WorldWideScience

Sample records for antenna theory

  1. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  2. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  3. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  4. Antennas in matter: Fundamentals, theory, and applications

    Science.gov (United States)

    King, R. W. P.; Smith, G. S.; Owens, M.; Wu, T. T.

    1981-01-01

    The volume provides an introduction to antennas and probes embedded within or near material bodies such as the earth, the ocean, or a living organism. After a fundamental analysis of insulated and bare antennas, an advanced treatment of antennas in various media is presented, including a detailed study of the electromagnetic equations in homogeneous isotropic media, the complete theory of the bare dipole in a general medium, and a rigorous analysis of the insulated antenna as well as bare and insulated loop antennas. Finally, experimental models and measuring techniques related to antennas and probes in a general dissipative or dielectric medium are examined.

  5. Microstrip antenna theory and design

    Science.gov (United States)

    James, J. R.; Hall, P. S.; Wood, C.

    Microstrip is the name given to a type of open waveguiding structure which is now commonly used in present-day electronics, not only as a transmission line but for circuit components such as filters, couplers, and resonators. The idea of using microstrip to construct antennas is a much more recent development. The purpose of this monograph is to present the reader with an appreciation of useful antenna design approaches and the overall state-of-the art situation. Flat-plate antenna techniques and constraints on performance are considered along with microstrip design equations and data, the radiation mechanism of an open-circuit microstrip termination and the resulting design implications, the basic methods of calculation and design of patch antennas, and linear array techniques. Attention is also given to techniques and design limitations in two-dimensional arrays, circular polarization techniques, manufacturing and operational problems of microstrip antennas, recent advances in microstrip antenna analysis, and possible future developments.

  6. Rectangular dielectric resonator antennas theory and design

    CERN Document Server

    Yaduvanshi, Rajveer S

    2016-01-01

    This book covers resonating modes inside device and gives insights into antenna design, impedance and radiation patterns. It discusses how higher-order modes generation and control impact bandwidth and antenna gain. The text covers new approaches in antenna design by investigation hybrid modes, H_Z and E_Z fields available simultaneously, and analysis and modelling on modes with practical applications in antenna design. The book will be prove useful to students, researchers and professionals alike.

  7. Theory of imaging in Cassegrainian and Gregorian antennas

    Science.gov (United States)

    Dragone, C.

    1986-05-01

    The transformation relating the field distributions over two conjugate surfaces, Sigma(0) and Sigma, is determined in the present discussion of the formation of an image by an ellipsoidal reflector under illumination from one of its foci. It is shown that the image generated by the reflected field E over Epsilon is not an exact replica of the illumination of Sigma(0), but rather E=E(i) + delta-E, where E(i) is the image according to geometric optics. This theory is applicable to any multireflector arrangement derived from quadric surfaces-of-revolution, and especially to Cassegrainian and Gregorian antennas. A simple solution to the classical problem of illuminating the aperture of a reflector antenna efficiently is given as an illustrative example.

  8. Compact antennas for wireless communications and terminals theory and design

    CERN Document Server

    Laheurte, Jean-Marc

    2012-01-01

    Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, recon

  9. Theory of a beam-driven plasma antenna

    Science.gov (United States)

    Timofeev, I. V.; Volchok, E. P.; Annenkov, V. V.

    2016-08-01

    In this paper, we propose a theory describing generation of electromagnetic waves in a thin beam-plasma system with a characteristic transverse size comparable with the radiation wavelength. In fact, a thin plasma column with a longitudinal density modulation works like a plasma antenna in which an electron beam can excite a superluminal wave of electric current. It has previously been shown that, if the period of this modulation coincides with the wavelength of the most unstable beam-driven mode, radiation at a frequency slightly below the plasma frequency is emitted transversely to the plasma column and generated in thin boundary layers. For the plasma thickness comparable with the skin-depth, generation of the terahertz radiation can reach high efficiency ( ˜10 % ) in such a scheme, but the absolute power of this radiation cannot be increased by increasing the transverse plasma size. In this paper, we study whether the power of such an antenna can be increased in the regime of oblique emission when the magnetized plasma is transparent to the radiated electromagnetic waves and the whole plasma volume may be involved in their generation.

  10. Theory of Ultrafast Exciton Motion in Photosynthetic Antennae

    Science.gov (United States)

    Renger, Thomas; May, Volkhard

    1998-03-01

    Ultrafast exciton motion and its coupling to protein vibrations in photosynthetic antennae are investigated by means of a density matrix approach (O. Kühn, Th. Renger, T. Pullerits, J. Voigt, V. May, Ann. Rev. Photochem. Photobiol. (in press).). First we consider the Fenna Matthews Olson (FMO) photosynthetic antenna complex of Chlorobium Tepidum. Using the same approach and the same parameters, linear absorption spectra and ultrafast pump--probe and transient anisotropy spectra have been succesfully simulated (Th. Renger, V. May, J. Phys. Chem. B (submitted).). The model allows to utilize exciton relaxation data as a probe for a global--shape estimation of the spectral density of low--frequency protein vibrations. In a second approach concentrating on a Chla/Chlb hetero--dimer of the Light--Harvesting--Complex of the Photosystem II of higher plants an unified microscopic description is offered for coherent vibrational dynamics, excited state absorption, and exciton-exciton annihilation processes. The theory explains the intensity dependent ultrafast nonlinear optical response recently measured in a pump--probe experiment. The presence of non--Markovian effects in the dissipative dynamics is demonstrated (Th. Renger, V. May, Phys. Rev. Lett. 78), 3406 (1996), Th. Renger, V. May, J. Phys. Chem. B 101, 7211 (1997).

  11. Challenge to antenna-mode theory of multiconductor transmission-line

    International Nuclear Information System (INIS)

    A new multiconductor transmission-line theory is extended to provide the radiation process through the antenna mode in addition to the coupling of the normal and common modes. The antenna mode theory is based on the nonzero total charge and current in the multiconductor transmission-line system, where the transmission-line system loses electric power owing to the electromagnetic radiation through the effect of retarded potential for the electromagnetic field. (author)

  12. ICRF antenna coupling theory for a cylindrically stratified plasma

    International Nuclear Information System (INIS)

    Antenna coupling to a cyclindrical plasma is examined for the ion cyclotron range of frequencies (ICRF). A variety of antenna configurations are modelled such as a partial-turn loop, Nagoya coils, an aperture antenna, and arrays of coils. A procedure that utilizes the induction theorem is presented which replaces a general coil configuration with an equivalent representation in terms of sinusoidal current sheets. This transformation reduces the three dimensional antenna boundary value problem to that of one dimension (r, the radial coordinate) with the spatial variation in the other directions represented by complex exponentials (exp (in phi + ik/sub z/z)). As constructed, the transformation is directly applicable to axisymmetric geometries where the plasma parameters are only functions of radius. The radial variation of the plasma parameters such as the local density and temperature are approximated by a stratified model. As the number of strata are increased, the step-wise model is shown to converge to the continuous case. The plasma response is modelled by a local equivalent dielectric tensor. In the context of this model antenna-plasma coupling characteristics are compared for the various ICRF antennas

  13. The paraboloidal reflector antenna in radio astronomy and communication theory and practice

    CERN Document Server

    Baars, Jacob W M

    2007-01-01

    Reflector antennas are widely used in the microwave and millimeter wavelength domain. Radio astronomers have developed techniques of calibration of large antennas with radio astronomical methods. These have not been comprehensively described. This text aims to fill this gap. The Paraboloidal Reflector Antenna in Radio Astronomy and Communication: Theory and Practice takes a practical approach to the characterization of antennas. All calculations and results in the form of tables and figures have been made with Mathematica by Wolfram Research. The reader can use the procedures for the implementation of his/her own input data. The book should be of use to all who are involved in the design and calibration of large antennas, like ground station managers and engineers, practicing radio astronomers, and finally, graduate students in radio astronomy and communication technology.

  14. Magneto-Dielectric Wire Antennas Theory and Design

    Science.gov (United States)

    Sebastian, Tom

    There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of the communication node. This dissertation is concerned with a new class of antennas called Magneto-Dielectric wire antennas (MDWA) that provide an ideal solution to this ever-present and growing need. Magneto-dielectric structures (mur > 1; epsilon r > 1) can partially guide electromagnetic waves and radiate them by leaking off the structure or by scattering from any discontinuities, much like a metal antenna of the same shape. They are attractive alternatives to conventional whip and blade antennas because they can be placed conformal to a metallic ground plane without any performance penalty. A two pronged approach is taken to analyze MDWAs. In the first, antenna circuit models are derived for the prototypical dipole and loop elements that include the effects of realistic dispersive magneto-dielectric materials of construction. A material selection law results, showing that: (a) The maximum attainable efficiency is determined by a single magnetic material parameter that we term the hesitivity: Closely related to Snoek's product, it measures the maximum magnetic conductivity of the material. (b) The maximum bandwidth is obtained by placing the highest amount of mu" loss in the frequency range of operation. As a result, high radiation efficiency antennas can be obtained not only from the conventional low loss (low mu") materials but also with highly lossy materials (tan(deltam) >> 1). The second approach used to analyze MDWAs is through solving the Green function problem of the infinite magneto-dielectric cylinder fed by a current loop. This solution sheds light on the leaky and guided waves

  15. Design optical antenna and fiber coupling system based on the vector theory of reflection and refraction.

    Science.gov (United States)

    Jiang, Ping; Yang, Huajun; Mao, Shengqian

    2015-10-01

    A Cassegrain antenna system and an optical fiber coupling system which consists of a plano-concave lens and a plano-convex lens are designed based on the vector theory of reflection and refraction, so as to improve the transmission performance of the optical antenna and fiber coupling system. Three-dimensional ray tracing simulation are performed and results of the optical aberrations calculation and the experimental test show that the aberrations caused by on-axial defocusing, off-axial defocusing and deflection of receiving antenna can be well corrected by the optical fiber coupling system. PMID:26480125

  16. Bow-tie antennas on a dielectric half-space - Theory and experiment

    Science.gov (United States)

    Compton, Richard C.; Mcphedran, Ross C.; Popovic, Zorana; Rebeiz, Gabriel M.; Tong, Peter P.

    1987-01-01

    A new formulation is discussed for the rigous calculation of the radiation pattern of a bow-tie antenna of finite length and infinitesimal thickness, placed on a lossless dielectric substrate. The analysis is based on a representation of the current density on the metal surface of the antenna as a sum of an imposed (quasistatic) term and a set of current modes with unknown amplitudes. Free-space fields that are expressed in terms of continuous spectra of symmetrized plane waves are matched to the current modes using the method of moments. The resulting set of equations are solved for the unknown current amplitudes. The calculations show that for increasing bow length the antenna impedance spirals rapidly to a value predicted by transmission line theory. The theory also shows that the E-plane pattern of a two-wavelength, 60-deg bow-tie antenna is dominated by low-loss current modes propagating at the dielectric wavenumber. As the bow tie narrows, the loss of the modes increases, and the dominant wavenumber tends to the quasi-static value. Pattern measurements made at 94 GHz are shown to agree well with theoretical predictions. Measurements for a long-wire antenna, a linear array of bow-tie elements, and a log-periodic antenna are also presented.

  17. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Kim, Oleksiy S.

    2009-01-01

    The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms of spheri...... spherical vector waves. The obtained quality factor agrees with that of Wheeler and Thal for vanishing free-space electric radius but holds also for larger radii and facilitates the optimal choice of permeability in the presence of the resonances.......The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms of...

  18. Theory of nanorod antenna resonances including end-reflection phase

    Science.gov (United States)

    Su, Wei; Li, Xiangyin; Bornemann, Jens; Gordon, Reuven

    2015-04-01

    We present a fully analytic theory for nanorod resonances including the phase of reflection from the rounded ends using a transmission line approach. It combines the circuit theory response of spherical nanoparticles with standard transmission line theory using the Sommerfeld wave dispersion. The approach agrees well with comprehensive numerical calculations.

  19. Computation of antenna pattern correlation and MIMO performance by means of surface current distribution and spherical wave theory

    Directory of Open Access Journals (Sweden)

    O. Klemp

    2006-01-01

    Full Text Available In order to satisfy the stringent demand for an accurate prediction of MIMO channel capacity and diversity performance in wireless communications, more effective and suitable models that account for real antenna radiation behavior have to be taken into account. One of the main challenges is the accurate modeling of antenna correlation that is directly related to the amount of channel capacity or diversity gain which might be achieved in multi element antenna configurations. Therefore spherical wave theory in electromagnetics is a well known technique to express antenna far fields by means of a compact field expansion with a reduced number of unknowns that was recently applied to derive an analytical approach in the computation of antenna pattern correlation. In this paper we present a novel and efficient computational technique to determine antenna pattern correlation based on the evaluation of the surface current distribution by means of a spherical mode expansion.

  20. Theory of patch-antenna metamaterial perfect absorbers

    Science.gov (United States)

    Bowen, Patrick T.; Baron, Alexandre; Smith, David R.

    2016-06-01

    A metasurface that absorbs waves from all directions of incidence can be achieved if the surface impedance is made to vary as a function of incidence angle in a specific manner. Here we show that a periodic array of planar nanoparticles coupled to a metal film can act as an absorbing metasurface with an angle-dependent impedance. Through a semi-analytical calculation based on coupled-mode theory, we find the perfect absorbing condition is equivalent to balancing the Ohmic and radiative losses of the nanoparticles at normal incidence. Absorption over a wide range of incidence angles can then be obtained by tailoring the scattered far-field pattern of the individual planar nanoparticles such that their radiative losses remain constant. The theory provides a means of understanding the behavior of perfect absorbing structures that have been observed experimentally or numerically, reconciling previously published theories and enabling the optimization of absorbing surfaces.

  1. Asymptotic Analysis of Multi-Antenna Cognitive Radio Systems Using Extreme Value Theory

    OpenAIRE

    Duan, Ruifeng; Zheng, Zhong; Jäntti, Riku; Hämäläinen, Jyri

    2015-01-01

    We consider a spectrum-sharing cognitive radio system with antenna selection applied at the secondary transmitter (ST). Based on the extreme value theory, we deduce a simple and accurate expression for the asymptotic distribution of the signal to interference plus noise ratio at the secondary receiver. Using this result, the asymptotic mean capacity and the outage capacity for the secondary user (SU) are derived. The obtained asymptotic capacities approach the exact results as the number of t...

  2. Analysis of airborne antenna systems using geometrical theory of diffraction and moment method computer codes

    Science.gov (United States)

    Hartenstein, Richard G., Jr.

    1985-08-01

    Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.

  3. Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors

    Energy Technology Data Exchange (ETDEWEB)

    Dale K. Kotter; Steven D. Novack

    2010-02-01

    DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV

  4. Theory of excitation of asymmetric ksub(longitudinal)-spectrum by phasing the JET ICRF antennae

    International Nuclear Information System (INIS)

    A theoretical study is presented of the excitation of travelling ICRF waves in JET, based on a 3-D planar antenna-plasma coupling model. The antennae are progressively phased to excite a desired integral number of parallel wavelengths around the torus (n0 = 1, 2, 3 ... etc) where n0 = 3 or 4 is appropriate for mode conversion current drive and a somewhat higher number for the minority current drive. Several sets of antenna combinations including that of a single pair alone have been analyzed and it is found that a single pair of antenna system is unable to impose the desired n0 in the plasma. However, as the number of energized antennae is increased, the directivity increases reaching about 20% for 8 antennae and the imposed n0 is also found inside the plasma. Also presented are results of the field distribution in real space inside the plasma by Fourier inversion of the ksub(longitudinal)-spectrum radiated by the travelling wave antennae. (author)

  5. Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory

    Science.gov (United States)

    Zhang, Jia-Hui; Zhang, Xin-Jun; Zhao, Yan-Ping; Qin, Cheng-Ming; Chen, Zhao; Yang, Lei; Wang, Jian-Hua

    2016-08-01

    A variational principle code which can calculate self-consistently currents on the conductors is used to assess the coupling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper. Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2015GB101001) and the National Natural Science Foundation of China (Grant Nos. 11375236 and 11375235).

  6. Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control

    CERN Document Server

    Guclu, Caner; Capolino, Filippo

    2015-01-01

    The integration of a leaky-wave antenna with a ring resonator is presented using analytical guided wave models. The device consists of a ring resonator fed by a directional coupler, where the ring resonator path includes a leaky-wave antenna segment. The resonator integration provides two main advantages: the high-quality factor ensures effective control of radiation intensity by controlling the resonance conditions and the efficient radiation from a leaky-wave antenna even when its length is much smaller than the propagation length of the leaky wave. We devise an analytical model of the guided wave propagation along a directional coupler and the ring resonator path including the antenna and non-radiating segments. The trade-offs regarding the quality factor of resonance and the antenna efficiency of such a design is reported in terms of the coupler parameters, leaky-wave constant and radiation length. Finally a CMOS-compatible OLWA design suitable for the ring resonator integration is designed where Silicon ...

  7. Theory and design of a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2014-03-01

    For the first time, a theoretical model is presented to predict the frequency tuning of a patch antenna on a partially magnetized ferrite substrate. Both extraordinary (E) and ordinary (O) modes of the antenna are studied. The permeability tensor of the partially magnetized ferrite is calculated through the proposed theoretical model and is subsequently used to analyze the antenna\\'s performance in a microwave simulator. Prototype antennas were built, using two different bias windings, embedded in a multilayer ferrite LTCC substrate, to demonstrate E and O mode tuning. The use of embedded windings negates the requirement of bulky electromagnets, thus providing miniaturization. The concept also eliminates the demagnetization effect, thus reducing the typically required bias fields by 95%. The prototype measurements at 13 GHz demonstrate an E-mode tuning range of 10%. The proposed theoretical model has been validated by simulations and measurements. The design is highly suitable for compact, light-weight, tunable and reconfigurable microwave systems. © 1963-2012 IEEE.

  8. Handbook of reflector antennas and feed systems v.1 theory and design of reflectors

    CERN Document Server

    Sharma, Satish K; Shafai, Lotfollah

    2013-01-01

    This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume I provides a unique combination of theoretical underpinnings with design considerations and techniques. The need for knowledge in reflector antennas has grown steadily over the last two decades due to increased use in spa

  9. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  10. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  11. Theory of light scattering in subwavelength metallic slot antenna array fabricated on subwavelength thin film

    Science.gov (United States)

    Choi, S. B.; Park, D. J.

    2015-10-01

    We demonstrate an analytic model that describes the near-field electromagnetic field profile near a subwavelength-sized metallic slot antenna fabricated on a thin dielectric substrate having a subwavelength thickness reaching λ/1000 in the terahertz frequency region. We found two-dimensional light diffraction induced by the two-dimensional nature of the slot antenna, and back-reflected waves interfered with each other in a complicated manner, resulting in a coupling of the Fourierdecomposed field amplitudes between the diffraction orders along the x and the y directions. We applied these findings to our model by modifying a previously developed model [D. J. Park et al., J. Korean Phys. Soc. 65, 1390 (2014)], and we monitor the effect on far-field transmission. This coupling effect was found to contribute to removal of physically-meaningless spikes or divergences in the transmission spectra, especially for relatively thick substrates.

  12. Analysis of Arbitrary Reflector Antennas Applying the Geometrical Theory of Diffraction Together with the Master Points Technique

    Directory of Open Access Journals (Sweden)

    María Jesús Algar

    2013-01-01

    Full Text Available An efficient approach for the analysis of surface conformed reflector antennas fed arbitrarily is presented. The near field in a large number of sampling points in the aperture of the reflector is obtained applying the Geometrical Theory of Diffraction (GTD. A new technique named Master Points has been developed to reduce the complexity of the ray-tracing computations. The combination of both GTD and Master Points reduces the time requirements of this kind of analysis. To validate the new approach, several reflectors and the effects on the radiation pattern caused by shifting the feed and introducing different obstacles have been considered concerning both simple and complex geometries. The results of these analyses have been compared with the Method of Moments (MoM results.

  13. Experiments with Dipole Antennas

    Science.gov (United States)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  14. Acoustic (Ultrasonic) Non-Diffracting Beams: Some theory, and Proposals of Acoustic Antennas for several purposes

    CERN Document Server

    Zamboni-Rached, Michel

    2014-01-01

    On the basis of suitable theoretical grounds, we study and propose Antennas for the generation, in Acoustics, of Non-Diffracting Beams of ultrasound. We start considering for instance a frequency of about 40 kHz, and foresee fair results even for finite apertures endowed with reasonable diameters (e.g., of 1 m), having in mind various possible applications, including remote sensing. Then, we discuss the production in lossy media of ultrasonic beams resisting both diffraction and attenuation. Everything is afterward investigated for the cases in which high-power acoustic transducers are needed (for instance, for detection at a distance -or even explosion- of buried objects, like mines). Keywords: Acoustic Non-Diffracting Beams; Truncated Beams of Ultrasound; Remote sensing; Diffraction, Attenuation, Annular transducers, Bessel beam superposition, High-power ultrasound emitters, Beams resisting diffraction and attenuation, Acoustic Frozen Waves, Detection of buried objects, Explosion of Mines at a distance

  15. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...... the surface current distribution on the reflector plate. Numerical results obtained for Yagi backfire antennas and short-backfire antennas using this theory are compared with experimental results....

  16. Dielectric covered microstrip patch antennas

    Science.gov (United States)

    Sharpe, Lisa M.

    1988-11-01

    Microstrip antennas have many properties that make them suitable for airborne and satellite communications systems. These antennas are low in cost and lightweight. For these reasons, Rome Air Development Center is interested in verifying and augmenting existing design models for these antennas. The theory and results are presented for modeling microstrip antennas that are covered with a sheet of dielectric material. There are several reasons for designing a microstrip antenna covered with a dielectric material. This configuration would allow the modeling of antennas with an integrated radome. A cover layer could possibly be used to support a polarizer; to mount additional antenna elements on top of the cover layer to provide bandwidth enhancements; or to be used as a dual frequency antenna.

  17. A new method for the design of slot antenna arrays: Theory and experiment

    KAUST Repository

    Clauzier, Sebastien

    2016-04-10

    The present paper proposes and validates a new general design methodology that can be used to automatically find proper positions and orientations of waveguide-based radiating slots capable of realizing any given radiation beam profile. The new technique combines basic radiation theory and waveguide propagation theory in a novel analytical model that allows the prediction of the radiation characteristics of generic slots without the need to perform full-wave numerical solution. The analytical model is then used to implement a low-cost objective function within a global optimization scheme (here genetic algorithm.) The algorithm is then deployed to find optimum positions and orientations of clusters of radiating slots cut into the waveguide surface such that any desired beam pattern can be obtained. The method is verified using both full-wave numerical solution and experiment.

  18. Smart antennas

    CERN Document Server

    Godara, Lal Chand

    2004-01-01

    INTRODUCTION Antenna GainPhased Array AntennaPower Pattern Beam Steering Degree of Freedom Optimal AntennaAdaptive AntennaSmart AntennaSummary NARROWBAND PROCESSINGSignal Model Conventional BeamformerNull Steering BeamformerOptimal BeamformerOptimization Using Reference SignalBeam Space Processing Effect of ErrorsNotation and AbbreviationsReferencesADAPTIVE PROCESSINGSample Matrix Inversion AlgorithmUnconstrained Least Mean Squares AlgorithmNormalized Least Mean Squares AlgorithmConstrained

  19. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  20. Wideband Antennas for Modern Radar Systems

    OpenAIRE

    Ren, Yu-Jiun; Lai, Chieh-Ping

    2010-01-01

    In this chapter, the basics of the antenna and phased array are reviewed and different wideband antennas for modern radar systems are presented. The concepts of the radome and frequency selective surface are also reviewed. The main contents include important parameters of the antenna, and theory and design consideration of the array antenna. Various wideband antennas are introduced and their performances are demonstrated, including: (1) for the phased array radar, the slotted waveguide array ...

  1. MLS airborne antenna research

    Science.gov (United States)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  2. Plasma antennas

    CERN Document Server

    Anderson, Theodore

    2011-01-01

    The plasma antenna is an emerging technology that partially or fully utilizes ionized gas as the conducting medium instead of metal to create an antenna. The key advantages of plasma antennas are that they are highly reconfigurable and can be turned on and off. The disadvantage is that the plasma antennas require energy to be ionized. This unique resource provides you with a solid understanding of the efficient design and prototype development of plasma antennas, helping you to meet the challenge of reducing the power required to ionize the gas at various plasma densities. You also find thorou

  3. Reconfigurable antenna pattern verification

    Science.gov (United States)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  4. A Modern Control Theory Based Algorithm for Control of the NASA/JPL 70-Meter Antenna Axis Servos

    Science.gov (United States)

    Hill, R. E.

    1987-09-01

    A digital computer-based state variable controller has been designed and applied to the 70-m antenna azis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accomodate intertarget slew, encoder references tracking, and precision tracking modes are described. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm has been successfully implemented and tested in the 70-m antenna at Deep Space Station (DSS) 63 in Spain.

  5. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed......-dipoles and helices are considered in order to establish a correspondence with simple antenna structures....

  6. Reconfigurable antennas

    CERN Document Server

    Bernhard, Jennifer

    2007-01-01

    This lecture explores the emerging area of reconfigurable antennas from basic concepts that provide insight into fundamental design approaches to advanced techniques and examples that offer important new capabilities for next-generation applications. Antennas are necessary and critical components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Making antennas reconfigurable so that their behavior can adapt with changing system requirements or environmental conditions can ameliorate or eliminate these restricti

  7. Microstrip Antenna

    OpenAIRE

    Anuj Mehta

    2015-01-01

    Abstract This article presents an overview of the microstrip patch antenna and its design techniques. Basically a microstrip patch antenna comprises of a trace of copper or any other metal of any geometry on one side of a standard printed circuit board substrate with other side grounded. The antenna is fed using various feeding techniques like coaxial strip line aperture coupling or proximity coupling techniques. The working principle and the radiation mechanism have also been described. The ...

  8. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  9. Research of Klopfenstein taper UWB monopole antenna

    OpenAIRE

    Wang, Nan-Nan; Qiu, Jinghui; Zhang, Zhi-Feng; Zong, Hua; Ling-Ling, Zhong; Wei-Bo, Deng

    2011-01-01

    The tapered line theory in circuit can be applied to the design of the special-shaped monopole antenna in order to obtain better electrical characteristics. So a novel Klopfenstein taper monopole antenna is proposed. The impedance matching characteristic of the Klopfenstein tapered line is the best, and the Klopfenstein taper monopole antenna is designed based on it. On this basis, the coplanar waveguide-fed planar Klopfenstein taper monopole antennas are designed. The simulation and measurem...

  10. Measurement of Antenna Bore-Sight Gain

    Science.gov (United States)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  11. Endfire tapered slot antennas on dielectric substrates

    Science.gov (United States)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-01-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  12. A Review of the Four Dimension Antenna Arrays

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-wen; NIE Zai-ping

    2006-01-01

    The four dimensional (4D) antenna arrays introduce a fourth dimension, time, into conventional antenna arrays to offer greater flexibility in the design of high performance antenna arrays. This paper presents the tutorial on the study of 4D antenna arrays and the review of the recent research findings on 4D antenna arrays. Issues considered include the theory of 4D antenna arrays, different time modulation schemes, numerical simulation results, and some experimental results on their applications to low sidelobe designs. Throughout the discussion, some challenging issues on the study of 4D antenna arrays are highlighted.

  13. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for the stored energies obtained through the vector spherical wave theory, it is shown that a magnetic-coated metal core reduces the internal stored energy of both TM1m and TE1m modes simultaneously, so that a self-resonant antenna with the Q approaching the fundamental minimum is created. Numerical results...

  14. Measurement of mobile antenna systems

    CERN Document Server

    Arai, Hiroyuki

    2012-01-01

    If you're involved with the design, installation or maintenance of mobile antenna systems, this thoroughly revised and updated edition of a classic Artech book offers you the most current and comprehensive coverage of all the mandatory measurement techniques you need for your work in the field. This Second Edition presents critical new material in key areas, including radiation efficiency measurement, mobile phone usage position, and MIMO (multiple-input/multiple-output) antennas.This unique resource provides in-depth examinations of all relevant mobile antenna measurement theories, along with

  15. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  16. Diamond dipole active antenna

    OpenAIRE

    Bubnov, I. N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  17. Antenna reconfiguration using metasurfaces

    OpenAIRE

    Zhu, H; Cheung, WSW; Yuk, TI

    2014-01-01

    The paper describes the designs of a frequency-reconfigurable, polarization reconfigurable and pattern reconfigurable antennas using metasurfaces (MS). The frequency-reconfigurable and polarization reconfigurable antennas are composed of a simple circular patch antenna or slot antenna as the source antenna and a circular MS with the same diameter, with both source antenna and MS implemented using planar technology. The pattern reconfigurable antenna is composed of a circular patch antenna as ...

