgency. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Brain Activity and Functional Connectivity Associated with Hypnosis.

    Science.gov (United States)

    Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David

    2017-08-01

    Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer's disease

    International Nuclear Information System (INIS)

    Yetkin, F. Zerrin; Rosenberg, Roger N.; Weiner, Myron F.; Purdy, Phillip D.; Cullum, C. Munro

    2006-01-01

    The goals of this study were to evaluate brain activation in patients with probable Alzheimer's disease (AD), mild cognitive impairment (MCI), and controls while performing a working memory (WM) task. Eleven AD patients, ten MCI subjects, and nine controls underwent functional magnetic resonance imaging (fMRI) while performing a visual WM task. Statistical parametric maps of brain activation were obtained in each group, and group activation difference maps were generated. Ability to perform the task did not differ among the groups. Activation was observed in the parahippocampal region, superior-middle-inferior frontal gyri, parietal region, anterior-posterior cingulate, fusiform gyrus, and basal ganglia. MCI and AD groups showed more activation than the controls in the right superior frontal gyrus, bilateral middle temporal, middle frontal, anterior cingulate, and fusiform gyri. Activation in the right parahippocampal gyrus, left inferior frontal gyrus, bilateral cingulate and lingual gyri, right lentiform nucleus, right fusiform gyrus, and left supramarginal gyrus in the AD group was less than in the MCI group. The WM task evoked activation in widely distributed regions, consistent with previous fMRI studies. AD and MCI patients showed an increased extent of activation and recruitment of additional areas. (orig.)

  2. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study.

    Directory of Open Access Journals (Sweden)

    Kei Omata

    Full Text Available The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04-0.167 Hz and slow fluctuation (0-0.04 Hz. Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.

  3. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    Science.gov (United States)

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  4. Neurocognition and PET: strategies for data analysis in activation studies on working memory

    International Nuclear Information System (INIS)

    Hautzel, H.; Mottaghy, F.M.; Schmidt, D.; Mueller, H.-W.; Krause, B. J.

    2003-01-01

    Aim: In cognitive neuroscience regional cerebral blood flow (rCBF) imaging with positron-emission-tomography (PET) is a powerful tool to characterize different aspects of cognitive processes by using different data analysis approaches. By use of an n-back verbal working memory task (varied from 0- to 3-back) we present cognitive subtraction analysis as basic strategy as well as parametric and covariance analyses and discuss the results. Methods: Correlation analyses were performed using the individual performance rate as an external covariate, computing inter-regional correlations, an as network analysis applying structural equation modelling to evaluate the effective connectivity between the involved brain regions. Results: Subtraction analyses revealed a fronto-parietal neuronal network also including the anterior cingulate cortex and the cerebellum. With higher memory load the parametric analysis evidenced linear rCBF increases in prefrontal, pre-motor and inferior parietal areas including the precuneus as well as in the anterior cingulate cortex. The rCBF correlation with the individual performance as external covariate depicted negative correlations in bilateral prefrontal and inferior parietal regions, in the precuneus and the anterior cingulate cortex. The network analysis demonstrated mainly occipito-frontally directed interactions which were predominantly left-hemispheric. Additionally, strong linkages were found between extrastriate and parietal regions as well as within the parietal cortex. Conclusion: The data analysis approaches presented here contribute to an extended and more elaborated understanding of cognitive processes and their different sub-aspects. (orig.) [de

  5. 38 CFR 3.379 - Anterior poliomyelitis.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Anterior poliomyelitis. 3... Specific Diseases § 3.379 Anterior poliomyelitis. If the first manifestations of acute anterior poliomyelitis present themselves in a veteran within 35 days of termination of active military service, it is...

  6. Pain modulation in waking and hypnosis in women: event-related potentials and sources of cortical activity.

    Directory of Open Access Journals (Sweden)

    Vilfredo De Pascalis

    Full Text Available Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA method revealed significant activations of the bilateral primary somatosensory (BA3, middle frontal gyrus (BA6 and anterior cingulate cortices (BA24. Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32, while for the P200 wave, activity was increased in the superior (BA22, middle (BA37, inferior temporal (BA19 gyri and superior parietal lobule (BA7. Hypnotic hypoalgesia in

  7. Pain Modulation in Waking and Hypnosis in Women: Event-Related Potentials and Sources of Cortical Activity

    Science.gov (United States)

    De Pascalis, Vilfredo; Varriale, Vincenzo; Cacace, Immacolata

    2015-01-01

    Using a strict subject selection procedure, we tested in High and Low Hypnotizable subjects (HHs and LHs) whether treatments of hypoalgesia and hyperalgesia, as compared to a relaxation-control, differentially affected subjective pain ratings and somatosensory event-related potentials (SERPs) during painful electric stimulation. Treatments were administered in waking and hypnosis conditions. LHs showed little differentiation in pain and distress ratings between hypoalgesia and hyperalgesia treatments, whereas HHs showed a greater spread in the instructed direction. HHs had larger prefrontal N140 and P200 waves of the SERPs during hypnotic hyperalgesia as compared to relaxation-control treatment. Importantly, HHs showed significant smaller frontocentral N140 and frontotemporal P200 waves during hypnotic hypoalgesia. LHs did not show significant differences for these SERP waves among treatments in both waking and hypnosis conditions. Source localization (sLORETA) method revealed significant activations of the bilateral primary somatosensory (BA3), middle frontal gyrus (BA6) and anterior cingulate cortices (BA24). Activity of these contralateral regions significantly correlated with subjective numerical pain scores for control treatment in waking condition. Moreover, multivariate regression analyses distinguished the contralateral BA3 as the only region reflecting a stable pattern of pain coding changes across all treatments in waking and hypnosis conditions. More direct testing showed that hypnosis reduced the strength of the association of pain modulation and brain activity changes at BA3. sLORETA in HHs revealed, for the N140 wave, that during hypnotic hyperalgesia, there was an increased activity within medial, supramarginal and superior frontal gyri, and cingulated gyrus (BA32), while for the P200 wave, activity was increased in the superior (BA22), middle (BA37), inferior temporal (BA19) gyri and superior parietal lobule (BA7). Hypnotic hypoalgesia in HHs, for N

  8. The influence of experimental interfering occlusal contacts on the postural activity of the anterior temporal and masseter muscles in young adults.

    Science.gov (United States)

    Riise, C; Sheikholeslam, A

    1982-09-01

    The effects of an intercuspal occlusal interference on the pattern of postural activity of the anterior temporal and masseter muscles were studied in eleven volunteers with complete, natural dentitions. The results indicate that, in man, there is postural activity in the anterior temporal and sometimes in the masseter muscles. The pattern of postural activity is influenced by the occurrence of an experimental occlusal interference, sometimes as early as 1 h after the insertion. After 48 h there was a significant increase of the activity in the anterior temporal muscles. This increased activity persisted until the interference was removed 1 week later and had almost disappeared 1 week after the removal.

  9. Stimulus-Outcome Learnability Differentially Activates Anterior Cingulate and Hippocampus at Feedback Processing

    Science.gov (United States)

    Rodriguez, Paul F.

    2009-01-01

    Memory systems are known to be influenced by feedback and error processing, but it is not well known what aspects of outcome contingencies are related to different memory systems. Here we use the Rescorla-Wagner model to estimate prediction errors in an fMRI study of stimulus-outcome association learning. The conditional probabilities of outcomes…

  10. Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency

    NARCIS (Netherlands)

    Boerboom, AL; Hof, AL; Halbertsma, JPK; van Raaij, JJAM; Schenk, W; Diercks, RL; van Horn, [No Value; van Horn, J.R.

    Anterior cruciate ligament (ACL) deficiency may cause functional instability of the knee (noncopers), while other patients compensate and perform at the same level as before injury (copers). This pilot study investigated whether there is a compensatory electromyographic (EMG) activity of the

  11. Functional MRI studies in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Zhang Lei; Jin Zhen; Zeng Yawei; Wang Yan; Zang Yufeng

    2004-01-01

    Objective: To investigate the brain activation map during Go-NoGo tasks in children with attention deficit hyperactivity disorder (ADHD) and matched controls using functional MRI. Methods: Block designed BOLD functional MRI scan covering the whole brain was performed on 10 boys having ADHD and 11 healthy boys. The 2 groups were matched by age, sex, and handedness. Executing advanced inhibitory Go-NoGo tasks served as stimuli for all subjects. The fMRI data was analyzed by SPM99 (Statistical Parametric Mapping) software with statistic t-test to generate the activation map. Results: (1) The normal children showed significant activations in left thalamus and right cingulate gyrus and fewer activations in right middle frontal gyrus during stimulate controlled Go task, but the children with ADHD showed less activations in left thalamus. (2) In response controlled Go task, the normal children showed activations in right insula, cingulate gyrus and left frontal gyrus, while the ADHD children showed lower power of response in the right middle frontal gyrus.(3) In NoGo task, right middle frontal gyrus was the dominant activated regions, and left anterior cingulate, left middle frontal gyrus and right thalamus also had some activations in normal children, while the activations of right prefrontal decreased and the thalamus increased in ADHD boys. Conclusion: In children with ADHD, some dysfunctional brain areas, mainly the prefrontal lobe and anterior cingulate gyrus were found. Thalamus was also involved according to the brain activation map

  12. Functional MRI studies in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zhang; Zhen, Jin; Yawei, Zeng; Yan, Wang [fMRI Center, Lab of Cognition Science and Learning, National Education Ministry and Department of Radiology, 306 Hospital of PLA, Beijing (China); Yufeng, Zang

    2004-06-01

    Objective: To investigate the brain activation map during Go-NoGo tasks in children with attention deficit hyperactivity disorder (ADHD) and matched controls using functional MRI. Methods: Block designed BOLD functional MRI scan covering the whole brain was performed on 10 boys having ADHD and 11 healthy boys. The 2 groups were matched by age, sex, and handedness. Executing advanced inhibitory Go-NoGo tasks served as stimuli for all subjects. The fMRI data was analyzed by SPM99 (Statistical Parametric Mapping) software with statistic t-test to generate the activation map. Results: (1) The normal children showed significant activations in left thalamus and right cingulate gyrus and fewer activations in right middle frontal gyrus during stimulate controlled Go task, but the children with ADHD showed less activations in left thalamus. (2) In response controlled Go task, the normal children showed activations in right insula, cingulate gyrus and left frontal gyrus, while the ADHD children showed lower power of response in the right middle frontal gyrus.(3) In NoGo task, right middle frontal gyrus was the dominant activated regions, and left anterior cingulate, left middle frontal gyrus and right thalamus also had some activations in normal children, while the activations of right prefrontal decreased and the thalamus increased in ADHD boys. Conclusion: In children with ADHD, some dysfunctional brain areas, mainly the prefrontal lobe and anterior cingulate gyrus were found. Thalamus was also involved according to the brain activation map.

  13. Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex

    Science.gov (United States)

    Keidel, James L.; Ing, Leslie P.; Horner, Aidan J.

    2015-01-01

    It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or “schemas”). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature. SIGNIFICANCE STATEMENT Memories are strengthened via consolidation. We investigated memory for lifelike events using video clips and showed that rehearsing their content dramatically boosts memory consolidation. Using MRI scanning, we measured patterns of brain activity while

  14. Diurnal change in gonadotropic activity in cephalic and caudal lobes of anterior pituitary in capons

    International Nuclear Information System (INIS)

    Kamiyoshi, Michiharu; Yoshihara, Masato; Tanaka, Katuhide

    1977-01-01

    Two groups of male white leghorn chickens were raised under two light regimens after hatch, 14 hr (0500 - 1900 hours) and 8 hr (0500 - 1300 hours) lighting per day, respectively. Both groups were caponized at 4 weeks of the age. At 10 weeks of the age, the anterior pituitaries were excised at different times during 24 hr period, and the gonadotropic activities of the cephalic and caudal lobes of anterior pituitary were measured by the bioassay of 32 D-uptake in chick test. In the 14 hr lighting per day group, peak gonadotropic activity was observed at 1100 hour (6 hr of lighting) in both lobes, but in the 8 hr lighting per day group, no peak was observed. The diurnal change of pituitary gonadotropic activity may be related to the photoperiod. (Mori, K.)

  15. Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study.

    Science.gov (United States)

    Guo, Lili; Bai, Genji; Zhang, Hui; Lu, Daoyan; Zheng, Jiyong; Xu, Gang

    2017-12-01

    We aimed to analyze the association between resting-state functional magnetic resonance imaging (re-fMRI) and cognitive function (including language, executive, and memory functions) in temporal lobe epilepsy (TLE) patients, which will help to explore the mechanism of brain function in patients. 15 TLE patients and 15 non-TLE patients were recruited. All subjects underwent neuropsychological testing and memory functional evaluation. Changes in verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), full intelligence quotient (FIQ), and memory quotient (MQ) were compared between two groups. Re-fMRI data were also collected from two groups to evaluate these changes. Each individual score of neuropsychological testing and memory functional evaluation were higher in control group, which was statistically different (all P temporal gyrus back, right superior temporal gyrus, left cerebellum, left angular gyrus, left wedge anterior lobe, and left central back; while the negatively activated brain regions were left prefrontal, right cerebellum, right corner back, and right anterior cingulate gyrus. During the language task, the activated brain regions of the TLE patients were right prefrontal lobe, the lateral temporal gyri, the left cerebellum, left cornu laterale gyrus, left precuneus, and the left postcentral gyrus, whereas the negatively activated brain areas were the left prefrontal cortex, the right cerebellum, right cornu laterale gyrus, and the right anterior cingulate gyrus. During the executive task, epilepsy patients showed activation difference in right prefrontal and right frontal lobe and right brain, left superior temporal gyrus, and right cerebellum anterior lobe compared with the control group; no negatively activated differences in brain areas. During the memory task, the difference lay in bilateral anterior cingulate gyrus and bilateral wedge anterior lobe while the negatively activated brain areas were the left inferior frontal

  16. [Psychotherapy of Depression as Neurobiological Process - Evidence from Neuroimaging].

    Science.gov (United States)

    Rubart, Antonie; Hohagen, Fritz; Zurowski, Bartosz

    2018-06-01

    Research on neurobiological effects of psychotherapy in depression facilitates the improvement of treatment strategies. The cortico-limbic dysregulation model serves as a framework for numerous studies on neurobiological changes in depression. In this model, depression is described as hypoactivation of dorsal cortical brain regions in conjunction with hyperactivation of ventral paralimbic regions. This assumption has been supported by various studies of structural and functional brain abnormalities in depression. However, also regions not included in the original cortico-limbic dysregulation model, such as the dorsomedial prefrontal cortex, seem to play an important role in depression. Functional connectivity studies of depression have revealed an enhanced connectivity within the so-called default mode network which is involved in self-referential thinking. Studies also point to a normalization of limbic and cortical brain activity, especially in the anterior cingulate cortex, during psychotherapy. Some neurobiological markers like the activity of the anterior cingulate cortex, striatum and insula as well as hippocampal volume have been proposed to predict treatment response on a group-level. The activity of the anterior insula appears to be a candidate bio-marker for differential indication for psychotherapy or pharmacotherapy. The cortico-limbic dysregulation model and following research have inspired new forms of treatment for depression like deep brain stimulation of the subgenual anterior cingulate cortex, repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex, neurofeedback and attention training. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Transient Global Amnesia Associated with an Acute Infarction at the Cingulate Gyrus

    Directory of Open Access Journals (Sweden)

    Alejandro Gallardo-Tur

    2014-01-01

    Full Text Available Background. Transient global amnesia (TGA is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct.

  18. Emotional valence modulates brain functional abnormalities in depression : Evidence from a meta-analysis of fMRI studies

    NARCIS (Netherlands)

    Groenewold, Nynke A.; Opmeer, Esther M.; de Jonge, Peter; Aleman, Andre; Costafreda, Sergi G.

    Models describing the neural correlates of biased emotion processing in depression have focused on increased activation of anterior cingulate and amygdala and decreased activation of striatum and dorsolateral prefrontal cortex. However, neuroimaging studies investigating emotion processing in

  19. Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks.

    Science.gov (United States)

    Wilson-Mendenhall, Christine D; Barrett, Lisa Feldman; Barsalou, Lawrence W

    2015-01-01

    The tremendous variability within categories of human emotional experience receives little empirical attention. We hypothesized that atypical instances of emotion categories (e.g. pleasant fear of thrill-seeking) would be processed less efficiently than typical instances of emotion categories (e.g. unpleasant fear of violent threat) in large-scale brain networks. During a novel fMRI paradigm, participants immersed themselves in scenarios designed to induce atypical and typical experiences of fear, sadness or happiness (scenario immersion), and then focused on and rated the pleasant or unpleasant feeling that emerged (valence focus) in most trials. As predicted, reliably greater activity in the 'default mode' network (including medial prefrontal cortex and posterior cingulate) was observed for atypical (vs typical) emotional experiences during scenario immersion, suggesting atypical instances require greater conceptual processing to situate the socio-emotional experience. During valence focus, reliably greater activity was observed for atypical (vs typical) emotional experiences in the 'salience' network (including anterior insula and anterior cingulate), suggesting atypical instances place greater demands on integrating shifting body signals with the sensory and social context. Consistent with emerging psychological construction approaches to emotion, these findings demonstrate that is it important to study the variability within common categories of emotional experience. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    Science.gov (United States)

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  1. Structural and functional differences in the cingulate cortex relate to disease severity in anorexia nervosa

    Science.gov (United States)

    Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd

    2015-01-01

    Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of

  2. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer's disease by means of H215O positron emission tomography

    International Nuclear Information System (INIS)

    Ishii, Kazunari; Sasaki, Masahiro; Yamaji, Shigeru; Sakamoto, Setsu; Kitagaki, Hajime; Mori, Etsuro

    1997-01-01

    Although decreased posterior cingulate metabolism in Alzheimer's disease (AD) has been previously reported, there have been no reports on posterior cingulate perfusion. In this study we evaluated posterior cingulate perfusion as a relative value using statistical parametric maps (SPMs) and as an absolute value using conventional region of interest (ROI) settings. Twenty-eight subjects, including 14 patients with mild AD (mean age: 66.4±12.1 years) and 14 normal controls (65.9±7.3 years) were studied. Regional cerebral blood flow (CBF) was measured with H 2 15 O and positron emission tomography (PET). In the SPM analysis, the left posterior cingulate and left parietotemporal CBFs were significantly decreased in the patients with mild AD (P<0.001). At a lower statistical threshold (P<0.05), the right posterior cingulate and right parietotemporal CBFs were also significantly decreased in the AD patients. In the ROI studies, the left parietal and posterior cingulate CBFs in the patients with mild AD were significantly lower than those of the normal controls by analysis of variance and post-hoc Scheffe's test (P<0.001). We conclude that posterior cingulate perfusion is decreased in mild AD, reflecting the pathological changes and metabolic reduction in the posterior cingulate gyrus that have previously been reported to occur in mild AD. (orig.). With 1 fig., 2 tabs

  3. Frontolimbic neural circuit changes in emotional processing and inhibitory control associated with clinical improvement following transference-focused psychotherapy in borderline personality disorder.

    Science.gov (United States)

    Perez, David L; Vago, David R; Pan, Hong; Root, James; Tuescher, Oliver; Fuchs, Benjamin H; Leung, Lorene; Epstein, Jane; Cain, Nicole M; Clarkin, John F; Lenzenweger, Mark F; Kernberg, Otto F; Levy, Kenneth N; Silbersweig, David A; Stern, Emily

    2016-01-01

    Borderline personality disorder (BPD) is characterized by self-regulation deficits, including impulsivity and affective lability. Transference-focused psychotherapy (TFP) is an evidence-based treatment proven to reduce symptoms across multiple cognitive-emotional domains in BPD. This pilot study aimed to investigate neural activation associated with, and predictive of, clinical improvement in emotional and behavioral regulation in BPD following TFP. BPD subjects (n = 10) were scanned pre- and post-TFP treatment using a within-subjects design. A disorder-specific emotional-linguistic go/no-go functional magnetic resonance imaging paradigm was used to probe the interaction between negative emotional processing and inhibitory control. Analyses demonstrated significant treatment-related effects with relative increased dorsal prefrontal (dorsal anterior cingulate, dorsolateral prefrontal, and frontopolar cortices) activation, and relative decreased ventrolateral prefrontal cortex and hippocampal activation following treatment. Clinical improvement in constraint correlated positively with relative increased left dorsal anterior cingulate cortex activation. Clinical improvement in affective lability correlated positively with left posterior-medial orbitofrontal cortex/ventral striatum activation, and negatively with right amygdala/parahippocampal activation. Post-treatment improvements in constraint were predicted by pre-treatment right dorsal anterior cingulate cortex hypoactivation, and pre-treatment left posterior-medial orbitofrontal cortex/ventral striatum hypoactivation predicted improvements in affective lability. These preliminary findings demonstrate potential TFP-associated alterations in frontolimbic circuitry and begin to identify neural mechanisms associated with a psychodynamically oriented psychotherapy. © 2015 The Authors. Psychiatry and Clinical Neurosciences © 2015 Japanese Society of Psychiatry and Neurology.

  4. Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma.

    Directory of Open Access Journals (Sweden)

    Shaojia Lu

    Full Text Available BACKGROUND: Preclinical studies have demonstrated the relationship between stress-induced increased cortisol levels and atrophy of specific brain regions, however, this association has been less revealed in clinical samples. The aim of the present study was to investigate the changes and associations of the hypothalamic-pituitary-adrenal (HPA axis activity and gray matter volumes in young healthy adults with self-reported childhood trauma exposures. METHODS: Twenty four healthy adults with childhood trauma and 24 age- and gender-matched individuals without childhood trauma were recruited. Each participant collected salivary samples in the morning at four time points: immediately upon awakening, 30, 45, and 60 min after awakening for the assessment of cortisol awakening response (CAR. The 3D T1-weighted magnetic resonance imaging data were obtained on a Philips 3.0 Tesla scanner. Voxel-based morphometry analyses were conducted to compare the gray matter volume between two groups. Correlations of gray matter volume changes with severity of childhood trauma and CAR data were further analyzed. RESULTS: Adults with self-reported childhood trauma showed an enhanced CAR and decreased gray matter volume in the right middle cingulate gyrus. Moreover, a significant association was observed between salivary cortisol secretions after awaking and the right middle cingulate gyrus volume reduction in subjects with childhood trauma. CONCLUSIONS: The present research outcomes suggest that childhood trauma is associated with hyperactivity of the HPA axis and decreased gray matter volume in the right middle cingulate gyrus, which may represent the vulnerability for developing psychosis after childhood trauma experiences. In addition, this study demonstrates that gray matter loss in the cingulate gyrus is related to increased cortisol levels.

  5. Neural correlates of the classic color and emotional stroop in women with abuse-related posttraumatic stress disorder.

    Science.gov (United States)

    Bremner, J Douglas; Vermetten, Eric; Vythilingam, Meena; Afzal, Nadeem; Schmahl, Christian; Elzinga, Bernet; Charney, Dennis S

    2004-03-15

    The anterior cingulate and medial prefrontal cortex play an important role in the inhibition of responses, as measured by the Stroop task, as well as in emotional regulation. Dysfunction of the anterior cingulate/medial prefrontal cortex has been implicated in posttraumatic stress disorder (PTSD). The purpose of this study was to use the Stroop task as a probe of anterior cingulate function in PTSD. Women with early childhood sexual abuse-related PTSD (n = 12) and women with abuse but without PTSD (n = 9) underwent positron emission tomographic measurement of cerebral blood flow during exposure to control, color Stroop, and emotional Stroop conditions. Women with abuse with PTSD (but not abused non-PTSD women) had a relative decrease in anterior cingulate blood flow during exposure to the emotional (but not color) classic Stroop task. During the color Stroop there were also relatively greater increases in blood flow in non-PTSD compared with PTSD women in right visual association cortex, cuneus, and right inferior parietal lobule. These findings add further evidence for dysfunction of a network of brain regions, including anterior cingulate and visual and parietal cortex, in abuse-related PTSD.

  6. Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex.

    Science.gov (United States)

    Toledo-Rodriguez, Maria; Pitiot, Alain; Paus, Tomáš; Sandi, Carmen

    2012-07-01

    Adolescence is characterized by major developmental changes that may render the individual vulnerable to stress and the development of psychopathologies in a sex-specific manner. Earlier we reported lower anxiety-like behavior and higher risk-taking and novelty seeking in rats previously exposed to peri-pubertal stress. Here we studied whether peri-pubertal stress affected the acquisition and extinction of fear memories and/or the associated functional engagement of various brain regions, as assessed with 2-deoxyglucose. We showed that while peri-pubertal stress reduced freezing during the acquisition of fear memories (training) in both sexes, it had a sex-specific effect on extinction of these memories. Moreover hippocampus, basal amygdala and cingulate and motor cortices showed higher metabolic rates during extinction in rats exposed to peri-pubertal stress. Interestingly, activation of the infralimbic cortex was negatively correlated with freezing during extinction only in control males, while only males stressed during puberty showed a significant correlation between behavior during extinction and metabolic activation of hippocampus, amygdala and paraventricular nucleus. No correlations between brain activation and behavior during extinction were observed in females (control or stress). These results indicate that exposure to peri-pubertal stress affects behavior and brain metabolism when the individual is exposed to an additional stressful challenge. Some of these effects are sex-specific. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Cue-Induced Brain Activation in Chronic Ketamine-Dependent Subjects, Cigarette Smokers, and Healthy Controls: A Task Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Yanhui Liao

    2018-03-01

    Full Text Available BackgroundObservations of drug-related cues may induce craving in drug-dependent patients, prompting compulsive drug-seeking behavior. Sexual dysfunction is common in drug users. The aim of the study was to examine regional brain activation to drug (ketamine, cigarette smoking associated cues and natural (sexual rewards.MethodsA sample of 129 [40 ketamine use smokers (KUS, 45 non-ketamine use smokers (NKUS and 44 non-ketamine use non-smoking healthy controls (HC] participants underwent functional magnetic resonance imaging (fMRI while viewing ketamine use related, smoking and sexual films.ResultsWe found that KUS showed significant increased activation in anterior cingulate cortex and precuneus in response to ketamine cues. Ketamine users (KUS showed lower activation in cerebellum and middle temporal cortex compared with non-ketamine users (NKUS and HC in response to sexual cues. Smokers (KUS and NKUS showed higher activation in the right precentral frontal cortex in response to smoking cues. Non-ketamine users (NKUS and HC showed significantly increased activation of cerebellum and middle temporal cortex while viewing sexual cues.ConclusionThese findings clearly show the engagement of distinct neural circuitry for drug-related stimuli in chronic ketamine users. While smokers (both KUS and NKUS showed overlapping differences in activation for smoking cues, the former group showed a specific neural response to relevant (i.e., ketamine-related cues. In particular, the heightened response in anterior cingulate cortex may have important implications for how attentionally salient such cues are in this group. Ketamine users (KUS showed lower activation in response to sexual cues may partly reflect the neural basis of sexual dysfunction.

  8. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal.

    Science.gov (United States)

    Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio

    2013-12-01

    Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  9. Response to the Dorsal Anterior Gradient of EGFR Signaling in Drosophila Oogenesis Is Prepatterned by Earlier Posterior EGFR Activation

    Directory of Open Access Journals (Sweden)

    Mariana Fregoso Lomas

    2013-08-01

    Full Text Available Spatially restricted epidermal growth factor receptor (EGFR activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.

  10. Self-identification and empathy modulate error-related brain activity during the observation of penalty shots between friend and foe

    Science.gov (United States)

    Ganesh, Shanti; van Schie, Hein T.; De Bruijn, Ellen R. A.; Bekkering, Harold

    2009-01-01

    The ability to detect and process errors made by others plays an important role is many social contexts. The capacity to process errors is typically found to rely on sites in the medial frontal cortex. However, it remains to be determined whether responses at these sites are driven primarily by action errors themselves or by the affective consequences normally associated with their commission. Using an experimental paradigm that disentangles action errors and the valence of their affective consequences, we demonstrate that sites in the medial frontal cortex (MFC), including the ventral anterior cingulate cortex (vACC) and pre-supplementary motor area (pre-SMA), respond to action errors independent of the valence of their consequences. The strength of this response was negatively correlated with the empathic concern subscale of the Interpersonal Reactivity Index. We also demonstrate a main effect of self-identification by showing that errors committed by friends and foes elicited significantly different BOLD responses in a separate region of the middle anterior cingulate cortex (mACC). These results suggest that the way we look at others plays a critical role in determining patterns of brain activation during error observation. These findings may have important implications for general theories of error processing. PMID:19015079

  11. Cannabis abstinence during treatment and one-year follow-up: relationship to neural activity in men.

    Science.gov (United States)

    Kober, Hedy; DeVito, Elise E; DeLeone, Cameron M; Carroll, Kathleen M; Potenza, Marc N

    2014-09-01

    Cannabis is among the most frequently abused substances in the United States. Cognitive control is a contributory factor in the maintenance of substance-use disorders and may relate to treatment response. Therefore, we assessed whether cognitive-control-related neural activity before treatment differs between treatment-seeking cannabis-dependent and healthy individuals and relates to cannabis-abstinence measures during treatment and 1-year follow-up. Cannabis-dependent males (N=20) completed a functional magnetic resonance imaging (fMRI) cognitive-control (Stroop) task before a 12-week randomized controlled trial of cognitive-behavioral therapy and/or contingency management. A healthy-comparison group (N=20) also completed the fMRI task. Cannabis use was assessed by urine toxicology and self-report during treatment, and by self-report across a 1-year follow-up period (N=18). The cannabis-dependent group displayed diminished Stroop-related neural activity relative to the healthy-comparison group in multiple regions, including those strongly implicated in cognitive-control and addiction-related processes (eg, dorsolateral prefrontal cortex and ventral striatum). The groups did not differ significantly in response times (cannabis-dependent, N=12; healthy-comparison, N=14). Within the cannabis-dependent group, greater Stroop-related activity in regions including the dorsal anterior cingulate cortex was associated with less cannabis use during treatment. Greater activity in regions including the ventral striatum was associated with less cannabis use during 1-year posttreatment follow-up. These data suggest that lower cognitive-control-related neural activity in classic 'control' regions (eg, dorsolateral prefrontal cortex and dorsal anterior cingulate) and classic 'salience/reward/learning' regions (eg, ventral striatum) differentiates cannabis-dependent individuals from healthy individuals and relates to less abstinence within-treatment and during long-term follow

  12. Asterixis in the leg induced by anterior cerebral artery infarction.

    Science.gov (United States)

    Sunwoo, Mun Kyung; Jang, Hyun-Soon; Roh, Sook Young; Yoo, Hyun Jung; Jeong, Eun Hye; Kim, Byung-Su; Choe, Yeo Reum; Lee, Ko-Eun

    2016-06-01

    Asterixis commonly occurs in a patient with metabolic encephalopathy, whereas focal brain lesions such as thalamus, cerebellum, or frontal area also cause focal or unilateral asterixis in the arms. We report a novel case of asterixis in the leg after unilateral anterior cerebral artery territory infarction. A 76-year-old man was admitted with sudden-onset mild right leg weakness and postural instability due to knee buckling. He was diagnosed with ischemic stroke in the left prefrontal area and cingulated gyrus by brain magnetic imaging. Needle electromyography of the right vastus lateralis muscle while standing showed intermittent periods of EMG silence, consistent with asterixis. There were no abnormal involuntary movements in the upper extremities. This case suggests that gait disturbance or postural instability after structural lesions in the prefrontal area may be directly related to asterixis in the leg, not in the arm associated with postural failure.

