WorldWideScience

Sample records for antenna theory

  1. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  2. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  3. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  4. Microstrip antenna theory and design

    Science.gov (United States)

    James, J. R.; Hall, P. S.; Wood, C.

    Microstrip is the name given to a type of open waveguiding structure which is now commonly used in present-day electronics, not only as a transmission line but for circuit components such as filters, couplers, and resonators. The idea of using microstrip to construct antennas is a much more recent development. The purpose of this monograph is to present the reader with an appreciation of useful antenna design approaches and the overall state-of-the art situation. Flat-plate antenna techniques and constraints on performance are considered along with microstrip design equations and data, the radiation mechanism of an open-circuit microstrip termination and the resulting design implications, the basic methods of calculation and design of patch antennas, and linear array techniques. Attention is also given to techniques and design limitations in two-dimensional arrays, circular polarization techniques, manufacturing and operational problems of microstrip antennas, recent advances in microstrip antenna analysis, and possible future developments.

  5. Rectangular dielectric resonator antennas theory and design

    CERN Document Server

    Yaduvanshi, Rajveer S

    2016-01-01

    This book covers resonating modes inside device and gives insights into antenna design, impedance and radiation patterns. It discusses how higher-order modes generation and control impact bandwidth and antenna gain. The text covers new approaches in antenna design by investigation hybrid modes, H_Z and E_Z fields available simultaneously, and analysis and modelling on modes with practical applications in antenna design. The book will be prove useful to students, researchers and professionals alike.

  6. Theory and Practice in ICRF Antennas for Long Pulse Operation

    International Nuclear Information System (INIS)

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20 s x 8 MW and 60 s x 4 MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved: convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed. (authors)

  7. Compact antennas for wireless communications and terminals theory and design

    CERN Document Server

    Laheurte, Jean-Marc

    2012-01-01

    Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, recon

  8. Theory of Ultrafast Exciton Motion in Photosynthetic Antennae

    Science.gov (United States)

    Renger, Thomas; May, Volkhard

    1998-03-01

    Ultrafast exciton motion and its coupling to protein vibrations in photosynthetic antennae are investigated by means of a density matrix approach (O. Kühn, Th. Renger, T. Pullerits, J. Voigt, V. May, Ann. Rev. Photochem. Photobiol. (in press).). First we consider the Fenna Matthews Olson (FMO) photosynthetic antenna complex of Chlorobium Tepidum. Using the same approach and the same parameters, linear absorption spectra and ultrafast pump--probe and transient anisotropy spectra have been succesfully simulated (Th. Renger, V. May, J. Phys. Chem. B (submitted).). The model allows to utilize exciton relaxation data as a probe for a global--shape estimation of the spectral density of low--frequency protein vibrations. In a second approach concentrating on a Chla/Chlb hetero--dimer of the Light--Harvesting--Complex of the Photosystem II of higher plants an unified microscopic description is offered for coherent vibrational dynamics, excited state absorption, and exciton-exciton annihilation processes. The theory explains the intensity dependent ultrafast nonlinear optical response recently measured in a pump--probe experiment. The presence of non--Markovian effects in the dissipative dynamics is demonstrated (Th. Renger, V. May, Phys. Rev. Lett. 78), 3406 (1996), Th. Renger, V. May, J. Phys. Chem. B 101, 7211 (1997).

  9. Challenge to antenna-mode theory of multiconductor transmission-line

    International Nuclear Information System (INIS)

    A new multiconductor transmission-line theory is extended to provide the radiation process through the antenna mode in addition to the coupling of the normal and common modes. The antenna mode theory is based on the nonzero total charge and current in the multiconductor transmission-line system, where the transmission-line system loses electric power owing to the electromagnetic radiation through the effect of retarded potential for the electromagnetic field. (author)

  10. ICRF antenna coupling theory for a cylindrically stratified plasma

    International Nuclear Information System (INIS)

    Antenna coupling to a cyclindrical plasma is examined for the ion cyclotron range of frequencies (ICRF). A variety of antenna configurations are modelled such as a partial-turn loop, Nagoya coils, an aperture antenna, and arrays of coils. A procedure that utilizes the induction theorem is presented which replaces a general coil configuration with an equivalent representation in terms of sinusoidal current sheets. This transformation reduces the three dimensional antenna boundary value problem to that of one dimension (r, the radial coordinate) with the spatial variation in the other directions represented by complex exponentials (exp (in phi + ik/sub z/z)). As constructed, the transformation is directly applicable to axisymmetric geometries where the plasma parameters are only functions of radius. The radial variation of the plasma parameters such as the local density and temperature are approximated by a stratified model. As the number of strata are increased, the step-wise model is shown to converge to the continuous case. The plasma response is modelled by a local equivalent dielectric tensor. In the context of this model antenna-plasma coupling characteristics are compared for the various ICRF antennas

  11. Multi-functional Chassis-based Antennas Using Characteristic Mode Theory

    Science.gov (United States)

    Kishor, Krishna Kumar

    Designing antennas for handheld devices is quite challenging primarily due to the limited real-estate available, and the fact that internal antennas occupy a large volume. With the need to support a variety of radio systems such as GSM, LTE and WiFi that operate in a wide range of frequency bands, multi-band, wideband and frequency reconfigurable antenna designs have been explored in the literature. Moreover, to support higher data rates, the Long Term Evolution Advanced (LTE-A) standard has been introduced, which requires supporting multiple input multiple output (MIMO) antenna technology and carrier aggregation (CA) on a handheld device. Both of these benefit from the use of multiple antennas or multi-port antennas, but with the limited space available, adding more internal antennas may not be easily possible. Additionally, to realize the benefits of these technologies the multiple antenna ports have to be well isolated from each other. This thesis explores the utilization of the ground plane (or chassis) of a handheld device as an antenna to meet some of these challenges. To achieve this, the theory of characteristic modes (TCM) for conducting bodies is relied upon, to determine the eigen-currents supported on the chassis. The orthogonality properties of these eigencurrents, and their corresponding far-field eigenfields (electric and magnetic) makes TCM a good tool to design multiple antennas with high isolation. This is demonstrated in this thesis via the design of four chassis-based antennas that have different functionalities. The first design is a two port MIMO antenna utilizing a combination of eigenmodes to achieve port isolation. The second design is a pattern reconfigurable MIMO antenna that can operate in two states at 2.28 GHz. The third design is a four port antenna that operates in three frequency bands, with two bands below 1 GHz for CA and the remaining two ports for MIMO communication. The final design is a five port antenna that supports MIMO

  12. Magneto-Dielectric Wire Antennas Theory and Design

    Science.gov (United States)

    Sebastian, Tom

    There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of the communication node. This dissertation is concerned with a new class of antennas called Magneto-Dielectric wire antennas (MDWA) that provide an ideal solution to this ever-present and growing need. Magneto-dielectric structures (mur > 1; epsilon r > 1) can partially guide electromagnetic waves and radiate them by leaking off the structure or by scattering from any discontinuities, much like a metal antenna of the same shape. They are attractive alternatives to conventional whip and blade antennas because they can be placed conformal to a metallic ground plane without any performance penalty. A two pronged approach is taken to analyze MDWAs. In the first, antenna circuit models are derived for the prototypical dipole and loop elements that include the effects of realistic dispersive magneto-dielectric materials of construction. A material selection law results, showing that: (a) The maximum attainable efficiency is determined by a single magnetic material parameter that we term the hesitivity: Closely related to Snoek's product, it measures the maximum magnetic conductivity of the material. (b) The maximum bandwidth is obtained by placing the highest amount of mu" loss in the frequency range of operation. As a result, high radiation efficiency antennas can be obtained not only from the conventional low loss (low mu") materials but also with highly lossy materials (tan(deltam) >> 1). The second approach used to analyze MDWAs is through solving the Green function problem of the infinite magneto-dielectric cylinder fed by a current loop. This solution sheds light on the leaky and guided waves

  13. Design optical antenna and fiber coupling system based on the vector theory of reflection and refraction.

    Science.gov (United States)

    Jiang, Ping; Yang, Huajun; Mao, Shengqian

    2015-10-01

    A Cassegrain antenna system and an optical fiber coupling system which consists of a plano-concave lens and a plano-convex lens are designed based on the vector theory of reflection and refraction, so as to improve the transmission performance of the optical antenna and fiber coupling system. Three-dimensional ray tracing simulation are performed and results of the optical aberrations calculation and the experimental test show that the aberrations caused by on-axial defocusing, off-axial defocusing and deflection of receiving antenna can be well corrected by the optical fiber coupling system. PMID:26480125

  14. Bow-tie antennas on a dielectric half-space - Theory and experiment

    Science.gov (United States)

    Compton, Richard C.; Mcphedran, Ross C.; Popovic, Zorana; Rebeiz, Gabriel M.; Tong, Peter P.

    1987-01-01

    A new formulation is discussed for the rigous calculation of the radiation pattern of a bow-tie antenna of finite length and infinitesimal thickness, placed on a lossless dielectric substrate. The analysis is based on a representation of the current density on the metal surface of the antenna as a sum of an imposed (quasistatic) term and a set of current modes with unknown amplitudes. Free-space fields that are expressed in terms of continuous spectra of symmetrized plane waves are matched to the current modes using the method of moments. The resulting set of equations are solved for the unknown current amplitudes. The calculations show that for increasing bow length the antenna impedance spirals rapidly to a value predicted by transmission line theory. The theory also shows that the E-plane pattern of a two-wavelength, 60-deg bow-tie antenna is dominated by low-loss current modes propagating at the dielectric wavenumber. As the bow tie narrows, the loss of the modes increases, and the dominant wavenumber tends to the quasi-static value. Pattern measurements made at 94 GHz are shown to agree well with theoretical predictions. Measurements for a long-wire antenna, a linear array of bow-tie elements, and a log-periodic antenna are also presented.

  15. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Kim, Oleksiy S.

    2009-01-01

    The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms of spheri...... spherical vector waves. The obtained quality factor agrees with that of Wheeler and Thal for vanishing free-space electric radius but holds also for larger radii and facilitates the optimal choice of permeability in the presence of the resonances.......The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms of...

  16. Theory of nanorod antenna resonances including end-reflection phase

    Science.gov (United States)

    Su, Wei; Li, Xiangyin; Bornemann, Jens; Gordon, Reuven

    2015-04-01

    We present a fully analytic theory for nanorod resonances including the phase of reflection from the rounded ends using a transmission line approach. It combines the circuit theory response of spherical nanoparticles with standard transmission line theory using the Sommerfeld wave dispersion. The approach agrees well with comprehensive numerical calculations.

  17. Computation of antenna pattern correlation and MIMO performance by means of surface current distribution and spherical wave theory

    Directory of Open Access Journals (Sweden)

    O. Klemp

    2006-01-01

    Full Text Available In order to satisfy the stringent demand for an accurate prediction of MIMO channel capacity and diversity performance in wireless communications, more effective and suitable models that account for real antenna radiation behavior have to be taken into account. One of the main challenges is the accurate modeling of antenna correlation that is directly related to the amount of channel capacity or diversity gain which might be achieved in multi element antenna configurations. Therefore spherical wave theory in electromagnetics is a well known technique to express antenna far fields by means of a compact field expansion with a reduced number of unknowns that was recently applied to derive an analytical approach in the computation of antenna pattern correlation. In this paper we present a novel and efficient computational technique to determine antenna pattern correlation based on the evaluation of the surface current distribution by means of a spherical mode expansion.

  18. Asymptotic Analysis of Multi-Antenna Cognitive Radio Systems Using Extreme Value Theory

    OpenAIRE

    Duan, Ruifeng; Zheng, Zhong; Jäntti, Riku; Hämäläinen, Jyri

    2015-01-01

    We consider a spectrum-sharing cognitive radio system with antenna selection applied at the secondary transmitter (ST). Based on the extreme value theory, we deduce a simple and accurate expression for the asymptotic distribution of the signal to interference plus noise ratio at the secondary receiver. Using this result, the asymptotic mean capacity and the outage capacity for the secondary user (SU) are derived. The obtained asymptotic capacities approach the exact results as the number of t...

  19. Random matrix theory of multi-antenna communications: the Ricean channel

    International Nuclear Information System (INIS)

    The use of multi-antenna arrays in wireless communications through disordered media promises huge increases in the information transmission rate. It is therefore important to analyse the information capacity of such systems in realistic situations of microwave transmission, where the statistics of the transmission amplitudes (channel) may be coloured. Here, we present an approach that provides analytic expressions for the statistics, i.e. the moments of the distribution, of the mutual information for general Gaussian channel statistics. The mathematical method applies tools developed originally in the context of coherent wave propagation in disordered media, such as random matrix theory and replicas. Although it is valid formally for large antenna numbers, this approach produces extremely accurate results even for arrays with as few as two antennas. We also develop a method to analytically optimize over the input signal distribution, which enables us to calculate analytic capacities when the transmitter has knowledge of the statistics of the channel. The emphasis of this paper is on elucidating the novel mathematical methods used. We do this by analysing a specific case when the channel matrix is a complex Gaussian with arbitrary mean and unit covariance, which is usually called the Ricean channel

  20. Analysis of airborne antenna systems using geometrical theory of diffraction and moment method computer codes

    Science.gov (United States)

    Hartenstein, Richard G., Jr.

    1985-08-01

    Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.

  1. Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors

    Energy Technology Data Exchange (ETDEWEB)

    Dale K. Kotter; Steven D. Novack

    2010-02-01

    DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV

  2. Theory of excitation of asymmetric ksub(longitudinal)-spectrum by phasing the JET ICRF antennae

    International Nuclear Information System (INIS)

    A theoretical study is presented of the excitation of travelling ICRF waves in JET, based on a 3-D planar antenna-plasma coupling model. The antennae are progressively phased to excite a desired integral number of parallel wavelengths around the torus (n0 = 1, 2, 3 ... etc) where n0 = 3 or 4 is appropriate for mode conversion current drive and a somewhat higher number for the minority current drive. Several sets of antenna combinations including that of a single pair alone have been analyzed and it is found that a single pair of antenna system is unable to impose the desired n0 in the plasma. However, as the number of energized antennae is increased, the directivity increases reaching about 20% for 8 antennae and the imposed n0 is also found inside the plasma. Also presented are results of the field distribution in real space inside the plasma by Fourier inversion of the ksub(longitudinal)-spectrum radiated by the travelling wave antennae. (author)

  3. Theory and design of a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2014-03-01

    For the first time, a theoretical model is presented to predict the frequency tuning of a patch antenna on a partially magnetized ferrite substrate. Both extraordinary (E) and ordinary (O) modes of the antenna are studied. The permeability tensor of the partially magnetized ferrite is calculated through the proposed theoretical model and is subsequently used to analyze the antenna\\'s performance in a microwave simulator. Prototype antennas were built, using two different bias windings, embedded in a multilayer ferrite LTCC substrate, to demonstrate E and O mode tuning. The use of embedded windings negates the requirement of bulky electromagnets, thus providing miniaturization. The concept also eliminates the demagnetization effect, thus reducing the typically required bias fields by 95%. The prototype measurements at 13 GHz demonstrate an E-mode tuning range of 10%. The proposed theoretical model has been validated by simulations and measurements. The design is highly suitable for compact, light-weight, tunable and reconfigurable microwave systems. © 1963-2012 IEEE.

  4. Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control

    CERN Document Server

    Guclu, Caner; Capolino, Filippo

    2015-01-01

    The integration of a leaky-wave antenna with a ring resonator is presented using analytical guided wave models. The device consists of a ring resonator fed by a directional coupler, where the ring resonator path includes a leaky-wave antenna segment. The resonator integration provides two main advantages: the high-quality factor ensures effective control of radiation intensity by controlling the resonance conditions and the efficient radiation from a leaky-wave antenna even when its length is much smaller than the propagation length of the leaky wave. We devise an analytical model of the guided wave propagation along a directional coupler and the ring resonator path including the antenna and non-radiating segments. The trade-offs regarding the quality factor of resonance and the antenna efficiency of such a design is reported in terms of the coupler parameters, leaky-wave constant and radiation length. Finally a CMOS-compatible OLWA design suitable for the ring resonator integration is designed where Silicon ...

  5. Handbook of reflector antennas and feed systems v.1 theory and design of reflectors

    CERN Document Server

    Sharma, Satish K; Shafai, Lotfollah

    2013-01-01

    This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume I provides a unique combination of theoretical underpinnings with design considerations and techniques. The need for knowledge in reflector antennas has grown steadily over the last two decades due to increased use in spa

  6. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  7. Theory of light scattering in subwavelength metallic slot antenna array fabricated on subwavelength thin film

    Science.gov (United States)

    Choi, S. B.; Park, D. J.

    2015-10-01

    We demonstrate an analytic model that describes the near-field electromagnetic field profile near a subwavelength-sized metallic slot antenna fabricated on a thin dielectric substrate having a subwavelength thickness reaching λ/1000 in the terahertz frequency region. We found two-dimensional light diffraction induced by the two-dimensional nature of the slot antenna, and back-reflected waves interfered with each other in a complicated manner, resulting in a coupling of the Fourierdecomposed field amplitudes between the diffraction orders along the x and the y directions. We applied these findings to our model by modifying a previously developed model [D. J. Park et al., J. Korean Phys. Soc. 65, 1390 (2014)], and we monitor the effect on far-field transmission. This coupling effect was found to contribute to removal of physically-meaningless spikes or divergences in the transmission spectra, especially for relatively thick substrates.

  8. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  9. Analysis of Arbitrary Reflector Antennas Applying the Geometrical Theory of Diffraction Together with the Master Points Technique

    Directory of Open Access Journals (Sweden)

    María Jesús Algar

    2013-01-01

    Full Text Available An efficient approach for the analysis of surface conformed reflector antennas fed arbitrarily is presented. The near field in a large number of sampling points in the aperture of the reflector is obtained applying the Geometrical Theory of Diffraction (GTD. A new technique named Master Points has been developed to reduce the complexity of the ray-tracing computations. The combination of both GTD and Master Points reduces the time requirements of this kind of analysis. To validate the new approach, several reflectors and the effects on the radiation pattern caused by shifting the feed and introducing different obstacles have been considered concerning both simple and complex geometries. The results of these analyses have been compared with the Method of Moments (MoM results.

  10. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...... the surface current distribution on the reflector plate. Numerical results obtained for Yagi backfire antennas and short-backfire antennas using this theory are compared with experimental results....

  11. A new method for the design of slot antenna arrays: Theory and experiment

    KAUST Repository

    Clauzier, Sebastien

    2016-04-10

    The present paper proposes and validates a new general design methodology that can be used to automatically find proper positions and orientations of waveguide-based radiating slots capable of realizing any given radiation beam profile. The new technique combines basic radiation theory and waveguide propagation theory in a novel analytical model that allows the prediction of the radiation characteristics of generic slots without the need to perform full-wave numerical solution. The analytical model is then used to implement a low-cost objective function within a global optimization scheme (here genetic algorithm.) The algorithm is then deployed to find optimum positions and orientations of clusters of radiating slots cut into the waveguide surface such that any desired beam pattern can be obtained. The method is verified using both full-wave numerical solution and experiment.

  12. Smart antennas

    CERN Document Server

    Godara, Lal Chand

    2004-01-01

    INTRODUCTION Antenna GainPhased Array AntennaPower Pattern Beam Steering Degree of Freedom Optimal AntennaAdaptive AntennaSmart AntennaSummary NARROWBAND PROCESSINGSignal Model Conventional BeamformerNull Steering BeamformerOptimal BeamformerOptimization Using Reference SignalBeam Space Processing Effect of ErrorsNotation and AbbreviationsReferencesADAPTIVE PROCESSINGSample Matrix Inversion AlgorithmUnconstrained Least Mean Squares AlgorithmNormalized Least Mean Squares AlgorithmConstrained

  13. Control of a Flexible Space Antenna: A Finite Dimensional Perspective Based on Distributed Parameter Theory

    Science.gov (United States)

    Mingori, D. L.; Gibson, J. S.; Blelloch, P.; Adamian, A.

    1985-01-01

    The methods presented are based on results from infinite dimensional control theory, but they can be described and used in a finite dimensional context. This blend leads to an approach which employs powerful ideas on convergence, and is also quite practical for systems of realistic complexity. Appropriate reduced order models are generated simultaneously with the development of the compensator. The required models change as a function of changes in the performance demanded, sensor and actuator location, inherent damping, disturbances, etc. Thus they are driven by the control and estimation problems at hand. The compensators which emerge are very close to the ideal compensators which would be obtained with a very large order model. However, some simplification is frequently possible. The method of balanced realizations was found to be effective for this purpose.

  14. Plasma antennas

    CERN Document Server

    Anderson, Theodore

    2011-01-01

    The plasma antenna is an emerging technology that partially or fully utilizes ionized gas as the conducting medium instead of metal to create an antenna. The key advantages of plasma antennas are that they are highly reconfigurable and can be turned on and off. The disadvantage is that the plasma antennas require energy to be ionized. This unique resource provides you with a solid understanding of the efficient design and prototype development of plasma antennas, helping you to meet the challenge of reducing the power required to ionize the gas at various plasma densities. You also find thorou

  15. A Modern Control Theory Based Algorithm for Control of the NASA/JPL 70-Meter Antenna Axis Servos

    Science.gov (United States)

    Hill, R. E.

    1987-09-01

    A digital computer-based state variable controller has been designed and applied to the 70-m antenna azis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accomodate intertarget slew, encoder references tracking, and precision tracking modes are described. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm has been successfully implemented and tested in the 70-m antenna at Deep Space Station (DSS) 63 in Spain.

  16. A modern control theory based algorithm for control of the NASA/JPL 70-meter antenna axis servos

    Science.gov (United States)

    Hill, R. E.

    1987-01-01

    A digital computer-based state variable controller was designed and applied to the 70-m antenna axis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accommodate intertarget slew, encoder referenced tracking, and precision tracking modes are descibed. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm was successfully implemented and tested in the 70-m antenna at Deep Space Network station 63 in Spain.

  17. Reconfigurable antenna pattern verification

    Science.gov (United States)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  18. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed......-dipoles and helices are considered in order to establish a correspondence with simple antenna structures....

  19. Reconfigurable antennas

    CERN Document Server

    Bernhard, Jennifer

    2007-01-01

    This lecture explores the emerging area of reconfigurable antennas from basic concepts that provide insight into fundamental design approaches to advanced techniques and examples that offer important new capabilities for next-generation applications. Antennas are necessary and critical components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Making antennas reconfigurable so that their behavior can adapt with changing system requirements or environmental conditions can ameliorate or eliminate these restricti

  20. Microstrip Antenna

    OpenAIRE

    Anuj Mehta

    2015-01-01

    Abstract This article presents an overview of the microstrip patch antenna and its design techniques. Basically a microstrip patch antenna comprises of a trace of copper or any other metal of any geometry on one side of a standard printed circuit board substrate with other side grounded. The antenna is fed using various feeding techniques like coaxial strip line aperture coupling or proximity coupling techniques. The working principle and the radiation mechanism have also been described. The ...

  1. Research of Klopfenstein taper UWB monopole antenna

    OpenAIRE

    Wang, Nan-Nan; Qiu, Jinghui; Zhang, Zhi-Feng; Zong, Hua; Ling-Ling, Zhong; Wei-Bo, Deng

    2011-01-01

    The tapered line theory in circuit can be applied to the design of the special-shaped monopole antenna in order to obtain better electrical characteristics. So a novel Klopfenstein taper monopole antenna is proposed. The impedance matching characteristic of the Klopfenstein tapered line is the best, and the Klopfenstein taper monopole antenna is designed based on it. On this basis, the coplanar waveguide-fed planar Klopfenstein taper monopole antennas are designed. The simulation and measurem...

  2. Measurement of Antenna Bore-Sight Gain

    Science.gov (United States)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  3. Modeling of the EAST ICRF antenna with ICANT Code

    Science.gov (United States)

    Qin, Chengming; Zhao, Yanping; Colas, L.; Heuraux, S.

    2007-09-01

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  4. A Review of the Four Dimension Antenna Arrays

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-wen; NIE Zai-ping

    2006-01-01

    The four dimensional (4D) antenna arrays introduce a fourth dimension, time, into conventional antenna arrays to offer greater flexibility in the design of high performance antenna arrays. This paper presents the tutorial on the study of 4D antenna arrays and the review of the recent research findings on 4D antenna arrays. Issues considered include the theory of 4D antenna arrays, different time modulation schemes, numerical simulation results, and some experimental results on their applications to low sidelobe designs. Throughout the discussion, some challenging issues on the study of 4D antenna arrays are highlighted.

  5. Measurement of mobile antenna systems

    CERN Document Server

    Arai, Hiroyuki

    2012-01-01

    If you're involved with the design, installation or maintenance of mobile antenna systems, this thoroughly revised and updated edition of a classic Artech book offers you the most current and comprehensive coverage of all the mandatory measurement techniques you need for your work in the field. This Second Edition presents critical new material in key areas, including radiation efficiency measurement, mobile phone usage position, and MIMO (multiple-input/multiple-output) antennas.This unique resource provides in-depth examinations of all relevant mobile antenna measurement theories, along with

  6. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  7. Antenna reconfiguration using metasurfaces

    OpenAIRE

    Zhu, H; Cheung, WSW; Yuk, TI

    2014-01-01

    The paper describes the designs of a frequency-reconfigurable, polarization reconfigurable and pattern reconfigurable antennas using metasurfaces (MS). The frequency-reconfigurable and polarization reconfigurable antennas are composed of a simple circular patch antenna or slot antenna as the source antenna and a circular MS with the same diameter, with both source antenna and MS implemented using planar technology. The pattern reconfigurable antenna is composed of a circular patch antenna as ...

  8. Diamond dipole active antenna

    OpenAIRE

    Bubnov, I. N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  9. Theory of a Directive Optical Leaky Wave Antenna Integrated into a Resonator and Enhancement of Radiation Control

    CERN Document Server

    Guclu, Caner; Boyraz, Ozdal; Capolino, Filippo

    2013-01-01

    We provide for the first time the detailed study of the radiation performance of an optical leaky wave antenna (OLWA) integrated into a Fabry-P\\'erot resonator. We show that the radiation pattern can be expressed as the one generated by the interference of two leaky waves counter-propagating in the resonator leading to a design procedure for achieving optimized broadside radiation, i.e., normal to the waveguide axis. We thus report a realizable implementation of the OLWA made of semiconductor and dielectric regions. The theoretical modeling is supported by full-wave simulation results, which are found to be in good agreement. We aim to control the radiation intensity in the broadside direction via excess carrier generation in the semiconductor regions. We show that the presence of the resonator can provide an effective way of enhancing the radiation level modulation, which reaches values as high as 13.5 dB, paving the way for novel promising control capabilities that might allow the generation of very fast op...