  18. Analysis of Fractal Theory Applied to the Antenna Design%将分形理论应用于天线设计的研究现状分析

    Institute of Scientific and Technical Information of China (English)

    赵宗坤; 程翊; 郭锐

    2012-01-01

    With the development of wireless communication technology, the antenna for wireless communication, such as miniaturization, multi-frequency and other requirements. Fractal space-filling and self-similar properties, will apply fractal antenna design fractal antenna to solve antenna miniaturization, multi-frequency of the problem provides a good way. The fractal theory is applied to the current status quo of antenna design and research methods.%随着无线通信技术的发展,人们对用于无线通信的天线提出了诸如小型化,多频化等要求。由于分形具有空间自填充和自相似属性,将分形应用于天线设计而得到的分形天线为解决天线小型化、多频化的问题提供了一个很好的途径。本文对目前将分形理论应用于天线设计的现状以及研究方法进行了分析。

  19. Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near-field antenna measurements with high-order probes

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund;

    2010-01-01

    A complete antenna pattern characterization procedure for spherical near-field antenna measurements employing a high-order probe and a full probe correction is described. The procedure allows an (almost) arbitrary antenna to be used as a probe. Different measurement steps of the procedure and the...... associated data processing are described in detail, and comparison to the existing procedure employing a first-order probe is made. The procedure is validated through measurements....

  20. Quadric Resistive Sheet Profile for Wideband Antennas

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2007-09-01

    Full Text Available A new type of a nonreflecting resistive dipole antenna with quadric continuous resistivity profile is presented in this paper. The antenna is mathematically described and compared with the antenna originally proposed by Wu and King. The verification of a proposed theory and the comparison between Wu-King and quadric profile are carried out by simulation models that were designed for this purpose. The attention is turned to the proper attenuation of a wave excited on the resistive sheet, especially.

  1. UWB planar antenna technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent developments of the ultra-wideband(UWB)planar antennas are reviewed,where the progress in UWB plate monopole antennas,UWB printed monopole antennas and the UWB printed slot antennas is introduced and compared.In addition,the UWB printed antennas with the band-notched functions are also presented.

  2. Electrically Small Magnetic Dipole Antennas with Magnetic Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    This work extends the theory of a spherical magnetic dipole antenna with magnetic core by numerical results for practical antenna configurations that excite higher-order modes besides the main TE10 spherical mode. The multiarm spherical helix (MSH) and the spherical split ring (SSR) antennas...

  3. Analysis of a wideband plasma monopole antenna design

    OpenAIRE

    Li, Wei; Qiu, Jinghui; Suo, Ying; Chen, LiJia

    2011-01-01

    Wideband circular plasma monopole antenna based on circular monopole theory is proposed. The impedance and radiation characteristics of this antenna are presented. The results show that the bandwidth with return loss below -10 dB of the circular plasma monopole antenna can get 123%.

  4. The modelling of plane curvilinear dipole antenna arrays

    OpenAIRE

    Hoblyk, Viktor V.; Liske, O. M.; Yakovenko, Eugenia I.

    2005-01-01

    In this work the results of mathematical model design for printed dipole antenna arrays are presented. The arrays are feeding by curvilinear  transmission slotline. The investigation is important for the antenna arrays theory and useful for the design of antenna arrays with improved characteristics.

  5. Theoretical analysis of a parabolic torus reflector antenna with multibeam

    Institute of Scientific and Technical Information of China (English)

    杜彪; 杨可忠; 钟顺时

    1995-01-01

    The parametric equations and the formulas of unit normal vector and surface element for aparabolic torus reflector antenna are derived and the mechanism of producing multibeam is proposed, Based on physical optics, the radiation pattern formulas for the antenna are given, with which the effects of geometric parameters on the antenna are studied. The good agreement between the calculated patterns and the measured ones shows that the theory is helpful for designing parabolic torus antennas.

  6. A directive pulse antenna

    OpenAIRE

    Titov, A.N.; Titov, A. A.

    2003-01-01

    Using quite general concepts as guidance in the design of an antenna for short pulse transmission and reception, a new type of horn-antenna has been devised. A certain variety of experimental data obtained by the antenna are presented.

  7. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  8. Terminal Antenna Design

    OpenAIRE

    Skrivervik, A. K.; Zurcher, J. F.

    2008-01-01

    This paper introduces first some general considerations about antenna miniaturization and multi-band terminal antenna design. These general design principles are then illustrated on some practical applications.

  9. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  10. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2014-12-15

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  11. Antenna systems research

    OpenAIRE

    Keen, Keith Malcolm

    1999-01-01

    This thesis is an overview of a number of investigations on antenna systems and related subjects over a period of 28 years, which has resulted in 44 publications in the technical literature, one current patent, and an M.Sc. thesis. The investigations have been grouped into 7 categories: - Log periodic antennas, - Antenna performance measurement techniques, - Spacecraft Antenna Systems, - Satcom Terminal Antennas, - Transmission lines and baluns, - High Radar Cross Secti...

  12. A True Metasurface Antenna

    OpenAIRE

    Mohamed El Badawe; Almoneef, Thamer S.; Omar M. Ramahi

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measur...

  13. Metamaterials and Metamaterial-Based Antenna Technology

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-ning

    2014-01-01

    The study of metamaterials is among the most important and attractive topics of the electromagnetic field theory and applications in the past 15 years. Much effort has been devoted to scientific research into the new physical phenomena with great progress. This paper presents the thoughts about the applications of metamaterials in innovative antenna designs from an engineering perspective. The new understanding of metamaterials offers us great possibility to translate the physical concepts of metamaterials in laborato-ries to innovative antenna designs in practical engineering applications. The technologies have been successfully developed, significantly improving key performances of antennas at microwave and millimeter-wave bands. The recently invented metamaterial-based antennas demonstrate not only wide operating bandwidth, high antenna efficiency, high gain, but also significantly reduced volume with simple mechanical structures.

  14. Application of the nonlinear antenna theory model to a tall tower struck by lightning for the evaluation of return stroke channel current and radiated electromagnetic fields

    Science.gov (United States)

    Moosavi, S. H. S.; Moini, R.; Sadeghi, S. H. H.; Kordi, B.

    2011-06-01

    In this paper an improved antenna theory (AT) model with nonlinearly varying resistive loading and fixed inductive loading is used to electromagnetically simulate lightning strikes to tall structures. Measurement data captured from Toronto's CN tower are used to verify the validity of the new model. Both the return stroke channel (RSC) and the tower are modeled by straight thin conducting wires. The wire model of the channel is assumed to have distributed nonlinear resistive elements as a function of current and time, adopted from the numerical models of a spark channel and consequent shockwave from a lightning discharge, yielding a varying value of the channel radius from the base to the cloud along the RSC. Such distributed elements are used to take into account the current attenuation while propagating along the channel and varying propagation speeds lower than the speed of light. RSC current distribution and radiated electromagnetic fields in near, intermediate, and far range distances predicted by the proposed model are compared with those obtained from the measurement data and with those of the original AT model and the AT with fixed inductive loading (ATIL-F) model. Current wave propagation speed profile in RSC and tower is investigated as a function of height as well. The effects of applying different tower geometry models are also studied. It is shown that the new model is able to reproduce one of the characteristic features of the electromagnetic fields radiated by lightning, namely, the far-field inversion of polarity with a zero crossing occurring in the tens of microseconds range. We have also investigated the effect of nonlinearity of the channel assumed in the new model. It is shown that among the electromagnetic models, distributed nonlinear resistance along the channel leads to a zero crossing in the tens of microseconds range even for large values of resistance. It is also shown that decreasing the nonlinearity results in the predictions

  15. The spherical helical antenna

    OpenAIRE

    Cardoso, J. Christopher

    1992-01-01

    The spherical helical antenna is investigated as a new variation of the conventional helical antenna. The spherical helix is a wire antenna in a helix shape that is wound over a spherical surface instead of the standard cylindrical one. Analysis of this structure requires numerical methods and experimental measurements because its complex geometry makes it very difficult to develop analytic expressions for its radiation characteristics. The wire antenna code ESP, based on the method of ...

  16. Cross resonant optical antenna.

    Science.gov (United States)

    Biagioni, P; Huang, J S; Duò, L; Finazzi, M; Hecht, B

    2009-06-26

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  17. Wide Coverage Antennas

    OpenAIRE

    Zackrisson, Jan

    2007-01-01

    Small satellites require small and lightweight antennas for telemetry and command function as well as for downlinking of data. We have during the last thirty years developed a large suite of wide coverage antennas. The basic radiator designs used are quadrifilar helices, waveguides, horns and patch excited cups (PEC) depending on frequency range, coverage requirements and application. The antenna designs range from L-band up to Ka-band frequencies. Typical coverages for the antennas are from ...

  18. A New Wide Band Planar Antenna and FDTD Simulation

    Institute of Scientific and Technical Information of China (English)

    WANGHonziian; GAOBenqing

    2003-01-01

    A new planar trigonometric curve (PTC)antenna is firstly proposed. The finite difference time domain method (FDTD) is used to analysis the input impedance and pattern of this antenna. The image the-ory is firstly applied to obtain the impedance using FDTD.Using the image theory the computation time and RAMspace needed by the calculation of monopole antenna can be reduced greatly, while the results remain almost the same level as those of the experiments. The FDTD sim-ulation of this PTC antenna exhibit the very wide band results in impedance (14:1) and pattern (5.7:1), which are much better than those of the circular disc monopole an-tenna (CMA) and Trilateral monoDole antenna (TLA).

  19. The mathematical model of antenna and antenna-radome system

    OpenAIRE

    Knyazeva, L. V.; Artishev, A. I.

    2003-01-01

    Methods, algorithms and programs for calculation by computer of the characteristics of the antenna and the antenna-radome system (ARS) are developed. The type of antenna considered is the phased antenna array (PAA) or the cophase antenna with a mechanical beam control (an antenna array - AA). Radome shape is spherical, quasi-conic or flattened ellipsoid. Radome shell is multilayer ( N≥1), same-thickness, or special profile. Errors in the manufacture of the antenna are taken into account. Prog...

  20. Antenna Pattern Impact on MIMO OTA Testing

    DEFF Research Database (Denmark)

    Fan, Wei; Nielsen, Jesper Ødum; Franek, Ondrej;

    2013-01-01

    This paper investigates the impact of the DUT antenna pattern on the test area performance for multi-probe based MIMO OTA setup in terms of received voltage and spatial correlation. The plane wave synthesis (PWS) technique has been proposed for vertical polarization in the literature, where...... interpolation is presented. The proposed technique provides a closed form solution for the PWS when the probe ring radius is infinite. The proposed technique shows that the impact of the antenna pattern on the induced received voltage accuracy is ruled by Nyquist sampling theory. Furthermore, the impact...... of the antenna pattern on spatial correlation accuracy for prefaded signal synthesis (PFS) technique is investigated as well. Simulation and measurement results show that the number of required probes depend directly on the DUT antenna pattern. To test realistic DUTs with higher variations in directivity, we...

  1. Low cost, Ka-band microstrip patch monopulse antenna

    Science.gov (United States)

    Jackson, Charles M.; Newman, Jeffrey

    1987-07-01

    A monopulse antenna is a novel concept which combines the theory of an interferometer with the practical application of pulsed radar to obtain the angle and altitude of an object in a single radar pulse; four antennas receive signals that are combined to obtain information about the elevation, azimuth, and distance of an object. This paper describes the design and test of a low-cost Ka-band microstrip antenna. Performance results are examined for 35 GHz (twice the rated frequency), and the antenna patterns are considered.

  2. Quality factor of an electrically small magnetic dipole antenna with magneto-dielectric core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    In this work, we investigate the radiation Q of electrically small magnetic dipole antennas with magneto-dielectric core versus the antenna electrical size, permittivity and permeability of the core. The investigation is based on the exact theory for a spherical magnetic dipole antenna...

  3. A True Metasurface Antenna

    Science.gov (United States)

    Badawe, Mohamed El; Almoneef, Thamer S.; Ramahi, Omar M.

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.

  4. A curl antenna

    OpenAIRE

    Nakano, Hisamatsu; Okuzawa, Shigeru; Ohishi, Katsumi; Mimaki, Hiroaki; Yamauchi, Junji

    1993-01-01

    A radiation element, designated as a curl antenna, is proposed for a circularly polarized antenna. The radiation characteristics of the curl are numerically analyzed. The gain is approximately 8.4 dB, and the 3-dB axial ratio criterion is 6.7%. Two aspects of curl array antennas are also presented: a decoupling factor between two curls and a circular array antenna consisting of 168 curls. Calculations show how the decoupling factor depends on the relative rotation angle of the two curls. The ...

  5. MASTER TELEVISION ANTENNA SYSTEM.

    Science.gov (United States)

    Rhode Island State Dept. of Education, Providence.

    SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)

  6. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  7. Substrate integrated antennas and arrays

    CERN Document Server

    Cheng, Yu Jian

    2015-01-01

    Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book:Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologiesExamines theoretical and experimental results connected to electrical and mechanical performanceExp

  8. Milestones in Broadcasting: Antennas.

    Science.gov (United States)

    Media in Education and Development, 1985

    1985-01-01

    Briefly describes the development of antennas in the prebroadcast era (elevated antenna, selectivity to prevent interference between stations, birth of diplex, directional properties, support structures), as well as technological developments used in long-, medium-, and short-wave broadcasting, VHF/FM and television broadcasting, and satellite…

  9. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume...... required by the wide-band antenna....

  10. mm-wave antenna

    Science.gov (United States)

    Muhs, H. P.

    1985-07-01

    The present low profile seeker front end's slotted waveguide antenna was primarily developed to investigate the feasibility of the application of standard manufacturing techniques to mm-wave hardware. A dual plane monopulse comparator was constructed to mate with the antenna via integrated packaging techniques. The comparator was fabricated by CAD/CAM milling operations.

  11. Entropy and Fractal Antennas

    OpenAIRE

    Emanuel Guariglia

    2016-01-01

    The entropies of Shannon, Rényi and Kolmogorov are analyzed and compared together with their main properties. The entropy of some particular antennas with a pre-fractal shape, also called fractal antennas, is studied. In particular, their entropy is linked with the fractal geometrical shape and the physical performance.

  12. Annular Planar Monopole Antennas

    OpenAIRE

    Chen, Z. N.; Ammann, Max; Chia, W.Y. W.; See, T.S. P.

    2002-01-01

    A type of annular planar monopole antenna is presented. The impedance and radiation characteristics of the monopole with different holes and feed gaps are experimentally examined. The measured results demonstrate that the proposed antenna is capable of providing significantly broad impedance bandwidth with acceptable radiation performance.

  13. Printed Triband Terminal Antenna

    OpenAIRE

    JOHN, MATTHIAS; Ammann, Max; Farrell, R.

    2005-01-01

    This paper presents a printed triple-band multibranch monopole for use in modern wireless systems. The antenna is designed to operate in three bands which cover virtually all wireless channels. Parameters of the antenna geometry are varied and the effects of these variations on the impedance bandwidth are shown.

  14. Aircraft radar antennas

    Science.gov (United States)

    Schrank, Helmut E.

    1987-04-01

    Many changes have taken place in airborne radar antennas since their beginnings over forty years ago. A brief historical review of the advances in technology is presented, from mechanically scanned reflectors to modern multiple function phased arrays. However, emphasis is not on history but on the state-of-the-art technology and trends for future airborne radar systems. The status of rotating surveillance antennas is illustrated by the AN/APY-1 Airborne Warning and Control System (AWACS) slotted waveguide array, which achieved a significant breakthrough in sidelobe suppression. Gimballed flat plate arrays in nose radomes are typified by the AN/APG-66 (F-16) antenna. Multifunction phased arrays are presented by the Electronically Agile Radar (EAR) antenna, which has achieved significant advances in performance versatility and reliability. Trends toward active aperture, adaptive, and digital beamforming arrays are briefly discussed. Antennas for future aircraft radar systems must provide multiple functions in less aperture space, and must perform more reliably.

  15. 基于高速移动通信的虚拟天线阵列理论研究∗%Virtual antenna array theory based on high sp eed mobile communications

    Institute of Scientific and Technical Information of China (English)

    唐智灵; 于立娟; 李思敏

    2016-01-01

    uniform phase sampling and uniform time sampling is the necessary and sufficient condition for a non Doppler shifted signal. Next, the algorithm of Doppler shift compensation and virtualized antenna array is proposed, in which 1) original Doppler shifted signal is processed with interpolation, 2) new signals are generated by uniform phase sampling and buffered, 3) buffered new signals are read out by uniform time sampling. The theory of this process and the performance improvement for a high speed mobile communications system is mathematically analyzed, and the hardware architecture model of this algorithm is also given. The diversity gain could be obtained when an antenna array is used. In order to verify that this virtualized antenna array has the same benefit, the ability to suppress the interference and the bit error rate is analyzed with numerical simulation. The number of virtual elements and the virtual element distance are two variables related to the direction pattern of virtual antenna array. The effects of these two variables are given by the simulation, showing that the more virtual elements, the narrower beam are obtained. But more virtual elements result in more complicated hardware source. In addition, the communications scenarios of two communications radiators at different sites are simulated to verify whether this algorithm can suppress interference signal. The frequency spectrum of beamformed virtual antenna array signal shows that the interference signal can be suppressed effectively. These characteristics cannot be provided by pure Doppler frequency shift compensation. Thus these results show that high speed mobile communication systems on aircrafts or high speed trains would obtain better performances when a received Doppler shift signal is processed by this method to construct a virtual antenna array.

  16. DESIGN AND CHARACTERIZATION OF E-SHAPE MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATION

    Directory of Open Access Journals (Sweden)

    R. Divya

    2013-03-01

    Full Text Available The area of microstrip antennas has seen some inventive work in recent years and is one of the most dynamic fields of antenna theory. The ever increasing need for mobile communication and the emergence of newer technologies require an efficient design of antenna of smaller size for wider frequency range applications such as Wi-Max. The main aim of this paper is increase the impedance bandwidth of the microstrip patch antenna. A low profile wideband unequal E-shaped microstrip patch antenna for Wi-Max application is proposed in this paper .This proposed antenna is made by using the microstrip feeding method. Its bandwidth is further increased by introducing composite effect of stacking of patches with partial grounding. The antenna is designed and simulated by three-dimensional electromagnetic field software HFSS’12.The properties of the antenna such as bandwidth, S parameter, VSWR have been investigated.

  17. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  18. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  19. Antenna-coupled thin-film far-infrared radiation detectors

    Science.gov (United States)

    Yasuoka, Yoshizumi; Kobayashi, Hiroaki; Shimizu, Takashi

    1996-06-01

    The 4 slot array antenna for 700 GHz far-infrared radiation are fabricated on the fused quartz substrates, making use of the dimensions obtained from the model experiments in the microwave region, and the power gain and directivity are obtained experimentally. The properties of fabricated array antenna agree with the theory, and 4 slot array antenna on the substrate of which thickness is odd multiples of a quarter dielectric wavelength improve the power gain by 5 dB compared with the single slot antenna on both sides of air and dielectric. These experimental data indicate that the fabricated antennas show the antenna pattern expected from the theory and work as array antennas for 700 GHz far- infrared laser radiation.

  20. Antenna-coupled microcavities for terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Madéo, J., E-mail: Julien.madeo@univ-paris-diderot.fr; Todorov, Y.; Sirtori, C. [Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, UMR7162, 75013 Paris (France)

    2014-01-20

    We have investigated the capacitive coupling between dipolar antennas and metal-dielectric-metal wire microcavities with strong sub-wavelength confinement in the terahertz region. The coupling appears in reflectivity measurements performed on arrays of antenna-coupled elements, which display asymmetric Fano lineshapes. The experimental data are compared to a temporal coupled-mode theory and finite elements electromagnetic simulations. We show that the Fano interferences correspond to coupling between a subradiant mode (microcavity) and a superradiant mode (antennas). This phenomenon allows one to enhance and control the radiative coupling of the strongly confined mode with the vacuum. These concepts are very useful for terahertz optoelectronic devices based on deep-sub-wavelength active regions.

  1. SAR antenna calibration techniques

    Science.gov (United States)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  2. Optimisation of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    H. El Hamchary

    1996-04-01

    Full Text Available When choosing the most appropriate microstrip antenna configuration for particular applications, the kind of excitation of the radiating element is an essential factor that requires careful considerations. For controlling the distribution of energy of the linear or planar array of elements and for coupling energy to the individual elements, a wide variety of feed mechanisms are available. In this paper, the coaxial antenna feeding is assumed and the best (optimised feeding is found. Then, antenna characteristics such as radiation pattern, return loss, input impedance, and VSWR are obtained.

  3. Adaptive antennas and receivers

    CERN Document Server

    Weiner, Melvin M

    2005-01-01

    In our modern age of remote sensing, wireless communication, and the nearly endless list of other antenna-based applications, complex problems require increasingly sophisticated solutions. Conventional antenna systems are no longer suited to high-noise or low-signal applications such as intrusion detection. Detailing highly effective approaches to non-Gaussian weak signal detection, Adaptive Antennas and Receivers provides an authoritative introduction to state-of-the-art research on the modeling, testing, and application of these technologies.Edited by innovative researcher and eminent expert

  4. Tunable Liquid Dielectric Antenna

    Directory of Open Access Journals (Sweden)

    Kamal Raj Singh Rajoriya

    2012-06-01

    Full Text Available This paper presents on modified the dielectric properties of liquid with varying salinity that was based on monopole structure. Dielectric resonator antennas (DRAs can be made with a wide range of materials and allow many excitation methods [2]. Pure water does not work at high frequency (> 1 GHz but increase in the salinity of water modifies the dielectric properties of water. Here proposed antenna shows that when the salinity increases in form of molar solution, the antenna was tuned at different frequency with increases return loss.

  5. RFID Tag Helix Antenna Sensors for Wireless Drug Dosage Monitoring.

    Science.gov (United States)

    Huang, Haiyu; Zhao, Peisen; Chen, Pai-Yen; Ren, Yong; Liu, Xuewu; Ferrari, Mauro; Hu, Ye; Akinwande, Deji

    2014-01-01

    Miniaturized helix antennas are integrated with drug reservoirs to function as RFID wireless tag sensors for real-time drug dosage monitoring. The general design procedure of this type of biomedical antenna sensors is proposed based on electromagnetic theory and finite element simulation. A cost effective fabrication process is utilized to encapsulate the antenna sensor within a biocompatible package layer using PDMS material, and at the same time form a drug storage or drug delivery unit inside the sensor. The in vitro experiment on two prototypes of antenna sensor-drug reservoir assembly have shown the ability to monitor the drug dosage by tracking antenna resonant frequency shift from 2.4-2.5-GHz ISM band with realized sensitivity of 1.27 [Formula: see text] for transdermal drug delivery monitoring and 2.76-[Formula: see text] sensitivity for implanted drug delivery monitoring. PMID:27170865

  6. Nonlinear plasmonic antennas

    Directory of Open Access Journals (Sweden)

    Shakeeb Bin Hasan

    2014-12-01

    Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.

  7. Fractal multiband patch antenna

    OpenAIRE

    Borja, C.; Puente Baliarda, Carles; Romeu Robert, Jordi; Anguera Pros, Jaume

    2000-01-01

    The multiband behaviour of the Sierpinski patch antenna is described in this paper. Experimental results show that the self similarity properties of the fractal shape are translated into its electromagnetic behaviour. Peer Reviewed

  8. Spaceborne distributed SAR antenna

    Science.gov (United States)

    Mckenna, D. B.

    1984-01-01

    The MSAR c-band array panel was developed and tested. Each element of the antenna system is discussed individually as well as collectively. Textual descriptions together with test data are both used to enable a clear understanding of the antenna system performance. In general, test data has confirmed or exceeded expectations. Of particular note is the excellent cross polarization achieved with a field cancelling geometry.

  9. Intelsat VI antenna system

    Science.gov (United States)

    Caulfield, M. F.; Lane, S. O.; Taormina, F. A.

    The antenna system design of a series of five new communications satellites known as Intelsat VI is described in detail. Each satellite will utilize 50 transponders operating in the C and K band portions of the frequency spectrum. The transponders are interconnectible using either static switch matrices or a network which provides satellite switched time division multiple access capability. The antenna coverages, characteristics, and special design features are shown and discussed.

  10. Fano resonances in antennas: General control over radiation patterns

    CERN Document Server

    Rybin, Mikhail V; Filonov, Dmitry S; Slobozhanyuk, Alexey P; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F

    2013-01-01

    The concepts of many optical devices are based on the fundamental physical phenomena such as resonances. One of the commonly used devices is an electromagnetic antenna that converts localized energy into freely propagating radiation and vise versa, offering unique capabilities for controlling electromagnetic radiation. Here we propose a concept for controlling the intensity and directionality of electromagnetic wave scattering in radio-frequency and optical antennas based on the physics of Fano resonances. We develop an analytical theory of spatial Fano resonances in antennas that describes switching of the radiation pattern between the forward and backward directions, and confirm our theory with both numerical calculations and microwave experiments. Our approach bridges the concepts of conventional radio antennas and photonic nanoantennas, and it provides a paradigm for the design of wireless optical devices with various functionalities and architectures.

  11. Receive antenna is explained through mutual energy theorem and advanced potential

    CERN Document Server

    Zhao, Shuang-ren; Yang, Kang; Yang, Xingang; Yang, Xintie

    2016-01-01

    Relativity theorem started from the fact the speed of light is constant in empty space, but it does not explain why. This paper try to explain this from our theory of receive antenna. We have show that there is a mutual energy current which goes from transmit antenna to the receive antenna. The mutual energy current is produced by both advanced potential associated to the receive antenna and retarded potential sending from the transmit antenna. This can be proved through the mutual energy theorem. Hence the receive antenna is also play a important role in the process of sending the electromagnetic energy from transmit antenna. That is the reason why the speed of electromagnetic field is not related to the transmit antenna but only depending to the receive antenna. This is also the reason why the light speed does not related to its source but only related to the observer. We have show that the method to calculate the antenna system with one transmit antenna and a receive antenna using the reciprocity theorem i...

  12. Transmission and reception with multiple antennas theoretical foundations

    CERN Document Server

    Biglieri, Ezio

    2014-01-01

    Transmission and Reception with Multiple Antennas: Theoretical Foundations presents a comprehensive, yet compact, survey, emphasizing the mathematical aspects of single-user multiple-antenna theory.Wireless communication system design was until recently thought to have been limited in practice by time and bandwidth. The discovery that space, obtained by increasing the number of transmit and receive antennas, can also effectively generate degrees of freedom, and hence expand the range of choices made available to the design offers system designers important new opportunities.Transmission and Re

  13. SANTANA- Smart Antenna Terminal Design

    OpenAIRE

    Liu, Ying

    2006-01-01

    This project is embedded in SANTANA (Smart Antenna Terminal) project. The project goal is to design a Ka-band circularly polarized antenna radiator for the receiver SANTANA system. The research work focuses on two types of circularly polarized antennas: aperture-coupled patch antenna and CPW-fed patch antenna. A two steps design process is used. Firstly, only the antennas and their feed structure are designed and optimized. Secondly, a via-transition to connect to a MMIC layer is added. When ...

  14. Analysis of three-dimensional-cavity-backed aperture antennas using a Combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction technique

    Science.gov (United States)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.

  15. Electrochemically Programmable Plasmonic Antennas.

    Science.gov (United States)

    Dong, Shi; Zhang, Kai; Yu, Zhiping; Fan, Jonathan A

    2016-07-26

    Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications.

  16. Imaging antenna arrays

    Science.gov (United States)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  17. Analysis and Design of Tapered Slot Antenna for Ultra-Wideband Applications

    Institute of Scientific and Technical Information of China (English)

    YAO Yuan; CHEN Wenhua; HUANG Bin; FENG Zhenghe; ZHANG Zhijun

    2009-01-01

    The tapered slot antenna,such as Vivaldi,has been widely used due to its ultra-wideband,high gain,simple feed structure,and easy fabrication.However,there is no rigorous analytical theory for this type of antenna.This paper analyzed the metal parts of a tapered slot antenna in a conical coordinate system with the medium analyzed in rectangular coordinates.This mixed mode gave an approximate analytical form for the tapered slot antenna with the field distribution and radiation characteristics.A planar tapered slot antenna was proposed according to the results of the analysis methods.Measured and simulated results demonstrate the antenna performance.The antenna shows good impedance matching over a wide bandwidth of 9 GHz,from 2 GHz to 11 GHz,and good radiation patterns.It is suitable for ultra-wideband applications.