  13. Co-occurring anxiety influences patterns of brain activity in depression.

    Science.gov (United States)

    Engels, Anna S; Heller, Wendy; Spielberg, Jeffrey M; Warren, Stacie L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-03-01

    Brain activation associated with anhedonic depression and co-occurring anxious arousal and anxious apprehension was measured by fMRI during performance of an emotion word Stroop task. Consistent with EEG findings, depression was associated with rightward frontal lateralization in the dorsolateral prefrontal cortex (DLPFC), but only when anxious arousal was elevated and anxious apprehension was low. Activity in the right inferior frontal gyrus (IFG) was also reduced for depression under the same conditions. In contrast, depression was associated with more activity in the anterior cingulate cortex (dorsal ACC and rostral ACC) and the bilateral amygdala. Results imply that depression, particularly when accompanied by anxious arousal, may result in a failure to implement top-down processing by appropriate brain regions (left DLPFC, right IFG) due to increased activation in regions associated with responding to emotionally salient information (right DLPFC, amygdala).

  14. Abnormal brain activation in excoriation (skin-picking) disorder

    DEFF Research Database (Denmark)

    Odlaug, Brian L.; Hampshire, Adam; Chamberlain, Samuel R

    2016-01-01

    Background: Excoriation (skin-picking) disorder (SPD) is a relatively common psychiatric condition whose neurobiological basis is unknown. Aims: To probe the function of fronto-striatal circuitry in SPD. Method: Eighteen participants with SPD and 15 matched healthy controls undertook an executive...... encompassing bilateral dorsal striatum (maximal in right caudate), bilateral anterior cingulate and right medial frontal regions. These abnormalities were, for the most part, outside the dorsal planning network typically activated by executive planning tasks. Conclusions: Abnormalities of neural regions...... involved in habit formation, action monitoring and inhibition appear involved in the pathophysiology of SPD. Implications exist for understanding the basis of excessive grooming and the relationship of SPD with putative obsessive-compulsive spectrum disorders....

  15. Functional Activation and Effective Connectivity Differences in Adolescent Marijuana Users Performing a Simulated Gambling Task

    Directory of Open Access Journals (Sweden)

    Ashley Acheson

    2015-01-01

    Full Text Available Background. Adolescent marijuana use is associated with structural and functional differences in forebrain regions while performing memory and attention tasks. In the present study, we investigated neural processing in adolescent marijuana users experiencing rewards and losses. Fourteen adolescents with frequent marijuana use (>5 uses per week and 14 nonuser controls performed a computer task where they were required to guess the outcome of a simulated coin flip while undergoing magnetic resonance imaging. Results. Across all participants, “Wins” and “Losses” were associated with activations including cingulate, middle frontal, superior frontal, and inferior frontal gyri and declive activations. Relative to controls, users had greater activity in the middle and inferior frontal gyri, caudate, and claustrum during “Wins” and greater activity in the anterior and posterior cingulate, middle frontal gyrus, insula, claustrum, and declive during “Losses.” Effective connectivity analyses revealed similar overall network interactions among these regions for users and controls during both “Wins” and “Losses.” However, users and controls had significantly different causal interactions for 10 out of 28 individual paths during the “Losses” condition. Conclusions. Collectively, these results indicate adolescent marijuana users have enhanced neural responses to simulated monetary rewards and losses and relatively subtle differences in effective connectivity.

  16. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects.

    Directory of Open Access Journals (Sweden)

    Jae Joon Han

    Full Text Available Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC and left orbitofrontal cortex (OFC, between the left AC and left subgenual anterior cingulate cortex (sgACC for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of "circuit-breaker" activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.

  17. Approach-avoidance activation without anterior asymmetry

    Directory of Open Access Journals (Sweden)

    Andero eUusberg

    2014-03-01

    Full Text Available Occasionally, the expected effects of approach-avoidance motivation on anterior EEG alpha asymmetry fail to emerge, particularly in studies using affective picture stimuli. These null findings have been explained by insufficient motivational intensity of, and/or overshadowing interindividual variability within the responses to emotional pictures. These explanations were systematically tested using data from 70 students watching 5 types of affective pictures ranging from very pleasant to unpleasant. The stimulus categories reliably modulated self-reports as well as the amplitude of late positive potential, an ERP component reflecting orienting towards motivationally significant stimuli. The stimuli did not, however, induce expected asymmetry effects either for the sample or individual participants. Even while systematic stimulus-dependent individual differences emerged in self-reports as well as LPP amplitudes, the asymmetry variability was dominated by stimulus-independent interindividual variability. Taken together with previous findings, these results suggest that under some circumstances anterior asymmetry may not be an inevitable consequence of core affect. Instead, state asymmetry shifts may be overpowered by stable trait asymmetry differences and/or stimulus-independent yet situation-dependent interindividual variability, possibly caused by processes such as emotion regulation or anxious apprehension.

  18. Assessing the Psychedelic “After-Glow” in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities

    Science.gov (United States)

    Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda

    2017-01-01

    Abstract Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the “nonjudging” subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default

  19. Assessing the Psychedelic "After-Glow" in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities.

    Science.gov (United States)

    Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda; Riba, Jordi

    2017-09-01

    Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the

  20. Brain substrates of social decision-making in dual diagnosis: cocaine dependence and personality disorders.

    Science.gov (United States)

    Verdejo-Garcia, Antonio; Verdejo-Román, Juan; Albein-Urios, Natalia; Martínez-González, José M; Soriano-Mas, Carles

    2017-03-01

    Cocaine dependence frequently co-occurs with personality disorders, leading to increased interpersonal problems and greater burden of disease. Personality disorders are characterised by patterns of thinking and feeling that divert from social expectations. However, the comorbidity between cocaine dependence and personality disorders has not been substantiated by measures of brain activation during social decision-making. We applied functional magnetic resonance imaging to compare brain activations evoked by a social decision-making task-the Ultimatum Game-in 24 cocaine dependents with personality disorders (CDPD), 19 cocaine dependents without comorbidities and 19 healthy controls. In the Ultimatum Game participants had to accept or reject bids made by another player to split monetary stakes. Offers varied in fairness (in fair offers the proposer shares ~50 percent of the money; in unfair offers the proposer shares <30 percent of the money), and participants were told that if they accept both players get the money, and if they reject both players lose it. We contrasted brain activations during unfair versus fair offers and accept versus reject choices. During evaluation of unfair offers CDPD displayed lower activation in the insula and the anterior cingulate cortex and higher activation in the lateral orbitofrontal cortex and superior frontal and temporal gyri. Frontal activations negatively correlated with emotion recognition. During rejection of offers CDPD displayed lower activation in the anterior cingulate cortex, striatum and midbrain. Dual diagnosis is linked to hypo-activation of the insula and anterior cingulate cortex and hyper-activation of frontal-temporal regions during social decision-making, which associates with poorer emotion recognition. © 2015 Society for the Study of Addiction.

  1. Pilot study: is the fear response the same in anorexia nervosa as in controls?

    Science.gov (United States)

    Birmingham, C Laird; Sidhu, Shelley; Anderson, John

    2018-03-14

    To determine whether the fear response is the same in AN as in controls. We recorded the EEG in 10 participants with a history of AN and in 10 controls during a fear stimulus. The response of the brain was recorded using EEG LORETA. The recording was analyzed for a marked increase in activity in the amygdala, uncus, insula, and anterior cingulate from 300 to 500 ms following the stimulus. The order or response of the amygdala, uncus, insula, and anterior cingulate was not significantly different in AN and controls. These results suggest that the brain's response to a fear stimulus is not significantly different in AN and controls. Level 3, case-control study.

  2. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    Science.gov (United States)

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  3. Mining the posterior cingulate: Segregation between memory and pain components

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2005-01-01

    We present a general method for automatic meta-analyses in neuroscience and apply it on text data from published functional imaging studies to extract main functions associated with a brain area --- the posterior cingulate cortex. Abstracts from PubMed are downloaded, words extracted and converted...

  4. A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression.

    Science.gov (United States)

    Diener, Carsten; Kuehner, Christine; Brusniak, Wencke; Ubl, Bettina; Wessa, Michèle; Flor, Herta

    2012-07-02

    Major depressive disorder (MDD) is characterized by altered emotional and cognitive functioning. We performed a voxel-based whole-brain meta-analysis of functional neuroimaging data on altered emotion and cognition in MDD. Forty peer-reviewed studies in English-language published between 1998 and 2010 were included, which used functional neuroimaging during cognitive-emotional challenge in adult individuals with MDD and healthy controls. All studies reported between-groups differences for whole-brain analyses in standardized neuroanatomical space and were subjected to Activation Likelihood Estimation (ALE) of brain cluster showing altered responsivity in MDD. ALE resulted in thresholded and false discovery rate corrected hypo- and hyperactive brain regions. Against the background of a complex neural activation pattern, studies converged in predominantly hypoactive cluster in the anterior insular and rostral anterior cingulate cortex linked to affectively biased information processing and poor cognitive control. Frontal areas showed not only similar under- but also over-activation during cognitive-emotional challenge. On the subcortical level, we identified activation alterations in the thalamus and striatum which were involved in biased valence processing of emotional stimuli in MDD. These results for active conditions extend findings from ALE meta-analyses of resting state and antidepressant treatment studies and emphasize the key role of the anterior insular and rostral anterior cingulate cortex for altered emotion and cognition in MDD. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Overlapping neural response to the pain or harm of people, animals, and nature.

    Science.gov (United States)

    Mathur, Vani A; Cheon, Bobby K; Harada, Tokiko; Scimeca, Jason M; Chiao, Joan Y

    2016-01-29

    Interpersonal pain perception is a fundamental and evolutionarily beneficial social process. While critical for navigating the social world, whether or not people rely on similar processes to perceive and respond to the harm of the non-human biological world remains largely unknown. Here we investigate whether neural reactivity toward the suffering of other people is distinct from or overlapping with the neural response to pain and harm inflicted upon non-human entities, specifically animals and nature. We used fMRI to measure neural activity while participants (n=15) perceived and reported how badly they felt for the pain or harm of humans, animals, and nature, relative to neutral situations. Neural regions associated with perceiving the pain of other people (e.g. dorsal anterior cingulate cortex, bilateral anterior insula) were similarly recruited when perceiving and responding to painful scenes across people, animals, and nature. These results suggest that similar brain responses are relied upon when perceiving the harm of social and non-social biological entities, broadly construed, and that activity within the dorsal anterior cingulate cortex and bilateral anterior insula in response to pain-relevant stimuli is not uniquely specific to humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Filtering the reality: functional dissociation of lateral and medial pain systems during sleep in humans.

    Science.gov (United States)

    Bastuji, Hélène; Mazza, Stéphanie; Perchet, Caroline; Frot, Maud; Mauguière, François; Magnin, Michel; Garcia-Larrea, Luis

    2012-11-01

    Behavioral reactions to sensory stimuli during sleep are scarce despite preservation of sizeable cortical responses. To further understand such dissociation, we recorded intracortical field potentials to painful laser pulses in humans during waking and all-night sleep. Recordings were obtained from the three cortical structures receiving 95% of the spinothalamic cortical input in primates, namely the parietal operculum, posterior insula, and mid-anterior cingulate cortex. The dynamics of responses during sleep differed among cortical sites. In sleep Stage 2, evoked potential amplitudes were similarly attenuated relative to waking in all three cortical regions. During paradoxical, or rapid eye movements (REM), sleep, opercular and insular potentials remained stable in comparison with Stage 2, whereas the responses from mid-anterior cingulate abated drastically, and decreasing below background noise in half of the subjects. Thus, while the lateral operculo-insular system subserving sensory analysis of somatic stimuli remained active during paradoxical-REM sleep, mid-anterior cingulate processes related to orienting and avoidance behavior were suppressed. Dissociation between sensory and orienting-motor networks might explain why nociceptive stimuli can be either neglected or incorporated into dreams without awakening the subject. Copyright © 2011 Wiley Periodicals, Inc.

  7. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The Neuroeconomics of Tobacco Demand: An Initial Investigation of the Neural Correlates of Cigarette Cost-Benefit Decision Making in Male Smokers.

    Science.gov (United States)

    Gray, Joshua C; Amlung, Michael T; Owens, Max; Acker, John; Brown, Courtney L; Brody, Gene H; Sweet, Lawrence H; MacKillop, James

    2017-02-03

    How the brain processes cigarette cost-benefit decision making remains largely unknown. Using functional magnetic resonance imaging (fMRI), this study investigated the neural correlates of decisions for cigarettes (0-10 cigarettes) at varying levels of price during a Cigarette Purchase Task (CPT) in male regular smokers (N = 35). Differential neural activity was examined between choices classified as inelastic, elastic, and suppressed demand, operationalized as consumption unaffected by cost, partially suppressed by cost, and entirely suppressed by cost, respectively. Decisions reflecting elastic demand, putatively the most effortful decisions, elicited greater activation in regions associated with inhibition and planning (e.g., middle frontal gyrus and inferior frontal gyrus), craving and interoceptive processing (anterior insula), and conflict monitoring (e.g., anterior cingulate cortex). Exploratory examination in a harmonized dataset of both cigarette and alcohol demand (N = 59) suggested common neural activation patterns across commodities, particularly in the anterior insula, caudate, anterior cingulate, medial frontal gyrus, and dorsolateral prefrontal cortex. Collectively, these findings provide initial validation of a CPT fMRI paradigm; reveal the interplay of brain regions associated with executive functioning, incentive salience, and interoceptive processing in cigarette decision making; and add to the literature implicating the insula as a key brain region in addiction.

  10. Neural responses during social and self-knowledge tasks in bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Carrie J Mcadams

    2013-09-01

    Full Text Available Self-evaluation closely dependent upon body shape and weight is one of the defining criteria for bulimia nervosa. We studied 53 adult women, 17 with bulimia nervosa, 18 with a recent history of anorexia nervosa, and 18 healthy comparison women, using three different fMRI tasks that required thinking about self-knowledge and social interactions: the Social Identity task, the Physical Identity task, and the Social Attribution task. Previously, we identified regions of interest (ROI in the same tasks using whole brain voxel-wise comparisons of the healthy comparison women and women with a recent history of anorexia nervosa. Here, we report on the neural activations in those ROIs in subjects with bulimia nervosa. In the Social Attribution task, we examined activity in the right temporoparietal junction, an area frequently associated with mentalization. In the Social Identity task, we examined activity in the precuneus and dorsal anterior cingulate. In the Physical Identity task, we examined activity in a ventral region of the dorsal anterior cingulate. Interestingly, in all tested regions, the average activation in subjects with bulimia was more than the average activation levels seen in the subjects with a history of anorexia but less than that seen in healthy subjects. In three regions, the right temporoparietal junction, the precuneus, and the dorsal anterior cingulate, group responses in the subjects with bulimia were significantly different from healthy subjects but not subjects with anorexia. The neural activations of people with bulimia nervosa performing fMRI tasks engaging social processing are more similar to people with anorexia nervosa than healthy people. This suggests biological measures of social processes may be helpful in characterizing individuals with eating disorders.

  11. Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.

    Science.gov (United States)

    Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J

    2017-04-01

    Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Measuring the volume of cingulate cortex in Chinese normal adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Zhang Chao; Chen Nan; Wang Xing; Li Kuncheng; Zhou Xin; Zhuo Yan; Chen Lin

    2010-01-01

    Objective: To explore the normal range of cingulate cortex volumes of Chinese adults of the Han nationality and its relationship with age, which provide morphological data for the construction of database for Chinese Standard Brain. Methods: This is a clinical multi-center study. One thousand Chinese healthy volunteers (age range = 18 to 70) recruited from 15 hospitals were divided into 5 groups, i.e., Group A (age range = 18 to 30), B (age range =31 to 40), C (age range =41 to 50), D (age range =51 to 60), and E (age range =61 to 70). Each group contained 100 males and 100 females. All of the volunteers were scanned by MR using T 1 weighted three-dimensional magnetization prepared rapid acquisition gradient echo sequence. Cingulate cortex volume (including bulk volume and the left/right volume) was measured semi-manually using 3D volume analysis software. Cingulate cortex volumes among age groups were compared by one-way ANOVA. Right and left cingulate cortex volumes between sexualities were analyzed by paired samples t test. The relationship between cingulate cortex volume and age was analyzed by Pearson correlations and regression analysis. Results: Cingulate cortex volumes of male and female were (20 347 ± 2504) and (19 432 ± 2184) mm 3 respectively, and the male's was significantly larger than that of female's (two sample t'-test for independent samples, t'=6.156, P 3 respectively, and those of female's were (10 064 ± 1407) and (9368 ± 1441) mm 3 respectively. The volumes of cingulate cortex were significantly different between right and left in male or female (t=-12.960, -8.511, P 3 ; right: (11212±1442), (11 096±1602), (11 040±1403), (10633±1638), (9604±1522) mm 3 ] had statistical differences (F=16.738, 18.707, P 3 ; right: (10 558± 1325), (10 266 ±1463), (10 100 ± 1497), (9779 ± 1304), (9617 ± 1254) mm 3 ] also had significant differences (F=16.859,7.528,P<0.01). Bilateral cingulate cortex volume in both male and female were negatively

  13. Modulation of intrinsic brain activity by electroconvulsive therapy in major depression

    Science.gov (United States)

    Leaver, Amber M.; Espinoza, Randall; Pirnia, Tara; Joshi, Shantanu H.; Woods, Roger P.; Narr, Katherine L.

    2015-01-01

    Introduction One of the most effective interventions for intractable major depressive episodes is electroconvulsive therapy (ECT). Because ECT is also relatively fast-acting, longitudinal study of its neurobiological effects offers critical insight into the mechanisms underlying depression and antidepressant response. Here we assessed modulation of intrinsic brain activity in corticolimbic networks associated with ECT and clinical response. Methods We measured resting-state functional connectivity (RSFC) in patients with treatment-resistant depression (n=30), using functional magnetic resonance imaging (fMRI) acquired before and after completing a treatment series with right-unilateral ECT. Using independent component analysis, we assessed changes in RSFC with 1) symptom improvement and 2) ECT regardless of treatment outcome in patients, with reference to healthy controls (n=33, also scanned twice). Results After ECT, consistent changes in RSFC within targeted depression-relevant functional networks were observed in the dorsal anterior cingulate (ACC), mediodorsal thalamus (mdTh), hippocampus, and right anterior temporal, medial parietal, and posterior cingulate cortex in all patients. In a separate analysis, changes in depressive symptoms were associated with RSFC changes in the dorsal ACC, mdTh, putamen, medial prefrontal, and lateral parietal cortex. RSFC of these regions did not change in healthy controls. Conclusions Neuroplasticity underlying clinical change was in part separable from changes associated with the effects of ECT observed in all patients. However, both ECT and clinical change were associated with RSFC modulation in dorsal ACC, mdTh and hippocampus, which may indicate that these regions underlie the mechanisms of clinical outcome in ECT and may be effective targets for future neurostimulation therapies. PMID:26878070

  14. The neural correlates of anomalous habituation to negative emotional pictures in borderline and avoidant personality disorder patients.

    Science.gov (United States)

    Koenigsberg, Harold W; Denny, Bryan T; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Mayson, Sarah Jo; Rimsky, Liza; New, Antonia S; Goodman, Marianne; Siever, Larry J

    2014-01-01

    Extreme emotional reactivity is a defining feature of borderline personality disorder, yet the neural-behavioral mechanisms underlying this affective instability are poorly understood. One possible contributor is diminished ability to engage the mechanism of emotional habituation. The authors tested this hypothesis by examining behavioral and neural correlates of habituation in borderline patients, healthy comparison subjects, and a psychopathological comparison group of patients with avoidant personality disorder. During fMRI scanning, borderline patients, healthy subjects, and avoidant personality disorder patients viewed novel and repeated pictures, providing valence ratings at each presentation. Statistical parametric maps of the contrasts of activation during repeated versus novel negative picture viewing were compared between groups. Psychophysiological interaction analysis was employed to examine functional connectivity differences between groups. Unlike healthy subjects, neither borderline nor avoidant personality disorder patients exhibited increased activity in the dorsal anterior cingulate cortex when viewing repeated versus novel pictures. This lack of an increase in dorsal anterior cingulate activity was associated with greater affective instability in borderline patients. In addition, borderline and avoidant patients exhibited smaller increases in insula-amygdala functional connectivity than healthy subjects and, unlike healthy subjects, did not show habituation in ratings of the emotional intensity of the images. Borderline patients differed from avoidant patients in insula-ventral anterior cingulate functional connectivity during habituation. Unlike healthy subjects, borderline patients fail to habituate to negative pictures, and they differ from both healthy subjects and avoidant patients in neural activity during habituation. A failure to effectively engage emotional habituation processes may contribute to affective instability in borderline

  15. Gender differences in BOLD activation to face photographs and video vignettes.

    Science.gov (United States)

    Fine, Jodene Goldenring; Semrud-Clikeman, Margaret; Zhu, David C

    2009-07-19

    Few neuroimaging studies have reported gender differences in response to human emotions, and those that have examined such differences have utilized face photographs. This study presented not only human face photographs of positive and negative emotions, but also video vignettes of positive and negative social human interactions in an attempt to provide a more ecologically appropriate stimuli paradigm. Ten male and 10 female healthy right-handed young adults were shown positive and negative affective social human faces and video vignettes to elicit gender differences in social/emotional perception. Conservative ROI (region of interest) analysis indicated greater male than female activation to positive affective photos in the anterior cingulate, medial frontal gyrus, superior frontal gyrus and superior temporal gyrus, all in the right hemisphere. No significant ROI gender differences were observed to negative affective photos. Male greater than female activation was seen in ROIs of the left posterior cingulate and the right inferior temporal gyrus to positive social videos. Male greater than female activation occurred in only the left middle temporal ROI for negative social videos. Consistent with previous findings, males were more lateralized than females. Although more activation was observed overall to video compared to photo conditions, males and females appear to process social video stimuli more similarly to one another than they do for photos. This study is a step forward in understanding the social brain with more ecologically valid stimuli that more closely approximates the demands of real-time social and affective processing.

  16. What do I want and when do I want it: brain correlates of decisions made for self and other.

    Directory of Open Access Journals (Sweden)

    Konstanze Albrecht

    Full Text Available A number of recent functional Magnetic Resonance Imaging (fMRI studies on intertemporal choice behavior have demonstrated that so-called emotion- and reward-related brain areas are preferentially activated by decisions involving immediately available (but smaller rewards as compared to (larger delayed rewards. This pattern of activation was not seen, however, when intertemporal choices were made for another (unknown individual, which speaks to that activation having been triggered by self-relatedness. In the present fMRI study, we investigated the brain correlates of individuals who passively observed intertemporal choices being made either for themselves or for an unknown person. We found higher activation within the ventral striatum, medial prefrontal and orbitofrontal cortex, pregenual anterior cingulate cortex, and posterior cingulate cortex when an immediate reward was possible for the observer herself, which is in line with findings from studies in which individuals actively chose immediately available rewards. Additionally, activation in the dorsal anterior cingulate cortex, posterior cingulate cortex, and precuneus was higher for choices that included immediate options than for choices that offered only delayed options, irrespective of who was to be the beneficiary. These results indicate that (1 the activations found in active intertemporal decision making are also present when the same decisions are merely observed, thus supporting the assumption that a robust brain network is engaged in immediate gratification; and (2 with immediate rewards, certain brain areas are activated irrespective of whether the observer or another person is the beneficiary of a decision, suggesting that immediacy plays a more general role for neural activation. An explorative analysis of participants' brain activation corresponding to chosen rewards, further indicates that activation in the aforementioned brain areas depends on the mere presence, availability

  17. Atraumatic Anterior Dislocation of the Hip Joint

    Directory of Open Access Journals (Sweden)

    Tadahiko Ohtsuru

    2015-01-01

    Full Text Available Dislocation of the hip joint in adults is usually caused by high-energy trauma such as road traffic accidents or falls from heights. Posterior dislocation is observed in most cases. However, atraumatic anterior dislocation of the hip joint is extremely rare. We present a case of atraumatic anterior dislocation of the hip joint that was induced by an activity of daily living. The possible causes of this dislocation were anterior capsule insufficiency due to developmental dysplasia of the hip, posterior pelvic tilt following thoracolumbar kyphosis due to vertebral fracture, and acetabular anterior coverage changes by postural factor. Acetabular anterior coverage changes in the sagittal plane were measured using a tomosynthesis imaging system. This system was useful for elucidation of the dislocation mechanism in the present case.

  18. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  19. Brain activation during direct and indirect processing of positive and negative words.

    Science.gov (United States)

    Straube, Thomas; Sauer, Andreas; Miltner, Wolfgang H R

    2011-09-12

    The effects of task conditions on brain activation to emotional stimuli are poorly understood. In this event-related fMRI study, brain activation to negative and positive words (matched for arousal) and neutral words was investigated under two task conditions. Subjects either had to attend to the emotional meaning (direct task) or to non-emotional features of the words (indirect task). Regardless of task, positive vs. negative words led to increased activation in the ventral medial prefrontal cortex, while negative vs. positive words induced increased activation of the insula. Compared to neutral words, all emotional words were associated with increased activation of the amygdala. Finally, the direct condition, as compared to the indirect condition, led to enhanced activation to emotional vs. neutral words in the dorsomedial prefrontal cortex and the anterior cingulate cortex. These results suggest valence and arousal dependent brain activation patterns that are partially modulated by participants' processing mode of the emotional stimuli. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Neural and sympathetic activity associated with exploration in decision-making: Further evidence for involvement of insula

    Directory of Open Access Journals (Sweden)

    Hideki eOhira

    2014-11-01

    Full Text Available We previously reported that sympathetic activity was associated with exploration in decision-making indexed by entropy, which is a concept in information theory and indexes randomness of choices or the degree of deviation from sticking to recent experiences of gains and losses, and that activation of the anterior insula mediated this association. The current study aims to replicate and to expand these findings in a situation where contingency between options and outcomes is manipulated. Sixteen participants performed a stochastic decision-making task in which we manipulated a condition with low uncertainty of gain/loss (contingent-reward condition and a condition with high uncertainty of gain/loss (random-reward condition. Regional cerebral blood flow was measured by 15O-water positron emission tomography (PET, and cardiovascular parameters and catecholamine in the peripheral blood were measured, during the task. In the contingent-reward condition, norepinephrine as an index of sympathetic activity was positively correlated with entropy indicating exploration in decision-making. Norepinephrine was negatively correlated with neural activity in the right posterior insula, rostral anterior cingulate cortex, and dorsal pons, suggesting neural bases for detecting changes of bodily states. Furthermore, right anterior insular activity was negatively correlated with entropy, suggesting influences on exploration in decision-making. By contrast, in the random-reward condition, entropy correlated with activity in the dorsolateral prefrontal and parietal cortices but not with sympathetic activity. These findings suggest that influences of sympathetic activity on exploration in decision-making and its underlying neural mechanisms might be dependent on the degree of uncertainty of situations.

  1. The activity in the anterior insulae is modulated by perceptual decision-making difficulty.

    Science.gov (United States)

    Lamichhane, Bidhan; Adhikari, Bhim M; Dhamala, Mukesh

    2016-07-07

    Previous neuroimaging studies provide evidence for the involvement of the anterior insulae (INSs) in perceptual decision-making processes. However, how the insular cortex is involved in integration of degraded sensory information to create a conscious percept of environment and to drive our behaviors still remains a mystery. In this study, using functional magnetic resonance imaging (fMRI) and four different perceptual categorization tasks in visual and audio-visual domains, we measured blood oxygen level dependent (BOLD) signals and examined the roles of INSs in easy and difficult perceptual decision-making. We created a varying degree of degraded stimuli by manipulating the task-specific stimuli in these four experiments to examine the effects of task difficulty on insular cortex response. We hypothesized that significantly higher BOLD response would be associated with the ambiguity of the sensory information and decision-making difficulty. In all of our experimental tasks, we found the INS activity consistently increased with task difficulty and participants' behavioral performance changed with the ambiguity of the presented sensory information. These findings support the hypothesis that the anterior insulae are involved in sensory-guided, goal-directed behaviors and their activities can predict perceptual load and task difficulty. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Shared "core" areas between the pain and other task-related networks.