  10. Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near-field antenna measurements with high-order probes

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund;

    2010-01-01

    A complete antenna pattern characterization procedure for spherical near-field antenna measurements employing a high-order probe and a full probe correction is described. The procedure allows an (almost) arbitrary antenna to be used as a probe. Different measurement steps of the procedure and the...... associated data processing are described in detail, and comparison to the existing procedure employing a first-order probe is made. The procedure is validated through measurements....

  11. Application of optimal control theory to the design of the NASA/JPL 70-meter antenna servos

    Science.gov (United States)

    Alvarez, L. S.; Nickerson, J.

    1989-01-01

    The application of Linear Quadratic Gaussian (LQG) techniques to the design of the 70-m axis servos is described. Linear quadratic optimal control and Kalman filter theory are reviewed, and model development and verification are discussed. Families of optimal controller and Kalman filter gain vectors were generated by varying weight parameters. Performance specifications were used to select final gain vectors.

  12. UWB planar antenna technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent developments of the ultra-wideband(UWB)planar antennas are reviewed,where the progress in UWB plate monopole antennas,UWB printed monopole antennas and the UWB printed slot antennas is introduced and compared.In addition,the UWB printed antennas with the band-notched functions are also presented.

  13. Analysis of a wideband plasma monopole antenna design

    OpenAIRE

    Li, Wei; Qiu, Jinghui; Suo, Ying; Chen, LiJia

    2011-01-01

    Wideband circular plasma monopole antenna based on circular monopole theory is proposed. The impedance and radiation characteristics of this antenna are presented. The results show that the bandwidth with return loss below -10 dB of the circular plasma monopole antenna can get 123%.

  14. The modelling of plane curvilinear dipole antenna arrays

    OpenAIRE

    Hoblyk, Viktor V.; Liske, O. M.; Yakovenko, Eugenia I.

    2005-01-01

    In this work the results of mathematical model design for printed dipole antenna arrays are presented. The arrays are feeding by curvilinear  transmission slotline. The investigation is important for the antenna arrays theory and useful for the design of antenna arrays with improved characteristics.

  15. Electrically Small Magnetic Dipole Antennas with Magnetic Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    This work extends the theory of a spherical magnetic dipole antenna with magnetic core by numerical results for practical antenna configurations that excite higher-order modes besides the main TE10 spherical mode. The multiarm spherical helix (MSH) and the spherical split ring (SSR) antennas are...

  16. Astigmatism in reflector antennas.

    Science.gov (United States)

    Cogdell, J. R.; Davis, J. H.

    1973-01-01

    Astigmatic phase error in large parabolic reflector antennas is discussed. A procedure for focusing an antenna and diagnosing the presence and degree of astigmatism is described. Theoretical analysis is conducted to determine the nature of this error in such antennas.

  17. A directive pulse antenna

    OpenAIRE

    Titov, A.N.; Titov, A. A.

    2003-01-01

    Using quite general concepts as guidance in the design of an antenna for short pulse transmission and reception, a new type of horn-antenna has been devised. A certain variety of experimental data obtained by the antenna are presented.

  18. Optical antennas and plasmonics

    OpenAIRE

    Park, Q-Han

    2009-01-01

    Optical antenna is a nanoscale miniaturization of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. Strong electric field is shown to exist within a highly localized region o...

  19. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  20. Terminal Antenna Design

    OpenAIRE

    Skrivervik, A. K.; Zurcher, J. F.

    2008-01-01

    This paper introduces first some general considerations about antenna miniaturization and multi-band terminal antenna design. These general design principles are then illustrated on some practical applications.

  1. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    Science.gov (United States)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  2. A True Metasurface Antenna

    OpenAIRE

    Mohamed El Badawe; Almoneef, Thamer S.; Omar M. Ramahi

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measur...

  3. Antenna systems research

    OpenAIRE

    Keen, Keith Malcolm

    1999-01-01

    This thesis is an overview of a number of investigations on antenna systems and related subjects over a period of 28 years, which has resulted in 44 publications in the technical literature, one current patent, and an M.Sc. thesis. The investigations have been grouped into 7 categories: - Log periodic antennas, - Antenna performance measurement techniques, - Spacecraft Antenna Systems, - Satcom Terminal Antennas, - Transmission lines and baluns, - High Radar Cross Secti...

  4. Channels, propagation and antennas for mobile communications

    CERN Document Server

    Vaughan, Rodney; Bach Andersen, J

    2003-01-01

    This exceptional text introduces the reader to the theory and basis of antennas and propagation in the rapidly developing field of mobile communications. Topics covered include basic multipath mechanisms and propagation, and propagation modelling as well as short term channel behavior from two path and many path models and scenarios. Also, the basics of antenna design and operation are discussed including array antennas. This book promises to be a valuable reference work for many years to come, and will be an important addition to the bookshelves of telecommunications engineers and researcher

  5. The spherical helical antenna

    OpenAIRE

    Cardoso, J. Christopher

    1992-01-01

    The spherical helical antenna is investigated as a new variation of the conventional helical antenna. The spherical helix is a wire antenna in a helix shape that is wound over a spherical surface instead of the standard cylindrical one. Analysis of this structure requires numerical methods and experimental measurements because its complex geometry makes it very difficult to develop analytic expressions for its radiation characteristics. The wire antenna code ESP, based on the method of ...

  6. Space-Frame Antenna

    Science.gov (United States)

    Curtis, Steven A.

    2010-01-01

    The space-frame antenna is a conceptual antenna structure that would be lightweight, deployable from compact stowage, and capable of deforming itself to a size, shape, and orientation required for a specific use. The space-frame antenna would be a trusslike structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts. The deformation of the antenna to a desired size, shape, and orientation would be effected through coordinated lengthening and shorting of the struts.

  7. Wide Coverage Antennas

    OpenAIRE

    Zackrisson, Jan

    2007-01-01

    Small satellites require small and lightweight antennas for telemetry and command function as well as for downlinking of data. We have during the last thirty years developed a large suite of wide coverage antennas. The basic radiator designs used are quadrifilar helices, waveguides, horns and patch excited cups (PEC) depending on frequency range, coverage requirements and application. The antenna designs range from L-band up to Ka-band frequencies. Typical coverages for the antennas are from ...

  8. A New Wide Band Planar Antenna and FDTD Simulation

    Institute of Scientific and Technical Information of China (English)

    WANGHonziian; GAOBenqing

    2003-01-01

    A new planar trigonometric curve (PTC)antenna is firstly proposed. The finite difference time domain method (FDTD) is used to analysis the input impedance and pattern of this antenna. The image the-ory is firstly applied to obtain the impedance using FDTD.Using the image theory the computation time and RAMspace needed by the calculation of monopole antenna can be reduced greatly, while the results remain almost the same level as those of the experiments. The FDTD sim-ulation of this PTC antenna exhibit the very wide band results in impedance (14:1) and pattern (5.7:1), which are much better than those of the circular disc monopole an-tenna (CMA) and Trilateral monoDole antenna (TLA).

  9. The mathematical model of antenna and antenna-radome system

    OpenAIRE

    Knyazeva, L. V.; Artishev, A. I.

    2003-01-01

    Methods, algorithms and programs for calculation by computer of the characteristics of the antenna and the antenna-radome system (ARS) are developed. The type of antenna considered is the phased antenna array (PAA) or the cophase antenna with a mechanical beam control (an antenna array - AA). Radome shape is spherical, quasi-conic or flattened ellipsoid. Radome shell is multilayer ( N≥1), same-thickness, or special profile. Errors in the manufacture of the antenna are taken into account. Prog...

  10. General properties of dielectric optical antennas.

    Science.gov (United States)

    Schuller, Jon A; Brongersma, Mark L

    2009-12-21

    Using Mie theory we derive a number of general results concerning the resonances of spherical and cylindrical dielectric antennas. Specifically, we prove that the peak scattering cross-section of radiation-limited antennas depends only on the resonance frequency and thus is independent of refractive index and size, a result which is valid even when the resonator is atomic-scale. Furthermore, we derive scaling limits for the bandwidth of dielectric antennas and describe a cylindrical mode which is unique in its ability to support extremely large bandwidths even when the particle size is deeply subwavelength. Finally, we show that higher Q antennas may couple more efficiently to an external load, but the optimal absorption cross-section depends only on the resonance frequency. PMID:20052120

  11. Quality factor of an electrically small magnetic dipole antenna with magneto-dielectric core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    In this work, we investigate the radiation Q of electrically small magnetic dipole antennas with magneto-dielectric core versus the antenna electrical size, permittivity and permeability of the core. The investigation is based on the exact theory for a spherical magnetic dipole antenna with...

  12. A True Metasurface Antenna

    Science.gov (United States)

    Badawe, Mohamed El; Almoneef, Thamer S.; Ramahi, Omar M.

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.

  13. Secondary Surveillance Radar Antenna

    OpenAIRE

    Schejbal, Vladimír; Bezoušek, Pavel; Pidanič, Jan; Chyba, Milan

    2013-01-01

    This paper deals with a secondary surveillance radar (SSR) array antenna, which is intended for a system combining the secondary surveillance radar antenna and the primary surveillance radar antenna. It describes the patch array elements and the synthesis for the secondary surveillance radar array, considering both elevation and azimuth patterns for sum, difference, and sidelobe-suppression beams, and suspended stripline couplers. The utilization of multilayer techniques allows the connection...

  14. Antenna Structure Registration (ASR)

    Data.gov (United States)

    Federal Communications Commission — As part of its ongoing efforts to promote air safety, the Federal Communications Commission requires owners to register certain antenna structures (generally those...

  15. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  16. A curl antenna

    OpenAIRE

    Nakano, Hisamatsu; Okuzawa, Shigeru; Ohishi, Katsumi; Mimaki, Hiroaki; Yamauchi, Junji

    1993-01-01

    A radiation element, designated as a curl antenna, is proposed for a circularly polarized antenna. The radiation characteristics of the curl are numerically analyzed. The gain is approximately 8.4 dB, and the 3-dB axial ratio criterion is 6.7%. Two aspects of curl array antennas are also presented: a decoupling factor between two curls and a circular array antenna consisting of 168 curls. Calculations show how the decoupling factor depends on the relative rotation angle of the two curls. The ...

  17. Cavity Backed Slot Antenna

    Directory of Open Access Journals (Sweden)

    Sarang Masani, Ila Parmar, Hitendra Jadeja

    2013-05-01

    Full Text Available Among the current driving forces in wireless communications, there is a need for compact, efficient, inexpensive and reproducible antennas. In some instances, particularly long-distance applications, radiators with directive, high-gain characteristics are necessary. This paper proposes a cavity-backed slot antenna to that end. This antenna will enhance the gain, directivity and can also be easily flush mounted to the flying object. The shape and size of the slot can be effectively utilized to get the desired result. The proposed antenna is feed by waveguide which facilitate it to be applicable at high power operation where coaxial cable fails due to skin effect. Present antenna is verified using Numerical Technique called Finite Element Method FEM. The conception of this antenna is realized by the software HFSS “Ansoft-High Frequency Structure Simulator”. By properly selecting shapes, dimensions of the slots and number of slot affects the parameters like return loss, gain along Θ, Ø directions, Cartesian plot and radiation pattern .The Backing of cavity to the slot antenna provide the basics of the gain enhancement and the slot loading effect and the cavity volume plays an important role in achieving the desired return loss at the specific frequency.The simulated antenna shows the 7.0944 db of gain and return loss of -28.60. The proposed antenna works at 6 GHz.

  18. MASTER TELEVISION ANTENNA SYSTEM.

    Science.gov (United States)

    Rhode Island State Dept. of Education, Providence.

    SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)

  19. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  20. Substrate integrated antennas and arrays

    CERN Document Server

    Cheng, Yu Jian

    2015-01-01

    Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book:Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologiesExamines theoretical and experimental results connected to electrical and mechanical performanceExp

  1. Integrated solar panel antennas

    OpenAIRE

    Vaccaro, S.; P. TORRES; Mosig, J. R.; Shah, Arvind; Zürcher,, J.-F.; A. K. Skrivervik; Gardiol, F.; de Maagt, P.; Gerlach, L.

    2008-01-01

    A new antenna which combines solar cells and printed patches is presented. The antenna is designed so as to accommodate the solar cells that provide power to an MMIC amplifier. A 2×4 array is presented, which operates at the frequency of 3.76 GHz and has a bandwidth of 16% and gain up to 30 dBi (active).

  2. Entropy and Fractal Antennas

    OpenAIRE

    Emanuel Guariglia

    2016-01-01

    The entropies of Shannon, Rényi and Kolmogorov are analyzed and compared together with their main properties. The entropy of some particular antennas with a pre-fractal shape, also called fractal antennas, is studied. In particular, their entropy is linked with the fractal geometrical shape and the physical performance.

  3. Annular Planar Monopole Antennas

    OpenAIRE

    Chen, Z. N.; Ammann, Max; Chia, W.Y. W.; See, T.S. P.

    2002-01-01

    A type of annular planar monopole antenna is presented. The impedance and radiation characteristics of the monopole with different holes and feed gaps are experimentally examined. The measured results demonstrate that the proposed antenna is capable of providing significantly broad impedance bandwidth with acceptable radiation performance.

  4. Printed Triband Terminal Antenna

    OpenAIRE

    JOHN, MATTHIAS; Ammann, Max; Farrell, R.

    2005-01-01

    This paper presents a printed triple-band multibranch monopole for use in modern wireless systems. The antenna is designed to operate in three bands which cover virtually all wireless channels. Parameters of the antenna geometry are varied and the effects of these variations on the impedance bandwidth are shown.

  5. 基于高速移动通信的虚拟天线阵列理论研究∗%Virtual antenna array theory based on high sp eed mobile communications

    Institute of Scientific and Technical Information of China (English)

    唐智灵; 于立娟; 李思敏

    2016-01-01

    uniform phase sampling and uniform time sampling is the necessary and sufficient condition for a non Doppler shifted signal. Next, the algorithm of Doppler shift compensation and virtualized antenna array is proposed, in which 1) original Doppler shifted signal is processed with interpolation, 2) new signals are generated by uniform phase sampling and buffered, 3) buffered new signals are read out by uniform time sampling. The theory of this process and the performance improvement for a high speed mobile communications system is mathematically analyzed, and the hardware architecture model of this algorithm is also given. The diversity gain could be obtained when an antenna array is used. In order to verify that this virtualized antenna array has the same benefit, the ability to suppress the interference and the bit error rate is analyzed with numerical simulation. The number of virtual elements and the virtual element distance are two variables related to the direction pattern of virtual antenna array. The effects of these two variables are given by the simulation, showing that the more virtual elements, the narrower beam are obtained. But more virtual elements result in more complicated hardware source. In addition, the communications scenarios of two communications radiators at different sites are simulated to verify whether this algorithm can suppress interference signal. The frequency spectrum of beamformed virtual antenna array signal shows that the interference signal can be suppressed effectively. These characteristics cannot be provided by pure Doppler frequency shift compensation. Thus these results show that high speed mobile communication systems on aircrafts or high speed trains would obtain better performances when a received Doppler shift signal is processed by this method to construct a virtual antenna array.

  6. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  7. Smart antennas in aerospace applications

    OpenAIRE

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, Chris G.H.; Marpaung, David A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with electronic compensation techniques.

  8. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  9. Antenna-coupled microcavities for terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Madéo, J., E-mail: Julien.madeo@univ-paris-diderot.fr; Todorov, Y.; Sirtori, C. [Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, UMR7162, 75013 Paris (France)

    2014-01-20

    We have investigated the capacitive coupling between dipolar antennas and metal-dielectric-metal wire microcavities with strong sub-wavelength confinement in the terahertz region. The coupling appears in reflectivity measurements performed on arrays of antenna-coupled elements, which display asymmetric Fano lineshapes. The experimental data are compared to a temporal coupled-mode theory and finite elements electromagnetic simulations. We show that the Fano interferences correspond to coupling between a subradiant mode (microcavity) and a superradiant mode (antennas). This phenomenon allows one to enhance and control the radiative coupling of the strongly confined mode with the vacuum. These concepts are very useful for terahertz optoelectronic devices based on deep-sub-wavelength active regions.

  10. Adaptive antennas and receivers

    CERN Document Server

    Weiner, Melvin M

    2005-01-01

    In our modern age of remote sensing, wireless communication, and the nearly endless list of other antenna-based applications, complex problems require increasingly sophisticated solutions. Conventional antenna systems are no longer suited to high-noise or low-signal applications such as intrusion detection. Detailing highly effective approaches to non-Gaussian weak signal detection, Adaptive Antennas and Receivers provides an authoritative introduction to state-of-the-art research on the modeling, testing, and application of these technologies.Edited by innovative researcher and eminent expert

  11. Atacama Compact Array Antennas

    OpenAIRE

    Saito, Masao; Inatani, Junji; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high...

  12. Optimisation of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    H. El Hamchary

    1996-04-01

    Full Text Available When choosing the most appropriate microstrip antenna configuration for particular applications, the kind of excitation of the radiating element is an essential factor that requires careful considerations. For controlling the distribution of energy of the linear or planar array of elements and for coupling energy to the individual elements, a wide variety of feed mechanisms are available. In this paper, the coaxial antenna feeding is assumed and the best (optimised feeding is found. Then, antenna characteristics such as radiation pattern, return loss, input impedance, and VSWR are obtained.

  13. Tunable Liquid Dielectric Antenna

    Directory of Open Access Journals (Sweden)

    Kamal Raj Singh Rajoriya

    2012-06-01

    Full Text Available This paper presents on modified the dielectric properties of liquid with varying salinity that was based on monopole structure. Dielectric resonator antennas (DRAs can be made with a wide range of materials and allow many excitation methods [2]. Pure water does not work at high frequency (> 1 GHz but increase in the salinity of water modifies the dielectric properties of water. Here proposed antenna shows that when the salinity increases in form of molar solution, the antenna was tuned at different frequency with increases return loss.

  14. RFID Tag Helix Antenna Sensors for Wireless Drug Dosage Monitoring.

    Science.gov (United States)

    Huang, Haiyu; Zhao, Peisen; Chen, Pai-Yen; Ren, Yong; Liu, Xuewu; Ferrari, Mauro; Hu, Ye; Akinwande, Deji

    2014-01-01

    Miniaturized helix antennas are integrated with drug reservoirs to function as RFID wireless tag sensors for real-time drug dosage monitoring. The general design procedure of this type of biomedical antenna sensors is proposed based on electromagnetic theory and finite element simulation. A cost effective fabrication process is utilized to encapsulate the antenna sensor within a biocompatible package layer using PDMS material, and at the same time form a drug storage or drug delivery unit inside the sensor. The in vitro experiment on two prototypes of antenna sensor-drug reservoir assembly have shown the ability to monitor the drug dosage by tracking antenna resonant frequency shift from 2.4-2.5-GHz ISM band with realized sensitivity of 1.27 [Formula: see text] for transdermal drug delivery monitoring and 2.76-[Formula: see text] sensitivity for implanted drug delivery monitoring. PMID:27170865

  15. Nonlinear plasmonic antennas

    Directory of Open Access Journals (Sweden)

    Shakeeb Bin Hasan

    2014-12-01

    Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.

  16. Fractal multiband patch antenna

    OpenAIRE

    Borja, C.; Puente Baliarda, Carles; Romeu Robert, Jordi; Anguera Pros, Jaume

    2000-01-01

    The multiband behaviour of the Sierpinski patch antenna is described in this paper. Experimental results show that the self similarity properties of the fractal shape are translated into its electromagnetic behaviour. Peer Reviewed

  17. Atacama Compact Array Antennas

    CERN Document Server

    Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.

  18. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  19. Rotary antenna attenuator

    Science.gov (United States)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  20. Intelsat VI antenna system

    Science.gov (United States)

    Caulfield, M. F.; Lane, S. O.; Taormina, F. A.

    The antenna system design of a series of five new communications satellites known as Intelsat VI is described in detail. Each satellite will utilize 50 transponders operating in the C and K band portions of the frequency spectrum. The transponders are interconnectible using either static switch matrices or a network which provides satellite switched time division multiple access capability. The antenna coverages, characteristics, and special design features are shown and discussed.

  1. A wave matrix technique for analysis of lossy antenna array noise

    OpenAIRE

    Tokarsky, Peter L.

    1997-01-01

    A universal technique is proposed for the analysis of the noise temperature of an arbitrary phased antenna array allowing to estimate the contribution of all the sources of internal noises under rigorous taking into account of the mutual coupling between loss radiators. The technique is based on the matrix theory of antenna arrays [1, 2] and noisy microwave multiport circuits theory [3, 4].

  2. Fano resonances in antennas: General control over radiation patterns

    CERN Document Server

    Rybin, Mikhail V; Filonov, Dmitry S; Slobozhanyuk, Alexey P; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F

    2013-01-01

    The concepts of many optical devices are based on the fundamental physical phenomena such as resonances. One of the commonly used devices is an electromagnetic antenna that converts localized energy into freely propagating radiation and vise versa, offering unique capabilities for controlling electromagnetic radiation. Here we propose a concept for controlling the intensity and directionality of electromagnetic wave scattering in radio-frequency and optical antennas based on the physics of Fano resonances. We develop an analytical theory of spatial Fano resonances in antennas that describes switching of the radiation pattern between the forward and backward directions, and confirm our theory with both numerical calculations and microwave experiments. Our approach bridges the concepts of conventional radio antennas and photonic nanoantennas, and it provides a paradigm for the design of wireless optical devices with various functionalities and architectures.

  3. SANTANA- Smart Antenna Terminal Design

    OpenAIRE

    Liu, Ying

    2006-01-01

    This project is embedded in SANTANA (Smart Antenna Terminal) project. The project goal is to design a Ka-band circularly polarized antenna radiator for the receiver SANTANA system. The research work focuses on two types of circularly polarized antennas: aperture-coupled patch antenna and CPW-fed patch antenna. A two steps design process is used. Firstly, only the antennas and their feed structure are designed and optimized. Secondly, a via-transition to connect to a MMIC layer is added. When ...

  4. Modeling of compact loop antennas

    Science.gov (United States)

    Baity, F. W.

    1987-09-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak (CIT).

  5. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  6. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak

  7. Transmission and reception with multiple antennas theoretical foundations

    CERN Document Server

    Biglieri, Ezio

    2014-01-01

    Transmission and Reception with Multiple Antennas: Theoretical Foundations presents a comprehensive, yet compact, survey, emphasizing the mathematical aspects of single-user multiple-antenna theory.Wireless communication system design was until recently thought to have been limited in practice by time and bandwidth. The discovery that space, obtained by increasing the number of transmit and receive antennas, can also effectively generate degrees of freedom, and hence expand the range of choices made available to the design offers system designers important new opportunities.Transmission and Re

  8. Receive antenna is explained through mutual energy theorem and advanced potential

    CERN Document Server

    Zhao, Shuang-ren; Yang, Kang; Yang, Xingang; Yang, Xintie

    2016-01-01

    Relativity theorem started from the fact the speed of light is constant in empty space, but it does not explain why. This paper try to explain this from our theory of receive antenna. We have show that there is a mutual energy current which goes from transmit antenna to the receive antenna. The mutual energy current is produced by both advanced potential associated to the receive antenna and retarded potential sending from the transmit antenna. This can be proved through the mutual energy theorem. Hence the receive antenna is also play a important role in the process of sending the electromagnetic energy from transmit antenna. That is the reason why the speed of electromagnetic field is not related to the transmit antenna but only depending to the receive antenna. This is also the reason why the light speed does not related to its source but only related to the observer. We have show that the method to calculate the antenna system with one transmit antenna and a receive antenna using the reciprocity theorem i...

  9. Analysis of three-dimensional-cavity-backed aperture antennas using a Combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction technique

    Science.gov (United States)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.

  10. Imaging antenna arrays

    Science.gov (United States)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  11. Technologies and Applications of Microwave Photonic Antennas

    OpenAIRE

    Y. Yashchyshyn; Chizh, A.; Malyshev, S.; Modelski, J

    2010-01-01

    This paper describes the development of microwave photonic antennas concepts and their applications. The experimental study of the transmitting and receiving photonic antenna are shown. The transmitting photonic antenna consists of photodiode integrated with microstrip E-shaped patch antenna, and receiving photonic antenna consists of laser diode integrated directly with the Vivaldi antenna.

  12. Hemispheric ultra-wideband antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  13. Dual polarization flat plate antenna

    Science.gov (United States)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  14. Analysis and Design of Tapered Slot Antenna for Ultra-Wideband Applications

    Institute of Scientific and Technical Information of China (English)

    YAO Yuan; CHEN Wenhua; HUANG Bin; FENG Zhenghe; ZHANG Zhijun

    2009-01-01

    The tapered slot antenna,such as Vivaldi,has been widely used due to its ultra-wideband,high gain,simple feed structure,and easy fabrication.However,there is no rigorous analytical theory for this type of antenna.This paper analyzed the metal parts of a tapered slot antenna in a conical coordinate system with the medium analyzed in rectangular coordinates.This mixed mode gave an approximate analytical form for the tapered slot antenna with the field distribution and radiation characteristics.A planar tapered slot antenna was proposed according to the results of the analysis methods.Measured and simulated results demonstrate the antenna performance.The antenna shows good impedance matching over a wide bandwidth of 9 GHz,from 2 GHz to 11 GHz,and good radiation patterns.It is suitable for ultra-wideband applications.

  15. A NEW DESIGN METHODOLOGY FOR PRINTED LOG-PERIODIC MONOPOLE ANTENNA

    Institute of Scientific and Technical Information of China (English)

    Tian Haiyan; Li Xiaolin; Yin Bo; Lou Siyan

    2012-01-01

    In theory,Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns.Owing to these characteristics,LPA has gained research interests and been employed for many wideband applications.A Printed LogPeriodic Dipole Antenna (PLPDA) with multiple notched bands is proposed for Ultra- WideBand (UWB) applications.An antenna with the notched frequencies of 1.03 GHz,1.28 GHz,1.72 GHz,2.24 GHz and 2.51 GHz is designed,fabricated,and measured.An antenna model was established on the substrate of FR4 and feed by a stripline.The simulation results show that the antenna can achieve an impendence wide bandwidth from 0.89 to 2.58 GHz with return loss less than -10 dB and exhibit stable antenna gain.Furthermore,the measurement result is better consistent with simulation result.