  18. A NEW DESIGN METHODOLOGY FOR PRINTED LOG-PERIODIC MONOPOLE ANTENNA

    Institute of Scientific and Technical Information of China (English)

    Tian Haiyan; Li Xiaolin; Yin Bo; Lou Siyan

    2012-01-01

    In theory,Log-Periodic Antenna (LPA) is a linearly polarized antenna with frequency independent properties on the input impedance and gain patterns.Owing to these characteristics,LPA has gained research interests and been employed for many wideband applications.A Printed LogPeriodic Dipole Antenna (PLPDA) with multiple notched bands is proposed for Ultra- WideBand (UWB) applications.An antenna with the notched frequencies of 1.03 GHz,1.28 GHz,1.72 GHz,2.24 GHz and 2.51 GHz is designed,fabricated,and measured.An antenna model was established on the substrate of FR4 and feed by a stripline.The simulation results show that the antenna can achieve an impendence wide bandwidth from 0.89 to 2.58 GHz with return loss less than -10 dB and exhibit stable antenna gain.Furthermore,the measurement result is better consistent with simulation result.

  19. Technologies and Applications of Microwave Photonic Antennas

    OpenAIRE

    Y. Yashchyshyn; Chizh, A.; Malyshev, S.; Modelski, J

    2010-01-01

    This paper describes the development of microwave photonic antennas concepts and their applications. The experimental study of the transmitting and receiving photonic antenna are shown. The transmitting photonic antenna consists of photodiode integrated with microstrip E-shaped patch antenna, and receiving photonic antenna consists of laser diode integrated directly with the Vivaldi antenna.

  20. Multiband Antennas for SDR Applications

    Directory of Open Access Journals (Sweden)

    E. Surducan

    2009-01-01

    Full Text Available We present multiband antennas configurations for SDR applications. Using a composite folded dipole structure as starting point, we derived more complex antenna configurations to support multiple communication protocols for mobile application with linear and circular polarizations. Prototypes as single antenna with circular polarization, tunable single antenna with PIN diode and MIMO systems with three and four antennas, all derivatives of the same basic structure, were produced in an iterative fashion until the desired parameters were achieved. These antennas are suitable for microstrip circuit realizations and can be included in the printed circuit board (PCB of the device, or used as stand alone. The shapes and measurement results are presented throughout the paper. From the illustrated graphs it can be seen that the stand-alone antennas exhibit positive gain for all the frequency bands of interest while the separation between antennas, for the multiple-input multiple-output (MIMO case, is better than 15 dB.

  1. PASS spacecraft antenna technology assessment

    Science.gov (United States)

    Freeland, R. E.

    1990-09-01

    The purpose was to generate estimates of mechanical performance for the classes of spacecraft antenna under construction for application to the Personal Access Satellite System (PASS). These performance data are needed for the support of trade studies involving antenna system development. The classes of antenna considered included: (1) rigid non-deployable antenna structures; (2) mechanical deployable antenna concepts; (3) inflatable deployable antenna concepts; and (4) mesh deployable antenna concepts. The estimates of mechanical performance are presented in terms of structural weight and cost as a function of the reflector size. Estimates of aperture surface precision are presented for a few discrete antenna sizes. The range of reflector size is 1 to 4 meters for non-deployable structures and 2 to 8 meters for deployable structures. The range of reflector surface precision is lambda/30 to lambda/50 for 20 and 30 GHz, respectively.

  2. Hemispheric ultra-wideband antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  3. Dual polarization flat plate antenna

    Science.gov (United States)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  4. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  5. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    is incorporated in a parabolic FSS reflector antenna that is investigated by full-wave analysis tools, and the antenna shows performance comparable to conventional reflector antennas within its frequency band of operation. A planar prototype FSS is manufactured and measured with particular attention to the impact...

  6. China's Largest Radio Antenna System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ After three-and-half-year efforts, the National Astronomical Observatories at CAS (NAOC) has constructed two arrays of radio antennae: a 50m antenna at Miyun Station in Beijing and a 40m antenna in Kunming, capital of southwest China's Yunnan Province.

  7. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  8. Hyperbolic thermal antenna

    CERN Document Server

    Barbillon, Grégory; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2016-01-01

    A thermal antenna is an electromagnetic source which emits in its surrounding, a spatially coherent field in the infrared frequency range. Usually, its emission pattern changes with the wavelength so that the heat flux it radiates is weakly directive. Here, we show that a class of hyperbolic materials, possesses a Brewster angle which is weakly dependent on the wavelength, so that they can radiate like a true thermal antenna with a highly directional heat flux. The realization of these sources could open a new avenue in the field of thermal management in far-field regime.

  9. The Antennae Galaxies

    OpenAIRE

    Karl, Simon

    2012-01-01

    The Antennae galaxies (NGC 4038/39) are the nearest and best-studied major merger of two gas-rich spirals in the local Universe. They are named after the characteristic pair of tidal tails that protrude out of their main galactic disks. Due to their proximity the Antennae are extremely well sampled by modern high-resolution observations over an enormous wavelength range, from radio to X-ray. This allows for a comprehensive multiwavelength approach to the present-day morpholo...

  10. Furlable spacecraft antenna development

    Science.gov (United States)

    Oliver, R. E.; Wilson, A. H.

    1972-01-01

    The development of large furlable spacecraft antennas using conical main reflectors is described. Two basic antenna configurations which utilize conical main reflectors have been conceived and are under development. In the conical-Gregorian configuration each ray experiences two reflections in traveling from the feed center to the aperture plane. In the Quadreflex (four reflection) configuration, each ray experiences four reflections, one at each of two subreflector surfaces and two at the main conical reflector surface. The RF gain measurements obtained from 6-ft and 30-in. models of the conical-Gregorian and Quadreflex concepts respectively were sufficiently encouraging to warrant further development of the concepts.

  11. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  12. Aperture optical antennas

    CERN Document Server

    Wenger, Jerome

    2014-01-01

    This contribution reviews the studies on subwavelength aperture antennas in the optical regime, paying attention to both the fundamental investigations and the applications. Section 2 reports on the enhancement of light-matter interaction using three main types of aperture antennas: single subwavelength aperture, single aperture surrounded by shallow surface corrugations, and subwavelength aperture arrays. A large fraction of nanoaperture applications is devoted to the field of biophotonics to improve molecular sensing, which are reviewed in Section 3. Lastly, the applications towards nano-optics (sources, detectors and filters) are discussed in Section 4.

  13. Antennas fundamentals, design, measurement

    CERN Document Server

    Long, Maurice

    2009-01-01

    This comprehensive revision (3rd Edition) is a senior undergraduate or first-year graduate level textbook on antenna fundamentals, design, performance analysis, and measurements. In addition to its use as a formal course textbook, the book's pragmatic style and emphasis on the fundamentals make it especially useful to engineering professionals who need to grasp the essence of the subject quickly but without being mired in unnecessary detail. This new edition was prepared for a first year graduate course at Southern Polytechnic State University in Georgia. It provides broad coverage of antenna

  14. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception of...... radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  15. Square Planar Monopole Antenna

    OpenAIRE

    Ammann, Max

    1999-01-01

    A planar monopole may be realised by replacing the wire element of a conventional monopole with a planar element. In this case, the planar element which is square, is located above a groundplane and fed using an SMA connector as illustrated. The square monopole has a simple geometry and a smaller bandwidth compared to the circular-disc monopole. However, it is still a broadband antenna with a typical impedance bandwidth of 75 % at S band. This broadband antenna shows a constant radiation patt...

  16. Evolutionary optimization of optical antennas

    CERN Document Server

    Feichtner, Thorsten; Kiunke, Markus; Hecht, Bert

    2012-01-01

    The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs. Here a checkerboard-type, initially random array of gold cubes is subjected to evolutionary optimization. To illustrate the power of the approach we demonstrate that by optimizing the near-field intensity enhancement the evolutionary algorithm finds a new antenna geometry, essentially a split-ring/two-wire antenna hybrid which surpasses by far the performance of a conventional gap antenna by shifting the n=1 split-ring resonance into the optical regime.

  17. Community Antenna Television (CATV).

    Science.gov (United States)

    Federal Communications Commission, Washington, DC.

    The number of households hooked up to cable television or community antenna television (CATV) is expanding rapidly, and Federal Communications Commission (FCC) has been developing regulations since 1962 to guide the growth of the industry. By 1965 the FCC had claimed jurisdiction over all CATV systems in the U. S. This jurisdiction was challenged…

  18. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  19. Algorithm For Control Of Large Antenna

    Science.gov (United States)

    Hill, Robert E.

    1990-01-01

    Alternative position-error feedback modes provided. Modern control theory basis for computer algorithm used to control two-axis positioning of large antenna. Algorithm - incorporated into software of real-time control computer - enables rapid intertarget positioning as well as precise tracking (using one of two optional position-feedback modes) without need of human operator intervention. Control system for one axis of two-axis azimuth/elevation control system embodied mostly in software based on advanced control theory. System has linear properties of classical linear feedback controller. Performance described by bandwidth and linear error coefficients.

  20. Performance of NBPE in Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Tushar

    2014-02-01

    Full Text Available In this paper we use a rectangular microstrip patch antenna with fed patch contains four notches of equal Length and width (L×W and having one parasitic patch, to achieve dual band operation of proposed microstrip patch antenna, is analyzed using circuit theory concept. The theoretical and simulated results of proposed antenna are compared. The return loss of NBPE using rectangular microstrip patch antenna decreased and bandwidth at dual operating frequency 1.44 GHz & 1.80 GHz are increased at a substrate height of 1.6 mm. This paper shows the decreased in return loss & improves in Gain as well as bandwidth using NBPE. These structures are simulated using IE3D version 12.29 Zeland software incorporation.

  1. Deployable antenna kinematics using tensegrity structure design

    Science.gov (United States)

    Knight, Byron Franklin

    (Wertz) to develop a new, practical design approach. This kinematic analysis of tensegrity structures blends these differences to provide the design community with a new approach to lightweight, robust, adaptive structures with the high reliability that space demands. Additionally, by applying Screw Theory, a tensegrity structure antenna can be commanded to move along a screw axis, and therefore meeting the requirement to address multiple feed locations.

  2. Lower Bound for the Radiation $Q$ of Electrically Small Magnetic Dipole Antennas With Solid Magnetodielectric Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    A new lower bound for the radiation $Q$ of electrically small spherical magnetic dipole antennas with solid magnetodielectric core is derived in closed form using the exact theory. The new bound approaches the Chu lower bound from above as the antenna electrical size decreases. For $ka, the new b...

  3. Hybrid optical antennas with photonic resistors.

    Science.gov (United States)

    Butakov, N A; Schuller, J A

    2015-11-16

    Hybrid optical antennas, comprising active materials placed in the gaps of plasmonic split-ring-resonators and nano-dimers, have been the subject of numerous recent investigations. Engineered coupling between the two plasmonic resonators is achieved by modulating the active material, enabling control over the near- and far-field electromagnetic properties. Here, using electromagnetics calculations, we study the evolving optical response of a hybrid metal-semiconductor-metal nanorod antenna as the semiconductor free charge carrier density is continuously varied. In particular, we demonstrate qualitatively new behavior arising from epsilon-near-zero properties in intermediately doped semiconductors. In agreement with optical nano-circuit theory, we show that in the epsilon-near-zero regime such a load acts as an ideal optical resistor with an optimized damping response and strongly suppressed electromagnetic scattering. In periodic arrays, or metasurfaces, we then show how to use these effects to construct high-efficiency nanophotonic intensity modulators for dynamically shaping light.

  4. A FLOSS Tool for Antenna Radiation Patterns

    CERN Document Server

    Yannopoulou, Nikolitsa

    2010-01-01

    This paper briefly highlights the features of the software tool [RadPat4W], named after Radiation Patterns for Windows but also compatible with the [Wine] environment of Linux. The tool is a stand-alone part of a freeware suite that is based on an alternative exposition of fundamental Antenna Theory and is under active development for many years now. Nevertheless, [RadPat4W] source code has been now released as FLOSS Free Libre Open Source Software and thus it may be freely used, copied, modified or redistributed, individually or cooperatively, by the interested user to suit her/his personal needs for reliable antenna applications from the simplest to the more complex.

  5. Structural Modeling and Analysis on Dynamic Characteristics of Antenna Pedestal in Airborne SAR

    Directory of Open Access Journals (Sweden)

    He Li-ping

    2012-06-01

    Full Text Available Finite element modeling and structural dynamic characteristics of antenna pedestal in airborne SAR were studied in this paper. The Finite element model of antenna pedestal in airborne SAR was set up on the basis of structural dynamic theory, then, the key technologies of dynamic simulation were pointed out, and the modal analysis and transient analysis were carried out. Simulation results show that the dynamic characteristics of antenna pedestal in airborne SAR can meet the requirements of servo bandwidth and structural strength. The fast finite element modeling and simulation method proposed in this paper are of great significance to the weight reducing design of antenna pedestal in airborne SAR.

  6. 47 CFR 80.863 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  7. 47 CFR 80.866 - Spare antenna.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  8. Analysis and design of plasma monopole antenna

    OpenAIRE

    Wei, Li; Jinghui, Qiu; Ying, Suo

    2009-01-01

    Two kinds of plasma monopole antennas are simulated and analyzed in this article. For different radius, reflection coefficient, radiation pattern and radiation efficiency of a cylindrical plasma monopole antenna are calculated respectively. According to actual situation, a conical plasma monopole antenna with different cone angle is simulated. Impedance and radiation characteristics of the plasma antenna are similar to the metal monopole antenna.

  9. Omnidirectional Circularly Polarized Antennas – a Small Antenna Perspective

    OpenAIRE

    Narbudowicz, Adam; Ammann, Max

    2015-01-01

    The paper discusses recent developments and challenges in the design of small omnidirectionalcircularly-polarized (CP) antennas. Although omnidirectional CP coverage is easily achievable usingantenna arrays, it is just recently that small and low-cost antennas delivered this functionality.The paper addresses practical design problems for these antennas, not reported in previous publications.This includes selection of the omnidirectional plane relative to the ground plane and measurement chall...

  10. Numerical analysis of patch antenna as antenna array element

    OpenAIRE

    Kizimenko, V.; Bobkov, Y

    2009-01-01

    The patch antennas as antenna array element can be modeling by finite element method (programs Microwave Office, Ansoft HFSS and other). But this method need to use fast computer with memory large size. In this work the authors make an attempt to use thin wire integral equation method for patch antenna analysis. The results of modeling by proposed method are compared with the same of modeling by finite elements method and experimental results.

  11. Microsecond switchable thermal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d' Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

    2014-07-21

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  12. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two......On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... cylindrical surfaces have the sane characteristic constants and different constants are treated separately. Extensive numerical computations of the field radiated from the slot antennas described here are being carried out, but no numerical results are yet available...

  13. Utilizing Symmetry of Planar Ultra-Wideband Antennas for Size Reduction and Enhanced Performance

    CERN Document Server

    Mobashsher, Ahmed Toaha

    2015-01-01

    With the increasingly new ultra wide-band applications, antenna researchers face huge challenges in designing novel operational geometries. Mono-pole and quasi-mono-pole antennas are seen to be the most compact and easily incorporate able solution for portable devices taking the advantages of printed circuit board (PCB) techniques. Most antennas of such type have symmetrical structures. It is possible to attain wider operating bandwidths by meeting symmetry conditions while chopping the antenna into halves for a compact structure. However, there is no generalized way of applying such a technique. The presented paper addresses this issue by proposing a common feeding technique that can be applied to any antenna which is miniaturized using its symmetrical structure. The proposed technique enables feeding the halved structure to achieve wider and better impedance matching than the reported full-size antennas. The theory of characteristic modes is applied to quasi-mono-pole structures to get an insight of the ant...

  14. Antenna structure with distributed strip

    Science.gov (United States)

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  15. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  16. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  17. Receiving Properties of Thin-Film Slot Antenna Arrays for 28-THz-CO2 Laser Radiation

    Science.gov (United States)

    Uchida, Takashi; Abe, Yasuhiko; Hashimoto, Shoji; Yasuoka, Yoshizumi

    The receiving properties of fabricated parasitic slot antenna arrays on ZnS dielectric substrates for 28-THz-CO2 laser radiation were investigated. When the CO2 laser beam was irradiated on the antennas directly (from the air-side), the E-plane antenna patterns of the parasitic slot antenna arrays became increasing sharper as the number of slots in the array increased from 1to 7. On the other hand, the H-plane antenna patterns did not change with the number of slots because the slot antennas were not arrayed in the H-plane. It was found that the antenna theory based on the transmission line model was applicable at 28 THz. When the CO2 laser beam was irradiated through the substrate (from the substrate-side), rippled antenna patterns were observed due to multiple reflection in the substrate because the thickness of the substrate was much longer than the dielectric wavelength of the CO2 laser. It was also found that the antenna receiving properties were affected by the thickness of the substrate. Furthermore, as expected from the theory, the power gain of the 7-parasitic slot antenna array improved by approximately 7 dB compared to that of the single-slot antenna at 28 THz.

  18. A distributed array antenna system

    Science.gov (United States)

    Shaw, R.; Kovitz, J.

    1986-01-01

    The Space Station communication system will use microwave frequency radio links to carry digitized information from sender to receiver. The ability of the antenna system to meet stringent requirements on coverage zones, multiple users, and reliability will play an important part in the overall multiple access communication system. This paper will describe the configuration of a multibeam conformal phased array antenna and the individual microwave integrated components incoporated into this antenna system.

  19. Broadband Loaded Cylindrical Monopole Antenna

    OpenAIRE

    Boucher, Solene; Sharaiha, Ala; Potier, Patrick

    2013-01-01

    Ahstract-A broadband printed monopole antenna based on the variation of the conductivity along its length is proposed .. The result indicates that a non-monotonous repartition provides interesting performances in terms of impedance bandwidth but also concerning antenna gain. The achievement of the method is demonstrated through its application, using the carbon fibers to perform this conductivity variation. Monopole antenna presents a large impedance bandwidth of 123% with an interesting gain...

  20. On network representations of antennas inside resonating environments

    Directory of Open Access Journals (Sweden)

    F. Gronwald

    2007-06-01

    Full Text Available We discuss network representations of dipole antennas within electromagnetic cavities. It is pointed out that for a given configuration these representations are not unique. For an efficient evaluation a network representation should be chosen such that it involves as few network elements as possible. The field theoretical analogue of this circumstance is the possibility to express electromagnetic cavities' Green's functions by representations which exhibit different convergence properties. An explicit example of a dipole antenna within a rectangular cavity clarifies the corresponding interrelation between network theory and electromagnetic field theory. As an application, current spectra are calculated for the case that the antenna is nonlinearly loaded and subject to a two-tone excitation.

  1. Spiral Microstrip Antenna with Resistance

    Science.gov (United States)

    Shively, David G. (Inventor)

    1998-01-01

    A spiral microstrip antenna having resistor elements embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  2. UWB Directive Triangular Patch Antenna

    Directory of Open Access Journals (Sweden)

    A. C. Lepage

    2008-01-01

    Full Text Available Compact directive UWB antennas are presented in this paper. We propose an optimization of the F-probe fed triangular patch antenna. The new design achieves an impedance bandwidth of 69% (3–6.15 GHz and presents good radiation characteristics over the whole impedance bandwidth. The average gain is 6.1 dB. A time-domain study has been performed to characterize the antenna behavior in case a UWB pulse is used. Finally, we propose an alternative solution to facilitate the manufacturing process using metallized foam technology. It also improves the robustness of the antenna as well as reducing its cost.

  3. Antenna arrays a computational approach

    CERN Document Server

    Haupt, Randy L

    2010-01-01

    This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.

  4. Analysis of radiation performances of plasma sheet antenna

    Science.gov (United States)

    Yin, Bo; Zhang, Zu-Fan; Wang, Ping

    2015-12-01

    A novel concept of plasma sheet antennas is presented in this paper, and the radiation performances of plasma sheet antennas are investigated in detail. Firstly, a model of planar plasma antenna (PPA) fed by a microstrip line is developed, and its reflection coefficient is computed by the JE convolution finite-difference time-domain method and compared with that of the metallic patch antenna. It is found that the design of PPA can learn from the theory of the metallic patch antenna, and the impedance matching and reconstruction of resonant frequency can be expediently realized by adjusting the parameters of plasma. Then the PPA is mounted on a metallic cylindrical surface, and the reflection coefficient of the conformal plasma antenna (CPA) is also computed. At the same time, the influence of conformal cylinder radius on the reflection coefficient is also analyzed. Finally, the radiation pattern of a CPA is given, the results show that the pattern agrees well with the one of PPA in the main radiation direction, but its side lobe level has deteriorated significantly.

  5. Radar transponder antenna pattern analysis for the space shuttle

    Science.gov (United States)

    Radcliff, Roger

    1989-01-01

    In order to improve tracking capability, radar transponder antennas will soon be mounted on the Shuttle solid rocket boosters (SRB). These four antennas, each being identical cavity-backed helices operating at 5.765 GHz, will be mounted near the top of the SRB's, adjacent to the intertank portion of the external tank. The purpose is to calculate the roll-plane pattern (the plane perpendicular to the SRB axes and containing the antennas) in the presence of this complex electromagnetic environment. The large electrical size of this problem mandates an optical (asymptotic) approach. Development of a specific code for this application is beyond the scope of a summer fellowship; thus a general purpose code, the Numerical Electromagnetics Code - Basic Scattering Code, was chosen as the computational tool. This code is based on the modern Geometrical Theory of Diffraction, and allows computation of scattering of bodies composed of canonical problems such as plates and elliptic cylinders. Apertures mounted on a curved surface (the SRB) cannot be accomplished by the code, so an antenna model consisting of wires excited by a method of moments current input was devised that approximated the actual performance of the antennas. The improvised antenna model matched well with measurements taken at the MSFC range. The SRB's, the external tank, and the shuttle nose were modeled as circular cylinders, and the code was able to produce what is thought to be a reasonable roll-plane pattern.

  6. Modified antenna for orthogonally polarised fields

    OpenAIRE

    Prudyus, Ivan N.; Zakharia, Y. A.; Storozh, V. G.; Mankovsky, S. V.

    2005-01-01

    A compact wideband antenna for transmission and receiving of orthogonally polarized electromagnetic fields is proposed. Results of electrodynamic antenna structure analysis are considered. Main antenna properties by results of experimental investigation are presented.

  7. Ultrawideband method of feeding a dipole antenna

    OpenAIRE

    Bakhrakh, Lev D.; Los', V. F.; Shamanov, A. N.

    2003-01-01

    An antenna-feeder device is considered, in which a new way of antenna excitation is implemented. An example is presented of its use with a dipole antenna for the radiation of super-short pulse signals.

  8. Antenna system for measuring electromagnetic field parameters

    OpenAIRE

    Ilnitskiy, Ludvig Ya.; Shcherbyna, Olga A.

    2014-01-01

    A functional block diagram of the general-purpose antenna system for measuring electromagnetic wave parameters has been presented. Theoretical relationships forming a basis of the antenna system structure are described, and the antenna operation principle is presented.

  9. Design aspects of commercial satellite antennas

    Science.gov (United States)

    Lang, K. C.; Taormina, F. A.

    General design considerations for commercial satellite antennas are reviewed, and design factors of shaped beam reflector antennas are described, including shaped beam efficiency, flat-topping and boundary matching, and analysis by Fourier transforms. Attention is then given to the design of the Telesat Anik 17/Westar/Palapa communications antenna, the Comstar I communications antenna, the SBS communications antenna, and Intelsat IV A communications antenna.

  10. Broadband Corrugated Square-Shaped Monopole Antenna

    OpenAIRE

    S. D. Ahirwar; C. Sairam

    2011-01-01

    Design and development of a corrugated square-shaped monopole antenna is presented with measured results. The operational bandwidth of the antenna is 300 MHz–3000 MHz. The antenna is derived from a square-shaped planar monopole antenna. This basic square-shaped radiating element is corrugated in its lateral dimension. This corrugation reduces the lateral dimension of the antenna by 60%. Electrical performance of this antenna is better than its parent counterpart. This paper presents design an...

  11. UWB and SWB Planar Antenna Technology

    OpenAIRE

    Zhong, Shun-Shi

    2010-01-01

    The recent progress in the development of UWB planar antenna technology has been reviewed. Some types of UWB metal-plate monopole antennas, UWB printed monopole antennas and UWB printed slot antennas are presented. The comparison results of indicate that the UWB printed monopole antennas can realize relatively smaller dimensions, and that the UWB printed slot antennas can achieve relatively higher gain. Finally, some realization manners of the band-notch function of UWB printed monopole anten...

  12. Antennas - Our electronic eyes and ears

    Science.gov (United States)

    Kraus, John D.

    1989-01-01

    Although the number of antenna types is vast, all antenna properties may be characterized in terms of the same basic parameters of radiation pattern, impedance, radar cross-section, and temperature. A comprehensive introduction is presented to antenna configurations; these encompass, among antennas constructed of wire or tubing, such wideband and circularly polarized types as helices, linear conductors, and loops. Sheet-conductor antenna families include reflectors, waveguides, and slotted antennas. Nonconducting dielectric antennas are lenses, polyrods, and slabs. Antenna array types range over 'driven', parasitic, and adaptive configurations. 'Two half-wavelength' and 'four half-wavelength' element arrays are also discussed.

  13. Terahertz antenna electronic chopper

    Energy Technology Data Exchange (ETDEWEB)

    Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F. [Department of Electronics, Wroclaw University of Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw (Poland)

    2016-01-15

    In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.

  14. Patch antenna terahertz photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Palaferri, D.; Todorov, Y., E-mail: yanko.todorov@univ-paris-diderot.fr; Chen, Y. N.; Madeo, J.; Vasanelli, A.; Sirtori, C. [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMS 7162, 75013 Paris (France); Li, L. H.; Davies, A. G.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-04-20

    We report on the implementation of 5 THz quantum well photodetector exploiting a patch antenna cavity array. The benefit of our plasmonic architecture on the detector performance is assessed by comparing it with detectors made using the same quantum well absorbing region, but processed into a standard 45° polished facet mesa. Our results demonstrate a clear improvement in responsivity, polarization insensitivity, and background limited performance. Peak detectivities in excess of 5 × 10{sup 12} cmHz{sup 1/2}/W have been obtained, a value comparable with that of the best cryogenic cooled bolometers.

  15. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  16. Mobile Phone Antenna Performance 2016

    DEFF Research Database (Denmark)

    Pedersen, Gert F.

    2016-01-01

    This study investigates the antenna performance of a number of mobile phones widely used in the Nordic Countries. The study is supported by the Nordic Council of Ministers. The antenna performance of the phones is vital for the phones ability to ensure radio coverage in low signal situations. The...