    Directory of Open Access Journals (Sweden)

    Franco Cauda

    Full Text Available The idea of a 'pain matrix' specifically devoted to the processing of nociceptive inputs has been challenged. Alternative views now propose that the activity of the primary and secondary somatosensory cortices (SI, SII, the insula and cingulate cortex may be related to a basic defensive system through which significant potentially dangerous events for the body's integrity are detected. By reviewing the role of the SI, SII, the cingulate and the insular cortices in the perception of nociceptive and tactile stimuli, in attentional, emotional and reward tasks, and in interoception and memory, we found that all these task-related networks overlap in the dorsal anterior cingulate cortex, the anterior insula and the dorsal medial thalamus. A thorough analysis revealed that the 'pain-related' network shares important functional similarities with both somatomotor-somatosensory networks and emotional-interoceptive ones. We suggest that these shared areas constitute the central part of an adaptive control system involved in the processing and integration of salient information coming both from external and internal sources. These areas are activated in almost all fMRI tasks and have been indicated to play a pivotal role in switching between externally directed and internally directed brain networks.

  3. [MRI for brain structure and function in patients with first-episode panic disorder].

    Science.gov (United States)

    Zhang, Yan; Duan, Lian; Liao, Mei; Yang, Fan; Liu, Jun; Shan, Baoci; Li, Lingjiang

    2011-12-01

    To determine the brain function and structure in patinets with first-episode panic disorder (PD). All subjects (24 PD patients and 24 healthy subjects) received MRI scan and emotional counting Stroop task during the functional magnetic resonance imaging. Blood oxygenation level dependent functional magnetic resonance imaging and voxel-based morphometric technology were used to detect the gray matter volume. Compared with the healthy controls, left thalamus, left medial frontal gyrus, left anterior cingulate gyrus, left inferior frontal gyrus, left insula (panic-related words vs. neutral words) lacked activation in PD patients, but the over-activation were found in right brain stem, right occipital lobe/lingual gyrus in PD patients. Compared with the healthy controls, the gray matter volume in the PD patients significantly decreased in the left superior temporal gyrus, right medial frontal gyrus, left medial occipital gyrus, dorsomedial nucleus of left thalamus and right anterior cingulate gyrus. There was no significantly increased gray matter volume in any brain area in PD patients. PD patients have selective attentional bias in processing threatening information due to the depression and weakening of the frontal cingulated gyrus.

  4. Response inhibition during cue reactivity in problem gamblers: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Ruth J van Holst

    Full Text Available Disinhibition over drug use, enhanced salience of drug use and decreased salience of natural reinforcers are thought to play an important role substance dependence. Whether this is also true for pathological gambling is unclear. To understand the effects of affective stimuli on response inhibition in problem gamblers (PRGs, we designed an affective Go/Nogo to examine the interaction between response inhibition and salience attribution in 16 PRGs and 15 healthy controls (HCs.Four affective blocks were presented with Go trials containing neutral, gamble, positive or negative affective pictures. The No-Go trials in these blocks contained neutral pictures. Outcomes of interest included percentage of impulsive errors and mean reaction times in the different blocks. Brain activity related to No-Go trials was assessed to measure response inhibition in the various affective conditions and brain activity related to Go trials was assessed to measure salience attribution.PRGs made fewer errors during gamble and positive trials than HCs, but were slower during all trials types. Compared to HCs, PRGs activated the dorsolateral prefrontal cortex, anterior cingulate and ventral striatum to a greater extent while viewing gamble pictures. The dorsal lateral and inferior frontal cortex were more activated in PRGs than in HCs while viewing positive and negative pictures. During neutral inhibition, PRGs were slower but similar in accuracy to HCs, and showed more dorsolateral prefrontal and anterior cingulate cortex activity. In contrast, during gamble and positive pictures PRGs performed better than HCs, and showed lower activation of the dorsolateral and anterior cingulate cortex.This study shows that gambling-related stimuli are more salient for PRGs than for HCs. PRGs seem to rely on compensatory brain activity to achieve similar performance during neutral response inhibition. A gambling-related or positive context appears to facilitate response inhibition as

  5. INFLUENCE OF DIFFERENT LEVELS OF SPORTS ACTIVITIES ON THE QUALITY OF LIFE AFTER THE RECONSTRUCTION OF ANTERIOR CRUCIATE LIGAMENT.

    Science.gov (United States)

    Ninković, Srđan; Avramov, Snežana; Harhaji, Vladimir; Obradović, Mirko; Vranješ, Miodrag; Milankov, Miroslav

    2015-01-01

    The goal of this study was to examine the nature and presence of influence of different levels of sports activity on the life quality of the patients a year after the reconstruction of anterior cruciate ligament. The study included 185 patients operated at the Department of Orthopedic Surgery and Traumatology of the Clinical Centre of Vojvodina, who were followed for twelve months. Data were collected using the modified Knee Injury and Osteoarthritis Outcome Score questionnaire which included the Lysholm scale. This study included 146 male and 39 female subjects. The reconstruction of anterior cruciate ligament was equally successful in both gender groups. In relation to different types of sports activity, there were no differences in the overall life quality measured by the questionnaire and its subscales, regardless of the level (professional or recreational). However, regarding the level of sports activities, there were differences among the subjects engaged in sports activities at the national level as compared with those going in for sports activities at the recreational level, and particularly in comparison with physically inactive population. A significant correlation was not found by examining the aforementioned relationship between sports activities. This study has shown that the overall life quality a year after the reconstruction of the anterior cruciate ligament does not differ in relation to either the gender of the subjects or the type of sports activity, while the level of sports activity does have some influence on the quality of life. Professional athletes have proved to train significantly more intensively after this reconstruction than those going in for sports recreationally.

  6. Gelastic seizures and the anteromesial frontal lobe: a case report and review of intracranial EEG recording and electrocortical stimulation case studies.

    Science.gov (United States)

    Unnwongse, Kanjana; Wehner, Tim; Bingaman, William; Foldvary-Schaefer, Nancy

    2010-10-01

    Symptomatogenic areas for ictal laughter have been described in the frontal and temporal lobes. Within the frontal lobe, gelastic seizures have been recorded from the cingulate gyrus. Electrocortical stimulation of the cingulate gyrus as well as the superior frontal gyrus induced laughter. We describe a patient whose gelastic seizures were associated with electrographic ictal activity in the mesial aspect of the right anterior frontal gyrus. The symptomatogenic area for ictal laughter in the frontal lobe may reside in the superior frontal gyrus.

  7. Role of Fusiform and Anterior Temporal Cortical Areas in Facial Recognition

    Science.gov (United States)

    Nasr, Shahin; Tootell, Roger BH

    2012-01-01

    Recent FMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus (‘AT’; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. PMID:23034518

  8. Developmental aspects of error and high-conflict-related brain activity in pediatric obsessive-compulsive disorder: a fMRI study with a Flanker task before and after CBT

    NARCIS (Netherlands)

    Huyser, C.; Veltman, D.J.; Wolters, L.H.; de Haan, E.; de Boer, F.

    2011-01-01

    Background: Heightened error and conflict monitoring are considered central mechanisms in obsessive-compulsive disorder (OCD) and are associated with anterior cingulate cortex (ACC) function. Pediatric obsessive-compulsive patients provide an opportunity to investigate the development of this area

  9. Anterior perineal hernia after anterior exenteration

    Directory of Open Access Journals (Sweden)

    Ka Wing Wong

    2017-10-01

    Full Text Available Perineal hernia is a rare complication of anterior exenteration. We reported this complication after an anterior exenteration for bladder cancer with bleeding complication requiring packing and second-look laparotomy. Perineal approach is a simple and effective method for repair of perineal hernia.

  10. ANTERIOR KNEE PAIN AND LOWER EXTREMITY FUNCTIONS IN INDIAN ADOLESCENT POPULATION

    Directory of Open Access Journals (Sweden)

    Riddhi Shroff

    2016-01-01

    Full Text Available Background & Purpose - Anterior knee pain is one of the most common musculoskeletal complain seen in Indian adolescent population with high incidence among those who are active in sports and recreation. The purpose of this study was to investigate the age of onset of anterior knee pain, to find its effect on sports participation and also to find the activities which are maximally affected due to anterior knee pain in Indian population. Method- A questionnaire based survey was conducted among 50 subjects using three outcome measures namely self made demographic questionnaire, anterior knee pain scale and lower extremity functional scale. Result- Maximally affected activities are running, jumping & squatting and maximally affected functions are squatting, running on uneven ground, making sharp turns while running and hopping with increase incidence of anterior knee pain among those who participate daily in sports. Conclusion- The study concluded, that in adolescent age group of 11-17 years, anterior knee pain is more prevalent in adolescent girls with the age of onset being around 13 years for girls & 14.5 years in boys and it also showed moderate positive correlation between anterior knee pain and lower extremity functions.

  11. Developmental aspects of error and high-conflict-related brain activity in pediatric obsessive-compulsive disorder: a fMRI study with a Flanker task before and after CBT

    NARCIS (Netherlands)

    Huyser, C.; Veltman, D.J.; Wolters, L.H.; de Haan, E.; Boer, F.

    2011-01-01

    Background:  Heightened error and conflict monitoring are considered central mechanisms in obsessive-compulsive disorder (OCD) and are associated with anterior cingulate cortex (ACC) function. Pediatric obsessive-compulsive patients provide an opportunity to investigate the development of this area

  12. Developmental aspects of error and high-conflict-related brain activity in pediatric obsessive-compulsive disorder: a fMRI study with a Flanker task before and after CBT

    NARCIS (Netherlands)

    Huyser, Chaim; Veltman, Dick J.; Wolters, Lidewij H.; de Haan, Else; Boer, Frits

    2011-01-01

    Heightened error and conflict monitoring are considered central mechanisms in obsessive-compulsive disorder (OCD) and are associated with anterior cingulate cortex (ACC) function. Pediatric obsessive-compulsive patients provide an opportunity to investigate the development of this area and its

  13. Neural correlates of atomoxetine improving inhibitory control and visual processing in Drug-naïve adults with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Fan, Li-Ying; Chou, Tai-Li; Gau, Susan Shur-Fen

    2017-10-01

    Atomoxetine improves inhibitory control and visual processing in healthy volunteers and adults with attention-deficit/hyperactivity disorder (ADHD). However, little is known about the neural correlates of these two functions after chronic treatment with atomoxetine. This study aimed to use the counting Stroop task with functional magnetic resonance imaging (fMRI) and the Cambridge Neuropsychological Test Automated Battery (CANTAB) to investigate the changes related to inhibitory control and visual processing in adults with ADHD. This study is an 8-week, placebo-controlled, double-blind, randomized clinical trial of atomoxetine in 24 drug-naïve adults with ADHD. We investigated the changes of treatment with atomoxetine compared to placebo-treated counterparts using the counting Stroop fMRI and two CANTAB tests: rapid visual information processing (RVP) for inhibitory control and delayed matching to sample (DMS) for visual processing. Atomoxetine decreased activations in the right inferior frontal gyrus and anterior cingulate cortex, which were correlated with the improvement in inhibitory control assessed by the RVP. Also, atomoxetine increased activation in the left precuneus, which was correlated with the improvement in the mean latency of correct responses assessed by the DMS. Moreover, anterior cingulate activation in the pre-treatment was able to predict the improvements of clinical symptoms. Treatment with atomoxetine may improve inhibitory control to suppress interference and may enhance the visual processing to process numbers. In addition, the anterior cingulate cortex might play an important role as a biological marker for the treatment effectiveness of atomoxetine. Hum Brain Mapp 38:4850-4864, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Effects of Acupuncture Therapy on the EMG Activity of the Rectus Femoris and Tibialis Anterior during Maximal Voluntary Isometric Contraction in College Students

    Directory of Open Access Journals (Sweden)

    Se In Jang

    2017-12-01

    Full Text Available Acupuncture has been increasingly used in the treatment of muscle damage associated with sports activities. However, studies on the immediate effects of one-time acupuncture on the muscles of athletes are clearly lacking. Thus, this study aimed to examine the effects of acupuncture therapy on the maximal voluntary isometric contraction (MVIC electromyography (EMG of the rectus femoris and tibialis anterior muscles. This study was conducted among 20 healthy male college students who had no musculoskeletal disease. The participants were subjected to 3 different experimental conditions and subsequently grouped based on these conditions: real acupuncture, sham acupuncture, and control. A 7-day washout period was implemented to avoid any transient effects on the physiological and psychological conditions of the participants. Subsequently, an electromyogram patch was attached on the most developed area in the middle of the origin and insertion of the rectus femoris and tibialis anterior muscles. The percent MVIC, which was used to standardize the signal from the electromyogram, was determined, and the maximal value from the MVIC of the rectus femoris and tibialis anterior muscles was measured. The MVIC EMG activities of both femoris (F = 6.633, p = 0.003 and tibialis anterior (F = 5.216, p = 0.008 muscles were significantly different among all groups. Accordingly, the results of a posthoc test showed that the real acupuncture group had higher MVIC EMG activities in the femoris (p = 0.002 and tibialis anterior (p = 0.006 muscles compared with the control group. These results suggest that treatment with real acupuncture resulted in significantly higher MVIC EMG activities of the rectus femoris and tibialis anterior muscles than the other treatments. Hence, acupuncture may be helpful in the improvement of muscle strength among athletes in the physical fitness field.

  15. Differences and similarities on neuronal activities of people being happily and unhappily in love: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Stoessel, Christina; Stiller, Juliane; Bleich, Stefan; Bönsch, Dominikus; Boensch, Dominikus; Doerfler, Arnd; Garcia, Meritxell; Richter-Schmidinger, Tanja; Kornhuber, Johannes; Forster, Clemens

    2011-01-01

    Brain activity was studied in grief following frustrated love compared to romantic love, and it was hypothesized that unhappy lovers compared to happy lovers would have decreased brain activity in regions specific to emotional and reward circuits, such as frontal brain areas, anterior cingulate cortex (ACC), bilateral insula or posterior cingulate cortex (PCC). Twelve volunteers intensely in love and 12 volunteers recently separated from their romantic partners were scanned performing 3 runs of functional magnetic resonance imaging acquisition. Subjects viewed partner pictures versus erotic pictures during the first run of the scanning process, autobiographical pictures versus neutral pictures during the second and autobiographical texts versus neutral texts during the third run. The Passionate Love Scale (PLS) and the Beck Depression Inventory (BDI) were additionally recorded. Decreased brain activity in unhappy lovers compared to happy lovers occurred in frontal areas, ACC and PCC and bilateral insula. Unhappy lovers also revealed clinical depressive symptoms in the BDI. Unhappy lovers compared to happy lovers exhibited clinical depressive symptoms and reduced blood oxygen level dependency changes in a brain network which has been described as being involved in major depression. This might be a cue for the close relationship between grief and depression. Copyright © 2011 S. Karger AG, Basel.

  16. Neural correlates of preparatory and regulatory control over positive and negative emotion.

    Science.gov (United States)

    Seo, Dongju; Olman, Cheryl A; Haut, Kristen M; Sinha, Rajita; MacDonald, Angus W; Patrick, Christopher J

    2014-04-01

    This study used functional magnetic resonance imaging to investigate brain activation during preparatory and regulatory control while participants (N = 24) were instructed either to simply view or decrease their emotional response to, pleasant, neutral or unpleasant pictures. A main effect of emotional valence on brain activity was found in the right precentral gyrus, with greater activation during positive than negative emotion regulation. A main effect of regulation phase was evident in the bilateral anterior prefrontal cortex (PFC), precuneus, posterior cingulate cortex, right putamen and temporal and occipital lobes, with greater activity in these regions during preparatory than regulatory control. A valence X regulation interaction was evident in regions of ventromedial PFC and anterior cingulate cortex, reflecting greater activation while regulating negative than positive emotion, but only during active emotion regulation (not preparation). Conjunction analyses revealed common brain regions involved in differing types of emotion regulation including selected areas of left lateral PFC, inferior parietal lobe, temporal lobe, right cerebellum and bilateral dorsomedial PFC. The right lateral PFC was additionally activated during the modulation of both positive and negative valence. Findings demonstrate significant modulation of brain activity during both preparation for, and active regulation of positive and negative emotional states.

  17. Cortical activities evoked by the signals ascending through unmyelinated C fibers in humans. A fMRI study

    International Nuclear Information System (INIS)

    Kakigi, Ryusuke; Qiu, Yunhai; Noguchi, Yasuki

    2006-01-01

    Acute pain is classified as first and second pain associated with rapidly conducting Aδ fibers and slowly conducting unmyelinated C fibers, respectively. First pain aims at achieving relative safety from the source of injury, whereas second pain, with its strong affective component, attracts longer-lasting attention and initiates behavioral responses in order to limit further injury and optimize recovery. Accordingly, the distinct brain representations for first and second pain should reflect distinct biological functions of both sensations. In this study, therefore, an event-related functional magnetic resonance imaging (fMRI) was used to investigate brain processing of the signals ascending from peripheral C and Aδ fibers evoked by phasic laser stimuli on the right hand in humans. The stimulation of both C and Aδ nociceptors activated the bilateral thalamus, bilateral secondary somatosensory cortex (SII), right (ipsilateral) middle insula, and bilateral Brodmann's area (BA) 24/32, with the majority of activity found in the posterior portion of the anterior cingulate cortex (pACC). However, magnitude of activity in the right (ipsilateral) BA32/8/6, including dorsal parts in the anterior portion of the ACC (aACC) and pre-supplementary motor area (pre-SMA), and the bilateral anterior insula was significantly stronger following the stimulation of C nociceptors than Aδ nociceptors. It was concluded that the activation of C nociceptors, related to second pain, evokes different brain processing from that of Aδ nociceptors, related to first pain, probably due to the differences in the emotional and motivational aspects of either pain, which are mainly related to the aACC, pre-SMA and anterior insula. (author)

  18. Sex-effects on smoking cue perception in non-smokers, smokers, and ex-smokers: a pilot study.

    Directory of Open Access Journals (Sweden)

    Davide Zanchi

    2016-11-01

    Full Text Available IntroductionRecent neuroimaging research suggests sex-related brain differences in smoking addiction. In the present pilot study, we assessed gender-related differences in brain activation in response to cigarette-related video cues, investigating non-smokers, smokers and ex-smokers. MethodsFirst, we compared 29 females (28.6±5.3 versus 23 males (31.5±6.4 regardless of current smoking status to assess global gender-related effects. Second, we performed a post-hoc analysis of non-smokers (9 F, 8M, smokers (10F, 8M and ex-smokers (10F, 7M. Participants performed a block-design functional magnetic resonance imaging (fMRI paradigm contrasting smoking with control cue video exposures. Data analyses included task-related general linear model, voxel-based morphometry (VBM of gray matter, and tract-based spatial statistics (TBSS of white matter. ResultsFirst, the global effect regardless of current smoking status revealed higher activation in the bilateral superior frontal gyrus and anterior cingulate cortex for females compared to males. Second, the analysis according to current smoking status demonstrated higher activation in female vs. male smokers vs. non-smokers in the superior frontal gyrus, anterior and posterior cingulate cortex, and precuneus, and higher activation in female vs. male ex-smokers vs. non-smokers in the right precentral gyrus, in the right insula and anterior cingulate cortex. No structural differences were found in grey or white matter.ConclusionThe current study identifies gender-related brain functional differences in smokers and ex-smokers compared to non-smokers. The current work can be considered as a starting point for future investigations into gender differences in brain responses to cigarette-related cues.

  19. Toward a physical basis of attention and self-regulation

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2009-06-01

    The concept of self-regulation is central to the understanding of human development. Self-regulation allows effective socialization and predicts both psychological pathologies and levels of achievement in schools. What has been missing are neural mechanisms to provide understanding of the cellular and molecular basis for self-regulation. We show that self-regulation can be measured during childhood by parental reports and by self-reports of adolescents and adults. These reports are summarized by a higher order factor called effortful control, which reflects perceptions about the ability of a given person to regulate their behavior in accord with cultural norms. Throughout childhood effortful control is related to children's performance in computerized conflict related tasks. Conflict tasks have been shown in neuroimaging studies to activate specific brain networks of executive attention. Several brain areas work together at rest and during cognitive tasks to regulate competing brain activity and thus control resulting behavior. The cellular structure of the anterior cingulate and insula contain cells, unique to humans and higher primates that provide strong links to remote brain areas. During conflict tasks, anterior cingulate activity is correlated with activity in remote sensory and emotional systems, depending upon the information selected for the task. During adolescence the structure and activity of the anterior cingulate has been found to be correlated with self-reports of effortful control. Studies have provided a perspective on how genes and environment act to shape the executive attention network, providing a physical basis for self-regulation. The anterior cingulate is regulated by dopamine. Genes that influence dopamine levels in the CNS have been shown to influence the efficiency of self-regulation. For example, alleles of the COMT gene that influence the efficiency of dopamine transmission are related to the ability to resolve conflict. Humans with

  20. [Facilitation of the retention and acceleration of operant conditioning extinction after cingulate cortex lesions in BALB/c mice].

    Science.gov (United States)

    Destrade, C; Gauthier, M

    1981-12-21

    One week after receiving bilateral electrolytic lesions of the cingulate cortex, BALB/c Mice underwent acquisition, retention and extinction of an appetitive operant-conditioning task in a Skinner box. There was no significant difference between lesioned and control animals in acquisition; however, lesioned mice exhibited improved retention and faster extinction. These results suggest a possible involvement of the cingulate cortex in memory processes.

  1. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  2. Cranial nerve clock. Part II: functional MR imaging of brain activation during a declarative memory task.

    Science.gov (United States)

    Weiss, K L; Welsh, R C; Eldevik, P; Bieliauskas, L A; Steinberg, B A

    2001-12-01

    The authors performed this study to assess brain activation during encoding and successful recall with a declarative memory paradigm that has previously been demonstrated to be effective for teaching students about the cranial nerves. Twenty-four students underwent functional magnetic resonance (MR) imaging during encoding and recall of the name, number, and function of the 12 cranial nerves. The students viewed mnemonic graphic and text slides related to individual nerves, as well as their respective control slides. For the recall paradigm, students were prompted with the numbers 1-12 (test condition) intermixed with the number 14 (control condition). Subjects were tested about their knowledge of cranial nerves outside the MR unit before and after functional MR imaging. Students learned about the cranial nerves while undergoing functional MR imaging (mean post- vs preparadigm score, 8.1 +/- 3.4 [of a possible 12] vs 0.75 +/- 0.94, bilateral prefrontal cortex, left greater than right; P brain activation. Encoding revealed statistically significant activation in the bilateral prefrontal cortex, left greater than right [corrected]; bilateral occipital and parietal associative cortices, parahippocampus region, fusiform gyri, and cerebellum. Successful recall activated the left much more than the right prefrontal, parietal associative, and anterior cingulate cortices; bilateral precuneus and cerebellum; and right more than the left posterior cingulate. A predictable pattern of brain activation at functional MR imaging accompanies the encoding and successful recall of the cranial nerves with this declarative memory paradigm.

  3. Impaired cerebrovascular function in coronary artery disease patients and recovery following cardiac rehabilitation.

    Directory of Open Access Journals (Sweden)

    Udunna C Anazodo

    2016-01-01

    Full Text Available Coronary artery disease (CAD poses a risk to the cerebrovascular function of older adults and has been linked to impaired cognitive abilities. Using magnetic resonance perfusion imaging, we investigated changes in resting cerebral blood flow (CBF and cerebrovascular reactivity (CVR to hypercapnia in 34 coronary artery disease (CAD patients and 21 age-matched controls. Gray matter volume images were acquired and used as a confounding variable to separate changes in structure from function. Compared to healthy controls, CAD patients demonstrated reduced CBF in the superior frontal, anterior cingulate, insular, pre- and post-central gyri, middle temporal and superior temporal regions. Subsequent analysis of these regions demonstrated decreased CVR in the anterior cingulate, insula, postcentral and superior frontal regions. Except in the superior frontal and precentral regions, regional reductions in CBF and CVR were identified in brain areas where no detectable reductions in gray matter volume were observed, demonstrating that these vascular changes were independent of brain atrophy. Because aerobic fitness training can improve brain function, potential changes in regional CBF were investigated in the CAD patients after completion of a 6-month exercise-based cardiac rehabilitation program. Increased CBF was observed in the bilateral anterior cingulate, as well as recovery of CBF in the dorsal aspect of the right anterior cingulate, where the magnitude of increased CBF was roughly equal to the reduction in CBF at baseline compared to controls. These exercise-related improvements in CBF in the anterior cingulate is intriguing given the role of this area in cognitive processing and regulation of cardiovascular autonomic control.

  4. Neural circuits in the brain that are activated when mitigating criminal sentences.

    Science.gov (United States)

    Yamada, Makiko; Camerer, Colin F; Fujie, Saori; Kato, Motoichiro; Matsuda, Tetsuya; Takano, Harumasa; Ito, Hiroshi; Suhara, Tetsuya; Takahashi, Hidehiko

    2012-03-27

    In sentencing guilty defendants, jurors and judges weigh 'mitigating circumstances', which create sympathy for a defendant. Here we use functional magnetic resonance imaging to measure neural activity in ordinary citizens who are potential jurors, as they decide on mitigation of punishment for murder. We found that sympathy activated regions associated with mentalising and moral conflict (dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Sentencing also activated precuneus and anterior cingulate cortex, suggesting that mitigation is based on negative affective responses to murder, sympathy for mitigating circumstances and cognitive control to choose numerical punishments. Individual differences on the inclination to mitigate, the sentence reduction per unit of judged sympathy, correlated with activity in the right middle insula, an area known to represent interoception of visceral states. These results could help the legal system understand how potential jurors actually decide, and contribute to growing knowledge about whether emotion and cognition are integrated sensibly in difficult judgments.

  5. Neural Correlates of Memories of Childhood Sexual Abuse in Women With and Without Posttraumatic Stress Disorder

    Science.gov (United States)

    Bremner, J. Douglas; Narayan, Meena; Staib, Lawrence H.; Southwick, Steven M.; McGlashan, Thomas; Charney, Dennis S.

    2011-01-01

    Objective Childhood sexual abuse is very common in our society, but little is known about the long-term effects of abuse on brain function. The purpose of this study was to measure neural correlates of memories of childhood abuse in sexually abused women with and without the diagnosis of posttraumatic stress disorder (PTSD). Method Twenty-two women with a history of childhood sexual abuse underwent injection of [15O]H2O, followed by positron emission tomography imaging of the brain while they listened to neutral and traumatic (personalized childhood sexual abuse events) scripts. Brain blood flow during exposure to traumatic and neutral scripts was compared for sexually abused women with and without PTSD. Results Memories of childhood sexual abuse were associated with greater increases in blood flow in portions of anterior prefrontal cortex (superior and middle frontal gyri—areas 6 and 9), posterior cingulate (area 31), and motor cortex in sexually abused women with PTSD than in sexually abused women without PTSD. Abuse memories were associated with alterations in blood flow in medial prefrontal cortex, with decreased blood flow in subcallosal gyrus (area 25), and a failure of activation in anterior cingulate (area 32). There was also decreased blood flow in right hippocampus, fusiform/inferior temporal gyrus, supramarginal gyrus, and visual association cortex in women with PTSD relative to women without PTSD. Conclusions These findings implicate dysfunction of medial prefrontal cortex (subcallosal gyrus and anterior cingulate), hippocampus, and visual association cortex in pathological memories of childhood abuse in women with PTSD. Increased activation in posterior cingulate and motor cortex was seen in women with PTSD. Dysfunction in these brain areas may underlie PTSD symptoms provoked by traumatic reminders in subjects with PTSD. PMID:10553744

  6. Neural and Behavioral Correlates of PTSD and Alcohol Use

    Science.gov (United States)

    2014-12-01

    Rezayof A, Hosseini SS, Zarrindast MR (2009) Effects of Morphine on Rat Behaviour in the Elevated Plus Maze: The Role of Central Amygdala Dopamine...The current research takes a multi-level approach to study the psychological , behavioral, cognitive and neural relationships between PTSD and alcohol...presented with combat-associated stimuli, an effect mediated by the anterior cingulate cortex. PTSD was associated with heightened anterior cingulate

  7. Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues.

    Science.gov (United States)

    George, M S; Anton, R F; Bloomer, C; Teneback, C; Drobes, D J; Lorberbaum, J P; Nahas, Z; Vincent, D J

    2001-04-01

    Functional imaging studies have recently demonstrated that specific brain regions become active in cocaine addicts when they are exposed to cocaine stimuli. To test whether there are regional brain activity differences during alcohol cue exposure between alcoholic subjects and social drinkers, we designed a functional magnetic resonance imaging (fMRI) protocol involving alcohol-specific cues. Ten non-treatment-seeking adult alcoholic subjects (2 women) (mean [SD] age, 29.9 [9.9] years) as well as 10 healthy social drinking controls of similar age (2 women) (mean [SD] age, 29.4 [8.9] years) were recruited, screened, and scanned. In the 1.5-T magnetic resonance imaging scanner, subjects were serially rated for alcohol craving before and after a sip of alcohol, and after a 9-minute randomized presentation of pictures of alcoholic beverages, control nonalcoholic beverages, and 2 different visual control tasks. During picture presentation, changes in regional brain activity were measured with the blood oxygen level-dependent technique. Alcoholic subjects, compared with the social drinking subjects, reported higher overall craving ratings for alcohol. After a sip of alcohol, while viewing alcohol cues compared with viewing other beverage cues, only the alcoholic subjects had increased activity in the left dorsolateral prefrontal cortex and the anterior thalamus. The social drinkers exhibited specific activation only while viewing the control beverage pictures. When exposed to alcohol cues, alcoholic subjects have increased brain activity in the prefrontal cortex and anterior thalamus-brain regions associated with emotion regulation, attention, and appetitive behavior.