  16. 96-antenna radioheliograph

    CERN Document Server

    Lesovoi, S V; Ivanov, E F; Gubin, A V

    2014-01-01

    Here we briefly present some design approaches for a multifrequency 96-antenna radioheliograph. The array antenna configuration, transmission lines and digital receivers are the main focus of this work. The radioheliograph is a T-shaped centrally-condensed radiointerferometer operating at the frequency range 4-8~GHz. The justification for the choice of such a configuration is discussed. The antenna signals are transmitted to a workroom by analog optical links. The dynamic range and phase errors of the microwave-over-optical signal are considered. The signals after downconverting are processed by the digital receivers for delay tracking and fringe stopping. The required delay tracking step and data rates are considered. Two 3-bit data streams (I and Q) are transmitted to a correlator with the transceivers embedded in FPGA (Field Programmed Gate Array) chips and with PCI Express cables.

  17. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  18. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  19. Antennas fundamentals, design, measurement

    CERN Document Server

    Long, Maurice

    2009-01-01

    This comprehensive revision (3rd Edition) is a senior undergraduate or first-year graduate level textbook on antenna fundamentals, design, performance analysis, and measurements. In addition to its use as a formal course textbook, the book's pragmatic style and emphasis on the fundamentals make it especially useful to engineering professionals who need to grasp the essence of the subject quickly but without being mired in unnecessary detail. This new edition was prepared for a first year graduate course at Southern Polytechnic State University in Georgia. It provides broad coverage of antenna

  20. The Antennae Galaxies

    OpenAIRE

    Karl, Simon

    2012-01-01

    The Antennae galaxies (NGC 4038/39) are the nearest and best-studied major merger of two gas-rich spirals in the local Universe. They are named after the characteristic pair of tidal tails that protrude out of their main galactic disks. Due to their proximity the Antennae are extremely well sampled by modern high-resolution observations over an enormous wavelength range, from radio to X-ray. This allows for a comprehensive multiwavelength approach to the present-day morpholo...

  1. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  2. Hyperbolic thermal antenna

    CERN Document Server

    Barbillon, Grégory; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2016-01-01

    A thermal antenna is an electromagnetic source which emits in its surrounding, a spatially coherent field in the infrared frequency range. Usually, its emission pattern changes with the wavelength so that the heat flux it radiates is weakly directive. Here, we show that a class of hyperbolic materials, possesses a Brewster angle which is weakly dependent on the wavelength, so that they can radiate like a true thermal antenna with a highly directional heat flux. The realization of these sources could open a new avenue in the field of thermal management in far-field regime.

  3. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...... cylindrical surfaces have the sane characteristic constants and different constants are treated separately. Extensive numerical computations of the field radiated from the slot antennas described here are being carried out, but no numerical results are yet available...

  4. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception of...... radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  5. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  6. Antenna Systems for NUTS

    OpenAIRE

    Marholm, Sigvald

    2012-01-01

    NTNU is aiming to build and launch a small student satellite compliant with thedouble CubeSat standard, by 2014. The NTNU Test Satellite (NUTS) will carrytwo radio tranceivers and a beacon transmitter, all located in the VHF and UHFamateur bands. The goal of this thesis was to build the whole antenna systems forthe spacecraft.Turnstile antennas were chosen both for UHF and VHF, since they yield thehighest received signal strength on ground throughout the whole pass of the satel-lite. In order...

  7. Square Planar Monopole Antenna

    OpenAIRE

    Ammann, Max

    1999-01-01

    A planar monopole may be realised by replacing the wire element of a conventional monopole with a planar element. In this case, the planar element which is square, is located above a groundplane and fed using an SMA connector as illustrated. The square monopole has a simple geometry and a smaller bandwidth compared to the circular-disc monopole. However, it is still a broadband antenna with a typical impedance bandwidth of 75 % at S band. This broadband antenna shows a constant radiation patt...

  8. A century of antenna development

    Science.gov (United States)

    Olver, A. D.

    The paper describes a century of antenna development as part of a century of radio communications. This historical review examines, chronologically, the pre-Hertz period, Hertz antennas, the microwave optics period, the Marconi era, short waves, theoretical design before and after computers, and radar. Consideration is also given to mobile antennas, microwave comunications, radio astronomy, and satellite comunications.

  9. China's Largest Radio Antenna System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ After three-and-half-year efforts, the National Astronomical Observatories at CAS (NAOC) has constructed two arrays of radio antennae: a 50m antenna at Miyun Station in Beijing and a 40m antenna in Kunming, capital of southwest China's Yunnan Province.

  10. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume requ...

  11. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  12. Frequency selective lens antenna

    OpenAIRE

    Thornton, J.; Haines, P.

    2007-01-01

    A variant of the hemispherical microwave lens antenna is reported where the ground plane region is modified through use of a frequency selective surface. This allows discrimination of frequencies by two closely spaced primary feeds. A scale model is reported operating at 12 and 30 GHz.

  13. Community Antenna Television (CATV).

    Science.gov (United States)

    Federal Communications Commission, Washington, DC.

    The number of households hooked up to cable television or community antenna television (CATV) is expanding rapidly, and Federal Communications Commission (FCC) has been developing regulations since 1962 to guide the growth of the industry. By 1965 the FCC had claimed jurisdiction over all CATV systems in the U. S. This jurisdiction was challenged…

  14. Evolutionary optimization of optical antennas

    CERN Document Server

    Feichtner, Thorsten; Kiunke, Markus; Hecht, Bert

    2012-01-01

    The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs. Here a checkerboard-type, initially random array of gold cubes is subjected to evolutionary optimization. To illustrate the power of the approach we demonstrate that by optimizing the near-field intensity enhancement the evolutionary algorithm finds a new antenna geometry, essentially a split-ring/two-wire antenna hybrid which surpasses by far the performance of a conventional gap antenna by shifting the n=1 split-ring resonance into the optical regime.

  15. Algorithm For Control Of Large Antenna

    Science.gov (United States)

    Hill, Robert E.

    1990-01-01

    Alternative position-error feedback modes provided. Modern control theory basis for computer algorithm used to control two-axis positioning of large antenna. Algorithm - incorporated into software of real-time control computer - enables rapid intertarget positioning as well as precise tracking (using one of two optional position-feedback modes) without need of human operator intervention. Control system for one axis of two-axis azimuth/elevation control system embodied mostly in software based on advanced control theory. System has linear properties of classical linear feedback controller. Performance described by bandwidth and linear error coefficients.

  16. Improvement design of drive structure for EAST ICRF antenna

    International Nuclear Information System (INIS)

    According to the original drive structure of ICRF antenna without accurate positioning during ICRF antenna moving for it has no function of self-lock, two types of new drive structure, which are mainly composed of stepper motor and reducer consisting of turbine and worm gear, were designed for ICRF antenna. They have the advantages of slow starting, big propulsive force and accurate positioning. The calculation together with theory analysis was carried out for the starting torque, the strength and the stability of the screw rods of two drive structures. and the results satisfy the design requirements. The new drive structures and analysis methods applied for this ICRF antenna will be good reference for the other same device. (authors)

  17. Performance of NBPE in Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Tushar

    2014-02-01

    Full Text Available In this paper we use a rectangular microstrip patch antenna with fed patch contains four notches of equal Length and width (L×W and having one parasitic patch, to achieve dual band operation of proposed microstrip patch antenna, is analyzed using circuit theory concept. The theoretical and simulated results of proposed antenna are compared. The return loss of NBPE using rectangular microstrip patch antenna decreased and bandwidth at dual operating frequency 1.44 GHz & 1.80 GHz are increased at a substrate height of 1.6 mm. This paper shows the decreased in return loss & improves in Gain as well as bandwidth using NBPE. These structures are simulated using IE3D version 12.29 Zeland software incorporation.

  18. Fundamental bounds for harvesting sunlight with aperture antennae

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2011-10-01

    The tantalizing prospect of using antennae for solar power conversion received preliminary consideration, but was not pursued in earnest due to the daunting challenges in suitable materials, fabrication procedures, and the rectification (conversion to DC power) of frequencies approaching 1 PHz (1015 s-1). Recent advances in nano-materials and nano-fabrication technologies have prompted revisiting the solar antenna strategy. Coherence theory informs us that even ostensibly incoherent radiation is partially coherent on a sufficiently small scale. Based on a generalized broadband analysis, we show how the partial coherence of sunlight, exhibiting transverse partial coherence on a scale of two orders of magnitude larger than its characteristic wavelengths, impacts the potential of harvesting solar energy with aperture antennae (coherent detectors), and establish a fundamental bound. These results quantify the tradeoff between intercepted power and averaged intensity with which the effect of increasing antenna size (and hence greater system simplicity) can be evaluated.

  19. Test of the JET TFR antenna

    International Nuclear Information System (INIS)

    This paper describes the JET TFR antenna designed for launching ICRF waves in TFR from the low magnetic field side of the torus, and the main experimental observations on the plasma-wave interaction. Compared to a first design of a similar antenna, this includes new features. Such as carbon lateral protections and a thick Faraday screen similar to the one which will be mounted on the JET antennas. Experiment shows such a screen does not limit the coupling efficiency of the magnetosonic wave in the plasma, the loading resistance being comparable to the one predicted by theory assuming an ideal Faraday shield. With this system, the power coupled reached 600 kW. In the minority regime and for a central electron density around 1014 cm-3, the ion heating efficiency reaches 0.6 - 0.7 eV/kW for RF power up to 350 kW, 0.5 eV/kW at 600 kW. As expected for a low field side antenna, no appreciable electron heating is observed in the mode conversion regime. Spectroscopic measurements show that, in all regimes, the RF pulse from JET-TFR antenna introduces a significance amount of both high and low Z impurities: at the end of a 300 kW - 100 ms RF pulse, the total power radiated by the metallic impurities reaches 75 - 150 kW. Although the mechanisms responsible for such generation of metal in the plasma remain nuclear, a direct plasma wave interaction in the scrape-off layer of the Tokamak discharge is probably a determining factor

  20. A FLOSS Tool for Antenna Radiation Patterns

    CERN Document Server

    Yannopoulou, Nikolitsa

    2010-01-01

    This paper briefly highlights the features of the software tool [RadPat4W], named after Radiation Patterns for Windows but also compatible with the [Wine] environment of Linux. The tool is a stand-alone part of a freeware suite that is based on an alternative exposition of fundamental Antenna Theory and is under active development for many years now. Nevertheless, [RadPat4W] source code has been now released as FLOSS Free Libre Open Source Software and thus it may be freely used, copied, modified or redistributed, individually or cooperatively, by the interested user to suit her/his personal needs for reliable antenna applications from the simplest to the more complex.

  1. Omnidirectional Circularly Polarized Antennas – a Small Antenna Perspective

    OpenAIRE

    Narbudowicz, Adam; Ammann, Max

    2015-01-01

    The paper discusses recent developments and challenges in the design of small omnidirectionalcircularly-polarized (CP) antennas. Although omnidirectional CP coverage is easily achievable usingantenna arrays, it is just recently that small and low-cost antennas delivered this functionality.The paper addresses practical design problems for these antennas, not reported in previous publications.This includes selection of the omnidirectional plane relative to the ground plane and measurement chall...

  2. Numerical analysis of patch antenna as antenna array element

    OpenAIRE

    Kizimenko, V.; Bobkov, Y

    2009-01-01

    The patch antennas as antenna array element can be modeling by finite element method (programs Microwave Office, Ansoft HFSS and other). But this method need to use fast computer with memory large size. In this work the authors make an attempt to use thin wire integral equation method for patch antenna analysis. The results of modeling by proposed method are compared with the same of modeling by finite elements method and experimental results.

  3. Microsecond switchable thermal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d' Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

    2014-07-21

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  4. 47 CFR 80.863 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  5. 47 CFR 80.866 - Spare antenna.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  6. Analysis and design of plasma monopole antenna

    OpenAIRE

    Wei, Li; Jinghui, Qiu; Ying, Suo

    2009-01-01

    Two kinds of plasma monopole antennas are simulated and analyzed in this article. For different radius, reflection coefficient, radiation pattern and radiation efficiency of a cylindrical plasma monopole antenna are calculated respectively. According to actual situation, a conical plasma monopole antenna with different cone angle is simulated. Impedance and radiation characteristics of the plasma antenna are similar to the metal monopole antenna.

  7. Structural Modeling and Analysis on Dynamic Characteristics of Antenna Pedestal in Airborne SAR

    Directory of Open Access Journals (Sweden)

    He Li-ping

    2012-06-01

    Full Text Available Finite element modeling and structural dynamic characteristics of antenna pedestal in airborne SAR were studied in this paper. The Finite element model of antenna pedestal in airborne SAR was set up on the basis of structural dynamic theory, then, the key technologies of dynamic simulation were pointed out, and the modal analysis and transient analysis were carried out. Simulation results show that the dynamic characteristics of antenna pedestal in airborne SAR can meet the requirements of servo bandwidth and structural strength. The fast finite element modeling and simulation method proposed in this paper are of great significance to the weight reducing design of antenna pedestal in airborne SAR.

  8. Decreasing the radiation quality factor of magnetic dipole antennas by a magnetic-coated metal core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    To achieve the Chu lower bound for the radiation Q, an electrically small magnetic dipole antenna should not store any magnetic energy internally to the minimum sphere enclosing the antenna. As shown in our previous works, the internal stored magnetic energy can be reduced, although not entirely...... eliminated, by introducing a solid magnetic core inside the antenna. In this paper, using analytical results obtained though the vector spherical wave theory, we show that the internal stored magnetic energy can be further reduced, and the Chu lower bound reached, for a spherical magnetic dipole antenna with...... a magnetic-coated PEC core....

  9. Helicopter Rotor Antenna

    Science.gov (United States)

    Pogorzelski, Ronald J.; Cable, Vaughn P.

    2001-01-01

    This effort was directed toward demonstration of the efficacy of a concept for mitigation of the rotor blade modulation problem in helicopter communications. An antenna is envisioned with radiating elements mounted on the rotor and rotating with it. The rf signals are coupled to the radio stationary with respect to the airframe via a coupler of unique design. The coupler has an rf cavity within which a mode is established and the field distribution of this mode is sampled by probes rotating with the radiating elements. In this manner the radiated pattern is "despun" with respect to the rotor. Theoretical analysis has indicated that this arrangement will be less susceptible to rotor blade modulation that would be a conventional fixed mounted antenna. A small coupler operating at S-band was designed, fabricated, and mounted on a mockup representative of a helicopter body. A small electric motor was installed to rotate the rotor portion of the coupler along with a set of radiating elements during testing. This test article was be evaluated using the JPL Mesa Antenna Measurement Facility to establish its ability to mitigate rotor blade modulation. It was found that indeed such a coupler will result in a despun pattern and that such a pattern can be effective in mitigation of rotor blade modulation.

  10. Antenna structure with distributed strip

    Science.gov (United States)

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  11. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  12. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  13. Broadband Loaded Cylindrical Monopole Antenna

    OpenAIRE

    Boucher, Solene; Sharaiha, Ala; Potier, Patrick

    2013-01-01

    Ahstract-A broadband printed monopole antenna based on the variation of the conductivity along its length is proposed .. The result indicates that a non-monotonous repartition provides interesting performances in terms of impedance bandwidth but also concerning antenna gain. The achievement of the method is demonstrated through its application, using the carbon fibers to perform this conductivity variation. Monopole antenna presents a large impedance bandwidth of 123% with an interesting gain...

  14. On network representations of antennas inside resonating environments

    Directory of Open Access Journals (Sweden)

    F. Gronwald

    2007-06-01

    Full Text Available We discuss network representations of dipole antennas within electromagnetic cavities. It is pointed out that for a given configuration these representations are not unique. For an efficient evaluation a network representation should be chosen such that it involves as few network elements as possible. The field theoretical analogue of this circumstance is the possibility to express electromagnetic cavities' Green's functions by representations which exhibit different convergence properties. An explicit example of a dipole antenna within a rectangular cavity clarifies the corresponding interrelation between network theory and electromagnetic field theory. As an application, current spectra are calculated for the case that the antenna is nonlinearly loaded and subject to a two-tone excitation.

  15. UWB Directive Triangular Patch Antenna

    Directory of Open Access Journals (Sweden)

    A. C. Lepage

    2008-01-01

    Full Text Available Compact directive UWB antennas are presented in this paper. We propose an optimization of the F-probe fed triangular patch antenna. The new design achieves an impedance bandwidth of 69% (3–6.15 GHz and presents good radiation characteristics over the whole impedance bandwidth. The average gain is 6.1 dB. A time-domain study has been performed to characterize the antenna behavior in case a UWB pulse is used. Finally, we propose an alternative solution to facilitate the manufacturing process using metallized foam technology. It also improves the robustness of the antenna as well as reducing its cost.

  16. Antenna arrays a computational approach

    CERN Document Server

    Haupt, Randy L

    2010-01-01

    This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.

  17. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...... and Inmarsat GX services, respectively. The results of this study are three antenna concepts, which demonstrates high performance at both L- and Ka-band. A combined single/dual-reflector antenna is designed, which presents a favourable way of combining feed antennas for the diverse frequencies. This...... antenna enables the use of a conventional horn-fed dual-reflector for Ka-band, while a backfire helical antenna is used to form a single-reflector antenna at L-band. Simulations show excellent performance of the L-band backfire helical reflector antenna, due to the utilization of the entire antenna...

  18. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... results for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  19. Modified antenna for orthogonally polarised fields

    OpenAIRE

    Prudyus, Ivan N.; Zakharia, Y. A.; Storozh, V. G.; Mankovsky, S. V.

    2005-01-01

    A compact wideband antenna for transmission and receiving of orthogonally polarized electromagnetic fields is proposed. Results of electrodynamic antenna structure analysis are considered. Main antenna properties by results of experimental investigation are presented.

  20. Ultrawideband method of feeding a dipole antenna

    OpenAIRE

    Bakhrakh, Lev D.; Los', V. F.; Shamanov, A. N.

    2003-01-01

    An antenna-feeder device is considered, in which a new way of antenna excitation is implemented. An example is presented of its use with a dipole antenna for the radiation of super-short pulse signals.

  1. Antenna system for measuring electromagnetic field parameters

    OpenAIRE

    Ilnitskiy, Ludvig Ya.; Shcherbyna, Olga A.

    2014-01-01

    A functional block diagram of the general-purpose antenna system for measuring electromagnetic wave parameters has been presented. Theoretical relationships forming a basis of the antenna system structure are described, and the antenna operation principle is presented.

  2. Ferrite attenuator modulation improves antenna performance

    Science.gov (United States)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  3. Design aspects of commercial satellite antennas

    Science.gov (United States)

    Lang, K. C.; Taormina, F. A.

    General design considerations for commercial satellite antennas are reviewed, and design factors of shaped beam reflector antennas are described, including shaped beam efficiency, flat-topping and boundary matching, and analysis by Fourier transforms. Attention is then given to the design of the Telesat Anik 17/Westar/Palapa communications antenna, the Comstar I communications antenna, the SBS communications antenna, and Intelsat IV A communications antenna.

  4. Broadband Corrugated Square-Shaped Monopole Antenna

    OpenAIRE

    S. D. Ahirwar; C. Sairam

    2011-01-01

    Design and development of a corrugated square-shaped monopole antenna is presented with measured results. The operational bandwidth of the antenna is 300 MHz–3000 MHz. The antenna is derived from a square-shaped planar monopole antenna. This basic square-shaped radiating element is corrugated in its lateral dimension. This corrugation reduces the lateral dimension of the antenna by 60%. Electrical performance of this antenna is better than its parent counterpart. This paper presents design an...

  5. UWB and SWB Planar Antenna Technology

    OpenAIRE

    Zhong, Shun-Shi

    2010-01-01

    The recent progress in the development of UWB planar antenna technology has been reviewed. Some types of UWB metal-plate monopole antennas, UWB printed monopole antennas and UWB printed slot antennas are presented. The comparison results of indicate that the UWB printed monopole antennas can realize relatively smaller dimensions, and that the UWB printed slot antennas can achieve relatively higher gain. Finally, some realization manners of the band-notch function of UWB printed monopole anten...

  6. Lower Bound for the Radiation $Q$ of Electrically Small Magnetic Dipole Antennas With Solid Magnetodielectric Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    A new lower bound for the radiation $Q$ of electrically small spherical magnetic dipole antennas with solid magnetodielectric core is derived in closed form using the exact theory. The new bound approaches the Chu lower bound from above as the antenna electrical size decreases. For $ka, the new b...... bound is lower than the bounds for spherical magnetic as well as electric dipole antennas composed of impressed electric currents in free space.......A new lower bound for the radiation $Q$ of electrically small spherical magnetic dipole antennas with solid magnetodielectric core is derived in closed form using the exact theory. The new bound approaches the Chu lower bound from above as the antenna electrical size decreases. For $ka, the new...

  7. Antennas - Our electronic eyes and ears

    Science.gov (United States)

    Kraus, John D.

    1989-01-01

    Although the number of antenna types is vast, all antenna properties may be characterized in terms of the same basic parameters of radiation pattern, impedance, radar cross-section, and temperature. A comprehensive introduction is presented to antenna configurations; these encompass, among antennas constructed of wire or tubing, such wideband and circularly polarized types as helices, linear conductors, and loops. Sheet-conductor antenna families include reflectors, waveguides, and slotted antennas. Nonconducting dielectric antennas are lenses, polyrods, and slabs. Antenna array types range over 'driven', parasitic, and adaptive configurations. 'Two half-wavelength' and 'four half-wavelength' element arrays are also discussed.

  8. Design of Antennas for RFID Application

    OpenAIRE

    Zhang, Ming-Tao; Jiao, Yong-Chang; Zhang, Fu-Shun; Wang, Wu-Tu

    2009-01-01

    In this chapter, the antenna in RFID system is discussed, and the design of antenna is also described. The main contents include the status of the antenna in the RFID system, the design method for the antenna, the power transmission between the tag chip and the tag antenna, the tag antenna design, the scheme and design for the circular polarization, and the design of antenna for microwave band RFID tag. These researches almost cover all problems of the antenna encountering in the RFID applica...

  9. Patch antenna terahertz photodetectors

    International Nuclear Information System (INIS)

    We report on the implementation of 5 THz quantum well photodetector exploiting a patch antenna cavity array. The benefit of our plasmonic architecture on the detector performance is assessed by comparing it with detectors made using the same quantum well absorbing region, but processed into a standard 45° polished facet mesa. Our results demonstrate a clear improvement in responsivity, polarization insensitivity, and background limited performance. Peak detectivities in excess of 5 × 1012 cmHz1/2/W have been obtained, a value comparable with that of the best cryogenic cooled bolometers

  10. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  11. Terahertz antenna electronic chopper

    Energy Technology Data Exchange (ETDEWEB)

    Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F. [Department of Electronics, Wroclaw University of Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw (Poland)

    2016-01-15

    In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.

  12. Broadband antenna with frequency scanning

    Directory of Open Access Journals (Sweden)

    A. A. Shekaturin

    2014-06-01

    Full Text Available Relevance of this study. The main advantage of frequency scanning is simplicity of implementation. At this point, multifunctional usage of microwave modules is an urgent task, as well as their maximum simpler and cheaper. Antenna design and operation. The study is aimed at providing electric antenna with frequency scanning. It was based on the log-periodic antenna due to its wideband and negotiation capability over the entire operating frequency range. For this distribution line is bent in an arc of a circle in a plane blade while vibrators are arranged along the radius. Computer modeling of antennas with frequency scanning. Modeled with a non-mechanical motion antenna beam emitters representing system for receiving a radio frequency signal on mobile objects calculated for 1.8 GHz ... 4.2 GHz. The simulation was performed in a software environment for numerical modeling of electromagnetic «Feko 5.5». Analysis of the interaction of radiation is based on the method of moments. Findings. The result of this work is to propose a new design of the antenna with a frequency scanning method as agreed in a wide frequency range. In the studied technical solution provided by the rotation of NAM in the frequency range, and the matching of the antenna to the feed line is maintained. Application of this type of antennas on the proposed technical solution in communication systems will improve the communication reliability by maintaining coordination in the frequency range

  13. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  14. Graphene-antenna sandwich photodetector.

    Science.gov (United States)

    Fang, Zheyu; Liu, Zheng; Wang, Yumin; Ajayan, Pulickel M; Nordlander, Peter; Halas, Naomi J

    2012-07-11

    Nanoscale antennas sandwiched between two graphene monolayers yield a photodetector that efficiently converts visible and near-infrared photons into electrons with an 800% enhancement of the photocurrent relative to the antennaless graphene device. The antenna contributes to the photocurrent in two ways: by the transfer of hot electrons generated in the antenna structure upon plasmon decay, as well as by direct plasmon-enhanced excitation of intrinsic graphene electrons due to the antenna near field. This results in a graphene-based photodetector achieving up to 20% internal quantum efficiency in the visible and near-infrared regions of the spectrum. This device can serve as a model for merging the light-harvesting characteristics of optical frequency antennas with the highly attractive transport properties of graphene in new optoelectronic devices. PMID:22703522

  15. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  16. Antenna Miniaturization in Complex Electromagnetic Environments

    DEFF Research Database (Denmark)

    Zhang, Jiaying

    - less communication system into the heading-aids, and these are the antenna miniaturization, the measurement techniques for electrically small antennas and the influence of complex environments on the characteristics of electrically small antennas, respectively. Antenna MiniaturizationIn this...... dissertation, we present several novel designs of electrically small loop antennas for the hearing-aid application. First antenna design is a two-dimensional (2-D) planar differential-fed electrically small loop. The working mechanism of this antenna is based on the capacitive loading and the induc- tive...... coupling between two small loops. An analytical model, simulations, fabrications and measurements are presented for this antenna. Second antenna design is a planar two-turn electrically small loop antenna. The work- ing mechanism of this antenna is based on the capacitive loading, and both the capacitive...

  17. Transcatheter Microwave Antenna

    Science.gov (United States)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  18. Antennas and Propagation for Body-Centric Wireless Communications

    CERN Document Server

    Hall, Peter S

    2012-01-01

    Now in a newly updated and revised edition, this timely resource provides you with complete and current details on the theory, design, and applications of wireless antennas for on-body electronic systems. The Second Edition offers readers brand new material on advances in physical phantom design and production, recent developments in simulation methods and numerical phantoms, descriptions of methods for simulation of moving bodies, and the use of the body as a transmission channel. You also find a completely revised chapter on channel characterization and antenna design at microwave frequencie

  19. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  20. 47 CFR 73.753 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  1. 47 CFR 95.51 - Antenna height.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  2. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna....

  3. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  4. On chip plasmonic monopole nano-antennas and circuits.