  17. Broadband antenna with frequency scanning

    Directory of Open Access Journals (Sweden)

    A. A. Shekaturin

    2014-06-01

    Full Text Available Relevance of this study. The main advantage of frequency scanning is simplicity of implementation. At this point, multifunctional usage of microwave modules is an urgent task, as well as their maximum simpler and cheaper. Antenna design and operation. The study is aimed at providing electric antenna with frequency scanning. It was based on the log-periodic antenna due to its wideband and negotiation capability over the entire operating frequency range. For this distribution line is bent in an arc of a circle in a plane blade while vibrators are arranged along the radius. Computer modeling of antennas with frequency scanning. Modeled with a non-mechanical motion antenna beam emitters representing system for receiving a radio frequency signal on mobile objects calculated for 1.8 GHz ... 4.2 GHz. The simulation was performed in a software environment for numerical modeling of electromagnetic «Feko 5.5». Analysis of the interaction of radiation is based on the method of moments. Findings. The result of this work is to propose a new design of the antenna with a frequency scanning method as agreed in a wide frequency range. In the studied technical solution provided by the rotation of NAM in the frequency range, and the matching of the antenna to the feed line is maintained. Application of this type of antennas on the proposed technical solution in communication systems will improve the communication reliability by maintaining coordination in the frequency range

  18. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  19. Antennas for light and plasmons

    NARCIS (Netherlands)

    Dikken, Dirk Jan Willem

    2015-01-01

    Antennas have been used for over a century as emitters, scatterers and receivers of electromagnetic waves. All wireless communication devices, such as radio, mobile phones and satellite communication are strongly dependent on the capability of an antenna to localize propagating electromagnetic waves

  20. Graphene-antenna sandwich photodetector.

    Science.gov (United States)

    Fang, Zheyu; Liu, Zheng; Wang, Yumin; Ajayan, Pulickel M; Nordlander, Peter; Halas, Naomi J

    2012-07-11

    Nanoscale antennas sandwiched between two graphene monolayers yield a photodetector that efficiently converts visible and near-infrared photons into electrons with an 800% enhancement of the photocurrent relative to the antennaless graphene device. The antenna contributes to the photocurrent in two ways: by the transfer of hot electrons generated in the antenna structure upon plasmon decay, as well as by direct plasmon-enhanced excitation of intrinsic graphene electrons due to the antenna near field. This results in a graphene-based photodetector achieving up to 20% internal quantum efficiency in the visible and near-infrared regions of the spectrum. This device can serve as a model for merging the light-harvesting characteristics of optical frequency antennas with the highly attractive transport properties of graphene in new optoelectronic devices. PMID:22703522

  1. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  2. Optical antennas as nanoscale resonators

    CERN Document Server

    Agio, Mario

    2011-01-01

    Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interaction, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  3. Optical antennas as nanoscale resonators.

    Science.gov (United States)

    Agio, Mario

    2012-02-01

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  4. Transcatheter Microwave Antenna

    Science.gov (United States)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  5. Antennas and Propagation for Body-Centric Wireless Communications

    CERN Document Server

    Hall, Peter S

    2012-01-01

    Now in a newly updated and revised edition, this timely resource provides you with complete and current details on the theory, design, and applications of wireless antennas for on-body electronic systems. The Second Edition offers readers brand new material on advances in physical phantom design and production, recent developments in simulation methods and numerical phantoms, descriptions of methods for simulation of moving bodies, and the use of the body as a transmission channel. You also find a completely revised chapter on channel characterization and antenna design at microwave frequencie

  6. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon;

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which can...

  7. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  8. 47 CFR 95.51 - Antenna height.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  9. Microstrip antenna on tunable substrate

    Science.gov (United States)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  10. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  11. On chip plasmonic monopole nano-antennas and circuits.

    Science.gov (United States)

    Adato, Ronen; Yanik, Ahmet A; Altug, Hatice

    2011-12-14

    Analogues of many radio frequency (RF) antenna designs such as the half-wave dipole and Yagi-Uda have been successfully adapted to the optical frequency regime, opening the door for important advances in biosensing, photodetection, and emitter control. Examples of monopole antennas, however, are conspicuously rare given the element's extensive use in RF applications. Monopole antennas are attractive as they represent an easy to engineer, compact geometry and are well isolated from interference due the ground plane. Typically, however, the need to orient the antenna element perpendicular to a semi-infinite ground plane requires a three-dimensional structure and is incompatible with chip-based fabrication techniques. We propose and demonstrate here for the first time that monopole antenna elements can be fashioned out of single element nanoparticles fabricated in conventional planar geometries by using a small nanorod as a wire reflector. The structure offers a compact geometry and the reflector element provides a measure of isolation analogous to the RF counterpart. This isolation persists in the conductive coupling regime, allowing multiple monopoles to be combined into a single nanoparticle, yet still operate independently. This contrasts with several previous studies that observed dramatic variations in the spectral response of conductively coupled particles. We are able to account for these effects by modeling the system using circuit equations from standard RF antenna theory. Our model accurately describes this behavior as well as the detailed resonance tuning of the structure. As a specific practical application, the monopole resonances are precisely tuned to desired protein absorption bands, thereby enhancing their spectroscopic signatures. Furthermore, the accurate modeling of conductive coupling and demonstrated electronic isolation should be of general interest to the design of complex plasmonic circuits incorporating multiple antennas and other current

  12. Detection of massive Gravitational Waves using spherical antenna

    Science.gov (United States)

    Prasia, P.; Kuriakose, V. C.

    2014-03-01

    The generation of massive Gravitational Waves (GW) from metric f(R) theory of gravity is studied and the sensitivity of a spherical antenna detector towards such a wave is looked into. The energy sensitivity is maximum for the monopole mode of the sphere. Of the five quadrupole modes of a sphere, only three are triggered by a massive wave. Also, the sensitivity of a spherical antenna with mechanical resonators attached to it is studied. The Truncated Icosahedral Gravitational wave Antenna (TIGA), originally proposed for detecting the effect of massless GW on the quadrupole modes of a sphere, has been modified in this paper to get a Modified TIGA, in order to detect the sensitivity of monopole modes towards a massive wave.

  13. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    Science.gov (United States)

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application. PMID:27410080

  14. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single-output and multiple-input multiple-output keyhole channels are studied. Based on the closed-form exact expressions for the effective capacity of both channels, the authors look into the asymptotic high and low signal-to-noise ratio regimes, and derive simple expressions to gain more insights. The impact of spatial correlation on effective capacity is also characterised with the aid of a majorisation theory result. It is revealed that antenna correlation reduces the effective capacity of the channels and a stringent quality-of-service requirement causes a severe reduction in the effective capacity but can be alleviated by increasing the number of antennas. © 2012 The Institution of Engineering and Technology.

  15. Scattering Effects of Solar Panels on Space Station Antenna Performance

    Science.gov (United States)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  16. Microstrip and printed antenna design

    CERN Document Server

    Bancroft, Randy

    2009-01-01

    The approach in this book is historical and practical. It covers abasic designsa in more detail than other microstrip antenna books that tend to skip important electrical properties and implementation aspects of these types of antennas. Examples include: quarter-wave patch, quarter by quarter patch, detailed design method for rectangular circularly polarized patch, the use of the TM11 (linear and broadside CP), TM21 (monopole CP pattern) and TM02 (monopole linear) circular patch modes in designs, dual-band antenna designs which allow for independent dual-band frequencies. Limits on broadband m

  17. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... to the antenna designer. Closed-form expressions for the relative mode excitation have been derived yielding self-resonant or circular polarized operation. Furthermore, an even lower Q is attainable when combining the two dipole modes. For example for a specific self-resonant dual-dipole antenna, a magnetic core...

  18. Moths smell with their antennae

    Science.gov (United States)

    Spencer, Thomas; Ballard, Matthew; Alexeev, Alexander; Hu, David

    2015-11-01

    Moths are reported to smell each other from over 6 miles away, locating each other with just 200 airborne molecules. In this study, we investigate how the structure of the antennae influences particle capture. We measure the branching patterns of over 40 species of moths, across two orders of magnitude in weight. We find that moth antennae have 3 levels of hierarchy, with dimensions on each level scaling with body size. We perform lattice-Boltzman simulations to determine optimal flow patterns around antennae branches allowing for capture of small particles.

  19. DUAL BAND MONOPOLE ANTENNA DESIGN

    Directory of Open Access Journals (Sweden)

    P. Jithu

    2013-06-01

    Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.

  20. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  1. EHF SATCOM monopulse antenna

    Science.gov (United States)

    Thomas, D.

    The author describes a coaxial dual-band monopulse feed design specifically tailored to the EHF (extremely high-frequency/SATCOM frequency bands. The device utilizes low-loss waveguide circuits throughout and employs a corrugated feed horn that provides symmetrical primary patterns with steeply tapered skirts. The dimensions in the horn throat/coaxial section were empirically adjusted for good primary patterns in the 45-GHz band. Fortuitously, this also provided good primary performance in the 21-GHz band. In the autotrack mode, the phase and amplitude of the error channel are compared with those of the data channel to obtain tracking error magnitude and sense. The feed and test antenna geometries are described. Measured performance demonstrating nominal efficiencies in the 55 percent-60 percent range, along with good pattern, phase, and impedance match, is presented.

  2. Metal Patch Antenna

    Science.gov (United States)

    Chamberlain, Neil F. (Inventor); Hodges, Richard E. (Inventor); Zawadzki, Mark S. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  3. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  4. Bacteria Foraging Algorithm in Antenna Design

    OpenAIRE

    Biswa Binayak Mangaraj; Manas Ranjan Jena; Saumendra Kumar Mohanty

    2016-01-01

    A simple design procedure to realize an optimum antenna using bacteria foraging algorithm (BFA) is proposed in this paper. The first antenna considered is imaginary. This antenna is optimized using the BFA along with a suitable fitness function formulated by considering some performance parameters and their best values. To justify the optimum design approach, one 12-element Yagi-Uda antenna is considered for an experiment. The optimized result of this antenna obtained using the optimization a...

  5. Development of an antenna structure for a deployable offset antenna

    Science.gov (United States)

    Herbig, H.; Tauber, W.; Vorbrugg, H.

    1986-02-01

    An unfurlable spacecraft antenna is described. The antenna consists of a central hub, ribs being radially arranged around the hub, and a mesh which produces the parabolic reflector surface shape. The hub and the ribs are made of CFRP. For the stowed and deployed reflector configuration the CFRP-components were analyzed and optimized under dynamical and dimensional stability aspects. The analytical results and the development of the CFRP components are presented.

  6. A New Agile Radiating System Called Electromagnetic Band Gap Matrix Antenna

    Directory of Open Access Journals (Sweden)

    Hussein Abou Taam

    2014-01-01

    Full Text Available Civil and military applications are increasingly in need for agile antenna devices which respond to wireless telecommunications, radars, and electronic warfare requirements. The objective of this paper is to design a new agile antenna system called electromagnetic band gap (EBG matrix. The working principle of this antenna is based on the radiating aperture theory and constitutes the subject of an accepted CNRS patent. In order to highlight the interest and the originality of this antenna, we present a comparison between it and a classical patch array only for the (one-dimensional 1D configuration by using a rigorous full wave simulation (CST Microwave software. In addition, EBG matrix antenna can be controlled by specific synthesis algorithms. These algorithms use inside their; optimization loop an analysis procedure to evaluate the radiation pattern. The analysis procedure is described and validated at the end of this paper.

  7. Modeling of a Plasma Antenna with Inhomogeneous Distribution of Electron Density

    Directory of Open Access Journals (Sweden)

    Zong-sheng Chen

    2015-01-01

    Full Text Available The distribution of the electron density along a plasma antenna can influence the antenna’s performance. But little has been done in this regard in former studies. In this paper, a model of a practical plasma antenna with an inhomogeneous distribution of electron density is founded according to the transmission-line equivalent theory of a metal monopole, from which the current distribution and the radiation pattern of a plasma antenna with appropriate parameters are calculated. The results show that the electrical current distribution, the maximum radiation direction, and the beamwidth of a plasma antenna vary with electron density distributions. To validate the model, the plasma antenna with the same parameters is also simulated based on electromagnetic software HFSS. It is found that the results from the two ways are almost consistent.

  8. The new 34-meter antenna

    Science.gov (United States)

    Pompa, M. F.

    1986-01-01

    The new 34-m high efficiency Azimuth - Elevation antenna configuration, including its features, dynamic characteristics and performance at 8.4-GHz frequencies is described. The current-technology features of this antenna produce a highly reliable configuration by incorporation of a main wheel and track azimuth support, central pintle pivot bearing, close tolerance surface panels and all-welded construction. Also described are basic drive controls that, as slaved to three automatic microprocessors, provide accurate and safe control of the antenna's steering tasks. At this time antenna installations are completed at Goldstone and Canberra and have operationally supported the Voyager - Uranus encounter. A third installation is being constructed currently in Madrid and is scheduled for completion in late 1986.

  9. Circularly-Polarized Microstrip Antenna

    Science.gov (United States)

    Stanton, P. H.

    1985-01-01

    Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.

  10. Dipoles, unintentional antennas and EMC

    Directory of Open Access Journals (Sweden)

    Berend Danker

    2008-01-01

    Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.

  11. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  12. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  13. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  14. Design and synthesis of flexible switching 1 × 2 antenna array on Kapton substrate

    Science.gov (United States)

    Georges Rabobason, Yvon; Rigas, Grigorios; Swaisaenyakorn, Srijittar; Mirkhaydarov, Bobur; Ravelo, Blaise; Shkunov, Maxim; Young, Paul; Benjelloun, Nabil

    2016-06-01

    Flexible front- and back-end RF/analogue system antennas were recently emerged. However, little flexible antenna system design is available so far, in planar hybrid technology with surface mounted components. This paper describes the design feasibility of flexible switching 1 × 2 antenna array system. It acts as a switching antenna implemented in hexapole configuration. The system is comprised of a key element RF switch terminated by two identical patch antennas associated to half-wave elementary transmission lines (TLs). A detailed theory illustrating the global S-parameter model determination in function of the given RF-switch return and insertion losses is established. In difference to the conventional microwave circuit theory, the proposed equivalent S-parameter model is originally built with the non-standard optimized antenna load. Thus, the synthesis method of the terminal antenna input impedance and the output access line characteristic impedance is formulated in function of the specified return and optimal transmission losses. The design method and theoretical approach feasibility is verified with the demonstrator of flexible switching 1 × 2 antenna array printed on Kapton substrate. The circuit prototype is implemented in hybrid planar technology integrating patch antenna operating at about 6 GHz and a packaged GaAs RF switch associated to the RF/DC signal decoupling accessory mounted surface components. Simulations of the designed circuit transmission and isolation losses from 5.5 GHz to 7 GHz were carried out by using the commercial RF switch S-parameter touchstone model provided by the manufacturer. The simulated and measured return losses are compared and discussed. Then, the measured radiation patterns confirm the proposed switched antenna concept feasibility.

  15. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K.; Taniguchi, T.; Kubota, K. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  16. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  17. Multiple band circularly polarized microstrip antenna

    Science.gov (United States)

    Yu, I. P. (Inventor)

    1980-01-01

    A multiple antenna assembly for communicating electromagnetic radiation is disclosed. An antenna element stack is constructed of a plurality of elliptical lamina antenna elements mutally separated by layers of dielectric material, and separated from a ground plane by dielectric material. The antenna assembly is coupled through a feed line in contact with the top antenna element. A conductor joins the remaining antenna elements to the ground plane. Each individual antenna element is operable for communication reception and transmission within a frequency band determined by the size of the particular antenna element. The sizes of the antenna elements may be selected to provide electromagnetic radiation communication over several distinct frequency bands, or to connect the individual bands into a broad band.

  18. E-Textile Antennas for Space Environments

    Science.gov (United States)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  19. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    Science.gov (United States)

    Olmon, R L; Raschke, M B

    2012-11-01

    resonance, (ii) subsequent transformation of that mode into a nanoscale spatial localization, and (iii) near-field coupling via an enhanced local density of states to a quantum load. These three steps define the goal of efficient transformation of incident radiation into a quantum excitation in an impedance-matched fashion. We review the physical basis of the light-matter interaction at the transition from the RF to optical regime, discuss the extension of antenna theory as needed for the design of impedance-matched optical antenna-load coupled systems, and provide several examples of the state of the art in design strategies and suggest future extensions. We furthermore suggest new performance metrics based on the combination of electric vector field, field enhancement and capture cross section measurement to aid in comparison between different antenna designs and optimization of optical antenna performance within the physical parameter space.

  20. Study of Antenna Superstrates Using Metamaterials for Directivity Enhancement Based on Fabry-Perot Resonant Cavity

    Directory of Open Access Journals (Sweden)

    Haixia Liu

    2013-01-01

    Full Text Available Metamaterial superstrate is a significant method to obtain high directivity of one or a few antennas. In this paper, the characteristics of directivity enhancement using different metamaterial structures as antenna superstrates, such as electromagnetic bandgap (EBG structures, frequency selective surface (FSS, and left-handed material (LHM, are unifiedly studied by applying the theory of Fabry-Perot (F-P resonant cavity. Focusing on the analysis of reflection phase and magnitude of superstrates in presently proposed designs, the essential reason for high-directivity antenna with different superstrates can be revealed in terms of the F-P resonant theory. Furthermore, a new design of the optimum reflection coefficient of superstrates for the maximum antenna directivity is proposed and validated. The optimum location of the LHM superstrate which is based on a refractive lens model can be determined by the F-P resonant distance.

  1. Reflection measurement of waveguide-injected high-power microwave antennas.

    Science.gov (United States)

    Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong

    2015-12-01

    A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.

  2. Single Band Helical Antenna in Axial Mode

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2012-11-01

    Full Text Available Helical antennas have been widely used in a various useful applications, due to their low weight and low profile conformability, easy and cheap realization.Radiation properties of this antenna are examined both theoretically and experimentally. In this paper, an attempt has been made to investigate new helical antenna structure for Applications. CST MWS Software is used for the simulation and design calculations of the helical antennas. The axial ratio, return loss, VSWR, Directivity, gain, radiation pattern is evaluated. Using CST MWS simulation software proposed antenna is designed/simulated and optimized. The antenna exhibits a single band from 0 GHz to 3 GHz for GPS and several satellite applications

  3. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  4. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  5. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  6. Characteristics of a Teflon rod antenna for millimeter and submillimeter wave irradiation on living bodies

    OpenAIRE

    TATSUKAWA, Toshiaki; Doi, Akitaka; TERANAKA, Masato; Takashima, Hitoshi; Goda, Fuminori; Idehara, Toshitaka; Ogawa, Isamu; KANEMAKI, Tomohiro; NISHIZAWA, Seiji; NAMBA, Tunetoyo

    2003-01-01

    The development of a millimeter and submillimeter wave catheter for irradiation on living bodies using a Teflon rod dielectric antenna is described. The power sources of electromagnetic wave are an Impatt oscillator (90 GHz, 0.3 W) and gyrotron (302 GHz, 30 W). Irradiation tests using various Teflon rod dielectric antennas were performed on beef livers. Irradiation results were considered by microwave theory and ray optics.

  7. An Efficient ICT Method for Analysis of Co-planar Dipole Antenna Arrays of Arbitrary Lengths

    OpenAIRE

    Imoro, Adam Icarus; Aoki, Ippo; Inagaki, Naoki; Kikuma, Nobuyoshi; キクマ, ノブヨシ; 菊間, 信良

    1998-01-01

    A more judicious choice of trial functions to implement the Improved Circuit Theory (ICT) application to multi-element antennas is achieved. These new trial functions, based on Tai's modified variational implementation for single element antennas, leads to an ICT implementation applicable to much longer co-planar dipole arrays. The accuracy of the generalized impedance formulas is in good agreement with the method of moments. Moreover, all these generalized formulas including the radiation pa...

  8. A comprehensive study of resistor-loaded planar dipole antennas for ground penetrating radar applications

    OpenAIRE

    Uduwawala, Disala

    2006-01-01

    Ground penetrating radar (GPR) systems are increasingly being used for the detection and location of buried objects within the upper regions of the earth’s surface. The antenna is the most critical component of such a system. This thesis presents a comprehensive study of resistor-loaded planar dipole antennas for GPR applications using both theory and experiments. The theoretical analysis is performed using the finite difference time domain (FDTD) technique. The analysis starts with the most ...

  9. A rigorous proof of MIMO channel capacity's increase with antenna number

    Institute of Scientific and Technical Information of China (English)

    GONG Jian-min; M.R. Soleymani; J.F.Hayes

    2008-01-01

    It is well known that adding more antennas at the transmitter or at the receiver may offer larger channel capacity, in the multiple-input multiple-output(MIMO) communication systems. In this letter, a simple proof is presented for the fact that the channel capacity increases with an increase in the number of receiving antennas. The proof is based on the famous capacity formula of Foschini and Gans with matrix theory.

  10. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  11. VLBI Antenna Calibration via GPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate and develop an inexpensive system to determine: 1)VLBI antenna properties such as axis-offset, non-intersection of axis and antenna...

  12. International Mapping of Antenna-Measurement Facilities

    DEFF Research Database (Denmark)

    Boccia, Luigi; Breinbjerg, Olav; Di Massa, Giuseppe;

    2006-01-01

    This paper presents a comprehensive international mapping of antenna-measurement facilities. This initiative, conducted within the framework of the Antenna Centre of Excellence (ACE) of the European Union, is oriented toward all institutions having research, development, or operational activities...

  13. Wrap-rib antenna concept development overview

    Science.gov (United States)

    Woods, A. A., Jr.; Garcia, N. F.

    1983-01-01

    The wrap rib antenna design of a parabolic reflector large space antenna is discussed. Cost estimates, design/mission compatibility, deployment sequence, ground based tests, and fabrication are discussed.

  14. 47 CFR 74.641 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Television Broadcast Auxiliary... transmitted signal. Booster station antennas having narrower beamwidths and reduced sidelobe radiation may be... or with the minimum antenna gain requirement; and (B) With the minimum radiation suppression to...

  15. Multiband small zeroth-order metamaterial antenna

    Science.gov (United States)

    Dakhli, Nabil; Choubani, Fethi; David, Jacques

    2011-06-01

    A novel resonant metamaterial antenna based on the Composite Right/Left-Handed (CRLH) transmission line (TL) model is presented. The proposed small antenna is designed to operate simultaneously over multiple wireless services (UMTS-WLAN-WIMAX)

  16. Multifrequency Printed Antennas Loaded with Metamaterial Particles

    Directory of Open Access Journals (Sweden)

    D. Segovia-Vargas

    2009-06-01

    Full Text Available This paper provides a review of printed antennas loaded with metamaterial particles. This novel technique allows developing printed antennas with interesting features such as multifrequency (simultaneous operation over two or more frequency bands and multifunctionality (e. g. radiation pattern diversity. Moreover, compactness is also achieved and the main advantages of conventional printed antennas (light weight, low profile, low cost ... are maintained. Different types of metamaterial-loaded printed antennas are reviewed: printed dipoles and patch antennas. Several prototypes are designed, manufactured and measured showing good results. Furthermore, simple but accurate equivalent models are proposed. These models allow an easy and quick design of metamaterial-loaded printed antennas. Finally, two interesting applications based on the proposed antennas are reviewed: the patch antennas are used as radiating elements of emerging active RFID systems in the microwave band and the metamaterial-loaded printed dipoles are employed to increase the performance of log-periodic arrays.

  17. Integrated resonant tunneling diode based antenna

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, Vincent M. (Placitas, NM); Tiggers, Chris P. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM)

    2000-01-01

    An antenna comprising a plurality of negative resistance devices and a method for making same comprising employing a removable standoff layer to form the gap between the microstrip antenna metal and the bottom contact layer.

  18. A COMPACT QUADRATURE FEEDING CIRCUIT FOR CIRCULARLY POLARIZED ANTENNA

    Institute of Scientific and Technical Information of China (English)

    Dong Yuliang; Tian Buning; Tang Song

    2002-01-01

    A novel compact quadrature feeding circuit for a circularly polarized antenna is described. The equivalent circuit method in microwave network theory is used and the conventional directional coupler is converted to a new quadrature feeding circuit. This feeding circuit has the same characteristics as the conventional directional coupler but its size is only about one fourth of that of the latter. The formulas for designing the feeding circuit are given. The optimized results obtained by using the software ENSEMBLE are also reported.

  19. Antenna Technology Shuttle Experiment (ATSE)

    Science.gov (United States)

    Freeland, R. E.; Mettler, E.; Miller, L. J.; Rahmet-Samii, Y.; Weber, W. J., III

    1987-06-01

    Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost.

  20. Offset unfurlable antenna, phase 1

    Science.gov (United States)

    1984-03-01

    The configuration, technology requirements, development aspects, and experimental activities for satellite reflectors for fixed and mobile communications and television broadcasting are outlined. A 4.5 m antenna for 4 GHz, and an 8 m antenna for 1.6 GHz were studied, assuming an L-Sat type satellite. A radial rib concept with auxiliary adjustment ribs, and a three dimensional scissors concept (spatial framework) with mesh adjustment elements were compared concerning mass, stowage, volume, development risk, and reliability. For antennas of diameter from 3.6 to 12 m (12 GHz to 800 MHz) the radial rib reflector is preferred. Main advantages (with rib folding for larger reflector diameters) are: lower costs; less critical technology problems; lower development risks; high deployment reliability; lightweight intermediate ribs can adapt surface accuracy to higher frequency requirements (high application flexibility); and folded main ribs provide high package capability at larger diameters. The scissors concept is advantageous for applications requiring reflectors from 12 m diameter onwards.

  1. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  2. Ultra-wideband RF helmet antenna

    OpenAIRE

    Lebaric, Jovan; Tan, Ah-Tuan

    2000-01-01

    This paper addresses the development of an ultra-wideband, vertically polarized communications antenna integrated into the camouflage cover of a standard military-issue Kevlar helmet. The Helmet Camouflage Cover Antenna (referred to as the “helmet antenna’y is one of three antennas based on the antenna COMbat Wear INtegration (COMWIN) concept developed at the Naval Postgraduate School (NPS) for the man -portable implementation of the new Joint Tactical Radio System (JTRS). The results of c...

  3. Bandwidth characteristics of monopulse slotted waveguide antennas

    Science.gov (United States)

    Derneryd, A.; Peterson, R.

    Slotted waveguide antennas are of resonant and nonresonant type; the former generate a beam normal to the aperture, rendering them suitable for monopulse antenna applications. Attention is presently given to the improvement of resonant antenna impedance matching through a process of waveguide overloading. The combination of an overloaded waveguide and a transformer will generally have a broader impedance match than the antenna matched by itself; this phenomenon is discussed from both impedance-match and sidelobe level viewpoints.

  4. Circularly polarized open-loop antenna

    OpenAIRE

    Li, Rong-Lin; Fusco, Vincent F.; Nakano, Hisamatsu

    2003-01-01

    A printed circular open-loop antenna is introduced as a simple structure for producing circular polarization; the antenna is fed with a coaxial probe. By introducing a gap within the circular loop a traveling-wave current is excited and thus circularly polarized radiation can be achieved. An optimized circularly polarized antenna is designed through numerical analysis using a so-called parametric method of moment technique. Experimental verification of the new antenna is presented. The antenn...

  5. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    OpenAIRE

    V. Jebaraj; K.R.S. Ravi Kumar; D. Mohanageetha

    2014-01-01

    Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation techni...

  6. Wideband irregular-shaped fractal antennas

    OpenAIRE

    Kolesov, V. V.; Krupenin, S. V.

    2007-01-01

    This paper proposes an algorithm of generating fully reproducible irregular fractal structures for antenna design. Three types of pseudorandom fractal clusters are introduced. The multi-frequency behavior of the irregular-shaped fractal antennas is studied by means of numerical analysis. The antenna behavior is studied under feeder displacement. As shown by numerical results feeder displacements allow one to control the spatial-frequency antenna characteristics.

  7. Knowledge-based antenna pattern extrapolation

    OpenAIRE

    Robinson, Michael

    2012-01-01

    We describe a theoretically-motivated algorithm for extrapolation of antenna radiation patterns from a small number of measurements. This algorithm exploits constraints on the antenna's underlying design to avoid ambiguities, but is sufficiently general to address many different antenna types. A theoretical basis for the robustness of this algorithm is developed, and its performance is verified in simulation using a number of popular antenna designs.

  8. Reconfigurable Monopole Antennas With Circular Polarization

    OpenAIRE

    Panahi, Afshin

    2015-01-01

    This thesis presents research on printed circularly-polarized monopole antennas and their application in reconfigurable monopole antennas. The proposed circularly-polarised monopole antennas benefit from advantages such as small size, low-cost, low-profile and simple designs. The first part of this thesis introduces three printed circularly-polarized monopole antennas for global navigation satellite systems and Wi-Fi applications. The primary focus is on the ground plane which is used as a ra...

  9. A novel coaxial CTS antenna design

    OpenAIRE

    Qiu, Jinghui; Xing, Xiaohang; Ling-Ling, Zhong

    2007-01-01

    CTS (Continuous Transverse Stub) antenna radiates electromagnetic wave with its transverse stubs on transmission line, and its pattern in horizon plane is omnidirectional. This paper proposes a novel coaxial CTS structure, in which a monopole is applied in coaxial CTS antenna, instead of a matching load. This method may not only improve the radiation ratio, but also reduce the height of antenna. There are two stubs and a monopole composing an antenna, and the dielectric in stubs is air, which...

  10. Multi-Band Wireless Terminals With A Hybrid Antenna Along An End Portion, And Related Multi-Band Antenna Systems

    DEFF Research Database (Denmark)

    2014-01-01

    An antenna system may include a backplate that includes an end portion. The antenna system may also include a hybrid antenna that includes first and second antenna elements spaced apart from each other along the end portion of the backplate. The first antenna element may include a type of antenna...