  8. Food-Related Odors Activate Dopaminergic Brain Areas

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving carefully preselected odors of edible and non-edible substances. We compared activations generated by three food and three non-food odorants matching in terms of intensity, pleasantness and trigeminal qualities. We observed that for our mixed sample of 30 hungry and satiated participants, food odors generated significantly higher activation in the anterior cingulate cortex (right and left, insula (right, and putamen (right than non-food odors. Among hungry subjects, regardless of the odor type, we found significant activation in the ventral tegmental area in response to olfactory stimulation. As our stimuli were matched in terms of various perceptual qualities, this result suggests that edibility of an odor source indeed generates specific activation in dopaminergic brain areas.

  9. Active pain coping is associated with the response in real-time fMRI neurofeedback during pain.

    Science.gov (United States)

    Emmert, Kirsten; Breimhorst, Markus; Bauermann, Thomas; Birklein, Frank; Rebhorn, Cora; Van De Ville, Dimitri; Haller, Sven

    2017-06-01

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback is used as a tool to gain voluntary control of activity in various brain regions. Little emphasis has been put on the influence of cognitive and personality traits on neurofeedback efficacy and baseline activity. Here, we assessed the effect of individual pain coping on rt-fMRI neurofeedback during heat-induced pain. Twenty-eight healthy subjects completed the Coping Strategies Questionnaire (CSQ) prior to scanning. The first part of the fMRI experiment identified target regions using painful heat stimulation. Then, subjects were asked to down-regulate the pain target brain region during four neurofeedback runs with painful heat stimulation. Functional MRI analysis included correlation analysis between fMRI activation and pain ratings as well as CSQ ratings. At the behavioral level, the active pain coping (first principal component of CSQ) was correlated with pain ratings during neurofeedback. Concerning neuroimaging, pain sensitive regions were negatively correlated with pain coping. During neurofeedback, the pain coping was positively correlated with activation in the anterior cingulate cortex, prefrontal cortex, hippocampus and visual cortex. Thermode temperature was negatively correlated with anterior insula and dorsolateral prefrontal cortex activation. In conclusion, self-reported pain coping mechanisms and pain sensitivity are a source of variance during rt-fMRI neurofeedback possibly explaining variations in regulation success. In particular, active coping seems to be associated with successful pain regulation.

  10. Anterior Knee Pain (Chondromalacia Patellae).

    Science.gov (United States)

    Garrick, James G.

    1989-01-01

    This article presents a pragmatic approach to the definition, diagnosis, and management of anterior knee pain. Symptoms and treatment are described. Emphasis is on active involvement of the patient in the rehabilitation exercise program. (IAH)

  11. Altered resting-state functional connectivity in women with chronic fatigue syndrome.

    Science.gov (United States)

    Kim, Byung-Hoon; Namkoong, Kee; Kim, Jae-Jin; Lee, Seojung; Yoon, Kang Joon; Choi, Moonjong; Jung, Young-Chul

    2015-12-30

    The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients. Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan. Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls. The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls. The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Postictal psychosis and its electrophysiological correlates in invasive EEG: a case report study and literature review.

    Science.gov (United States)

    Kuba, Robert; Brázdil, Milan; Rektor, Ivan

    2012-04-01

    We identified two patients with medically refractory temporal lobe epilepsy, from whom intracranial EEG recordings were obtained at the time of postictal psychosis. Both patients had mesial temporal epilepsy associated with hippocampal sclerosis. In both patients, the postictal psychosis was associated with a continual "epileptiform" EEG pattern that differed from their interictal and ictal EEG findings (rhythmical slow wave and "abortive" spike-slow wave complex activity in the right hippocampus and lateral temporal cortex in case 1 and a periodic pattern of triphasic waves in the contacts recording activity from the left anterior cingulate gyrus). Some cases of postictal psychosis might be caused by the transient impairment of several limbic system structures due to the "continual epileptiform discharge" in some brain regions. Case 2 is the first report of a patient with TLE in whom psychotic symptoms were associated with the epileptiform impairment of the anterior cingulate gyrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-01-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system

  14. Developmental Aspects of Error and High-Conflict-Related Brain Activity in Pediatric Obsessive-Compulsive Disorder: A FMRI Study with a Flanker Task before and after CBT

    Science.gov (United States)

    Huyser, Chaim; Veltman, Dick J.; Wolters, Lidewij H.; de Haan, Else; Boer, Frits

    2011-01-01

    Background: Heightened error and conflict monitoring are considered central mechanisms in obsessive-compulsive disorder (OCD) and are associated with anterior cingulate cortex (ACC) function. Pediatric obsessive-compulsive patients provide an opportunity to investigate the development of this area and its associations with psychopathology.…

  15. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI

    Directory of Open Access Journals (Sweden)

    Elena Bilevicius

    2016-04-01

    Full Text Available Objective: To assess the neural activity associated with mindfulness-based alterations of pain perception. Methods: The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. Results: The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2, unpleasantness (n = 5, and intensity (n = 5, and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Conclusions: Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  16. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  17. Cognitive dissonance induction in everyday life: An fMRI study.

    Science.gov (United States)

    de Vries, Jan; Byrne, Mark; Kehoe, Elizabeth

    2015-01-01

    This functional magnetic resonance imaging (fMRI) study explored the neural substrates of cognitive dissonance during dissonance "induction." A novel task was developed based on the results of a separate item selection study (n = 125). Items were designed to generate dissonance by prompting participants to reflect on everyday personal experiences that were inconsistent with values they had expressed support for. One experimental condition (dissonance) and three control conditions (justification, consonance, and non-self-related inconsistency) were used for comparison. Items of all four types were presented to each participant (n = 14) in a randomized design. The fMRI analysis used a whole-brain approach focusing on the moments dissonance was induced. Results showed that in comparison with the control conditions the dissonance experience led to higher levels of activation in several brain regions. Specifically dissonance was associated with increased neural activation in key brain regions including the anterior cingulate cortex (ACC), anterior insula, inferior frontal gyrus, and precuneus. This supports current perspectives that emphasize the role of anterior cingulate and insula in dissonance processing. Less extensive activation in the prefrontal cortex than in some previous studies is consistent with this study's emphasis on dissonance induction, rather than reduction. This article also contains a short review and comparison with other fMRI studies of cognitive dissonance.

  18. Neural correlates of experienced moral emotion: an fMRI investigation of emotion in response to prejudice feedback.

    Science.gov (United States)

    Fourie, Melike M; Thomas, Kevin G F; Amodio, David M; Warton, Christopher M R; Meintjes, Ernesta M

    2014-01-01

    Guilt, shame, and embarrassment are quintessential moral emotions with important regulatory functions for the individual and society. Moral emotions are, however, difficult to study with neuroimaging methods because their elicitation is more intricate than that of basic emotions. Here, using functional MRI (fMRI), we employed a novel social prejudice paradigm to examine specific brain regions associated with real-time moral emotion, focusing on guilt and related moral-negative emotions. The paradigm induced intense moral-negative emotion (primarily guilt) in 22 low-prejudice individuals through preprogrammed feedback indicating implicit prejudice against Black and disabled people. fMRI data indicated that this experience of moral-negative emotion was associated with increased activity in anterior paralimbic structures, including the anterior cingulate cortex (ACC) and anterior insula, in addition to areas associated with mentalizing, including the dorsomedial prefrontal cortex, posterior cingulate cortex, and precuneus. Of significance was prominent conflict-related activity in the supragenual ACC, which is consistent with theories proposing an association between acute guilt and behavioral inhibition. Finally, a significant negative association between self-reported guilt and neural activity in the pregenual ACC suggested a role of self-regulatory processes in response to moral-negative affect. These findings are consistent with the multifaceted self-regulatory functions of moral-negative emotions in social behavior.

  19. Reflex muscle contraction in anterior shoulder instability.

    Science.gov (United States)

    Wallace, D A; Beard, D J; Gill, R H; Eng, B; Carr, A J

    1997-01-01

    Reduced proprioception may contribute to recurrent anterior shoulder instability. Twelve patients with unilateral shoulder instability were investigated for evidence of deficient proprioception with an activated pneumatic cylinder and surface electromyography electrodes; the contralateral normal shoulder was used as a control. The latency between onset of movement and the detection of muscle contraction was used as an index of proprioception. No significant difference in muscle contraction latency was detected between the stable and unstable shoulders, suggesting that there was no significant defect in muscular reflex activity. This study does not support the use proprioception-enhancing physiotherapy in the treatment of posttraumatic anterior shoulder instability.

  20. Chemical shift magnetic resonance spectroscopy of cingulate grey matter in patients with minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Mechtcheriakov, Sergei; Kugener, Andre; Mattedi, Michael; Hinterhuber, Hartmann; Marksteiner, Josef; Schocke, Michael; Graziadei, Ivo W.; Vogel, Wolfgang

    2005-01-01

    Minimal hepatic encephalopathy (MHE) is frequently diagnosed in patients with liver cirrhosis who do not show overt clinical cirrhosis-associated neurological deficits. This condition manifests primarily with visuo-motor and attention deficits. We studied the association between visuo-motor deficits and magnetic resonance spectroscopic parameters in cingulate grey matter and white matter of centrum semiovale in patients with liver cirrhosis. The data revealed an increase in the glutamate-glutamine/creatine ratio and a decrease in choline/creatine and inositol/creatine ratios in patients with liver cirrhosis. The analysis of the data showed that cirrhosis-associated deterioration of the visuo-motor function significantly correlates with a decrease in the choline/creatine ratio and an increase in N-acetylaspartate/choline in cingulate grey matter but not in the neighbouring white matter. Furthermore, the increase in the glutamate-glutamine/creatine ratio correlated significantly with the increase in the N-acetylaspartate/creatine ratio. These data suggest an association between altered choline, glutamate-glutamine and NAA metabolism in cingulate grey matter and symptoms of MHE, and underline the importance of differentiation between grey and white matter in magnetic resonance spectroscopic studies on patients with cirrhosis-associated brain dysfunction. (orig.)

  1. Effects of Informative and Confirmatory Feedback on Brain Activation During Negative Feedback Processing

    Directory of Open Access Journals (Sweden)

    Yeon-Kyoung eWoo

    2015-06-01

    Full Text Available The current study compared the effects of informative and confirmatory feedback on brain activation during negative feedback processing. For confirmatory feedback trials, participants were informed that they had failed the task, whereas informative feedback trials presented task relevant information along with the notification of their failure. Fourteen male undergraduates performed a series of spatial-perceptual tasks and received feedback while their brain activity was recorded. During confirmatory feedback trials, greater activations in the amygdala, dorsal anterior cingulate cortex, and the thalamus (including the habenular were observed in response to incorrect responses. These results suggest that confirmatory feedback induces negative emotional reactions to failure. In contrast, informative feedback trials elicited greater activity in the dorsolateral prefrontal cortex (DLPFC when participants experienced failure. Further psychophysiological interaction (PPI analysis revealed a negative coupling between the DLPFC and the amygdala during informative feedback relative to confirmatory feedback trials. These findings suggest that providing task-relevant information could facilitate implicit down-regulation of negative emotions following failure.

  2. Levodopa effects on hand and speech movements in patients with Parkinson's disease: a FMRI study.

    Directory of Open Access Journals (Sweden)

    Audrey Maillet

    Full Text Available Levodopa (L-dopa effects on the cardinal and axial symptoms of Parkinson's disease (PD differ greatly, leading to therapeutic challenges for managing the disabilities in this patient's population. In this context, we studied the cerebral networks associated with the production of a unilateral hand movement, speech production, and a task combining both tasks in 12 individuals with PD, both off and on levodopa (L-dopa. Unilateral hand movements in the off medication state elicited brain activations in motor regions (primary motor cortex, supplementary motor area, premotor cortex, cerebellum, as well as additional areas (anterior cingulate, putamen, associative parietal areas; following L-dopa administration, the brain activation profile was globally reduced, highlighting activations in the parietal and posterior cingulate cortices. For the speech production task, brain activation patterns were similar with and without medication, including the orofacial primary motor cortex (M1, the primary somatosensory cortex and the cerebellar hemispheres bilaterally, as well as the left- premotor, anterior cingulate and supramarginal cortices. For the combined task off L-dopa, the cerebral activation profile was restricted to the right cerebellum (hand movement, reflecting the difficulty in performing two movements simultaneously in PD. Under L-dopa, the brain activation profile of the combined task involved a larger pattern, including additional fronto-parietal activations, without reaching the sum of the areas activated during the simple hand and speech tasks separately. Our results question both the role of the basal ganglia system in speech production and the modulation of task-dependent cerebral networks by dopaminergic treatment.

  3. Anterior insula GABA levels correlate with emotional aspects of empathy: a proton magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Qianfeng Wang

    Full Text Available Empathy is a multidimensional construct referring to the capacity to understand and share the emotional and affective states of another person. Cerebral γ-aminobutyric acid (GABA-ergic levels are associated with a variety of neurological and psychiatric disorders. However, the role of the GABA system in different dimensions of empathy has not been investigated.Thirty-two right-handed healthy volunteers took part in this study. We used proton magnetic resonance spectroscopy to determine GABA concentrations in the anterior insula (AI and the anterior cingulate cortex (ACC and to examine the relationship between the GABA concentrations and the subcomponents of empathy evaluated by the Interpersonal Reactivity Index (IRI.Pearson correlation analyses (two-tailed showed that AI GABA was significantly associated with the empathy concern score (r = 0.584, p<0.05 and the personal distress score (r = 0.538, p<0.05 but not significantly associated with other empathy subscales. No significant correlation was found between ACC GABA and empathy subscores.Left AI GABA was positively correlated with the emotional aspects of empathy. These preliminary findings call into question whether AI GABA alterations might predict empathy dysfunction in major psychiatric disorders such as autism and schizophrenia, which have been described as deficits in emotional empathic abilities.

  4. Occipital and Cingulate Hypometabolism are Significantly Under-Reported on 18-Fluorodeoxyglucose Positron Emission Tomography Scans of Patients with Lewy Body Dementia.

    Science.gov (United States)

    Hamed, Moath; Schraml, Frank; Wilson, Jeffrey; Galvin, James; Sabbagh, Marwan N

    2018-01-01

    To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB). Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients. This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads. On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (pOccipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these in vivo biomarkers.

  5. Effects of sex and normal aging on regional brain activation during verbal memory performance

    Science.gov (United States)

    Hazlett, Erin A.; Byne, William; Brickman, Adam M.; Mitsis, Effie M.; Newmark, Randall; Haznedar, M. Mehmet; Knatz, Danielle T.; Chen, Amy D.; Buchsbaum, Monte S.

    2010-01-01

    This study examined the main and interactive effects of age and sex on relative glucose metabolic rate (rGMR) within gray matter of 39 cortical Brodmann areas (BAs) and the cingulate gyrus using 18FDG-PET during a verbal memory task in 70 healthy normal adults, aged 20–87 years. Women showed significantly greater age-related rGMR decline in left cingulate gyrus than men (BAs 25, 24, 23, 31, 29). Both groups showed a decline in the anterior cingulate—a neuroanatomical structure that mediates effective cognitive-emotional interactions (BAs 32, 24, 25), while the other frontal regions did not show substantial decline. No sex differences in rGMR were identified within temporal, parietal and occipital lobes. Sex differences were observed for rGMR within subcomponents of the cingulate gyrus with men higher in BA25 and BA29, but lower in BA24 and BA 23 compared to women. For men, better memory performance was associated with greater rGMR in BA24, whereas in women better performance was associated with orbitofrontal-BA12. These results suggest that both age-related metabolic decline and sex differences within frontal regions are more marked in medial frontal and cingulate areas, consistent with some age-related patterns of affective and cognitive change. PMID:19027195

  6. Individual differences in epistemic motivation and brain conflict monitoring activity.

    Science.gov (United States)

    Kossowska, Małgorzata; Czarnek, Gabriela; Wronka, Eligiusz; Wyczesany, Miroslaw; Bukowski, Marcin

    2014-06-06

    It is well documented that motivation toward closure (NFC), defined as a desire for a quick and unambiguous answer to a question and an aversion to uncertainty, is linked to more structured, rigid, and persistent cognitive styles. However, the neurocognitive correlates of NFC have never been tested. Thus, using event-related potentials, we examined the hypothesis that NFC is associated with the neurocognitive process for detecting discrepancies between response tendencies and higher level intentions. We found that greater NFC is associated with lower conflict-related anterior cingulate activity, suggesting lower sensitivity to cues for altering a habitual response pattern and lower sensitivity to committing errors. This study provides evidence that high NFC acts as a bulwark against anxiety-producing uncertainty and minimizes the experience of error. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Changes in resting neural connectivity during propofol sedation.

    Directory of Open Access Journals (Sweden)

    Emmanuel A Stamatakis

    2010-12-01

    Full Text Available The default mode network consists of a set of functionally connected brain regions (posterior cingulate, medial prefrontal cortex and bilateral parietal cortex maximally active in functional imaging studies under "no task" conditions. It has been argued that the posterior cingulate is important in consciousness/awareness, but previous investigations of resting interactions between the posterior cingulate cortex and other brain regions during sedation and anesthesia have produced inconsistent results.We examined the connectivity of the posterior cingulate at different levels of consciousness. "No task" fMRI (BOLD data were collected from healthy volunteers while awake and at low and moderate levels of sedation, induced by the anesthetic agent propofol. Our data show that connectivity of the posterior cingulate changes during sedation to include areas that are not traditionally considered to be part of the default mode network, such as the motor/somatosensory cortices, the anterior thalamic nuclei, and the reticular activating system.This neuroanatomical signature resembles that of non-REM sleep, and may be evidence for a system that reduces its discriminable states and switches into more stereotypic patterns of firing under sedation.

  8. Anterior cervical fusion: the role of anterior plating.

    Science.gov (United States)

    Daffner, Scott D; Wang, Jeffrey C

    2009-01-01

    Treatment of cervical pathology requires a clear understanding of the biomechanical benefits and limitations of cervical plates, their indications, and their associated complications. The use of anterior cervical plates has evolved significantly since their early application in cervical trauma. They have become widely used for anterior cervical decompression and fusion for cervical spondylosis. Plate design has undergone significant refinement and innovation, from the initial unlocked plates requiring bicortical purchase to the latest rotationally and translationally semiconstrained dynamic plates. Excellent clinical results have been reported for single-level anterior cervical decompression and fusion with or without plate fixation; however, the addition of an anterior cervical plate clearly leads to earlier fusion and better clinical results in longer fusions. Longer fusions should ideally consist of corpectomies and strut grafting because the decreased number of fusion surfaces tends to lead to higher fusion rates. Although anterior plate fixation leads to higher fusion rates in fusions of three or more levels, the associated pseudarthrosis rate is still high. The use of dynamic plates, through increased load sharing across the graft and decreased stress shielding, may improve fusion rates, particularly in long fusions. Nevertheless, adjuvant posterior fixation is recommended for fusions of more than three vertebral levels. Anterior plate fixation may be of particular benefit in the management of traumatic injuries, in revision settings, and in the treatment of smokers. Complications unique to plate fixation include hardware breakage and migration as well as ossification of the adjacent disk levels.

  9. Does caffeine modulate verbal working memory processes? An fMRI study.

    Science.gov (United States)

    Koppelstaetter, F; Poeppel, T D; Siedentopf, C M; Ischebeck, A; Verius, M; Haala, I; Mottaghy, F M; Rhomberg, P; Golaszewski, S; Gotwald, T; Lorenz, I H; Kolbitsch, C; Felber, S; Krause, B J

    2008-01-01

    To assess the effect of caffeine on the functional MRI signal during a 2-back verbal working memory task, we examined blood oxygenation level-dependent regional brain activity in 15 healthy right-handed males. The subjects, all moderate caffeine consumers, underwent two scanning sessions on a 1.5-T MR-Scanner separated by a 24- to 48-h interval. Each participant received either placebo or 100 mg caffeine 20 min prior to the performance of the working memory task in blinded crossover fashion. The study was implemented as a blocked-design. Analysis was performed using SPM2. In both conditions, the characteristic working memory network of frontoparietal cortical activation including the precuneus and the anterior cingulate could be shown. In comparison to placebo, caffeine caused an increased response in the bilateral medial frontopolar cortex (BA 10), extending to the right anterior cingulate cortex (BA 32). These results suggest that caffeine modulates neuronal activity as evidenced by fMRI signal changes in a network of brain areas associated with executive and attentional functions during working memory processes.

  10. Direct composite restoration of permanent anterior teeth uncomplicated crown fractures

    Directory of Open Access Journals (Sweden)

    Ashley Evans Nicholas

    2018-01-01

    Full Text Available An uncomplicated crown fracture is a fracture that involves only the tooth enamel or the dentin and tooth enamel without any damage or exposure to the pulp. Crown fracture of the anterior teeth usually caused by traumatic forces such as falls, accidents, violence, or sports activities. Traumatic injuries of the oral region frequently involve the anterior teeth, especially maxillary incisors due to the anatomic factors which may affect the functional and aesthetical values of the teeth. The objective of this literature study was to know more about uncomplicated crown fracture of the anterior teeth and its restoration. This research was a literature study performed by researching, highlighting various interesting facts and compiling the relevant published journals. The most common and ideal direct restoration of the anterior teeth was the composite resin restoration. The anterior teeth restoration was considered to be a complex and challenging case to solves due to the fact that besides reconstructing the tooth and regaining the function, the aesthetical aspect was also becoming the main objectives. The permanent anterior teeth uncomplicated crown fracture was the most common case of tooth fractures which was mainly caused by traumatic injuries such as falls, accidents, excessive forces, violence, and also sports activities. Dental injuries of the anterior teeth also affected the aesthetical properties and the function of the tooth. Composite resin restoration was able to performed directly on the permanent anterior teeth uncomplicated crown fracture.

  11. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.

    Science.gov (United States)

    Range, Ryan C; Wei, Zheng

    2016-05-01

    Anterior signaling centers help specify and pattern the early anterior neuroectoderm (ANE) in many deuterostomes. In sea urchin the ANE is restricted to the anterior of the late blastula stage embryo, where it forms a simple neural territory comprising several types of neurons as well as the apical tuft. Here, we show that during early development, the sea urchin ANE territory separates into inner and outer regulatory domains that express the cardinal ANE transcriptional regulators FoxQ2 and Six3, respectively. FoxQ2 drives this patterning process, which is required to eliminate six3 expression from the inner domain and activate the expression of Dkk3 and sFRP1/5, two secreted Wnt modulators. Dkk3 and low expression levels of sFRP1/5 act additively to potentiate the Wnt/JNK signaling pathway governing the positioning of the ANE territory around the anterior pole, whereas high expression levels of sFRP1/5 antagonize Wnt/JNK signaling. sFRP1/5 and Dkk3 levels are rigidly maintained via autorepressive and cross-repressive interactions with Wnt signaling components and additional ANE transcription factors. Together, these data support a model in which FoxQ2 initiates an anterior patterning center that implements correct size and positions of ANE structures. Comparisons of functional and expression studies in sea urchin, hemichordate and chordate embryos reveal striking similarities among deuterostome ANE regulatory networks and the molecular mechanism that positions and defines ANE borders. These data strongly support the idea that the sea urchin embryo uses an ancient anterior patterning system that was present in the common ambulacrarian/chordate ancestor. © 2016. Published by The Company of Biologists Ltd.

  12. HIV Distal Neuropathic Pain Is Associated with Smaller Ventral Posterior Cingulate Cortex.

    Science.gov (United States)

    Keltner, John R; Connolly, Colm G; Vaida, Florin; Jenkinson, Mark; Fennema-Notestine, Christine; Archibald, Sarah; Akkari, Cherine; Schlein, Alexandra; Lee, Jisu; Wang, Dongzhe; Kim, Sung; Li, Han; Rennels, Austin; Miller, David J; Kesidis, George; Franklin, Donald R; Sanders, Chelsea; Corkran, Stephanie; Grant, Igor; Brown, Gregory G; Atkinson, J Hampton; Ellis, Ronald J

    2017-03-01

    . Despite modern antiretroviral therapy, HIV-associated neuropathy is one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of distal neuropathic pain is not fully explained by the degree of peripheral nerve damage. A better understanding of brain structure in HIV distal neuropathic pain may help explain why some patients with HIV neuropathy report pain while the majority does not. Previously, we reported that more intense distal neuropathic pain was associated with smaller total cerebral cortical gray matter volumes. The objective of this study was to determine which parts of the cortex are smaller. . HIV positive individuals with and without distal neuropathic pain enrolled in the multisite (N = 233) CNS HIV Antiretroviral Treatment Effects (CHARTER) study underwent structural brain magnetic resonance imaging. Voxel-based morphometry was used to investigate regional brain volumes in these structural brain images. . Left ventral posterior cingulate cortex was smaller for HIV positive individuals with versus without distal neuropathic pain (peak P  = 0.017; peak t = 5.15; MNI coordinates x = -6, y = -54, z = 20). Regional brain volumes within cortical gray matter structures typically associated with pain processing were also smaller for HIV positive individuals having higher intensity ratings of distal neuropathic pain. . The posterior cingulate is thought to be involved in inhibiting the perception of painful stimuli. Mechanistically a smaller posterior cingulate cortex structure may be related to reduced anti-nociception contributing to increased distal neuropathic pain. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. Expectation requires treatment to boost pain relief: an fMRI study.

    Science.gov (United States)

    Schenk, Lieven A; Sprenger, Christian; Geuter, Stephan; Büchel, Christian

    2014-01-01

    We investigated the effect of a possible interaction between topical analgesic treatment and treatment expectation on pain at the behavioral and neuronal level by combining topical lidocaine/prilocaine treatment with an expectancy manipulation in a 2 by 2 within-subject design (open treatment, hidden treatment, placebo, control). Thirty-two healthy subjects received heat pain stimuli on capsaicin-pretreated skin and rated their experienced pain during functional magnetic resonance imaging. This allowed us to separate drug- and expectancy-related effects at the behavioral and neuronal levels and to test whether they interact during the processing of painful stimuli. Pain ratings were reduced during active treatment and were associated with reduced activity in the anterior insular cortex. Pain ratings were lower in open treatment compared with hidden treatment and were related to reduced activity in the anterior insular cortex, the anterior cingulate cortex, the secondary somatosensory cortex, and the thalamus. Testing for an interaction revealed that the expectation effect was significantly larger in the active treatment conditions compared with the no-treatment conditions and was associated with signal changes in the anterior insular cortex, the anterior cingulate cortex, and the ventral striatum. In conclusion, this study shows that even in the case of a topical analgesic, expectation interacts with treatment at the level of pain ratings and neuronal responses in placebo-related brain regions. Our results are highly relevant in the clinical context as they show (i) that expectation can boost treatment and (ii) that expectation and treatment are not necessarily additive as assumed in placebo-controlled clinical trials. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Functional magnetic resonance imaging measure of automatic and controlled auditory processing

    OpenAIRE

    Mitchell, Teresa V.; Morey, Rajendra A.; Inan, Seniha; Belger, Aysenil

    2005-01-01

    Activity within fronto-striato-temporal regions during processing of unattended auditory deviant tones and an auditory target detection task was investigated using event-related functional magnetic resonance imaging. Activation within the middle frontal gyrus, inferior frontal gyrus, anterior cingulate gyrus, superior temporal gyrus, thalamus, and basal ganglia were analyzed for differences in activity patterns between the two stimulus conditions. Unattended deviant tones elicited robust acti...

  15. Abnormal Baseline Brain Activity in Drug-Naïve Patients with Tourette Syndrome: A Resting-state fMRI Study

    Directory of Open Access Journals (Sweden)

    Yonghua eCui

    2014-01-01

    Full Text Available Tourette Syndrome (TS is a childhood-onset chronic disorder characterized by the presence of multiple motor and vocal tics. This study investigated spontaneous low-frequency fluctuations in TS patients during resting-state functional magnetic resonance imaging (fMRI scans. We obtained resting-state fMRI scans from seventeen drug-naïve TS children and fifteen demographically matched healthy children. We computed the amplitude of low frequency fluctuation (ALFF and fractional ALFF (fALFF of resting-state fMRI data to measure spontaneous brain activity, and assessed the between-group differences in ALFF/fALFF and the relationship between ALFF/fALFF and tic severity scores. Our results showed that the children with TS exhibited significantly decreased ALFF in the posterior cingulate gyrus/precuneus and bilateral parietal gyrus. fALFF was decreased in TS children in the anterior cingulated cortex, bilateral middle and superior frontal cortices and superior parietal lobule, and increased in the left putamen and bilateral thalamus. Moreover, we found significantly positive correlations between fALFF and tic severity scores in the right thalamus. Our study provides empirical evidence for abnormal spontaneous neuronal activity in TS patients, which may implicate the underlying neurophysiological mechanism in TS and demonstrate the possibility of applying ALFF/fALFF for clinical TS studies.