    Science.gov (United States)

    Adato, Ronen; Yanik, Ahmet A; Altug, Hatice

    2011-12-14

    Analogues of many radio frequency (RF) antenna designs such as the half-wave dipole and Yagi-Uda have been successfully adapted to the optical frequency regime, opening the door for important advances in biosensing, photodetection, and emitter control. Examples of monopole antennas, however, are conspicuously rare given the element's extensive use in RF applications. Monopole antennas are attractive as they represent an easy to engineer, compact geometry and are well isolated from interference due the ground plane. Typically, however, the need to orient the antenna element perpendicular to a semi-infinite ground plane requires a three-dimensional structure and is incompatible with chip-based fabrication techniques. We propose and demonstrate here for the first time that monopole antenna elements can be fashioned out of single element nanoparticles fabricated in conventional planar geometries by using a small nanorod as a wire reflector. The structure offers a compact geometry and the reflector element provides a measure of isolation analogous to the RF counterpart. This isolation persists in the conductive coupling regime, allowing multiple monopoles to be combined into a single nanoparticle, yet still operate independently. This contrasts with several previous studies that observed dramatic variations in the spectral response of conductively coupled particles. We are able to account for these effects by modeling the system using circuit equations from standard RF antenna theory. Our model accurately describes this behavior as well as the detailed resonance tuning of the structure. As a specific practical application, the monopole resonances are precisely tuned to desired protein absorption bands, thereby enhancing their spectroscopic signatures. Furthermore, the accurate modeling of conductive coupling and demonstrated electronic isolation should be of general interest to the design of complex plasmonic circuits incorporating multiple antennas and other current

  5. Metal Patch Antenna

    Science.gov (United States)

    Chamberlain, Neil F. (Inventor); Hodges, Richard E. (Inventor); Zawadzki, Mark S. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  6. Antenna sunshield membrane

    Science.gov (United States)

    Bogorad, Alexander (Inventor); Bowman, Jr., Charles K. (Inventor); Meder, Martin G. (Inventor); Dottore, Frank A. (Inventor)

    1994-01-01

    An RF-transparent sunshield membrane covers an antenna reflector such as a parabolic dish. The blanket includes a single dielectric sheet of polyimide film 1/2-mil thick. The surface of the film facing away from the reflector is coated with a transparent electrically conductive coating such as vapor-deposited indium-tin oxide. The surface of the film facing the reflector is reinforced by an adhesively attached polyester or glass mesh, which in turn is coated with a white paint. In a particular embodiment of the invention, polyurethane paint is used. In another embodiment of the invention, a layer of paint primer is applied to the mesh under a silicone paint, and the silicone paint is cured after application for several days at room temperature to enhance adhesion to the primer.

  7. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    Science.gov (United States)

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application. PMID:27410080

  8. Scattering Effects of Solar Panels on Space Station Antenna Performance

    Science.gov (United States)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  9. Detection of massive Gravitational Waves using spherical antenna

    Science.gov (United States)

    Prasia, P.; Kuriakose, V. C.

    2014-03-01

    The generation of massive Gravitational Waves (GW) from metric f(R) theory of gravity is studied and the sensitivity of a spherical antenna detector towards such a wave is looked into. The energy sensitivity is maximum for the monopole mode of the sphere. Of the five quadrupole modes of a sphere, only three are triggered by a massive wave. Also, the sensitivity of a spherical antenna with mechanical resonators attached to it is studied. The Truncated Icosahedral Gravitational wave Antenna (TIGA), originally proposed for detecting the effect of massless GW on the quadrupole modes of a sphere, has been modified in this paper to get a Modified TIGA, in order to detect the sensitivity of monopole modes towards a massive wave.

  10. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single-output and multiple-input multiple-output keyhole channels are studied. Based on the closed-form exact expressions for the effective capacity of both channels, the authors look into the asymptotic high and low signal-to-noise ratio regimes, and derive simple expressions to gain more insights. The impact of spatial correlation on effective capacity is also characterised with the aid of a majorisation theory result. It is revealed that antenna correlation reduces the effective capacity of the channels and a stringent quality-of-service requirement causes a severe reduction in the effective capacity but can be alleviated by increasing the number of antennas. © 2012 The Institution of Engineering and Technology.

  11. DUAL BAND MONOPOLE ANTENNA DESIGN

    Directory of Open Access Journals (Sweden)

    P. Jithu

    2013-06-01

    Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.

  12. Microstrip and printed antenna design

    CERN Document Server

    Bancroft, Randy

    2009-01-01

    The approach in this book is historical and practical. It covers abasic designsa in more detail than other microstrip antenna books that tend to skip important electrical properties and implementation aspects of these types of antennas. Examples include: quarter-wave patch, quarter by quarter patch, detailed design method for rectangular circularly polarized patch, the use of the TM11 (linear and broadside CP), TM21 (monopole CP pattern) and TM02 (monopole linear) circular patch modes in designs, dual-band antenna designs which allow for independent dual-band frequencies. Limits on broadband m

  13. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  14. Semi hemi antenna. [balloon parachuted microwave antenna for stratospheric testing

    Science.gov (United States)

    Repucci, T. A.; Ferris, J. E.

    1978-01-01

    The University of Michigan minipod, which is released from a balloon and floats down on a parachute, is designed for stratospheric testing. The present paper briefly describes the evolution of antenna designs for the minipod 1.5 GHz transceiver, which communicates with and relays information to an aircraft and ground station. The following stages are noted: ordinary monopole, crossed dipole, capacitative antenna, fat monopole, the addition of parasitic elements, and a thinner monopole with taper.

  15. Design of Combined Antenna with Multiple Polarizations

    OpenAIRE

    Zineb Berkat; Noureddine Boukli Hacene; Abdellatif Berkat

    2012-01-01

    In this paper, we present a design of new combined antenna, mixing both linear and circular polarizations, new antenna have to be able to cover several frequency bandwidths, including various radiation properties. From the different researches of antenna with various geometries, and regarding the complexity to combine in a single radiating element several types of polarizations. It is extremely important that the development of antenna used in Wireless Systems. The proposed antenna is simulat...

  16. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  17. Bacteria Foraging Algorithm in Antenna Design

    OpenAIRE

    Biswa Binayak Mangaraj; Manas Ranjan Jena; Saumendra Kumar Mohanty

    2016-01-01

    A simple design procedure to realize an optimum antenna using bacteria foraging algorithm (BFA) is proposed in this paper. The first antenna considered is imaginary. This antenna is optimized using the BFA along with a suitable fitness function formulated by considering some performance parameters and their best values. To justify the optimum design approach, one 12-element Yagi-Uda antenna is considered for an experiment. The optimized result of this antenna obtained using the optimization a...

  18. A New Agile Radiating System Called Electromagnetic Band Gap Matrix Antenna

    Directory of Open Access Journals (Sweden)

    Hussein Abou Taam

    2014-01-01

    Full Text Available Civil and military applications are increasingly in need for agile antenna devices which respond to wireless telecommunications, radars, and electronic warfare requirements. The objective of this paper is to design a new agile antenna system called electromagnetic band gap (EBG matrix. The working principle of this antenna is based on the radiating aperture theory and constitutes the subject of an accepted CNRS patent. In order to highlight the interest and the originality of this antenna, we present a comparison between it and a classical patch array only for the (one-dimensional 1D configuration by using a rigorous full wave simulation (CST Microwave software. In addition, EBG matrix antenna can be controlled by specific synthesis algorithms. These algorithms use inside their; optimization loop an analysis procedure to evaluate the radiation pattern. The analysis procedure is described and validated at the end of this paper.

  19. Coupling characteristics of the ITER relevant lower hybrid antenna in Tore Supra: experiments and modelling

    International Nuclear Information System (INIS)

    A new concept of lower hybrid antenna for current drive has been proposed for ITER [Bibet et al, Nuclear Fusion 1995]: the Passive Active Multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has been recently installed on the tokamak Tore Supra. The paper summarizes the comprehensive experimental characterization of the linear coupling properties of the PAM antenna to the Tore Supra plasmas. These experimental results are systematically compared with the linear wave coupling theory via the linear ALOHA code. Good agreement between experimental results and ALOHA have been obtained. The detailed validation of the coupling modelling is an important step toward the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

  20. Modeling of a Plasma Antenna with Inhomogeneous Distribution of Electron Density

    Directory of Open Access Journals (Sweden)

    Zong-sheng Chen

    2015-01-01

    Full Text Available The distribution of the electron density along a plasma antenna can influence the antenna’s performance. But little has been done in this regard in former studies. In this paper, a model of a practical plasma antenna with an inhomogeneous distribution of electron density is founded according to the transmission-line equivalent theory of a metal monopole, from which the current distribution and the radiation pattern of a plasma antenna with appropriate parameters are calculated. The results show that the electrical current distribution, the maximum radiation direction, and the beamwidth of a plasma antenna vary with electron density distributions. To validate the model, the plasma antenna with the same parameters is also simulated based on electromagnetic software HFSS. It is found that the results from the two ways are almost consistent.

  1. Electrically-driven optical antennas

    CERN Document Server

    Kern, Johannes; Prangsma, Jord C; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-01-01

    Unlike radiowave antennas, optical nanoantennas so far cannot be fed by electrical generators. Instead, they are driven by light or via optically active materials in their proximity. Here, we demonstrate direct electrical driving of an optical nanoantenna featuring an atomic-scale feed gap. Upon applying a voltage, quantum tunneling of electrons across the feed gap creates broadband quantum shot noise. Its optical frequency components are efficiently converted into photons by the antenna. We demonstrate that the properties of the emitted photons are fully controlled by the antenna architecture, and that the antenna improves the quantum efficiency by up to two orders of magnitude with respect to a non-resonant reference system. Our work represents a new paradigm for interfacing electrons and photons at the nanometer scale, e.g. for on-chip wireless data communication, electrically driven single- and multiphoton sources, as well as for background-free linear and nonlinear spectroscopy and sensing with nanometer...

  2. Circularly-Polarized Microstrip Antenna

    Science.gov (United States)

    Stanton, P. H.

    1985-01-01

    Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.

  3. Dual-frequency microwave antenna

    Science.gov (United States)

    Bathker, D. A.; Brunstein, S. A.; Ludwig, A. C.; Potter, P. D.

    1980-01-01

    Single antenna using two feed horns (one for receiving and radiation X-band signals, and one for S-band signals), in conjunction with ellipsoid reflector and dichronic plate, can accommodate two different frequencies simultaneously.

  4. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  5. Dipoles, unintentional antennas and EMC

    Directory of Open Access Journals (Sweden)

    Berend Danker

    2008-01-01

    Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.

  6. Substrate Integrated Waveguide Antenna Applications

    OpenAIRE

    Wu, Liang

    2015-01-01

    The research objective of this thesis is to provide a better solution for signal interference and reduce the size of waveguide antenna. The background investigations of different waveguide fabrication technologies and switch control methods are detailed in the introductory part of this thesis. Several novel substrate integrated waveguide (SIW) antennas for different purpose are demonstrated in the body of the thesis. The designs are mainly divided into two kinds. The first focuses on the ...

  7. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  8. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  9. Design and synthesis of flexible switching 1 × 2 antenna array on Kapton substrate

    Science.gov (United States)

    Georges Rabobason, Yvon; Rigas, Grigorios; Swaisaenyakorn, Srijittar; Mirkhaydarov, Bobur; Ravelo, Blaise; Shkunov, Maxim; Young, Paul; Benjelloun, Nabil

    2016-06-01

    Flexible front- and back-end RF/analogue system antennas were recently emerged. However, little flexible antenna system design is available so far, in planar hybrid technology with surface mounted components. This paper describes the design feasibility of flexible switching 1 × 2 antenna array system. It acts as a switching antenna implemented in hexapole configuration. The system is comprised of a key element RF switch terminated by two identical patch antennas associated to half-wave elementary transmission lines (TLs). A detailed theory illustrating the global S-parameter model determination in function of the given RF-switch return and insertion losses is established. In difference to the conventional microwave circuit theory, the proposed equivalent S-parameter model is originally built with the non-standard optimized antenna load. Thus, the synthesis method of the terminal antenna input impedance and the output access line characteristic impedance is formulated in function of the specified return and optimal transmission losses. The design method and theoretical approach feasibility is verified with the demonstrator of flexible switching 1 × 2 antenna array printed on Kapton substrate. The circuit prototype is implemented in hybrid planar technology integrating patch antenna operating at about 6 GHz and a packaged GaAs RF switch associated to the RF/DC signal decoupling accessory mounted surface components. Simulations of the designed circuit transmission and isolation losses from 5.5 GHz to 7 GHz were carried out by using the commercial RF switch S-parameter touchstone model provided by the manufacturer. The simulated and measured return losses are compared and discussed. Then, the measured radiation patterns confirm the proposed switched antenna concept feasibility.

  10. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K.; Taniguchi, T.; Kubota, K. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  11. Multiple band circularly polarized microstrip antenna

    Science.gov (United States)

    Yu, I. P. (Inventor)

    1980-01-01

    A multiple antenna assembly for communicating electromagnetic radiation is disclosed. An antenna element stack is constructed of a plurality of elliptical lamina antenna elements mutally separated by layers of dielectric material, and separated from a ground plane by dielectric material. The antenna assembly is coupled through a feed line in contact with the top antenna element. A conductor joins the remaining antenna elements to the ground plane. Each individual antenna element is operable for communication reception and transmission within a frequency band determined by the size of the particular antenna element. The sizes of the antenna elements may be selected to provide electromagnetic radiation communication over several distinct frequency bands, or to connect the individual bands into a broad band.

  12. E-Textile Antennas for Space Environments

    Science.gov (United States)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  13. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their...

  14. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  15. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  16. Systems analysis for DSN microwave antenna holography

    Science.gov (United States)

    Rochblatt, D. J.

    1989-01-01

    Proposed systems for Deep Space Network (DSN) microwave antenna holography are analyzed. Microwave holography, as applied to antennas, is a technique which utilizes the Fourier Transform relation between the complex far-field radiation pattern of an antenna and the complex aperture field distribution to provide a methodology for the analysis and evaluation of antenna performance. Resulting aperture phase and amplitude distribution data are used to precisely characterize various crucial performance parameters, including panel alignment, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation. Microwave holographic analysis provides diagnostic capacity as well as being a powerful tool for evaluating antenna design specifications and their corresponding theoretical models.

  17. Single Band Helical Antenna in Axial Mode

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2012-11-01

    Full Text Available Helical antennas have been widely used in a various useful applications, due to their low weight and low profile conformability, easy and cheap realization.Radiation properties of this antenna are examined both theoretically and experimentally. In this paper, an attempt has been made to investigate new helical antenna structure for Applications. CST MWS Software is used for the simulation and design calculations of the helical antennas. The axial ratio, return loss, VSWR, Directivity, gain, radiation pattern is evaluated. Using CST MWS simulation software proposed antenna is designed/simulated and optimized. The antenna exhibits a single band from 0 GHz to 3 GHz for GPS and several satellite applications

  18. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  19. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  20. Reflection measurement of waveguide-injected high-power microwave antennas

    Science.gov (United States)

    Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong

    2015-12-01

    A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.

  1. A rigorous proof of MIMO channel capacity's increase with antenna number

    Institute of Scientific and Technical Information of China (English)

    GONG Jian-min; M.R. Soleymani; J.F.Hayes

    2008-01-01

    It is well known that adding more antennas at the transmitter or at the receiver may offer larger channel capacity, in the multiple-input multiple-output(MIMO) communication systems. In this letter, a simple proof is presented for the fact that the channel capacity increases with an increase in the number of receiving antennas. The proof is based on the famous capacity formula of Foschini and Gans with matrix theory.

  2. An Efficient ICT Method for Analysis of Co-planar Dipole Antenna Arrays of Arbitrary Lengths

    OpenAIRE

    Imoro, Adam Icarus; Aoki, Ippo; Inagaki, Naoki; Kikuma, Nobuyoshi; キクマ, ノブヨシ; 菊間, 信良

    1998-01-01

    A more judicious choice of trial functions to implement the Improved Circuit Theory (ICT) application to multi-element antennas is achieved. These new trial functions, based on Tai's modified variational implementation for single element antennas, leads to an ICT implementation applicable to much longer co-planar dipole arrays. The accuracy of the generalized impedance formulas is in good agreement with the method of moments. Moreover, all these generalized formulas including the radiation pa...

  3. A comprehensive study of resistor-loaded planar dipole antennas for ground penetrating radar applications

    OpenAIRE

    Uduwawala, Disala

    2006-01-01

    Ground penetrating radar (GPR) systems are increasingly being used for the detection and location of buried objects within the upper regions of the earth’s surface. The antenna is the most critical component of such a system. This thesis presents a comprehensive study of resistor-loaded planar dipole antennas for GPR applications using both theory and experiments. The theoretical analysis is performed using the finite difference time domain (FDTD) technique. The analysis starts with the most ...

  4. Characteristics of a Teflon rod antenna for millimeter and submillimeter wave irradiation on living bodies

    OpenAIRE

    TATSUKAWA, Toshiaki; Doi, Akitaka; TERANAKA, Masato; Takashima, Hitoshi; Goda, Fuminori; Idehara, Toshitaka; Ogawa, Isamu; KANEMAKI, Tomohiro; NISHIZAWA, Seiji; NAMBA, Tunetoyo

    2003-01-01

    The development of a millimeter and submillimeter wave catheter for irradiation on living bodies using a Teflon rod dielectric antenna is described. The power sources of electromagnetic wave are an Impatt oscillator (90 GHz, 0.3 W) and gyrotron (302 GHz, 30 W). Irradiation tests using various Teflon rod dielectric antennas were performed on beef livers. Irradiation results were considered by microwave theory and ray optics.

  5. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  6. Wrap-rib antenna concept development overview

    Science.gov (United States)

    Woods, A. A., Jr.; Garcia, N. F.

    1983-01-01

    The wrap rib antenna design of a parabolic reflector large space antenna is discussed. Cost estimates, design/mission compatibility, deployment sequence, ground based tests, and fabrication are discussed.

  7. High-temperature superconductor antenna investigations

    International Nuclear Information System (INIS)

    In this paper the use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas

  8. Microwave Antenna With Reduced Noise Leakage

    Science.gov (United States)

    Cha, A. G.

    1986-01-01

    Gain or gain-to-temperature ratio of dual-shaped subreflector receiving antenna increased when illumination is tapered near aperture edge. Taper imposed in antenna feed reduces spillover in transmitting mode and reduces noise pickup in receiving mode.

  9. Integrated resonant tunneling diode based antenna

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, Vincent M. (Placitas, NM); Tiggers, Chris P. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM)

    2000-01-01

    An antenna comprising a plurality of negative resistance devices and a method for making same comprising employing a removable standoff layer to form the gap between the microstrip antenna metal and the bottom contact layer.

  10. VLBI Antenna Calibration via GPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate and develop an inexpensive system to determine: 1)VLBI antenna properties such as axis-offset, non-intersection of axis and antenna...

  11. A COMPACT QUADRATURE FEEDING CIRCUIT FOR CIRCULARLY POLARIZED ANTENNA

    Institute of Scientific and Technical Information of China (English)

    Dong Yuliang; Tian Buning; Tang Song

    2002-01-01

    A novel compact quadrature feeding circuit for a circularly polarized antenna is described. The equivalent circuit method in microwave network theory is used and the conventional directional coupler is converted to a new quadrature feeding circuit. This feeding circuit has the same characteristics as the conventional directional coupler but its size is only about one fourth of that of the latter. The formulas for designing the feeding circuit are given. The optimized results obtained by using the software ENSEMBLE are also reported.

  12. Antenna coupled photonic wire lasers.

    Science.gov (United States)

    Kao, Tsung-Yu; Cai, Xiaowei; Lee, Alan W M; Reno, John L; Hu, Qing

    2015-06-29

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements. PMID:26191717

  13. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  14. Logarithmic Slots Antennas Using Substrate Integrated Waveguide

    OpenAIRE

    Jahnavi Kachhia; Amit Patel,; Alpesh Vala; Romil Patel; Keyur Mahant

    2015-01-01

    This paper represents new generation of slotted antennas for satellite application where the loss can be compensated in terms of power or gain of antenna. First option is very crucial because it totally depends on size of satellite so we have proposed the high gain antenna creating number of rectangular, trapezoidal, and I shape slots in logarithm size in Substrate Integrated Waveguide (SIW) structure. The structure consists of an array of various shape slots antenna designed to operate in C ...

  15. Ultra-wideband RF helmet antenna

    OpenAIRE

    Lebaric, Jovan; Tan, Ah-Tuan

    2000-01-01

    This paper addresses the development of an ultra-wideband, vertically polarized communications antenna integrated into the camouflage cover of a standard military-issue Kevlar helmet. The Helmet Camouflage Cover Antenna (referred to as the “helmet antenna’y is one of three antennas based on the antenna COMbat Wear INtegration (COMWIN) concept developed at the Naval Postgraduate School (NPS) for the man -portable implementation of the new Joint Tactical Radio System (JTRS). The results of c...

  16. Computer Simulation of a Plasma Vibrator Antenna

    OpenAIRE

    Nikolay N. Bogachev; Irina L. Bogdankevich; Namik G. Gusein-zade; Vladimir P. Tarakanov

    2013-01-01

    The use of new plasma technologies in antenna technology is widely discussed nowadays. The plasma antenna must receive and transmit signals in the frequency range of a transceiver. Many experiments have been carried out with plasma antennas to transmit and receive signals. Due to lack of experimental data and because experiments are difficult to carry out, there is a need for computer (numerical) modeling to calculate the parameters and characteristics of antennas, and to verify the parameter...

  17. Circularly polarized open-loop antenna

    OpenAIRE

    Li, Rong-Lin; Fusco, Vincent F.; Nakano, Hisamatsu

    2003-01-01

    A printed circular open-loop antenna is introduced as a simple structure for producing circular polarization; the antenna is fed with a coaxial probe. By introducing a gap within the circular loop a traveling-wave current is excited and thus circularly polarized radiation can be achieved. An optimized circularly polarized antenna is designed through numerical analysis using a so-called parametric method of moment technique. Experimental verification of the new antenna is presented. The antenn...

  18. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    OpenAIRE

    V. Jebaraj; K.R.S. Ravi Kumar; D. Mohanageetha

    2014-01-01

    Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation techni...

  19. Phase shift measurements for antenna systems

    OpenAIRE

    Ogorodnijchuk, L. D.

    1999-01-01

    The necessity to create the high accurate antenna systems for radio systems and complexes [1] requires to provide this sphere of science and engineering with a high accurate phase-metering equipment. It's used to measure phase characteristics of units and blocks of antenna feeding systems, feeds, and antenna in the full sense [1-3], and to receive signals (phase radio direction finders, monopulse radars), and to control the operation (phase antenna arrays) as well. Also it's used for periodic...

  20. Knowledge-based antenna pattern extrapolation

    OpenAIRE

    Robinson, Michael

    2012-01-01

    We describe a theoretically-motivated algorithm for extrapolation of antenna radiation patterns from a small number of measurements. This algorithm exploits constraints on the antenna's underlying design to avoid ambiguities, but is sufficiently general to address many different antenna types. A theoretical basis for the robustness of this algorithm is developed, and its performance is verified in simulation using a number of popular antenna designs.

  1. Reconfigurable Monopole Antennas With Circular Polarization

    OpenAIRE

    Panahi, Afshin

    2015-01-01

    This thesis presents research on printed circularly-polarized monopole antennas and their application in reconfigurable monopole antennas. The proposed circularly-polarised monopole antennas benefit from advantages such as small size, low-cost, low-profile and simple designs. The first part of this thesis introduces three printed circularly-polarized monopole antennas for global navigation satellite systems and Wi-Fi applications. The primary focus is on the ground plane which is used as a ra...

  2. A novel coaxial CTS antenna design

    OpenAIRE

    Qiu, Jinghui; Xing, Xiaohang; Ling-Ling, Zhong

    2007-01-01

    CTS (Continuous Transverse Stub) antenna radiates electromagnetic wave with its transverse stubs on transmission line, and its pattern in horizon plane is omnidirectional. This paper proposes a novel coaxial CTS structure, in which a monopole is applied in coaxial CTS antenna, instead of a matching load. This method may not only improve the radiation ratio, but also reduce the height of antenna. There are two stubs and a monopole composing an antenna, and the dielectric in stubs is air, which...

  3. Nested-cone transformer antenna

    Science.gov (United States)

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  4. Broadband antenna arrays using planar horns

    OpenAIRE

    Braude, V. B.; Sukhovetskaya, S. B.

    1997-01-01

    Broadband antennas are vitally important for various applications ranging from TV broadcasting to carrier-free ground-probing radars. We propose a microwave broadband antenna array (BAA), which may be realised using microstrip planar horns — flared end-fire radiating slot lines, known as Vivaldi-type antennas.

  5. Compact Dual-Mode Microwave Antenna

    Science.gov (United States)

    Carr, K. L.

    1982-01-01

    Compact dual-mode antenna, 3.66 cm wide by 1.83 cm thick is used both for heating and thermographic detection of tumors in cancer research. Temperature sensor operates independently or simultaneously with heater. Antenna includes 1.6-GHz transmitter and 4.76-GHz receiver. Strip heater between antennas controls temperature of device. Maximum power output is 25 W.

  6. Isolation between three antennas at 700 MHz

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Pedersen, Gert F.

    2015-01-01

    To address the antenna design challenges posed by many frequency bands, introduced with long-term evolution deployment, this study proposes the use of separate transmit (Tx) and receive (Rx) narrow-band antennas. In addition, a diversity Rx (Dx) antenna is needed for multiple-input multiple-output...

  7. 47 CFR 80.967 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  8. Antenna Construction and Propagation of Radio Waves.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  9. 47 CFR 80.923 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  10. 47 CFR 78.105 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... directional antennas that meet the performance standards indicated in the following table. (i) Stations...

  11. Wide-band dipole-slot antenna

    OpenAIRE

    Tsaliev, T. A.

    2014-01-01

    Properties of the antenna in the form of parallel slots array cut in the flat well-conducting screen excited by symmetrical half-wave dipole are considered. On the basis of computer modeling frequency dependences of antenna input impedance, directivity and the VSWR are designed and analyzed. Results of researches evidently display advantages of such antenna.

  12. 47 CFR 74.641 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards apply: (1) Fixed TV broadcast auxiliary stations shall use directional antennas that meet...

  13. 47 CFR 80.1017 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  14. Near Field On Chip RFID Antenna Design

    OpenAIRE

    Vargas, Alberto; Vojtech, Lukas

    2010-01-01

    The process of fabricating the antenna on the top of the RFID chip eliminates the need for a separated and costly expensive process for antenna printing and assemblage, compulsory for a separated "off-chip" antenna which is much more times larger than the chip itself. This

  15. 47 CFR 74.737 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  16. 47 CFR 73.69 - Antenna monitors.

    Science.gov (United States)

    2010-10-01

    ... citations affecting § 73.69 see the List of CFR Sections Affected, which appears in the Finding Aids section... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have...