  11. Antenna Construction and Propagation of Radio Waves.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  12. 47 CFR 101.115 - Directional antennas.

    Science.gov (United States)

    2010-10-01

    ... more than one point, a multi- or omni-directional antenna may be authorized if necessary. New Periscope... frequency congestion, antennas meeting performance Standard B may be used, subject to the requirements set... angle requirement. Antenna Standards Frequency (MHz) Category Maximum beamwidth to 3 dB points...

  13. Future Vogues in Handset Antenna Systems

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Pedersen, Gert Frølund

    2011-01-01

    This paper exemplifies future trends in handset antenna systems, contextualizing their historical evolution and anticipating novel paradigms. It is shown through numerical simulations how narrow-band antennas used in transceiver separation mode can reduce the total loss in presence of the user......’s hand, improving at the same time the antenna isolation....

  14. Small X-Band Oscillator Antennas

    Science.gov (United States)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  15. 47 CFR 73.753 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas....

  16. Wireless link design using a patch antenna

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E

    2000-08-11

    A wireless link was designed using a patch antenna. In the process, several different models were tested. Testing proved a patch antenna was a viable solution for building a wireless link within the design specifications. Also, this experimentation provided a basis for future patch antenna design.

  17. Fundamentals of antennas concepts and applications

    CERN Document Server

    Christodoulou, Christos G

    2001-01-01

    This tutorial explains antenna design and application for various systems, including communications, remote sensing, radar, and biomedicine. It describes basic wire and array antennas in detail and introduces other types such as reflectors, lenses, horns, Yagi, microstrip, and frequency-independent antennas. Integration issues and technical challenges are discussed. Aimed at students, engineers, researchers, and technical professionals.

  18. Orthogonal antenna architecture for MIMO handsets

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The paper presents a method for decorrelating the antenna elements of a MIMO system in a compact handheld terminal at low bands. The architecture of the antenna system induces orthogonal currents over the closely spaced antennas resulting in a correlation free system. Nevertheless, due to the small...

  19. 47 CFR 80.967 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  20. 47 CFR 80.923 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  1. Wide-band dipole-slot antenna

    OpenAIRE

    Tsaliev, T. A.

    2014-01-01

    Properties of the antenna in the form of parallel slots array cut in the flat well-conducting screen excited by symmetrical half-wave dipole are considered. On the basis of computer modeling frequency dependences of antenna input impedance, directivity and the VSWR are designed and analyzed. Results of researches evidently display advantages of such antenna.

  2. 47 CFR 80.1017 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  3. Near Field On Chip RFID Antenna Design

    OpenAIRE

    Vargas, Alberto; Vojtech, Lukas

    2010-01-01

    The process of fabricating the antenna on the top of the RFID chip eliminates the need for a separated and costly expensive process for antenna printing and assemblage, compulsory for a separated "off-chip" antenna which is much more times larger than the chip itself. This

  4. 47 CFR 74.737 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  5. 47 CFR 73.69 - Antenna monitors.

    Science.gov (United States)

    2010-10-01

    ... citations affecting § 73.69 see the List of CFR Sections Affected, which appears in the Finding Aids section... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have...

  6. Monopole Antenna with Modify Ground Plane

    OpenAIRE

    kamal raj singh rajoriya; Singhal, P.K.

    2012-01-01

    This paper presents on modified the ground plane of monopole antenna with varying the shape and length. Basically the length of ground plane of monopole antenna is equal and greater than λ/4. Here analyzed a different ground plane of monopole antenna that is provided an efficient bandwidth with sufficient return loss.

  7. Monopole Antenna with Modify Ground Plane

    Directory of Open Access Journals (Sweden)

    kamal raj singh rajoriya

    2012-06-01

    Full Text Available This paper presents on modified the ground plane of monopole antenna with varying the shape and length. Basically the length of ground plane of monopole antenna is equal and greater than λ/4. Here analyzed a different ground plane of monopole antenna that is provided an efficient bandwidth with sufficient return loss.

  8. Advanced antennas for SAR spacecraft

    Science.gov (United States)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  9. Nested-cone transformer antenna

    Science.gov (United States)

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  10. The spectral shift between near- and far-field resonances of optical nano-antennas.

    Science.gov (United States)

    Menzel, Christoph; Hebestreit, Erik; Mühlig, Stefan; Rockstuhl, Carsten; Burger, Sven; Lederer, Falk; Pertsch, Thomas

    2014-04-21

    Within the past several years a tremendous progress regarding optical nano-antennas could be witnessed. It is one purpose of optical nano-antennas to resonantly enhance light-matter interactions at the nanoscale, e.g. the interaction of an external illumination with molecules. In this specific, but in almost all schemes that take advantage of resonantly enhanced electromagnetic fields in the vicinity of nano-antennas, the precise knowledge of the spectral position of resonances is of paramount importance to fully exploit their beneficial effects. Thus far, however, many nano-antennas were only optimized with respect to their far-field characteristics, i.e. in terms of their scattering or extinction cross sections. Although being an emerging feature in many numerical simulations, it was only recently fully appreciated that there exists a subtle but very important difference in the spectral position of resonances in the near-and the far-field. With the purpose to quantify this shift, Zuloaga et al. suggested a Lorentzian model to estimate the resonance shift. Here, we devise on fully analytical grounds a strategy to predict the resonance in the near-field directly from that in the far-field and disclose that the issue is involved and multifaceted, in general. We outline the limitations of our theory if more sophisticated optical nano-antennas are considered where higher order multipolar contributions and higher order antenna resonances become increasingly important. Both aspects are highlighted by numerically studying relevant nano-antennas.

  11. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard;

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...

  12. Antenna Design for Diversity and MIMO Application

    DEFF Research Database (Denmark)

    Ying, Zhinong; Chiu, Chi-Yuk; Zhao, Kun;

    2015-01-01

    efficiencies of MIMO elements would be degraded severely due to mutual couplings. In addition, the human body causes high losses on electromagnetic waves. In real applications, the presence of users may result in significant reduction of total antenna efficiencies, and the correlations of MIMO antenna systems...... are also highly affected. In this chapter, the performance of some basic MIMO antennas as well as recent technologies toimprove MIMO antenna performance of portable devices and mobile terminals are reviewed. The interactions between MIMO antennas and human body are also addressed particularly in...

  13. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  14. PBG Based High Gain Microstrip Stacked Antenna

    Directory of Open Access Journals (Sweden)

    Babulal Chaudhary

    2013-03-01

    Full Text Available In this paper, authors have proposed the analysis of a rectangular stacked patch antenna operates at the frequency of 2.4 GHz with a photonic band-gap structure (PBG and compared its performances with a conventional patch antenna. Due to the presence of the PBG structure in the dielectric substrate, proposed antenna shows a significant reduction in surface wave levels than a conventional patch antenna. As a result, the gain of the proposed antenna is found to be improved by 3.2 dB

  15. Effective wavelength and resonance characteristics of carbon nanotube optical antenna%碳纳米管光学天线的有效波长和谐振特性∗

    Institute of Scientific and Technical Information of China (English)

    武小芳; 谢树果; 何云涛; 李丽; 李小路

    2016-01-01

    The effective wavelength scaling theory for optical antennas indicates that an optical antenna does not respond to the wavelength of incident electromagnetic wave, but to a shorter effective wavelength which depends on the plasma wavelength and optical dielectric permittivity of the antenna material, and also on the geometric structure of the antenna. In this paper, based on the effective wavelength scaling theory for optical antennas and on the assumption that metallic carbon nanotube (CNT) can be described by a free electron gas according to the Drude model, the general relationship between effective wavelength and dielectric properties of the antenna material for a metallic carbon nanotube optical antenna is derived. According to this relationship, the investigation into the effective wavelength that a metallic CNT optical antenna responds to can be transferred to easier theoretical calculation for the dielectric properties of CNT, instead of exploring its plasma wavelength. Following first-principle calculations for dielectric properties of CNT with 4 Å diameter, the effective wavelength versus incident wavelength for each of two types of metallic 4 Å CNT antennas is investigated. In addition, the resonance characteristics of metallic 4 Å CNT dipole antennas are analyzed. It is shown that the effective wavelength approximately follows a linear relationship with wavelength of the incident light for the 4 Å metallic CNT antenna, which is consistent with the wavelength scaling theory. In addition, CNT optical antenna has good wavelength scaling performance compared with nano-antennas made of conventional metals like silver and gold; hence metallic CNTs as optical antennas are beneficial for constructing more compact devices. Moreover, according to the simulation results of resonance characteristics of metallic 4 Å CNT dipole antennas, there are several 4 Å metallic CNT dipole antennas with small difference in length meeting the resonance conditions for

  16. Installing the antenna for STELLA

    CERN Multimedia

    1979-01-01

    The 3 metre diameter antenna for the STELLA satellite communication project is lowered into position on the roof of the Computer Building (see Weekly Bulletin 48/79 and CERN Courier 19 (1979) 444). STELLA stands for Satellite Transmission Experiment Linking Laboratories.

  17. Antenna surface contour control system

    Science.gov (United States)

    Ahl, Elvin L.; Miller, James B.

    1989-03-01

    The invention is a system for automatically controlling the surface contour of a deployable and restowable antenna having a mesh reflector surface supported by a circular, folding hoop affixed to a central, telescoping column. The antenna, when deployed, forms a quad-aperture reflector with each quadrant of the mesh surface shaped to provide an offset parabolic radio frequency (RF) reflector. The hoop is supported and positioned by quartz support cords attached to the top of a column and by lower graphite hoop control cords that extend between the hoop and base of the column. The antenna, an RF reflective surface, is a gold plated molybdenum wire mesh supported on a graphite cord truss structure that includes the hoop control cords and a plurality of surface control cords attached at selected points on the surface and to the base of the column. The contour of the three-dimensional surface of the antenna is controlled by selectively adjusting the lengths of the surface control cords and the graphite hoop control cords by means of novel actuator assemblies that automatically sense and change the lengths of the lower hoop control cords and surface control cords.

  18. Photogrammetry Of A Parabolic Antenna

    Science.gov (United States)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  19. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  20. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2001-01-01

    This book gives an introduction to the possibilities of radar technology based on active array antennas, giving examples of modern practical systems. There are many valuable lessons presented for designers of future high standard multifunction radar systems for military and civil applications. The book will appeal to graduate level engineers, researchers, and managers in the field of radar, aviation and space technology.

  1. DSS 13 microprocessor antenna controller

    Science.gov (United States)

    Gosline, R. M.

    1988-01-01

    A microprocessor-based antenna monitor and control system with multiple CPUs are described. The system was developed as part of the unattended station project for DSS 13 and was enhanced for use by the SETI project. The operational features, hardware, and software designs are described, and a discussion is provided of the major problems encountered.

  2. Tunable Antennas for Mobile Devices

    DEFF Research Database (Denmark)

    Morris, Art; Barrio, Samantha Caporal Del; Shin, J;

    2014-01-01

    Modern mobile terminal design has been driven by the user interface and broadband connectivity. Real world RF performance has substantially fallen recently which impacts data rates, battery life and often causes lost connections. This has been caused by changing antenna location and reduced anten...

  3. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  4. Dynamic interrogation of wireless antenna sensor

    Science.gov (United States)

    Yao, J.; Tjuatja, S.; Huang, H.; Sanders, J.

    2014-03-01

    This paper presents the dynamic interrogation of a wireless antenna sensor for mechanical vibration monitoring. In order to interrogate the antenna resonant frequency at sufficient high speeds, a wireless interrogator that consists of a Frequency Modulated Continuous Wave (FMCW) synthesizer, a signal demodulation unit, and a real-time digital signal processing program was developed. The principle of operation of the dynamic wireless sensing system is first described, followed by the description of the design and implementation of the antenna sensor and the wireless interrogator. After calibrate the antenna sensor response using static tensile tests, dynamic interrogation of the wireless antenna sensor was carried out by subjecting the test specimen to a sinusoidal tensile load. The resonant frequency shifts of the antenna sensor were compared with the strains calculated from the applied loads. A good agreement between the antenna sensor readings and the strain values were achieved. A sampling rate of up to 50 Hz was demonstrated.

  5. Isolation between three antennas at 700 MHz

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Pedersen, Gert F.

    2015-01-01

    To address the antenna design challenges posed by many frequency bands, introduced with long-term evolution deployment, this study proposes the use of separate transmit (Tx) and receive (Rx) narrow-band antennas. In addition, a diversity Rx (Dx) antenna is needed for multiple-input multiple......-output performance. Although the isolation between two antennas at low frequencies (700 MHz) is crucial for the successful implementation of 4G in handheld terminals, it becomes more challenging when considering isolation among three antennas (one Tx and two Rx antennas) at low frequencies. Hence, a method...... that improves the isolation between the ports of one Tx and two Rx antennas is presented here. Publishe...

  6. Metamaterial-Inspired Efficient Electrically Small Antenna

    DEFF Research Database (Denmark)

    Erentok, Aycan; Ziolkowski, R. W.

    2008-01-01

    high overall efficiencies. The reported 2D and 3D EZ antenna designs are linearly scalable to a wide range of frequencies and yet maintain their easy-to-build characteristics. Several versions of the 2D EZ antennas were fabricated and tested. The measurement results confirm the performance predictions......Planar two-dimensional (2D) and volumetric three-dimensional (3D) metamaterial-inspired efficient electrically-small antennas that are easy to design; are easy and inexpensive to build; and are easy to test; are reported, i.e., the EZ antenna systems. The proposed 2D and 3D electrical- and magnetic......-based EZ antennas are shown to be naturally matched to a 50 source, i.e., without the introduction of a matching network. It is demonstrated numerically that these EZ antennas have high radiation efficiencies with very good impedance matching between the source and the antenna and, hence, that they have...

  7. New Diamond Antenna for Ultra Wideband Applications

    Directory of Open Access Journals (Sweden)

    Ziani Kerarti Djalal

    2012-07-01

    Full Text Available There has been a flourishing prospect of UWB technology in recent years in both communication and other purposes like microwave imaging and radar applications. Recent studies of UWB antenna structures are specially concentrated on microstrip , slot and planar monopole antennas . In this work, a small monopole antenna with diamond shape of the patch (30 x 26 mm printed microstrip fed monopole antenna has been designed, some parameters like return loss (S11, Voltage Standing Wave Ratio (VSWR, radiation pattern has been performed to test the validity of simulation and verify eligibility of the antenna for the wireless communications purpose. The proposed antenna is simulated in CST Microwave Studio and has surpassed the bandwidth of UWB requirement, which is from 3.1 GHz to 10.6 GHz, and exhibits good UWB characteristics. The 10 dB return loss bandwidth of this antenna element is from 3.39 GHz to more than 14 GHz.

  8. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  9. Design and Analysis of a Multiband Koch Fractal Monopole Antenna

    OpenAIRE

    Adam, Ismahayati; Soh, Ping Jack; Hadibah, R; Vandenbosch, Guy

    2011-01-01

    This work presents the design and investigation of the monopole and Koch fractal antenna. The fractal concept and geometry has been used in antenna design to obtain multi-band behavior and miniaturized size, as both of these characteristics are important requirements in current antenna design trends. The aim of this paper is to evaluate the antenna performance between monopole antenna and third iteration Koch fractal antenna. Antenna properties such as reflection coefficient (S11), bandwidth,...

  10. A matched Bow-tie antenna at 433MHz for use in underwater wireless sensor networks

    International Nuclear Information System (INIS)

    Electromagnetic (EM) wave propagation underwater is been disregarded because of attenuation at high frequencies, however the theory predicts that propagation is possible at some useful distance in the lower Industrial, Scientific and Medical (ISM) band. Common transceivers rely on narrowband antennas and matching circuit. The aim of this paper is to design a broadband 433MHz bow-tie antenna and experiment it in air and water without a matching circuit. This antenna could be attached to wireless transceivers and form a Wireless Sensor Network for deployment in various underwater applications. The bow-tie antennas were designed, simulated and constructed in laboratory. Experiments were setup carefully by using a completely isolated transmitter from electronics to avoid airborne transmission. The 433MHz. bow-tie proved its suitability for use in Underwater.

  11. Electromagnetic fields in 3-D for various cavity antennas and Faraday shields

    International Nuclear Information System (INIS)

    Maxwell's Equations are solved for vectors E and H for various cavities of interest. The results are shown to be in agreement with existing theory for the fundamental resonance of a long ridge wave guide. This analysis has been applied to the testing cavity antenna for D-III. The method can include the addition of an arbitrarily-shaped Faraday shield. We have explored the electromagnetic effects of Faraday shield by measurement and computation. This correlation of theory and experiments is then used to predict power limits of an antenna by voltage- and current-limitations

  12. Antenna design and characterization based on the elementary antenna concept

    Science.gov (United States)

    Ligthart, L. P.

    An antenna-design technique based on an elementary-antenna model (an infinitesimal pillbox structure carrying electric and magnetic currents and containing propagating TEM fields) is developed and demonstrated. An EM description of a waveguide aperture is obtained by applying approximate boundary conditions at specific points; the transmitted field is developed locally into a set of TEM field components to compute the radiation pattern; and aperture matching is achieved by calculating the aperture reflection as well. Parallel-plate, circular, and rectangular waveguides; two single-polarization TEM waveguide radiators (with and without dielectric filling); a dielectric-filled dual-polarization TE(01) waveguide radiator; and a hybrid reflector array with limited beam switching based on the TE(01) radiator are presented.

  13. Sounding Rocket Telemetry Emitter, MID Antenna and Ground Receiver Antennas

    OpenAIRE

    Marque, Alexandre; Ghiotto, Anthony

    2015-01-01

    IEEE MTT-S Undergraduate Scholarships Reports The goal of this research project is to design a complete 2.45 GHz data link for telemetry application between a sounding rocket and a ground station. The emission part is embedded in the rocket and has a lot of mechanical constraints. The design for the emitter, the rocket antenna and the ground station receiver are detailed.

  14. An extraordinary transmission analogue for enhancing microwave antenna performance

    Energy Technology Data Exchange (ETDEWEB)

    Pushpakaran, Sarin V., E-mail: sarincrema@gmail.com [Department of Electronics, Govt. College, Chittur, Palakkad, Kerala (India); Purushothaman, Jayakrishnan M.; Chandroth, Aanandan; Pezholil, Mohanan; Kesavath, Vasudevan [Centre for Research in Electromagnetics and Antennas, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2015-10-15

    The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT) behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD) method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  15. An extraordinary transmission analogue for enhancing microwave antenna performance

    Directory of Open Access Journals (Sweden)

    Sarin V. Pushpakaran

    2015-10-01

    Full Text Available The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  16. Dyadic analysis of partially coherent submillimeter-wave antenna systems

    Science.gov (United States)

    Withington, S.; Yassin, G.; Murphy, J. A.

    2001-08-01

    We describe a procedure for simulating the behavior of partially coherent submillimeter-wave antenna systems. The procedure is based on the principle that the second-order statistical properties of any partially coherent vector field can be decomposed into a sum of fully coherent, but completely uncorrelated, natural modes. Any of the standard electromagnetic analysis techniques-physical optics, geometrical theory of diffraction, etc.-can be used to propagate and scatter the modes individually, and the statistical properties of the total transformed field reconstructed at the output surface by means of superposition. In the case of modal optics-plane waves, Gaussian optics, waveguide mode matching, etc.-the properties of the field can be traced directly by means of scattering matrices. The overall procedure is of considerable value for calculating the behavior of astronomical instruments comprising planar and waveguide multimode bolometers, submillimeter-wave optical components, and large reflecting antennas.

  17. Negative ion source with external RF antenna

    Science.gov (United States)

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  18. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    Paulides, M.M.; Bakker, J.F.; Zwamborn, A.P.M.; Rhoon, G.C. van

    2007-01-01

    Purpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: 1) patient positioning, 2) antenna ring radius, 3) number of antenna rings, 4) number of antennas per ring and 5) distance between antenna rings. Materials

  19. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    M.M. Paulides (Margarethus); J.F. Bakker (Jurriaan); A.P.M. Zwamborn; G.C. van Rhoon (Gerard)

    2007-01-01

    textabstractPurpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: (1) patient positioning, (2) antenna ring radius, (3) number of antenna rings, (4) number of antennas per ring and (5) distance between antenna

  20. A multi octaves directive dielectric lens: The Pyramid Antenna

    NARCIS (Netherlands)

    Marliani, L.; Bruni, S.; Neto, A.

    2005-01-01

    Leaky wave antennas have been investigated for a long time and are typically an inexpensive solution for beam scanning antennas. We have designed a novel antenna topology, named the pyramid antenna, based on the broadband leaky concept. The pyramid antenna, currently covered by a patent application,

  1. Planar Millimeter-Wave Antennas: A Comparative Study

    OpenAIRE

    Pitra, K.; Z. Raida

    2011-01-01

    The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  2. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  3. 47 CFR 73.316 - FM antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  4. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  5. The ExaVolt Antenna

    Science.gov (United States)

    Dailey, Brian

    2014-03-01

    There are strong motivations for a flux of ultra-high energy (UHE) neutrinos that is observable on earth, yet they remain undetected. The proposed ExaVolt Antenna (EVA) uses a novel approach to increase the expected rate of neutrinos in a balloon-borne experiment such as ANITA by 100-fold by turning a 100m-diameter, long-duration, super pressure NASA balloon into an antenna reflector with receivers deployed in the interior of the balloon. EVA would be the world's largest airborne telescope with ~ 1000 m2 of collection area. I will present preliminary results from a 1:20 scale EVA prototype test conducted in early 2014 in a hangar at NASA's Wallops Flight Facility. I will conclude with the expected sensitivity of the full EVA experiment to UHE neutrino fluxes.

  6. The planar parabolic optical antenna.

    Science.gov (United States)

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-01

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  7. Plasmonic Antenna Coupling for QWIPs

    Science.gov (United States)

    Hong, John

    2007-01-01

    In a proposed scheme for coupling light into a quantum-well infrared photodetector (QWIP), an antenna or an array of antennas made of a suitable metal would be fabricated on the face of what would otherwise be a standard QWIP. This or any such coupling scheme is required to effect polarization conversion: Light incident perpendicularly to the face is necessarily polarized in the plane of the face, whereas, as a matter of fundamental electrodynamics and related quantum selection rules, light must have a non-zero component of perpendicular polarization in order to be absorbed in the photodetection process. In a prior coupling scheme, gratings in the form of surface corrugations diffract normally gles, thereby imparting some perpendicular polarization. Unfortunately, the corrugation- fabrication process increases the overall nonuniformity of a large QWIP array. The proposed scheme is an alternative to the use of surface corrugations.

  8. Photo-generated THz antennas

    Science.gov (United States)

    Georgiou, G.; Tyagi, H. K.; Mulder, P.; Bauhuis, G. J.; Schermer, J. J.; Rivas, J. Gómez

    2014-01-01

    Electromagnetic resonances in conducting structures give rise to the enhancement of local fields and extinction efficiencies. Conducting structures are conventionally fabricated with a fixed geometry that determines their resonant response. Here, we challenge this conventional approach by demonstrating the photo-generation of THz linear antennas on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the realization of different conducting antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for the all-optical spatial control of resonances on surfaces and the concomitant control of THz extinction and local fields.

  9. Curved spiral antennas for underwater biological applications

    Science.gov (United States)

    Llamas, Ruben

    We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes

  10. Rigorous calculation of active antennas

    OpenAIRE

    Danilchuk, V. L.

    1999-01-01

    Problems of development of compact antennas (in short-wave band, ultra-short or higher frequencies wave band) with a high sensitivity and/or a wide passband attend a stable non-reducing interest.The proposed approach and wide application of SAPR enables one to realise AA with a high reliability on the basis of computer designing as well as to achieve minimal experimental operational development.

  11. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  12. Stepped conical zone plate antenna

    Science.gov (United States)

    Wiltse, James C.

    2001-07-01

    The Fresnel zone plate lens was invented and developed for optical frequencies. However, fabrication difficulties at the short optical wavelengths have prevented obtain good efficiencies. At longer microwave or millimeter-wavelengths fabrication is easier and phase correcting zone plate antennas have been used to obtain good efficiencies. This paper describes a new type of phase correcting zone plate having even better efficiency, namely a diffraction efficiency of 99 percent compared to a true lens, and an overall efficiency much better than a true lens. For the usual zone plate antenna employed at microwave or millimeter wavelengths, path length adjustment is accomplished by cutting different depths in a dielectric plate or by using two or more dielectrics having different dielectric constants. The new design uses a tilted cut in a dielectric plate, which more accurately matches the shape of a true lens and produces much lower phase error. The construction is still near and can be made for example, by a milling machine with a tilted bit. For a circular zone plate, the lens is a stepped conical or tapered shape. Because the phase steps are small, the far-field antenna pattern is excellent and sidelobe-levels are very low. Analysis of typical configurations will be given, showing that phase errors are small, lower than those for an eighth-wave corrected phase zone plate.

  13. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...... of 72 ohms is numerically investigated and its performance is compared to that of the multiarm spherical helix antenna of the same size. Both antennas yield equal quality factors, which are about 1.5 times the Chu lower bound, but quite different cross-polarization characteristics....

  14. Compact Miniaturized Antenna for 210 MHz RFID

    Science.gov (United States)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  15. Microfluidic serpentine antennas with designed mechanical tunability.

    Science.gov (United States)

    Huang, YongAn; Wang, Yezhou; Xiao, Lin; Liu, Huimin; Dong, Wentao; Yin, Zhouping

    2014-11-01

    This paper describes the design and characterization of microfluidic serpentine antennas with reversible stretchability and designed mechanical frequency modulation (FM). The microfluidic antennas are designed based on the Poisson's ratio of the elastomer in which the liquid alloy antenna is embedded, to controllably decrease, stabilize or increase its resonance frequency when being stretched. Finite element modelling was used in combination with experimental verification to investigate the effects of substrate dimensions and antenna aspect ratios on the FM sensitivity to uniaxial stretching. It could be designed within the range of -1.2 to 0.6 GHz per 100% stretch. When the aspect ratio of the serpentine antenna is between 1.0 and 1.5, the resonance frequency is stable under stretching, bending, and twisting. The presented microfluidic serpentine antenna design could be utilized in the field of wireless mobile communication for the design of wearable electronics, with a stable resonance frequency under dynamic applied strain up to 50%.

  16. Smart Antenna for Cellular Mobile Communication

    CERN Document Server

    Jain, R K; Agrawal, N K

    2012-01-01

    The adoption of smart / adaptive antenna techniques in future wireless systems is expected to have a significant impact on the efficient use of the spectrum, the minimization of the cost of establishing new wireless networks, the optimization of service quality and realization of transparent operation across multi technology wireless networks [1]. This paper presents brief account on smart antenna (SA) system. SAs can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. SAs thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. SAs can also track the user within a cell via direction of arrival algorithms [2]. This paper explains the architecture, evolution and how the smart / adaptive antenna differs from the basic format of antenna. The paper further explains about the radiation pattern of the antenna and why it is highly preferred in its relative field. The capabilities of smart / adaptive ...

  17. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  18. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  19. Orthogonal feeding techniques for tapered slot antennas

    Science.gov (United States)

    Lee, Richard Q.; Simons, Rainee N.

    1998-01-01

    For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.

  20. Compact UWB Antenna Design for MIMO Applications

    Directory of Open Access Journals (Sweden)

    Baskaran Kasi

    2013-12-01

    Full Text Available In this study, a compact printed Multiple-Input-Multiple-Output (MIMO antenna with a dimension of 32×70 mm2 has been proposed for Ultra-Wideband (UWB systems applications. The design constitutes of two identical UWB antenna elements, which is etched onto a Taconic TLC-30 printed circuit board. The proposed antenna has been designed and simulated using computer simulation software. For validation purposes, antenna prototype is fabricated and tested. The UWB-MIMO antenna yields an impedance bandwidth of 2.9 to 12 GHz with a return loss of less than-10 dB. Furthermore, the isolation characteristic between the two antenna elements is more than 15 dB within the operating frequency range. The designed structure is found to provide good MIMO/diversity characteristic across the UWB band.

  1. New band-notched UWB antenna

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-xiang; DENG Hong-wei

    2009-01-01

    A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.