  16. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    Science.gov (United States)

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. A voxel-based analysis of cerebral perfusion with {sup 99m}Tc-ECD brain SPECT in obsessive-compulsive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Chang, Jin Woo; Kim, Chan Hyung; Lee, Hong Shick; Min, Sung Kil; Chung, Sang Sup [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2000-07-01

    Many neuroimaging studies, especially metabolic imaging with PET, showed a specific frontal-subcortical brain circuit connecting the orbitofrontal cortex (OFC), anterior cingulate gyrus, elements of basal ganglia and thalamus is involved in obsessive-compulsive disorder (OCD). Despite consistent metabolic alteration on PET, blood flow studies with SPECT were inconsistent and various cortical and subcortical structures showed abnormal perfusion patterns. In this study, brain SPECT images of seven patients with OCD were evaluated with a sophisticated method of statistical parametric mapping (SPM). Seven patients with severe, primary OCD (6 males and 1 female) with mean age of 25.4 4.7 yrs (20-32 yrs) were studied. The SPECT data of the patients were compared with those of healthy subjects and patients with drug nave schizophrenia using SPM. The SPM parameters were p value of 0.001 with Z value of 3.09 (higher threshold ) or p value of 0.005 with Z value 2.58 (lower threshold). On a higher threshold (p<0.01),five of the seven patients showed hyperperfusion within the anterior cingulate cortex, however, hyperperfusion within OFC or caudate nucleus was seen in only one patient. On a lower threshold (p<0.005), hyperperfusion within the anterior cingulate cortex was seen in all patients, and followed by thalamus (n=5), lentiform nucleus (n=4), caudate nucleus (n=3), and OFC (n=3). Perfusion within the anterior cingulate cortex was also increased in OCD compared with drug nave schizophrenia. Anterior cingulate cortex appears to be an important anatomical structure in the pathogenesis of OCD symptoms. Brain SPECT using a sophisticated analysis method of SPM is useful for the diagnosis of OCD and differentiation from schizophrenia.

  18. A voxel-based analysis of cerebral perfusion with 99mTc-ECD brain SPECT in obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Chang, Jin Woo; Kim, Chan Hyung; Lee, Hong Shick; Min, Sung Kil; Chung, Sang Sup

    2000-01-01

    Many neuroimaging studies, especially metabolic imaging with PET, showed a specific frontal-subcortical brain circuit connecting the orbitofrontal cortex (OFC), anterior cingulate gyrus, elements of basal ganglia and thalamus is involved in obsessive-compulsive disorder (OCD). Despite consistent metabolic alteration on PET, blood flow studies with SPECT were inconsistent and various cortical and subcortical structures showed abnormal perfusion patterns. In this study, brain SPECT images of seven patients with OCD were evaluated with a sophisticated method of statistical parametric mapping (SPM). Seven patients with severe, primary OCD (6 males and 1 female) with mean age of 25.4 4.7 yrs (20-32 yrs) were studied. The SPECT data of the patients were compared with those of healthy subjects and patients with drug nave schizophrenia using SPM. The SPM parameters were p value of 0.001 with Z value of 3.09 (higher threshold ) or p value of 0.005 with Z value 2.58 (lower threshold). On a higher threshold (p<0.01),five of the seven patients showed hyperperfusion within the anterior cingulate cortex, however, hyperperfusion within OFC or caudate nucleus was seen in only one patient. On a lower threshold (p<0.005), hyperperfusion within the anterior cingulate cortex was seen in all patients, and followed by thalamus (n=5), lentiform nucleus (n=4), caudate nucleus (n=3), and OFC (n=3). Perfusion within the anterior cingulate cortex was also increased in OCD compared with drug nave schizophrenia. Anterior cingulate cortex appears to be an important anatomical structure in the pathogenesis of OCD symptoms. Brain SPECT using a sophisticated analysis method of SPM is useful for the diagnosis of OCD and differentiation from schizophrenia

  19. Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey.

    Science.gov (United States)

    Morecraft, R J; Cipolloni, P B; Stilwell-Morecraft, K S; Gedney, M T; Pandya, D N

    2004-01-26

    The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient

  20. Why humans deviate from rational choice.

    Science.gov (United States)

    Hewig, Johannes; Kretschmer, Nora; Trippe, Ralf H; Hecht, Holger; Coles, Michael G H; Holroyd, Clay B; Miltner, Wolfgang H R

    2011-04-01

    Rational choice theory predicts that humans always optimize the expected utility of options when making decisions. However, in decision-making games, humans often punish their opponents even when doing so reduces their own reward. We used the Ultimatum and Dictator games to examine the affective correlates of decision-making. We show that the feedback negativity, an event-related brain potential that originates in the anterior cingulate cortex that has been related to reinforcement learning, predicts the decision to reject unfair offers in the Ultimatum game. Furthermore, the decision to reject is positively related to more negative emotional reactions and to increased autonomic nervous system activity. These findings support the idea that subjective emotional markers guide decision-making and that the anterior cingulate cortex integrates instances of reinforcement and punishment to provide such affective markers. Copyright © 2010 Society for Psychophysiological Research.

  1. Regional cerebral blood flow abnormalities in late-life depression. Relation to refractoriness and chronification

    Energy Technology Data Exchange (ETDEWEB)

    Awata, Shuichi; Konno, Michiko; Sato, Mitsumoto [Tohoku Univ., Sendai (Japan). School of Medicine; Ito, Hiroshi; Ono, Shuichi; Kawashima, Ryuta; Fukuda, Hiroshi

    1998-02-01

    We examined patterns of regional cerebral blood flow (rCBF) abnormalities in 18 patients with major depressive disorder in late life using single photon emission computed tomography (SPECT) and {sup 99m}Tc-hexamethyl-propylenamine oxime ({sup 99m}Tc-HMPAO). Compared with 13 age-matched controls, relative rCBF was significantly decreased bilaterally in the anterior cingulate gyrus, the prefrontal cortex, the temporal cortex, the parietal cortex, the hippocampus and the caudate nucleus. However, it was not correlated with the severity of depression or global cognitive dysfunction. In 10 patients with a prolonged depressive episode or prolonged residual symptoms (the refractory subgroup), robust and extensive decreases in rCBF were found compared with controls and the rCBF decreased significantly in the anterior cingulate gyrus and the prefrontal cortex compared with that in the non-refractory subgroup. In the non-reflactory subgroup, rCBF decreased significantly in the caudate nucleus and tended to decrease in the anterior cingulate gyrus compared with controls. These findings indicate that dysfunction of the limbic system, the cerebral association cortex and the caudate nucleus may be implicated in late-life depression and that robust and extensive hypoperfusion, especially in the anterior cingulate and the prefrontal regions, may relate to refractoriness or chronification of depression. (author). 60 refs.

  2. Regional cerebral blood flow abnormalities in late-life depression. Relation to refractoriness and chronification

    International Nuclear Information System (INIS)

    Awata, Shuichi; Konno, Michiko; Sato, Mitsumoto; Ito, Hiroshi; Ono, Shuichi; Kawashima, Ryuta; Fukuda, Hiroshi

    1998-01-01

    We examined patterns of regional cerebral blood flow (rCBF) abnormalities in 18 patients with major depressive disorder in late life using single photon emission computed tomography (SPECT) and 99m Tc-hexamethyl-propylenamine oxime ( 99m Tc-HMPAO). Compared with 13 age-matched controls, relative rCBF was significantly decreased bilaterally in the anterior cingulate gyrus, the prefrontal cortex, the temporal cortex, the parietal cortex, the hippocampus and the caudate nucleus. However, it was not correlated with the severity of depression or global cognitive dysfunction. In 10 patients with a prolonged depressive episode or prolonged residual symptoms (the refractory subgroup), robust and extensive decreases in rCBF were found compared with controls and the rCBF decreased significantly in the anterior cingulate gyrus and the prefrontal cortex compared with that in the non-refractory subgroup. In the non-reflactory subgroup, rCBF decreased significantly in the caudate nucleus and tended to decrease in the anterior cingulate gyrus compared with controls. These findings indicate that dysfunction of the limbic system, the cerebral association cortex and the caudate nucleus may be implicated in late-life depression and that robust and extensive hypoperfusion, especially in the anterior cingulate and the prefrontal regions, may relate to refractoriness or chronification of depression. (author). 60 refs

  3. Neural Networks for Time Perception and Working Memory

    Science.gov (United States)

    Üstün, Sertaç; Kale, Emre H.; Çiçek, Metehan

    2017-01-01

    Time is an important concept which determines most human behaviors, however questions remain about how time is perceived and which areas of the brain are responsible for time perception. The aim of this study was to evaluate the relationship between time perception and working memory in healthy adults. Functional magnetic resonance imaging (fMRI) was used during the application of a visual paradigm. In all of the conditions, the participants were presented with a moving black rectangle on a gray screen. The rectangle was obstructed by a black bar for a time period and then reappeared again. During different conditions, participants (n = 15, eight male) responded according to the instructions they were given, including details about time and the working memory or dual task requirements. The results showed activations in right dorsolateral prefrontal and right intraparietal cortical networks, together with the anterior cingulate cortex (ACC), anterior insula and basal ganglia (BG) during time perception. On the other hand, working memory engaged the left prefrontal cortex, ACC, left superior parietal cortex, BG and cerebellum activity. Both time perception and working memory were related to a strong peristriate cortical activity. On the other hand, the interaction of time and memory showed activity in the intraparietal sulcus (IPS) and posterior cingulate cortex (PCC). These results support a distributed neural network based model for time perception and that the intraparietal and posterior cingulate areas might play a role in the interface of memory and timing. PMID:28286475

  4. Architectural Design and the Brain

    DEFF Research Database (Denmark)

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan

    2015-01-01

    , and activated structures underlying perceived visual motion. Additionally, enclosed rooms were more likely to elicit exit decisions and activated the anterior midcingulate cortex (aMCC)—the region within the cingulate gyrus with direct projections from the amygdala. This suggests that a reduction in perceived...... visual and locomotive permeability characteristic of enclosed spaces might elicit an emotional reaction that accompanies exit decisions....

  5. Relation of obesity to neural activation in response to food commercials.

    Science.gov (United States)

    Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D

    2014-07-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Feasibility of using fMRI to study mothers responding to infant cries.

    Science.gov (United States)

    Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S

    1999-01-01

    While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.

  7. A Preliminary fMRI Study of a Novel Self-Paced Written Fluency Task: Observation of Left-Hemispheric Activation, and Increased Frontal Activation in Late vs. Early Task Phases

    Directory of Open Access Journals (Sweden)

    Laleh eGolestanirad

    2015-03-01

    Full Text Available Neuropsychological tests of verbal fluency are very widely used to characterize impaired cognitive function. For clinical neuroscience studies and potential medical applications, measuring the brain activity that underlies such tests with functional magnetic resonance imaging (fMRI is of significant interest - but a challenging proposition because overt speech can cause signal artifacts, which tend to worsen as the duration of speech tasks becomes longer. In a novel approach, we present the group brain activity of 12 subjects who performed a self-paced written version of phonemic fluency using fMRI-compatible tablet technology that recorded responses and provided task-related feedback on a projection screen display, over long-duration task blocks (60 s. As predicted, we observed robust activation in the left anterior inferior and medial frontal gyri, consisting with previously reported results of verbal fluency tasks which established the role of these areas in strategic word retrieval. In addition, the number of words produced in the late phase (last 30 s of written phonemic fluency was significantly less (p < 0.05 than the number produced in the early phase (first 30 s. Activation during the late phase vs. the early phase was also assessed from the first 20 s and last 20 s of task performance, which eliminated the possibility that the sluggish hemodynamic response from the early phase would affect the activation estimates of the late phase. The last 20 s produced greater activation maps covering extended areas in bilateral precuneus, cuneus, middle temporal gyrus, insula, middle frontal gyrus and cingulate gyrus. Among them, greater activation was observed in the bilateral middle frontal gyrus (Brodmann area BA 9 and cingulate gyrus (BA 24, 32 likely as part of the initiation, maintenance, and shifting of attentional resources.

  8. Young Adults with Autism Spectrum Disorder Show Early Atypical Neural Activity during Emotional Face Processing

    Directory of Open Access Journals (Sweden)

    Rachel C. Leung

    2018-02-01

    Full Text Available Social cognition is impaired in autism spectrum disorder (ASD. The ability to perceive and interpret affect is integral to successful social functioning and has an extended developmental course. However, the neural mechanisms underlying emotional face processing in ASD are unclear. Using magnetoencephalography (MEG, the present study explored neural activation during implicit emotional face processing in young adults with and without ASD. Twenty-six young adults with ASD and 26 healthy controls were recruited. Participants indicated the location of a scrambled pattern (target that was presented alongside a happy or angry face. Emotion-related activation sources for each emotion were estimated using the Empirical Bayes Beamformer (pcorr ≤ 0.001 in Statistical Parametric Mapping 12 (SPM12. Emotional faces elicited elevated fusiform, amygdala and anterior insula and reduced anterior cingulate cortex (ACC activity in adults with ASD relative to controls. Within group comparisons revealed that angry vs. happy faces elicited distinct neural activity in typically developing adults; there was no distinction in young adults with ASD. Our data suggest difficulties in affect processing in ASD reflect atypical recruitment of traditional emotional processing areas. These early differences may contribute to difficulties in deriving social reward from faces, ascribing salience to faces, and an immature threat processing system, which collectively could result in deficits in emotional face processing.

  9. Recruitment of Language-, Emotion- and Speech-Timing Associated Brain Regions for Expressing Emotional Prosody: Investigation of Functional Neuroanatomy with fMRI.

    Science.gov (United States)

    Mitchell, Rachel L C; Jazdzyk, Agnieszka; Stets, Manuela; Kotz, Sonja A

    2016-01-01

    We aimed to progress understanding of prosodic emotion expression by establishing brain regions active when expressing specific emotions, those activated irrespective of the target emotion, and those whose activation intensity varied depending on individual performance. BOLD contrast data were acquired whilst participants spoke non-sense words in happy, angry or neutral tones, or performed jaw-movements. Emotion-specific analyses demonstrated that when expressing angry prosody, activated brain regions included the inferior frontal and superior temporal gyri, the insula, and the basal ganglia. When expressing happy prosody, the activated brain regions also included the superior temporal gyrus, insula, and basal ganglia, with additional activation in the anterior cingulate. Conjunction analysis confirmed that the superior temporal gyrus and basal ganglia were activated regardless of the specific emotion concerned. Nevertheless, disjunctive comparisons between the expression of angry and happy prosody established that anterior cingulate activity was significantly higher for angry prosody than for happy prosody production. Degree of inferior frontal gyrus activity correlated with the ability to express the target emotion through prosody. We conclude that expressing prosodic emotions (vs. neutral intonation) requires generic brain regions involved in comprehending numerous aspects of language, emotion-related processes such as experiencing emotions, and in the time-critical integration of speech information.

  10. Recruitment of language-, emotion- and speech timing associated brain regions for expressing emotional prosody: Investigation of functional neuroanatomy with fMRI.

    Directory of Open Access Journals (Sweden)

    Rachel L. C. Mitchell

    2016-10-01

    Full Text Available We aimed to progress understanding of prosodic emotion expression by establishing brain regions active when expressing specific emotions, those activated irrespective of the target emotion, and those whose activation intensity varied depending on individual performance. BOLD contrast data were acquired whilst participants spoke nonsense words in happy, angry or neutral tones, or performed jaw-movements. Emotion-specific analyses demonstrated that when expressing angry prosody, activated brain regions included the inferior frontal and superior temporal gyri, the insula, and the basal ganglia. When expressing happy prosody, the activated brain regions also included the superior temporal gyrus, insula, and basal ganglia, with additional activation in the anterior cingulate. Conjunction analysis confirmed that the superior temporal gyrus and basal ganglia were activated regardless of the specific emotion concerned. Nevertheless, disjunctive comparisons between the expression of angry and happy prosody established that anterior cingulate activity was significantly higher for angry prosody than for happy prosody production. Degree of inferior frontal gyrus activity correlated with the ability to express the target emotion through prosody. We conclude that expressing prosodic emotions (vs neutral intonation requires generic brain regions involved in comprehending numerous aspects of language, emotion-related processes such as experiencing emotions, and in the time-critical integration of speech information.

  11. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    International Nuclear Information System (INIS)

    Moll, Jorge; Oliveira-Souza, Ricardo de

    2001-01-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  12. O-15-butanol PET activation study on declarative memory

    International Nuclear Information System (INIS)

    Krause, B.J.; Schmidt, D.; Mottaghy, F.M.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich; Halsband, U.; Tellmann, L.; Herzog, H.

    1998-01-01

    Aim: In this study, neuroanatomical correlates of encoding and retrieval in paired associate learning were evaluated with positron emission tomography using auditorily presented highly imaginable words. Methods: Six right-handed normal male volunteers took part in the study. Each subject underwent six O-15-butanol PET scans. On each of the six trials the memory task began with the injection of a bolus of O-15-butanol. The subjects had to learn and retrieve twelve word pairs (highly imaginable words, not semantically related). The presentation of nonsense words served as reference condition. Results: Recall accuracy after 2-4 presentations was high during the PET measurement. In both encoding and retrieval we found anterior cingulate activation. We show bilateral dorsalateral prefrontal activation during the encoding of auditorily presented word pair associates, whereas retrieval led to left frontal activation. Furthermore, we demonstrate the importance of the precuneus in the retrieval of highly imaginable world-pair associates. Conclusion: Our results support the hypothesis of the presence of distributed widespread brain structures subserving episodic declarative memory. (orig.) [de

  13. Greater anterior insula activation during anticipation of food images in women recovered from anorexia nervosa versus controls

    Science.gov (United States)

    Oberndorfer, Tyson; Simmons, Alan; McCurdy, Danyale; Strigo, Irina; Matthews, Scott; Yang, Tony; Irvine, Zoe; Kaye, Walter

    2013-01-01

    Individuals with anorexia nervosa (AN) restrict food consumption and become severely emaciated. Eating food, even thinking of eating food, is often associated with heightened anxiety. However, food cue anticipation in AN is poorly understood. Fourteen women recovered from AN and 12 matched healthy control women performed an anticipation task viewing images of food and object images during functional magnetic resonance imaging. Comparing anticipation of food versus object images between control women and recovered AN groups showed significant interaction only in the right ventral anterior insula, with greater activation in recovered AN anticipating food images. These data support the hypothesis of a disconnect between anticipating and experiencing food stimuli in recovered AN. Insula activation positively correlated with pleasantness ratings of palatable foods in control women, while no such relationship existed in recovered AN, which is further evidence of altered interoceptive function. Finally, these findings raise the possibility that enhanced anterior insula anticipatory response to food cues in recovered AN could contribute to exaggerated sensitivity and anxiety related to food and eating. PMID:23993362

  14. Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment

    Science.gov (United States)

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-01-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has overcome our natural emotional aversion to harming others. Recent studies, however, suggest that such utilitarian judgments might also result from a decreased aversion to harming others, due to a deficit in empathic concern and social emotion. The present study investigated the neural basis of such indifference to harming using functional neuroimaging during engagement in moral dilemmas. A tendency to counterintuitive utilitarian judgment was associated both with ‘psychoticism’, a trait associated with a lack of empathic concern and antisocial tendencies, and with ‘need for cognition’, a trait reflecting preference for effortful cognition. Importantly, only psychoticism was also negatively correlated with activation in the subgenual cingulate cortex (SCC), a brain area implicated in empathic concern and social emotions such as guilt, during counterintuitive utilitarian judgments. Our findings suggest that when individuals reach highly counterintuitive utilitarian conclusions, this need not reflect greater engagement in explicit moral deliberation. It may rather reflect a lack of empathic concern, and diminished aversion to harming others. PMID:23280149

  15. Upper midbrain profile sign and cingulate sulcus sign. MRI findings on sagittal images in idiopathic normal-pressure hydrocephalus, Alzheimer's disease, and progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Adachi, Michito; Ohshima, Fumi; Kawanami, Toru; Kato, Takeo

    2006-01-01

    On magnetic resonance imaging (MRI) sagittal sections, we sometimes encounter abnormal aspects of the superior profile of the midbrain and the cingulate sulcus in patients with dementia. In this preliminary study, we refer to these findings as the ''upper midbrain profile sign'' and the cingulate sulcus sign.'' We prospectively evaluated the usefulness of these signs for the diagnosis of idiopathic normal-pressure hydrocephalus (iNPH), Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). We evaluated the upper midbrain profile sign and the cingulate sulcus sign on MRI sagittal images obtained from 21 people with headaches but no neurological deficit (controls), 10 iNPH patients, 11 AD patients, and 5 PSP patients. The upper midbrain profile sign indicated a concave shape to the superior profile of the midbrain on mid-sagittal images, and the cingulate sulcus sign indicated a narrow, tight aspect of the posterior part of the cingulate sulcus on paramedian-sagittal images. These signs were never seen in any images from the controls. The upper midbrain profile sign was seen in 7 of 10 patients with iNPH, 5 of 11 with AD, and 3 of 5 with PSP. The cingulate sulcus sign was seen in all 10 patients with iNPH but was never seen in any patient with AD or PSP. The upper midbrain profile sign could support a diagnosis of PSP but cannot discriminate among iNPH, AD, and PSP. In contrast, the cingulate sulcus sign has a very high sensitivity for iNPH and should facilitate the distinction of iNPH from other dementias. In the clinical setting, it is momentous to evaluate these signs easily by one simple MRI sequence. (author)

  16. Paralimbic system and striatum are involved in motivational behavior.

    Science.gov (United States)

    Nishimura, Masahiko; Yoshii, Yoshihiko; Watanabe, Jobu; Ishiuchi, Shogo

    2009-10-28

    Goal-directed rewarded behavior and goal-directed non-rewarded behavior are concerned with motivation. However, the neural substrates involved in goal-directed non-rewarded behaviors are unknown. Using functional magnetic resonance imaging, we investigated the brain activities of healthy individuals during a novel tool use (turning a screwdriver) to elucidate the relationship between the brain mechanism relevant to goal-directed non-rewarded behavior and motivation. We found that our designed behavioral task evoked activities in the orbitofrontal cortex, striatum, anterior insula, lateral prefrontal cortex, and anterior cingulate cortex compared with a meaningless task. These results suggest that activation in these cerebral regions play important roles in motivational behavior without tangible rewards.

  17. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  18. anomalous left anterior cerebral artery with hypoplastic right anterior ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... We report an extremely rare anomalous variation of left anterior cerebral artery arising from the ... paraclinoid internal carotid artery and right ... Studies on the arteries of the brain: II-The anterior cerebral artery: Some anatomic ...

  19. Transcranial Magnetic Stimulation of Medial Prefrontal and Cingulate Cortices Reduces Cocaine Self-Administration: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Diana Martinez

    2018-03-01

    Full Text Available BackgroundPrevious studies have shown that repetitive transcranial magnetic stimulation (rTMS to the dorsolateral prefrontal cortex may serve as a potential treatment for cocaine use disorder (CUD, which remains a public health problem that is refractory to treatment. The goal of this pilot study was to investigate the effect of rTMS on cocaine self-administration in the laboratory. In the self-administration sessions, CUD participants chose between cocaine and an alternative reinforcer (money in order to directly measure cocaine-seeking behavior. The rTMS was delivered with the H7 coil, which provides stimulation to the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC. These brain regions were targeted based on previous imaging studies demonstrating alterations in their activation and connectivity in CUD.MethodsVolunteers with CUD were admitted to an inpatient unit for the entire study and assigned to one of three rTMS groups: high frequency (10 Hz, low frequency (1 Hz, and sham. Six participants were included in each group and the rTMS was delivered on weekdays for 3 weeks. The cocaine self-administration sessions were performed at three time points: at baseline (pre-TMS, session 1, after 4 days of rTMS (session 2, and after 13 days of rTMS (session 3. During each self-administration session, the outcome measure was the number of choices for cocaine.ResultsThe results showed a significant group by time effect (p = 0.02, where the choices for cocaine decreased between sessions 2 and 3 in the high frequency group. There was no effect of rTMS on cocaine self-administration in the low frequency or sham groups.ConclusionTaken in the context of the existing literature, these results contribute to the data showing that high frequency rTMS to the prefrontal cortex may serve as a potential treatment for CUD.

  20. It's in the eye of the beholder: selective attention to drink properties during tasting influences brain activation in gustatory and reward regions.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2018-04-01

    Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the attention consumers pay to such characteristics during consumption. There is little research on the effects of selective attention on taste perception and associated brain activation in regular drinks. The aim of this study was to investigate the effect of selective attention on hedonics, intensity and caloric content on brain responses during tasting drinks. Using functional MRI brain responses of 27 women were measured while they paid attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and water. Brain activation during tasting largely overlapped between the three selective attention conditions and was found in the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior cingulate cortex and middle orbitofrontal cortex (OFC). Brain activation was higher during selective attention to taste intensity compared to calories in the right middle OFC and during selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle insula. Intensity ratings correlated with brain activation during selective attention to taste intensity in the anterior insula and lateral OFC. Our data suggest that not only the anterior insula but also the middle and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to pleasantness engaged regions associated with food reward. Overall, our results indicate that selective attention to food properties can alter the activation of gustatory and reward regions. This may underlie effects of food labels on the consumption experience of consumers.

  1. Effects of cue focality on the neural mechanisms of prospective memory: A meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Cona, Giorgia; Bisiacchi, Patrizia Silvia; Sartori, Giuseppe; Scarpazza, Cristina

    2016-05-17

    Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks.

  2. Depression and anxious apprehension distinguish frontocingulate cortical activity during top-down attentional control.

    Science.gov (United States)

    Silton, Rebecca Levin; Heller, Wendy; Engels, Anna S; Towers, David N; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2011-05-01

    A network consisting of left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC) has been implicated in top-down attentional control. Few studies have systematically investigated how this network is altered in psychopathology, despite evidence that depression and anxiety are associated with attentional control impairments. Functional MRI and dense-array event-related brain potential (ERP) data were collected in separate sessions from 100 participants during a color-word Stroop task. Functional MRI results guided ERP source modeling to characterize the time course of activity in LDLPFC (300-440 ms) and dACC (520-680 ms). At low levels of depression, LDLPFC activity was indirectly related to Stroop interference and only via dACC activity. In contrast, at high levels of depression, dACC did not play an intervening role, and increased LDLPFC activity was directly related to decreased Stroop interference. Specific to high levels of anxious apprehension, higher dACC activity was related to more Stroop interference. Results indicate that depression and anxious apprehension modulate temporally and functionally distinct aspects of the frontocingulate network involved in top-down attention control.

  3. Increased anterior cingulate cortex and hippocampus activation in Complex PTSD during encoding of negative words

    NARCIS (Netherlands)

    Thomaes, Kathleen; Dorrepaal, Ethy; Draijer, Nel; de Ruiter, Michiel B.; Elzinga, Bernet M.; Sjoerds, Zsuzsika; van Balkom, Anton J.; Smit, Johannes H.; Veltman, Dick J.

    2013-01-01

    Post-traumatic stress disorder (PTSD) is associated with impaired memory performance coupled with functional changes in brain areas involved in declarative memory and emotion regulation. It is not yet clear how symptom severity and comorbidity affect neurocognitive functioning in PTSD. We performed

  4. Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain.

    Science.gov (United States)

    Usichenko, Taras; Laqua, René; Leutzow, Bianca; Lotze, Martin

    2017-02-01

    Transcutaneous vagal nerve stimulation (TVNS) is a promising complementary method of pain relief. However, the neural networks associated with its analgesic effects are still to be elucidated. Therefore, we conducted two functional magnetic resonance imaging (fMRI) sessions, in a randomized order, with twenty healthy subjects who were exposed to experimental heat pain stimulation applied to the right forearm using a Contact Heat-Evoked Potential Stimulator. While in one session TVNS was administered bilaterally to the concha auriculae with maximal, non-painful intensity, the stimulation device was switched off in the other session (placebo condition). Pain thresholds were measured before and after each session. Heat stimulation elicited fMRI activation in cerebral pain processing regions. Activation magnitude in the secondary somatosensory cortex, posterior insula, anterior cingulate and caudate nucleus was associated with heat stimulation without TVNS. During TVNS, this association was only seen for the right anterior insula. TVNS decreased fMRI signals in the anterior cingulate cortex in comparison with the placebo condition; however, there was no relevant pain reducing effect over the group as a whole. In contrast, TVNS compared to the placebo condition showed an increased activation in the primary motor cortex, contralateral to the site of heat stimulation, and in the right amygdala. In conclusion, in the protocol used here, TVNS specifically modulated the cerebral response to heat pain, without having a direct effect on pain thresholds.

  5. Neural correlates of a single-session massage treatment.

    Science.gov (United States)

    Sliz, D; Smith, A; Wiebking, C; Northoff, G; Hayley, S

    2012-03-01

    The current study investigated the immediate neurophysiological effects of different types of massage in healthy adults using functional magnetic resonance imaging (fMRI). Much attention has been given to the default mode network, a set of brain regions showing greater activity in the resting state. These regions (i.e. insula, posterior and anterior cingulate, inferior parietal and medial prefrontal cortices) have been postulated to be involved in the neural correlates of consciousness, specifically in arousal and awareness. We posit that massage would modulate these same regions given the benefits and pleasant affective properties of touch. To this end, healthy participants were randomly assigned to one of four conditions: 1. Swedish massage, 2. reflexology, 3. massage with an object or 4. a resting control condition. The right foot was massaged while each participant performed a cognitive association task in the scanner. We found that the Swedish massage treatment activated the subgenual anterior and retrosplenial/posterior cingulate cortices. This increased blood oxygen level dependent (BOLD) signal was maintained only in the former brain region during performance of the cognitive task. Interestingly, the reflexology massage condition selectively affected the retrosplenial/posterior cingulate in the resting state, whereas massage with the object augmented the BOLD response in this region during the cognitive task performance. These findings should have implications for better understanding how alternative treatments might affect resting state neural activity and could ultimately be important for devising new targets in the management of mood disorders.

  6. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents).