  17. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  18. Future Vogues in Handset Antenna Systems

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Pedersen, Gert Frølund

    2011-01-01

    This paper exemplifies future trends in handset antenna systems, contextualizing their historical evolution and anticipating novel paradigms. It is shown through numerical simulations how narrow-band antennas used in transceiver separation mode can reduce the total loss in presence of the user......’s hand, improving at the same time the antenna isolation....

  19. Monopole Antenna with Modify Ground Plane

    OpenAIRE

    kamal raj singh rajoriya; Singhal, P.K.

    2012-01-01

    This paper presents on modified the ground plane of monopole antenna with varying the shape and length. Basically the length of ground plane of monopole antenna is equal and greater than λ/4. Here analyzed a different ground plane of monopole antenna that is provided an efficient bandwidth with sufficient return loss.

  20. Monopole Antenna with Modify Ground Plane

    Directory of Open Access Journals (Sweden)

    kamal raj singh rajoriya

    2012-06-01

    Full Text Available This paper presents on modified the ground plane of monopole antenna with varying the shape and length. Basically the length of ground plane of monopole antenna is equal and greater than λ/4. Here analyzed a different ground plane of monopole antenna that is provided an efficient bandwidth with sufficient return loss.

  1. Orthogonal antenna architecture for MIMO handsets

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The paper presents a method for decorrelating the antenna elements of a MIMO system in a compact handheld terminal at low bands. The architecture of the antenna system induces orthogonal currents over the closely spaced antennas resulting in a correlation free system. Nevertheless, due to the small...

  2. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field. The...... reconstruction of the extreme near field on the basis of near- or far-field measurements is thus an essential step in antenna diagnostics....

  3. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power...

  4. Tunable Antennas for Mobile Devices

    DEFF Research Database (Denmark)

    Morris, Art; Barrio, Samantha Caporal Del; Shin, J;

    2014-01-01

    Modern mobile terminal design has been driven by the user interface and broadband connectivity. Real world RF performance has substantially fallen recently which impacts data rates, battery life and often causes lost connections. This has been caused by changing antenna location and reduced anten...

  5. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2001-01-01

    This book gives an introduction to the possibilities of radar technology based on active array antennas, giving examples of modern practical systems. There are many valuable lessons presented for designers of future high standard multifunction radar systems for military and civil applications. The book will appeal to graduate level engineers, researchers, and managers in the field of radar, aviation and space technology.

  6. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  7. Photogrammetry Of A Parabolic Antenna

    Science.gov (United States)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  8. Installing the antenna for STELLA

    CERN Multimedia

    1979-01-01

    The 3 metre diameter antenna for the STELLA satellite communication project is lowered into position on the roof of the Computer Building (see Weekly Bulletin 48/79 and CERN Courier 19 (1979) 444). STELLA stands for Satellite Transmission Experiment Linking Laboratories.

  9. Antenna radome sample test report

    Science.gov (United States)

    Baker, Leonard H.; Bratton, Thomas D.

    1991-01-01

    The antenna radome sample test conducted at the Federal Aviation Administration (FAA) Technical Center by the Secondary Surveillance Systems Branch, ACN-220 is documented. The test configuration consisted of the antenna radome sample centered between the Discrete Address Beacon System's (DABS) antenna and its remote Calibration Performance Monitor Equipment (CPME). The Range and Azimuth Accuracy (RAA) diagnostic program was used to determine changes in DABS performance. There were two test objectives. The first test objective was to determine if existing FAA en route radar antenna radomes would distort the signal characteristics detected by a beacon monopulse processor system. The second test objective was to determine whether this test configuration could be used to test radome samples supplied by prospective contractors in the en route radome replacement program. The RAA diagnostic program could not determine if the radome sample depicted changes in the DABS performance. It is recommended that this test procedure be abandoned due to inconclusive test results. The prospective radome manufacturers should provide the FAA with sufficient test data to confirm that it meets the requirements of the radome procurement specification.

  10. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  11. Antenna Design for Diversity and MIMO Application

    DEFF Research Database (Denmark)

    Ying, Zhinong; Chiu, Chi-Yuk; Zhao, Kun;

    2015-01-01

    efficiencies of MIMO elements would be degraded severely due to mutual couplings. In addition, the human body causes high losses on electromagnetic waves. In real applications, the presence of users may result in significant reduction of total antenna efficiencies, and the correlations of MIMO antenna systems...... are also highly affected. In this chapter, the performance of some basic MIMO antennas as well as recent technologies toimprove MIMO antenna performance of portable devices and mobile terminals are reviewed. The interactions between MIMO antennas and human body are also addressed particularly in...

  12. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard;

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability of the...... antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas with a...

  13. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  14. Effective wavelength and resonance characteristics of carbon nanotube optical antenna%碳纳米管光学天线的有效波长和谐振特性∗

    Institute of Scientific and Technical Information of China (English)

    武小芳; 谢树果; 何云涛; 李丽; 李小路

    2016-01-01

    The effective wavelength scaling theory for optical antennas indicates that an optical antenna does not respond to the wavelength of incident electromagnetic wave, but to a shorter effective wavelength which depends on the plasma wavelength and optical dielectric permittivity of the antenna material, and also on the geometric structure of the antenna. In this paper, based on the effective wavelength scaling theory for optical antennas and on the assumption that metallic carbon nanotube (CNT) can be described by a free electron gas according to the Drude model, the general relationship between effective wavelength and dielectric properties of the antenna material for a metallic carbon nanotube optical antenna is derived. According to this relationship, the investigation into the effective wavelength that a metallic CNT optical antenna responds to can be transferred to easier theoretical calculation for the dielectric properties of CNT, instead of exploring its plasma wavelength. Following first-principle calculations for dielectric properties of CNT with 4 Å diameter, the effective wavelength versus incident wavelength for each of two types of metallic 4 Å CNT antennas is investigated. In addition, the resonance characteristics of metallic 4 Å CNT dipole antennas are analyzed. It is shown that the effective wavelength approximately follows a linear relationship with wavelength of the incident light for the 4 Å metallic CNT antenna, which is consistent with the wavelength scaling theory. In addition, CNT optical antenna has good wavelength scaling performance compared with nano-antennas made of conventional metals like silver and gold; hence metallic CNTs as optical antennas are beneficial for constructing more compact devices. Moreover, according to the simulation results of resonance characteristics of metallic 4 Å CNT dipole antennas, there are several 4 Å metallic CNT dipole antennas with small difference in length meeting the resonance conditions for

  15. Computer Simulation of a Plasma Vibrator Antenna

    Directory of Open Access Journals (Sweden)

    Nikolay N. Bogachev

    2013-01-01

    Full Text Available The use of new plasma technologies in antenna technology is widely discussed nowadays. The plasma antenna must receive and transmit signals in the frequency range of a transceiver. Many experiments have been carried out with plasma antennas to transmit and receive signals. Due to lack of experimental data and because experiments are difficult to carry out, there is a need for computer (numerical modeling to calculate the parameters and characteristics of antennas, and to verify the parameters for future studies. Our study has modeled plasma vibrator (dipole antennas (PDA and metal vibrator (dipole antennas (MDA, and has calculated the characteristics of PDAs and MDAs in the full KARAT electro-code. The correctness of the modeling has been tested by calculating a metal antenna using the MMANA program.

  16. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  17. New Diamond Antenna for Ultra Wideband Applications

    Directory of Open Access Journals (Sweden)

    Ziani Kerarti Djalal

    2012-07-01

    Full Text Available There has been a flourishing prospect of UWB technology in recent years in both communication and other purposes like microwave imaging and radar applications. Recent studies of UWB antenna structures are specially concentrated on microstrip , slot and planar monopole antennas . In this work, a small monopole antenna with diamond shape of the patch (30 x 26 mm printed microstrip fed monopole antenna has been designed, some parameters like return loss (S11, Voltage Standing Wave Ratio (VSWR, radiation pattern has been performed to test the validity of simulation and verify eligibility of the antenna for the wireless communications purpose. The proposed antenna is simulated in CST Microwave Studio and has surpassed the bandwidth of UWB requirement, which is from 3.1 GHz to 10.6 GHz, and exhibits good UWB characteristics. The 10 dB return loss bandwidth of this antenna element is from 3.39 GHz to more than 14 GHz.

  18. Integrated broadband bowtie antenna on transparent substrate

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T

    2015-01-01

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.

  19. Design and Analysis of a Multiband Koch Fractal Monopole Antenna

    OpenAIRE

    Adam, Ismahayati; Soh, Ping Jack; Hadibah, R; Vandenbosch, Guy

    2011-01-01

    This work presents the design and investigation of the monopole and Koch fractal antenna. The fractal concept and geometry has been used in antenna design to obtain multi-band behavior and miniaturized size, as both of these characteristics are important requirements in current antenna design trends. The aim of this paper is to evaluate the antenna performance between monopole antenna and third iteration Koch fractal antenna. Antenna properties such as reflection coefficient (S11), bandwidth,...

  20. A matched Bow-tie antenna at 433MHz for use in underwater wireless sensor networks

    International Nuclear Information System (INIS)

    Electromagnetic (EM) wave propagation underwater is been disregarded because of attenuation at high frequencies, however the theory predicts that propagation is possible at some useful distance in the lower Industrial, Scientific and Medical (ISM) band. Common transceivers rely on narrowband antennas and matching circuit. The aim of this paper is to design a broadband 433MHz bow-tie antenna and experiment it in air and water without a matching circuit. This antenna could be attached to wireless transceivers and form a Wireless Sensor Network for deployment in various underwater applications. The bow-tie antennas were designed, simulated and constructed in laboratory. Experiments were setup carefully by using a completely isolated transmitter from electronics to avoid airborne transmission. The 433MHz. bow-tie proved its suitability for use in Underwater.

  1. Antenna design and characterization based on the elementary antenna concept

    Science.gov (United States)

    Ligthart, L. P.

    An antenna-design technique based on an elementary-antenna model (an infinitesimal pillbox structure carrying electric and magnetic currents and containing propagating TEM fields) is developed and demonstrated. An EM description of a waveguide aperture is obtained by applying approximate boundary conditions at specific points; the transmitted field is developed locally into a set of TEM field components to compute the radiation pattern; and aperture matching is achieved by calculating the aperture reflection as well. Parallel-plate, circular, and rectangular waveguides; two single-polarization TEM waveguide radiators (with and without dielectric filling); a dielectric-filled dual-polarization TE(01) waveguide radiator; and a hybrid reflector array with limited beam switching based on the TE(01) radiator are presented.

  2. Designing Antenna Arrays Using Signal Processing, Image Processing and Optimization Toolboxes of MATLAB

    OpenAIRE

    Joseph, Sahaya Kulandai Raj; Schoebel, Joerg

    2010-01-01

    Exploiting the similarity between signal-processing theory and antenna-array theory, it has been demonstrated that with little effort analysis of antenna arrays can be done using signaland image-processing tools of MATLAB. The analogy between FIR filters and arrays can be effectively used to explain the concepts of the arrays to students. Also, synthesis of arrays, to a first approximation, can be carried out using signal-processing tools in the case of onedimensional arrays, and image-proc...

  3. Electromagnetic fields in 3-D for various cavity antennas and Faraday shields

    International Nuclear Information System (INIS)

    Maxwell's Equations are solved for vectors E and H for various cavities of interest. The results are shown to be in agreement with existing theory for the fundamental resonance of a long ridge wave guide. This analysis has been applied to the testing cavity antenna for D-III. The method can include the addition of an arbitrarily-shaped Faraday shield. We have explored the electromagnetic effects of Faraday shield by measurement and computation. This correlation of theory and experiments is then used to predict power limits of an antenna by voltage- and current-limitations

  4. Sounding Rocket Telemetry Emitter, MID Antenna and Ground Receiver Antennas

    OpenAIRE

    Marque, Alexandre; Ghiotto, Anthony

    2015-01-01

    IEEE MTT-S Undergraduate Scholarships Reports The goal of this research project is to design a complete 2.45 GHz data link for telemetry application between a sounding rocket and a ground station. The emission part is embedded in the rocket and has a lot of mechanical constraints. The design for the emitter, the rocket antenna and the ground station receiver are detailed.

  5. An extraordinary transmission analogue for enhancing microwave antenna performance

    Directory of Open Access Journals (Sweden)

    Sarin V. Pushpakaran

    2015-10-01

    Full Text Available The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  6. An extraordinary transmission analogue for enhancing microwave antenna performance

    International Nuclear Information System (INIS)

    The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT) behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD) method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement

  7. An extraordinary transmission analogue for enhancing microwave antenna performance

    Energy Technology Data Exchange (ETDEWEB)

    Pushpakaran, Sarin V., E-mail: sarincrema@gmail.com [Department of Electronics, Govt. College, Chittur, Palakkad, Kerala (India); Purushothaman, Jayakrishnan M.; Chandroth, Aanandan; Pezholil, Mohanan; Kesavath, Vasudevan [Centre for Research in Electromagnetics and Antennas, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2015-10-15

    The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT) behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD) method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  8. Negative ion source with external RF antenna

    Science.gov (United States)

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  9. Distributed antenna system and method

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor)

    2004-01-01

    System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.

  10. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  11. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  12. 47 CFR 73.316 - FM antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  13. Planar Millimeter-Wave Antennas: A Comparative Study

    OpenAIRE

    Pitra, K.; Z. Raida

    2011-01-01

    The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  14. Curved spiral antennas for underwater biological applications

    Science.gov (United States)

    Llamas, Ruben

    We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes

  15. Stepped conical zone plate antenna

    Science.gov (United States)

    Wiltse, James C.

    2001-07-01

    The Fresnel zone plate lens was invented and developed for optical frequencies. However, fabrication difficulties at the short optical wavelengths have prevented obtain good efficiencies. At longer microwave or millimeter-wavelengths fabrication is easier and phase correcting zone plate antennas have been used to obtain good efficiencies. This paper describes a new type of phase correcting zone plate having even better efficiency, namely a diffraction efficiency of 99 percent compared to a true lens, and an overall efficiency much better than a true lens. For the usual zone plate antenna employed at microwave or millimeter wavelengths, path length adjustment is accomplished by cutting different depths in a dielectric plate or by using two or more dielectrics having different dielectric constants. The new design uses a tilted cut in a dielectric plate, which more accurately matches the shape of a true lens and produces much lower phase error. The construction is still near and can be made for example, by a milling machine with a tilted bit. For a circular zone plate, the lens is a stepped conical or tapered shape. Because the phase steps are small, the far-field antenna pattern is excellent and sidelobe-levels are very low. Analysis of typical configurations will be given, showing that phase errors are small, lower than those for an eighth-wave corrected phase zone plate.

  16. Transcatheter Antenna For Microwave Treatment

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)

    2000-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiation having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may he used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  17. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  18. Compact Miniaturized Antenna for 210 MHz RFID

    Science.gov (United States)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  19. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  20. Compact UWB Antenna Design for MIMO Applications

    Directory of Open Access Journals (Sweden)

    Baskaran Kasi

    2013-12-01

    Full Text Available In this study, a compact printed Multiple-Input-Multiple-Output (MIMO antenna with a dimension of 32×70 mm2 has been proposed for Ultra-Wideband (UWB systems applications. The design constitutes of two identical UWB antenna elements, which is etched onto a Taconic TLC-30 printed circuit board. The proposed antenna has been designed and simulated using computer simulation software. For validation purposes, antenna prototype is fabricated and tested. The UWB-MIMO antenna yields an impedance bandwidth of 2.9 to 12 GHz with a return loss of less than-10 dB. Furthermore, the isolation characteristic between the two antenna elements is more than 15 dB within the operating frequency range. The designed structure is found to provide good MIMO/diversity characteristic across the UWB band.

  1. Antenna design by simulation-driven optimization

    CERN Document Server

    Koziel, Slawomir

    2014-01-01

    This Brief reviews a number of techniques exploiting the surrogate-based optimization concept and variable-fidelity EM simulations for efficient optimization of antenna structures. The introduction of each method is illustrated with examples of antenna design. The authors demonstrate the ways in which practitioners can obtain an optimized antenna design at the computational cost corresponding to a few high-fidelity EM simulations of the antenna structure. There is also a discussion of the selection of antenna model fidelity and its influence on performance of the surrogate-based design process. This volume is suitable for electrical engineers in academia as well as industry, antenna designers and engineers dealing with computationally-expensive design problems.

  2. Advanced microwave radiometer antenna system study

    Science.gov (United States)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  3. International Mapping of Antenna-Measurement Facilities

    DEFF Research Database (Denmark)

    Boccia, Luigi; Breinbjerg, Olav; Di Massa, Giuseppe;

    2006-01-01

    This paper presents a comprehensive international mapping of antenna-measurement facilities. This initiative, conducted within the framework of the Antenna Centre of Excellence (ACE) of the European Union, is oriented toward all institutions having research, development, or operational activities...... in the field of antenna measurements. It has been established to provide the scientific and industrial community with an efficient means to improve and facilitate their research and development activities in the field of antennas. The mapping will constitute a new service for all potential users of...... antenna measurements, in particular from the wireless communication industry, to identify and contact antenna-measurement facilities. The first phase of the mapping showed a significant and encouraging reaction to this initiative, with more than 50 European facilities currently registered. The next phase...

  4. New band-notched UWB antenna

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-xiang; DENG Hong-wei

    2009-01-01

    A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.

  5. Smart Antenna for Cellular Mobile Communication

    CERN Document Server

    Jain, R K; Agrawal, N K

    2012-01-01

    The adoption of smart / adaptive antenna techniques in future wireless systems is expected to have a significant impact on the efficient use of the spectrum, the minimization of the cost of establishing new wireless networks, the optimization of service quality and realization of transparent operation across multi technology wireless networks [1]. This paper presents brief account on smart antenna (SA) system. SAs can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. SAs thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. SAs can also track the user within a cell via direction of arrival algorithms [2]. This paper explains the architecture, evolution and how the smart / adaptive antenna differs from the basic format of antenna. The paper further explains about the radiation pattern of the antenna and why it is highly preferred in its relative field. The capabilities of smart / adaptive ...

  6. Transmitting Antenna with Dual Circular Polarization for Indoor Antenna Measurement Range

    OpenAIRE

    Mrnka, M.; Vélim, J.

    2015-01-01

    The presented paper describes design of an original transmitting antenna for specific indoor far-field measurement range. The antenna is able to generate both senses of the circular polarization with high polarization purity by using stepped septum polarizer inside a waveguide. Very high suppression of the side lobes is achieved by utilization of the higher order modes in the aperture of the final horn antenna which is directly connected to the septum polarizer. The antenna was simulated and ...

  7. Modeling of mixed-phasing antenna-plasma interactions applied to JET A2 antennas

    International Nuclear Information System (INIS)

    The use of mixed (monopole-dipole) phasing of a set of ICRF antennas is potentially useful to optimize tokamak performance and to do interesting physics experiments. However, recent mixed-phasing experiments on JET, described here, showed undesirable antenna-plasma interactions under certain circumstances. We explore a possible physical mechanism: parallel currents flowing between adjacent antennas with different phasings can lead to arcing on the antenna with the largest sheath voltage. Means of controlling the interaction are discussed

  8. Micromachined Horn Antenna Operating at 75 GHz

    OpenAIRE

    Grzegorczyk, Tomasz M.; Zurcher, Jean-François; Renaud, Philippe; Mosig, Juan R.

    2000-01-01

    We propose in this paper an integrated cavity-backed horn antenna, generalizing the well-known SSFIP (Strip-Slot-Foam-Inverted Patch) design, operating at 75 GHz. The antenna was optimized using a full-wave software and realized using micromachining technologies. The proposed structure can be used for high radiation ef-ficiency antennas and arrays in the millimeter-wave band, since surface waves are inherently suppressed by the use of a metallic horn and a cavity configuration.

  9. Dual-band Omnidirectional Circularly Polarized Antenna

    OpenAIRE

    Narbudowicz, Adam; Bao, Xiulong; Ammann, Max

    2013-01-01

    A dual-band omnidirectional circularly polarized antenna is proposed. The antenna comprises back-to-back microstrip patches fed by a coplanar waveguide. A very low frequency ratio of 1.182 has been achieved, which can be easily tuned by adjusting four lumped capacitors incorporated into the antenna. An analysis of the omnidirectional circular polarization mechanism as well the dual band operation is provided and confirmed by numerical and experimental data. Key parameters to tune the resonant...

  10. An antenna design for PANSAT using NEC.

    OpenAIRE

    Ellrick, Daniel A.

    1991-01-01

    Approved for public release; distribution is unlimited In this thesis the Numerical Electromagnetics Code (NEC) is used to design an omnidirectional antenna for the Petite Amateur Navy Satellite (PANSAT). The completed antenna design uses a tangential turnstile antenna to achieve a circularly polarized radiation pattern with predicted worst nulls of approximately -3.0 dBi. The use of NEC-3, recently ported to 80386 personal computers, demonstrates the potential of personal computers for ...

  11. Ultrawideband antennas for microwave imaging systems

    CERN Document Server

    Denidni, Tayeb A

    2014-01-01

    This book presents ultrawideband antennas and their applications on microwave imaging. The chapters focus on recent techniques, analysis, and applications along with the future vision of this emerging field of applied electromagnetics. Several emerging topics are essayed, including dielectric resonator antennas and planar ultrawideband antennas for microwave imaging.This resource incorporates modern design concepts, analysis, and optimization techniques based on recent developments. Readers are also provided with an extensive overview of current regulations, including those related to microwav

  12. Textile antenna for 50 ohm applications

    OpenAIRE

    Robi Dahal; Demet Mercan; Lukas Vojtech; Marek Neruda

    2012-01-01

    The new generation of textile materials have the capability to conduct electricity and at the same time be wearable. There are much more applications involved if an antenna is made from parts that are totally wearable. This new property of conductivity in textile materials is used to implement the wireless functions to clothing. In general, the antennas are made of highly conductive metal with is a solid structure, which results in stable output. The challenge with textile antenna is output s...

  13. Vertical Meandering Approach for Antenna Size Reduction

    OpenAIRE

    Li Deng; Shu-Fang Li; Ka-Leung Lau; Quan Xue

    2012-01-01

    A novel vertical meandering technique to reduce the lateral size of a planar printed antenna is presented. It is implemented by dividing a conventional spiral patch into a different number of segments and placing them on different sides of the microwave substrate with vias as the connections. To confirm the validity of this technique, measured electrical performance and radiation characteristics of five antennas with different numbers of segments are compared. The smallest antenna is reduced ...

  14. A novel proximity coupled active integrated antenna

    OpenAIRE

    Vajha, Sasidhar; Shastry, Prasad

    2001-01-01

    In this paper, a novel design approach and measured results of a compact proximity coupled active integrated antenna (PCAIA) are presented. A new type of antenna feed structure is proposed. A single self-biased (through the RF port), two-stage low noise amplifier has been integrated with a proximity coupled patch antenna having a new feed structure. The proposed approach is useful in the design of compact PCAIA with good radiation characteristics for applications in microwave wireless systems.

  15. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    OpenAIRE

    Ricardo Gonçalves; Pedro Pinho; Nuno B. Carvalho

    2012-01-01

    This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna recon...

  16. A Compact Diversity Antenna for Handheld Terminals

    Institute of Scientific and Technical Information of China (English)

    Hai-Lin Xiao; Zai-Ping Nie; Yu-Jing Wu

    2009-01-01

    The handheld terminals antenna should have a small size, sufficient gain and big bandwidth. In this paper, a compact planar inverted-L diversity antenna for handheld terminals is proposed. Three diversity antennas operating at 2.15 GHz are designed and the effect of important parameters of the proposed antenna is measured. The isolation is found to be better than 13 dB, the usable bandwidth is about 13%. Moreover, the measured radiation patterns are also obtained that the backward radiation is decreased.

  17. A SIW Antipodal Vivaldi Array Antenna Design

    OpenAIRE

    Ying Suo; Wei Li; Jianzhong Chen

    2016-01-01

    A kind of compact SIW (substrate integrated waveguide) Vivaldi array antenna is proposed and analyzed. The antenna consisted of 4 Vivaldi structure radiation elements fed by an equal power divider with SIW technology. The radiation element is composed of antipodal index gradient microstrip lines on both sides of the substrate. The measured reflection coefficient of the array antenna is less than −10 dB from 8.88 GHz to 10.02 GHz. The measured gain of the array antenna is 13.3 dB on 9.5 GHz....

  18. Whip antenna design for portable rf systems

    Science.gov (United States)

    Ponnapalli, Saila; Canora, Frank J.

    1995-12-01

    Whip type antennas are probably the most commonly used antennas in portable rf systems, such as cordless and cellular phones, rf enabled laptop computers, personal digital assistants (PDAs), and handheld computers. Whip antennas are almost always mounted on the chassis which contains the radio and other electronics. The chassis is usually a molded plastic which is coated with a conducting paint for EMI purposes. The chassis which appears as a lossy conductor to the antenna, has several effects -- detuning, altering the gain of the antenna, and shadowing its radiation pattern. Extensive modeling and measurements must be performed in order to fully characterize the affects of the chassis on the whip antenna, and to optimize antenna type, orientation and position. In many instances, modeling plays a more important role in prediction of the performance of whip antennas, since measurements become difficult due to the presence of common mode current on feed cables. In this paper models and measurements are used to discuss the optimum choice of whip antennas and the impact of the chassis on radiation characteristics. A modeling tool which has been previously described and has been successfully used to predict radiated field patterns is used for simulations, and measured and modeled results are shown.

  19. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    V. Jebaraj

    2014-12-01

    Full Text Available Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation technique with different shapes of slot in the orthogonal direction. A single feed configuration based symmetric slotted microstrip antenna is adapted to realize the compact circularly polarized microstrip antennas. Based on the perimeter, the size of the slot on microstrip slot antenna are studied and compared. The Operating frequency of the antenna is 912MHz that can be tuned by varying the perimeter of the slot while the keeping the circularly polarized radiation unchanged. The schematic and layout are configured by using Advanced Design System (ADS. Return loss, Resonant Frequency, Axial Ratio (AR, and Gain were determined for the proposed system using ADS. A measured 3dB Axial Ratio (AR bandwidth around 6MHz with 16MHz impedance bandwidth has been achieved for the antenna on a RO3004C substrate with dielectric constant 3.38.

  20. Broadband Suspended Microstrip Antenna For Circular Polarization

    OpenAIRE

    Kasabegoudar, VG; Vinoy, KJ

    2009-01-01

    In this paper we propose a circularly polarized (CP) microstrip antenna on a suspended substrate with a coplanar capacitive feed and a slot within the rectangular patch. The antenna has an axial ratio bandwidth (< 3 dB) of 7.1%. The proposed antenna exhibits a much higher impedance bandwidth of about 49% (S11 < -10 dB) and also yields return loss better than -15 dB in the useful range of circular polarization. Measured characteristics of the antenna are in good agreement with the simulated re...