  2. Modeling of mixed-phasing antenna-plasma interactions applied to JET A2 antennas

    International Nuclear Information System (INIS)

    The use of mixed (monopole-dipole) phasing of a set of ICRF antennas is potentially useful to optimize tokamak performance and to do interesting physics experiments. However, recent mixed-phasing experiments on JET, described here, showed undesirable antenna-plasma interactions under certain circumstances. We explore a possible physical mechanism: parallel currents flowing between adjacent antennas with different phasings can lead to arcing on the antenna with the largest sheath voltage. Means of controlling the interaction are discussed

  3. Micromachined Horn Antenna Operating at 75 GHz

    OpenAIRE

    Grzegorczyk, Tomasz M.; Zurcher, Jean-François; Renaud, Philippe; Mosig, Juan R.

    2000-01-01

    We propose in this paper an integrated cavity-backed horn antenna, generalizing the well-known SSFIP (Strip-Slot-Foam-Inverted Patch) design, operating at 75 GHz. The antenna was optimized using a full-wave software and realized using micromachining technologies. The proposed structure can be used for high radiation ef-ficiency antennas and arrays in the millimeter-wave band, since surface waves are inherently suppressed by the use of a metallic horn and a cavity configuration.

  4. Ultrawideband antennas for microwave imaging systems

    CERN Document Server

    Denidni, Tayeb A

    2014-01-01

    This book presents ultrawideband antennas and their applications on microwave imaging. The chapters focus on recent techniques, analysis, and applications along with the future vision of this emerging field of applied electromagnetics. Several emerging topics are essayed, including dielectric resonator antennas and planar ultrawideband antennas for microwave imaging.This resource incorporates modern design concepts, analysis, and optimization techniques based on recent developments. Readers are also provided with an extensive overview of current regulations, including those related to microwav

  5. Dual-band Omnidirectional Circularly Polarized Antenna

    OpenAIRE

    Narbudowicz, Adam; Bao, Xiulong; Ammann, Max

    2013-01-01

    A dual-band omnidirectional circularly polarized antenna is proposed. The antenna comprises back-to-back microstrip patches fed by a coplanar waveguide. A very low frequency ratio of 1.182 has been achieved, which can be easily tuned by adjusting four lumped capacitors incorporated into the antenna. An analysis of the omnidirectional circular polarization mechanism as well the dual band operation is provided and confirmed by numerical and experimental data. Key parameters to tune the resonant...

  6. An antenna design for PANSAT using NEC.

    OpenAIRE

    Ellrick, Daniel A.

    1991-01-01

    Approved for public release; distribution is unlimited In this thesis the Numerical Electromagnetics Code (NEC) is used to design an omnidirectional antenna for the Petite Amateur Navy Satellite (PANSAT). The completed antenna design uses a tangential turnstile antenna to achieve a circularly polarized radiation pattern with predicted worst nulls of approximately -3.0 dBi. The use of NEC-3, recently ported to 80386 personal computers, demonstrates the potential of personal computers for ...

  7. Multi-Mode Broadband Patch Antenna

    Science.gov (United States)

    Romanofsky, Robert R. (Inventor)

    2001-01-01

    A multi-mode broad band patch antenna is provided that allows for the same aperture to be used at independent frequencies such as reception at 19 GHz and transmission at 29 GHz. Furthermore, the multi-mode broadband patch antenna provides a ferroelectric film that allows for tuning capability of the multi-mode broadband patch antenna over a relatively large tuning range. The alternative use of a semiconductor substrate permits reduced control voltages since the semiconductor functions as a counter electrode.

  8. Characterization of Transponder Antennas Using Intermodulation Response

    OpenAIRE

    Hannula, Jari-Matti; Rasilainen, Kimmo; Viikari, Ville

    2015-01-01

    The intermodulation measurement technique enables measuring transponder antennas without any cable connections. This contactless technique exploits the inherent nonlinearity of the transponder to generate intermodulation products that can be measured. In this paper, we relate the transponder antenna properties to the intermodulation response, and use this relation to calculate the gain andimpedance matching of the transponder antenna. Additionally, we consider the limitations of the measureme...

  9. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    OpenAIRE

    Ricardo Gonçalves; Pedro Pinho; Nuno B. Carvalho

    2012-01-01

    This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna recon...

  10. Measured and predicted root-mean-square errors in square and triangular antenna mesh facets

    Science.gov (United States)

    Fichter, W. B.

    1989-01-01

    Deflection shapes of square and equilateral triangular facets of two tricot-knit, gold plated molybdenum wire mesh antenna materials were measured and compared, on the basis of root mean square (rms) differences, with deflection shapes predicted by linear membrane theory, for several cases of biaxial mesh tension. The two mesh materials contained approximately 10 and 16 holes per linear inch, measured diagonally with respect to the course and wale directions. The deflection measurement system employed a non-contact eddy current proximity probe and an electromagnetic distance sensing probe in conjunction with a precision optical level. Despite experimental uncertainties, rms differences between measured and predicted deflection shapes suggest the following conclusions: that replacing flat antenna facets with facets conforming to parabolically curved structural members yields smaller rms surface error; that potential accuracy gains are greater for equilateral triangular facets than for square facets; and that linear membrane theory can be a useful tool in the design of tricot knit wire mesh antennas.

  11. Theoretical and experimental study of the input impedance of the cylindrical cavity-backed rectangular slot antennas

    Science.gov (United States)

    Li, Ming-Yi; Hummer, Kenneth A.; Chang, Kai

    1991-01-01

    The authors study the input impedance of a cylindrical cavity-backed slot antenna based on mode matching and the complex Poynting theorem. Two cavity-backed slot antennas were fabricated to verify the theory. The numerical results agree very well with measurements. Two resonant frequencies were found from the input impedance. One resonant frequency is attributed to the rectangular slot and the other is due to the cavity. The slot length controls the first resonant frequency and has a much stronger effect on the input impedance at the antenna operating frequency as compared with the cavity length.

  12. Mathcad computer applications predicting antenna parameters from antenna physical dimensions and ground characteristics

    OpenAIRE

    Gerry, Donald D.

    1993-01-01

    Approved for public release; distribution is unlimited. This report provides the documentation for a set of computer applications for the evaluation of antenna parameters. The applications are written for the Mathcad personal computer software for various antenna types listed in the thesis index. Antenna dimen Lieutenant Commander, United States Navy

  13. TOLPA (Tripod Omnidirectional Low Profile Antenna): a vertically polarized antenna with 90% bandwidth

    OpenAIRE

    Zürcher, J.-F.

    2013-01-01

    A new vertically polarized omnidirectional antenna, inspired by an old design, has been studied, optimized, realized and measured. With a radiation pattern similar to the classical monopole on a ground plane, the proposed antenna concept provides a much larger bandwidth and a very low profile. This antenna has numerous potential applications for mobile communications, UWB and others.

  14. U-Slotted Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Yogesh Bhomia

    2013-05-01

    Full Text Available A new U–slotted microstrip antenna is proposed. A patch antenna is a narrowband, wide-beam antenna These antennas are low profile, conformal to planar and non-planar surface, simple and inexpensive to manufacture using modern printed circuit technology, mechanically robust when mounted on rigid surface, compatible with MMIC designs and when the particular shape and mode are selected they are very versatile in terms of resonant frequency, polarization, field pattern and impedance. Microstrip antenna consist of a very thin metallic strip (patch placed a small fraction of a wavelength above a ground plane. The patch is generally made of conducting material such as copper or gold and can take any possible shape. This paper presents a design of U - slotted microstrip patch antenna and experimentally studied on IE3D software. This design is achieved by cutting U shape in a patch. With U - slotted shapes patch antenna is designed on a FR4 substrate of thickness 1.524 mm and relative permittivity of 4.4 and mounted above the ground plane at a height of 6 mm. Bandwidth as high as 39% are achieved with stable pattern characteristics, such as gain and cross polarization, within its bandwidth. Impedance bandwidth, antenna gain and return loss are observed for the proposed antenna. Details of the measured and simulated results are presented and discussed

  15. Carbon Nanotube Thin-Film Antennas.

    Science.gov (United States)

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  16. Three-dimensional winged nanocone optical antennas.

    Science.gov (United States)

    Huttunen, Mikko J; Lindfors, Klas; Andriano, Domenico; Mäkitalo, Jouni; Bautista, Godofredo; Lippitz, Markus; Kauranen, Martti

    2014-06-15

    We introduce 3D optical antennas based on winged nanocones. The antennas support particle plasmon oscillations with current distributions that facilitate transformation of transverse far-field radiation to strong longitudinal local fields near the cone apices. We characterize the optical responses of the antennas by their extinction spectra and by second-harmonic generation microscopy with cylindrical vector beams. The results demonstrate a new 3D polarization-controllable optical antenna for applications in apertureless near-field microscopy, spectroscopy, and plasmonic sensing.

  17. Perspectives for future SAR Antenna Developement

    OpenAIRE

    Keydel, Wolfgang

    2007-01-01

    Goal of the paper is to present the expected development of future antennas for space borne SAR based on the state-of-the-art and to point out under that aspect some perspectives and visions for future space borne SAR systems. Future space borne SAR systems will consist mainly of the antenna with a small number of peripheral elements only, like solar cells, GPS, power supply, downlink equipment etc.. The present spaceborne SAR Antenna will mutate to a complete Antenna SAR that means a SAR...

  18. Thermal Analysis of the Chinese SAR Antenna

    Science.gov (United States)

    Ma, Huitao; Jiang, Hai; Liu, Qiang

    2002-01-01

    success or failure of the mission directly. In general, the SAR Antenna is very large, about 9500mm×4000mm in the deployed configuration. The SAR Antenna system is also very complicated, consisting of 5 antenna panels, deployment mechanism, hinges, tie-downs, extendible support structure and drivers. complicated space heat fluxes( the solar radiation, earth IR and albedo) and so on. However, the SAR Antenna in the orbital flying is directly exposed to the bad space environment. If the thermal design is not correct, the unreasonable temperature distribution of the SAR Antenna will be resulted in, which maybe causes too large thermal deformation to ensure the normal deployment and operation performance of the SAR Antenna. So it is necessary to conduct the thermal design for the SAR Antenna. respectively. The temperature distributions and the worst gradients of the SAR Antenna were obtained in the different cases. These results provide an important theoretic reference for the thermal design of the SAR Antenna. Based on the thermal analysis, some important conclusions are obtained. the software NEVADA and SINDA/G.

  19. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  20. Wideband Monopole Antenna for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Umar

    2013-03-01

    Full Text Available This paper presents a circular patch antenna for WLAN applications with wideband characteristics. It is shown that impedance of the antenna is matched over wideband by using the partial ground plane and quarter wave transformer with slotted TX-Line. Ansoft HFSS is used for simulation tool to map the numerical results for the return loss frequency behavior of antenna. Measure of bandwidth, return loss and radiation pattern are also reported with satisfactory performance. As the patch is circular in shape so substrate is kept in the same shape. The shape of the substrate is also discussed in details for specific antenna designs.

  1. Analysis on two novel spherical helical antennas

    Institute of Scientific and Technical Information of China (English)

    Hou ZHANG; Yingzeng YIN; Dongyu XIA

    2009-01-01

    Two novel spherical helical antennas are designed by projecting the planar equiangular spiral antenna onto hemisphere and partial sphere surfaces.Their radiation properties are analyzed by the moment method with curved basis and test function,and the curves of the voltage standing wave ratio (VSWR),gain,polarization and pattern that change with frequency are also given,respectively.It can be seen that the circular polarization band of the novel hemispherical helical antenna is broader.The gain curve of the partial spherical helical antenna is flatter and the structure is simpler.

  2. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    V. Jebaraj

    2014-12-01

    Full Text Available Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation technique with different shapes of slot in the orthogonal direction. A single feed configuration based symmetric slotted microstrip antenna is adapted to realize the compact circularly polarized microstrip antennas. Based on the perimeter, the size of the slot on microstrip slot antenna are studied and compared. The Operating frequency of the antenna is 912MHz that can be tuned by varying the perimeter of the slot while the keeping the circularly polarized radiation unchanged. The schematic and layout are configured by using Advanced Design System (ADS. Return loss, Resonant Frequency, Axial Ratio (AR, and Gain were determined for the proposed system using ADS. A measured 3dB Axial Ratio (AR bandwidth around 6MHz with 16MHz impedance bandwidth has been achieved for the antenna on a RO3004C substrate with dielectric constant 3.38.

  3. Broadband Suspended Microstrip Antenna For Circular Polarization

    OpenAIRE

    Kasabegoudar, VG; Vinoy, KJ

    2009-01-01

    In this paper we propose a circularly polarized (CP) microstrip antenna on a suspended substrate with a coplanar capacitive feed and a slot within the rectangular patch. The antenna has an axial ratio bandwidth (< 3 dB) of 7.1%. The proposed antenna exhibits a much higher impedance bandwidth of about 49% (S11 < -10 dB) and also yields return loss better than -15 dB in the useful range of circular polarization. Measured characteristics of the antenna are in good agreement with the simulated re...

  4. Matching Parasitic Antenna for Single RF MIMO

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Nielsen, Rasmus Hjorth;

    2012-01-01

    order to have such performance, an antenna with rich pattern modes is required by the system, thus the ESPAR antenna is investigated. The critical part on such antenna is parasitic element impedance matching. Unlike the conventional smith-chart matching method which assumes the minimal resistance is...... zero and with goal of 50 ohm or 75 ohm matching, matching on such parasitic antenna will adopt negative value as well. This paper presents a matching network with controllable impedance even to the range of negative values....

  5. Handbook of smart antennas for RFID systems

    CERN Document Server

    2010-01-01

    The Handbook of Smart Antennas for RFID Systems is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications.

  6. 47 CFR 73.1680 - Emergency antennas.

    Science.gov (United States)

    2010-10-01

    ... the FCC in Washington, DC, Attention: Audio Division (radio) or Video Division (television), Media... output power, radiation limits, or other operating conditions when using an emergency antenna,...

  7. Resonance spectra of diabolo optical antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Simpkins, Blake; Caldwell, Joshua D. [Naval Research Laboratory, 4555 Overlook Ave., SW Washington, DC 20375 (United States)

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  8. Whip antenna design for portable rf systems

    Science.gov (United States)

    Ponnapalli, Saila; Canora, Frank J.

    1995-12-01

    Whip type antennas are probably the most commonly used antennas in portable rf systems, such as cordless and cellular phones, rf enabled laptop computers, personal digital assistants (PDAs), and handheld computers. Whip antennas are almost always mounted on the chassis which contains the radio and other electronics. The chassis is usually a molded plastic which is coated with a conducting paint for EMI purposes. The chassis which appears as a lossy conductor to the antenna, has several effects -- detuning, altering the gain of the antenna, and shadowing its radiation pattern. Extensive modeling and measurements must be performed in order to fully characterize the affects of the chassis on the whip antenna, and to optimize antenna type, orientation and position. In many instances, modeling plays a more important role in prediction of the performance of whip antennas, since measurements become difficult due to the presence of common mode current on feed cables. In this paper models and measurements are used to discuss the optimum choice of whip antennas and the impact of the chassis on radiation characteristics. A modeling tool which has been previously described and has been successfully used to predict radiated field patterns is used for simulations, and measured and modeled results are shown.

  9. A Compact Diversity Antenna for Handheld Terminals

    Institute of Scientific and Technical Information of China (English)

    Hai-Lin Xiao; Zai-Ping Nie; Yu-Jing Wu

    2009-01-01

    The handheld terminals antenna should have a small size, sufficient gain and big bandwidth. In this paper, a compact planar inverted-L diversity antenna for handheld terminals is proposed. Three diversity antennas operating at 2.15 GHz are designed and the effect of important parameters of the proposed antenna is measured. The isolation is found to be better than 13 dB, the usable bandwidth is about 13%. Moreover, the measured radiation patterns are also obtained that the backward radiation is decreased.

  10. Switchable Electromagnetic Bandgap Surface Wave Antenna

    Directory of Open Access Journals (Sweden)

    Qiang Bai

    2014-01-01

    Full Text Available This paper presents a novel switchable electromagnetic bandgap surface wave antenna that can support both a surface wave and normal mode radiation for communications at 2.45 GHz. In the surface wave mode, the antenna has a monopole-like radiation pattern with a measured gain of 4.4 dBi at ±49° and a null on boresight. In the normal mode, the antenna operates like a back-fed microstrip patch antenna.

  11. Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes

    Science.gov (United States)

    Byun, Woo Jin; Kim, Kwang Seon; Kim, Bong Su; Lee, Young Seung; Song, Myung Sun; Choi, Hyung Do; Cho, Yong Heui

    2016-06-01

    A multiplexed Cassegrain reflector antenna with a 2 × 2 open-ended rectangular waveguide (OERW) matrix feed and an orbital angular momentum (OAM) mode mux is proposed for the simultaneous generation of three OAM modes (l = 0, ±1). The OAM mode mux (OMM) was designed using sequential combinations of quadrature hybrids, crossovers, and phase shifters to multiplex and demultiplex three OAM modes at the same time. The 2 × 2 OERW matrix feed and the OMM were separately measured and their performances were verified according to proposed theories. A near-field antenna measurement for a multiplexed Cassegrain reflector antenna was conducted to obtain the far-field magnitude and phase patterns around polar elevation angle θ and azimuthal angle ϕ, thus confirming that our antenna can produce three OAM modes simultaneously. We also measured the communication link characteristics of two identical multiplexed antennas. The measurement results show that the channel isolation of three OAM modes is more than 12.7 [dB] and 17 [dB] for fixed and compensated receiver positions, respectively, indicating that the proposed antenna system can be used for independent communication links with the same frequency and polarisation.

  12. Ion Bernstein wave antenna loading measurements on the DIII-D tokamak

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Porkolab, M.; Chiu, S. C.; Cary, W. P.; Prater, R.

    1993-04-01

    Antenna loading measurements carried out during high power ion Bernstein wave (IBW) heating experiments on the DIII-D tokamak indicate that efficient, direct coupling to the IBW at ω lesssim 2ωci as predicted by linear coupling theory did not occur. Whereas strong peaking in the loading resistance near cyclotron harmonics is predicted for high edge densities (ω front of the antenna, thus allowing coupling to the cold plasma lower hybrid wave (LHW). A linear LHW coupling code including the modified density profile due to the ponderomotive force reproduces the measured dependence of antenna loading on toroidal magnetic field, edge density, antenna frequency and antenna phasing. Further evidence for the ponderomotive force is obtained from reactive loading measurements which indicate that the plasma is pushed away from the antenna as the radiofrequency power level is increased. The results indicate that the lack of central ion heating observed during DIII-D IBW experiments may be due to a lack of efficient mode transformation from the coupled LHW to a centrally propagating IBW, possibly as a result of nonlinear mechanism(s)

  13. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  14. A study of two kinds of electromagnetic pulse antennas with a continuous resistive loading using the FDTD method

    International Nuclear Information System (INIS)

    The cylindrical and conical monopole antenna with a continuous resistive loading is considered as a radiator in the experiments of the electromagnetic pulse compatibility. The various principle of the resistive loading is discussed in details and the characters of the antennas are studied using the Finite-Difference Time-Domain (FDTD) method. The key techniques of the calculating are presented. The results are in good agreement with the documents and the theory

  15. Fresnel zone and reflectarray antennas for space missions: Concepts, computational techniques and characterizations

    Science.gov (United States)

    Khayatian, Behrouz

    Reflector antennas generally employ parabolic shaped main reflectors and have found a wide range of applications for both earth stations and satellite systems. Increasingly, one may find many advantages in minimizing antenna shaping requirement and weight as well as more compact designs by employing flat reflectors (either on the main reflector or on the subreflector) which can achieve a desired set of criteria for antenna performance. Two electrically large antennas which use flat min reflectors are Fresnel Zone (FZ) and reflectarray antennas which are being addressed in this dissertation. Analytical techniques are proposed, implemented, and verified to analyze these reflector geometries. A two dimensional (2-D) multi-scatterer analysis is formulated and implemented using various electromagnetic scattering techniques such as Physical Optics (PO), Method of Moments (MoM), and Geometrical Theory of Diffraction (GTD). The capability of the 2-D technique is further extended for dual reflector analysis with flat subreflector panels as well as design and analysis of FZ antennas with a proposed space missions application in solar sailing. FZ antenna design is based on establishing regions of quasi-uniform phases according to the PO current on the reflector face. The concepts extracted from the 2-D analysis of FZ reflectors is carried to the three dimensional (3-D) cases and incorporated into a multi reflector code, which has been widely used in variety of reflector applications. Like FZ antennas, reflectarrays work according to a similar set of principals by achieving a uniform phase current on the flat reflectarray surface. Accordingly, an analytical methodology is proposed and implemented within the structure of the multi-reflector code to analyze and give design criteria for both single and dual reflectarray configurations. This technique is compared to measured results published for single reflectarrays and is investigated for near-field Gregorian reflectarrays with

  16. A telemetry antenna system for unmanned air vehicles

    OpenAIRE

    DOĞAN, Mustafa; Dogan, Mustafa; Üstüner, Fatih; Ustuner, Fatih

    2010-01-01

    This paper presents a low VSWR high gain telemetry antenna system manufactured for UAVs that provides 360± coverage in the roll plane of the UAV. Proposed telemetry antenna system includes four telemetry antennas, one power divider that has one input and four output terminals which feeds the telemetry antennas with equal magnitude and phase. Proposed high gain telemetry antennas are based on the feeding of the microstrip patch antenna via aperture coupling. Full coverage in the roll plane of ...

  17. Improved patch antenna performance by using a metamaterial cover

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-ming; HU Jun

    2007-01-01

    A new patch antenna system with a metamaterial cover is presented in this paper. The impedance, radiation pattern, and directivity of such an antenna are studied. A performance comparison between the conventional patch antenna and the new metamaterial patch antenna is given. The results show that the directivity of the metamaterial patch antenna is significantly improved. The effect of the metamaterial cover's layer numbers on the radiation pattern of the patch antenna is also studied.

  18. CPW-Fed Ring Antenna For UWB Applications

    OpenAIRE

    Sheetal Kamboj; Amit Kumar

    2014-01-01

    This paper presents a Coplanar waveguide feed ( CPW) monopole ring antenna for ultra wideband applications. The proposed antenna consist of ring type patch embedded with horizontal strip in the patch. The parametric study is performed to understand the characteristics of the proposed antenna. The antenna exhibits impedance bandwidth from 3.7 GHz to 10.7 GHz. The various antenna parameters are studied. The proposed antenna is suitable for UWB applications.

  19. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  20. From Antenna to Assay

    Science.gov (United States)

    Moore, Evan G.; Samuel, Amanda P. S.; Raymond, Kenneth N.

    2009-01-01

    Conspectus Ligand-sensitized, luminescent lanthanide(III) complexes are of considerable importance because their unique photophysical properties (microsecond to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts) make them well suited as labels in fluorescence-based bioassays. The long-lived emission of lanthanide(III) cations can be temporally resolved from scattered light and background fluorescence to vastly enhance measurement sensitivity. One challenge in this field is the design of sensitizing ligands that provide highly emissive complexes with sufficient stability and aqueous solubility for practical applications. In this Account, we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time-Resolved Fluorescence (HTRF) technology. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms and using multi-chromophore chelates to increase molar absorptivity; earlier examples utilized a single pendant chromophore (that is, a single “antenna”). Ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ∼60% that are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM chromophore and time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally, we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong

  1. Survey on various design of microchip patch antenna

    Directory of Open Access Journals (Sweden)

    A.Anusuya

    2014-11-01

    Full Text Available Due to fast advancement in wireless communication technology, use of small size antenna has rapidly increased. Not only the size of the antenna its cost, performance, ease of installation everything have been taken care while designing the antenna. To meet this entire requirement micro-strip antenna is proposed. Nowadays microstrip antennas are used in many places such as aircrafts, spacecraft’s, satellite and missile applications. In this paper, we discuss the microstrip antenna, types of microstrip antenna, various substrates used for designing the antenna and the literature survey which we have done

  2. Micro strip Patch Antenna and its Applications: a Survey

    Directory of Open Access Journals (Sweden)

    Indrasen Singh

    2011-09-01

    Full Text Available The study of microstrip patch antennas has made great progress in recent years. Compared with conventional antennas, microstrip patch antennas have more advantages and better prospects. They are lighter in weight, low volume, low cost, low profile, smaller in dimension and ease of fabrication and conformity. Moreover, the microstrip patch antennas can provide dual and circular polarizations, dual-frequency operation, frequency agility, broad band-width, feedline flexibility, beam scanning omnidirectional patterning. In this paper we discuss the microstrip antenna, types of microstrip antenna, feeding techniques and application of microstrip patch antenna with their advantage and disadvantages over conventional microwave antennas.

  3. Enabling Technologies for Fabrication of Large Area Flexible Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible, foldable, and/or inflatable antenna systems open up a wealth of opportunities. Integrating antenna elements and related electronics onto flexible...

  4. Compact planar UWB antennas for wireless device applications

    OpenAIRE

    Liu, Li; 劉荔

    2014-01-01

    The thesis report presents the designs of compact planar ultra-wideband (UWB) antennas for wireless devices applications. Three main designs of UWB antennas are studied, namely, single UWB antennas, UWB multiple-input-multiple-out(MIMO)antennas, and transparent UWB antennas on the screens of mobile phones. For single UWB antennas, the designs of two compact planar monopole antennas with compact sizes of 26×28 mm2and 30×39.3mm2are presented. The UWB operations of the antennas are achieved ...

  5. Breadboard Signal Processor for Arraying DSN Antennas

    Science.gov (United States)

    Jongeling, Andre; Sigman, Elliott; Chandra, Kumar; Trinh, Joseph; Soriano, Melissa; Navarro, Robert; Rogstad, Stephen; Goodhart, Charles; Proctor, Robert; Jourdan, Michael; Rayhrer, Benno

    2008-01-01

    A recently developed breadboard version of an advanced signal processor for arraying many antennas in NASA s Deep Space Network (DSN) can accept inputs in a 500-MHz-wide frequency band from six antennas. The next breadboard version is expected to accept inputs from 16 antennas, and a following developed version is expected to be designed according to an architecture that will be scalable to accept inputs from as many as 400 antennas. These and similar signal processors could also be used for combining multiple wide-band signals in non-DSN applications, including very-long-baseline interferometry and telecommunications. This signal processor performs functions of a wide-band FX correlator and a beam-forming signal combiner. [The term "FX" signifies that the digital samples of two given signals are fast Fourier transformed (F), then the fast Fourier transforms of the two signals are multiplied (X) prior to accumulation.] In this processor, the signals from the various antennas are broken up into channels in the frequency domain (see figure). In each frequency channel, the data from each antenna are correlated against the data from each other antenna; this is done for all antenna baselines (that is, for all antenna pairs). The results of the correlations are used to obtain calibration data to align the antenna signals in both phase and delay. Data from the various antenna frequency channels are also combined and calibration corrections are applied. The frequency-domain data thus combined are then synthesized back to the time domain for passing on to a telemetry receiver

  6. Massive MIMO: How many antennas do we need?

    CERN Document Server

    Hoydis, Jakob; Debbah, Merouane

    2011-01-01

    We consider a multicell MIMO uplink channel where each base station (BS) is equipped with a large number of antennas N. Recent work has shown that, as N grows infinitely large, (i) the simplest form of user detection, i.e., the matched filter (MF), becomes optimal, (ii) the transmit power per user terminal (UT) can be made arbitrarily small, (iii) the system performance is limited by pilot contamination. The aim of this paper is to assess to which extent the above conclusions hold true for large, but finite N. In particular, we derive how many antennas per UT are needed to achieve \\eta % of the ultimate performance. We then study how much can be gained through more sophisticated minimum-mean-square-error (MMSE) detection and how many more antennas are needed with the MF to achieve the same performance. Our analysis relies on novel results from random matrix theory which allow us to derive tight approximations of the signal-to-interference-plus-noise-ratio (SINR) of a class of linear receivers.