    Science.gov (United States)

    Sun, Yueji; Ying, Huang; Seetohul, Ravi M; Xuemei, Wang; Ya, Zheng; Qian, Li; Guoqing, Xu; Ye, Sun

    2012-08-01

    To study crave-related cerebral regions induced by game figure cues in online game addicts. fMRI brain imaging was done when the subjects were shown picture cues of the WoW (World of Warcraft, Version: 4.1.014250) game. 10 male addicts of WoW were selected as addicts' group, and 10 other healthy male non-addicts who were matched by age, were used as non-game addicts' group. All volunteers participated in fMRI paradigms. WoW associated cue pictures and neutral pictures were shown. We examined functional cerebral regions activated by the pictures with 3.0 T Philips MRI. The imaging signals' database was analyzed by SPM5. The correlation between game craving scores and different image results were assessed. When the game addicts watch the pictures, some brain areas show increased signal activity namely: dorsolateral prefrontal cortex, bilateral temporal cortex, cerebellum, right inferior parietal lobule, right cuneus, right hippocampus, parahippocampal gyrus, left caudate nucleus. But in these same brain regions we did not observe remarkable activities in the control group. Differential image signal densities of the addict group were subtracted from the health control group, results of which were expressed in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex, inferior parietal lobe and inferior temporal gyrus, cerebellum, right insular and the right angular gyrus. The increased imaging signal densities were significant and positively correlated with the craving scale scores in the bilateral prefrontal cortex, anterior cingulate cortex and right inferior parietal lobe. Craving of online game addicts was successfully induced by game cue pictures. Crave related brain areas are: dorsolateral prefrontal cortex, anterior cingulate cortex, and right inferior parietal lobe. The brain regions are overlapped with cognitive and emotion related processing brain areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex.

    Science.gov (United States)

    Bird, Chris M; Keidel, James L; Ing, Leslie P; Horner, Aidan J; Burgess, Neil

    2015-10-28

    It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or "schemas"). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature. Copyright © 2015 Bird, Keidel et al.

  8. Factor analysis of regional brain activation in bipolar and healthy individuals reveals a consistent modular structure.

    Science.gov (United States)

    Fleck, David E; Welge, Jeffrey A; Eliassen, James C; Adler, Caleb M; DelBello, Melissa P; Strakowski, Stephen M

    2018-07-01

    The neurophysiological substrates of cognition and emotion, as seen with fMRI, are generally explained using modular structures. The present study was designed to probe the modular structure of cognitive-emotional processing in bipolar and healthy individuals using factor analysis and compare the results with current conceptions of the neurophysiology of bipolar disorder. Exploratory factor analysis was used to assess patterns of covariation among brain regions-of-interest activated during the Continuous Performance Task with Emotional and Neutral Distractors in healthy and bipolar individuals without a priori constraints on the number or composition of latent factors. Results indicated a common cognitive-emotional network consisting of prefrontal, medial temporal, limbic, parietal, anterior cingulate and posterior cingulate modules. However, reduced brain activation to emotional stimuli in the frontal, medial temporal and limbic modules was apparent in the bipolar relative to the healthy group, potentially accounting for emotional dysregulation in bipolar disorder. This study is limited by a relatively small sample size recruited at a single site. The results have yet to be validated on a larger independent sample. Although the modular structure of cognitive-emotional processing is similar in bipolar and healthy individuals, activation in response to emotional/neutral cues varies. These findings are not only consistent with recent conceptions of mood regulation in bipolar disorder, but also suggest that regional activation can be considered within tighter modular structures without compromising data interpretation. This demonstration may serve as a template for data reduction in future region-of-interest analyses to increase statistical power. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  10. The Effect of Increasing Volume of Exercise on Activation Pattern of Vastus Medialis and Lateralis and its Correlation With Anterior Knee Pain in Karate Elites.

    Science.gov (United States)

    Safar Cherati, Afsaneh; Lotfian, Sara; Jamshidi, Aliashraf; Sanjari, Mohammad Ali; Razi, Mohammad

    2016-09-01

    The effects of exercise volume on the pattern of muscle activity is one of the most important factors in training management and injury risk reduction. In the lower limb, the quadriceps muscle which plays a determining role in performing the stance and other karate techniques could be injured in intensive exercise and may induce anterior knee pain in athletes. The aim of this study was to determine the relationship between training volume and muscle activity of vastus medialis and vastus lateralis and its association with anterior knee pain in karate elites. Male and female athletes from national junior and cadet karate team (14 to 18 years) were invited to participate in the study at the beginning and the end of the training camps. Studies involved measurement of electromyographic muscle activity of vastus medialis and vastus lateralis in both lower extremities with surface electromyography device and assessment of movement by electrogoniometery. Muscle activity was recorded in three tests of dachi, walking up and walking down stairs. Simultaneously, anterior knee pain was evaluated using visual analogue scale and anterior knee pain scale questionnaire. Eight athletes of a total number of 23 reported increased ratings of pain in their right knees. No differences in muscle activity were observed in tests of Dachi and stairs between the groups with and without pain. Comparing Dachi task pattern at the beginning and end of training camps, there was no significant difference in pattern of biomechanical movement; however, reducing the amount of muscle activity in early and late phases of tasks was observed in electromyographic assessment. The results showed that performing the same task after a six-week training period, less muscle activity was required in all phases in two groups of tasks, including karate-specific movement (dachi) and activities of daily living (up or down stairs).

  11. Regional Cerebral Blood Flow and Executive Control Dysfunction in Alzheimer's Disease and Frontotemporal Dementia : A Combined fMRI and SPECT Study

    International Nuclear Information System (INIS)

    Rimbu, A.; Guyot, M.; Allard, M.; Amieva, H.; Fabrigoulle, C.

    2006-01-01

    Full text: Introduction: Every motor act requires a fine tuned balance between initiatory and inhibitory processes in order to provide appropriate preparation, initiation, on-line control and timely inhibition of this act. A decline of executive control seems to occur early in the course of Alzheimer's disease (AD) and in fronto-temporal dementia (FTD). Purpose: To investigate the relationship between Go/noGo activation pattern (executive function task) and regional cerebral flow in AD and FTD patients using functional magnetic resonance imaging (fMRI), SPECT and statistical parametric mapping (SPM99). Material and methods: fMRI data during Go/noGo task (that required response inhibition) and rCBF SPECT were performed from twelve AD patients (mean age 70), seven FTD patients (mean age 68) and twelve healthy elderly controls (mean age 72).The cognitive decline was measured using Mini-Mental State Examination (MMSE). All patients presented a MMSE score > 17 and healthy elderly controls > 25. SPECT imaging was performed 1 hour post-injection of 740 MBq Tc-99m HMPAO, using a dual-head gamma camera, according to standard protocols. Go/noGo task, in which a motor response to a visual stimulus had to be executed or inhibited, consisted of 7 interleaved rest and activation periods (30s each). Activation periods consisted of randomized presentation of red full circle (Go trials, 75%) and blue full triangle (NoGo trials, 25%). Results: All AD and FTD patients as well as controls performed well the Go/noGo task, making few commission and omission errors. The correlation of neural brain activation related to response inhibition and competition and temporal hypoperfusion degree in AD and FTD patients was studies. A significant correlation was observed, for AD patients in: bilateral anterior cingulate cortex (BA32), right insula (BA13), right middle frontal gyrus (BA9), right precuneus (BA31), right posterior cingulate (BA23), bilateral cuneus (BA18), right thalamus and for FTD

  12. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients.

    Science.gov (United States)

    Zhu, Xueling; Wang, Xiang; Xiao, Jin; Liao, Jian; Zhong, Mingtian; Wang, Wei; Yao, Shuqiao

    2012-04-01

    Imaging studies have shown that major depressive disorder (MDD) is associated with altered activity patterns of the default mode network (DMN). However, the neural correlates of the resting-state DMN and MDD-related pathopsychological characteristics, such as depressive rumination and overgeneral autobiographical memory (OGM) phenomena, still remain unclear. Using independent component analysis, we analyzed resting-state functional magnetic resonance imaging data obtained from 35 first-episode, treatment-naive young adults with MDD and from 35 matched healthy control subjects. Patients with MDD exhibited higher levels of rumination and OGM than did the control subjects. We observed increased functional connectivity in the anterior medial cortex regions (especially the medial prefrontal cortex and anterior cingulate cortex) and decreased functional connectivity in the posterior medial cortex regions (especially the posterior cingulate cortex/precuneus) in MDD patients compared with control subjects. In the depressed group, the increased functional connectivity in the anterior medial cortex correlated positively with rumination score, while the decreased functional connectivity in the posterior medial cortex correlated negatively with OGM score. We report dissociation between anterior and posterior functional connectivity in resting-state DMNs of first-episode, treatment-naive young adults with MDD. Increased functional connectivity in anterior medial regions of the resting-state DMN was associated with rumination, whereas decreased functional connectivity in posterior medial regions was associated with OGM. These results provide new evidence for the importance of the DMN in the pathophysiology of MDD and suggest that abnormal DMN activity may be an MDD trait. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Influence of experimental interfering occlusal contacts on the activity of the anterior temporal and masseter muscles during submaximal and maximal bite in the intercuspal position.

    Science.gov (United States)

    Sheikholeslam, A; Riise, C

    1983-05-01

    The effects of an intercuspal occlusal interference on the pattern of activity of the anterior temporal and masseter muscles during submaximal and maximal bite, were studied in eleven volunteers with complete, natural dentitions. The results show that, during maximal and submaximal bite an occlusal interference (about 0.5 mm) in the intercuspal position is able to disturb the almost symmetric pattern of muscular activity in the anterior temporal and masseter muscles. Further, the level of muscular activity during maximal bite decreased significantly in all muscles studied. In some subjects, the decrease of muscular activity could still be observed one week after insertion of the interfering contact. After eliminating the interference, the muscular co-ordination pattern improved and the level of muscular activity increased significantly.

  14. Personality and neurochemicals in the human brain: A preliminary study using 1H MRS

    Institute of Scientific and Technical Information of China (English)

    XU Shiyong; PENG Danling; JIN Zhen; LIU Hongyan; YANG Jie

    2005-01-01

    To investigate the neuro-biological bases of introversion-extraversion personality traits, the concentra- tion of four neurochemicals (Cho, mI, α-Glx and NAA) in anterior cigulate gyrus between normal extroverts and introverts were examined using non-invasive 1H MRS technique. Our study revealed that introverts have significantly higher level of α-Glx, Cho and mI in the anterior cingulate gyrus than extroverts. This result provides new evidence that the anterior cingulate gyrus is related to personality traits partly in support of Eysenck's supposition that introverts have higher arousal level than extroverts. Moreover, this result offers neurochemical data for psychobiological theories of personality.

  15. Load-related brain activation predicts spatial working memory performance in youth aged 9–12 and is associated with executive function at earlier ages

    Science.gov (United States)

    Huang, Anna S.; Klein, Daniel N.; Leung, Hoi-Chung

    2015-01-01

    Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9–12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. PMID:26562059

  16. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Directory of Open Access Journals (Sweden)

    Chelsea N Wong

    2015-08-01

    Full Text Available Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years. Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA, thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function.

  17. Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity.

    Science.gov (United States)

    Chen, Qiu-Feng; Chen, Hua-Jun; Liu, Jun; Sun, Tao; Shen, Qun-Tai

    2016-01-01

    Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients.

  18. Effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Shim, Jae-Kwang; Choi, Ho-Suk; Shin, Jun-Ho

    2015-12-01

    [Purpose] This study examined the effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 16 adults who underwent arthroscopic anterior cruciate reconstruction and neuromuscular training. The Lysholm scale was used to assess functional disorders on the affected knee joint. A KT-2000 arthrometer was used to measure anterior displacement of the tibia against the femur. Surface electromyography was used to detect the muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus before and after neuromuscular training. [Results] There was significant relaxation in tibial anterior displacement of the affected and sound sides in the supine position before neuromuscular training. Furthermore, the difference in the tibial anterior displacement of the affected knee joints in the standing position was reduced after neuromuscular training. Moreover, the variation of the muscle activation evoked higher muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus. [Conclusion] Neuromuscular training may improve functional joint stability in patients with orthopedic musculoskeletal injuries in the postoperative period.

  19. 17 beta-estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland.

    Science.gov (United States)

    Cabilla, Jimena P; Díaz, María del Carmen; Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H

    2006-09-01

    Previous studies showed that 17 beta-estradiol (17 beta-E2) regulates the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP pathway in many tissues. Evidence from our laboratory indicates that 17 beta-E2 disrupts the inhibitory effect of NO on prolactin release, decreasing sGC activity and affecting the cGMP pathway in anterior pituitary gland of adult ovariectomized and estrogenized rats. To ascertain the mechanisms by which 17 beta-E2 affects sGC activity, we investigated the in vivo and in vitro effects of 17 beta-E2 on sGC protein and mRNA expression in anterior pituitary gland from immature female rats. In the present work, we showed that 17 beta-E2 acute treatment exerted opposite effects on the two sGC subunits, increasing alpha1 and decreasing beta1 subunit protein and mRNA expression. This action on sGC protein expression was maximal 6-9 h after 17 beta-E2 administration. 17beta-E2 also caused the same effect on mRNA expression at earlier times. Concomitantly, 17 beta-E2 dramatically decreased sGC activity 6 and 9 h after injection. These effects were specific of 17 beta-E2, because they were not observed with the administration of other steroids such as progesterone and 17 alpha-estradiol. This inhibitory action of 17beta-E2 on sGC also required the activation of estrogen receptor (ER), because treatment with the pure ER antagonist ICI 182,780 completely blocked 17 beta-E2 action. 17 beta-E2 acute treatment caused the same effects on pituitary cells in culture. These results suggest that 17 beta-E2 exerts an acute inhibitory effect on sGC in anterior pituitary gland by down-regulating sGC beta 1 subunit and sGC activity in a specific, ER-dependent manner.

  20. Dopamine modulates reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Rombouts, Serge Arb; Soeter, Roelof P; van Gerven, Joop M; Both, Stephanie

    2012-06-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive-compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the 'reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. Young healthy males (n=53) were randomly assigned to two experimental groups or a control group, and were administered a dopamine antagonist (haloperidol), a dopamine agonist (levodopa), or placebo. Brain activation was assessed during a backward-masking task with subliminally presented sexual stimuli. Results showed that levodopa significantly enhanced the activation in the nucleus accumbens and dorsal anterior cingulate when subliminal sexual stimuli were shown, whereas haloperidol decreased activations in those areas. Dopamine thus enhances activations in regions thought to regulate 'wanting' in response to potentially rewarding sexual stimuli that are not consciously perceived. This running start of the reward system might explain the pull of rewards in individuals with compulsive reward-seeking behaviors such as hypersexuality and patients who receive dopaminergic medication.

  1. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The effect of angiotensin 1-7 on tyrosine kinases activity in rat anterior pituitary

    International Nuclear Information System (INIS)

    Rebas, Elzbieta; Zabczynska, Joanna; Lachowicz, Agnieszka

    2006-01-01

    Angiotensin 1-7 (Ang 1-7) is a peptide originated from Ang II. It is known that in vessels Ang 1-7 shows opposite effects to Ang II. Ang 1-7 can modify processes of proliferation. However, Ang 1-7 action in pituitary gland cells was never studied. Moreover, the specific binding sites for Ang 1-7 are still unknown. The aim of this study was to examine the effects of Ang 1-7 on tyrosine kinases (PTKs) activity in the anterior pituitary. The reaction of phosphorylation was carrying out in presence of different concentration of Ang 1-7 and losartan (antagonist of AT1 receptor) and PD123319 (antagonist of AT2). Our results show that Ang 1-7 inhibited activity of PTK to 60% of basic activity. Losartan did not change the Ang 1-7-induced changes in PTKs activity. The presence of PD123319 together with Ang 1-7 caused stronger inhibition PTKs activity than Ang 1-7 alone. These observations suggest that Ang 1-7 binds to the novel, unknown, specific for this peptide receptor

  3. Válvula de uretra anterior Anterior urethral valves

    Directory of Open Access Journals (Sweden)

    Silvio Tucci Jr.

    2003-02-01

    Full Text Available Objetivo: apresentar os aspectos clínicos, diagnósticos e terapêuticos de pacientes portadores de válvula da uretra anterior. Descrição: em dois neonatos, o diagnóstico presuntivo de patologia obstrutiva do trato urinário foi sugerido pela ultra-sonografia realizada no período pré-natal, confirmando-se o diagnóstico de válvula de uretra anterior pela avaliação pós-natal. Os pacientes foram submetidos a tratamento cirúrgico paliativo, com vesicostomia temporária e, posteriormente, definitivo, pela fulguração endoscópica das válvulas. Ambos evoluíram com função renal normal. Comentários: a válvula da uretra anterior é anomalia rara que deve ser considerada em meninos com quadro radiológico pré-natal sugestivo de obstrução infravesical, secundariamente à hipótese mais comum de válvula da uretra posterior. Ressaltamos a utilização da vesicostomia como derivação urinária temporária nestes casos, prevenindo potenciais complicações pela manipulação da uretra do recém-nascido.Objective: to discuss clinical signs, diagnostic tools and therapeutics of anterior urethral valves, an obstructive anomaly of the urinary system in males. Description: signs of urinary tract obstruction were identified on pre-natal ultrasound in two male fetuses and the diagnosis of anterior urethral valves was made through post-natal evaluation. As an initial treatment, vesicostomy was performed in both patients. Later, the valves were fulgurated using an endoscopic procedure. During the follow-up period both patients presented normal renal function. Comments: anterior urethral valves are a rare form of urethral anomaly that must be ruled out in boys with pre-natal ultrasound indicating infravesical obstruction. Vesicostomy used as an initial treatment rather than transurethral fulguration may prevent potential complications that can occur due to the small size of the neonatal urethra.

  4. Brain activation by visual erotic stimuli in healthy middle aged males.

    Science.gov (United States)

    Kim, S W; Sohn, D W; Cho, Y-H; Yang, W S; Lee, K-U; Juh, R; Ahn, K-J; Chung, Y-A; Han, S-I; Lee, K H; Lee, C U; Chae, J-H

    2006-01-01

    The objective of the present study was to identify brain centers, whose activity changes are related to erotic visual stimuli in healthy, heterosexual, middle aged males. Ten heterosexual, right-handed males with normal sexual function were entered into the present study (mean age 52 years, range 46-55). All potential subjects were screened over 1 h interview, and were encouraged to fill out questionnaires including the Brief Male Sexual Function Inventory. All subjects with a history of sexual arousal disorder or erectile dysfunction were excluded. We performed functional brain magnetic resonance imaging (fMRI) in male volunteers when an alternatively combined erotic and nonerotic film was played for 14 min and 9 s. The major areas of activation associated with sexual arousal to visual stimuli were occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, caudate nucleus. However, hypothalamus and thalamus were not activated. We suggest that the nonactivation of hypothalamus and thalamus in middle aged males may be responsible for the lesser physiological arousal in response to the erotic visual stimuli.

  5. Perawatan Ortodontik Gigitan Terbuka Anterior

    Directory of Open Access Journals (Sweden)

    Yuniar Zen

    2014-06-01

    Full Text Available Perawatan gigitan terbuka anterior telah lama dianggap sebagai tantangan bagi ortodontis. Prevalensi gigitan terbuka anterior antara 3,5% hingga 11% terdapat pada berbagai usia dan kelompok etnis, serta ada sekitar 17% pasien ortodonti memiliki gigitan terbuka. Stabilitas hasil perawatan gigitan terbuka anterior sangat sulit, karena adanya kombinasi diskrepansi anteroposterior dengan gigitan terbuka skeletal sehingga dibutuhkan tingkat keterampilan diagnosis dan klinis yang tinggi. Etiologi gigitan terbuka anterior sangat kompleks karena dapat melibatkan skeletal, dental, dan faktor-faktor habitual. Eliminasi faktor etiologi merupakan hal yang penting dalam perawatan gigitan terbuka anterior. Berbagai cara perawatan untuk koreksi gigitan terbuka anterior diantaranya bedah ortognatik dan perawatan ortodontik kamuflase, seperti high-pull headgear, chincup, bite blocks, alatfungsional, pencabutan gigi, multi-loop edgewise archwires dan mini implan. Stabilitas hasil perawatan adalah kriteria yang paling penting dalam menentukan cara perawatan gigitan terbuka anterior. Orthodontic Treatment of Anterior Open Bite. An anterior open bite therapy has long been considered a challenge to orthodontist. The prevalence of anterior openbite range from 3,5 % to 11% among various age and ethnic groups and it has been shown that approximately 17% of orthodontic patients have open bite. Stability of treatment result of anterior open bite with well-maintained results is difficult, because the combination of anteroposteriorly discrepancy with skeletal open bite requires the highest degree of diagnostic and clinical skill. The etiology is complex, potentially involving skeletal, dental and habitual factors. The importance of an anterior open bite therapy is to eliminate the cause of the open bite. Various treatment modalities for the correction of an anterior open bite have been proposed, orthognatic surgery and orthodontic camouflage treatment such as high

  6. The BOLD-fMRI study of behavior inhibition in chronic heroin addicts

    International Nuclear Information System (INIS)

    Yuan Fei; Yuan Yi; Liu Yinshe; Zhao Jun; Weng Xuchu

    2011-01-01

    Objective: To identify the neural mechanisms of impulsivity and the response inhibition deficits of the chronic heroin users using event-related functional MRI (stop-signal task). Methods: Seventeen individuals with heroin dependence and 17 healthy control subjects underwent fMRI scan while executing stop -signal task after anatomical scanning in 3.0 T scanner. The AFNI package was used for fMRI data preprocessing and statistical analysis. Results: The behavioral data showed that the stop signal reaction rime (SSRT) of heroin users was significantly longer than that of the control group. There was no significant difference in activation of the primary motor cortex and supplementary motor area between two groups. Comparing to the control group, heroin users had weaker activation in the right dorsal lateral prefrontal cortex, right inferior prefrontal cortex, and anterior cingulated cortex, but stronger activation in bilateral striatum and amygdala while behavioral inhibition needed. Conclusion: The results suggest that heroin users have significant changes within impulsivity and inhibitory network, where the right prefrontal cortex is considered as main region for inhibition, while the anterior cingulated cortex is associated with error monitoring, and the amygdale controls impulsivity and emotion. (authors)

  7. Pain anticipation: an activation likelihood estimation meta-analysis of brain imaging studies.

    Science.gov (United States)

    Palermo, Sara; Benedetti, Fabrizio; Costa, Tommaso; Amanzio, Martina

    2015-05-01

    The anticipation of pain has been investigated in a variety of brain imaging studies. Importantly, today there is no clear overall picture of the areas that are involved in different studies and the exact role of these regions in pain expectation remains especially unexploited. To address this issue, we used activation likelihood estimation meta-analysis to analyze pain anticipation in several neuroimaging studies. A total of 19 functional magnetic resonance imaging were included in the analysis to search for the cortical areas involved in pain anticipation in human experimental models. During anticipation, activated foci were found in the dorsolateral prefrontal, midcingulate and anterior insula cortices, medial and inferior frontal gyri, inferior parietal lobule, middle and superior temporal gyrus, thalamus, and caudate. Deactivated foci were found in the anterior cingulate, superior frontal gyrus, parahippocampal gyrus and in the claustrum. The results of the meta-analytic connectivity analysis provide an overall view of the brain responses triggered by the anticipation of a noxious stimulus. Such a highly distributed perceptual set of self-regulation may prime brain regions to process information where emotion, action and perception as well as their related subcategories play a central role. Not only do these findings provide important information on the neural events when anticipating pain, but also they may give a perspective into nocebo responses, whereby negative expectations may lead to pain worsening. © 2014 Wiley Periodicals, Inc.

  8. The neurodevelopmental differences of increasing verbal working memory demand in children and adults

    Directory of Open Access Journals (Sweden)

    V.M. Vogan

    2016-02-01

    We used fMRI and a 1-back verbal WM task with six levels of difficulty to examine the neurodevelopmental changes in WM function in 40 participants, twenty-four children (ages 9–15 yr and sixteen young adults (ages 20–25 yr. Children and adults both demonstrated an opposing system of cognitive processes with increasing cognitive demand, where areas related to WM (frontal and parietal regions increased in activity, and areas associated with the default mode network decreased in activity. Although there were many similarities in the neural activation patterns associated with increasing verbal WM capacity in children and adults, significant changes in the fMRI responses were seen with age. Adults showed greater load-dependent changes than children in WM in the bilateral superior parietal gyri, inferior frontal and left middle frontal gyri and right cerebellum. Compared to children, adults also showed greater decreasing activation across WM load in the bilateral anterior cingulate, anterior medial prefrontal gyrus, right superior lateral temporal gyrus and left posterior cingulate. These results demonstrate that while children and adults activate similar neural networks in response to verbal WM tasks, the extent to which they rely on these areas in response to increasing cognitive load evolves between childhood and adulthood.

  9. Shared and disorder-specific task-positive and default mode network dysfunctions during sustained attention in paediatric Attention-Deficit/Hyperactivity Disorder and obsessive/compulsive disorder

    Directory of Open Access Journals (Sweden)

    Luke J. Norman

    2017-01-01

    Full Text Available Patients with Attention-Deficit/Hyperactivity Disorder (ADHD and obsessive/compulsive disorder (OCD share problems with sustained attention, and are proposed to share deficits in switching between default mode and task positive networks. The aim of this study was to investigate shared and disorder-specific brain activation abnormalities during sustained attention in the two disorders. Twenty boys with ADHD, 20 boys with OCD and 20 age-matched healthy controls aged between 12 and 18 years completed a functional magnetic resonance imaging (fMRI version of a parametrically modulated sustained attention task with a progressively increasing sustained attention load. Performance and brain activation were compared between groups. Only ADHD patients were impaired in performance. Group by sustained attention load interaction effects showed that OCD patients had disorder-specific middle anterior cingulate underactivation relative to controls and ADHD patients, while ADHD patients showed disorder-specific underactivation in left dorsolateral prefrontal cortex/dorsal inferior frontal gyrus (IFG. ADHD and OCD patients shared left insula/ventral IFG underactivation and increased activation in posterior default mode network relative to controls, but had disorder-specific overactivation in anterior default mode regions, in dorsal anterior cingulate for ADHD and in anterior ventromedial prefrontal cortex for OCD. In sum, ADHD and OCD patients showed mostly disorder-specific patterns of brain abnormalities in both task positive salience/ventral attention networks with lateral frontal deficits in ADHD and middle ACC deficits in OCD, as well as in their deactivation patterns in medial frontal DMN regions. The findings suggest that attention performance in the two disorders is underpinned by disorder-specific activation patterns.

  10. Decisions during Negatively-Framed Messages Yield Smaller Risk-Aversion-Related Brain Activation in Substance-Dependent Individuals

    Science.gov (United States)

    Fukunaga, Rena; Bogg, Tim; Finn, Peter R.; Brown, Joshua W.

    2012-01-01

    A sizable segment of addiction research investigates the effects of persuasive message appeals on risky and deleterious behaviors. However, to date, little research has examined how various forms of message framing and corresponding behavioral choices might by mediated by risk-related brain regions. Using event-related functional magnetic resonance imaging, we investigated brain regions hypothesized to mediate the influence of message appeals on decision making in substance-dependent (SD) compared to non-substance-dependent (non-SD) individuals. The Iowa Gambling Task (IGT) was modified to include positively-framed, negatively-framed, and control messages about long-term deck payoffs. In the positively-framed condition, the SD and non-SD groups showed improved decision-making performance that corresponded to higher risk-aversion-related brain activity in the anterior cingulate cortex (ACC) and anterior insula (AI). In contrast, in the negatively-framed condition, the SD group showed poorer performance that corresponded to lower risk-aversion-related brain activity in the AI region. In addition, only the non-SD group showed a positive association between decision quality and greater risk-related activity in the ACC, regardless of message type. The findings suggest substance-dependent individuals may have reduced neurocognitive sensitivity in the ACC and AI regions involved in risk perception and aversion during decision-making, especially in response to framed messages that emphasize reduced prospects for long-term gains. PMID:23148798

  11. Neural correlates of reward processing in adults with 22q11 deletion syndrome.

    Science.gov (United States)

    van Duin, Esther D A; Goossens, Liesbet; Hernaus, Dennis; da Silva Alves, Fabiana; Schmitz, Nicole; Schruers, Koen; van Amelsvoort, Therese

    2016-01-01

    22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic neurotransmission in 22q11DS, which may contribute to the increased vulnerability for psychosis. A dysfunctional motivational reward system is considered one of the salient features in psychosis and thought to be related to abnormal dopaminergic neurotransmission. The functional anatomy of the brain reward circuitry has not yet been investigated in 22q11DS. This study aims to investigate neural activity during anticipation of reward and loss in adult patients with 22q11DS. We measured blood-oxygen-level dependent (BOLD) activity in 16 patients with 22q11DS and 12 healthy controls during a monetary incentive delay task using a 3T Philips Intera MRI system. Data were analysed using SPM8. During anticipation of reward, the 22q11DS group alone displayed significant activation in bilateral middle frontal and temporal brain regions. Compared to healthy controls, significantly less activation in bilateral cingulate gyrus extending to premotor, primary motor and somatosensory areas was found. During anticipation of loss, the 22q11DS group displayed activity in the left middle frontal gyrus and anterior cingulate cortex, and relative to controls, they showed reduced brain activation in bilateral (pre)cuneus and left posterior cingulate. Within the 22q11DS group, COMT Val hemizygotes displayed more activation compared to Met hemizygotes in right posterior cingulate and bilateral parietal regions during anticipation of reward. During anticipation of loss, COMT Met hemizygotes compared to Val hemizygotes showed more activation in bilateral insula, striatum and left anterior cingulate. This is the first study to investigate reward processing in 22q11DS. Our preliminary results suggest that people with 22q11DS

  12. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  13. Abnormal Concentration of GABA and Glutamate in The Prefrontal Cortex in Schizophrenia.-An in Vivo 1H-MRS Study.