  1. Matching Parasitic Antenna for Single RF MIMO

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Nielsen, Rasmus Hjorth;

    2012-01-01

    order to have such performance, an antenna with rich pattern modes is required by the system, thus the ESPAR antenna is investigated. The critical part on such antenna is parasitic element impedance matching. Unlike the conventional smith-chart matching method which assumes the minimal resistance is...... zero and with goal of 50 ohm or 75 ohm matching, matching on such parasitic antenna will adopt negative value as well. This paper presents a matching network with controllable impedance even to the range of negative values....

  2. Handbook of smart antennas for RFID systems

    CERN Document Server

    2010-01-01

    The Handbook of Smart Antennas for RFID Systems is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications.

  3. Flexible Microstrip Antenna for Skin Contact Application

    OpenAIRE

    Sudhir Shrestha; Mangilal Agarwal; Parvin Ghane; Kody Varahramyan

    2012-01-01

    Microstrip antennas are finding a growing medical application in imaging, diagnosis, and treatment. This paper presents a flexible microstrip antenna that can be placed in contact with the human skin. The developed antenna is only 0.25 mm thick, has 32 mm × 31 mm dimensions, and −19 dB measured | 1 1 | parameter at 2.45 GHz. A specific application of the antenna in microwave breast imaging is considered. Analytical results using simulation models and experimental results using skin phantoms...

  4. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon;

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which can...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  5. Analysis on two novel spherical helical antennas

    Institute of Scientific and Technical Information of China (English)

    Hou ZHANG; Yingzeng YIN; Dongyu XIA

    2009-01-01

    Two novel spherical helical antennas are designed by projecting the planar equiangular spiral antenna onto hemisphere and partial sphere surfaces.Their radiation properties are analyzed by the moment method with curved basis and test function,and the curves of the voltage standing wave ratio (VSWR),gain,polarization and pattern that change with frequency are also given,respectively.It can be seen that the circular polarization band of the novel hemispherical helical antenna is broader.The gain curve of the partial spherical helical antenna is flatter and the structure is simpler.

  6. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...

  7. Resonance spectra of diabolo optical antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Simpkins, Blake; Caldwell, Joshua D. [Naval Research Laboratory, 4555 Overlook Ave., SW Washington, DC 20375 (United States)

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  8. Switchable Electromagnetic Bandgap Surface Wave Antenna

    Directory of Open Access Journals (Sweden)

    Qiang Bai

    2014-01-01

    Full Text Available This paper presents a novel switchable electromagnetic bandgap surface wave antenna that can support both a surface wave and normal mode radiation for communications at 2.45 GHz. In the surface wave mode, the antenna has a monopole-like radiation pattern with a measured gain of 4.4 dBi at ±49° and a null on boresight. In the normal mode, the antenna operates like a back-fed microstrip patch antenna.

  9. Wideband Monopole Antenna for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Umar

    2013-03-01

    Full Text Available This paper presents a circular patch antenna for WLAN applications with wideband characteristics. It is shown that impedance of the antenna is matched over wideband by using the partial ground plane and quarter wave transformer with slotted TX-Line. Ansoft HFSS is used for simulation tool to map the numerical results for the return loss frequency behavior of antenna. Measure of bandwidth, return loss and radiation pattern are also reported with satisfactory performance. As the patch is circular in shape so substrate is kept in the same shape. The shape of the substrate is also discussed in details for specific antenna designs.

  10. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  11. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M;

    2011-01-01

    The field of antenna measurements is lacking a Golden Standard, i.e. an antenna of which the pattern is known by definition. To gain confidence in the performance of a range, including the procedures and skills of the operators, range comparison has been a popular tool for over three decades. In......, specifically designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable...

  12. Mathcad computer applications predicting antenna parameters from antenna physical dimensions and ground characteristics

    OpenAIRE

    Gerry, Donald D.

    1993-01-01

    Approved for public release; distribution is unlimited. This report provides the documentation for a set of computer applications for the evaluation of antenna parameters. The applications are written for the Mathcad personal computer software for various antenna types listed in the thesis index. Antenna dimen Lieutenant Commander, United States Navy

  13. TOLPA (Tripod Omnidirectional Low Profile Antenna): a vertically polarized antenna with 90% bandwidth

    OpenAIRE

    Zürcher, J.-F.

    2013-01-01

    A new vertically polarized omnidirectional antenna, inspired by an old design, has been studied, optimized, realized and measured. With a radiation pattern similar to the classical monopole on a ground plane, the proposed antenna concept provides a much larger bandwidth and a very low profile. This antenna has numerous potential applications for mobile communications, UWB and others.

  14. Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes

    Science.gov (United States)

    Byun, Woo Jin; Kim, Kwang Seon; Kim, Bong Su; Lee, Young Seung; Song, Myung Sun; Choi, Hyung Do; Cho, Yong Heui

    2016-06-01

    A multiplexed Cassegrain reflector antenna with a 2 × 2 open-ended rectangular waveguide (OERW) matrix feed and an orbital angular momentum (OAM) mode mux is proposed for the simultaneous generation of three OAM modes (l = 0, ±1). The OAM mode mux (OMM) was designed using sequential combinations of quadrature hybrids, crossovers, and phase shifters to multiplex and demultiplex three OAM modes at the same time. The 2 × 2 OERW matrix feed and the OMM were separately measured and their performances were verified according to proposed theories. A near-field antenna measurement for a multiplexed Cassegrain reflector antenna was conducted to obtain the far-field magnitude and phase patterns around polar elevation angle θ and azimuthal angle ϕ, thus confirming that our antenna can produce three OAM modes simultaneously. We also measured the communication link characteristics of two identical multiplexed antennas. The measurement results show that the channel isolation of three OAM modes is more than 12.7 [dB] and 17 [dB] for fixed and compensated receiver positions, respectively, indicating that the proposed antenna system can be used for independent communication links with the same frequency and polarisation.

  15. Ion Bernstein wave antenna loading measurements on the DIII-D tokamak

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Porkolab, M.; Chiu, S. C.; Cary, W. P.; Prater, R.

    1993-04-01

    Antenna loading measurements carried out during high power ion Bernstein wave (IBW) heating experiments on the DIII-D tokamak indicate that efficient, direct coupling to the IBW at ω lesssim 2ωci as predicted by linear coupling theory did not occur. Whereas strong peaking in the loading resistance near cyclotron harmonics is predicted for high edge densities (ω front of the antenna, thus allowing coupling to the cold plasma lower hybrid wave (LHW). A linear LHW coupling code including the modified density profile due to the ponderomotive force reproduces the measured dependence of antenna loading on toroidal magnetic field, edge density, antenna frequency and antenna phasing. Further evidence for the ponderomotive force is obtained from reactive loading measurements which indicate that the plasma is pushed away from the antenna as the radiofrequency power level is increased. The results indicate that the lack of central ion heating observed during DIII-D IBW experiments may be due to a lack of efficient mode transformation from the coupled LHW to a centrally propagating IBW, possibly as a result of nonlinear mechanism(s)

  16. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  17. From Antenna to Assay

    Science.gov (United States)

    Moore, Evan G.; Samuel, Amanda P. S.; Raymond, Kenneth N.

    2009-01-01

    Conspectus Ligand-sensitized, luminescent lanthanide(III) complexes are of considerable importance because their unique photophysical properties (microsecond to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts) make them well suited as labels in fluorescence-based bioassays. The long-lived emission of lanthanide(III) cations can be temporally resolved from scattered light and background fluorescence to vastly enhance measurement sensitivity. One challenge in this field is the design of sensitizing ligands that provide highly emissive complexes with sufficient stability and aqueous solubility for practical applications. In this Account, we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time-Resolved Fluorescence (HTRF) technology. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms and using multi-chromophore chelates to increase molar absorptivity; earlier examples utilized a single pendant chromophore (that is, a single “antenna”). Ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ∼60% that are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM chromophore and time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally, we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong

  18. 3D UTD Modeling of a Measured Antenna Disturbed by a Dielectric Circular Cylinder in WBAN Context

    OpenAIRE

    Plouhinec, Eric; Uguen, Bernard; Mhedhbi, Meriem; Avrillon, Stéphane

    2014-01-01

    This paper describes a work realized for On-Body antennas characterization: the 3D deterministic modeling of a measured antenna disturbed by a dielectric circular cylinder of finite length. This prediction model is based on the ray-tracing technique for the electromagnetic wave paths search and the Uniform Theory of Diffraction (UTD) for the modeling of the electromagnetic waves interactions with the cylinder. After a detailed description, the model is validated in 3D with measurements made f...

  19. A study of two kinds of electromagnetic pulse antennas with a continuous resistive loading using the FDTD method

    International Nuclear Information System (INIS)

    The cylindrical and conical monopole antenna with a continuous resistive loading is considered as a radiator in the experiments of the electromagnetic pulse compatibility. The various principle of the resistive loading is discussed in details and the characters of the antennas are studied using the Finite-Difference Time-Domain (FDTD) method. The key techniques of the calculating are presented. The results are in good agreement with the documents and the theory

  20. A telemetry antenna system for unmanned air vehicles

    OpenAIRE

    DOĞAN, Mustafa; Dogan, Mustafa; Üstüner, Fatih; Ustuner, Fatih

    2010-01-01

    This paper presents a low VSWR high gain telemetry antenna system manufactured for UAVs that provides 360± coverage in the roll plane of the UAV. Proposed telemetry antenna system includes four telemetry antennas, one power divider that has one input and four output terminals which feeds the telemetry antennas with equal magnitude and phase. Proposed high gain telemetry antennas are based on the feeding of the microstrip patch antenna via aperture coupling. Full coverage in the roll plane of ...

  1. Improved patch antenna performance by using a metamaterial cover

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-ming; HU Jun

    2007-01-01

    A new patch antenna system with a metamaterial cover is presented in this paper. The impedance, radiation pattern, and directivity of such an antenna are studied. A performance comparison between the conventional patch antenna and the new metamaterial patch antenna is given. The results show that the directivity of the metamaterial patch antenna is significantly improved. The effect of the metamaterial cover's layer numbers on the radiation pattern of the patch antenna is also studied.

  2. CPW-Fed Ring Antenna For UWB Applications

    OpenAIRE

    Sheetal Kamboj; Amit Kumar

    2014-01-01

    This paper presents a Coplanar waveguide feed ( CPW) monopole ring antenna for ultra wideband applications. The proposed antenna consist of ring type patch embedded with horizontal strip in the patch. The parametric study is performed to understand the characteristics of the proposed antenna. The antenna exhibits impedance bandwidth from 3.7 GHz to 10.7 GHz. The various antenna parameters are studied. The proposed antenna is suitable for UWB applications.

  3. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B0. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B0. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  4. Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas

    Science.gov (United States)

    Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)

    2008-01-01

    Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.

  5. Breadboard Signal Processor for Arraying DSN Antennas

    Science.gov (United States)

    Jongeling, Andre; Sigman, Elliott; Chandra, Kumar; Trinh, Joseph; Soriano, Melissa; Navarro, Robert; Rogstad, Stephen; Goodhart, Charles; Proctor, Robert; Jourdan, Michael; Rayhrer, Benno

    2008-01-01

    A recently developed breadboard version of an advanced signal processor for arraying many antennas in NASA s Deep Space Network (DSN) can accept inputs in a 500-MHz-wide frequency band from six antennas. The next breadboard version is expected to accept inputs from 16 antennas, and a following developed version is expected to be designed according to an architecture that will be scalable to accept inputs from as many as 400 antennas. These and similar signal processors could also be used for combining multiple wide-band signals in non-DSN applications, including very-long-baseline interferometry and telecommunications. This signal processor performs functions of a wide-band FX correlator and a beam-forming signal combiner. [The term "FX" signifies that the digital samples of two given signals are fast Fourier transformed (F), then the fast Fourier transforms of the two signals are multiplied (X) prior to accumulation.] In this processor, the signals from the various antennas are broken up into channels in the frequency domain (see figure). In each frequency channel, the data from each antenna are correlated against the data from each other antenna; this is done for all antenna baselines (that is, for all antenna pairs). The results of the correlations are used to obtain calibration data to align the antenna signals in both phase and delay. Data from the various antenna frequency channels are also combined and calibration corrections are applied. The frequency-domain data thus combined are then synthesized back to the time domain for passing on to a telemetry receiver

  6. Enabling Technologies for Fabrication of Large Area Flexible Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible, foldable, and/or inflatable antenna systems open up a wealth of opportunities. Integrating antenna elements and related electronics onto flexible...

  7. Micro strip Patch Antenna and its Applications: a Survey

    Directory of Open Access Journals (Sweden)

    Indrasen Singh

    2011-09-01

    Full Text Available The study of microstrip patch antennas has made great progress in recent years. Compared with conventional antennas, microstrip patch antennas have more advantages and better prospects. They are lighter in weight, low volume, low cost, low profile, smaller in dimension and ease of fabrication and conformity. Moreover, the microstrip patch antennas can provide dual and circular polarizations, dual-frequency operation, frequency agility, broad band-width, feedline flexibility, beam scanning omnidirectional patterning. In this paper we discuss the microstrip antenna, types of microstrip antenna, feeding techniques and application of microstrip patch antenna with their advantage and disadvantages over conventional microwave antennas.

  8. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  9. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  10. Ultrawideband antennas design and applications

    CERN Document Server

    Valderas, Daniel; Puente, David

    2010-01-01

    Ultrawideband (UWB) technology, positioned as the cutting edge of research and development, paves the way to meet the emerging demands set by broadband wireless applications, such as high-speed data transmission, medical imaging, short-range radars, electromagnetic testing, etc. This breathtaking resource builds upon the basics of UWB technology to provide a complete compilation of figures of merit along with a vital state-of-the-art of the different antenna alternatives that are to be employed according to the specific application. Without excessive recourse to mathematics, this volume emphas

  11. HF spectrum occupancy and antennas

    OpenAIRE

    Yurdanur Tulunay; Yildirim Bahadirlar; Ersin Tulunay; Haris Haralambous; Lefteris Economou; Joaquim Azevedo; António Casimiro; A. Serdar Türk; E. Michael Warrington

    2009-01-01

    This paper deals with the research made during the COST 296 action in the WG2, WP 2.3 in the antennas and

    HF spectrum management fields, focusing the Mitigation of Ionospheric Effects on Radio Systems as the subject of this COST action.



  12. Solar energy collection by antennas

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R.; Green, M.A.; Puzzer, T. [University of New South Wales, Sydney (Australia). Centre for Advanced Silicon Photovoltaics and Photonics

    2002-12-01

    The idea of collecting solar electromagnetic radiation with antenna-rectifier (rectenna) structures was proposed three decades ago but has not yet been achieved. The idea has been promoted as having potential to achieve efficiency approaching 100% but thermodynamic considerations imply a lower limit of 85.4% for a non-frequency-selective rectenna and 86.8% for one with infinite selectivity, assuming maximal concentration in each case. This paper reviews the history and technical context of solar rectennas and discusses the major issues: thermodynamic efficiency limits, rectifier operation at optical frequencies, harmonics production and electrical noise. (author)

  13. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... of the emerging and huge demand for an increasing number of ever smaller mobile communication devices. The classical investigations of fundamental ESA performance limitations are usually formulated in terms of a lower bound upon the radiation quality factor Q, because for ESAs, Q is directly related...

  14. Methods of Signal Processing for Adaptive Antenna Arrays

    CERN Document Server

    Titarenko, Larysa

    2013-01-01

    So far there does not exist any theory of adaptive spatial signal processing (ASSP) for signals with uncertain parameters. This monograph is devoted to the development of this theory, which is very important in connection with wide spreading of telecommunications and radio links in the modern society. This theory can be applied for the development of effective radio communications. In the book some original approaches are proposed targeting the development of effective algorithms of ASSP with not exactly known parameters. They include both probabilistic and deterministic approaches for synthesis of robust algorithms of ASSP. The solution of problems also can be reduced to the construction of some operators for the Banach space which is presented in the book.  “Methods of Signal Processing for Adaptive Antenna Arrays” targets professionals, students and PhD students in the area of telecommunications and should be useful for everybody connected with the new information technologies.

  15. Combined Calibration Method and its Realization for Direction Finding Antenna Systems with Patch Antennas

    Directory of Open Access Journals (Sweden)

    R. Seller

    2007-09-01

    Full Text Available A novel radio channel compensation method aiming to give optimal calibration for microstrip antenna array systems is presented in this paper, realized for an actual DOA measurement antenna system using microstrip antennas to sample the electromagnetic field, operating at 4.5GHz. This new approach considers mismatch between antennas and channel RF ports, channel transmission inequalities, and also decreases the effects of multipath propagation components of calibration reference signals by placing the calibration reference signal feeding network on the microstrip antenna array bearer, directly beside the antenna patches. It is combined with orthogonal spread spectrum calibration signal utility for continuous uninterrupted measurements. The spread spectrum calibration signal is orthogonal to the continuous wave (CW signal to be measured, therefore, the 2 signals can be separated in the receiver, enabling them to be present simultaneously. DOA measurement results are shown, measured with the realized integrated microstrip patch antenna array with calibration network hardware.

  16. Juno Microwave Radiometer Patch Array Antennas

    Science.gov (United States)

    Chamberlain, N.; Chen, J.; Focardi, P.; Hodges, R.; Hughes, R.; Jakoboski, J.; Venkatesan, J.; Zawadzki, M.

    2009-01-01

    Juno is a mission in the NASA New Frontiers Program with the goal of significantly improving our understanding of the formation and structure of Jupiter. This paper discusses the modeling and measurement of the two patch array antennas. An overview of the antenna architecture, design and development at JPL is provided, along with estimates of performance and the results of measurements.

  17. Antenna Design Exploiting the Duplex Isolation

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2013-01-01

    A novel design addressing the antenna bandwidth issue for future communication standards on handsets is presented. It consists of a tunableantenna- pair for operation with a tunable front-end. The antennas are narrow-band and frequency-reconfigurable. This Letter focuses on the low communication ...

  18. Koch-Fractal Yagi-Uda Antenna

    DEFF Research Database (Denmark)

    Teisbæk, Henrik Bjørn; Jakobsen, Kaj Bjarne

    2009-01-01

    A Yagi-Uda antenna constructed of three Koch fractal elements is presented. Simulated and measured characteristics of the antenna shows a half-power beam-width of 64◦ achieved with dimensions below a third of a wavelength. Furthermore, the Koch dipole and its size miniaturization capabilities are...

  19. 38 GHz Antennas on Micromachined Silicon Substrates.

    OpenAIRE

    Marcelli, Romolo; Dragoman, M.; Neculoiu, Dan; Giacomozzi, Flavio; Muller, Alexandru; Nitescu, N.

    2001-01-01

    A new configuration of a double folded double slot CPW feed micromachined antenna array was realized on a 1.5 µm thin three-layer dielectric membrane fabricated on a silicon substrate. The antenna was designed for an operating frequency of 38 GHz, and the double folded configuration was used for minimizing the membrane extension.

  20. Slotted waveguide antennas for practical radar systems

    OpenAIRE

    Sekretarov, S. S.; Vavriv, D. M.

    2009-01-01

    This article summarizes recent results on the development, fabrication, and application of slotted waveguide antenna systems for practical radar systems, including Ka-band helicopter collision avoidance and weather radar, Ku-band surveillance and tracking radar, and X-band airborne SAR system. The corresponding design solutions, antenna characteristics, and test results are presented and discussed.

  1. 47 CFR 74.1237 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.1237 Section 74.1237... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be... at which there is available a suitable signal from the primary station. The transmitting...

  2. Multiple Antennas Arm Effective MIMO Systems

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2007-01-01

    Understanding the interactions among different combinations of receive and transmit antenna elements can help increase the capacity of cellular wireless systems.......Understanding the interactions among different combinations of receive and transmit antenna elements can help increase the capacity of cellular wireless systems....

  3. Miniaturization of UWB Antennas on Organic Material

    Directory of Open Access Journals (Sweden)

    Symeon Nikolaou

    2016-01-01

    Full Text Available Three planar, CPW-fed, UWB antennas with increasingly reduced size are presented and the miniaturization method is discussed. The first antenna is a CPW-fed elliptical slot with an uneven U-shaped tuning stub, the second antenna is a cactus shaped monopole, and the third one is a miniaturized version of the cactus shaped monopole antenna. All presented antennas have a simulated and measured return loss below −10 dB over the 3.1 to 10.6 GHz UWB frequency range and mostly omnidirectional radiation patterns. The proposed antennas are fabricated on liquid crystal polymer (LCP. The CPW-fed slot antenna requires an overall board dimension of 38 mm × 40 mm, and the evolved cactus monopole is confined in a 28 mm × 32 mm board, while the final miniaturized cactus monopole is printed on 28 mm × 20 mm board, resulting in a 41% and 63% size reduction, respectively. Using both simulations and measurements, the paper analyzes the response of all three antennas and discusses and demonstrates the effectiveness of the implemented miniaturization method.

  4. Compact Spiral Loaded Printed Monopole Antenna

    OpenAIRE

    Bao, Xiulong; Ammann, Max

    2010-01-01

    A novel miniaturized printed monopole structure is proposed. The antenna comprises a printed monopole strip which is loaded by a spiral located on the rearside connected by a via. The inductive loading provided by the spiral enables considerable miniaturization of antenna. A parametric study of key dimensional parameters and groundplane are discussed.

  5. Possibilities to use retrodirective antennas in radar systems

    Directory of Open Access Journals (Sweden)

    Aleksandar M. Pavić

    2012-04-01

    Full Text Available Possibilities to use retrodirective antennas in modern radar systems are presented in this paper. The basics of retrodirective theory, practical realizations of retrodirective arrays using corner reflectors, Van-Atta and heterodyne elements are considered. A model of a retrodirective radar for automatic target tracking is presented as well as the differences between commonly used phase arrays and retrodirective arrays with simpler, cheaper signal processors and faster target detection, as mayor advantages of this technology. Its advantages and disadvantages are explained. In the end, some possibilities for this technology application are discussed as well as further research trends.

  6. Arm Locking for the Laser Interferometer Space Antenna

    Science.gov (United States)

    Maghami, P. G.; Thorpe, J. I.; Livas, J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements.

  7. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    Science.gov (United States)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  8. A simple EHF hemispheric coverage antenna

    Science.gov (United States)

    Lee, J. C.

    1994-08-01

    A circulary polarized, axially symmetric, wide-beam radiator is required in many applications, including TT&C for UAV's and satellites. This report discusses some existing wide-beam antenna designs including divergent lenses and reflectors and introduces a new antenna design. Using a simple dielectric ring in conjunction with a dielectric loaded circular waveguide opening, a near ideal, axially symmetric, hemispheric coverage antenna with circular polarization of good axial ratio and wide-band impedance match is realized. Mechanically, the antenna is small, lightweight, and low cost. The dielectric used is the common Rexolite. Since no lossy materials or resonant scatterers are used, the antenna performance is inherently broadband and low loss. A K sub a-band prototype as well as compact designs for both Q- and K-bands are described.

  9. A Microstripe Slotted Patch Antenna Using Amc

    Directory of Open Access Journals (Sweden)

    Manju Saini,

    2014-04-01

    Full Text Available Microstrip patch antenna offer an attractive solution to compact and ease-low-cost design of modern wireless communication system due to their many advantages as light weight and low volume, low profile, planer configuration which can be easily made conformal to low fabrication cost and capability of obtaining dual and triple frequency operations. A microstrip patch antenna with bandwidth enhancement by means of artificial magnetic conductor (AMC/electromagnetic band-gap structure (EBG is studied in this paper. The three different geometry shapes, the U, E and H are developed from rectangular patch. The antennas studied in this paper are simulated using sonnet software and results compared with the conventional rectangular patch antenna. The results obtained clearly shows that , bandwidth of conventional rectangular microstrip antenna can be enhanced has been studied

  10. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions a...... essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit on...... subsequently tuned to 50 ohms simply by cutting out the excessive arm length. This tuning technique is especially useful in practical applications, since it allows the antenna to be tuned in-place and thereby compensate for various inaccuracies as well as for an antenna environment....

  11. Structurally Integrated Antenna Concepts for HALE UAVs

    Science.gov (United States)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  12. Textile UWB Antenna Bending and Wet Performances

    Directory of Open Access Journals (Sweden)

    Mai A. R. Osman

    2012-01-01

    Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.

  13. STUDY ON A NOVEL ELLIPSOIDAL HELICAL ANTENNA

    Institute of Scientific and Technical Information of China (English)

    Xia Dongyu; Zhang Hou; Wang Chong; Zhang Qianyue

    2007-01-01

    A novel ellipsoidal helical antenna is proposed and studied in this letter.As a special instance,the hemispherical helical antennas are analyzed firstly,which indicates that the characteristics of a two-arm unit are better than that of a single-arm unit.Based on this,the ellipsoidal helical antenna,formed by changing the axial direction's dimension of the two-arm hemispherical helical antenna,is analyzed by the moment method with curved basic and testing function.The effects to VSWR (Voltage Standing Wave Ratio),gain,polarization and patterns by the axial direction's dimensions are investigated.The study results provide dependable gist to the choice of antenna format according to the practical requirements.

  14. DESIGN OF PIFA ANTENNA FOR MEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A.Umamakeswari

    2013-02-01

    Full Text Available The emerging techniques in the medical field include the use of bio implantable antennas to diagnose the diseases. The major disadvantage of these techniques is the side-effects caused by the radiations in the human body. There have been a lot of advancements in this area to reduce the radiation emitted. One among them is the use of PIFA antenna inside an indestructible capsule (Polyetheretherketones which is helpful in both short and long range communications. The workincludes the design of PIFA antenna using IE3D and MATLAB software. The characteristics of the antenna are analyzed with the aim to reduce the size and radiation effect of antenna and to increase thegain, efficiency and data rate.

  15. WIRELESS ENERGY TRANSFER USING MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    Leong Kah Meng

    2014-01-01

    Full Text Available This study presents a concept on wireless energy transmission using microstrip antenna pairs. Microstrip antenna is chosen in its implementation in wireless energy transfer application primarily due to its characteristics: Its ease of analysis, fabrication and their attractive radiation characteristics. The outcome of this research is the fabrication of two microstrip antennas with resonant frequency of 1.94 GHz and 2.5 GHz respectively. The performance and the power gain for each of microstrip antennas which act as the transmitter and receiver respectively were evaluated within certain distance. The limitations of the experiment as well as the possible solutions in increasing system efficiency are being discussed. Experiment shows that the microstrip antenna with a lower resonant frequency performs better in long distance wireless energy transmission.

  16. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  17. Evolutionary Optimization of Yagi-Uda Antennas

    Science.gov (United States)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.

    2001-01-01

    Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.