  7. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  8. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  9. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  10. Solar energy collection by antennas

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R.; Green, M.A.; Puzzer, T. [University of New South Wales, Sydney (Australia). Centre for Advanced Silicon Photovoltaics and Photonics

    2002-12-01

    The idea of collecting solar electromagnetic radiation with antenna-rectifier (rectenna) structures was proposed three decades ago but has not yet been achieved. The idea has been promoted as having potential to achieve efficiency approaching 100% but thermodynamic considerations imply a lower limit of 85.4% for a non-frequency-selective rectenna and 86.8% for one with infinite selectivity, assuming maximal concentration in each case. This paper reviews the history and technical context of solar rectennas and discusses the major issues: thermodynamic efficiency limits, rectifier operation at optical frequencies, harmonics production and electrical noise. (author)

  11. Methods of Signal Processing for Adaptive Antenna Arrays

    CERN Document Server

    Titarenko, Larysa

    2013-01-01

    So far there does not exist any theory of adaptive spatial signal processing (ASSP) for signals with uncertain parameters. This monograph is devoted to the development of this theory, which is very important in connection with wide spreading of telecommunications and radio links in the modern society. This theory can be applied for the development of effective radio communications. In the book some original approaches are proposed targeting the development of effective algorithms of ASSP with not exactly known parameters. They include both probabilistic and deterministic approaches for synthesis of robust algorithms of ASSP. The solution of problems also can be reduced to the construction of some operators for the Banach space which is presented in the book.  “Methods of Signal Processing for Adaptive Antenna Arrays” targets professionals, students and PhD students in the area of telecommunications and should be useful for everybody connected with the new information technologies.

  12. Koch-Fractal Yagi-Uda Antenna

    DEFF Research Database (Denmark)

    Teisbæk, Henrik Bjørn; Jakobsen, Kaj Bjarne

    2009-01-01

    A Yagi-Uda antenna constructed of three Koch fractal elements is presented. Simulated and measured characteristics of the antenna shows a half-power beam-width of 64◦ achieved with dimensions below a third of a wavelength. Furthermore, the Koch dipole and its size miniaturization capabilities are...

  13. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  14. Multiple Antennas Arm Effective MIMO Systems

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2007-01-01

    Understanding the interactions among different combinations of receive and transmit antenna elements can help increase the capacity of cellular wireless systems.......Understanding the interactions among different combinations of receive and transmit antenna elements can help increase the capacity of cellular wireless systems....

  15. Structures for remotely deployable precision antennas

    Science.gov (United States)

    Hedgepeth, J. M.

    1989-07-01

    Future space missions such as the Earth Science Geostationary Platform (ESGP) will require highly accurate antennas with apertures that cannot be launched fully formed. The operational orbits are often inaccessible to manned flight and will involve expendable launch vehicles such as the Delta or Titan. There is therefore a need for completely deployable antenna reflectors of large size capable of efficiently handling millimeter wave electromagnetic radiation. The parameters for the type of mission are illustrated. The logarithmic plot of frequency versus aperture diameter shows the regions of interest for a large variety of space antenna applications, ranging from a 1500-meter-diameter radio telescope for low frequencies to a 20-meter-diameter infrared telescope. For the ESGP, a major application is the microwave radiometry at high frequencies for atmospheric sounding. Almost all existing large antenna reflectors for space employ a mesh-type reflecting surface. Examples are shown and discussed which deal with the various structural concepts for mesh antennas. Fortunately, those concepts are appropriate for creating the very large apertures required at the lower frequencies for good resolution. The emphasis is on the structural concepts and technologies that are appropriate to fully automated deployment of dish-type antennas with solid reflector surfaces. First the structural requirements are discussed. Existing concepts for fully deployable antennas are then described and assessed relative to the requirements. Finally, several analyses are presented that evaluate the effects of beam steering and segmented reflector design on the accuracy of the antenna.

  16. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...

  17. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M;

    2011-01-01

    The field of antenna measurements is lacking a Golden Standard, i.e. an antenna of which the pattern is known by definition. To gain confidence in the performance of a range, including the procedures and skills of the operators, range comparison has been a popular tool for over three decades. In ...

  18. Microstrip fractal-shaped antennas: a review

    OpenAIRE

    Anguera Pros, Jaume; Borja, C.; Puente Baliarda, Carles

    2007-01-01

    A review of electromagnetic features of microstrip antennas using fractal geometries is presented divided in four main areas: multi-frequency antennas, combination of multi- frequency with broadband techniques, high-directivity patches, and arrays with microstrip elements operating in localized modes Peer Reviewed

  19. 47 CFR 78.105 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY... requirement or with the minimum antenna gain requirement; and (B) With the minimum radiation suppression to... (included angle in degrees) Minimum antenna gain (dbi) Minimum radiation suppression to angle in...

  20. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational stations operating with more than...

  1. Miniaturization of UWB Antennas on Organic Material

    Directory of Open Access Journals (Sweden)

    Symeon Nikolaou

    2016-01-01

    Full Text Available Three planar, CPW-fed, UWB antennas with increasingly reduced size are presented and the miniaturization method is discussed. The first antenna is a CPW-fed elliptical slot with an uneven U-shaped tuning stub, the second antenna is a cactus shaped monopole, and the third one is a miniaturized version of the cactus shaped monopole antenna. All presented antennas have a simulated and measured return loss below −10 dB over the 3.1 to 10.6 GHz UWB frequency range and mostly omnidirectional radiation patterns. The proposed antennas are fabricated on liquid crystal polymer (LCP. The CPW-fed slot antenna requires an overall board dimension of 38 mm × 40 mm, and the evolved cactus monopole is confined in a 28 mm × 32 mm board, while the final miniaturized cactus monopole is printed on 28 mm × 20 mm board, resulting in a 41% and 63% size reduction, respectively. Using both simulations and measurements, the paper analyzes the response of all three antennas and discusses and demonstrates the effectiveness of the implemented miniaturization method.

  2. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    and their characteristics are used in this investigation. This paper uses field simulations to highlight the trade-offs between the design of the tuner and the design of the antenna, especially the impact of the location of the tuner and the degree of miniaturization. Co-designing the tuner and the antenna is essential...

  3. 47 CFR 74.1237 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.1237 Section 74.1237... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be... at which there is available a suitable signal from the primary station. The transmitting...

  4. Slotted waveguide antennas for practical radar systems

    OpenAIRE

    Sekretarov, S. S.; Vavriv, D. M.

    2009-01-01

    This article summarizes recent results on the development, fabrication, and application of slotted waveguide antenna systems for practical radar systems, including Ka-band helicopter collision avoidance and weather radar, Ku-band surveillance and tracking radar, and X-band airborne SAR system. The corresponding design solutions, antenna characteristics, and test results are presented and discussed.

  5. Compact Spiral Loaded Printed Monopole Antenna

    OpenAIRE

    Bao, Xiulong; Ammann, Max

    2010-01-01

    A novel miniaturized printed monopole structure is proposed. The antenna comprises a printed monopole strip which is loaded by a spiral located on the rearside connected by a via. The inductive loading provided by the spiral enables considerable miniaturization of antenna. A parametric study of key dimensional parameters and groundplane are discussed.

  6. Arm Locking for the Laser Interferometer Space Antenna

    Science.gov (United States)

    Maghami, P. G.; Thorpe, J. I.; Livas, J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements.

  7. Possibilities to use retrodirective antennas in radar systems

    Directory of Open Access Journals (Sweden)

    Aleksandar M. Pavić

    2012-04-01

    Full Text Available Possibilities to use retrodirective antennas in modern radar systems are presented in this paper. The basics of retrodirective theory, practical realizations of retrodirective arrays using corner reflectors, Van-Atta and heterodyne elements are considered. A model of a retrodirective radar for automatic target tracking is presented as well as the differences between commonly used phase arrays and retrodirective arrays with simpler, cheaper signal processors and faster target detection, as mayor advantages of this technology. Its advantages and disadvantages are explained. In the end, some possibilities for this technology application are discussed as well as further research trends.

  8. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  9. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    Science.gov (United States)

    Shao, Shuai

    proximity and designing broad band and mechanically robust RFID tag antennas for elastic materials. As a first step, the effects of dielectric materials on an antenna's impedance match and radiation pattern are investigated. The detuning effect is quantified based on the theoretical frequency scaling and effective permittivity of a dielectric material of finite thickness. Using simple formulas, the operational range of a tag can be predicted without intensive full-wave simulations of different materials. Next, a spectral domain Green's function is applied to compute the antenna pattern when the tag is mounted on or inside a layered medium. The optimal placement of the tag is found based on the focusing effect that the material has on the gain pattern of the antenna. For tires, the steel ply in the sidewall of a tire looks like a periodic wire grating. The performance of an antenna placed close to a wire grating is predicted using Floquet theory. The results indicate that steel plies embedded in the tire can be utilized as a reflector to further focus the gain pattern and increase the read range of a tag. Using these design tools and theoretical analysis, several broadband RFID tag antennas are designed for multi-layered materials. A novel stretchable conductive textile (E-fiber) based tag antenna is also developed for placement in elastic materials. Prototype antennas are fabricated and embedded in a tire during the tire manufacturing process. Experimental results indicate that tags with the new antennas achieve significant improvement compared with commercially available tags.

  10. Structurally Integrated Antenna Concepts for HALE UAVs

    Science.gov (United States)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  11. A Microstripe Slotted Patch Antenna Using Amc

    Directory of Open Access Journals (Sweden)

    Manju Saini,

    2014-04-01

    Full Text Available Microstrip patch antenna offer an attractive solution to compact and ease-low-cost design of modern wireless communication system due to their many advantages as light weight and low volume, low profile, planer configuration which can be easily made conformal to low fabrication cost and capability of obtaining dual and triple frequency operations. A microstrip patch antenna with bandwidth enhancement by means of artificial magnetic conductor (AMC/electromagnetic band-gap structure (EBG is studied in this paper. The three different geometry shapes, the U, E and H are developed from rectangular patch. The antennas studied in this paper are simulated using sonnet software and results compared with the conventional rectangular patch antenna. The results obtained clearly shows that , bandwidth of conventional rectangular microstrip antenna can be enhanced has been studied

  12. Plasmonic Antennas Hybridized with Dielectric Waveguides

    CERN Document Server

    Arango, Felipe Bernal; Koenderink, A Femius

    2013-01-01

    For the purpose of using plasmonics in an integrated scheme where single emitters can be probed efficiently, we experimentally and theoretically study the scattering properties of single nano-rod gold antennas as well as antenna arrays placed on one-dimensional dielectric silicon nitride waveguides. Using real space and Fourier microscopy correlated with waveguide transmission measurements, we quantify the spectral properties, absolute strength and directivity of scattering. The scattering processes can be well understood in the framework of the physics of dipolar objects placed on a planar layered environment with a waveguiding layer. We use the single plasmonic structures on top of the waveguide as dipolar building blocks for new types of antennas where the waveguide enhances the coupling between antenna elements. We report on waveguide hybridized Yagi-Uda antennas which show directionality in out-coupling of guided modes as well as directionality for in-coupling into the waveguide of localized excitations ...

  13. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    Science.gov (United States)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  14. A simple EHF hemispheric coverage antenna

    Science.gov (United States)

    Lee, J. C.

    1994-08-01

    A circulary polarized, axially symmetric, wide-beam radiator is required in many applications, including TT&C for UAV's and satellites. This report discusses some existing wide-beam antenna designs including divergent lenses and reflectors and introduces a new antenna design. Using a simple dielectric ring in conjunction with a dielectric loaded circular waveguide opening, a near ideal, axially symmetric, hemispheric coverage antenna with circular polarization of good axial ratio and wide-band impedance match is realized. Mechanically, the antenna is small, lightweight, and low cost. The dielectric used is the common Rexolite. Since no lossy materials or resonant scatterers are used, the antenna performance is inherently broadband and low loss. A K sub a-band prototype as well as compact designs for both Q- and K-bands are described.

  15. Textile UWB Antenna Bending and Wet Performances

    Directory of Open Access Journals (Sweden)

    Mai A. R. Osman

    2012-01-01

    Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.

  16. Enhancing molecule fluorescence with asymmetrical plasmonic antennas.

    Science.gov (United States)

    Lu, Guowei; Liu, Jie; Zhang, Tianyue; Shen, Hongming; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gu, Ying; He, Yingbo; Wang, Yuwei; Gong, Qihuang

    2013-07-21

    We propose and justify by the finite-difference time-domain method an efficient strategy to enhance the spontaneous emission of a fluorophore with a multi-resonance plasmonic antenna. The custom-designed asymmetrical antenna consists of two plasmonic nanoparticles with different sizes and is able to couple efficiently to free space light through multiple localized surface plasmon resonances. This design simultaneously permits a large near-field excitation near the antenna as well as a high quantum efficiency, which results in an unusual and significant enhancement of the fluorescence of a single emitter. Such an asymmetrical antenna presents intrinsic advantages over single particle or dimer based antennas made using two identical nanostructures. This promising concept can be exploited in the large domain of light-matter interaction processes involving multiple frequencies.

  17. STUDY ON A NOVEL ELLIPSOIDAL HELICAL ANTENNA

    Institute of Scientific and Technical Information of China (English)

    Xia Dongyu; Zhang Hou; Wang Chong; Zhang Qianyue

    2007-01-01

    A novel ellipsoidal helical antenna is proposed and studied in this letter.As a special instance,the hemispherical helical antennas are analyzed firstly,which indicates that the characteristics of a two-arm unit are better than that of a single-arm unit.Based on this,the ellipsoidal helical antenna,formed by changing the axial direction's dimension of the two-arm hemispherical helical antenna,is analyzed by the moment method with curved basic and testing function.The effects to VSWR (Voltage Standing Wave Ratio),gain,polarization and patterns by the axial direction's dimensions are investigated.The study results provide dependable gist to the choice of antenna format according to the practical requirements.

  18. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  19. Optimal antenna spacings in interferometric SAR

    Science.gov (United States)

    Xiao, Shu; Munson, David C., Jr.

    2000-08-01

    In practice, a synthetic aperture radar (SAR) reconstructs the complex reflectivity function of a scene, modulated by phase terms that capture 3-D imaging geometry. INSAR (interferometric SAR) attempts to obtain the geometric information by interfering two images (from two antennas) to cancel the same scene reflectivity and recover the scene topography transduced by the image-phase data. This approach, however, leads to a phase-unwrapping problem, which causes ambiguities in estimates of elevation. The phase-unwrapping problem can be solved in a pointwise fashion by using more than two antennas. This approach can effectively prevent error propagation which occurs in traditional phase-unwrapping algorithms. In this work, we study the optimal antenna spacings for pointwise terrain height estimation. In particular, we start from the maximum likelihood estimates of the phase using neighborhood pixels collected by any pair of antennas. The phase estimation noise is approximated as Gaussian with variance prescribed by the Cramer-Rao lower bound on the phase estimate. The ambiguous terrain height derived from any pair of antennas is modeled by a periodic waveform with each period having an approximately Gaussian shape. For multiple pairs of antennas, the corresponding functions describing the ambiguous elevation have different periods, which acts to help resolve the ambiguity. We derive and analyze the ML estimate of elevation at each scene point using multiple pairs of antennas. For the three-antenna case, by analyzing the tradeoff between cycle errors and measurement errors, a closed-form formula approximating the mean squared error (MSE) of the estimated terrain height is derived as a function of antenna spacing. By minimizing the MSE, we determine the optimal antenna spacing. The algorithm is tested with simulated data.

  20. Enhancement of Antenna Performance for Data Transmission

    International Nuclear Information System (INIS)

    In remote radiation measurements that are being developed at the Department of Engineering Physics, Faculty of Engineering Gadjah Mada University, has constraints on the quality of its communications system. The problem that needs to be resolved is on antenna system. Optimum antenna performance, potentially increase effectively telecommunication quality, and minimizing error in data communication system. In every antenna parameter measurement that used in this research, the conclusion is antenna that tuned in 141.6 MHz frequency (A state) is more better than it tuned in 145.6 MHz frequency (B state). Antenna in A state can reach value of ρ at least 0.01 the return-loss measured at 53.98 dB and field strength meter show 1.95 volt. It compared with B state antenna, where it has ρ value at least only can reach 0.19 then return-loss measured only at 20.44 dB and the measuring by field strength meter only 1.2 volts in the same range with A state antenna. In this research, the same antenna is tuned in every frequency, but the maximum result has reached in antenna that tuned in 141.6 MHz frequency. The conclusion of this research is every antenna only has one optimum working frequency in a band (but it is not harmonic band). This information is important and can be used as references for any practitioner in field of telemetry system and tele-control although for radio communication practitioner. (author)

  1. Antenna complexes protect Photosystem I from Photoinhibition

    Directory of Open Access Journals (Sweden)

    Hienerwadel Rainer

    2009-06-01

    Full Text Available Abstract Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed.

  2. Investigation of microwave antennas with improved performances

    Science.gov (United States)

    Zhou, Rongguo

    This dissertation presents the investigation of antennas with improved performances at microwave frequencies. It covers the following three topics: the study of the metamaterial with near-zero index of refraction and its application in directive antenna design, the design technique of a wideband circularly polarized patch antenna for 60GHz wireless application and the investigation of a novel direction of arrival (DOA) estimation technique inspired by human auditory system. First, the metamaterial composed of two-dimensional (2-D) metallic wire arrays is investigated as an effective medium with an effective index of refraction less than unity (neff effective medium parameters (permittivity epsilon eff, permeability mueff and neff ) of a wire array are extracted from the finite-element simulated scattering parameters and verified through a 2-D electromagnetic band gap (EBG) structure case study. A simple design methodology for directive monopole antennas is introduced by embedding a monopole within a metallic wire array with neff effect of the monopole antenna is demonstrated in both simulation and experiment at X-band (8 -- 12 GHz). The measured antenna properties including return loss and radiation patterns are in good agreement with simulation results. Parametric studies of the antenna system are performed. The physical principles and interpretations of the directive monopole antenna embedded in the wire array medium are also discussed. Second, a fully packaged wideband circularly polarized patch antenna is designed for 60GHz wireless communication. The patch antenna incorporates a diagonal slot at the center and features a superstrate and an air cavity backing to achieve desired performances including wide bandwidth, high efficiency and low axial ratio. The detailed design procedure of the circularly polarized antenna, including the design of the microstrip-fed patch antenna and the comparison of the performances of the antenna with different feeding interfaces

  3. Cassegrain dual reflector antenna design. [MSAT UHF antenna

    Science.gov (United States)

    1982-01-01

    A folded optics reflector system could mitigate problems associated with the pointability and controllability of the large UHF antenna for MSAT. Such a system is comprised of a parabolic main reflector and a hyperboloidal subreflector (Cassegrain arrangement) or an ellipsoidal subreflector (Gregorian arrangement), either of which brings the feed closer to the main reflector. By shaping the subreflector and the main reflector, an improved scan capability might be achieved and the size of the required feed aperture-per-beam could be reduced. In such a shaped dual reflector system, the need for overlapping cluster feed arrangement and its concomitant beam forming network could be removed. In this system, a relatively low gain feed element together with the shaped subreflector would be sufficient to produce the required high illumination taper that at the main reflector.

  4. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2004-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas in particular), bow-tie antennas, and other. Some numerical and experimental results...

  5. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2006-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas, in particular), bow-tie antennas, and other. Some numerical and experimental results...

  6. Aerogel-Based Antennas for Aerospace and Terrestrial Applications

    Science.gov (United States)

    Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)

    2016-01-01

    Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.

  7. 47 CFR 17.4 - Antenna structure registration.

    Science.gov (United States)

    2010-10-01

    ... Antenna Structure Registration Number must be weather-resistant and of sufficient size to be easily seen... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1,...

  8. Multiport antenna systems for space-time communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Pelosi, Mauro;

    2013-01-01

    The paper presents the concept of multiport antenna systems where multiple active and passive ports are deployed. The passive ports, implemented via tunable reactance-assisted (parasitic) antennas, can alter the far-field and near-field properties of the antenna system expressed by the antenna ef...

  9. Logo Antenna for 5.8 GHz Wireless Communications

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work the un...

  10. 47 CFR 80.290 - Auxiliary receiving antenna.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not...

  11. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  12. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  13. Planetary protection for Europa radar sounder antenna

    Science.gov (United States)

    Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu; McEachen, Michael; Allen, Scotty; Kirchner, Donald; Blankenship, Donald

    2016-05-01

    The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods.

  14. Piecewise-Planar Parabolic Reflectarray Antenna

    Science.gov (United States)

    Hodges, Richard; Zawadzki, Mark

    2009-01-01

    The figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.

  15. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  16. Directive Antenna for Ultrawideband Medical Imaging Systems

    Directory of Open Access Journals (Sweden)

    Amin M. Abbosh

    2008-01-01

    Full Text Available A compact and directive ultrawideband antenna is presented in this paper. The antenna is in the form of an antipodal tapered slot with resistive layers to improve its directivity and to reduce its backward radiation. The antenna operates over the frequency band from 3.1 GHz to more than 10.6 GHz. It features a directive radiation with a peak gain which is between 4 dBi and 11 dBi in the specified band. The time domain performance of the antenna shows negligible distortion. This makes it suitable for the imaging systems which require a very short pulse for transmission/reception. The effect of the multilayer human body on the performance of the antenna is also studied. The breast model is used for this purpose. It is shown that the antenna has more than 90% fidelity factor when it works in free space, whereas the fidelity factor decreases as the signal propagates inside the human body. However, even inside the human body, the fidelity factor is still larger than 70% revealing the possibility of using the proposed antenna in biomedical imaging systems.

  17. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  18. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  19. Smart antenna technology for structural health monitoring applications

    Science.gov (United States)

    Özdemir, Tayfun; Goykhman, Yuriy; Oberdier, Larry; Lynch, Jerome

    2010-04-01

    A smart antenna has been developed for structural health monitoring. The antenna is based on Monarch's GEN 2 selfstructuring antenna (SSA) technology and provides polarization and beam-diversity for improving signal-to-noise ratio (SNR). The antenna works with University of Michigan's Narada platform, where a microcontroller monitors the RSSI and selects the best beam to maintain reliable RF link. Antenna has two wide beams for each polarization and the beams are selected by applying appropriate DC voltages to the RF switches on the antenna aperture. Paper presents the GEN C antenna, which is a smaller version of the GEN 2B with comparable performance features.

  20. Location Refinement and Power Coverage Analysis Based on Distributed Antenna

    Institute of Scientific and Technical Information of China (English)

    赵晓楠; 侯春萍; 汪清; 陈华; 浦亮洲

    2016-01-01

    To establish wireless channel suitable for the cabin environment, the power coverage was investigated with distributed antenna system and centralized antenna system based on the actual measurement of channel im-pulse response. The results indicated that the distributed antenna system has more uniform power coverage than the centralized antenna system. The average relative errors of receiving power of both antennas were calculated. The optimal position of the centralized antenna was obtained by Gaussian function refinement, making the system achieve a better transmission power with the same coverage effect, and providing a reference for antenna location in the future real communication in the cabin.

  1. Design of Monopole Antenna Based on Fractal Geometry

    OpenAIRE

    Zhao Yuanqing; Qiu Jinghui; Wang Wei

    2014-01-01

    This paper presents a circular disc monopole antenna based on fractal geometry. The antenna is designed to be applied in UWB systems. So it is essential to ensure that the bandwidth of the antenna ranges from 3.1 GHz to 10.6 GHz, that is, IEEE 802.15.3a. However, the proposed antenna has achieved working in the required bandwidth. Compared to the antennas illustrated in most similar literatures, the proposed antenna has a much smaller size, which makes the antenna possible to be integrated wi...

  2. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    Science.gov (United States)

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.

  3. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    Science.gov (United States)

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications. PMID:26666399

  4. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    Energy Technology Data Exchange (ETDEWEB)

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  5. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  6. Land vehicle antennas for satellite mobile communications

    Science.gov (United States)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  7. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  8. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book deals with the design, numerical simulation, state of the art fabrication processes and methods, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of different topologies, such as: Planar Inverted F, Printed Monopoles, Micropoles and Microstrips. Novel trends, materials, and fabrication and measurement techniques used in this vital field of antenna systems are also discussed.To the best of the editor's knowledge, at the time of publication, there are no published books targeting the vital topic of flexible antennas specifically and/or se

  9. Ultra-wideband conformal helmet antenna

    OpenAIRE

    Lebaric, J.; Ah-Tuan Tan

    2000-01-01

    The article of record may be found at http://dx.doi.org/10.1.1109/APMC.2000.926116 This paper presents the development of an ultra-wideband (300 to 3000 MHz), vertically polarized, nearly omni-directional (in azimuth) communications antenna integrated into the camouflage cover of a standard military-issue Kevlar helmet. The Helmet Camouflage Cover Antenna (referred to as the “helmet antenna”) is one of three antennas (with the combined frequency coverage from 2 to 2000 MHz) based on the an...

  10. Monopulse antennas - Structures and present questions

    Science.gov (United States)

    Drabowitch, S.

    Monopulse antennas, which exemplify 'signal-processing' antennas, must independently choose the optimization laws relating to the sum and difference channels in order to meet the optimization criteria calling for maximizations of gain in the sum channel and of slope in the difference channels, as well as the minimization of noise temperature and sidelobe levels. Multimode antenna horns have accordingly been developed which feature an optimum illumination synthesis conducted through superposition and radiation of dominant and higher-order propagating modes. More recently, nonuniform horns with nonrectilinear longitudinal profiles have been developed.

  11. Experimental demonstration of superdirective dielectric antenna

    Energy Technology Data Exchange (ETDEWEB)

    Krasnok, Alexander E.; Filonov, Dmitry S.; Belov, Pavel A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Simovski, Constantin R. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Aalto University, School of Electric and Electronic Engineering, Aalto FI76000 (Finland); Kivshar, Yuri S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2014-03-31

    We propose and demonstrate experimentally a simple approach for achieving superdirectivity of emitted radiation for electrically small antennas based on a spherical dielectric resonator with a notch excited by a dipole source. Superdirectivity is achieved without using complex antenna arrays and for a wide range of frequencies. We also demonstrate the steering effect for a subwavelength displacement of the source. Finally, unlike previously known superdirective antennas, our design has significantly smaller losses, at the operation frequency radiation efficiency attains 80%, and matching holds in the 3%-wide frequency band without any special matching technique.

  12. YAGI UDA SHAPED DUAL RECONFIGURABLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Y Srinivas

    2016-06-01

    Full Text Available In this paper, YagiUda shaped rectangular microstrip patch antenna fed by inset feed is designed to operate for frequency and polarization reconfigurability is presented. It consists of a square patch with four corners truncated and three parasitic patches placed on top. It operates as a frequency and polarization, reconfigurable antenna. Switches are placed in the gaps of truncated corners to obtain switching between Linear, Circular polarizations. The proposed antenna also switches between two frequencies by controlling current path between main and parasitic patches through switches. Its performance evaluation is carried out with the help of simulation and physical verification and the results are presented.

  13. Wideband Circularly Polarized Dielectric Rod Antenna

    OpenAIRE

    Min Guo; Ji-Jun Yan; Shun-Shi Zhong; Zhu Sun

    2012-01-01

    A new dielectric rod antenna (DRA) is introduced to produce circular polarization (CP) over a wide frequency band without a complex feed network. Along with the simulated results, measured results of the antenna prototype are presented, showing a 3 dB axial ratio (AR) CP bandwidth of 17.7%. The radiation characteristics of the fabricated antenna are also demonstrated showing the measured gain of better than 6.2 dBi. Moreover, the measured impedance bandwidth (VSWR ≤2) reaches 20.1%, from 8.75...

  14. Build a circularly polarized waveguide slot antenna

    Science.gov (United States)

    Kisliuk, M.; Axelrod, A.

    1987-06-01

    The development and design of a circularly polarized waveguide slot antenna are described. Consideration is given to the resonance frequency, radiation efficiencies, excitement, and resonant conductance of the transverse and longitudinal slots. The transverse and longitudinal slots in a rectangular guide are analyzed. The voltage distribution across the slot is calculated from the solution of a standard transmission line equation; and using the Poynting theorem the fields scattered by the slot in an arbitrary frequency range are determined. The proposed antenna is examined using an equivalent circuit; a diagram of the circuit is given. The radiation, slot, and antenna efficiencies are measured.

  15. Implanted Antennas in Medical Wireless Communications

    CERN Document Server

    Rahmat-Samii, Yahya; Balanis, Constantine

    2006-01-01

    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  16. Retrodirective Antenna Array Using High Frequency Offset

    Directory of Open Access Journals (Sweden)

    P. Sindler

    2012-12-01

    Full Text Available The paper deals with the design of a simple retrodirective antenna array exhibiting by high frequency offset between received and transmitted wave. Analysis of the beam pointing error using antenna array model developed in MATLAB is described. The frequencies of transmitted wave and received wave are chosen on the basis of this analysis. Then a suitable structure for further design is determined and particular blocks of complete retrodirective antenna array are briefly described and their measured parameters are presented. Relatively high frequency offset between received and transmitted wave makes it possible to use frequency filters for received and transmitted signal separation which led to significant reduction of the circuit complexity.

  17. A new patch antenna with metamaterial cover

    Institute of Scientific and Technical Information of China (English)

    HU Jun; YAN Chun-sheng; LIN Qing-chun

    2006-01-01

    A metamaterial was introduced into the cover of a patch antenna and its band structure was analyzed. The metamaterial cover with correct selection of the working frequency increases by 9.14 dB the patch antenna's directivity. The mechanism of metamaterial cover is completely different from that of a photonic bandgap cover. The mechanism of the metamaterial cover,the number of the cover's layers, and the distance between the layers, were analyzed in detail. The results showed that the metamaterial cover, which works like a lens, could effectively improve the patch antenna's directivity. The physical reasons for the improvement are also given.

  18. Planar Tri-Band Antenna Design

    Directory of Open Access Journals (Sweden)

    M. Pokorny

    2008-04-01

    Full Text Available The paper briefly uncovers techniques used for a design of compact planar antennas in order to achieve the wideband and the multi-band capability. The main topic is aimed to the multi-objective optimization using genetic algorithms. A quarter-wavelength planar inverted-F antenna (PIFA using a slot and shorted parasitic patches is chosen to cover GSM900, GSM1800 and ISM2400 bands. A global multi-objective optimization uses a binary genetic algorithm with a composite objective function to tune this antenna. The impedance match and the direction of maximum gain are desired parameters to improve.

  19. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper;

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  20. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  1. A directional antenna for borehole radar

    International Nuclear Information System (INIS)

    The borehole radar system developed during phase II of the International Stripa Project has been successfully applied to mapping fracture zones up to 100 meters from the borehole in granite. The techniques previously used to determine the orientation of fracture zones (single hole reflection, crosshole reflection, crosshole tomography) have been supplemented with a directional antenna, which makes it possible to determine the orientation from measurements in a single borehole. The antenna works by synthesizing four signals to produce directional information. Tests performed in Stripa show that the resolution of the antenna is about 50

  2. Lens Antenna For Mobile/Satellite Communication

    Science.gov (United States)

    Bodnar, D. G.; Rainer, B. K.

    1988-01-01

    Flat, compact antenna made of stripline elements aimed at fixed elevation angle but steered electronically in azimuth. Design simplified by maintaining fixed elevation and relying on width of beam to cover desired elevation range. Need for phase shifter at each radiating element eliminated by arranging elements in circles and feeding through stripline disks called "R-KR lenses". Used in Mobile/Satellite Service, antenna mounted on top of vehicle on Earth and used to keep transmitted and received antenna beams aimed approximately toward communication satellite.

  3. Wideband Reconfigurable Rolled Planar Monopole Antenna

    OpenAIRE

    Ruvio, Giuseppe; Ammann, Max

    2007-01-01

    A novel technique to reconfigure the frequency range of a planar monopole antenna is presented. By adjusting the degree of spiral tightness, a shift of the well-matched operating frequency range is achieved. The proposed antenna is capable of covering the frequencies in the range from 2.9 to 15 GHz, depending on the degree of spiral tightness. The antenna yields a high-efficiency across the full operating bandwidth. Radiation patterns show good omni-directional features in all primary cuts an...

  4. Electromagnetic characterization of conformal antennas

    Science.gov (United States)

    Volakis, John L.; Kempel, Leo C.; Alexanian, Angelos; Jin, J. M.; Yu, C. L.; Woo, Alex C.

    1992-01-01

    The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations.

  5. Multifrequency broadband polarized horn antenna

    Science.gov (United States)

    Green, K. A.

    1981-03-01

    A corrugated conical horn antenna is simultaneously fed a multiplicity of signals, two for each of five frequencies, with each of a pair of signals fed in each of two orthogonal planes for excitation of a desired spherical hybrid mode. The lowest frequency is fed into the horn through orthogonal pairs of colinear slots, each pair being fed by coaxial tee power dividers. Other signals are fed through a circular waveguide connected to the vertex. The highest frequency signals are fed through orthogonal ports near the far end of the circular waveguide. The intermediate frequency signals are fed through orthogonal ports spaced along the waveguide. Filtering is incorporated for each to maintain isolation and low insertion loss.

  6. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  7. Radiation Analysis and Characteristics of Conformal Reflectarray Antennas

    Directory of Open Access Journals (Sweden)

    Payam Nayeri

    2012-01-01

    Full Text Available This paper investigates the feasibility of designing reflectarray antennas on conformal surfaces. A generalized analysis approach is presented that can be applied to compute the radiation performance of conformal reflectarray antennas. Using this approach, radiation characteristics of conformal reflectarray antennas on singly curved platforms are studied and the performances of these designs are compared with planar designs. It is demonstrated that a conformal reflectarray antenna can be a suitable choice for applications requiring high-gain antennas on curved platforms.

  8. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  9. A Linearly and Circularly Polarized Active Integrated Antenna

    OpenAIRE

    Khoshniat, Ali

    2011-01-01

    This thesis work presents a new harmonic suppression technique for microstrip patch antennas. Harmonic suppression in active integrated antennas is known as an effective method to improve the efficiency of amplifiers in transmitter side. In the proposed design, the antenna works as the radiating element and, at the same time, as the tuning load for the amplifier circuit that is directly matched to the antenna. The proposed active antenna architecture is easy to fabricate and is symmetric, so ...

  10. Circularly Polarized Solar Antenna for Airborne Communication Nodes

    OpenAIRE

    O’Conchubhair, Oisiin; Narbudowicz, Adam; McEvoy, Patrick; Ammann, Max

    2015-01-01

    A circularly polarized solar cell antenna consisting of four sequentially rotated printed inverted-F antennas is proposed. Four multicrystalline silicon solar cells act as the ground plane and the antenna is suitable for low power airborne communication nodes and wireless sensor networks. The antenna design was developed to allow 100% insolation of the cells when directly facing a light source. The low-profile antenna minimises shadowing of the solar cell for oblique angle insolation.

  11. Dual-Frequency Operation of Bow-Tie Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 张需溥

    2005-01-01

    Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.

  12. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    OpenAIRE

    B.T.P.Madhav; S.S. Mohan Reddy; Neha Sharma; J. Ravindranath Chowdary; Bala Rama Pavithra; K.N.V.S. Kishore; G Sriram; B. Sachin Kumar

    2013-01-01

    In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  13. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2013-04-01

    Full Text Available In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  14. Directional Pattern Analysis of a Linear Phased Antenna

    Directory of Open Access Journals (Sweden)

    Jan Haring

    2008-01-01

    Full Text Available An antenna array is a system compound from simply radiators (dipoles, microstrip antennas, that together form desired radiation pattern. Phased array antennas consist of multiple stationary antenna elements, that are fed coherently and use variable phase or time-delay control at each element to scan a beam to given angles in space. Variable amplitude control is sometimes also provided for antenna pattern shaping.

  15. Detuning effect study of High-Q Mobile Phone Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert F.

    2015-01-01

    Number of frequency bands that have to be covered by smart phones, are ever increasing. This broadband coverage can be obtained either by using a low-Q antenna or a high-Q tunable antenna. This study investigates high-Q antennas performance when placed in proximity of the user. This study...... severe compared to high-Q antennas. However, the drop in efficiency is comparable for both antennas in proximity of the user....

  16. Planar MIMO Antenna with Slits for WBAN Applications

    OpenAIRE

    Do-Gu Kang; Jinpil Tak; Jaehoon Choi

    2014-01-01

    A planar MIMO antenna with slits for WBAN applications is proposed. The antenna consists of two PIFAs, ground pads, and two slits. By adding ground pads, the antenna size is reduced with improved impedance matching. Through two slits in a ground plane, the isolation characteristic is improved and the resonant frequency can be controlled. To analyze the antenna performance on a human body, the proposed antenna on a human equivalent flat phantom is investigated through simulations. Regardless o...

  17. A Novel Wideband Semi-planar Miniaturized Antenna

    OpenAIRE

    Ruvio, Giuseppe; Ammann, Max

    2007-01-01

    A semi-planar miniaturized antenna which operates over the FCC allocated UWB spectrum is presented. The small antenna comprises a folded conducting element connected to a printed section. Several solutions are introduced which create different current paths increasing the effective dimensions of the antenna. The antenna is examined for the stand-alone case and for the antenna mounted in various locations on a larger handset-type groundplane. The impedance and radiation characteristics ...

  18. An Introduction of Aperture Coupled Microstrip Slot Antenna

    OpenAIRE

    Zarreen Aijaz; S.C Shrivastava

    2010-01-01

    A microstrip slot antenna is very small and lightweight still it has the problem of back radiation due to which power loss occurs and the SAR increases. To reduce the back lobe a technique introduces i.e. aperture coupled microstrip slot antenna which reduces the back lobe as well as increases the bandwidth of the antenna. Aperture coupled microstrip slot antenna couples the patch antenna with microstripline through an aperture.

  19. Modeling of Broadband Shortwave Antennas With Numerical Electromagnetics Code

    OpenAIRE

    Prasad, Kamtala Venkat Ramana

    2009-01-01

    Antenna designers always search for ways to improve existing designs or introduce novel designs in order to achieve desirable antenna characteristics. The linear wire dipole antennas are very important in communication systems at all frequency bands. These antennas are used by typically military, navigation and surveillance purposes. The broadband antenna which was built in the year of 1950 and was working efficiently for over half a century, some problems such as inefficient radiation, imper...

  20. Time-domain antenna studies for videopulse subsurface radars

    OpenAIRE

    Boryssenko, Anatoliy O.

    1999-01-01

    The results of time-domain theoretical and experimental studies of ultra-wide band antennas with impulse excitation in radiating and receiving modes are presented. The antennas under consideration, like a monopole antenna, a dipole antenna and a horn-like antenna, are used widely for high-resolution videopulse subsurface (ground-penetrating) radars and should be operated near the border between two medias with different electrical properties.

  1. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    Science.gov (United States)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  2. UHF RFID Antenna: Printed Dipole Antenna with a CPS Matching Circuit and Inductively Coupled Feed

    OpenAIRE

    Nenad Popović

    2011-01-01

    This paper presents simulated (WIPL‐D pro) and measured results of a UHF RFID antenna realized with a dipole matched to a CPS (Coplanar Stripline) and inductively coupled with a small rectangular loop. Such a design enables achieving and controlling high values of the inductive reactance that is necessary for obtaining good match of the antenna to an Application Specific Integrated Circuit (ASIC) chip. The antenna is characterized by a simple and robust design, which results in low‐cost re...

  3. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    Science.gov (United States)

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  4. Sum Rate and Power Consumption of a Circular-Layout Distributed Antenna System with MMSE Receivers

    Institute of Scientific and Technical Information of China (English)

    GAN Jiansong; LI Yunzhou; ZHOU Shidong; WANG Jing

    2008-01-01

    The distributed antenna system (DAS) is considered as a promising architecture for future wireless access. This paper describes the uplink of a power-controlled circular-layout DAS (CL-DAS) with minimum mean-square error (MMSE) receivers. Results from random matrix theory are used to show that for such a DAS, the per-user sum rate and the total transmit power both converge as the number of users and antennas goes to infinity with a constant ratio of antennas to users. The relationship between the asymptotic per-user sum rate and the asymptotic total transmit power is given for all possible values of the radius of the circle on which antennas are placed. This rate-power relationship is then used to find the optimal radius. With this op-timal radius, the CL-DAS is proved to offer a significant gain compared with a traditional co-located antenna system. Simulation results demonstrate the validity of the analysis and the superiority of the DAS.

  5. Design of a Two-Element Antenna Array Using Substrate Integrated Waveguide Technique

    Directory of Open Access Journals (Sweden)

    Kheireddine Sellal

    2011-01-01

    Full Text Available The design of a two-element antenna array using the substrate integrated waveguide (SIW technique and operating at 10 GHz is presented. The proposed antenna array consists of two SIW phase shifter sections with two SIW slot antennas. The phase shifting is achieved by changing the position of two inductive posts inserted inside each element of the array. Numerical simulations and experimental measurements have been carried out for three differential phases between the two antenna array elements, namely, 0°, 22.5°, and 67.5°. A prototype for each differential phase has been fabricated and measured. Results have shown a fairly good agreement between theory and experiments. In fact, a reflection coefficient of better than 20 dB has been achieved around 10 GHZ. The E-plane radiation pattern has shown a beam scan between 5° and 18° and demonstrated the feasibility of designing an SIW antenna phased array.

  6. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A; Breinbjerg, Olav

    2007-01-01

    A new antenna diagnostics technique has been developed for the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark. The technique is based on the transformation of the Spherical Wave Expansion (SWE) of the radiated field, obtained from a spherical near...... measurement accuracy, have been reported previously, we validate here the new antenna diagnostics technique through an experimental investigation of a commercially available offset reflector antenna, where a tilt of the feed and surface distortions are intentionally introduced. The effects of these errors...

  7. A Liquid Metal Conical Helical Antenna for Circular Polarization-Reconfigurable Antenna

    Directory of Open Access Journals (Sweden)

    Yun Zhou

    2016-01-01

    Full Text Available A novel polarization-reconfigurable conical helical antenna based on the liquid metal is presented. The antenna is implemented by using truncated structure, variable pitch angle, a matching stub, and a mechanical autorotation device. The experimental results show that a good agreement between simulations and measurements is obtained. The gain of the antenna achieves higher than 8 dBi in the work band (1525–1660.5 MHz, and the 3 dB axial ratio (AR bandwidth reaches 410 MHz. The polarization mode of the antenna can be switched between right-hand and left-hand circular polarization.

  8. Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design

    Directory of Open Access Journals (Sweden)

    Jérôme Wenger

    2012-01-01

    Full Text Available Plasmonic antennas offer promising opportunities to control the emission of quantum objects. As a consequence, the fluorescence enhancement factor is widely used as a figure of merit for a practical antenna realization. However, the fluorescence enhancement factor is not an intrinsic property of the antenna. It critically depends on several parameters, some of which are often disregarded. In this contribution, I explore the influence of the setup collection efficiency, emitter's quantum yield, and excitation intensity. Improperly setting these parameters may significantly alter the enhancement values, leading to potential misinterpretations. The discussion is illustrated by an antenna example of a nanoaperture surrounded by plasmonic corrugations.

  9. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper;

    2015-01-01

    A novel verticall A novel vertically polarized dpolarize , omnidirection omnidirectional l , printed slot loop antenna h sprinted slot loop antenna has been designed, simulated, fabricated, and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform...... and in-phase fields in the slot in order to obtain an omnidirectional radiation pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due...

  10. Modelling of mixed-phasing antenna-plasma interactions on JET A2 antennas

    International Nuclear Information System (INIS)

    The use of mixed(monopole-dipole)-phasing of a set of ion cyclotron range of frequency antennas is potentially useful to optimize tokamak performance. However, recent mixed-phasing experiments on JET, described here, showed undesirable antenna-plasma interactions under certain circumstances. A possible physical mechanism to explain the experimental results is discussed, namely, rf-driven dc parallel currents flowing between adjacent antennas with different phasings can lead to arcing on the antenna with the largest sheath voltage. Means of controlling the interaction are discussed. (author)

  11. The investigation of radiation characteristics of Fresnel antenna for Q-band

    OpenAIRE

    Magro, V. I.; Morozov, V M

    2003-01-01

    The general approach to analysis of zonal Fresnel antenna is considered. The frequency characteristics of Fresnel antenna are analyzed. The radiation characteristics of the Fresnel antenna are considered.

  12. A comparison of interferometric SAR antenna options

    Science.gov (United States)

    Doerry, A. W.; Bickel, D. L.

    2013-05-01

    Interferometric Synthetic Aperture Radar (IFSAR or InSAR) uses multiple antenna phase centers to ultimately measure target scene elevation. Its ability to do so depends on the antenna configuration, and how the multiple phase centers are employed. We examine several different dual-phase-center antenna configurations and modalities, including a conventional arrangement where a dedicated antenna is used to transmit and receive with another to receive only, a configuration where transmit and receive operations are ping-ponged between phase centers, a monopulse configuration, and an orthogonal waveform configuration. Our figure of merit is the RMS height noise in the elevation estimation. We show that a monopulse configuration is equivalent to the ping-pong scheme, and both offer an advantage over the conventional arrangement. The orthogonal waveform offers the best potential performance, if sufficient isolation can be achieved.

  13. High Tc superconducting small loop antenna

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Mehler, M.J.; Maclean, T.S.M.; Lancaster, M.J.; Gough, C.E. (Univ. of Birmingham (UK)); Alford, N. (I.C.I. Advanced Materials Div., Runcorn (UK))

    1989-12-01

    The improvement in the radiation efficiency of an electrically small loop antenna is analysed when it is fabricated from a superconductor, and experimental results for a liquid nitrogen cooled, ceramic superconducting loop at 450MHz are presented. (orig.).

  14. Microfabricated G-Band Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  15. 47 CFR 73.816 - Antennas.

    Science.gov (United States)

    2010-10-01

    ... connection with the operation of a Travelers' Information Service (TIS) provided each LPFM TIS station... discrete transmitting antennas) and/or transmitters be employed. (d) LPFM TIS stations will be...

  16. Metamaterial Multiband Antenna for Wireless Application

    Directory of Open Access Journals (Sweden)

    Nader AZIZI

    2014-01-01

    Full Text Available In this work a Multi-band antenna along with the innovative metamaterial structure is proposed which consists of a circular geometry incorporated with c shaped structure. This work is mainly focused on increasing the potential parameters of planar antennas and analyzing the multi band operation of proposed antenna. The impedance bandwidth of proposed antenna are covered and utilized frequency range of (2.6~3.1 GHz, (3.5~4.4 GHz and (4.7~6.2 GHz. For verifying that the proposed metamaterial structure possesses Negative values of Permeability and Permittivity within the operating frequency ranges, Nicolson-Ross-Weir method (NRW has been employed. For simulation purpose HFSS Software has been used.

  17. Fast cooling techniques for gravitational wave antennas

    CERN Document Server

    Furtado, S R

    2002-01-01

    The resonant-mass technique for the detection of gravitational waves may involve, in the near future, the cooling of very large masses (about 100 tons) from room temperature (300 K) to extreme cryogenic temperatures (20 mK). To cool these detectors to cryogenic temperatures an exchange gas (helium) is used, and the heat is removed from the antenna to the cold reservoir by thermal conduction and natural convection. With the current technique, cooling times of about 1 month can be obtained for cylindrical bar antennas of 2.5 tons. Should this same technique be used to cool a 100 ton spherical antenna the cooling time would be about 10 months, making the operation of these antennas impracticable. In this paper, we study the above-mentioned cooling technique and others, such as thermal switching and forced convection from room temperature to liquid nitrogen temperature (77 K) using an aluminium truncated icosahedron of 19 kg weight and 25 cm diameter.

  18. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  19. NRAO RF Anechoic Chamber & Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  20. Phase shifter for antenna beam steering

    Science.gov (United States)

    Jindal, Ravi; Razban, Tchanguiz

    2016-03-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  1. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  2. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, and stands ready...

  3. Slot antenna as a bound charge oscillator.

    Science.gov (United States)

    Choe, Jong-Ho; Kang, Ji-Hun; Kim, Dai-Sik; Park, Q-Han

    2012-03-12

    We study the scattering properties of an optical slot antenna formed from a narrow rectangular hole in a metal film. We show that slot antennas can be modeled as bound charge oscillators mediating resonant light scattering. A simple closed-form expression for the scattering spectrum of a slot antenna is obtained that reveals the nature of a bound charge oscillator and also the effect of a substrate. We find that the spectral width of scattering resonance is dominated by a radiative damping caused by the Abraham-Lorentz force acting on a bound charge. The bound charge oscillator model provides not only an intuitive physical picture for the scattering of an optical slot antenna but also reasonable numerical agreements with rigorous calculations using the finite-difference time-domain method. PMID:22418535

  4. Analysis of antenna-radome systems

    Science.gov (United States)

    Liu, Jianfen; Wan, Wei

    1987-01-01

    The conventional two-dimensional ray-tracing technique is a classical method for analysis of antenna-radome systems. However, in the detailed treatment of field distortions introduced by the radome, the accuracy is usually uncertain due to the inherent errors associated with the ray-tracing approximation of the antenna near field. A very effective approach based on a sampling theorem using the plane-wave spectrum (PWS) method is given in this paper. The effects of an airborne radome on the antenna radiation pattern are analyzed from many aspects. Besides the analysis of regular apparent boresight error, stress is put on the calculations of radome cross-polarization fields and sidelobes (flash lobes) induced by reflection on the inner surface of the radome. A number of useful curves for every variation are shown, and the effects of varying the antenna scanning angle are also discussed.

  5. MEMS-Enabled Smart Reconfigurable Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A prototype wearable smart reconfigurable antenna for the Suit will be built to be used during NASA's EVA operations on lunar surface. The design is based on the...

  6. Wideband P-Shaped Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    M.Khalily

    2013-04-01

    Full Text Available A novel P-shaped dielectric resonator antenna (DRA is presented and investigated for wideband wireless application. By using P-shaped resonator, a wideband impedance bandwidth of 80% from 3.5 to 8.2 GHz is achieved. The antenna covers all of wireless systems like C-band, 5.2, 5.5 and 5.8 GHz-WLAN and WiMax. The proposed antenna has a low profile and the thickness of the resonator is only 5.12 mm, which is 0.06-0.14 free space wavelength. A parametric study is presented. The proposed DRA is built and the characteristics of the antenna are measured. Very good agreement between numerical and measured results is obtained.

  7. Slot Coupled Patch Array Antenna Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is an antenna array whose beam is controlled digitally. The Phase 1 effort will assess the method needed to achieve the gain, bandwidth, and...

  8. Advanced Antenna for Digital Beamforming SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a wideband (500 MHz) L-band phased-array antenna for airborne Synthetic Aperture Radar (SAR) applications based on a novel approach that will make possible...

  9. Microfabricated Millimeter-Wave Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  10. Deployable Wide-Aperture Array Antennas

    Science.gov (United States)

    Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Chu, Andrew; Scully, Robert C.

    2005-01-01

    Inexpensive, lightweight array antennas on flexible substrates are under development to satisfy a need for large-aperture antennas that can be stored compactly during transport and deployed to full size in the field. Conceived for use aboard spacecraft, antennas of this type also have potential terrestrial uses . most likely, as means to extend the ranges of cellular telephones in rural settings. Several simple deployment mechanisms are envisioned. One example is shown in the figure, where the deployment mechanism, a springlike material contained in a sleeve around the perimeter of a flexible membrane, is based on a common automobile window shade. The array can be formed of antenna elements that are printed on small sections of semi-flexible laminates, or preferably, elements that are constructed of conducting fabric. Likewise, a distribution network connecting the elements can be created from conventional technologies such as lightweight, flexible coaxial cable and a surface mount power divider, or preferably, from elements formed from conductive fabrics. Conventional technologies may be stitched onto a supporting flexible membrane or contained within pockets that are stitched onto a flexible membrane. Components created from conductive fabrics may be attached by stitching conductive strips to a nonconductive membrane, embroidering conductive threads into a nonconductive membrane, or weaving predetermined patterns directly into the membrane. The deployable antenna may comprise multiple types of antenna elements. For example, thin profile antenna elements above a ground plane, both attached to the supporting flexible membrane, can be used to create a unidirectional boresight radiation pattern. Or, antenna elements without a ground plane, such as bow-tie dipoles, can be attached to the membrane to create a bidirectional array such as that shown in the figure. For either type of antenna element, the dual configuration, i.e., elements formed of slots in a conductive

  11. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... inherently decoupled when integrated on the same handset, while also other parameters such as frequency duplex distance and interaction with the users body influence the mutual coupling....

  12. Nonlinear effects in microwave antenna feeds

    OpenAIRE

    Semenikhina, Diana V.

    1995-01-01

    The theoretical basis for the analysis of experimentally observed nonlinear effects and associated electromagnetic compatibility problems in microwaves antenna feeds has been absent so far. This caused the necessity of carrying out the present work. The paper is aimed on the research of interior nonlinear electromagnetic problems. Here, the analysis of nonlinear effects arising in microstrip antenna feed line on a concentrated nonlinear element such as diode is carried out. Evaluations of non...

  13. Reflectarray Membrane Study for Deployable SAR Antenna

    OpenAIRE

    Di Maria, Alberto; Limbach, Markus; Horn, Ralf; Reigber, Andreas

    2009-01-01

    In this paper a reflectarray design for a membrane spaceborne antenna to be used in a typical SAR mission is presented. An L-Band reflectarray, with a dimension of 10 by 6 meters on Kapton foil substrate, has been designed. To evaluate the tolerance to the membrane deformations, a model for the surface wrinkles and sag is developed and their effects on the antenna performance are analyzed. Finally, a full-wave numerical analysis has been performed and the result are prese...

  14. MULTI SEGMENT CIRCULAR FRACTAL REFLECT ARRAY ANTENNA

    Directory of Open Access Journals (Sweden)

    Bahareh Baghani BAJGIRAN

    2014-01-01

    Full Text Available in this paper with using novel fractal structure which is composed of multi segment circular fractal. A unit cell and then reflectarray antenna have been designed. The unit cell of reflect array has been designed in 4.4 GHz with 24*24*1 mm3 dimension. The reflectarray is consist of 400 (20* 20 elements that even element is placed in the locus has been calculated. Maximum gain of antenna is 12.9 dBi.

  15. Broadband high efficiency active integrated antenna

    OpenAIRE

    Qin, Yi

    2007-01-01

    Active integrated antenna (MA) is a very popular topic of research during recent decades. This is mostly due to its advantages, such as compact size, multiple functions and low cost, etc. The MA system can be regarded as an active microwave circuit which the output or input port is free space instead of a conventional 50-ohm interface. The major drawbacks of the conventional MA include narrow bandwidth, low efficiency, etc. An experimental investigation on broadband slot-coupled antenna is ca...

  16. Circularly Polarized Broadband RFID Microstrip Tag Antenna

    OpenAIRE

    B. Rajini; G. V. Subrahmanyam

    2014-01-01

    In recent years, the application of radio frequency identification (RFID) operating in the ultra-high frequency (UHF) band (860-960MHz) are expanding exponentially, due to the advantages such as long reading distance, high data transfer rate, and small tag size. So the design of a CP tag antenna with broadband characteristic is presently one of the most challenging topics. This project presents a square patch passive RFID tag antenna designed for UHF band. To a...

  17. Investigation of a Short Conical Helix Antenna

    OpenAIRE

    Nakano, Hisamatsu; Mikawa, Takao; Yamauchi, Junji

    1985-01-01

    The input impedance, radiation pattern, axial ratio, and power gain of a conical helix antenna with a short arm are calculated as a function of frequency, using theoretically determined current distributions. It is shown that the antenna radiates a circularly polarized wave over a frequency range ratio of about 1:1.2, having a power gain of about 7.7 dB. The experimental results are also presented.

  18. Optical nano-antennas and metamaterials

    OpenAIRE

    Sailing He; Yanxia Cui; Yuqian Ye; Pu Zhang; Yi Jin

    2009-01-01

    We review some recent approaches to transmission enhancement and light harvesting based on optical nano-antennas and metamaterials. Nano-cavity antennas are used to enhance the extraordinary transmission of TM-polarized light through vertical nano-slits in a metal film. The enhanced transmission of TE-polarized waves through an array of subwavelength-slits in a thin metal film at low frequencies (including microwave) is also investigated. Light harvesting with a metamaterial cloaking shell is...

  19. Far-infrared imaging antenna arrays

    OpenAIRE

    Neikirk, Dean P.; Rutledge, David B.; Muha, Michael S.; Park, Hyeon; Yu, Chang-Xuan

    1982-01-01

    A far-infrared imaging antenna array has been demonstrated for the first time. The array is a line of evaporated silver bow-tie antennas on a fused-quartz substrate with bismuth-microbolometer detectors. The measured optical transfer function shows that the system is diffraction limited. This imaging array should find direct application in fusion plasma diagnostics. If the microbolometers can be replaced by more sensitive diode detectors, the array should also find application in radiometry a...

  20. Broadband circularly polarized antennas for UHF SATCOM

    OpenAIRE

    Tekin, İbrahim; Tekin, Ibrahim; Manzhura, Oksana; Niver, Edip

    2011-01-01

    Novel circularly polarized (CP) antenna configurations derived from Moxon type antenna (bent dipole element over a ground plane) for broadband VHF SATCOM applications. A sequence of topologies starting from a single vertical element to two vertical elements of the Moxon arms, then widened strip arm elements were studied. Further, arms were widened to bow tie structures with bents at 900.for achieving broadband operation. Bow tie elements were further split and optimized at a certain angle to...