    Science.gov (United States)

    Chen, Tianyi; Wang, Yingchan; Zhang, Jianye; Wang, Zuowei; Xu, Jiale; Li, Yao; Yang, Zhilei; Liu, Dengtang

    2017-10-25

    The etiology and pathomechanism of schizophrenia are unknown. The traditional dopamine (DA) hypothesis is unable to fully explain its pathology and therapeutics. The glutamate (Glu) and γ-aminobutyric acid (GABA) hypotheses suggest Glu or GABA concentrations are abnormal in the brains of patients with schizophrenia. Magnetic resonance spectroscopy (MRS) show glutamate level increases in the ventromedial prefrontal cortex (vmPFC) including the anterior cingulated cortex (ACC) in those with schizophrenia. To investigate the function of the glutamate system (glutamate and γ-aminobutyric acid) in the etiology and pathomechanism of schizophrenia. 24 drug naïve patients with schizophrenia and 24 healthy volunteers were matched by gender, age, and educational level. The Siemens 3T MRI system was used to collect the magnetic resonance spectroscopy (MRS) data of the subjects. The regions of interest included the left dorsolateral prefrontal cortex (IDLPFC), ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex (ACC). LCModel software was used to analyze the concentrations of γ-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln), N-acetylaspartate (NAA), and N-acetylaspartylglutamate (NAAG) in the region of interest. Meanwhile, the Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression Scale (CGI) were used to assess the mental symptoms and severity of the disease. The median GABA concentrations in the anterior cingulate cortex of the schizophrenia group and the healthy control group were 1.90 (Q1=1.55, Q3=2.09) and 2.16 (Q1=1.87, Q3=2.59) respectively; the mean (sd) Glu concentrations were 6.07 (2.48) and 6.54 (1.99); the median Gln concentrations were 0.36 (Q1=0.00, Q3=0.74) and 0.29 (Q1=0.00, Q3=0.59); the between-group difference of the GABA concentrations was statistically significant ( Z =-2.95, p =0.003); the between-group difference of the GABA/(NAA+NAAG) was statistically significant ( Z =-2.72, p =0.012); the

  14. Deactivation of medial prefrontal and posterior cingulate cortex in anxiety disorders

    International Nuclear Information System (INIS)

    Zhao Xiaohu; Wang Peijun; Dong Ningxin; Li Chunbo; Wu Wenyuan; Hu Zhenghui; Tang Xiaowei

    2007-01-01

    Objective: We used blood oxygenation level dependent-functional MR imaging (BOLD- fMRI) to explore the characteristics of deactivation patterns in patients with anxiety disorders and the underlying neural mechanism of this disease. Methods: Ten patients and ten healthy controls participated the experiments. All subjects performed the trait portion of the State-Trait anxiety Inventory (STAI-T) prior to the fMRI scans. The subjects underwent noninvasive functional magnetic resonance imaging while listening actively to emotionally neutral words alternating with no words (experiment 1) and threat related-words alternating with emotionally neutral words (experiment2). During fMRI scanning, subjects were instructed to closely listen to each stimuli word and to silently make a judgment of the word's valence. Data were analyzed with statistical parametric mapping (SPM 99). Individual and group analysis were conducted. Results: Mean STAI-T score was significantly higher for patients group than that of controls (58 ± 8 for patients group and 33 ± 5 for controls, t=8.3, P<0.01). Our fMRI data revealed sets of deactivation brain regions in Experiment for patients and healthy controls, however, the deactivation can be found in experiment 2 only for patients. Interestingly, all the observed deactivation patterns were similar. The related areas compromise medial prefrontal cortex(BA 10, BA 24/32), posterior cingulate (BA 31/30) and Bilateral inferior parietal cortex (MPFC) (BA 39/40), which nearly overlapping with the organized default model network. Further more, the mean t values in the MPFC area (BA 24/32) was significantly higher for control group than that of patient (5.1 controls and 4.2 for patients, t=4.8, P=0.006), conversely, the mean t values in the posterior cingulate cortex(PCC) area was significantly higher for patients l than that of controls (4.9 controls and 5.8 for patients, t=2.4, P=0.026). Conclusion: Our observations suggest that the default model network

  15. The time course of altered brain activity during 7-day simulated microgravity

    Directory of Open Access Journals (Sweden)

    Yang eLiao

    2015-05-01

    Full Text Available Microgravity causes multiple changes in physical and mental levels in humans, which can induce performance deficiency among astronauts. Studying the variations in brain activity that occur during microgravity would help astronauts to deal with these changes. In the current study, resting-state functional magnetic resonance imaging (rs-fMRI was used to observe the variations in brain activity during a 7-day head down tilt (HDT bed rest, which is a common and reliable model for simulated microgravity. The amplitudes of low frequency fluctuation (ALFF of twenty subjects were recorded pre-head down tilt (pre-HDT, during a bed rest period (HDT0, and then each day in the HDT period (HDT1–HDT7. One-way analysis of variance of the ALFF values over these 8 days was used to test the variation across time period (P<0.05, corrected. Compared to HDT0, subjects presented lower ALFF values in the posterior cingulate cortex and higher ALFF values in the anterior cingulate cortex during the HDT period, which may partially account for the lack of cognitive flexibility and alterations in autonomic nervous system seen among astronauts in microgravity. Additionally, the observed improvement in function in CPL during the HDT period may play a compensatory role to the functional decline in the paracentral lobule to sustain normal levels of fine motor control for astronauts in a microgravity environment. Above all, those floating brain activities during 7 days of simulated microgravity may indicate that the brain self-adapts to help astronauts adjust to the multiple negative stressors encountered in a microgravity environment.

  16. Sex differences in emotional perception: Meta analysis of divergent activation.

    Science.gov (United States)

    Filkowski, Megan M; Olsen, Rachel M; Duda, Bryant; Wanger, Timothy J; Sabatinelli, Dean

    2017-02-15

    Behavioral and physiological sex differences in emotional reactivity are well documented, yet comparatively few neural differences have been identified. Here we apply quantitative activation likelihood estimation (ALE) meta-analysis across functional brain imaging studies that each reported clusters of activity differentiating men and women as they participated in emotion-evoking tasks in the visual modality. This approach requires the experimental paradigm to be balanced across the sexes, and thus may provide greater clarity than previous efforts. Results across 56 emotion-eliciting studies (n=1907) reveal distinct activation in the medial prefrontal cortex, anterior cingulate cortex, frontal pole, and mediodorsal nucleus of the thalamus in men relative to women. Women show distinct activation in bilateral amygdala, hippocampus, and regions of the dorsal midbrain including the periaqueductal gray/superior colliculus and locus coeruleus. While some clusters are consistent with prevailing perspectives on the foundations of sex differences in emotional reactivity, thalamic and brainstem regions have not previously been highlighted as sexually divergent. These data strongly support the need to include sex as a factor in functional brain imaging studies of emotion, and to extend our investigative focus beyond the cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Altered spontaneous activity of posterior cingulate cortex and superior temporal gyrus are associated with a smoking cessation treatment outcome using varenicline revealed by regional homogeneity.

    Science.gov (United States)

    Wang, Chao; Shen, Zhujing; Huang, Peiyu; Qian, Wei; Yu, Xinfeng; Sun, Jianzhong; Yu, Hualiang; Yang, Yihong; Zhang, Minming

    2017-06-01

    Compared to nonsmokers, smokers exhibit a number of potentially important differences in regional brain function. However, little is known about the associations between the local spontaneous brain activity and smoking cessation treatment outcomes. In the present analysis, we aimed to evaluate whether the local features of spontaneous brain activity prior to the target quit date was associated with the smoking cessation outcomes. All the participants underwent magnetic resonance imaging scans and smoking-related behavioral assessments. After a 12-week treatment with varenicline, 23 smokers succeeded in quitting smoking and 32 failed. Smokers underwent functional magnetic resonance imaging (fMRI) scanning prior to an open label smoking cessation treatment trial. Regional homogeneity (ReHo) was used to measure spontaneous brain activity, and whole-brain voxel-wise comparisons of ReHo were performed to detect brain regions with altered spontaneous brain activity between relapser and quitter groups. After controlling for potentially confounding factors including years of education, years smoked, cigarettes smoked per day and FTND score as covariates, compared to quitters, relapsers displayed significantly decreased ReHo in bilateral posterior cingulate cortex (PCC), as well as increased ReHo in left superior temporal gyrus (STG). These preliminary results suggest that regional brain function variables may be promising predictors of smoking relapse. This study provided novel insights into the neurobiological mechanisms underlying smoking relapse. A deeper understanding of the neurobiological mechanisms associated with relapse may result in novel pharmacological and behavioral interventions.

  18. Limbic and Basal Ganglia Neuroanatomical Correlates of Gait and Executive Function: Older Adults With Mild Cognitive Impairment and Intact Cognition.

    Science.gov (United States)

    McGough, Ellen L; Kelly, Valerie E; Weaver, Kurt E; Logsdon, Rebecca G; McCurry, Susan M; Pike, Kenneth C; Grabowski, Thomas J; Teri, Linda

    2018-04-01

    This study aimed to examine differences in spatiotemporal gait parameters between older adults with amnestic mild cognitive impairment and normal cognition and to examine limbic and basal ganglia neural correlates of gait and executive function in older adults without dementia. This was a cross-sectional study of 46 community-dwelling older adults, ages 70-95 yrs, with amnestic mild cognitive impairment (n = 23) and normal cognition (n = 23). Structural magnetic resonance imaging was used to attain volumetric measures of limbic and basal ganglia structures. Quantitative motion analysis was used to measure spatiotemporal parameters of gait. The Trail Making Test was used to assess executive function. During fast-paced walking, older adults with amnestic mild cognitive impairment demonstrated significantly slower gait speed and shorter stride length compared with older adults with normal cognition. Stride length was positively correlated with hippocampal, anterior cingulate, and nucleus accumbens volumes (P function was positively correlated with hippocampal, anterior cingulate, and posterior cingulate volumes (P older adults with normal cognition, those with amnestic mild cognitive impairment demonstrated slower gait speed and shorter stride length, during fast-paced walking, and lower executive function. Hippocampal and anterior cingulate volumes demonstrated moderate positive correlation with both gait and executive function, after adjusting for age. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss gait performance and cognitive function in older adults with amnestic mild cognitive impairment versus normal cognition, (2) discuss neurocorrelates of gait and executive function in older adults without dementia, and (3) recognize the importance of assessing gait speed and cognitive function in the clinical management of older

  19. Impulse control disorder and response-inhibition alterations in Parkinson's disease. A rare case of totally absent functionality of the medial-prefrontal cortex and review of literature.

    Science.gov (United States)

    Palermo, Sara; Morese, Rosalba; Zibetti, Maurizio; Dematteis, Francesca; Sirgiovanni, Stefano; Stanziano, Mario; Valentini, Maria Consuelo; Lopiano, Leonardo

    2017-11-01

    This report illustrates a Parkinson's disease (PD) patient with impulse-control disorder (ICD) and selective impairment in response-inhibition abilities as revealed by the performance in a functional magnetic resonance imaging (fMRI) anterior cingulate cortex - sensitive go-nogo task. In line with hypothesis on the role of response-inhibition disabilities in the arising of impulsivity in PD, the patient completely failed the go-nogo task. Moreover, fMRI acquisition revealed absent task-sensitive activity in the anterior cingulate cortex, medial prefrontal, and orbitofrontal cortices for the contrast nogo versus go, which signifying that a hypo-function of this network could be associated with ICD. A fronto-striatal and cingulo-frontal dysfunction may reflect impairment in metacognitive-executive abilities (such as response-inhibition, action monitoring, and error awareness) and promote compulsive repetition of behavior. Response-inhibition tasks may be useful in PD post-diagnostic phase, to better identify individuals at risk of developing ICD with dopaminergic medication.

  20. The role of prefrontal cortex in psychopathy

    Science.gov (United States)

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  1. Cognitive Reserve in Healthy Aging and Alzheimer's Disease: A Meta-Analysis of fMRI Studies.

    Science.gov (United States)

    Colangeli, Stefano; Boccia, Maddalena; Verde, Paola; Guariglia, Paola; Bianchini, Filippo; Piccardi, Laura

    2016-08-01

    Cognitive reserve (CR) has been defined as the ability to optimize or maximize performance through differential recruitment of brain networks. In the present study, we aimed at providing evidence for a consistent brain network underpinning CR in healthy and pathological aging. To pursue this aim, we performed a coordinate-based meta-analysis of 17 functional magnetic resonance imaging studies on CR proxies in healthy aging, Alzheimer's disease (AD), and mild cognitive impairment (MCI). We found that different brain areas were associated with CR proxies in healthy and pathological aging. A wide network of areas, including medial and lateral frontal areas, that is, anterior cingulate cortex and dorsolateral prefrontal cortex, as well as precuneus, was associated with proxies of CR in healthy elderly patients. The CR proxies in patients with AD and amnesic-MCI were associated with activation in the anterior cingulate cortex. These results were discussed hypothesizing the existence of possible compensatory mechanisms in healthy and pathological aging. © The Author(s) 2016.

  2. Opposite effective connectivity in the posterior cingulate and medial prefrontal cortex between first-episode schizophrenic patients with suicide risk and healthy controls.

    Directory of Open Access Journals (Sweden)

    Huiran Zhang

    Full Text Available OBJECTIVE: The schizophrenic patients with high suicide risk are characterized by depression, better cognitive function, and prominent positive symptoms. However, the neurobiological basis of suicide attempts in schizophrenia is not clear. The suicide in schizophrenia is implicated in the defects in emotional process and decision-making, which are associated with prefrontal-cingulate circuit. In order to explore the possible neurobiological basis of suicide in schizophrenia, we investigated the correlation of prefrontal-cingulate circuit with suicide risk in schizophrenia via dynamic casual modelling. METHOD: Participants were 33 first-episode schizophrenic patients comprising of a high suicide risk group (N = 14 and a low suicide risk group (N = 19. A comparison group of healthy controls (N = 15 were matched for age, gender and education. N-back tasking functional magnetic resonance imaging data was collected. RESULTS: Compared with healthy controls group, the two patients groups showed decreased task-related suppression during 2-back task state versus baseline state in the left posterior cingulate and medial prefrontal cortex; the hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex existed in both schizophrenic patients groups, but hypo-connectivity in the opposite direction only existed in the schizophrenic patients group with high suicide risk. CONCLUSIONS: The hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex may suggest that the abnormal effective connectivity was associated with risk for schizophrenia. The hypo-connectivity in the opposite direction may represent a possible correlate of increased vulnerability to suicide attempt.

  3. Chromium VI administration induces oxidative stress in hypothalamus and anterior pituitary gland from male rats.

    Science.gov (United States)

    Nudler, Silvana I; Quinteros, Fernanda A; Miler, Eliana A; Cabilla, Jimena P; Ronchetti, Sonia A; Duvilanski, Beatriz H

    2009-03-28

    Hexavalent chromium (Cr VI)-containing compounds are known carcinogens which are present in industrial settings and in the environment. The major route of chromium exposure for the general population is oral intake. Previously we have observed that Cr VI affects anterior pituitary secretion and causes oxidative stress in vitro. The aim of the present work was to investigate if in vivo Cr VI treatment (100 ppm of Cr VI in drinking water for up 30 days) causes oxidative stress in hypothalamus and anterior pituitary gland from male rats. This treatment produced a 4-fold increase of chromium content in hypothalamus and 10-fold increase in anterior pituitary gland. Lipid peroxidation showed a significant increase in hypothalamus and anterior pituitary. Cr VI augmented superoxide dismutase activity in anterior pituitary gland and glutathione reductase activity in hypothalamus, but glutathione peroxidase and catalase activities remained unchanged in both tissues. Heme oxygenase-1 mRNA expression significantly rose in both tissues. Metallothionein 1 mRNA content increased in anterior pituitary and metallothionein 3 mRNA increased in hypothalamus. These results show, for the first time, that oral chronic administration of Cr VI produces oxidative stress on the hypothalamus and anterior pituitary gland which may affect normal endocrine function.

  4. The effects of DAT1 genotype on fMRI activation in an emotional go/no-go task.

    Science.gov (United States)

    Brown, Brenna K; Murrell, Jill; Karne, Harish; Anand, Amit

    2017-02-01

    Dopaminergic brain circuits participate in emotional processing and impulsivity. The dopamine transporter (DAT) modulates dopamine reuptake. A variable number tandem repeat (VNTR) in the dopamine transporter gene (DAT1) affects DAT expression. The influence of DAT1 genotype on neural activation during emotional processing and impulse inhibition has not been examined. Forty-two healthy subjects were classified as 9DAT (n = 17) or 10DAT (n = 25) based on DAT1 genotype (9DAT = 9R/9R and 9R/10R; 10DAT = 10R/10R). Subjects underwent fMRI during non-emotional and emotional go/no-go tasks. Subjects were instructed to inhibit responses to letters, happy faces, or sad faces in separate blocks. Accuracy and reaction time did not differ between groups. Within group results showed activation in regions previously implicated in emotional processing and response inhibition. Between groups results showed increased activation in 9DAT individuals during inhibition. During letter inhibition, 9DAT individuals exhibited greater activation in right inferior parietal regions. During sad inhibition, 9DAT Individuals exhibited greater activation in frontal, posterior cingulate, precuneus, right cerebellar, left paracentral, and right occipital brain regions. The interaction between DAT genotype and response type in sad versus letter stimuli showed increased activation in 9DAT individuals during sad no-go responses in the anterior cingulate cortex, extending into frontal-orbital regions. 9DAT individuals have greater activation than 10DAT individuals during neutral and sad inhibition, showing that genotypic variation influencing basal dopamine levels can alter the neural basis of emotional processing and response inhibition. This may indicate that 9R carriers exert more effort to overcome increased basal dopamine activation when inhibiting responses in emotional contexts.

  5. Catarata polar anterior piramidal deslocada para a câmara anterior causando edema de córnea: relato de caso Corneal edema caused by a pyramidal anterior polar cataract dislocated to the anterior chamber: case report

    Directory of Open Access Journals (Sweden)

    Ramon Coral Ghanem

    2004-08-01

    Full Text Available Cataratas polares anteriores piramidais são opacidades cônicas que se projetam para a câmara anterior a partir da cápsula anterior do cristalino. Na grande maioria dos pacientes a opacidade permanece aderida e estável durante toda a vida. O objetivo deste trabalho é documentar uma manifestação incomum desse tipo de catarata: a deiscência espontânea das pirâmides para a câmara anterior causando descompensação endotelial e edema corneal bilateral. Relatamos o caso de uma paciente feminina, de 66 anos, branca, que apresentava edema corneal localizado inferiormente no olho direito associado à lesão nodular branco-esclerótica compatível com a pirâmide anterior da catarata polar. O olho esquerdo apresentava edema corneal difuso intenso e presença de uma catarata polar anterior com a região piramidal deslocada para a câmara anterior. Sabe-se que a pirâmide anterior pode permanecer inabsorvida na câmara anterior por longo período, pois é composta de tecido colágeno denso. Isto causa perda endotelial progressiva e edema corneal e deve ser considerada indicação de remoção cirúrgica da catarata polar anterior e de seu fragmento. Ressalta-se, também, a importância do bom senso no julgamento das cataratas polares anteriores, considerando-se tamanho da opacidade, simetria das opacidades e componente cortical associado, na tentativa de se evitar ambliopia.Pyramidal anterior polar cataracts are conical opacities that project into the anterior chamber from the anterior capsule of the lens. In the vast majority of patients the opacity remains bound and stable throughout life. We report an unusual complication of this type of cataract: spontaneous dehiscence of the pyramids to the anterior chamber causing bilateral endothelial damage and corneal edema. 66-year-old white woman presented with inferior corneal edema in the right eye and diffuse corneal edema in the left eye. A white nodular lesion was observed in the inferior angle

  6. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis.

    Science.gov (United States)

    Cojan, Yann; Piguet, Camille; Vuilleumier, Patrik

    2015-08-15

    Theoretical models of hypnosis have emphasized the importance of attentional processes in accounting for hypnotic phenomena but their exact nature and brain substrates remain unresolved. Individuals vary in their susceptibility to hypnosis, a variability often attributed to differences in attentional functioning such as greater ability to filter irrelevant information and inhibit prepotent responses. However, behavioral studies of attentional performance outside the hypnotic state have provided conflicting results. We used fMRI to investigate the recruitment of attentional networks during a modified flanker task in High and Low hypnotizable participants. The task was performed in a normal (no hypnotized) state. While behavioral performance did not reliably differ between groups, components of the fronto-parietal executive network implicated in monitoring (anterior cingulate cortex; ACC), adjustment (lateral prefrontal cortex; latPFC), and implementation of attentional control (intraparietal sulcus; IPS) were differently activated depending on the hypnotizability of the subjects: the right inferior frontal gyrus (rIFG) was more recruited, whereas IPS and ACC were less recruited by High susceptible individuals compared to Low. Our results demonstrate that susceptibility to hypnosis is associated with particular executive control capabilities allowing efficient attentional focusing, and point to specific neural substrates in right prefrontal cortex. We demonstrated that outside hypnosis, low hypnotizable subjects recruited more parietal cortex and anterior cingulate regions during selective attention conditions suggesting a better detection and implementation of conflict. However, outside hypnosis the right inferior frontal gyrus (rIFG) was more recruited by highly hypnotizable subjects during selective attention conditions suggesting a better control of conflict. Furthermore, in highly hypnotizable subjects this region was more connected to the default mode network

  7. 'Visual' cortical activation induced by acupuncture at vision-related acupoint: A fMRI study

    International Nuclear Information System (INIS)

    Yan, B.; Shan, B.C.; Zhi, L.H.; Li, K.; Lu, N.; Li, L.; Liu, H.

    2005-01-01

    It has attracted attention recently that acupuncture at vision-related acupoints, which are used to treat eye diseases according to Traditional Chinese Medicine (TCM), could activate the visual cortex. Cho and colleagues have reported that acupuncture at vision-related acupoints in the foot, activate the visual cortex bilaterally. Similar results were reported by Siedentopf and coworkers using laser acupuncture. However, Gareus et al. did not get the result, In this study, manual acupuncture was used to examine the response of central nervous system (CNS) to acupuncture at Liv3, one of important acupoints used to treat eye-related disease in clinic. To avoid the non-specific factors such as pain and anxiety, a sham acupoint which is approximately 10 mm anterior to Liv3 and innervated by the same spinal segment was selected as control. The CNS response was obtained by subtracting fMRI brain images evoked by nearby 'sham' acupoint from that evoked by the 'real' acupoint. 17 healthy right handed volunteers were comprised in the study. The images were got on 1.5T MR with EPI sequence. After 62 baseline scans, a silver needle 0.30 mm in diameter and 25 mm long was inserted and twirled for 60 scans; then the needle was withdrawn while fMRI scanning continued, until a total of 402 scans were acquired. During acupuncture, the needle was twirled manually clockwise and anticlockwise at 1 Hz with 'even reinforcing and reducing' needle manipulation. The depth of needle insertion at the sham acupoint was approximately 15 mm, the same as at the real acupoint. All the points in this study were on the right foot. The data were analyzed with spm99 using random effects analysis, discrepancies in the activation areas between Liv3 and the sham acupoint were obtained at p<0.01. Acupuncture at Liv3 significantly activated Brodmann Area 19 (BA 19) bilaterally, middle temporal gyrus, cerebellum, ipsilateral posterior cingulate, parahippocampal gyrus, contralateral postcentral gyrus, and

  8. 'Visual' cortical activation induced by acupuncture at vision-related acupoint: a fMRI study

    International Nuclear Information System (INIS)

    Yan, B.; Shan, B.C.; Zhi, L.H.; Li, K.; Lu, N.; Li, L.; Liu, H.

    2005-01-01

    It has attracted attention recently that acupuncture at vision-related acupoints, which are used to treat eye diseases according to Traditional Chinese Medicine (TCM), could activate the visual cortex. Cho and colleagues have reported that acupuncture at vision-related acupoints in the foot, activate the visual cortex bilaterally. Similar results were reported by Siedentopf and coworkers using laser acupuncture. However, Gareus et al. did not get the result. In this study, manual acupuncture was used to examine the response of central nervous system (CNS) to acupuncture at Liv3, one of important acupoints used to treat eye-related disease in clinic. To avoid the non-specific factors such as pain and anxiety, a sham acupoint which is approximately 10 mm anterior to Liv3 and innervated by the same spinal segment was selected as control. The CNS response was obtained by subtracting fMRI brain images evoked by nearby 'sham' acupoint from that evoked by the 'real' acupoint. 17 healthy right handed volunteers were comprised in the study. The images were got on 1.5T MR with EPI sequence. After 62 baseline scans, a silver needle 0.30 mm in diameter and 25 mm long was inserted and twirled for 60 scans; then the needle was withdrawn while fMRI scanning continued, until a total of 402 scans were acquired. During acupuncture, the needle was twirled manually clockwise and anticlockwise at 1 Hz with 'even reinforcing and reducing' needle manipulation. The depth of needle insertion at the sham acupoint was approximately 15 mm, the same as at the real acupoint. All the points in this study were on the right foot. The data were analyzed with spm99 using random effects analysis, discrepancies in the activation areas between Liv3 and the sham acupoint were obtained at p<0.01. Acupuncture at Liv3 significantly activated Brodmann Area 19 (BA 19) bilaterally, middle temporal gyrus, cerebellum, ipsilateral posterior cingulate, parahippocampal gyrus, contralateral postcentral gyrus, and

  9. Anterior ankle arthroscopy, distraction or dorsiflexion?

    Science.gov (United States)

    de Leeuw, Peter A J; Golanó, Pau; Clavero, Joan A; van Dijk, C Niek

    2010-05-01

    Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, whereas in ankle distraction the anterior neurovascular bundle is pulled tight towards the joint, thereby decreasing the safe anterior working area. Six fresh frozen ankle specimens, amputated above the knee, were scanned with computed tomography. Prior to scanning the anterior tibial artery was injected with contrast fluid and subsequently each ankle was scanned both in ankle dorsiflexion and in distraction. A special device was developed to reproducibly obtain ankle dorsiflexion and distraction in the computed tomography scanner. The distance between the anterior border of the inferior tibial articular facet and the posterior border of the anterior tibial artery was measured. The median distance from the anterior border of the inferior tibial articular facet to the posterior border of the anterior tibial artery in ankle dorsiflexion and distraction was 0.9 cm (range 0.7-1.5) and 0.7 cm (range 0.5-0.8), respectively. The distance in ankle dorsiflexion significantly exceeded the distance in ankle distraction (P = 0.03). The current study shows a significantly increased distance between the anterior distal tibia and the overlying anterior neurovascular bundle with the ankle in a slightly dorsiflexed position as compared to the distracted ankle position. We thereby conclude that the distracted ankle position puts the neurovascular structures more at risk for iatrogenic damage when performing anterior ankle arthroscopy.

  10. Smoking-Cue Induced Brain Activation In Adolescent Light Smokers

    Science.gov (United States)

    Rubinstein, Mark L.; Luks, Tracy L.; Moscicki, Anna-Barbara; Dryden, Wendy; Rait, Michelle A.; Simpson, Gregory V.

    2010-01-01

    Purpose Using fMRI, we examined whether or not adolescents with low levels of nicotine exposure (light smokers) display neural activation in areas shown to be involved with addiction in response to smoking-related stimuli. Design/Setting/Participants Twelve adolescent light smokers (aged 13 to17, smoked 1 to 5 cigarettes per day) and 12 non-smokers (ages 13 to 17, never smoked a cigarette) from the San Francisco Bay Area underwent fMRI scanning. During scanning they viewed blocks of photographic smoking and control cues. Smoking cues consisted of pictures of people smoking cigarettes and smoking-related objects such as lighters and ashtrays. Neutral cues consisted of everyday objects and people engaged in everyday activities. Findings For smokers, smoking cues elicited greater activation than neutral cues in the mesolimbic reward circuit (left anterior cingulate (T=7.88, pbrain regions seen in adult and heavy teen smokers suggests that even at low levels of smoking, adolescents exhibit heightened reactivity to smoking cues. This paper adds to the existing literature suggesting that nicotine dependence may begin with exposure to low levels of nicotine, underscoring the need for early intervention among adolescent smokers. PMID:21185518

  11. Abnormal resting state corticolimbic blood flow in depressed unmedicated patients with major depression: a (15)O-H(2)O PET study.

    Science.gov (United States)

    Monkul, E Serap; Silva, Leandro A P; Narayana, Shalini; Peluso, Marco A M; Zamarripa, Frank; Nery, Fabiano G; Najt, Pablo; Li, John; Lancaster, Jack L; Fox, Peter T; Lafer, Beny; Soares, Jair C

    2012-02-01

    We investigated the differences in the resting state corticolimbic blood flow between 20 unmedicated depressed patients and 21 healthy comparisons. Resting state cerebral blood flow (CBF) was measured with H(2)(15)O PET. Anatomical MRI scans were performed on an Elscint 1.9 T Prestige system for PET-MRI coregistration. Significant changes in cerebral blood flow indicating neural activity were detected using an ROI-free image subtraction strategy. In addition, the resting blood flow in patients was correlated with the severity of depression as measured by HAM-D scores. Depressed patients showed decreases in blood flow in right anterior cingulate (Brodmann areas 24 and 32) and increased blood flow in left and right posterior cingulate (Brodmann areas 23, 29, 30), left parahippocampal gyrus (Brodmann area 36), and right caudate compared with healthy volunteers. The severity of depression was inversely correlated with the left middle and inferior frontal gyri (Brodmann areas 9 and 47) and right medial frontal gyrus (Brodmann area 10) and right anterior cingulate (Brodmann areas 24, 32) blood flow, and directly correlated with the right thalamus blood flow. These findings support previous reports of abnormalities in the resting state blood flow in the limbic-frontal structures in depressed patients compared to healthy volunteers. Copyright © 2011 Wiley Periodicals, Inc.