  18. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  19. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    Science.gov (United States)

    Shao, Shuai

    proximity and designing broad band and mechanically robust RFID tag antennas for elastic materials. As a first step, the effects of dielectric materials on an antenna's impedance match and radiation pattern are investigated. The detuning effect is quantified based on the theoretical frequency scaling and effective permittivity of a dielectric material of finite thickness. Using simple formulas, the operational range of a tag can be predicted without intensive full-wave simulations of different materials. Next, a spectral domain Green's function is applied to compute the antenna pattern when the tag is mounted on or inside a layered medium. The optimal placement of the tag is found based on the focusing effect that the material has on the gain pattern of the antenna. For tires, the steel ply in the sidewall of a tire looks like a periodic wire grating. The performance of an antenna placed close to a wire grating is predicted using Floquet theory. The results indicate that steel plies embedded in the tire can be utilized as a reflector to further focus the gain pattern and increase the read range of a tag. Using these design tools and theoretical analysis, several broadband RFID tag antennas are designed for multi-layered materials. A novel stretchable conductive textile (E-fiber) based tag antenna is also developed for placement in elastic materials. Prototype antennas are fabricated and embedded in a tire during the tire manufacturing process. Experimental results indicate that tags with the new antennas achieve significant improvement compared with commercially available tags.

  20. Enhancement of Antenna Performance for Data Transmission

    International Nuclear Information System (INIS)

    In remote radiation measurements that are being developed at the Department of Engineering Physics, Faculty of Engineering Gadjah Mada University, has constraints on the quality of its communications system. The problem that needs to be resolved is on antenna system. Optimum antenna performance, potentially increase effectively telecommunication quality, and minimizing error in data communication system. In every antenna parameter measurement that used in this research, the conclusion is antenna that tuned in 141.6 MHz frequency (A state) is more better than it tuned in 145.6 MHz frequency (B state). Antenna in A state can reach value of ρ at least 0.01 the return-loss measured at 53.98 dB and field strength meter show 1.95 volt. It compared with B state antenna, where it has ρ value at least only can reach 0.19 then return-loss measured only at 20.44 dB and the measuring by field strength meter only 1.2 volts in the same range with A state antenna. In this research, the same antenna is tuned in every frequency, but the maximum result has reached in antenna that tuned in 141.6 MHz frequency. The conclusion of this research is every antenna only has one optimum working frequency in a band (but it is not harmonic band). This information is important and can be used as references for any practitioner in field of telemetry system and tele-control although for radio communication practitioner. (author)

  1. Antenna complexes protect Photosystem I from Photoinhibition

    Directory of Open Access Journals (Sweden)

    Hienerwadel Rainer

    2009-06-01

    Full Text Available Abstract Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed.

  2. Evolutionary Optimization of a Quadrifilar Helical Antenna

    Science.gov (United States)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated antenna synthesis via evolutionary design has recently garnered much attention in the research literature. Evolutionary algorithms show promise because, among search algorithms, they are able to effectively search large, unknown design spaces. NASA's Mars Odyssey spacecraft is due to reach final Martian orbit insertion in January, 2002. Onboard the spacecraft is a quadrifilar helical antenna that provides telecommunications in the UHF band with landed assets, such as robotic rovers. Each helix is driven by the same signal which is phase-delayed in 90 deg increments. A small ground plane is provided at the base. It is designed to operate in the frequency band of 400-438 MHz. Based on encouraging previous results in automated antenna design using evolutionary search, we wanted to see whether such techniques could improve upon Mars Odyssey antenna design. Specifically, a co-evolutionary genetic algorithm is applied to optimize the gain and size of the quadrifilar helical antenna. The optimization was performed in-situ in the presence of a neighboring spacecraft structure. On the spacecraft, a large aluminum fuel tank is adjacent to the antenna. Since this fuel tank can dramatically affect the antenna's performance, we leave it to the evolutionary process to see if it can exploit the fuel tank's properties advantageously. Optimizing in the presence of surrounding structures would be quite difficult for human antenna designers, and thus the actual antenna was designed for free space (with a small ground plane). In fact, when flying on the spacecraft, surrounding structures that are moveable (e.g., solar panels) may be moved during the mission in order to improve the antenna's performance.

  3. The effect of struts on the radiation diagram of Cassegrain antennas

    International Nuclear Information System (INIS)

    This work presents a study on the effect of subreflector support members of Cassegrain antennas using the theory of scattering by cylinders structures. Expression for the surface current densities and arbitrary cross sections cylinders are developed, and the components for the scattered field are obtained. Using these results we analyse the effect of the struts on the gain reduction, and the rise of maximum side-lobe level. The final results obtained are then compared to other approximate theories. (author)

  4. Investigation of microwave antennas with improved performances

    Science.gov (United States)

    Zhou, Rongguo

    This dissertation presents the investigation of antennas with improved performances at microwave frequencies. It covers the following three topics: the study of the metamaterial with near-zero index of refraction and its application in directive antenna design, the design technique of a wideband circularly polarized patch antenna for 60GHz wireless application and the investigation of a novel direction of arrival (DOA) estimation technique inspired by human auditory system. First, the metamaterial composed of two-dimensional (2-D) metallic wire arrays is investigated as an effective medium with an effective index of refraction less than unity (neff effective medium parameters (permittivity epsilon eff, permeability mueff and neff ) of a wire array are extracted from the finite-element simulated scattering parameters and verified through a 2-D electromagnetic band gap (EBG) structure case study. A simple design methodology for directive monopole antennas is introduced by embedding a monopole within a metallic wire array with neff effect of the monopole antenna is demonstrated in both simulation and experiment at X-band (8 -- 12 GHz). The measured antenna properties including return loss and radiation patterns are in good agreement with simulation results. Parametric studies of the antenna system are performed. The physical principles and interpretations of the directive monopole antenna embedded in the wire array medium are also discussed. Second, a fully packaged wideband circularly polarized patch antenna is designed for 60GHz wireless communication. The patch antenna incorporates a diagonal slot at the center and features a superstrate and an air cavity backing to achieve desired performances including wide bandwidth, high efficiency and low axial ratio. The detailed design procedure of the circularly polarized antenna, including the design of the microstrip-fed patch antenna and the comparison of the performances of the antenna with different feeding interfaces

  5. GPS/GNSS Antennas. By B. Rama Rao, W. Kunysz, R. Fante and K. McDonald, Artech House, 2012; 420 Pages. Price £109.00, ISBN 978-1-59693-150-3

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2013-02-01

    Full Text Available This practical resource provides a current and comprehensive treatment of GPS/GNSS antennas, taking into account modernized systems and new and developing applications. The book presents a number of key applications, describing corresponding receiver architectures and antenna details. You find important discussions on antenna characteristics, including theory of operation, gain, bandwidth, polarization, phase center, mutual coupling effects, and integration with active components.

  6. Planetary protection for Europa radar sounder antenna

    Science.gov (United States)

    Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu; McEachen, Michael; Allen, Scotty; Kirchner, Donald; Blankenship, Donald

    2016-05-01

    The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods.

  7. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  8. Compact Triple Band Slotted Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Ram Singh Kushwaha

    2012-03-01

    Full Text Available This paper presents a compact triple band slot microstrip patch antenna for 1.7/2.92 GHz WLAN applications. The radiating element of the proposed antenna consists of Swastika symbol slot operating at 1.8 GHz, 2.09 GHz, and 2.92 GHz bands. The antenna size is very compact (50 mm x 50 mm x 1.6 mm and covers 1.8 GHz to 2.92 GHz and can be used for AMPS, GSM and WLAN applications. The antenna is fed from a single 50 Ω coaxial cable. Using IE3D software package of Zeland, according to the set size, the antenna is simulated. The composite effect of integrating these techniques and by introducing the novel slotted patch offers a low profile, wide bandwidth, high gain and compact antenna element. The computer simulation results show that the antenna can realize wide band characters with each band having good impedance bandwidth (VSWR ≤ 2 for all the three resonant frequencies.

  9. Compact Directional Microwave Antenna for Localized Heating

    Science.gov (United States)

    Fink, Patrick W.; Lin, Gregory Y.; Chu, Andrew W.; Dobbins, Justin A.; Arndt, G. Dickey; Ngo, Phong

    2008-01-01

    A directional, catheter-sized cylindrical antenna has been developed for localized delivery of microwave radiation for heating (and thus killing) diseased tissue without excessively heating nearby healthy tissue. By "localized" is meant that the antenna radiates much more in a selected azimuthal direction than in the opposite radial direction, so that it heats tissue much more on one side than it does on the opposite side. This antenna can be inserted using either a catheter or a syringe. A 2.4-mm prototype was tested, although smaller antennas are possible. Prior compact, cylindrical antennas designed for therapeutic localized hyperthermia do not exhibit such directionality; that is, they radiate in approximately axisymmetric patterns. Prior directional antennas designed for the same purpose have been, variously, (1) too large to fit within catheters or (2) too large, after deployment from catheters, to fit within the confines of most human organs. In contrast, the present antenna offers a high degree of directionality and is compact enough to be useable as a catheter in some applications.

  10. Logo Antenna for 5.8 GHz Wireless Communications

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work the un...

  11. Multiport antenna systems for space-time communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Pelosi, Mauro; Pedersen, Gert Frølund

    The paper presents the concept of multiport antenna systems where multiple active and passive ports are deployed. The passive ports, implemented via tunable reactance-assisted (parasitic) antennas, can alter the far-field and near-field properties of the antenna system expressed by the antenna...

  12. 47 CFR 80.290 - Auxiliary receiving antenna.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not...

  13. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  14. 47 CFR 17.4 - Antenna structure registration.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed...

  15. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  16. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2006-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas, in particular), bow-tie antennas, and other. Some numerical and experimental results are...

  17. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2004-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas in particular), bow-tie antennas, and other. Some numerical and experimental results are...

  18. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas in particular), bow-tie antennas, and other. Some numerical and experimental results are...

  19. Smart antenna technology for structural health monitoring applications

    Science.gov (United States)

    Özdemir, Tayfun; Goykhman, Yuriy; Oberdier, Larry; Lynch, Jerome

    2010-04-01

    A smart antenna has been developed for structural health monitoring. The antenna is based on Monarch's GEN 2 selfstructuring antenna (SSA) technology and provides polarization and beam-diversity for improving signal-to-noise ratio (SNR). The antenna works with University of Michigan's Narada platform, where a microcontroller monitors the RSSI and selects the best beam to maintain reliable RF link. Antenna has two wide beams for each polarization and the beams are selected by applying appropriate DC voltages to the RF switches on the antenna aperture. Paper presents the GEN C antenna, which is a smaller version of the GEN 2B with comparable performance features.

  20. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  1. Location Refinement and Power Coverage Analysis Based on Distributed Antenna

    Institute of Scientific and Technical Information of China (English)

    赵晓楠; 侯春萍; 汪清; 陈华; 浦亮洲

    2016-01-01

    To establish wireless channel suitable for the cabin environment, the power coverage was investigated with distributed antenna system and centralized antenna system based on the actual measurement of channel im-pulse response. The results indicated that the distributed antenna system has more uniform power coverage than the centralized antenna system. The average relative errors of receiving power of both antennas were calculated. The optimal position of the centralized antenna was obtained by Gaussian function refinement, making the system achieve a better transmission power with the same coverage effect, and providing a reference for antenna location in the future real communication in the cabin.

  2. Design of Monopole Antenna Based on Fractal Geometry

    OpenAIRE

    Zhao Yuanqing; Qiu Jinghui; Wang Wei

    2014-01-01

    This paper presents a circular disc monopole antenna based on fractal geometry. The antenna is designed to be applied in UWB systems. So it is essential to ensure that the bandwidth of the antenna ranges from 3.1 GHz to 10.6 GHz, that is, IEEE 802.15.3a. However, the proposed antenna has achieved working in the required bandwidth. Compared to the antennas illustrated in most similar literatures, the proposed antenna has a much smaller size, which makes the antenna possible to be integrated wi...

  3. Multifrequency broadband polarized horn antenna

    Science.gov (United States)

    Green, K. A.

    1981-03-01

    A corrugated conical horn antenna is simultaneously fed a multiplicity of signals, two for each of five frequencies, with each of a pair of signals fed in each of two orthogonal planes for excitation of a desired spherical hybrid mode. The lowest frequency is fed into the horn through orthogonal pairs of colinear slots, each pair being fed by coaxial tee power dividers. Other signals are fed through a circular waveguide connected to the vertex. The highest frequency signals are fed through orthogonal ports near the far end of the circular waveguide. The intermediate frequency signals are fed through orthogonal ports spaced along the waveguide. Filtering is incorporated for each to maintain isolation and low insertion loss.

  4. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  5. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    Energy Technology Data Exchange (ETDEWEB)

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  6. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed numerica......An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  7. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  8. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper;

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  9. Lens Antenna For Mobile/Satellite Communication

    Science.gov (United States)

    Bodnar, D. G.; Rainer, B. K.

    1988-01-01

    Flat, compact antenna made of stripline elements aimed at fixed elevation angle but steered electronically in azimuth. Design simplified by maintaining fixed elevation and relying on width of beam to cover desired elevation range. Need for phase shifter at each radiating element eliminated by arranging elements in circles and feeding through stripline disks called "R-KR lenses". Used in Mobile/Satellite Service, antenna mounted on top of vehicle on Earth and used to keep transmitted and received antenna beams aimed approximately toward communication satellite.

  10. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book deals with the design, numerical simulation, state of the art fabrication processes and methods, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of different topologies, such as: Planar Inverted F, Printed Monopoles, Micropoles and Microstrips. Novel trends, materials, and fabrication and measurement techniques used in this vital field of antenna systems are also discussed.To the best of the editor's knowledge, at the time of publication, there are no published books targeting the vital topic of flexible antennas specifically and/or se

  11. Ultra-wideband conformal helmet antenna

    OpenAIRE

    Lebaric, J.; Ah-Tuan Tan

    2000-01-01

    The article of record may be found at http://dx.doi.org/10.1.1109/APMC.2000.926116 This paper presents the development of an ultra-wideband (300 to 3000 MHz), vertically polarized, nearly omni-directional (in azimuth) communications antenna integrated into the camouflage cover of a standard military-issue Kevlar helmet. The Helmet Camouflage Cover Antenna (referred to as the “helmet antenna”) is one of three antennas (with the combined frequency coverage from 2 to 2000 MHz) based on the an...

  12. Implanted Antennas in Medical Wireless Communications

    CERN Document Server

    Rahmat-Samii, Yahya; Balanis, Constantine

    2006-01-01

    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  13. Experimental demonstration of superdirective dielectric antenna

    Energy Technology Data Exchange (ETDEWEB)

    Krasnok, Alexander E.; Filonov, Dmitry S.; Belov, Pavel A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Simovski, Constantin R. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Aalto University, School of Electric and Electronic Engineering, Aalto FI76000 (Finland); Kivshar, Yuri S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2014-03-31

    We propose and demonstrate experimentally a simple approach for achieving superdirectivity of emitted radiation for electrically small antennas based on a spherical dielectric resonator with a notch excited by a dipole source. Superdirectivity is achieved without using complex antenna arrays and for a wide range of frequencies. We also demonstrate the steering effect for a subwavelength displacement of the source. Finally, unlike previously known superdirective antennas, our design has significantly smaller losses, at the operation frequency radiation efficiency attains 80%, and matching holds in the 3%-wide frequency band without any special matching technique.

  14. Wideband Circularly Polarized Dielectric Rod Antenna

    OpenAIRE

    Min Guo; Ji-Jun Yan; Shun-Shi Zhong; Zhu Sun

    2012-01-01

    A new dielectric rod antenna (DRA) is introduced to produce circular polarization (CP) over a wide frequency band without a complex feed network. Along with the simulated results, measured results of the antenna prototype are presented, showing a 3 dB axial ratio (AR) CP bandwidth of 17.7%. The radiation characteristics of the fabricated antenna are also demonstrated showing the measured gain of better than 6.2 dBi. Moreover, the measured impedance bandwidth (VSWR ≤2) reaches 20.1%, from 8.75...

  15. Build a circularly polarized waveguide slot antenna

    Science.gov (United States)

    Kisliuk, M.; Axelrod, A.

    1987-06-01

    The development and design of a circularly polarized waveguide slot antenna are described. Consideration is given to the resonance frequency, radiation efficiencies, excitement, and resonant conductance of the transverse and longitudinal slots. The transverse and longitudinal slots in a rectangular guide are analyzed. The voltage distribution across the slot is calculated from the solution of a standard transmission line equation; and using the Poynting theorem the fields scattered by the slot in an arbitrary frequency range are determined. The proposed antenna is examined using an equivalent circuit; a diagram of the circuit is given. The radiation, slot, and antenna efficiencies are measured.

  16. Resonant double loop antenna development at ORNL

    International Nuclear Information System (INIS)

    As part of the development of ion cyclotron resonant heating (ICRH) systems for fusion research, Oak Ridge National Laboratory (ORNL) has built resonant double loop (RDL) antennas for the Tokamak Fusion Test Reactor (TFTR) (Princeton Plasma Physics Laboratory, Princeton, NJ, US) and Tore Supra (Centre d'Etudes Nucleaire, Cadarache, France). Each antenna has been designed to deliver 4 MW of power. The electrical circuit and the mechanical philosophy employed are the same for both antennas, but different operating environments lead to substantial differences in the designs of specific components. A description and a comparison of the technologies developed in the two designs are presented. 5 refs., 4 figs., 1 tab

  17. Planar Tri-Band Antenna Design

    Directory of Open Access Journals (Sweden)

    M. Pokorny

    2008-04-01

    Full Text Available The paper briefly uncovers techniques used for a design of compact planar antennas in order to achieve the wideband and the multi-band capability. The main topic is aimed to the multi-objective optimization using genetic algorithms. A quarter-wavelength planar inverted-F antenna (PIFA using a slot and shorted parasitic patches is chosen to cover GSM900, GSM1800 and ISM2400 bands. A global multi-objective optimization uses a binary genetic algorithm with a composite objective function to tune this antenna. The impedance match and the direction of maximum gain are desired parameters to improve.

  18. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  19. A directional antenna for borehole radar

    International Nuclear Information System (INIS)

    The borehole radar system developed during phase II of the International Stripa Project has been successfully applied to mapping fracture zones up to 100 meters from the borehole in granite. The techniques previously used to determine the orientation of fracture zones (single hole reflection, crosshole reflection, crosshole tomography) have been supplemented with a directional antenna, which makes it possible to determine the orientation from measurements in a single borehole. The antenna works by synthesizing four signals to produce directional information. Tests performed in Stripa show that the resolution of the antenna is about 50

  20. Smooth Tracking Trajectory Generation of Large Antenna

    Directory of Open Access Journals (Sweden)

    Upnere S.

    2016-02-01

    Full Text Available The current paper presents an engineering approach for studies of the control algorithm designed for a mechanically robust large antenna. Feed-forward control methods with the 3rd-order polynomial tracking algorithm are supplemented to the original feed-back PID control system. Dynamical model of the existing servo system of 32m radio telescope has been developed to widen a case analysis of observation sessions and efficiency of the control algorithms due to limited access to an antenna. Algorithms along with the results from the system implemented on a real antenna as well as model results are presented.

  1. Wideband Reconfigurable Rolled Planar Monopole Antenna

    OpenAIRE

    Ruvio, Giuseppe; Ammann, Max

    2007-01-01

    A novel technique to reconfigure the frequency range of a planar monopole antenna is presented. By adjusting the degree of spiral tightness, a shift of the well-matched operating frequency range is achieved. The proposed antenna is capable of covering the frequencies in the range from 2.9 to 15 GHz, depending on the degree of spiral tightness. The antenna yields a high-efficiency across the full operating bandwidth. Radiation patterns show good omni-directional features in all primary cuts an...

  2. Antenna development for high field plasma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kong, X.; Domier, C. W.; Luhmann, N. C. Jr. [Department of Applied Science, University of California at Davis, Davis, California 95616 (United States)

    2010-10-15

    Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) are two microwave nonperturbing plasma visualization techniques that employ millimeter-wave imaging arrays with lens-coupled planar antennas, yielding time-resolved images of temperature (via ECEI) and electron density (via MIR) fluctuations within high temperature magnetic fusion plasmas. A series of new planar antennas have been developed that extend this technology to frequencies as high as 220 GHz for use on high field plasma devices with toroidal fields in excess of 3 T. Antenna designs are presented together with theoretical calculations, simulations, and experimental measurements.

  3. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    Science.gov (United States)

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications. PMID:26666399

  4. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    Science.gov (United States)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  5. UHF RFID Antenna: Printed Dipole Antenna with a CPS Matching Circuit and Inductively Coupled Feed

    OpenAIRE

    Nenad Popović

    2011-01-01

    This paper presents simulated (WIPL‐D pro) and measured results of a UHF RFID antenna realized with a dipole matched to a CPS (Coplanar Stripline) and inductively coupled with a small rectangular loop. Such a design enables achieving and controlling high values of the inductive reactance that is necessary for obtaining good match of the antenna to an Application Specific Integrated Circuit (ASIC) chip. The antenna is characterized by a simple and robust design, which results in low‐cost re...

  6. Range-Angle-Dependent Beamforming by Frequency Diverse Array Antenna

    OpenAIRE

    Wen-Qin Wang; Huaizong Shao; Jingye Cai

    2012-01-01

    This paper proposes a range-angle-dependent beamforming for frequency diverse array (FDA) antenna systems. Unlike conventional phased-array antenna, the FDA antenna employs a small amount of frequency increment compared to the carrier frequency across the array elements. The use of frequency increment generates an antenna pattern that is a function of range, time and angle. The range-angle-dependent beamforming allows the FDA antenna to transmit energy over a desired range or angle. This prov...

  7. A Linearly and Circularly Polarized Active Integrated Antenna

    OpenAIRE

    Khoshniat, Ali

    2011-01-01

    This thesis work presents a new harmonic suppression technique for microstrip patch antennas. Harmonic suppression in active integrated antennas is known as an effective method to improve the efficiency of amplifiers in transmitter side. In the proposed design, the antenna works as the radiating element and, at the same time, as the tuning load for the amplifier circuit that is directly matched to the antenna. The proposed active antenna architecture is easy to fabricate and is symmetric, so ...

  8. Circularly Polarized Solar Antenna for Airborne Communication Nodes

    OpenAIRE

    O’Conchubhair, Oisiin; Narbudowicz, Adam; McEvoy, Patrick; Ammann, Max

    2015-01-01

    A circularly polarized solar cell antenna consisting of four sequentially rotated printed inverted-F antennas is proposed. Four multicrystalline silicon solar cells act as the ground plane and the antenna is suitable for low power airborne communication nodes and wireless sensor networks. The antenna design was developed to allow 100% insolation of the cells when directly facing a light source. The low-profile antenna minimises shadowing of the solar cell for oblique angle insolation.

  9. Antenna Evaluation for Ultra-Wideband Microwave Imaging

    OpenAIRE

    Elise C. Fear; Trevor Williams; Campbell, Mark A.; Jeremie Bourqui

    2010-01-01

    Numerous antenna designs have been proposed for microwave breast imaging utilizing an ultra-wideband frequency range. The antennas are typically compact, operate in an immersion medium, and have a band covering at least 2–10 GHz. We have developed 3 antennas for our UWB microwave breast imaging system. In this contribution, we compare the performance of the antennas in order to gain insight into the relationship between antenna performance metrics and image quality.

  10. Modern antenna measurements and diagnostics including phaseless techniques

    OpenAIRE

    Rahmat-Samii, Yahya; Yaccarino, R. G.

    1997-01-01

    Microwave antenna imaging techniques are a practical and popular method for antenna diagnostic analysis. Phase retrieval methods, however, are just beginning to emerge as an alternative mircowave antenna measurements technique when phase cannot be directly measured. This article focuses on recent advances in microwave antenna imaging, diagnostic techniques, and phase retrieval methods for bi-polar planar near-field antenna measurements. An overview of the bi-polar planar near-field technique ...

  11. Planar MIMO Antenna with Slits for WBAN Applications

    OpenAIRE

    Do-Gu Kang; Jinpil Tak; Jaehoon Choi

    2014-01-01

    A planar MIMO antenna with slits for WBAN applications is proposed. The antenna consists of two PIFAs, ground pads, and two slits. By adding ground pads, the antenna size is reduced with improved impedance matching. Through two slits in a ground plane, the isolation characteristic is improved and the resonant frequency can be controlled. To analyze the antenna performance on a human body, the proposed antenna on a human equivalent flat phantom is investigated through simulations. Regardless o...

  12. A Novel Wideband Semi-planar Miniaturized Antenna

    OpenAIRE

    Ruvio, Giuseppe; Ammann, Max

    2007-01-01

    A semi-planar miniaturized antenna which operates over the FCC allocated UWB spectrum is presented. The small antenna comprises a folded conducting element connected to a printed section. Several solutions are introduced which create different current paths increasing the effective dimensions of the antenna. The antenna is examined for the stand-alone case and for the antenna mounted in various locations on a larger handset-type groundplane. The impedance and radiation characteristics ...

  13. An Introduction of Aperture Coupled Microstrip Slot Antenna

    OpenAIRE

    Zarreen Aijaz; S.C Shrivastava

    2010-01-01

    A microstrip slot antenna is very small and lightweight still it has the problem of back radiation due to which power loss occurs and the SAR increases. To reduce the back lobe a technique introduces i.e. aperture coupled microstrip slot antenna which reduces the back lobe as well as increases the bandwidth of the antenna. Aperture coupled microstrip slot antenna couples the patch antenna with microstripline through an aperture.

  14. Directional Pattern Analysis of a Linear Phased Antenna

    Directory of Open Access Journals (Sweden)

    Jan Haring

    2008-01-01

    Full Text Available An antenna array is a system compound from simply radiators (dipoles, microstrip antennas, that together form desired radiation pattern. Phased array antennas consist of multiple stationary antenna elements, that are fed coherently and use variable phase or time-delay control at each element to scan a beam to given angles in space. Variable amplitude control is sometimes also provided for antenna pattern shaping.

  15. Dual-Frequency Operation of Bow-Tie Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 张需溥

    2005-01-01

    Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.

  16. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  17. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    OpenAIRE

    B.T.P.Madhav; S.S. Mohan Reddy; Neha Sharma; J. Ravindranath Chowdary; Bala Rama Pavithra; K.N.V.S. Kishore; G Sriram; B. Sachin Kumar

    2013-01-01

    In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  18. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2013-04-01

    Full Text Available In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  19. Time-domain antenna studies for videopulse subsurface radars

    OpenAIRE

    Boryssenko, Anatoliy O.

    1999-01-01

    The results of time-domain theoretical and experimental studies of ultra-wide band antennas with impulse excitation in radiating and receiving modes are presented. The antennas under consideration, like a monopole antenna, a dipole antenna and a horn-like antenna, are used widely for high-resolution videopulse subsurface (ground-penetrating) radars and should be operated near the border between two medias with different electrical properties.

  20. Automated Antenna Design with Evolutionary Algorithms

    Science.gov (United States)

    Linden, Derek; Hornby, Greg; Lohn, Jason; Globus, Al; Krishunkumor, K.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  1. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    Science.gov (United States)

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  2. Cylindrical Dielectric Resonator Antennas with Harmonic Control as an Active Antenna Radiator

    Directory of Open Access Journals (Sweden)

    L. Lucci

    2009-01-01

    Full Text Available A cylindrical dielectric resonator antenna is proposed as a radiator for an active integrated antenna. Harmonic tuning, which is the key step in designing active antenna radiators, is achieved via a combination of shape factor control over the resonator and insertion of reactive elements in the feed system. Numerical simulations are carried out in a finite elements framework and a layout for the complete antenna is proposed, aimed at compactness for subsequent utilization of the radiator as an element in an active array for satellite communications.

  3. Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design

    Directory of Open Access Journals (Sweden)

    Jérôme Wenger

    2012-01-01

    Full Text Available Plasmonic antennas offer promising opportunities to control the emission of quantum objects. As a consequence, the fluorescence enhancement factor is widely used as a figure of merit for a practical antenna realization. However, the fluorescence enhancement factor is not an intrinsic property of the antenna. It critically depends on several parameters, some of which are often disregarded. In this contribution, I explore the influence of the setup collection efficiency, emitter's quantum yield, and excitation intensity. Improperly setting these parameters may significantly alter the enhancement values, leading to potential misinterpretations. The discussion is illustrated by an antenna example of a nanoaperture surrounded by plasmonic corrugations.

  4. Modelling of mixed-phasing antenna-plasma interactions on JET A2 antennas

    International Nuclear Information System (INIS)

    The use of mixed(monopole-dipole)-phasing of a set of ion cyclotron range of frequency antennas is potentially useful to optimize tokamak performance. However, recent mixed-phasing experiments on JET, described here, showed undesirable antenna-plasma interactions under certain circumstances. A possible physical mechanism to explain the experimental results is discussed, namely, rf-driven dc parallel currents flowing between adjacent antennas with different phasings can lead to arcing on the antenna with the largest sheath voltage. Means of controlling the interaction are discussed. (author)

  5. Wideband P-Shaped Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    M.Khalily

    2013-04-01

    Full Text Available A novel P-shaped dielectric resonator antenna (DRA is presented and investigated for wideband wireless application. By using P-shaped resonator, a wideband impedance bandwidth of 80% from 3.5 to 8.2 GHz is achieved. The antenna covers all of wireless systems like C-band, 5.2, 5.5 and 5.8 GHz-WLAN and WiMax. The proposed antenna has a low profile and the thickness of the resonator is only 5.12 mm, which is 0.06-0.14 free space wavelength. A parametric study is presented. The proposed DRA is built and the characteristics of the antenna are measured. Very good agreement between numerical and measured results is obtained.

  6. Whistler wave ducting caused by antenna actions

    International Nuclear Information System (INIS)

    Whistler waves launched from an antenna damp away for small incident power. With increasing power, undamped nondiverging waves (the ducted waves) are observed, together with a field-aligned density trough and electron heating. However, the density trough is found not only in the wave propagation regime (ω/ω/sub c/1). This implies that the density depression is mainly created by the effect of the antenna near-zone field rather than by the wave radiation pressure. The intense localized field near the antenna gives rise to electron heating which leads to the density trough. The ducting of antenna-launched whistler waves has been explained as a filamentation instability in terms of nonlinear wave-plasma interactions

  7. Metamaterial Multiband Antenna for Wireless Application

    Directory of Open Access Journals (Sweden)

    Nader AZIZI

    2014-01-01

    Full Text Available In this work a Multi-band antenna along with the innovative metamaterial structure is proposed which consists of a circular geometry incorporated with c shaped structure. This work is mainly focused on increasing the potential parameters of planar antennas and analyzing the multi band operation of proposed antenna. The impedance bandwidth of proposed antenna are covered and utilized frequency range of (2.6~3.1 GHz, (3.5~4.4 GHz and (4.7~6.2 GHz. For verifying that the proposed metamaterial structure possesses Negative values of Permeability and Permittivity within the operating frequency ranges, Nicolson-Ross-Weir method (NRW has been employed. For simulation purpose HFSS Software has been used.

  8. Implantable microwave antennas for thermal therapy

    Science.gov (United States)

    Stauffer, Paul R.

    1998-04-01

    The purpose of this article is to review the physical construction and power deposition characteristics of interstitial microwave antennas that may be used for highly localized heating of tissue at depth in the human body. Several different antenna designs are described and matched with potential clinical applications that range from moderate temperature Hyperthermia therapy to tissue- necrosing Thermal Ablation therapy. Typical clinical procedures are outlined for thermal treatment of target sites such as brain, prostate, heart, and gynecologic region tissues. Associated methods of implanting the antennas and coupling microwave energy into the surrounding tissue are also described, including the use of single or multi-chamber stiff, flexible or inflatable balloon type catheters, with or without circulating air or water cooling. With numerous references to the primary literature, this material should provide a framework for analyzing potential new applications for interstitial microwave antennas, as derived from the physical capabilities and limitations of the available hardware and techniques.

  9. Advanced Antenna for Digital Beamforming SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a wideband (500 MHz) L-band phased-array antenna for airborne Synthetic Aperture Radar (SAR) applications based on a novel approach that will make possible...

  10. Phase shifter for antenna beam steering

    Science.gov (United States)

    Jindal, Ravi; Razban, Tchanguiz

    2016-03-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  11. Optimization of Far-Field Antenna Range

    Directory of Open Access Journals (Sweden)

    O. Cerny

    2015-12-01

    Full Text Available Measurements of test antennas are performed on antenna ranges. The operated microwave far-field outdoor range was built-up in 1970’s and therefore it was not appropriate for the today measurements. Thus, it was decided to perform the complete reconstruction and testing. Some results of new ample measurement campaign are just given. The optimization of antenna range using merely measurement is very inefficient, and therefore that is done by numerical simulations. Consequently the paper surveys briefly electromagnetic wave propagation over irregular terrain. The physical optics approximation of vector problem was chosen. That allows the comparison of selected numerical simulations and measurements for the reconstructed far-field range. A possibility of antenna range optimizing by using numerical simulation considering various constraints is verified.

  12. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, and stands ready...

  13. Textile Antenna for 50 ohm Applications

    Directory of Open Access Journals (Sweden)

    Robi Dahal

    2012-01-01

    Full Text Available The new generation of textile materials have the capability to conduct electricity and at the same time be wearable. There are much more applications involved if an antenna is made from parts that are totally wearable. This new property of conductivity in textile materials is used to implement the wireless functions to clothing. In general, the antennas are made of highly conductive metal with is a solid structure, which results in stable output. The challenge with textile antenna is output stability which is given by pure textile material of the radiating element, dielectric material and also ground, which can be can be folded and twisted. The paper presents the design and fabricated output results of the textile antenna which is used for the 50 ohm system (as GPS or WLAN at 2,45 GHz.

  14. Fast cooling techniques for gravitational wave antennas

    CERN Document Server

    Furtado, S R

    2002-01-01

    The resonant-mass technique for the detection of gravitational waves may involve, in the near future, the cooling of very large masses (about 100 tons) from room temperature (300 K) to extreme cryogenic temperatures (20 mK). To cool these detectors to cryogenic temperatures an exchange gas (helium) is used, and the heat is removed from the antenna to the cold reservoir by thermal conduction and natural convection. With the current technique, cooling times of about 1 month can be obtained for cylindrical bar antennas of 2.5 tons. Should this same technique be used to cool a 100 ton spherical antenna the cooling time would be about 10 months, making the operation of these antennas impracticable. In this paper, we study the above-mentioned cooling technique and others, such as thermal switching and forced convection from room temperature to liquid nitrogen temperature (77 K) using an aluminium truncated icosahedron of 19 kg weight and 25 cm diameter.

  15. Development of ceramic-free antenna feeder

    International Nuclear Information System (INIS)

    We have proposed a ceramics-free antenna feeder line employing a ridged waveguide as a local support for IC antenna of next-generation tokamaks. One fourth mock-up model of the all metal waveguide designed for the ITER ICRF system is fabricated and electrical characteristics of the model including the coaxial line - waveguide converter are measured. Power reflection coefficient of the model including the coax-waveguide converter to the input coaxial line is estimated to be less than 15% below the cut-off frequency of 107 MHz and less than 3% above the cut-off frequency. It is found that this ceramics-free antenna support employing a ridged waveguide is quite available for IC antenna of next-generation tokamaks. (author)

  16. Microfabricated G-Band Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  17. Slot Coupled Patch Array Antenna Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is an antenna array whose beam is controlled digitally. The Phase 1 effort will assess the method needed to achieve the gain, bandwidth, and...

  18. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  19. NRAO RF Anechoic Chamber & Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  20. Microfabricated Millimeter-Wave Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  1. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  2. MEMS-Enabled Smart Reconfigurable Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A prototype wearable smart reconfigurable antenna for the Suit will be built to be used during NASA's EVA operations on lunar surface. The design is based on the...

  3. Deployable Wide-Aperture Array Antennas

    Science.gov (United States)

    Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Chu, Andrew; Scully, Robert C.

    2005-01-01

    Inexpensive, lightweight array antennas on flexible substrates are under development to satisfy a need for large-aperture antennas that can be stored compactly during transport and deployed to full size in the field. Conceived for use aboard spacecraft, antennas of this type also have potential terrestrial uses . most likely, as means to extend the ranges of cellular telephones in rural settings. Several simple deployment mechanisms are envisioned. One example is shown in the figure, where the deployment mechanism, a springlike material contained in a sleeve around the perimeter of a flexible membrane, is based on a common automobile window shade. The array can be formed of antenna elements that are printed on small sections of semi-flexible laminates, or preferably, elements that are constructed of conducting fabric. Likewise, a distribution network connecting the elements can be created from conventional technologies such as lightweight, flexible coaxial cable and a surface mount power divider, or preferably, from elements formed from conductive fabrics. Conventional technologies may be stitched onto a supporting flexible membrane or contained within pockets that are stitched onto a flexible membrane. Components created from conductive fabrics may be attached by stitching conductive strips to a nonconductive membrane, embroidering conductive threads into a nonconductive membrane, or weaving predetermined patterns directly into the membrane. The deployable antenna may comprise multiple types of antenna elements. For example, thin profile antenna elements above a ground plane, both attached to the supporting flexible membrane, can be used to create a unidirectional boresight radiation pattern. Or, antenna elements without a ground plane, such as bow-tie dipoles, can be attached to the membrane to create a bidirectional array such as that shown in the figure. For either type of antenna element, the dual configuration, i.e., elements formed of slots in a conductive

  4. The investigation of radiation characteristics of Fresnel antenna for Q-band

    OpenAIRE

    Magro, V. I.; Morozov, V M

    2003-01-01

    The general approach to analysis of zonal Fresnel antenna is considered. The frequency characteristics of Fresnel antenna are analyzed. The radiation characteristics of the Fresnel antenna are considered.

  5. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... inherently decoupled when integrated on the same handset, while also other parameters such as frequency duplex distance and interaction with the users body influence the mutual coupling....

  6. Nonlinear effects in microwave antenna feeds

    OpenAIRE

    Semenikhina, Diana V.

    1995-01-01

    The theoretical basis for the analysis of experimentally observed nonlinear effects and associated electromagnetic compatibility problems in microwaves antenna feeds has been absent so far. This caused the necessity of carrying out the present work. The paper is aimed on the research of interior nonlinear electromagnetic problems. Here, the analysis of nonlinear effects arising in microstrip antenna feed line on a concentrated nonlinear element such as diode is carried out. Evaluations of non...

  7. Deep Space Network Antenna Logic Controller

    Science.gov (United States)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  8. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-22

    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  9. Highly sensitive beam steering with plasmonic antenna

    OpenAIRE

    Guanghao Rui; Qiwen Zhan

    2014-01-01

    In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna...

  10. Broadband high efficiency active integrated antenna

    OpenAIRE

    Qin, Yi

    2007-01-01

    Active integrated antenna (MA) is a very popular topic of research during recent decades. This is mostly due to its advantages, such as compact size, multiple functions and low cost, etc. The MA system can be regarded as an active microwave circuit which the output or input port is free space instead of a conventional 50-ohm interface. The major drawbacks of the conventional MA include narrow bandwidth, low efficiency, etc. An experimental investigation on broadband slot-coupled antenna is ca...

  11. Circularly Polarized Broadband RFID Microstrip Tag Antenna

    OpenAIRE

    B. Rajini; G. V. Subrahmanyam

    2014-01-01

    In recent years, the application of radio frequency identification (RFID) operating in the ultra-high frequency (UHF) band (860-960MHz) are expanding exponentially, due to the advantages such as long reading distance, high data transfer rate, and small tag size. So the design of a CP tag antenna with broadband characteristic is presently one of the most challenging topics. This project presents a square patch passive RFID tag antenna designed for UHF band. To a...

  12. Investigation of a Short Conical Helix Antenna

    OpenAIRE

    Nakano, Hisamatsu; Mikawa, Takao; Yamauchi, Junji

    1985-01-01

    The input impedance, radiation pattern, axial ratio, and power gain of a conical helix antenna with a short arm are calculated as a function of frequency, using theoretically determined current distributions. It is shown that the antenna radiates a circularly polarized wave over a frequency range ratio of about 1:1.2, having a power gain of about 7.7 dB. The experimental results are also presented.

  13. Optimization of RFID antenna web materials

    OpenAIRE

    Perttu, Inkeri

    2015-01-01

    Radio frequency identification can be used to identify items which have antenna attached. The use of radio frequency identification continues to grow which leads to the development of the industry. Antennas can be manufactures with several methods. Etching is the most common method and the substrate used is polyethylene terephthalate (PET). This Master’s Thesis is about more sustainable manufacturing method and materials used in the process. The investigated process manufactures first a s...

  14. Optical nano-antennas and metamaterials

    OpenAIRE

    Sailing He; Yanxia Cui; Yuqian Ye; Pu Zhang; Yi Jin

    2009-01-01

    We review some recent approaches to transmission enhancement and light harvesting based on optical nano-antennas and metamaterials. Nano-cavity antennas are used to enhance the extraordinary transmission of TM-polarized light through vertical nano-slits in a metal film. The enhanced transmission of TE-polarized waves through an array of subwavelength-slits in a thin metal film at low frequencies (including microwave) is also investigated. Light harvesting with a metamaterial cloaking shell is...

  15. Broadband Approximations for Doubly Curved Reflector Antenna

    OpenAIRE

    V. Schejbal; J. Pidanic

    2010-01-01

    The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn) producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth ...

  16. OPTIMAL DESIGN OF SMART ANTENNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    Gao Feng; Liu Qizhong; Shan Runhong; Zhang Hou

    2004-01-01

    This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.

  17. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  18. Far-infrared imaging antenna arrays

    OpenAIRE

    Neikirk, Dean P.; Rutledge, David B.; Muha, Michael S.; Park, Hyeon; Yu, Chang-Xuan

    1982-01-01

    A far-infrared imaging antenna array has been demonstrated for the first time. The array is a line of evaporated silver bow-tie antennas on a fused-quartz substrate with bismuth-microbolometer detectors. The measured optical transfer function shows that the system is diffraction limited. This imaging array should find direct application in fusion plasma diagnostics. If the microbolometers can be replaced by more sensitive diode detectors, the array should also find application in radiometry a...

  19. Broadband circularly polarized antennas for UHF SATCOM

    OpenAIRE

    Tekin, İbrahim; Tekin, Ibrahim; Manzhura, Oksana; Niver, Edip

    2011-01-01

    Novel circularly polarized (CP) antenna configurations derived from Moxon type antenna (bent dipole element over a ground plane) for broadband VHF SATCOM applications. A sequence of topologies starting from a single vertical element to two vertical elements of the Moxon arms, then widened strip arm elements were studied. Further, arms were widened to bow tie structures with bents at 900.for achieving broadband operation. Bow tie elements were further split and optimized at a certain angle to...

  20. Adjusting Surfaces Of Large Antenna Reflectors

    Science.gov (United States)

    Padula, Sharon L.; Adelman, Howard M.; Bailey, Marion C.; Hoftka, Raphael T.

    1989-01-01

    New approach more effective than traditional rms-surface-distortion approach. Optimization procedure for control of shape of reflector of large space antenna (LSA). Main feature is shape-controlling mathematical mechanism driven by need to satisfy explicit EM design requirements. Uses standard finite-element structural analysis, aperture-integration EM analysis, and constrained optimization techniques to predict set of actuator inputs that improves performance of antenna while minimizing applied control effort. Procedure applicable to wide variety of LSA concepts.

  1. Design and Development of VSAT Antenna Feed .

    Directory of Open Access Journals (Sweden)

    S. Christopher

    1996-10-01

    Full Text Available The paper deals with the design and development of a dual polarised corrugated conical horn employed as a feed for parabolic reflector antennas used in very small aperture terminal applications. The VSAT antenna feed is designed, fabricated and tested to operate over a band from 3.7 GHz to 6.5GHz with good pattern symmetry, low side lobes and low cross-polarisation.

  2. Electronically steerable millimeter-wave antennas

    Science.gov (United States)

    Varadan, Vijay K.; Varadan, Vasundara V.; Jose, K. A.; Kelly, James F.

    1994-05-01

    In this paper, electronically steerable microstrip and leaky wave antennas using tunable ferroelectric material are proposed. These antennas are lightweight, low volume, low profile, and conformal. They have low fabrication costs and are easily mass produced. They are thin and do not perturb the aerodynamics of a host automobile or aircraft. Linear, circular, and dual polarization are achieved with simple changes in feed position. Beam steering is accomplished by varying the relative phase between radiating elements. In planar array, both horizontal and vertical beam can be combined to provide full scanning capabilities. Tunable ceramic phase shifters are used in these antennas. In microstrip antennas, they are deposited as thin films on the feed lines whereas in the leaky wave antennas they have been used as a traveling waveguide with a ground plane on one side and metallic periodic grating on the opposite side. The dielectric properties of the ferroelectric material are changed by a bias voltage applied to the waveguide which in turn controls the leaky wave direction of the antenna. A simple experiment is presented which shows a good agreement with the theoretical prediction.

  3. ICRF antenna performance on Tore Supra

    Science.gov (United States)

    Goulding, R. H.; Carter, M. D.; Harris, J. H.; Hoffman, D. J.; Hogan, J. T.; Ryan, P. M.; Beaumont, B.; Bremond, S.; Hutter, T.

    1997-04-01

    Resonant double loop (RDL) ion cyclotron range of frequencies (ICRF) Antennas have operated on Tore Supra at power levels up to ˜3.5 MW per 2-element launcher. The RDL configuration is of particular interest because it has operated at high power densities (15 MW/m2 on Tore Supra) and is the topology chosen for the ITER ICRF launchers. Two Faraday shield designs are in use which produce different loading for nearly identical antenna radial positions, and different heating patterns on antenna surfaces due to rf/edge plasma interaction. Loading and maximum antenna voltage for a given power level have been found to vary between the different antennas in a frequency dependent manner. This behavior has been analyzed using a lossy transmission model. In addition, antenna surface heating patterns have been found to be highly phase dependent and reproducible over time. Strong localized power fluxes are often observed to determine the launcher power limit rather than internal voltages and currents.

  4. ICRF antenna performance on Tore Supra

    International Nuclear Information System (INIS)

    Resonant double loop (RDL) ion cyclotron range of frequencies (ICRF) Antennas have operated on Tore Supra at power levels up to ∼3.5MW per 2-element launcher. The RDL configuration is of particular interest because it has operated at high power densities (15MW/m2 on Tore Supra) and is the topology chosen for the ITER ICRF launchers. Two Faraday shield designs are in use which produce different loading for nearly identical antenna radial positions, and different heating patterns on antenna surfaces due to rf/edge plasma interaction. Loading and maximum antenna voltage for a given power level have been found to vary between the different antennas in a frequency dependent manner. This behavior has been analyzed using a lossy transmission model. In addition, antenna surface heating patterns have been found to be highly phase dependent and reproducible over time. Strong localized power fluxes are often observed to determine the launcher power limit rather than internal voltages and currents. copyright 1997 American Institute of Physics

  5. Theory of Dissepative Ultrafast Exciton Motion in Photosynthetic Antennae

    OpenAIRE

    Renger, Thomas

    1998-01-01

    Im Rahmen der Dichtematrixtheorie wurde die dissipative Exzitonendynamik in photosynthetischen Pigment--Protein-- Komplexen untersucht. Es konnten zwei verschiedene Modelle entwickelt werden. In einem ersten Effektivmoden--Modell wird eine Kopplung der Pigmente an eine effektive Proteinmode pro Pigment behandelt. Die volle Quantendynamik der effektiven Moden findet Ber\\"ucksichtigung. Auf diese Weise ist das Modell in der Lage, koh\\"arente Kerndynamik und Ged\\"achtnisseffek te in der Ex...

  6. Advanced ICRF antenna design for R-TOKAMAK

    International Nuclear Information System (INIS)

    The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For a high power heating, a new type antenna called 'Panel heater antenna' is proposed, and it has a wide radiation area and is able to select a parallel wave number. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for the ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma. (author)

  7. Improvement of Power Efficiency using Smart Antenna System in MANETs

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    2014-11-01

    Full Text Available Performance of ad-hoc networks is low under omnidirectional antenna systems compared to smart antenna system. Directional antennas cover large area {&} save some amount of transmitted power because it focuses in desired direction accordance with mobility of nodes while Omni-directional antennas cover small area {&} needs large transmitted power as compared to Smart Antenna System (SAS. In this paper, we will overcome the problem of unnecessary transmitted power wastage with omnidirectional antenna system in ad-hoc wireless networks by using Smart Antenna Systems (SAS. We will calculate {&} analyze transmitted power variations with different number of mobile nodes in mobile ad-hoc networks [MANETs] with smart antenna system (SAS {&} Omni-directional antenna system in different conditions. Firstly, we will calculate {&} analyze transmitted power during flooding of packets means in case of route creation, and secondly, when communication will established between transmitter {&} receiver

  8. Analysis of equivalent antenna based on FDTD method

    Institute of Scientific and Technical Information of China (English)

    Yun-xing YANG; Hui-chang ZHAO; Cui DI

    2014-01-01

    An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD) method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is air)takes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  9. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  10. Design of Monopole Antenna Based on Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Zhao Yuanqing

    2014-01-01

    Full Text Available This paper presents a circular disc monopole antenna based on fractal geometry. The antenna is designed to be applied in UWB systems. So it is essential to ensure that the bandwidth of the antenna ranges from 3.1 GHz to 10.6 GHz, that is, IEEE 802.15.3a. However, the proposed antenna has achieved working in the required bandwidth. Compared to the antennas illustrated in most similar literatures, the proposed antenna has a much smaller size, which makes the antenna possible to be integrated with portable devices. Firstly, the antenna was designed through CST Microwave Studio. Then, the antenna was fabricated according to the simulated results. At last, the comparison between the simulated results and measured results was carried out which demonstrated good consistency.

  11. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2015-01-01

    A novel verticall A novel vertically polarized dpolarize , omnidirection omnidirectional l , printed slot loop antenna h sprinted slot loop antenna has been designed, simulated, fabricated, and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform a...

  12. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    antenna diagnostics and perform a detailed systematic study of the extreme near-field of a standard gain horn at 60GHz from planar and spherical near-field measurement data. The magnitude and phase of all three rectangular components of the electric and the magnetic aperture fields are calculated, as is......We previously demonstrated that 60 GHz planarnear-field antenna measurements without external frequency conversion can provide far-field radiation patterns in good agreement with spherical near-field antenna measurements in spite of thecable flexing and thermal drift effects [P.I.Popa, S. Pivnenko......,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set-up to...

  13. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A; Breinbjerg, Olav

    2007-01-01

    measurement accuracy, have been reported previously, we validate here the new antenna diagnostics technique through an experimental investigation of a commercially available offset reflector antenna, where a tilt of the feed and surface distortions are intentionally introduced. The effects of these errors......A new antenna diagnostics technique has been developed for the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark. The technique is based on the transformation of the Spherical Wave Expansion (SWE) of the radiated field, obtained from a spherical near...... will be detected in the antenna far-field pattern, and the accuracy and ability of the diagnostics technique to subsequently identify them will be investigated. Real measurement data will be employed for each test case....

  14. SIW HIGH GAIN SLOT ANTENNA FOR WLAN/WIMAX APPLICATION

    OpenAIRE

    Neda Akbari; Javad Nourinia; Ch. Ghobadi

    2014-01-01

    In this paper with using substrate integrated waveguide technology and slot antenna, an antenna array with 8 (2×4) elements has been designed. The antenna substrate is ROGERs 4003 with two different thickness. In lower substrate with 0.5 mm thickness fed network of antenna is putted and upper substrate with 1.5 mm thickness slot in order to radation is embedded. The proposed antenna is designed in C band for WLAN/WiMAX application. Pattern of antenna is directive with peak gain about...

  15. U Patch Antenna for RFID and Wireless Applications

    International Nuclear Information System (INIS)

    in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna. (author)

  16. Logo Antenna for 5.8 GHz Wireless Communications (invited)

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work the...... university logo has been used. The designed logo antenna has a measured and simulated 3-dB bandwidth of 153.1 MHz (2.6%) and 165.6 MHz (2.9%), respectively. The aperture fed, omnidirectional logo antenna is little hand sensitive....

  17. Logo Antenna for 5.8 GHz Wireless Communications

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work the...... university logo has been used. The designed logo antenna has a measured and simulated 3-dB bandwidth of 153.1 MHz (2.6%) and 165.6 MHz (2.9%), respectively. The aperture fed, omnidirectional logo antenna is little hand sensitive....

  18. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-05-01

    In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.

  19. Field of View Analysis of SeaWinds Reflector Antenna

    Science.gov (United States)

    Wu, T.; Chandler, C.

    1994-01-01

    Antennas are often mounted among many other instruments on the spacecraft platform. The electromagnetic interference (EMI) and compatibility (EMC) issues are of great concern to the antenna and spacecraft system design engineers. Considering the rotating reflector antenna of the NASA SeaWinds Scatterometer on the Japanes ADEOS II spacecraft, it is desirable to determine the antenna's field of view (FOV) performance. In other words, how far should the other boxes be kept away from the reflector antenna to minimize the blockage/diffraction effects on the antenna's performance requirements.

  20. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small...