  12. Anterior knee pain

    Energy Technology Data Exchange (ETDEWEB)

    LLopis, Eva [Hospital de la Ribera, Alzira, Valencia (Spain) and Carretera de Corbera km 1, 46600 Alzira Valencia (Spain)]. E-mail: ellopis@hospital-ribera.com; Padron, Mario [Clinica Cemtro, Ventisquero de la Condesa no. 42, 28035 Madrid (Spain)]. E-mail: mario.padron@clinicacemtro.com

    2007-04-15

    Anterior knee pain is a common complain in all ages athletes. It may be caused by a large variety of injuries. There is a continuum of diagnoses and most of the disorders are closely related. Repeated minor trauma and overuse play an important role for the development of lesions in Hoffa's pad, extensor mechanism, lateral and medial restrain structures or cartilage surface, however usually an increase or change of activity is referred. Although the direct relation of cartilage lesions, especially chondral, and pain is a subject of debate these lesions may be responsible of early osteoarthrosis and can determine athlete's prognosis. The anatomy and biomechanics of patellofemoral joint is complex and symptoms are often unspecific. Transient patellar dislocation has MR distinct features that provide evidence of prior dislocation and rules our complication. However, anterior knee pain more often is related to overuse and repeated minor trauma. Patella and quadriceps tendon have been also implicated in anterior knee pain, as well as lateral or medial restraint structures and Hoffa's pad. US and MR are excellent tools for the diagnosis of superficial tendons, the advantage of MR is that permits to rule out other sources of intraarticular derangements. Due to the complex anatomy and biomechanic of patellofemoral joint maltracking is not fully understood; plain films and CT allow the study of malalignment, new CT and MR kinematic studies have promising results but further studies are needed. Our purpose here is to describe how imaging techniques can be helpful in precisely defining the origin of the patient's complaint and thus improve understanding and management of these injuries.

  13. Anterior knee pain

    International Nuclear Information System (INIS)

    LLopis, Eva; Padron, Mario

    2007-01-01

    Anterior knee pain is a common complain in all ages athletes. It may be caused by a large variety of injuries. There is a continuum of diagnoses and most of the disorders are closely related. Repeated minor trauma and overuse play an important role for the development of lesions in Hoffa's pad, extensor mechanism, lateral and medial restrain structures or cartilage surface, however usually an increase or change of activity is referred. Although the direct relation of cartilage lesions, especially chondral, and pain is a subject of debate these lesions may be responsible of early osteoarthrosis and can determine athlete's prognosis. The anatomy and biomechanics of patellofemoral joint is complex and symptoms are often unspecific. Transient patellar dislocation has MR distinct features that provide evidence of prior dislocation and rules our complication. However, anterior knee pain more often is related to overuse and repeated minor trauma. Patella and quadriceps tendon have been also implicated in anterior knee pain, as well as lateral or medial restraint structures and Hoffa's pad. US and MR are excellent tools for the diagnosis of superficial tendons, the advantage of MR is that permits to rule out other sources of intraarticular derangements. Due to the complex anatomy and biomechanic of patellofemoral joint maltracking is not fully understood; plain films and CT allow the study of malalignment, new CT and MR kinematic studies have promising results but further studies are needed. Our purpose here is to describe how imaging techniques can be helpful in precisely defining the origin of the patient's complaint and thus improve understanding and management of these injuries

  14. Anterior ankle arthroscopy, distraction or dorsiflexion?

    OpenAIRE

    de Leeuw, P.A.J.; Golanó, P.; Clavero, J.A.; van Dijk, C.N.

    2010-01-01

    Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, where...

  15. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    International Nuclear Information System (INIS)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W.; Araujo, D.; Santos, A.C.

    2008-01-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 ± 0.03; control = 1.12 ± 0.04) and in the right (schizophrenia 0.88 ± 0.02; control = 0.94 ± 0.03) and left (schizophrenia 0.84 ± 0.03; control = 0.94 ± 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 ± 0.05) than the controls (0.95 ± 0.02, P < 0.05) and the subgroup with normal SCL (0.88 ± 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  16. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento]. E-mail: awzuardi@fmrp.usp.br; Araujo, D.; Santos, A.C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Div. de Radiologia

    2008-07-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 {+-} 0.03; control = 1.12 {+-} 0.04) and in the right (schizophrenia 0.88 {+-} 0.02; control = 0.94 {+-} 0.03) and left (schizophrenia 0.84 {+-} 0.03; control = 0.94 {+-} 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 {+-} 0.05) than the controls (0.95 {+-} 0.02, P < 0.05) and the subgroup with normal SCL (0.88 {+-} 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  17. Identification of BDNF sensitive electrophysiological markers of synaptic activity and their structural correlates in healthy subjects using a genetic approach utilizing the functional BDNF Val66Met polymorphism.

    Directory of Open Access Journals (Sweden)

    Fruzsina Soltész

    Full Text Available Increasing evidence suggests that synaptic dysfunction is a core pathophysiological hallmark of neurodegenerative disorders. Brain-derived neurotropic factor (BDNF is key synaptogenic molecule and targeting synaptic repair through modulation of BDNF signalling has been suggested as a potential drug discovery strategy. The development of such "synaptogenic" therapies depend on the availability of BDNF sensitive markers of synaptic function that could be utilized as biomarkers for examining target engagement or drug efficacy in humans. Here we have utilized the BDNF Val66Met genetic polymorphism to examine the effect of the polymorphism and genetic load (i.e. Met allele load on electrophysiological (EEG markers of synaptic activity and their structural (MRI correlates. Sixty healthy adults were prospectively recruited into the three genetic groups (Val/Val, Val/Met, Met/Met. Subjects also underwent fMRI, tDCS/TMS, and cognitive assessments as part of a larger study. Overall, some of the EEG markers of synaptic activity and brain structure measured with MRI were the most sensitive markers of the polymorphism. Met carriers showed decreased oscillatory activity and synchrony in the neural network subserving error-processing, as measured during a flanker task (ERN; and showed increased slow-wave activity during resting. There was no evidence for a Met load effect on the EEG measures and the polymorphism had no effects on MMN and P300. Met carriers also showed reduced grey matter volume in the anterior cingulate and in the (left prefrontal cortex. Furthermore, anterior cingulate grey matter volume, and oscillatory EEG power during the flanker task predicted subsequent behavioural adaptation, indicating a BDNF dependent link between brain structure, function and behaviour associated with error processing and monitoring. These findings suggest that EEG markers such as ERN and resting EEG could be used as BDNF sensitive functional markers in early

  18. Virtual visual reminiscing pain stimulation of allodynia patients activates cortical representation of pain and emotions. fMRI study

    International Nuclear Information System (INIS)

    Ikemoto, Tatsunori; Ushida, Takahiro; Taniguchi, Shinichirou; Tania, Toshikazu; Zinchuk, V.; Morio, Kazuo; Sasaki, Toshikazu

    2004-01-01

    It is widely known that sensation of the pain is derived from sensory-discriminative factor and emotional factor. Especially in chronic pain, emotional factors and psychosocial backgrounds are more likely to contribute for the patients' discomfort. The aim of this study is to investigate how emotional factor of pain participates in intractable pain. We employed functional MRI (fMRI) to compare the brain activations occurring in the orthopaedic neuropathic pain patients with allodynia and normal individuals in response to the visual virtual painful experience. During fMRI scanning, a video demonstrating an actual tactile stimulation of the palm and its imitation were shown to participants. In contrast to normal individuals, allodynia patients also displayed activation of the areas reflecting emotions: frontal lobe and anterior cingulate. These findings suggest that brain have important role in the development and maintaining of peripheral originated chronic painful condition. (author)

  19. Inserting needles into the body: a meta-analysis of brain activity associated with acupuncture needle stimulation.

    Science.gov (United States)

    Chae, Younbyoung; Chang, Dong-Seon; Lee, Soon-Ho; Jung, Won-Mo; Lee, In-Seon; Jackson, Stephen; Kong, Jian; Lee, Hyangsook; Park, Hi-Joon; Lee, Hyejung; Wallraven, Christian

    2013-03-01

    Acupuncture is a therapeutic treatment that is defined as the insertion of needles into the body at specific points (ie, acupoints). Advances in functional neuroimaging have made it possible to study brain responses to acupuncture; however, previous studies have mainly concentrated on acupoint specificity. We wanted to focus on the functional brain responses that occur because of needle insertion into the body. An activation likelihood estimation meta-analysis was carried out to investigate common characteristics of brain responses to acupuncture needle stimulation compared to tactile stimulation. A total of 28 functional magnetic resonance imaging studies, which consisted of 51 acupuncture and 10 tactile stimulation experiments, were selected for the meta-analysis. Following acupuncture needle stimulation, activation in the sensorimotor cortical network, including the insula, thalamus, anterior cingulate cortex, and primary and secondary somatosensory cortices, and deactivation in the limbic-paralimbic neocortical network, including the medial prefrontal cortex, caudate, amygdala, posterior cingulate cortex, and parahippocampus, were detected and assessed. Following control tactile stimulation, weaker patterns of brain responses were detected in areas similar to those stated above. The activation and deactivation patterns following acupuncture stimulation suggest that the hemodynamic responses in the brain simultaneously reflect the sensory, cognitive, and affective dimensions of pain. This article facilitates a better understanding of acupuncture needle stimulation and its effects on specific activity changes in different brain regions as well as its relationship to the multiple dimensions of pain. Future studies can build on this meta-analysis and will help to elucidate the clinically relevant therapeutic effects of acupuncture. Copyright © 2013 American Pain Society. All rights reserved.

  20. Quantification of brain images using Korean standard templates and structural and cytoarchitectonic probabilistic maps

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong

    2004-01-01

    Population based structural and functional maps of the brain provide effective tools for the analysis and interpretation of complex and individually variable brain data. Brain MRI and PET standard templates and statistical probabilistic maps based on image data of Korean normal volunteers have been developed and probabilistic maps based on cytoarchitectonic data have been introduced. A quantification method using these data was developed for the objective assessment of regional intensity in the brain images. Age, gender and ethnic specific anatomical and functional brain templates based on MR and PET images of Korean normal volunteers were developed. Korean structural probabilistic maps for 89 brain regions and cytoarchitectonic probabilistic maps for 13 Brodmann areas were transformed onto the standard templates. Brain FDG PET and SPGR MR images of normal volunteers were spatially normalized onto the template of each modality and gender. Regional uptake of radiotracers in PET and gray matter concentration in MR images were then quantified by averaging (or summing) regional intensities weighted using the probabilistic maps of brain regions. Regionally specific effects of aging on glucose metabolism in cingulate cortex were also examined. Quantification program could generate quantification results for single spatially normalized images per 20 seconds. Glucose metabolism change in cingulate gyrus was regionally specific: ratios of glucose metabolism in the rostral anterior cingulate vs. posterior cingulate and the caudal anterior cingulate vs. posterior cingulate were significantly decreased as the age increased. 'Rostral anterior' / 'posterior' was decreased by 3.1% per decade of age (p -11 , r=0.81) and 'caudal anterior' / 'posterior' was decreased by 1.7% (p -8 , r=0.72). Ethnic specific standard templates and probabilistic maps and quantification program developed in this study will be useful for the analysis of brain image of Korean people since the difference

  1. Quantification of brain images using Korean standard templates and structural and cytoarchitectonic probabilistic maps

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)] [and others

    2004-06-01

    Population based structural and functional maps of the brain provide effective tools for the analysis and interpretation of complex and individually variable brain data. Brain MRI and PET standard templates and statistical probabilistic maps based on image data of Korean normal volunteers have been developed and probabilistic maps based on cytoarchitectonic data have been introduced. A quantification method using these data was developed for the objective assessment of regional intensity in the brain images. Age, gender and ethnic specific anatomical and functional brain templates based on MR and PET images of Korean normal volunteers were developed. Korean structural probabilistic maps for 89 brain regions and cytoarchitectonic probabilistic maps for 13 Brodmann areas were transformed onto the standard templates. Brain FDG PET and SPGR MR images of normal volunteers were spatially normalized onto the template of each modality and gender. Regional uptake of radiotracers in PET and gray matter concentration in MR images were then quantified by averaging (or summing) regional intensities weighted using the probabilistic maps of brain regions. Regionally specific effects of aging on glucose metabolism in cingulate cortex were also examined. Quantification program could generate quantification results for single spatially normalized images per 20 seconds. Glucose metabolism change in cingulate gyrus was regionally specific: ratios of glucose metabolism in the rostral anterior cingulate vs. posterior cingulate and the caudal anterior cingulate vs. posterior cingulate were significantly decreased as the age increased. 'Rostral anterior' / 'posterior' was decreased by 3.1% per decade of age (p<10{sup -11}, r=0.81) and 'caudal anterior' / 'posterior' was decreased by 1.7% (p<10{sup -8}, r=0.72). Ethnic specific standard templates and probabilistic maps and quantification program developed in this study will be useful for the analysis

  2. The control of tonic pain by active relief learning

    Science.gov (United States)

    Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W

    2018-01-01

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716

  3. The control of tonic pain by active relief learning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W; Seymour, Ben

    2018-02-27

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty ('associability') signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. © 2018, Zhang et al.

  4. Excitatory and inhibitory effects of prolactin release activated by nerve stimulation in rat anterior pituitary

    Directory of Open Access Journals (Sweden)

    Gao Li-Zhi

    2009-12-01

    Full Text Available Abstract Background A series of studies showed the presence of substantial amount of nerve fibers and their close relationship with the anterior pituitary gland cells. Our previous studies have suggested that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present study was aimed at investigating the physiological significance of this synaptic relationship on prolactin release. Methods The anterior pituitary of rat was sliced and stimulated with electrical field in a self-designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin concentrations within and between groups were outlined. Results The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and frequency dependent. Conclusions The present in vitro study offers the first physiological evidence that stimulation of nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation enhances prolactin release and high frequency mainly inhibits it.

  5. Load-related brain activation predicts spatial working memory performance in youth aged 9-12 and is associated with executive function at earlier ages.

    Science.gov (United States)

    Huang, Anna S; Klein, Daniel N; Leung, Hoi-Chung

    2016-02-01

    Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9-12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant.

    Science.gov (United States)

    Riba, Jordi; Romero, Sergio; Grasa, Eva; Mena, Esther; Carrió, Ignasi; Barbanoj, Manel J

    2006-05-01

    Ayahuasca is a South American psychoactive plant tea which contains the serotonergic psychedelic N,N-dimethyltryptamine (DMT) and monoamine-oxidase inhibitors that render DMT orally active. Previous investigations with ayahuasca have highlighted a psychotropic effect profile characterized by enhanced introspective attention, with individuals reporting altered somatic perceptions and intense emotional modifications, frequently accompanied by visual imagery. Despite recent advances in the study of ayahuasca pharmacology, the neural correlates of acute ayahuasca intoxication remain largely unknown. To investigate the effects of ayahuasca administration on regional cerebral blood flow. Fifteen male volunteers with prior experience in the use of psychedelics received a single oral dose of encapsulated freeze-dried ayahuasca equivalent to 1.0 mg DMT/kg body weight and a placebo in a randomized double-blind clinical trial. Regional cerebral blood flow was measured 100-110 min after drug administration by means of single photon emission tomography (SPECT). Ayahuasca administration led to significant activation of frontal and paralimbic brain regions. Increased blood perfusion was observed bilaterally in the anterior insula, with greater intensity in the right hemisphere, and in the anterior cingulate/frontomedial cortex of the right hemisphere, areas previously implicated in somatic awareness, subjective feeling states, and emotional arousal. Additional increases were observed in the left amygdala/parahippocampal gyrus, a structure also involved in emotional arousal. The present results suggest that ayahuasca interacts with neural systems that are central to interoception and emotional processing and point to a modulatory role of serotonergic neurotransmission in these processes.

  7. Treatment for acute anterior cruciate ligament tear

    DEFF Research Database (Denmark)

    Frobell, Richard B; Roos, Harald P; Roos, Ewa M

    2013-01-01

    To compare, in young active adults with an acute anterior cruciate ligament (ACL) tear, the mid-term (five year) patient reported and radiographic outcomes between those treated with rehabilitation plus early ACL reconstruction and those treated with rehabilitation and optional delayed ACL...

  8. Active delivery of the anterior arm and incidence of second-degree perineal tears: a clinical practice evaluation.

    Science.gov (United States)

    Mottet, Nicolas; Bonneaud, Marine; Eckman-Lacroix, Astrid; Ramanah, Rajeev; Riethmuller, Didier

    2017-05-12

    Evaluate the feasibility of active delivery of the anterior arm during spontaneous delivery. This maneuver could decrease incidence of second-degree perineal tears because it reduces fetal biacromial diameter. An observational comparative prospective study was conducted at our teaching maternity from July 2012 to March 2013. The study included 199 nulliparous women ≥18 years, who met the following criteria: singleton pregnancy, vaginal delivery with occiput anterior presentation, on epidural analgesia, from 37 weeks of gestation onward. The distribution of rate and type of perineal tears were compared between two groups: a non-exposed group and a group exposed to the maneuver. A total of 101 patients were exposed to Couder's maneuver (CM) and 98 patients were not exposed. In the intervention group, 3 failures of the maneuver were reported. The maneuver was considered easy in 80% of cases, moderately easy in 12% and difficult in 8% of cases. There was a significant difference (p = 0.03) in the distribution of perineal tears between the two groups. There was a significant reduction (p tears in the patients exposed to CM. There was no significant difference in the rate of anterior perineal trauma between the exposed and non-exposed arms. CM in primiparous women at term is feasible with a low failure rate and influences the distribution of perineal tears by lowering second-degree perineal tears in a highly significant manner (p <0.01).

  9. Semantic relation vs. surprise: the differential effects of related and unrelated co-verbal gestures on neural encoding and subsequent recognition.

    Science.gov (United States)

    Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo

    2014-06-03

    Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    Science.gov (United States)

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  11. Noradrenergic stimulation modulates activation of extinction-related brain regions and enhances contextual extinction learning without affecting renewal

    Directory of Open Access Journals (Sweden)

    Silke eLissek

    2015-02-01

    Full Text Available Renewal in extinction learning describes the recovery of an extinguished response if the extinction context differs from the context present during acquisition and recall. Attention may have a role in contextual modulation of behavior and contribute to the renewal effect, while noradrenaline is involved in attentional processing. In this functional magnetic resonance imaging (fMRI study we investigated the role of the noradrenergic system for behavioral and brain activation correlates of contextual extinction and renewal, with a particular focus upon hippocampus and ventromedial PFC, which have crucial roles in processing of renewal. Healthy human volunteers received a single dose of the NA reuptake inhibitor atomoxetine prior to extinction learning. During extinction of previously acquired cue-outcome associations, cues were presented in a novel context (ABA or in the acquisition context (AAA. In recall, all cues were again presented in the acquisition context. Atomoxetine participants (ATO showed significantly faster extinction compared to placebo (PLAC. However, atomoxetine did not affect renewal. Hippocampal activation was higher in ATO during extinction and recall, as was ventromedial PFC activation, except for ABA recall. Moreover, ATO showed stronger recruitment of insula, anterior cingulate, and dorsolateral/orbitofrontal PFC. Across groups, cingulate, hippocampus and vmPFC activity during ABA extinction correlated with recall performance, suggesting high relevance of these regions for processing the renewal effect. In summary, the noradrenergic system appears to be involved in the modification of established associations during extinction learning and thus has a role in behavioral flexibility. The assignment of an association to a context and the subsequent decision on an adequate response, however, presumably operate largely independently of noradrenergic mechanisms.

  12. The neural basis of testable and non-testable beliefs.

    Directory of Open Access Journals (Sweden)

    Jonathon R Howlett

    Full Text Available Beliefs about the state of the world are an important influence on both normal behavior and psychopathology. However, understanding of the neural basis of belief processing remains incomplete, and several aspects of belief processing have only recently been explored. Specifically, different types of beliefs may involve fundamentally different inferential processes and thus recruit distinct brain regions. Additionally, neural processing of truth and falsity may differ from processing of certainty and uncertainty. The purpose of this study was to investigate the neural underpinnings of assessment of testable and non-testable propositions in terms of truth or falsity and the level of certainty in a belief. Functional magnetic resonance imaging (fMRI was used to study 14 adults while they rated propositions as true or false and also rated the level of certainty in their judgments. Each proposition was classified as testable or non-testable. Testable propositions activated the DLPFC and posterior cingulate cortex, while non-testable statements activated areas including inferior frontal gyrus, superior temporal gyrus, and an anterior region of the superior frontal gyrus. No areas were more active when a proposition was accepted, while the dorsal anterior cingulate was activated when a proposition was rejected. Regardless of whether a proposition was testable or not, certainty that the proposition was true or false activated a common network of regions including the medial prefrontal cortex, caudate, posterior cingulate, and a region of middle temporal gyrus near the temporo-parietal junction. Certainty in the truth or falsity of a non-testable proposition (a strong belief without empirical evidence activated the insula. The results suggest that different brain regions contribute to the assessment of propositions based on the type of content, while a common network may mediate the influence of beliefs on motivation and behavior based on the level of

  13. Functional MRI examination of empathy for pain in people with schizophrenia reveals abnormal activation related to cognitive perspective-taking but typical activation linked to affective sharing

    Science.gov (United States)

    Vistoli, Damien; Lavoie, Marie-Audrey; Sutliff, Stephanie; Jackson, Philip L.; Achim, Amélie M.

    2017-01-01

    Background Schizophrenia is associated with important disturbances in empathy that are related to everyday functioning. Empathy is classically defined as including affective (sharing others’ emotions) and cognitive (taking others’ cognitive perspectives) processes. In healthy individuals, studies on empathy for pain revealed specific brain systems associated with these sets of processes, notably the anterior middle cingulate (aMCC) and anterior insula (AI) for affective sharing and the bilateral temporoparietal junction (TPJ) for the cognitive processes, but the integrity of these systems in patients with schizophrenia remains uncertain. Methods Patients with schizophrenia and healthy controls performed a pain empathy task while undergoing fMRI scanning. Participants observed pictures of hands in either painful or nonpainful situations and rated the level of pain while imagining either themselves (self) or an unknown person (other) in these situations. Results We included 27 patients with schizophrenia and 21 healthy controls in our analyses. For the pain versus no pain contrast, patients showed overall typical activation patterns in the aMCC and AI, with only a small part of the aMCC showing reduced activation compared with controls. For the other versus self contrast, patients showed an abnormal modulation of activation in the TPJ bilaterally (extending to the posterior superior temporal sulcus, referred to as the TPJ/pSTS). Limitations The design included an unnecessary manipulation of the visual perspective that reduced the number of trials for analysis. The sample size may not account for the heterogeneity of schizophrenia. Conclusion People with schizophrenia showed relatively intact brain activation when observing others’ pain, but showed abnormalities when asked to take the cognitive perspectives of others. PMID:28556774

  14. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI. However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo analysis based on resting-state functional magnetic resonance imaging.A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity.Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores.Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as potential biomarkers for

  15. Thalamo–cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis

    Directory of Open Access Journals (Sweden)

    Kim SH

    2017-10-01

    Full Text Available Seong Hoon Kim,1 Sung Chul Lim,1 Dong Won Yang,1 Jeong Hee Cho,1 Byung-Chul Son,2 Jiyeon Kim,3 Seung Bong Hong,4 Young-Min Shon4 1Department of Neurology, 2Department of Neurosurgery, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, 3Department of Neurology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, 4Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea Objective: Deep brain stimulation (DBS of the centromedian thalamic nucleus (CM can be an alternative treatment option for intractable epilepsy patients. Since CM may be involved in widespread cortico-subcortical networks, identification of the cortical sub-networks specific to the target stimuli may provide further understanding on the underlying mechanisms of CM DBS. Several brain structures have distinguishing brain connections that may be related to the pivotal propagation and subsequent clinical effect of DBS.Methods: To explore core structures and their connections relevant to CM DBS, we applied electroencephalogram (EEG and diffusion tensor imaging (DTI to 10 medically intractable patients – three generalized epilepsy (GE and seven multifocal epilepsy (MFE patients unsuitable for resective surgery. Spatiotemporal activation pattern was mapped from scalp EEG by delivering low-frequency stimuli (5 Hz. Structural connections between the CM and the cortical activation spots were assessed using DTI.Results: We confirmed an average 72% seizure reduction after CM DBS and its clinical efficiency remained consistent during the observation period (mean 21 months. EEG data revealed sequential source propagation from the anterior cingulate, followed by the frontotemporal regions bilaterally. In addition, maximal activation was found in the left cingulate gyrus and the right medial frontal cortex during the right and left CM stimulation, respectively

  16. Functionally distinct contributions of the anterior and posterior putamen during sublexical and lexical reading

    Directory of Open Access Journals (Sweden)

    Marion eOberhuber

    2013-11-01

    Full Text Available Previous studies have investigated orthographic-to-phonological mapping during reading by comparing brain activation for (1 reading words to object naming, or (2 reading pseudowords (e.g. phume to words (e.g. plume. Here we combined both approaches to provide new insights into the underlying neural mechanisms. In fMRI data from 25 healthy adult readers, we first identified activation that was greater for reading words and pseudowords relative to picture and color naming. The most significant effect was observed in the left putamen, extending to both anterior and posterior borders. Second, consistent with previous studies, we show that both the anterior and posterior putamen are involved in articulating speech with greater activation during our overt speech production tasks (reading, repetition, object naming and color naming than silent one-back-matching on the same stimuli. Third, we compared putamen activation for words versus pseudowords during overt reading and auditory repetition. This revealed that the anterior putamen was most activated by reading pseudowords, whereas the posterior putamen was most activated by words irrespective of whether the task was reading words or auditory word repetition. The pseudoword effect in the anterior putamen is consistent with prior studies that associated this region with the initiation of novel sequences of movements. In contrast, the heightened word response in the posterior putamen is consistent with other studies that associated this region with memory guided movement. Our results illustrate how the functional dissociation between the anterior and posterior putamen supports sublexical and lexical processing during reading.

  17. A Rare Case of Neglected Traumatic Anterior Dislocation of Hip in a Child.

    Science.gov (United States)

    Mootha, Aditya Krishna; Mogali, Kasi Viswanadam

    2016-01-01

    Post traumatic hip dislocations are very rare in children. Neglected anterior hip dislocations in children are not described in literature so far. Here, we present a case of 6 weeks old anterior hip dislocation successfully managed by open reduction. A 9-year-old male child presented with neglected anterior hip dislocation on left side. Open reduction carried out through direct anterior approach to hip. Congruent reduction is achieved. At final follow up of 1 year, the child had unrestricted activities of daily living and no radiological signs of osteonecrosis or any joint space reduction. There is paucity of literature over neglected post traumatic anterior hip dislocations in children. The treatment options vary from closed reduction after heavy traction to sub trochanteric osteotomy. However, we feel that open reduction through direct anterior approach is the preferred mode of management whenever considered possible.

  18. Influence of experimental interfering occlusal contacts on the activity of the anterior temporal and masseter muscles during mastication.

    Science.gov (United States)

    Riise, C; Sheikholeslam, A

    1984-07-01

    Quantitative electromyography (EMG) was used to study, in eleven volunteers with complete, natural dentitions, the effects of an experimental intercuspal occlusal interference on the pattern of activity of the anterior temporal and masseter muscles during mastication. The results show that a small occlusal interference (about 0.5 mm) in the intercuspal position can change the co-ordination of muscular activity during mastication. In general, there was a prolonged contraction time as well as a reduction of the activity in all the investigated elevators, especially on the side of the interference. Furthermore, after 48 h several subjects preferred to chew unilaterally. After removal of the interference, the pattern of co-ordination of muscular activity returned almost to the pre-experimental pattern within 2 weeks.

  19. Deep processing activates the medial temporal lobe in young but not in old adults.

    Science.gov (United States)

    Daselaar, Sander M; Veltman, Dick J; Rombouts, Serge A R B; Raaijmakers, Jeroen G W; Jonker, Cees

    2003-11-01

    Age-related impairments in episodic memory have been related to a deficiency in semantic processing, based on the finding that elderly adults typically benefit less than young adults from deep, semantic as opposed to shallow, nonsemantic processing of study items. In the present study, we tested the hypothesis that elderly adults are not able to perform certain cognitive operations under deep processing conditions. We further hypothesised that this inability does not involve regions commonly associated with lexical/semantic retrieval processes, but rather involves a dysfunction of the medial temporal lobe (MTL) memory system. To this end, we used functional MRI on rather extensive groups of young and elderly adults to compare brain activity patterns obtained during a deep (living/nonliving) and a shallow (uppercase/lowercase) classification task. Common activity in relation to semantic classification was observed in regions that have been previously related to semantic retrieval, including mainly left-lateralised activity in the inferior prefrontal, middle temporal, and middle frontal/anterior cingulate gyrus. Although the young adults showed more activity in some of these areas, the finding of mainly overlapping activation patterns during semantic classification supports the idea that lexical/semantic retrieval processes are still intact in elderly adults. This received further support by the finding that both groups showed similar behavioural performances as well on the deep and shallow classification tasks. Importantly, though, the young revealed significantly more activity than the elderly adults in the left anterior hippocampus during deep relative to shallow classification. This finding is in line with the idea that age-related impairments in episodic encoding are, at least partly, due to an under-recruitment of the medial temporal lobe memory system.

  20. Anterior ankle arthroscopy, distraction or dorsiflexion?

    NARCIS (Netherlands)

    de Leeuw, P.A.J.; Golanó, P.; Clavero, J.A.; van Dijk, C.N.

    2010-01-01

    Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly