WorldWideScience

Sample records for antenna radio-fiber access

  1. Variable Delay With Directly-Modulated R-SOA and Optical Filters for Adaptive Antenna Radio-Fiber Access

    DEFF Research Database (Denmark)

    Prince, Kamau; Presi, Marco; Chiuchiarelli, Andrea;

    2009-01-01

    on a directly-modulated reflective emiconductor amplifier (R-SOA) and exploits the interplay between transmission-line dispersion and tunable optical filtering to achieve flexible true time delay, with $2pi$ beam steering at the different antennas. The system was characterized, then successfully...

  2. A Novel Adaptive MAC Protocol for Wireless Internet Access Network with Smart Antennas

    Institute of Scientific and Technical Information of China (English)

    YANGJun; LIJiandong

    2004-01-01

    Employing smart antennas in the Central access point (CAP) of wireless Internet access networks is studied. Based on the characteristics of the networks and smart antennas, a Polling-based Adaptive beamforming multiple access protocol (PB-ABFMA) is proposed. In PB-ABFMA, the CAP requests the corresponding Mobile terminal (MT) to transmit training sequence just before the data packets transmission, so the Temporal reference beamforming (TRB) can be performed by the smart antennas. The CAP schedules packet transmissions based on the polling mechanism and dynamic TDMA, and a mini-slot is used to keep connectivity when an MT is idle, therefore,the access delay is reduced. Meanwhile, a simple and effec-tive access method is proposed to guarantee rapid access of new arrival MTs to the channel. Based on the “requestreply” traffic, which is the main traffic in Internet, the theoretical analysis of channel utilization and mean turnaround delay is presented. Analysis and simulation results show that the proposed PB-ABFMA protocols effectively support the application of smart antennas and provide high channel utilization and low turn-around delay.

  3. A Novel Multiple Access Protocol for Mobile Ad Hoc Network with Smart Antennas

    Institute of Scientific and Technical Information of China (English)

    YANGJun; LIJiandong; ZHOUXiaodong

    2004-01-01

    The approach to employ smart antennas in Mobile ad hoc network (MANET) nodes is presented. An adaptive beamforming-Carrier-Sense multiple access/collison avoidance) (ABF-CSMA/CA) protocol is proposed. In the ABF-CSMA/CA, Request-to-Send/Clear-to-Send (RTS/CTS) dialogue is used to distribute channel reservation information. Training sequences are transmitted just before RTS and CTS packets, so the Temporal reference beamforming (TRB) can be performed by the source node and the destination node.An improved virtual carrier-sense mechanism is also proposed to enhance Collision avoidance (CA) and obtain efficient Space division multiple access (SDMA). In this scheme, every node has two kinds of Network allocation vector (NAV): an oNAV maintains the interval of ongoing transmission of neighbors whose smart antennas operate in omnidirectional mode, and multiple bNAVs maintain those intervals of neighbors whose smart antennas operate in beamforming mode. Theoretical analysis of channel utilization of the proposed protocol is presented. Results show that ABF-CSMA/CA protocol combining with smart antennas can provide higher channel utilization.

  4. Effective use of multibeam antenna and space-time multiple access technology in modern mobile communication systems

    OpenAIRE

    Moskalets, N. V.

    2015-01-01

    A possibility for efficient use of radio-frequency spectrum and of corresponding increase in productivity of mobile communication system with space-time multiple access obtained by use of multibeam antenna of base station is considered.

  5. Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection

    OpenAIRE

    Kaszubowska-Anandarajah, Aleksandra; Anandarajah, Prince M.; Barry, Liam P.

    2002-01-01

    A directly modulated laser diode with external light injection is used to generate microwave optical signals for a hybrid radio/fiber system. The external light injection greatly enhances the frequency response of the laser, and thus, significantly improves the overall performance of the hybrid system. Experimental results show a 14-dB improvement in system performance for the externally injected laser in a hybrid radio/fiber communication link used for distributing 155-Mb/s data signals

  6. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    Science.gov (United States)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  7. Improved Interference-Free Channel Allocation in Coordinated Multiuser Multi-Antenna Open-Access Small Cells

    KAUST Repository

    Radaydeh, Redha

    2016-02-16

    This paper investigates low-complexity joint interference avoidance and desired link improvement for single channel allocation in multiuser multi-antenna access points (APs) for open-access small cells. It is considered that an active user is equipped with an atenna array that can be used to suppress interference sources but not to provide spatial diversity. On the other hand, the operation of APs can be coordinated to meet design requirements, and each of which can unconditionally utilize assigned physical channels. Moreover, each AP is equipped with uncorrelated antennas that can be reused simultaneously to serve many active users. The analysis provides new approaches to exploit physical channels, transmit antennas, and APs to mitigate interference, while providing the best possible link gain to an active user through the most suitable interference-free channel. The event of concurrent service requests placed by active users on a specific interference-free channel is discussed for either interference avoidance through identifying unshared channels or desired link improvement via multiuser scheduling. The applicability of the approaches to balance downlink loads is explained, and practical scenarios due to imperfect identification of interference-free channels and/or scheduled user are thoroughly investigated. The developed results are applicable for any statistical and geometric models of the allocated channel to an active user as well as channel conditions of interference users. They can be used to study various performance measures. Numerical and simulation results are presented to explain some outcomes of this work.

  8. Stability Properties of Network Diversity Multiple Access with Multiple-Antenna Reception and Imperfect Collision Multiplicity Estimation

    Directory of Open Access Journals (Sweden)

    Ramiro Samano-Robles

    2013-01-01

    Full Text Available In NDMA (network diversity multiple access, protocol-controlled retransmissions are used to create a virtual MIMO (multiple-input multiple-output system, where collisions can be resolved via source separation. By using this retransmission diversity approach for collision resolution, NDMA is the family of random access protocols with the highest potential throughput. However, several issues remain open today in the modeling and design of this type of protocol, particularly in terms of dynamic stable performance and backlog delay. This paper attempts to partially fill this gap by proposing a Markov model for the study of the dynamic-stable performance of a symmetrical and non-blind NDMA protocol assisted by a multiple-antenna receiver. The model is useful in the study of stability aspects in terms of the backlog-user distribution and average backlog delay. It also allows for the investigation of the different states of the system and the transition probabilities between them. Unlike previous works, the proposed approach considers the imperfect estimation of the collision multiplicity, which is a crucial process to the performance of NDMA. The results suggest that NDMA improves not only the throughput performance over previous solutions, but also the average number of backlogged users, the average backlog delay and, in general, the stability of random access protocols. It is also shown that when multiuser detection conditions degrade, ALOHA-type backlog retransmission becomes relevant to the stable operation of NDMA.

  9. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    OpenAIRE

    Alexandr M. Kuzminskiy; Hamid Reza Karimi

    2007-01-01

    The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC) in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA), which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fa...

  10. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Directory of Open Access Journals (Sweden)

    Kuzminskiy Alexandr M

    2007-01-01

    Full Text Available The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA, which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC algorithms at the physical (PHY layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.

  11. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Directory of Open Access Journals (Sweden)

    Alexandr M. Kuzminskiy

    2007-10-01

    Full Text Available The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA, which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC algorithms at the physical (PHY layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.

  12. Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple access.

    Science.gov (United States)

    Yegnanarayanan, S; Trinh, P D; Jalali, B

    1996-05-15

    A novel wavelength-selective photonic time-delay filter is proposed and demonstrated. The device consists of an optical phased-array waveguide grating in a recirculating feedback configuration. It can function as a true-time-delay generator for squint-free beam steering in optically controlled phased-array antennas and as an encoding-decoding filter for wavelength code-division multiple access. PMID:19876143

  13. Intelsat VI antenna system

    Science.gov (United States)

    Caulfield, M. F.; Lane, S. O.; Taormina, F. A.

    The antenna system design of a series of five new communications satellites known as Intelsat VI is described in detail. Each satellite will utilize 50 transponders operating in the C and K band portions of the frequency spectrum. The transponders are interconnectible using either static switch matrices or a network which provides satellite switched time division multiple access capability. The antenna coverages, characteristics, and special design features are shown and discussed.

  14. Smart antennas

    CERN Document Server

    Godara, Lal Chand

    2004-01-01

    INTRODUCTION Antenna GainPhased Array AntennaPower Pattern Beam Steering Degree of Freedom Optimal AntennaAdaptive AntennaSmart AntennaSummary NARROWBAND PROCESSINGSignal Model Conventional BeamformerNull Steering BeamformerOptimal BeamformerOptimization Using Reference SignalBeam Space Processing Effect of ErrorsNotation and AbbreviationsReferencesADAPTIVE PROCESSINGSample Matrix Inversion AlgorithmUnconstrained Least Mean Squares AlgorithmNormalized Least Mean Squares AlgorithmConstrained

  15. Plasma antennas

    CERN Document Server

    Anderson, Theodore

    2011-01-01

    The plasma antenna is an emerging technology that partially or fully utilizes ionized gas as the conducting medium instead of metal to create an antenna. The key advantages of plasma antennas are that they are highly reconfigurable and can be turned on and off. The disadvantage is that the plasma antennas require energy to be ionized. This unique resource provides you with a solid understanding of the efficient design and prototype development of plasma antennas, helping you to meet the challenge of reducing the power required to ionize the gas at various plasma densities. You also find thorou

  16. Reconfigurable antenna pattern verification

    Science.gov (United States)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  17. Reconfigurable antennas

    CERN Document Server

    Bernhard, Jennifer

    2007-01-01

    This lecture explores the emerging area of reconfigurable antennas from basic concepts that provide insight into fundamental design approaches to advanced techniques and examples that offer important new capabilities for next-generation applications. Antennas are necessary and critical components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Making antennas reconfigurable so that their behavior can adapt with changing system requirements or environmental conditions can ameliorate or eliminate these restricti

  18. Microstrip Antenna

    OpenAIRE

    Anuj Mehta

    2015-01-01

    Abstract This article presents an overview of the microstrip patch antenna and its design techniques. Basically a microstrip patch antenna comprises of a trace of copper or any other metal of any geometry on one side of a standard printed circuit board substrate with other side grounded. The antenna is fed using various feeding techniques like coaxial strip line aperture coupling or proximity coupling techniques. The working principle and the radiation mechanism have also been described. The ...

  19. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  20. Antenna reconfiguration using metasurfaces

    OpenAIRE

    Zhu, H; Cheung, WSW; Yuk, TI

    2014-01-01

    The paper describes the designs of a frequency-reconfigurable, polarization reconfigurable and pattern reconfigurable antennas using metasurfaces (MS). The frequency-reconfigurable and polarization reconfigurable antennas are composed of a simple circular patch antenna or slot antenna as the source antenna and a circular MS with the same diameter, with both source antenna and MS implemented using planar technology. The pattern reconfigurable antenna is composed of a circular patch antenna as ...

  1. Diamond dipole active antenna

    OpenAIRE

    Bubnov, I. N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  2. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  3. UWB planar antenna technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent developments of the ultra-wideband(UWB)planar antennas are reviewed,where the progress in UWB plate monopole antennas,UWB printed monopole antennas and the UWB printed slot antennas is introduced and compared.In addition,the UWB printed antennas with the band-notched functions are also presented.

  4. Astigmatism in reflector antennas.

    Science.gov (United States)

    Cogdell, J. R.; Davis, J. H.

    1973-01-01

    Astigmatic phase error in large parabolic reflector antennas is discussed. A procedure for focusing an antenna and diagnosing the presence and degree of astigmatism is described. Theoretical analysis is conducted to determine the nature of this error in such antennas.

  5. A directive pulse antenna

    OpenAIRE

    Titov, A.N.; Titov, A. A.

    2003-01-01

    Using quite general concepts as guidance in the design of an antenna for short pulse transmission and reception, a new type of horn-antenna has been devised. A certain variety of experimental data obtained by the antenna are presented.

  6. Optical antennas and plasmonics

    OpenAIRE

    Park, Q-Han

    2009-01-01

    Optical antenna is a nanoscale miniaturization of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. Strong electric field is shown to exist within a highly localized region o...

  7. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  8. Terminal Antenna Design

    OpenAIRE

    Skrivervik, A. K.; Zurcher, J. F.

    2008-01-01

    This paper introduces first some general considerations about antenna miniaturization and multi-band terminal antenna design. These general design principles are then illustrated on some practical applications.

  9. Smooth Tracking Trajectory Generation of Large Antenna

    Directory of Open Access Journals (Sweden)

    Upnere S.

    2016-02-01

    Full Text Available The current paper presents an engineering approach for studies of the control algorithm designed for a mechanically robust large antenna. Feed-forward control methods with the 3rd-order polynomial tracking algorithm are supplemented to the original feed-back PID control system. Dynamical model of the existing servo system of 32m radio telescope has been developed to widen a case analysis of observation sessions and efficiency of the control algorithms due to limited access to an antenna. Algorithms along with the results from the system implemented on a real antenna as well as model results are presented.

  10. A True Metasurface Antenna

    OpenAIRE

    Mohamed El Badawe; Almoneef, Thamer S.; Omar M. Ramahi

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measur...

  11. Antenna systems research

    OpenAIRE

    Keen, Keith Malcolm

    1999-01-01

    This thesis is an overview of a number of investigations on antenna systems and related subjects over a period of 28 years, which has resulted in 44 publications in the technical literature, one current patent, and an M.Sc. thesis. The investigations have been grouped into 7 categories: - Log periodic antennas, - Antenna performance measurement techniques, - Spacecraft Antenna Systems, - Satcom Terminal Antennas, - Transmission lines and baluns, - High Radar Cross Secti...

  12. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  13. A Case Study on Distributed Antenna Systems

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard

    2007-01-01

    assignment is described in terms of algorithms for power allocation and access port assignment, as well as algorithms for (dynamic) channel assignment. After an outline of simulation assumptions, system capacity comparisons are given between the adaptive DAS and a system with fixed channel and access port......Passive distributed antenna systems (DASs) consisting of distributed feeder lines or single point antennas are now often installed in large office buildings where they provide efficient coverage throughout the building. More sophisticated DASs with intelligent reuse and the ability to adapt to...

  14. The spherical helical antenna

    OpenAIRE

    Cardoso, J. Christopher

    1992-01-01

    The spherical helical antenna is investigated as a new variation of the conventional helical antenna. The spherical helix is a wire antenna in a helix shape that is wound over a spherical surface instead of the standard cylindrical one. Analysis of this structure requires numerical methods and experimental measurements because its complex geometry makes it very difficult to develop analytic expressions for its radiation characteristics. The wire antenna code ESP, based on the method of ...

  15. Space-Frame Antenna

    Science.gov (United States)

    Curtis, Steven A.

    2010-01-01

    The space-frame antenna is a conceptual antenna structure that would be lightweight, deployable from compact stowage, and capable of deforming itself to a size, shape, and orientation required for a specific use. The space-frame antenna would be a trusslike structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts. The deformation of the antenna to a desired size, shape, and orientation would be effected through coordinated lengthening and shorting of the struts.

  16. Wide Coverage Antennas

    OpenAIRE

    Zackrisson, Jan

    2007-01-01

    Small satellites require small and lightweight antennas for telemetry and command function as well as for downlinking of data. We have during the last thirty years developed a large suite of wide coverage antennas. The basic radiator designs used are quadrifilar helices, waveguides, horns and patch excited cups (PEC) depending on frequency range, coverage requirements and application. The antenna designs range from L-band up to Ka-band frequencies. Typical coverages for the antennas are from ...

  17. A Modified E Shaped Patch Antenna For Mimo Systems

    Directory of Open Access Journals (Sweden)

    K. Jagadeesh Babu

    2010-10-01

    Full Text Available A compact E shaped patch antenna is proposed in the present work, which can be used for Multiple Input Multiple output (MIMO systems. The modified E shaped patch antenna proposed in this paper offers improved directivity, bandwidth, and return loss characteristics compared to normal E shaped antenna. The antenna system resonates at 5.36GHz and 5.89GHz frequencies for VSWR≤2 which can be used for WiMAX (Wireless interoperability for microwave access applications. The simulation results of return loss, VSWR, gain and radiation pattern are presented.

  18. The mathematical model of antenna and antenna-radome system

    OpenAIRE

    Knyazeva, L. V.; Artishev, A. I.

    2003-01-01

    Methods, algorithms and programs for calculation by computer of the characteristics of the antenna and the antenna-radome system (ARS) are developed. The type of antenna considered is the phased antenna array (PAA) or the cophase antenna with a mechanical beam control (an antenna array - AA). Radome shape is spherical, quasi-conic or flattened ellipsoid. Radome shell is multilayer ( N≥1), same-thickness, or special profile. Errors in the manufacture of the antenna are taken into account. Prog...

  19. Deep Space Network Antenna Logic Controller

    Science.gov (United States)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  20. A True Metasurface Antenna

    Science.gov (United States)

    Badawe, Mohamed El; Almoneef, Thamer S.; Ramahi, Omar M.

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.

  1. Secondary Surveillance Radar Antenna

    OpenAIRE

    Schejbal, Vladimír; Bezoušek, Pavel; Pidanič, Jan; Chyba, Milan

    2013-01-01

    This paper deals with a secondary surveillance radar (SSR) array antenna, which is intended for a system combining the secondary surveillance radar antenna and the primary surveillance radar antenna. It describes the patch array elements and the synthesis for the secondary surveillance radar array, considering both elevation and azimuth patterns for sum, difference, and sidelobe-suppression beams, and suspended stripline couplers. The utilization of multilayer techniques allows the connection...

  2. Antenna Structure Registration (ASR)

    Data.gov (United States)

    Federal Communications Commission — As part of its ongoing efforts to promote air safety, the Federal Communications Commission requires owners to register certain antenna structures (generally those...

  3. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  4. A curl antenna

    OpenAIRE

    Nakano, Hisamatsu; Okuzawa, Shigeru; Ohishi, Katsumi; Mimaki, Hiroaki; Yamauchi, Junji

    1993-01-01

    A radiation element, designated as a curl antenna, is proposed for a circularly polarized antenna. The radiation characteristics of the curl are numerically analyzed. The gain is approximately 8.4 dB, and the 3-dB axial ratio criterion is 6.7%. Two aspects of curl array antennas are also presented: a decoupling factor between two curls and a circular array antenna consisting of 168 curls. Calculations show how the decoupling factor depends on the relative rotation angle of the two curls. The ...

  5. Cavity Backed Slot Antenna

    Directory of Open Access Journals (Sweden)

    Sarang Masani, Ila Parmar, Hitendra Jadeja

    2013-05-01

    Full Text Available Among the current driving forces in wireless communications, there is a need for compact, efficient, inexpensive and reproducible antennas. In some instances, particularly long-distance applications, radiators with directive, high-gain characteristics are necessary. This paper proposes a cavity-backed slot antenna to that end. This antenna will enhance the gain, directivity and can also be easily flush mounted to the flying object. The shape and size of the slot can be effectively utilized to get the desired result. The proposed antenna is feed by waveguide which facilitate it to be applicable at high power operation where coaxial cable fails due to skin effect. Present antenna is verified using Numerical Technique called Finite Element Method FEM. The conception of this antenna is realized by the software HFSS “Ansoft-High Frequency Structure Simulator”. By properly selecting shapes, dimensions of the slots and number of slot affects the parameters like return loss, gain along Θ, Ø directions, Cartesian plot and radiation pattern .The Backing of cavity to the slot antenna provide the basics of the gain enhancement and the slot loading effect and the cavity volume plays an important role in achieving the desired return loss at the specific frequency.The simulated antenna shows the 7.0944 db of gain and return loss of -28.60. The proposed antenna works at 6 GHz.

  6. MASTER TELEVISION ANTENNA SYSTEM.

    Science.gov (United States)

    Rhode Island State Dept. of Education, Providence.

    SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)

  7. Measurement of LHCD antenna position in Aditya tokamak

    International Nuclear Information System (INIS)

    To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.

  8. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  9. Substrate integrated antennas and arrays

    CERN Document Server

    Cheng, Yu Jian

    2015-01-01

    Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book:Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologiesExamines theoretical and experimental results connected to electrical and mechanical performanceExp

  10. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  11. Integrated solar panel antennas

    OpenAIRE

    Vaccaro, S.; P. TORRES; Mosig, J. R.; Shah, Arvind; Zürcher,, J.-F.; A. K. Skrivervik; Gardiol, F.; de Maagt, P.; Gerlach, L.

    2008-01-01

    A new antenna which combines solar cells and printed patches is presented. The antenna is designed so as to accommodate the solar cells that provide power to an MMIC amplifier. A 2×4 array is presented, which operates at the frequency of 3.76 GHz and has a bandwidth of 16% and gain up to 30 dBi (active).

  12. Entropy and Fractal Antennas

    OpenAIRE

    Emanuel Guariglia

    2016-01-01

    The entropies of Shannon, Rényi and Kolmogorov are analyzed and compared together with their main properties. The entropy of some particular antennas with a pre-fractal shape, also called fractal antennas, is studied. In particular, their entropy is linked with the fractal geometrical shape and the physical performance.

  13. Annular Planar Monopole Antennas

    OpenAIRE

    Chen, Z. N.; Ammann, Max; Chia, W.Y. W.; See, T.S. P.

    2002-01-01

    A type of annular planar monopole antenna is presented. The impedance and radiation characteristics of the monopole with different holes and feed gaps are experimentally examined. The measured results demonstrate that the proposed antenna is capable of providing significantly broad impedance bandwidth with acceptable radiation performance.

  14. Printed Triband Terminal Antenna

    OpenAIRE

    JOHN, MATTHIAS; Ammann, Max; Farrell, R.

    2005-01-01

    This paper presents a printed triple-band multibranch monopole for use in modern wireless systems. The antenna is designed to operate in three bands which cover virtually all wireless channels. Parameters of the antenna geometry are varied and the effects of these variations on the impedance bandwidth are shown.

  15. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  16. Smart antennas in aerospace applications

    OpenAIRE

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, Chris G.H.; Marpaung, David A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with electronic compensation techniques.

  17. A Rectangular Ring, Open-Ended Monopole Antenna with Two Symmetric Strips for WLAN and WiMAX Applications

    OpenAIRE

    Joong-Han Yoon; Young-Chul Rhee; Woo-Su Kim

    2013-01-01

    A triple-band rectangular ring, open-ended monopole antenna with symmetric L strips for wireless local area network (WLAN)/Worldwide Interoperability of Microwave Access (WiMAX) applications is proposed. The proposed antenna consists of two symmetric folded arms and L strips. Based on the concept, a prototype of the proposed triple antenna has been designed, fabricated, and tested. The numerical and experimental results demonstrated that the proposed antenna satisfied the −10 dB impedance ban...

  18. Adaptive antennas and receivers

    CERN Document Server

    Weiner, Melvin M

    2005-01-01

    In our modern age of remote sensing, wireless communication, and the nearly endless list of other antenna-based applications, complex problems require increasingly sophisticated solutions. Conventional antenna systems are no longer suited to high-noise or low-signal applications such as intrusion detection. Detailing highly effective approaches to non-Gaussian weak signal detection, Adaptive Antennas and Receivers provides an authoritative introduction to state-of-the-art research on the modeling, testing, and application of these technologies.Edited by innovative researcher and eminent expert

  19. Atacama Compact Array Antennas

    OpenAIRE

    Saito, Masao; Inatani, Junji; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high...

  20. Optimisation of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    H. El Hamchary

    1996-04-01

    Full Text Available When choosing the most appropriate microstrip antenna configuration for particular applications, the kind of excitation of the radiating element is an essential factor that requires careful considerations. For controlling the distribution of energy of the linear or planar array of elements and for coupling energy to the individual elements, a wide variety of feed mechanisms are available. In this paper, the coaxial antenna feeding is assumed and the best (optimised feeding is found. Then, antenna characteristics such as radiation pattern, return loss, input impedance, and VSWR are obtained.

  1. Tunable Liquid Dielectric Antenna

    Directory of Open Access Journals (Sweden)

    Kamal Raj Singh Rajoriya

    2012-06-01

    Full Text Available This paper presents on modified the dielectric properties of liquid with varying salinity that was based on monopole structure. Dielectric resonator antennas (DRAs can be made with a wide range of materials and allow many excitation methods [2]. Pure water does not work at high frequency (> 1 GHz but increase in the salinity of water modifies the dielectric properties of water. Here proposed antenna shows that when the salinity increases in form of molar solution, the antenna was tuned at different frequency with increases return loss.

  2. Analysis of reflector antenna system including frequency selective surfaces

    Science.gov (United States)

    Zimmerman, M. L.; Lee, S. W.; Fujikawa, G.

    1992-01-01

    Frequency selective surfaces (FSS's) are often used in spaceborne applications of reflector antennas due to their ability to allow multiple feeds to utilize the same reflector dish. The problems inherent in evaluating the FSS separately from the reflector system are discussed. A method of integrating the FSS effects into the reflector system analysis is presented. An example is given for the proposed Advanced Tracking and Delay Relay Satellite System (ATDRSS) single-access triband reflector antenna.

  3. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  4. Nonlinear plasmonic antennas

    Directory of Open Access Journals (Sweden)

    Shakeeb Bin Hasan

    2014-12-01

    Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.

  5. Fractal multiband patch antenna

    OpenAIRE

    Borja, C.; Puente Baliarda, Carles; Romeu Robert, Jordi; Anguera Pros, Jaume

    2000-01-01

    The multiband behaviour of the Sierpinski patch antenna is described in this paper. Experimental results show that the self similarity properties of the fractal shape are translated into its electromagnetic behaviour. Peer Reviewed

  6. Atacama Compact Array Antennas

    CERN Document Server

    Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.

  7. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  8. Rotary antenna attenuator

    Science.gov (United States)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  9. Performance Analysis of a Sectorized Distributed Antenna System with Reduced Co-Channel Interference

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper proposes a sectorized distributed antenna system for the orthogonal frequency division multiplexing access system in order to both reduce the co-channel interference introduced by frequency reuse and maintain high spectral efficiency. The proposed system is composed of many 120-degree sectorized antennas that are uniformly distributed throughout the whole coverage area. Three adjacent sectors from different antennas share the same frequency band, which can be reused on the adjacent antennas. The new structure provides downlink interference divergence that greatly reduces co-channel interference and improves the system capacity, compared to the traditional cell structure with frequency reuse factor equal to 3. Multiple antennas broadcasting the same signal for a user using the same frequency, known as simulcasting,has been widely studied in distributed antenna systems. However, this paper demonstrates that simulcasting is not suitable for the close interfering structure. Multiple input multiple output distributed antenna systems might be a better choice.

  10. SANTANA- Smart Antenna Terminal Design

    OpenAIRE

    Liu, Ying

    2006-01-01

    This project is embedded in SANTANA (Smart Antenna Terminal) project. The project goal is to design a Ka-band circularly polarized antenna radiator for the receiver SANTANA system. The research work focuses on two types of circularly polarized antennas: aperture-coupled patch antenna and CPW-fed patch antenna. A two steps design process is used. Firstly, only the antennas and their feed structure are designed and optimized. Secondly, a via-transition to connect to a MMIC layer is added. When ...

  11. Modeling of compact loop antennas

    Science.gov (United States)

    Baity, F. W.

    1987-09-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak (CIT).

  12. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  13. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak

  14. Imaging antenna arrays

    Science.gov (United States)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  15. A DOUBLE E SHAPED MICROSTRIP PATCH ANTENNA FOR MULTIBAND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Pristin K Mathew

    2014-06-01

    Full Text Available This paper presents a dual band Compact double E shaped Microstrip Patch antenna with enhanced gain for Worldwide Interoperability for Microwave Access (WI-MAX, Universal Mobile Telecommunication Systems (UMTS and Satellite applications. The modified E shaped patch antenna is designed using CADFEKO and the results of return loss, Voltage Standing Wave Ratio (VSWR, gain of the proposed antenna are compared with a conventional E shaped patch antenna. The results show that the double E shaped wideband patch antenna has an impedance bandwidth of 10.7 % with a return loss of -13.6dB, -12.4 dB, -12.1dB and -14.2dB at resonant frequencies of 1.96 GHz, 3.62 GHz, 5.76 GHz and 6.82 GHz, whereas a conventional E shaped patch antenna operates at 2.5 GHz, 3.4 GHz and 5.5 GHz with a return loss of -16 dB each and impedance bandwidth of 10.6 %. Both the antennas uses Coaxial Probe feeding technique and Flame Retardant 4 (FR-4 as the substrate material with a thickness of 2.87 mm. A parametric study has been done so as to understand the effect of each parameter to obtain a better performance and optimised results.

  16. Technologies and Applications of Microwave Photonic Antennas

    OpenAIRE

    Y. Yashchyshyn; Chizh, A.; Malyshev, S.; Modelski, J

    2010-01-01

    This paper describes the development of microwave photonic antennas concepts and their applications. The experimental study of the transmitting and receiving photonic antenna are shown. The transmitting photonic antenna consists of photodiode integrated with microstrip E-shaped patch antenna, and receiving photonic antenna consists of laser diode integrated directly with the Vivaldi antenna.

  17. Hemispheric ultra-wideband antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  18. Dual polarization flat plate antenna

    Science.gov (United States)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  19. 96-antenna radioheliograph

    CERN Document Server

    Lesovoi, S V; Ivanov, E F; Gubin, A V

    2014-01-01

    Here we briefly present some design approaches for a multifrequency 96-antenna radioheliograph. The array antenna configuration, transmission lines and digital receivers are the main focus of this work. The radioheliograph is a T-shaped centrally-condensed radiointerferometer operating at the frequency range 4-8~GHz. The justification for the choice of such a configuration is discussed. The antenna signals are transmitted to a workroom by analog optical links. The dynamic range and phase errors of the microwave-over-optical signal are considered. The signals after downconverting are processed by the digital receivers for delay tracking and fringe stopping. The required delay tracking step and data rates are considered. Two 3-bit data streams (I and Q) are transmitted to a correlator with the transceivers embedded in FPGA (Field Programmed Gate Array) chips and with PCI Express cables.

  20. A FLOSS Visual EM Simulator for 3D Antennas

    CERN Document Server

    Koutsos, Christos A; Zimourtopoulos, Petros E

    2010-01-01

    This paper introduces the FLOSS Free Libre Open Source Software [VEMSA3D], a contraction of "Visual Electromagnetic Simulator for 3D Antennas", which are geometrically modeled, either exactly or approximately, as thin wire polygonal structures; presents its GUI Graphical User Interface capabilities, in interactive mode and/or in handling suitable formed antenna data files; demonstrates the effectiveness of its use in a number of practical antenna applications, with direct comparison to experimental measurements and other freeware results; and provides the inexperienced user with a specific list of instructions to successfully build the given source code by using only freely available IDE Integrated Development Environment tools-including a cross-platform one. The unrestricted access to source code, beyond the ability for immediate software improvement, offers to independent users and volunteer groups an expandable, in any way, visual antenna simulator, for a genuine research and development work in the field ...

  1. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...... the surface current distribution on the reflector plate. Numerical results obtained for Yagi backfire antennas and short-backfire antennas using this theory are compared with experimental results....

  2. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  3. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  4. Antennas fundamentals, design, measurement

    CERN Document Server

    Long, Maurice

    2009-01-01

    This comprehensive revision (3rd Edition) is a senior undergraduate or first-year graduate level textbook on antenna fundamentals, design, performance analysis, and measurements. In addition to its use as a formal course textbook, the book's pragmatic style and emphasis on the fundamentals make it especially useful to engineering professionals who need to grasp the essence of the subject quickly but without being mired in unnecessary detail. This new edition was prepared for a first year graduate course at Southern Polytechnic State University in Georgia. It provides broad coverage of antenna

  5. The Antennae Galaxies

    OpenAIRE

    Karl, Simon

    2012-01-01

    The Antennae galaxies (NGC 4038/39) are the nearest and best-studied major merger of two gas-rich spirals in the local Universe. They are named after the characteristic pair of tidal tails that protrude out of their main galactic disks. Due to their proximity the Antennae are extremely well sampled by modern high-resolution observations over an enormous wavelength range, from radio to X-ray. This allows for a comprehensive multiwavelength approach to the present-day morpholo...

  6. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  7. Hyperbolic thermal antenna

    CERN Document Server

    Barbillon, Grégory; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2016-01-01

    A thermal antenna is an electromagnetic source which emits in its surrounding, a spatially coherent field in the infrared frequency range. Usually, its emission pattern changes with the wavelength so that the heat flux it radiates is weakly directive. Here, we show that a class of hyperbolic materials, possesses a Brewster angle which is weakly dependent on the wavelength, so that they can radiate like a true thermal antenna with a highly directional heat flux. The realization of these sources could open a new avenue in the field of thermal management in far-field regime.

  8. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...... cylindrical surfaces have the sane characteristic constants and different constants are treated separately. Extensive numerical computations of the field radiated from the slot antennas described here are being carried out, but no numerical results are yet available...

  9. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception of...... radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  10. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  11. Antenna Systems for NUTS

    OpenAIRE

    Marholm, Sigvald

    2012-01-01

    NTNU is aiming to build and launch a small student satellite compliant with thedouble CubeSat standard, by 2014. The NTNU Test Satellite (NUTS) will carrytwo radio tranceivers and a beacon transmitter, all located in the VHF and UHFamateur bands. The goal of this thesis was to build the whole antenna systems forthe spacecraft.Turnstile antennas were chosen both for UHF and VHF, since they yield thehighest received signal strength on ground throughout the whole pass of the satel-lite. In order...

  12. Square Planar Monopole Antenna

    OpenAIRE

    Ammann, Max

    1999-01-01

    A planar monopole may be realised by replacing the wire element of a conventional monopole with a planar element. In this case, the planar element which is square, is located above a groundplane and fed using an SMA connector as illustrated. The square monopole has a simple geometry and a smaller bandwidth compared to the circular-disc monopole. However, it is still a broadband antenna with a typical impedance bandwidth of 75 % at S band. This broadband antenna shows a constant radiation patt...

  13. A century of antenna development

    Science.gov (United States)

    Olver, A. D.

    The paper describes a century of antenna development as part of a century of radio communications. This historical review examines, chronologically, the pre-Hertz period, Hertz antennas, the microwave optics period, the Marconi era, short waves, theoretical design before and after computers, and radar. Consideration is also given to mobile antennas, microwave comunications, radio astronomy, and satellite comunications.

  14. China's Largest Radio Antenna System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ After three-and-half-year efforts, the National Astronomical Observatories at CAS (NAOC) has constructed two arrays of radio antennae: a 50m antenna at Miyun Station in Beijing and a 40m antenna in Kunming, capital of southwest China's Yunnan Province.

  15. Conceptual design of PAM antenna for Aditya-U Tokamak

    International Nuclear Information System (INIS)

    ADITYA Tokamak is being upgraded (ADITYA-U) to operate the machine at enhanced plasma parameter. This also provides an opportunity to upgrade lower hybrid current drive (LHCD) system to drive plasma current non-inductively and enhance the coupling of RF power to the plasma. It is proposed to replace existing grill antenna by a new type of antenna which is often referred as passive active multijunction (PAM) antenna. The PAM antenna has an advantage of providing efficient RF coupling to the plasma, even at edge densities close to cut-off. Further it provides a lower reflection from the plasma as compared to the conventional grill antenna. ADITYA-U would operate at toroidal magnetic field of 1.5T and may have line average density lying in the range of (0.8 - 3.0) X 1019 m-3. For LHW's to access to the plasma center, the waves would be launched having parallel refractive index (N∥) which is well above the critical accessible condition given by Stix. Thus the PAM antenna is designed to launch N∥ of 2.25 ± 0.28. Our analysis reveals that periodicity for the PAM antenna would be 27mm to launch the design value of N∥ with three passive and three active waveguide in a single PAM module having phase shift of 270° between adjacent active waveguides. The size of the radial port (490 mm x 190 mm) of ADITYA-U tokamak determines the number of PAM modules which may be accommodated in the new scheme. It turns out that two modules of PAM antenna may be accommodated in the said radial port. Mode convertors (TE10 to TE30 mode) would be employed for dividing the RF power in three poloidal locations. A thermal and electro-mechanical analysis is also discussed in this paper. (author)

  16. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume requ...

  17. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  18. Frequency selective lens antenna

    OpenAIRE

    Thornton, J.; Haines, P.

    2007-01-01

    A variant of the hemispherical microwave lens antenna is reported where the ground plane region is modified through use of a frequency selective surface. This allows discrimination of frequencies by two closely spaced primary feeds. A scale model is reported operating at 12 and 30 GHz.

  19. Community Antenna Television (CATV).

    Science.gov (United States)

    Federal Communications Commission, Washington, DC.

    The number of households hooked up to cable television or community antenna television (CATV) is expanding rapidly, and Federal Communications Commission (FCC) has been developing regulations since 1962 to guide the growth of the industry. By 1965 the FCC had claimed jurisdiction over all CATV systems in the U. S. This jurisdiction was challenged…

  20. Evolutionary optimization of optical antennas

    CERN Document Server

    Feichtner, Thorsten; Kiunke, Markus; Hecht, Bert

    2012-01-01

    The design of nano-antennas is so far mainly inspired by radio-frequency technology. However, material properties and experimental settings need to be reconsidered at optical frequencies, which entails the need for alternative optimal antenna designs. Here a checkerboard-type, initially random array of gold cubes is subjected to evolutionary optimization. To illustrate the power of the approach we demonstrate that by optimizing the near-field intensity enhancement the evolutionary algorithm finds a new antenna geometry, essentially a split-ring/two-wire antenna hybrid which surpasses by far the performance of a conventional gap antenna by shifting the n=1 split-ring resonance into the optical regime.

  1. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  2. TRANSFORM DOMAIN SMART ANTENNAS ALGORITHM FOR MAI SUPPRESSION

    Institute of Scientific and Technical Information of China (English)

    Li Ke; Shi Xinhua; Zhang Eryang

    2004-01-01

    Multiple Access Interference(MAI) is the major factor that degrades the performance of a CDMA system. In this paper, a novel transform domain algorithm combined with parameter estimation for MAI suppression is proposed. Compared with the method that combines an adaptive array antenna with parameter estimation for interference suppression, it converges faster with the same Bit Error Rate(BER) performance.

  3. Omnidirectional Circularly Polarized Antennas – a Small Antenna Perspective

    OpenAIRE

    Narbudowicz, Adam; Ammann, Max

    2015-01-01

    The paper discusses recent developments and challenges in the design of small omnidirectionalcircularly-polarized (CP) antennas. Although omnidirectional CP coverage is easily achievable usingantenna arrays, it is just recently that small and low-cost antennas delivered this functionality.The paper addresses practical design problems for these antennas, not reported in previous publications.This includes selection of the omnidirectional plane relative to the ground plane and measurement chall...

  4. Numerical analysis of patch antenna as antenna array element

    OpenAIRE

    Kizimenko, V.; Bobkov, Y

    2009-01-01

    The patch antennas as antenna array element can be modeling by finite element method (programs Microwave Office, Ansoft HFSS and other). But this method need to use fast computer with memory large size. In this work the authors make an attempt to use thin wire integral equation method for patch antenna analysis. The results of modeling by proposed method are compared with the same of modeling by finite elements method and experimental results.

  5. Microsecond switchable thermal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d' Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

    2014-07-21

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  6. 47 CFR 80.863 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  7. 47 CFR 80.866 - Spare antenna.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  8. Analysis and design of plasma monopole antenna

    OpenAIRE

    Wei, Li; Jinghui, Qiu; Ying, Suo

    2009-01-01

    Two kinds of plasma monopole antennas are simulated and analyzed in this article. For different radius, reflection coefficient, radiation pattern and radiation efficiency of a cylindrical plasma monopole antenna are calculated respectively. According to actual situation, a conical plasma monopole antenna with different cone angle is simulated. Impedance and radiation characteristics of the plasma antenna are similar to the metal monopole antenna.

  9. Helicopter Rotor Antenna

    Science.gov (United States)

    Pogorzelski, Ronald J.; Cable, Vaughn P.

    2001-01-01

    This effort was directed toward demonstration of the efficacy of a concept for mitigation of the rotor blade modulation problem in helicopter communications. An antenna is envisioned with radiating elements mounted on the rotor and rotating with it. The rf signals are coupled to the radio stationary with respect to the airframe via a coupler of unique design. The coupler has an rf cavity within which a mode is established and the field distribution of this mode is sampled by probes rotating with the radiating elements. In this manner the radiated pattern is "despun" with respect to the rotor. Theoretical analysis has indicated that this arrangement will be less susceptible to rotor blade modulation that would be a conventional fixed mounted antenna. A small coupler operating at S-band was designed, fabricated, and mounted on a mockup representative of a helicopter body. A small electric motor was installed to rotate the rotor portion of the coupler along with a set of radiating elements during testing. This test article was be evaluated using the JPL Mesa Antenna Measurement Facility to establish its ability to mitigate rotor blade modulation. It was found that indeed such a coupler will result in a despun pattern and that such a pattern can be effective in mitigation of rotor blade modulation.

  10. Microstrip antenna theory and design

    Science.gov (United States)

    James, J. R.; Hall, P. S.; Wood, C.

    Microstrip is the name given to a type of open waveguiding structure which is now commonly used in present-day electronics, not only as a transmission line but for circuit components such as filters, couplers, and resonators. The idea of using microstrip to construct antennas is a much more recent development. The purpose of this monograph is to present the reader with an appreciation of useful antenna design approaches and the overall state-of-the art situation. Flat-plate antenna techniques and constraints on performance are considered along with microstrip design equations and data, the radiation mechanism of an open-circuit microstrip termination and the resulting design implications, the basic methods of calculation and design of patch antennas, and linear array techniques. Attention is also given to techniques and design limitations in two-dimensional arrays, circular polarization techniques, manufacturing and operational problems of microstrip antennas, recent advances in microstrip antenna analysis, and possible future developments.

  11. Antenna structure with distributed strip

    Science.gov (United States)

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  12. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  13. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  14. Broadband Loaded Cylindrical Monopole Antenna

    OpenAIRE

    Boucher, Solene; Sharaiha, Ala; Potier, Patrick

    2013-01-01

    Ahstract-A broadband printed monopole antenna based on the variation of the conductivity along its length is proposed .. The result indicates that a non-monotonous repartition provides interesting performances in terms of impedance bandwidth but also concerning antenna gain. The achievement of the method is demonstrated through its application, using the carbon fibers to perform this conductivity variation. Monopole antenna presents a large impedance bandwidth of 123% with an interesting gain...

  15. UWB Directive Triangular Patch Antenna

    Directory of Open Access Journals (Sweden)

    A. C. Lepage

    2008-01-01

    Full Text Available Compact directive UWB antennas are presented in this paper. We propose an optimization of the F-probe fed triangular patch antenna. The new design achieves an impedance bandwidth of 69% (3–6.15 GHz and presents good radiation characteristics over the whole impedance bandwidth. The average gain is 6.1 dB. A time-domain study has been performed to characterize the antenna behavior in case a UWB pulse is used. Finally, we propose an alternative solution to facilitate the manufacturing process using metallized foam technology. It also improves the robustness of the antenna as well as reducing its cost.

  16. Antenna arrays a computational approach

    CERN Document Server

    Haupt, Randy L

    2010-01-01

    This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.

  17. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...... and Inmarsat GX services, respectively. The results of this study are three antenna concepts, which demonstrates high performance at both L- and Ka-band. A combined single/dual-reflector antenna is designed, which presents a favourable way of combining feed antennas for the diverse frequencies. This...... antenna enables the use of a conventional horn-fed dual-reflector for Ka-band, while a backfire helical antenna is used to form a single-reflector antenna at L-band. Simulations show excellent performance of the L-band backfire helical reflector antenna, due to the utilization of the entire antenna...

  18. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... results for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  19. Modified antenna for orthogonally polarised fields

    OpenAIRE

    Prudyus, Ivan N.; Zakharia, Y. A.; Storozh, V. G.; Mankovsky, S. V.

    2005-01-01

    A compact wideband antenna for transmission and receiving of orthogonally polarized electromagnetic fields is proposed. Results of electrodynamic antenna structure analysis are considered. Main antenna properties by results of experimental investigation are presented.

  20. Ultrawideband method of feeding a dipole antenna

    OpenAIRE

    Bakhrakh, Lev D.; Los', V. F.; Shamanov, A. N.

    2003-01-01

    An antenna-feeder device is considered, in which a new way of antenna excitation is implemented. An example is presented of its use with a dipole antenna for the radiation of super-short pulse signals.

  1. Antenna system for measuring electromagnetic field parameters

    OpenAIRE

    Ilnitskiy, Ludvig Ya.; Shcherbyna, Olga A.

    2014-01-01

    A functional block diagram of the general-purpose antenna system for measuring electromagnetic wave parameters has been presented. Theoretical relationships forming a basis of the antenna system structure are described, and the antenna operation principle is presented.

  2. Ferrite attenuator modulation improves antenna performance

    Science.gov (United States)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  3. Design aspects of commercial satellite antennas

    Science.gov (United States)

    Lang, K. C.; Taormina, F. A.

    General design considerations for commercial satellite antennas are reviewed, and design factors of shaped beam reflector antennas are described, including shaped beam efficiency, flat-topping and boundary matching, and analysis by Fourier transforms. Attention is then given to the design of the Telesat Anik 17/Westar/Palapa communications antenna, the Comstar I communications antenna, the SBS communications antenna, and Intelsat IV A communications antenna.

  4. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  5. Broadband Corrugated Square-Shaped Monopole Antenna

    OpenAIRE

    S. D. Ahirwar; C. Sairam

    2011-01-01

    Design and development of a corrugated square-shaped monopole antenna is presented with measured results. The operational bandwidth of the antenna is 300 MHz–3000 MHz. The antenna is derived from a square-shaped planar monopole antenna. This basic square-shaped radiating element is corrugated in its lateral dimension. This corrugation reduces the lateral dimension of the antenna by 60%. Electrical performance of this antenna is better than its parent counterpart. This paper presents design an...

  6. UWB and SWB Planar Antenna Technology

    OpenAIRE

    Zhong, Shun-Shi

    2010-01-01

    The recent progress in the development of UWB planar antenna technology has been reviewed. Some types of UWB metal-plate monopole antennas, UWB printed monopole antennas and UWB printed slot antennas are presented. The comparison results of indicate that the UWB printed monopole antennas can realize relatively smaller dimensions, and that the UWB printed slot antennas can achieve relatively higher gain. Finally, some realization manners of the band-notch function of UWB printed monopole anten...

  7. Antennas - Our electronic eyes and ears

    Science.gov (United States)

    Kraus, John D.

    1989-01-01

    Although the number of antenna types is vast, all antenna properties may be characterized in terms of the same basic parameters of radiation pattern, impedance, radar cross-section, and temperature. A comprehensive introduction is presented to antenna configurations; these encompass, among antennas constructed of wire or tubing, such wideband and circularly polarized types as helices, linear conductors, and loops. Sheet-conductor antenna families include reflectors, waveguides, and slotted antennas. Nonconducting dielectric antennas are lenses, polyrods, and slabs. Antenna array types range over 'driven', parasitic, and adaptive configurations. 'Two half-wavelength' and 'four half-wavelength' element arrays are also discussed.

  8. Design of Antennas for RFID Application

    OpenAIRE

    Zhang, Ming-Tao; Jiao, Yong-Chang; Zhang, Fu-Shun; Wang, Wu-Tu

    2009-01-01

    In this chapter, the antenna in RFID system is discussed, and the design of antenna is also described. The main contents include the status of the antenna in the RFID system, the design method for the antenna, the power transmission between the tag chip and the tag antenna, the tag antenna design, the scheme and design for the circular polarization, and the design of antenna for microwave band RFID tag. These researches almost cover all problems of the antenna encountering in the RFID applica...

  9. Patch antenna terahertz photodetectors

    International Nuclear Information System (INIS)

    We report on the implementation of 5 THz quantum well photodetector exploiting a patch antenna cavity array. The benefit of our plasmonic architecture on the detector performance is assessed by comparing it with detectors made using the same quantum well absorbing region, but processed into a standard 45° polished facet mesa. Our results demonstrate a clear improvement in responsivity, polarization insensitivity, and background limited performance. Peak detectivities in excess of 5 × 1012 cmHz1/2/W have been obtained, a value comparable with that of the best cryogenic cooled bolometers

  10. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  11. Terahertz antenna electronic chopper

    Energy Technology Data Exchange (ETDEWEB)

    Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F. [Department of Electronics, Wroclaw University of Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw (Poland)

    2016-01-15

    In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.

  12. Broadband antenna with frequency scanning

    Directory of Open Access Journals (Sweden)

    A. A. Shekaturin

    2014-06-01

    Full Text Available Relevance of this study. The main advantage of frequency scanning is simplicity of implementation. At this point, multifunctional usage of microwave modules is an urgent task, as well as their maximum simpler and cheaper. Antenna design and operation. The study is aimed at providing electric antenna with frequency scanning. It was based on the log-periodic antenna due to its wideband and negotiation capability over the entire operating frequency range. For this distribution line is bent in an arc of a circle in a plane blade while vibrators are arranged along the radius. Computer modeling of antennas with frequency scanning. Modeled with a non-mechanical motion antenna beam emitters representing system for receiving a radio frequency signal on mobile objects calculated for 1.8 GHz ... 4.2 GHz. The simulation was performed in a software environment for numerical modeling of electromagnetic «Feko 5.5». Analysis of the interaction of radiation is based on the method of moments. Findings. The result of this work is to propose a new design of the antenna with a frequency scanning method as agreed in a wide frequency range. In the studied technical solution provided by the rotation of NAM in the frequency range, and the matching of the antenna to the feed line is maintained. Application of this type of antennas on the proposed technical solution in communication systems will improve the communication reliability by maintaining coordination in the frequency range

  13. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  14. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed......-dipoles and helices are considered in order to establish a correspondence with simple antenna structures....

  15. Graphene-antenna sandwich photodetector.

    Science.gov (United States)

    Fang, Zheyu; Liu, Zheng; Wang, Yumin; Ajayan, Pulickel M; Nordlander, Peter; Halas, Naomi J

    2012-07-11

    Nanoscale antennas sandwiched between two graphene monolayers yield a photodetector that efficiently converts visible and near-infrared photons into electrons with an 800% enhancement of the photocurrent relative to the antennaless graphene device. The antenna contributes to the photocurrent in two ways: by the transfer of hot electrons generated in the antenna structure upon plasmon decay, as well as by direct plasmon-enhanced excitation of intrinsic graphene electrons due to the antenna near field. This results in a graphene-based photodetector achieving up to 20% internal quantum efficiency in the visible and near-infrared regions of the spectrum. This device can serve as a model for merging the light-harvesting characteristics of optical frequency antennas with the highly attractive transport properties of graphene in new optoelectronic devices. PMID:22703522

  16. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  17. Antenna Miniaturization in Complex Electromagnetic Environments

    DEFF Research Database (Denmark)

    Zhang, Jiaying

    - less communication system into the heading-aids, and these are the antenna miniaturization, the measurement techniques for electrically small antennas and the influence of complex environments on the characteristics of electrically small antennas, respectively. Antenna MiniaturizationIn this...... dissertation, we present several novel designs of electrically small loop antennas for the hearing-aid application. First antenna design is a two-dimensional (2-D) planar differential-fed electrically small loop. The working mechanism of this antenna is based on the capacitive loading and the induc- tive...... coupling between two small loops. An analytical model, simulations, fabrications and measurements are presented for this antenna. Second antenna design is a planar two-turn electrically small loop antenna. The work- ing mechanism of this antenna is based on the capacitive loading, and both the capacitive...

  18. Transcatheter Microwave Antenna

    Science.gov (United States)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  19. Impedance matching and emission properties of optical antennas in a nanophotonic circuit

    CERN Document Server

    Huang, Jer-Shing; Biagioni, Paolo; Hecht, Bert

    2008-01-01

    An experimentally realizable prototype nanophotonic circuit consisting of a receiving and an emitting nano antenna connected by a two-wire optical transmission line is studied using finite-difference time- and frequency-domain simulations. To optimize the coupling between nanophotonic circuit elements we apply impedance matching concepts in analogy to radio frequency technology. We show that the degree of impedance matching, and in particular the impedance of the transmitting nano antenna, can be inferred from the experimentally accessible standing wave pattern on the transmission line. We demonstrate the possibility of matching the nano antenna impedance to the transmission line characteristic impedance by variations of the antenna length and width realizable by modern microfabrication techniques. The radiation efficiency of the transmitting antenna also depends on its geometry but is independent of the degree of impedance matching. Our systems approach to nanophotonics provides the basis for realizing gener...

  20. BER Performance Evaluation of two Types of Antenna Array-Based Receivers in a Multipath Channel

    Directory of Open Access Journals (Sweden)

    Rim Haddad

    2010-11-01

    Full Text Available Smart antennasystems have received much attention in the last few years because they can increasesystem capacity by dynamically tuning out interference while focusing on the intended user.In this paper, we focused our research on the performance of two kinds of smart antenna receivers. Ananalytical model is proposed for evaluating the BER performance using a closed-form expression. Also,for the adaptive array, a simple way to account the multi-access interference can be exploited to evaluatethe average probability of error when the users are randomly distributed within an angular sector.The proposed model confirms the benefits of adaptive antennas in reducing the overall interference level(intercell/intracell and to find an accurate approximation of the error probability.In the two kinds of receivers, we assessed the impact of smart antenna systems and we considered thecase of conventional single antenna receiver model as reference (single user/single antenna.

  1. An isoflux antenna for a low earth orbit satellite mobile communication system

    Science.gov (United States)

    Tsao, C.-H. A.; Jung, P.; Raguenet, G.

    1992-03-01

    In this paper a satellite antenna for a low earth orbit satellite mobile communication system is described. The proposed communication system employs TDD-FD-CDMA (time division duplexing-frequency division-code division multiple access) technique which imposes certain constraints on the antenna design. The antenna discussed in this paper employs six spot beams in conjunction with the CDMA technology to allow the frequency spectrum reuse. The antenna radiation pattern in each beam is shaped to compensate for the path loss differences caused by the slant range differences from the spacecraft to different points on earth. This design provides an isometric radiation flux density on earth within each beam to mitigate the potential near/far problems in a CDMA system. Additional constraints on the antenna design include low profile, light weight and easy deployment to meet the requirements of small satellite implementation of the system.

  2. POWER CONTROL AND ANTENNA GAIN OPTIMIZATION DURING WIMAX HANDOVER

    Directory of Open Access Journals (Sweden)

    P.P. Edwin Winston

    2012-04-01

    Full Text Available Wireless systems have recently been becoming faster and more intelligent. However the high speed access and intelligence make the power consumption of wireless systems high. In the WiMAX system, the MS transmission power is controlled in order to avoid exceeding the BS’s total receiving power from an antenna. Conventional wireless network design has long used base site sectorization and single, omni-directional antennas at the enduser device to serve the communications link, with advanced multi-antenna implementations operators have a new suite of tools to develop the robust wireless networks of the future. Revolutionary multiple antenna techniques at the base station and end-user device, paired with sophisticated signal processing and power consumption control, can dramatically improve the communications link for the most demanding applicationscenarios including heavily obstructed propagation environments and high speed mobility service. This paper presents results of an experimental study, simulation based, directed to determine the optimum transmission power and Antenna gain which influence on the overall handover performance in mobility scenarios, related toWiMAX communications. Based on them, optimal parameter sets can be provided by the network operator to mobile station, to guide its adaptation of the major WiMAX parameters to its speed and network topology and to help the handover decision.

  3. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  4. 47 CFR 73.753 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  5. 47 CFR 95.51 - Antenna height.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  6. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna....

  7. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  8. Metal Patch Antenna

    Science.gov (United States)

    Chamberlain, Neil F. (Inventor); Hodges, Richard E. (Inventor); Zawadzki, Mark S. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  9. Antenna sunshield membrane

    Science.gov (United States)

    Bogorad, Alexander (Inventor); Bowman, Jr., Charles K. (Inventor); Meder, Martin G. (Inventor); Dottore, Frank A. (Inventor)

    1994-01-01

    An RF-transparent sunshield membrane covers an antenna reflector such as a parabolic dish. The blanket includes a single dielectric sheet of polyimide film 1/2-mil thick. The surface of the film facing away from the reflector is coated with a transparent electrically conductive coating such as vapor-deposited indium-tin oxide. The surface of the film facing the reflector is reinforced by an adhesively attached polyester or glass mesh, which in turn is coated with a white paint. In a particular embodiment of the invention, polyurethane paint is used. In another embodiment of the invention, a layer of paint primer is applied to the mesh under a silicone paint, and the silicone paint is cured after application for several days at room temperature to enhance adhesion to the primer.

  10. DUAL BAND MONOPOLE ANTENNA DESIGN

    Directory of Open Access Journals (Sweden)

    P. Jithu

    2013-06-01

    Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.

  11. Measurement of mobile antenna systems

    CERN Document Server

    Arai, Hiroyuki

    2012-01-01

    If you're involved with the design, installation or maintenance of mobile antenna systems, this thoroughly revised and updated edition of a classic Artech book offers you the most current and comprehensive coverage of all the mandatory measurement techniques you need for your work in the field. This Second Edition presents critical new material in key areas, including radiation efficiency measurement, mobile phone usage position, and MIMO (multiple-input/multiple-output) antennas.This unique resource provides in-depth examinations of all relevant mobile antenna measurement theories, along with

  12. Microstrip and printed antenna design

    CERN Document Server

    Bancroft, Randy

    2009-01-01

    The approach in this book is historical and practical. It covers abasic designsa in more detail than other microstrip antenna books that tend to skip important electrical properties and implementation aspects of these types of antennas. Examples include: quarter-wave patch, quarter by quarter patch, detailed design method for rectangular circularly polarized patch, the use of the TM11 (linear and broadside CP), TM21 (monopole CP pattern) and TM02 (monopole linear) circular patch modes in designs, dual-band antenna designs which allow for independent dual-band frequencies. Limits on broadband m

  13. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  14. Semi hemi antenna. [balloon parachuted microwave antenna for stratospheric testing

    Science.gov (United States)

    Repucci, T. A.; Ferris, J. E.

    1978-01-01

    The University of Michigan minipod, which is released from a balloon and floats down on a parachute, is designed for stratospheric testing. The present paper briefly describes the evolution of antenna designs for the minipod 1.5 GHz transceiver, which communicates with and relays information to an aircraft and ground station. The following stages are noted: ordinary monopole, crossed dipole, capacitative antenna, fat monopole, the addition of parasitic elements, and a thinner monopole with taper.

  15. Design and Implementation of Series Micro Strip Patch Antenna Array for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Priya Upadhyay

    2012-09-01

    Full Text Available Micro Strip Antenna Array has beenproposed with high efficiency for wirelesscommunication. Micro strip antenna arrays arewidely used in various applications like in wirelesscommunication system, satellite communication,Radar systems, Global positioning systems, RadioFrequency Identification (RFID, Worldwideinteroperability for microwave access (WiMax,Rectenna applications, Telemedicine applications,Medicinal applications of patch. In this articleseries micro strip square patch antenna array isdesigned due to its wide band and wide scanproperties which can give more information at highdata rate. The proposed antenna consist of astraight feeding micro strip line and squareradiating elements connected directly to the microstrip line at their corners without dividers andimpedance transformers in order to realize lowerfeeding line loss. In this paper, the model of microstrip series antenna array is designed and analyzedusing the HFSS Software. The parametric study ofthe antenna characteristics has been done to knowhow the micro strip series antenna array meets thewireless properties for geometric parameters. Thispaper micro strip series antenna array will bedesigned at 2.4 GHz (S- band frequency

  16. Design of Combined Antenna with Multiple Polarizations

    OpenAIRE

    Zineb Berkat; Noureddine Boukli Hacene; Abdellatif Berkat

    2012-01-01

    In this paper, we present a design of new combined antenna, mixing both linear and circular polarizations, new antenna have to be able to cover several frequency bandwidths, including various radiation properties. From the different researches of antenna with various geometries, and regarding the complexity to combine in a single radiating element several types of polarizations. It is extremely important that the development of antenna used in Wireless Systems. The proposed antenna is simulat...

  17. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  18. Bacteria Foraging Algorithm in Antenna Design

    OpenAIRE

    Biswa Binayak Mangaraj; Manas Ranjan Jena; Saumendra Kumar Mohanty

    2016-01-01

    A simple design procedure to realize an optimum antenna using bacteria foraging algorithm (BFA) is proposed in this paper. The first antenna considered is imaginary. This antenna is optimized using the BFA along with a suitable fitness function formulated by considering some performance parameters and their best values. To justify the optimum design approach, one 12-element Yagi-Uda antenna is considered for an experiment. The optimized result of this antenna obtained using the optimization a...

  19. Electrically-driven optical antennas

    CERN Document Server

    Kern, Johannes; Prangsma, Jord C; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-01-01

    Unlike radiowave antennas, optical nanoantennas so far cannot be fed by electrical generators. Instead, they are driven by light or via optically active materials in their proximity. Here, we demonstrate direct electrical driving of an optical nanoantenna featuring an atomic-scale feed gap. Upon applying a voltage, quantum tunneling of electrons across the feed gap creates broadband quantum shot noise. Its optical frequency components are efficiently converted into photons by the antenna. We demonstrate that the properties of the emitted photons are fully controlled by the antenna architecture, and that the antenna improves the quantum efficiency by up to two orders of magnitude with respect to a non-resonant reference system. Our work represents a new paradigm for interfacing electrons and photons at the nanometer scale, e.g. for on-chip wireless data communication, electrically driven single- and multiphoton sources, as well as for background-free linear and nonlinear spectroscopy and sensing with nanometer...

  20. Circularly-Polarized Microstrip Antenna

    Science.gov (United States)

    Stanton, P. H.

    1985-01-01

    Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.

  1. Dual-frequency microwave antenna

    Science.gov (United States)

    Bathker, D. A.; Brunstein, S. A.; Ludwig, A. C.; Potter, P. D.

    1980-01-01

    Single antenna using two feed horns (one for receiving and radiation X-band signals, and one for S-band signals), in conjunction with ellipsoid reflector and dichronic plate, can accommodate two different frequencies simultaneously.

  2. Dipoles, unintentional antennas and EMC

    Directory of Open Access Journals (Sweden)

    Berend Danker

    2008-01-01

    Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.

  3. Substrate Integrated Waveguide Antenna Applications

    OpenAIRE

    Wu, Liang

    2015-01-01

    The research objective of this thesis is to provide a better solution for signal interference and reduce the size of waveguide antenna. The background investigations of different waveguide fabrication technologies and switch control methods are detailed in the introductory part of this thesis. Several novel substrate integrated waveguide (SIW) antennas for different purpose are demonstrated in the body of the thesis. The designs are mainly divided into two kinds. The first focuses on the ...

  4. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  5. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  6. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K.; Taniguchi, T.; Kubota, K. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  7. Multiple band circularly polarized microstrip antenna

    Science.gov (United States)

    Yu, I. P. (Inventor)

    1980-01-01

    A multiple antenna assembly for communicating electromagnetic radiation is disclosed. An antenna element stack is constructed of a plurality of elliptical lamina antenna elements mutally separated by layers of dielectric material, and separated from a ground plane by dielectric material. The antenna assembly is coupled through a feed line in contact with the top antenna element. A conductor joins the remaining antenna elements to the ground plane. Each individual antenna element is operable for communication reception and transmission within a frequency band determined by the size of the particular antenna element. The sizes of the antenna elements may be selected to provide electromagnetic radiation communication over several distinct frequency bands, or to connect the individual bands into a broad band.

  8. E-Textile Antennas for Space Environments

    Science.gov (United States)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  9. Design and synthesis of flexible switching 1 × 2 antenna array on Kapton substrate

    Science.gov (United States)

    Georges Rabobason, Yvon; Rigas, Grigorios; Swaisaenyakorn, Srijittar; Mirkhaydarov, Bobur; Ravelo, Blaise; Shkunov, Maxim; Young, Paul; Benjelloun, Nabil

    2016-06-01

    Flexible front- and back-end RF/analogue system antennas were recently emerged. However, little flexible antenna system design is available so far, in planar hybrid technology with surface mounted components. This paper describes the design feasibility of flexible switching 1 × 2 antenna array system. It acts as a switching antenna implemented in hexapole configuration. The system is comprised of a key element RF switch terminated by two identical patch antennas associated to half-wave elementary transmission lines (TLs). A detailed theory illustrating the global S-parameter model determination in function of the given RF-switch return and insertion losses is established. In difference to the conventional microwave circuit theory, the proposed equivalent S-parameter model is originally built with the non-standard optimized antenna load. Thus, the synthesis method of the terminal antenna input impedance and the output access line characteristic impedance is formulated in function of the specified return and optimal transmission losses. The design method and theoretical approach feasibility is verified with the demonstrator of flexible switching 1 × 2 antenna array printed on Kapton substrate. The circuit prototype is implemented in hybrid planar technology integrating patch antenna operating at about 6 GHz and a packaged GaAs RF switch associated to the RF/DC signal decoupling accessory mounted surface components. Simulations of the designed circuit transmission and isolation losses from 5.5 GHz to 7 GHz were carried out by using the commercial RF switch S-parameter touchstone model provided by the manufacturer. The simulated and measured return losses are compared and discussed. Then, the measured radiation patterns confirm the proposed switched antenna concept feasibility.

  10. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their...

  11. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  12. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  13. Systems analysis for DSN microwave antenna holography

    Science.gov (United States)

    Rochblatt, D. J.

    1989-01-01

    Proposed systems for Deep Space Network (DSN) microwave antenna holography are analyzed. Microwave holography, as applied to antennas, is a technique which utilizes the Fourier Transform relation between the complex far-field radiation pattern of an antenna and the complex aperture field distribution to provide a methodology for the analysis and evaluation of antenna performance. Resulting aperture phase and amplitude distribution data are used to precisely characterize various crucial performance parameters, including panel alignment, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation. Microwave holographic analysis provides diagnostic capacity as well as being a powerful tool for evaluating antenna design specifications and their corresponding theoretical models.

  14. Single Band Helical Antenna in Axial Mode

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2012-11-01

    Full Text Available Helical antennas have been widely used in a various useful applications, due to their low weight and low profile conformability, easy and cheap realization.Radiation properties of this antenna are examined both theoretically and experimentally. In this paper, an attempt has been made to investigate new helical antenna structure for Applications. CST MWS Software is used for the simulation and design calculations of the helical antennas. The axial ratio, return loss, VSWR, Directivity, gain, radiation pattern is evaluated. Using CST MWS simulation software proposed antenna is designed/simulated and optimized. The antenna exhibits a single band from 0 GHz to 3 GHz for GPS and several satellite applications

  15. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  16. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  17. Wide band Slotted Microstrip Antenna for Wireless communications

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    2013-01-01

    Full Text Available The proposed antenna design approach is based on a single-layer, rectangular patch (Length=80mm and Width=60mm with inverted U-slot, horizontal and vertical edge slots on the patch with coaxial probe feed. The proposed antenna is modeled using IE3D electromagnetic (EM simulation packages namely IE3D from Zeland. The proposed antenna shows the return loss below -10dB in the frequency range from 3.5GHz to 8.3GHz.The maximum directive gain is 4.8 dBi at 6.0GHz and minimum VSWR isfound1.6 at 4.0 GHz. The antenna design is suitable for wireless local area network (WLAN operation in the 5.2/5.5/5.8 GHz band. However, to further support the worldwide interoperability for microwave access (WiMAX applications and sufficiently large bandwidth to cover the 5.8 GHz WiMAX bands.

  18. History of Antenna Technology for Mobile Communications in Korea

    Science.gov (United States)

    Min, Kyeong-Sik; Park, Chul-Keun; Kang, Suk-Youb

    In this paper, we discuss the development of wireless and mobile communications in Korea, current technological trends, and the future outlook on technological developments. Since the introduction of the telegraph and the telephone in September 1885, Korea's wired and wireless communications industry has consistently developed for over 100 years. Since 1984, upon the provision of the mobile telecommunications service, the industry has seen drastic qualitative and quantitative growth in terms of both technical and economic aspects, which played a crucial role in the rapid growth of the digital industry in Korea. After the era of the analog cellular service based on the Advanced Mobile Phone System (AMPS), a precursor to the modern mobile service, Korea became the world's first country to commercialize Code Division Multiple Access (CDMA) in 1996 and succeeded in commercializing CDMA 2000 lx (IMT 2000) in 2001. With further developments in the mobile communication technology, the technology for antennas also saw drastic advancements. As the mobile antennas moved from the second to the third generation, they grew from external models to very small internal models. At the same time, they evolved into highly functional and high performance multiple band and wide band antennas. Furthermore, Korea was the first country to commercialize and offer the Wireless Broadband Internet (WiBro) service in 2006. By leading the wireless communications standardization and exerting remarkable efforts in research and development, Korea is consolidating its status as an Information Technology (IT) leader in the global market. The antenna's inherent importance will be further emphasized in the near future as it satisfies the performance and structural needs of portable terminals necessary for realizing the projected establishment of the ubiquitous world. It is thought that antenna technologies will not be limited to simple concepts as previously experienced but will utilize various kinds

  19. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  20. Wrap-rib antenna concept development overview

    Science.gov (United States)

    Woods, A. A., Jr.; Garcia, N. F.

    1983-01-01

    The wrap rib antenna design of a parabolic reflector large space antenna is discussed. Cost estimates, design/mission compatibility, deployment sequence, ground based tests, and fabrication are discussed.

  1. High-temperature superconductor antenna investigations

    International Nuclear Information System (INIS)

    In this paper the use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas

  2. Microwave Antenna With Reduced Noise Leakage

    Science.gov (United States)

    Cha, A. G.

    1986-01-01

    Gain or gain-to-temperature ratio of dual-shaped subreflector receiving antenna increased when illumination is tapered near aperture edge. Taper imposed in antenna feed reduces spillover in transmitting mode and reduces noise pickup in receiving mode.

  3. Integrated resonant tunneling diode based antenna

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, Vincent M. (Placitas, NM); Tiggers, Chris P. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM)

    2000-01-01

    An antenna comprising a plurality of negative resistance devices and a method for making same comprising employing a removable standoff layer to form the gap between the microstrip antenna metal and the bottom contact layer.

  4. VLBI Antenna Calibration via GPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate and develop an inexpensive system to determine: 1)VLBI antenna properties such as axis-offset, non-intersection of axis and antenna...

  5. Antenna coupled photonic wire lasers.

    Science.gov (United States)

    Kao, Tsung-Yu; Cai, Xiaowei; Lee, Alan W M; Reno, John L; Hu, Qing

    2015-06-29

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements. PMID:26191717

  6. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  7. Review of Microstrip Patch Antenna for WLAN and WiMAX Application

    Directory of Open Access Journals (Sweden)

    Neha Parmar ,

    2014-01-01

    Full Text Available In this rapid changing world in wireless communication, dual or multiband antenna has been playing a key role for wireless service requirements. Wireless local area network (WLAN and Worldwide Interoperability for Microwave Access (WiMAX have been widely applied in mobile devices such as handheld computers and smart phones. These two techniques have been widely considered as a cost-effective, flexible, reliable and high-speed data connectivity solution, enabling user mobility. This paper presents a literature survey of dual band rectangular patch antenna for WLAN and WiMAX application with variety of substrate, feed techniques and slots. In this paper we also discuss the basics of microstrip antenna, various feeding techniques, design model and antenna paramerters with their advantage and disadvantages.

  8. Logarithmic Slots Antennas Using Substrate Integrated Waveguide

    OpenAIRE

    Jahnavi Kachhia; Amit Patel,; Alpesh Vala; Romil Patel; Keyur Mahant

    2015-01-01

    This paper represents new generation of slotted antennas for satellite application where the loss can be compensated in terms of power or gain of antenna. First option is very crucial because it totally depends on size of satellite so we have proposed the high gain antenna creating number of rectangular, trapezoidal, and I shape slots in logarithm size in Substrate Integrated Waveguide (SIW) structure. The structure consists of an array of various shape slots antenna designed to operate in C ...

  9. Ultra-wideband RF helmet antenna

    OpenAIRE

    Lebaric, Jovan; Tan, Ah-Tuan

    2000-01-01

    This paper addresses the development of an ultra-wideband, vertically polarized communications antenna integrated into the camouflage cover of a standard military-issue Kevlar helmet. The Helmet Camouflage Cover Antenna (referred to as the “helmet antenna’y is one of three antennas based on the antenna COMbat Wear INtegration (COMWIN) concept developed at the Naval Postgraduate School (NPS) for the man -portable implementation of the new Joint Tactical Radio System (JTRS). The results of c...

  10. Computer Simulation of a Plasma Vibrator Antenna

    OpenAIRE

    Nikolay N. Bogachev; Irina L. Bogdankevich; Namik G. Gusein-zade; Vladimir P. Tarakanov

    2013-01-01

    The use of new plasma technologies in antenna technology is widely discussed nowadays. The plasma antenna must receive and transmit signals in the frequency range of a transceiver. Many experiments have been carried out with plasma antennas to transmit and receive signals. Due to lack of experimental data and because experiments are difficult to carry out, there is a need for computer (numerical) modeling to calculate the parameters and characteristics of antennas, and to verify the parameter...

  11. Circularly polarized open-loop antenna

    OpenAIRE

    Li, Rong-Lin; Fusco, Vincent F.; Nakano, Hisamatsu

    2003-01-01

    A printed circular open-loop antenna is introduced as a simple structure for producing circular polarization; the antenna is fed with a coaxial probe. By introducing a gap within the circular loop a traveling-wave current is excited and thus circularly polarized radiation can be achieved. An optimized circularly polarized antenna is designed through numerical analysis using a so-called parametric method of moment technique. Experimental verification of the new antenna is presented. The antenn...

  12. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    OpenAIRE

    V. Jebaraj; K.R.S. Ravi Kumar; D. Mohanageetha

    2014-01-01

    Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation techni...

  13. Rectangular dielectric resonator antennas theory and design

    CERN Document Server

    Yaduvanshi, Rajveer S

    2016-01-01

    This book covers resonating modes inside device and gives insights into antenna design, impedance and radiation patterns. It discusses how higher-order modes generation and control impact bandwidth and antenna gain. The text covers new approaches in antenna design by investigation hybrid modes, H_Z and E_Z fields available simultaneously, and analysis and modelling on modes with practical applications in antenna design. The book will be prove useful to students, researchers and professionals alike.

  14. Phase shift measurements for antenna systems

    OpenAIRE

    Ogorodnijchuk, L. D.

    1999-01-01

    The necessity to create the high accurate antenna systems for radio systems and complexes [1] requires to provide this sphere of science and engineering with a high accurate phase-metering equipment. It's used to measure phase characteristics of units and blocks of antenna feeding systems, feeds, and antenna in the full sense [1-3], and to receive signals (phase radio direction finders, monopulse radars), and to control the operation (phase antenna arrays) as well. Also it's used for periodic...

  15. Knowledge-based antenna pattern extrapolation

    OpenAIRE

    Robinson, Michael

    2012-01-01

    We describe a theoretically-motivated algorithm for extrapolation of antenna radiation patterns from a small number of measurements. This algorithm exploits constraints on the antenna's underlying design to avoid ambiguities, but is sufficiently general to address many different antenna types. A theoretical basis for the robustness of this algorithm is developed, and its performance is verified in simulation using a number of popular antenna designs.

  16. Reconfigurable Monopole Antennas With Circular Polarization

    OpenAIRE

    Panahi, Afshin

    2015-01-01

    This thesis presents research on printed circularly-polarized monopole antennas and their application in reconfigurable monopole antennas. The proposed circularly-polarised monopole antennas benefit from advantages such as small size, low-cost, low-profile and simple designs. The first part of this thesis introduces three printed circularly-polarized monopole antennas for global navigation satellite systems and Wi-Fi applications. The primary focus is on the ground plane which is used as a ra...

  17. Research of Klopfenstein taper UWB monopole antenna

    OpenAIRE

    Wang, Nan-Nan; Qiu, Jinghui; Zhang, Zhi-Feng; Zong, Hua; Ling-Ling, Zhong; Wei-Bo, Deng

    2011-01-01

    The tapered line theory in circuit can be applied to the design of the special-shaped monopole antenna in order to obtain better electrical characteristics. So a novel Klopfenstein taper monopole antenna is proposed. The impedance matching characteristic of the Klopfenstein tapered line is the best, and the Klopfenstein taper monopole antenna is designed based on it. On this basis, the coplanar waveguide-fed planar Klopfenstein taper monopole antennas are designed. The simulation and measurem...

  18. A novel coaxial CTS antenna design

    OpenAIRE

    Qiu, Jinghui; Xing, Xiaohang; Ling-Ling, Zhong

    2007-01-01

    CTS (Continuous Transverse Stub) antenna radiates electromagnetic wave with its transverse stubs on transmission line, and its pattern in horizon plane is omnidirectional. This paper proposes a novel coaxial CTS structure, in which a monopole is applied in coaxial CTS antenna, instead of a matching load. This method may not only improve the radiation ratio, but also reduce the height of antenna. There are two stubs and a monopole composing an antenna, and the dielectric in stubs is air, which...

  19. Nested-cone transformer antenna

    Science.gov (United States)

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  20. Broadband antenna arrays using planar horns

    OpenAIRE

    Braude, V. B.; Sukhovetskaya, S. B.

    1997-01-01

    Broadband antennas are vitally important for various applications ranging from TV broadcasting to carrier-free ground-probing radars. We propose a microwave broadband antenna array (BAA), which may be realised using microstrip planar horns — flared end-fire radiating slot lines, known as Vivaldi-type antennas.

  1. Compact Dual-Mode Microwave Antenna

    Science.gov (United States)

    Carr, K. L.

    1982-01-01

    Compact dual-mode antenna, 3.66 cm wide by 1.83 cm thick is used both for heating and thermographic detection of tumors in cancer research. Temperature sensor operates independently or simultaneously with heater. Antenna includes 1.6-GHz transmitter and 4.76-GHz receiver. Strip heater between antennas controls temperature of device. Maximum power output is 25 W.

  2. Isolation between three antennas at 700 MHz

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Pedersen, Gert F.

    2015-01-01

    To address the antenna design challenges posed by many frequency bands, introduced with long-term evolution deployment, this study proposes the use of separate transmit (Tx) and receive (Rx) narrow-band antennas. In addition, a diversity Rx (Dx) antenna is needed for multiple-input multiple-output...

  3. 47 CFR 80.967 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  4. Antenna Construction and Propagation of Radio Waves.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  5. 47 CFR 80.923 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  6. 47 CFR 78.105 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... directional antennas that meet the performance standards indicated in the following table. (i) Stations...

  7. Wide-band dipole-slot antenna

    OpenAIRE

    Tsaliev, T. A.

    2014-01-01

    Properties of the antenna in the form of parallel slots array cut in the flat well-conducting screen excited by symmetrical half-wave dipole are considered. On the basis of computer modeling frequency dependences of antenna input impedance, directivity and the VSWR are designed and analyzed. Results of researches evidently display advantages of such antenna.

  8. 47 CFR 74.641 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards apply: (1) Fixed TV broadcast auxiliary stations shall use directional antennas that meet...

  9. 47 CFR 80.1017 - Antenna system.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  10. Near Field On Chip RFID Antenna Design

    OpenAIRE

    Vargas, Alberto; Vojtech, Lukas

    2010-01-01

    The process of fabricating the antenna on the top of the RFID chip eliminates the need for a separated and costly expensive process for antenna printing and assemblage, compulsory for a separated "off-chip" antenna which is much more times larger than the chip itself. This

  11. 47 CFR 74.737 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  12. 47 CFR 73.69 - Antenna monitors.

    Science.gov (United States)

    2010-10-01

    ... citations affecting § 73.69 see the List of CFR Sections Affected, which appears in the Finding Aids section... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have...

  13. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  14. Future Vogues in Handset Antenna Systems

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Pedersen, Gert Frølund

    2011-01-01

    This paper exemplifies future trends in handset antenna systems, contextualizing their historical evolution and anticipating novel paradigms. It is shown through numerical simulations how narrow-band antennas used in transceiver separation mode can reduce the total loss in presence of the user......’s hand, improving at the same time the antenna isolation....

  15. Monopole Antenna with Modify Ground Plane

    OpenAIRE

    kamal raj singh rajoriya; Singhal, P.K.

    2012-01-01

    This paper presents on modified the ground plane of monopole antenna with varying the shape and length. Basically the length of ground plane of monopole antenna is equal and greater than λ/4. Here analyzed a different ground plane of monopole antenna that is provided an efficient bandwidth with sufficient return loss.

  16. Monopole Antenna with Modify Ground Plane

    Directory of Open Access Journals (Sweden)

    kamal raj singh rajoriya

    2012-06-01

    Full Text Available This paper presents on modified the ground plane of monopole antenna with varying the shape and length. Basically the length of ground plane of monopole antenna is equal and greater than λ/4. Here analyzed a different ground plane of monopole antenna that is provided an efficient bandwidth with sufficient return loss.

  17. Orthogonal antenna architecture for MIMO handsets

    DEFF Research Database (Denmark)

    Tatomirescu, Alexandru; Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The paper presents a method for decorrelating the antenna elements of a MIMO system in a compact handheld terminal at low bands. The architecture of the antenna system induces orthogonal currents over the closely spaced antennas resulting in a correlation free system. Nevertheless, due to the small...

  18. Bandwidth provisioning in infrastructure-based wireless networks employing directional antennas

    Energy Technology Data Exchange (ETDEWEB)

    Hasiviswanthan, Shiva [Los Alamos National Laboratory; Zhao, Bo [PENN STATE UNIV.; Vasudevan, Sudarshan [UNIV OF MASS AMHERST; Yrgaonkar, Bhuvan [PENN STATE UNIV.

    2009-01-01

    Motivated by the widespread proliferation of wireless networks employing directional antennas, we study the problem of provisioning bandwidth in such networks. Given a set of subscribers and one or more access points possessing directional antennas, we formalize the problem of orienting these antennas in two fundamental settings: (1) subscriber-centric, where the objective is to fairly allocate bandwidth among the subscribers and (2) provider-centric, where the objective is to maximize the revenue generated by satisfying the bandwidth requirements of subscribers. For both the problems, we first design algorithms for a network with only one access point working under the assumption that the number of antennas does not exceed the number of noninterfering channels. Using the well-regarded lexicographic max-min fair allocation as the objective for a subscriber-centric network, we present an optimum dynamic programming algorithm. For a provider-centric network, the allocation problem turns out to be NP-hard. We present a greedy heuristic based algorithm that guarantees almost half of the optimum revenue. We later enhance both these algorithms to operate in more general networks with multiple access points and no restrictions on the relative numbers of antennas and channels. A simulation-based evaluation using OPNET demonstrates the efficacy of our approaches and provides us further in insights into these problems.

  19. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field. The...... reconstruction of the extreme near field on the basis of near- or far-field measurements is thus an essential step in antenna diagnostics....

  20. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power...

  1. Tunable Antennas for Mobile Devices

    DEFF Research Database (Denmark)

    Morris, Art; Barrio, Samantha Caporal Del; Shin, J;

    2014-01-01

    Modern mobile terminal design has been driven by the user interface and broadband connectivity. Real world RF performance has substantially fallen recently which impacts data rates, battery life and often causes lost connections. This has been caused by changing antenna location and reduced anten...

  2. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2001-01-01

    This book gives an introduction to the possibilities of radar technology based on active array antennas, giving examples of modern practical systems. There are many valuable lessons presented for designers of future high standard multifunction radar systems for military and civil applications. The book will appeal to graduate level engineers, researchers, and managers in the field of radar, aviation and space technology.

  3. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  4. Photogrammetry Of A Parabolic Antenna

    Science.gov (United States)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  5. Installing the antenna for STELLA

    CERN Multimedia

    1979-01-01

    The 3 metre diameter antenna for the STELLA satellite communication project is lowered into position on the roof of the Computer Building (see Weekly Bulletin 48/79 and CERN Courier 19 (1979) 444). STELLA stands for Satellite Transmission Experiment Linking Laboratories.

  6. Antenna radome sample test report

    Science.gov (United States)

    Baker, Leonard H.; Bratton, Thomas D.

    1991-01-01

    The antenna radome sample test conducted at the Federal Aviation Administration (FAA) Technical Center by the Secondary Surveillance Systems Branch, ACN-220 is documented. The test configuration consisted of the antenna radome sample centered between the Discrete Address Beacon System's (DABS) antenna and its remote Calibration Performance Monitor Equipment (CPME). The Range and Azimuth Accuracy (RAA) diagnostic program was used to determine changes in DABS performance. There were two test objectives. The first test objective was to determine if existing FAA en route radar antenna radomes would distort the signal characteristics detected by a beacon monopulse processor system. The second test objective was to determine whether this test configuration could be used to test radome samples supplied by prospective contractors in the en route radome replacement program. The RAA diagnostic program could not determine if the radome sample depicted changes in the DABS performance. It is recommended that this test procedure be abandoned due to inconclusive test results. The prospective radome manufacturers should provide the FAA with sufficient test data to confirm that it meets the requirements of the radome procurement specification.

  7. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  8. Measurement of Antenna Bore-Sight Gain

    Science.gov (United States)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  9. Antenna Design for Diversity and MIMO Application

    DEFF Research Database (Denmark)

    Ying, Zhinong; Chiu, Chi-Yuk; Zhao, Kun;

    2015-01-01

    efficiencies of MIMO elements would be degraded severely due to mutual couplings. In addition, the human body causes high losses on electromagnetic waves. In real applications, the presence of users may result in significant reduction of total antenna efficiencies, and the correlations of MIMO antenna systems...... are also highly affected. In this chapter, the performance of some basic MIMO antennas as well as recent technologies toimprove MIMO antenna performance of portable devices and mobile terminals are reviewed. The interactions between MIMO antennas and human body are also addressed particularly in...

  10. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard;

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability of the...... antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas with a...

  11. Code division multiple access signaling for modulated reflector technology

    Science.gov (United States)

    Briles, Scott D.

    2012-05-01

    A method and apparatus for utilizing code division multiple access in modulated reflectance transmissions comprises the steps of generating a phase-modulated reflectance data bit stream; modifying the modulated reflectance data bit stream; providing the modified modulated reflectance data bit stream to a switch that connects an antenna to an infinite impedance in the event a "+1" is to be sent, or connects the antenna to ground in the event a "0" or a "-1" is to be sent.

  12. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  13. Computer Simulation of a Plasma Vibrator Antenna

    Directory of Open Access Journals (Sweden)

    Nikolay N. Bogachev

    2013-01-01

    Full Text Available The use of new plasma technologies in antenna technology is widely discussed nowadays. The plasma antenna must receive and transmit signals in the frequency range of a transceiver. Many experiments have been carried out with plasma antennas to transmit and receive signals. Due to lack of experimental data and because experiments are difficult to carry out, there is a need for computer (numerical modeling to calculate the parameters and characteristics of antennas, and to verify the parameters for future studies. Our study has modeled plasma vibrator (dipole antennas (PDA and metal vibrator (dipole antennas (MDA, and has calculated the characteristics of PDAs and MDAs in the full KARAT electro-code. The correctness of the modeling has been tested by calculating a metal antenna using the MMANA program.

  14. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  15. New Diamond Antenna for Ultra Wideband Applications

    Directory of Open Access Journals (Sweden)

    Ziani Kerarti Djalal

    2012-07-01

    Full Text Available There has been a flourishing prospect of UWB technology in recent years in both communication and other purposes like microwave imaging and radar applications. Recent studies of UWB antenna structures are specially concentrated on microstrip , slot and planar monopole antennas . In this work, a small monopole antenna with diamond shape of the patch (30 x 26 mm printed microstrip fed monopole antenna has been designed, some parameters like return loss (S11, Voltage Standing Wave Ratio (VSWR, radiation pattern has been performed to test the validity of simulation and verify eligibility of the antenna for the wireless communications purpose. The proposed antenna is simulated in CST Microwave Studio and has surpassed the bandwidth of UWB requirement, which is from 3.1 GHz to 10.6 GHz, and exhibits good UWB characteristics. The 10 dB return loss bandwidth of this antenna element is from 3.39 GHz to more than 14 GHz.

  16. Integrated broadband bowtie antenna on transparent substrate

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T

    2015-01-01

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.

  17. Design and Analysis of a Multiband Koch Fractal Monopole Antenna

    OpenAIRE

    Adam, Ismahayati; Soh, Ping Jack; Hadibah, R; Vandenbosch, Guy

    2011-01-01

    This work presents the design and investigation of the monopole and Koch fractal antenna. The fractal concept and geometry has been used in antenna design to obtain multi-band behavior and miniaturized size, as both of these characteristics are important requirements in current antenna design trends. The aim of this paper is to evaluate the antenna performance between monopole antenna and third iteration Koch fractal antenna. Antenna properties such as reflection coefficient (S11), bandwidth,...

  18. Antenna design and characterization based on the elementary antenna concept

    Science.gov (United States)

    Ligthart, L. P.

    An antenna-design technique based on an elementary-antenna model (an infinitesimal pillbox structure carrying electric and magnetic currents and containing propagating TEM fields) is developed and demonstrated. An EM description of a waveguide aperture is obtained by applying approximate boundary conditions at specific points; the transmitted field is developed locally into a set of TEM field components to compute the radiation pattern; and aperture matching is achieved by calculating the aperture reflection as well. Parallel-plate, circular, and rectangular waveguides; two single-polarization TEM waveguide radiators (with and without dielectric filling); a dielectric-filled dual-polarization TE(01) waveguide radiator; and a hybrid reflector array with limited beam switching based on the TE(01) radiator are presented.

  19. Sounding Rocket Telemetry Emitter, MID Antenna and Ground Receiver Antennas

    OpenAIRE

    Marque, Alexandre; Ghiotto, Anthony

    2015-01-01

    IEEE MTT-S Undergraduate Scholarships Reports The goal of this research project is to design a complete 2.45 GHz data link for telemetry application between a sounding rocket and a ground station. The emission part is embedded in the rocket and has a lot of mechanical constraints. The design for the emitter, the rocket antenna and the ground station receiver are detailed.

  20. Negative ion source with external RF antenna

    Science.gov (United States)

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  1. Distributed antenna system and method

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor)

    2004-01-01

    System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.

  2. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  3. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  4. 47 CFR 73.316 - FM antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  5. Planar Millimeter-Wave Antennas: A Comparative Study

    OpenAIRE

    Pitra, K.; Z. Raida

    2011-01-01

    The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  6. Curved spiral antennas for underwater biological applications

    Science.gov (United States)

    Llamas, Ruben

    We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes

  7. Stepped conical zone plate antenna

    Science.gov (United States)

    Wiltse, James C.

    2001-07-01

    The Fresnel zone plate lens was invented and developed for optical frequencies. However, fabrication difficulties at the short optical wavelengths have prevented obtain good efficiencies. At longer microwave or millimeter-wavelengths fabrication is easier and phase correcting zone plate antennas have been used to obtain good efficiencies. This paper describes a new type of phase correcting zone plate having even better efficiency, namely a diffraction efficiency of 99 percent compared to a true lens, and an overall efficiency much better than a true lens. For the usual zone plate antenna employed at microwave or millimeter wavelengths, path length adjustment is accomplished by cutting different depths in a dielectric plate or by using two or more dielectrics having different dielectric constants. The new design uses a tilted cut in a dielectric plate, which more accurately matches the shape of a true lens and produces much lower phase error. The construction is still near and can be made for example, by a milling machine with a tilted bit. For a circular zone plate, the lens is a stepped conical or tapered shape. Because the phase steps are small, the far-field antenna pattern is excellent and sidelobe-levels are very low. Analysis of typical configurations will be given, showing that phase errors are small, lower than those for an eighth-wave corrected phase zone plate.

  8. Transcatheter Antenna For Microwave Treatment

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)

    2000-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiation having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may he used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  9. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  10. Compact Miniaturized Antenna for 210 MHz RFID

    Science.gov (United States)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  11. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  12. Compact UWB Antenna Design for MIMO Applications

    Directory of Open Access Journals (Sweden)

    Baskaran Kasi

    2013-12-01

    Full Text Available In this study, a compact printed Multiple-Input-Multiple-Output (MIMO antenna with a dimension of 32×70 mm2 has been proposed for Ultra-Wideband (UWB systems applications. The design constitutes of two identical UWB antenna elements, which is etched onto a Taconic TLC-30 printed circuit board. The proposed antenna has been designed and simulated using computer simulation software. For validation purposes, antenna prototype is fabricated and tested. The UWB-MIMO antenna yields an impedance bandwidth of 2.9 to 12 GHz with a return loss of less than-10 dB. Furthermore, the isolation characteristic between the two antenna elements is more than 15 dB within the operating frequency range. The designed structure is found to provide good MIMO/diversity characteristic across the UWB band.

  13. Antenna design by simulation-driven optimization

    CERN Document Server

    Koziel, Slawomir

    2014-01-01

    This Brief reviews a number of techniques exploiting the surrogate-based optimization concept and variable-fidelity EM simulations for efficient optimization of antenna structures. The introduction of each method is illustrated with examples of antenna design. The authors demonstrate the ways in which practitioners can obtain an optimized antenna design at the computational cost corresponding to a few high-fidelity EM simulations of the antenna structure. There is also a discussion of the selection of antenna model fidelity and its influence on performance of the surrogate-based design process. This volume is suitable for electrical engineers in academia as well as industry, antenna designers and engineers dealing with computationally-expensive design problems.

  14. Advanced microwave radiometer antenna system study

    Science.gov (United States)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  15. International Mapping of Antenna-Measurement Facilities

    DEFF Research Database (Denmark)

    Boccia, Luigi; Breinbjerg, Olav; Di Massa, Giuseppe;

    2006-01-01

    This paper presents a comprehensive international mapping of antenna-measurement facilities. This initiative, conducted within the framework of the Antenna Centre of Excellence (ACE) of the European Union, is oriented toward all institutions having research, development, or operational activities...... in the field of antenna measurements. It has been established to provide the scientific and industrial community with an efficient means to improve and facilitate their research and development activities in the field of antennas. The mapping will constitute a new service for all potential users of...... antenna measurements, in particular from the wireless communication industry, to identify and contact antenna-measurement facilities. The first phase of the mapping showed a significant and encouraging reaction to this initiative, with more than 50 European facilities currently registered. The next phase...

  16. New band-notched UWB antenna

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-xiang; DENG Hong-wei

    2009-01-01

    A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.

  17. Smart Antenna for Cellular Mobile Communication

    CERN Document Server

    Jain, R K; Agrawal, N K

    2012-01-01

    The adoption of smart / adaptive antenna techniques in future wireless systems is expected to have a significant impact on the efficient use of the spectrum, the minimization of the cost of establishing new wireless networks, the optimization of service quality and realization of transparent operation across multi technology wireless networks [1]. This paper presents brief account on smart antenna (SA) system. SAs can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. SAs thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. SAs can also track the user within a cell via direction of arrival algorithms [2]. This paper explains the architecture, evolution and how the smart / adaptive antenna differs from the basic format of antenna. The paper further explains about the radiation pattern of the antenna and why it is highly preferred in its relative field. The capabilities of smart / adaptive ...

  18. Transmitting Antenna with Dual Circular Polarization for Indoor Antenna Measurement Range

    OpenAIRE

    Mrnka, M.; Vélim, J.

    2015-01-01

    The presented paper describes design of an original transmitting antenna for specific indoor far-field measurement range. The antenna is able to generate both senses of the circular polarization with high polarization purity by using stepped septum polarizer inside a waveguide. Very high suppression of the side lobes is achieved by utilization of the higher order modes in the aperture of the final horn antenna which is directly connected to the septum polarizer. The antenna was simulated and ...

  19. Modeling of mixed-phasing antenna-plasma interactions applied to JET A2 antennas

    International Nuclear Information System (INIS)

    The use of mixed (monopole-dipole) phasing of a set of ICRF antennas is potentially useful to optimize tokamak performance and to do interesting physics experiments. However, recent mixed-phasing experiments on JET, described here, showed undesirable antenna-plasma interactions under certain circumstances. We explore a possible physical mechanism: parallel currents flowing between adjacent antennas with different phasings can lead to arcing on the antenna with the largest sheath voltage. Means of controlling the interaction are discussed

  20. Micromachined Horn Antenna Operating at 75 GHz

    OpenAIRE

    Grzegorczyk, Tomasz M.; Zurcher, Jean-François; Renaud, Philippe; Mosig, Juan R.

    2000-01-01

    We propose in this paper an integrated cavity-backed horn antenna, generalizing the well-known SSFIP (Strip-Slot-Foam-Inverted Patch) design, operating at 75 GHz. The antenna was optimized using a full-wave software and realized using micromachining technologies. The proposed structure can be used for high radiation ef-ficiency antennas and arrays in the millimeter-wave band, since surface waves are inherently suppressed by the use of a metallic horn and a cavity configuration.

  1. Dual-band Omnidirectional Circularly Polarized Antenna

    OpenAIRE

    Narbudowicz, Adam; Bao, Xiulong; Ammann, Max

    2013-01-01

    A dual-band omnidirectional circularly polarized antenna is proposed. The antenna comprises back-to-back microstrip patches fed by a coplanar waveguide. A very low frequency ratio of 1.182 has been achieved, which can be easily tuned by adjusting four lumped capacitors incorporated into the antenna. An analysis of the omnidirectional circular polarization mechanism as well the dual band operation is provided and confirmed by numerical and experimental data. Key parameters to tune the resonant...

  2. An antenna design for PANSAT using NEC.

    OpenAIRE

    Ellrick, Daniel A.

    1991-01-01

    Approved for public release; distribution is unlimited In this thesis the Numerical Electromagnetics Code (NEC) is used to design an omnidirectional antenna for the Petite Amateur Navy Satellite (PANSAT). The completed antenna design uses a tangential turnstile antenna to achieve a circularly polarized radiation pattern with predicted worst nulls of approximately -3.0 dBi. The use of NEC-3, recently ported to 80386 personal computers, demonstrates the potential of personal computers for ...

  3. Ultrawideband antennas for microwave imaging systems

    CERN Document Server

    Denidni, Tayeb A

    2014-01-01

    This book presents ultrawideband antennas and their applications on microwave imaging. The chapters focus on recent techniques, analysis, and applications along with the future vision of this emerging field of applied electromagnetics. Several emerging topics are essayed, including dielectric resonator antennas and planar ultrawideband antennas for microwave imaging.This resource incorporates modern design concepts, analysis, and optimization techniques based on recent developments. Readers are also provided with an extensive overview of current regulations, including those related to microwav

  4. Textile antenna for 50 ohm applications

    OpenAIRE

    Robi Dahal; Demet Mercan; Lukas Vojtech; Marek Neruda

    2012-01-01

    The new generation of textile materials have the capability to conduct electricity and at the same time be wearable. There are much more applications involved if an antenna is made from parts that are totally wearable. This new property of conductivity in textile materials is used to implement the wireless functions to clothing. In general, the antennas are made of highly conductive metal with is a solid structure, which results in stable output. The challenge with textile antenna is output s...

  5. Vertical Meandering Approach for Antenna Size Reduction

    OpenAIRE

    Li Deng; Shu-Fang Li; Ka-Leung Lau; Quan Xue

    2012-01-01

    A novel vertical meandering technique to reduce the lateral size of a planar printed antenna is presented. It is implemented by dividing a conventional spiral patch into a different number of segments and placing them on different sides of the microwave substrate with vias as the connections. To confirm the validity of this technique, measured electrical performance and radiation characteristics of five antennas with different numbers of segments are compared. The smallest antenna is reduced ...

  6. A novel proximity coupled active integrated antenna

    OpenAIRE

    Vajha, Sasidhar; Shastry, Prasad

    2001-01-01

    In this paper, a novel design approach and measured results of a compact proximity coupled active integrated antenna (PCAIA) are presented. A new type of antenna feed structure is proposed. A single self-biased (through the RF port), two-stage low noise amplifier has been integrated with a proximity coupled patch antenna having a new feed structure. The proposed approach is useful in the design of compact PCAIA with good radiation characteristics for applications in microwave wireless systems.

  7. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    OpenAIRE

    Ricardo Gonçalves; Pedro Pinho; Nuno B. Carvalho

    2012-01-01

    This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna recon...

  8. A Compact Diversity Antenna for Handheld Terminals

    Institute of Scientific and Technical Information of China (English)

    Hai-Lin Xiao; Zai-Ping Nie; Yu-Jing Wu

    2009-01-01

    The handheld terminals antenna should have a small size, sufficient gain and big bandwidth. In this paper, a compact planar inverted-L diversity antenna for handheld terminals is proposed. Three diversity antennas operating at 2.15 GHz are designed and the effect of important parameters of the proposed antenna is measured. The isolation is found to be better than 13 dB, the usable bandwidth is about 13%. Moreover, the measured radiation patterns are also obtained that the backward radiation is decreased.

  9. A SIW Antipodal Vivaldi Array Antenna Design

    OpenAIRE

    Ying Suo; Wei Li; Jianzhong Chen

    2016-01-01

    A kind of compact SIW (substrate integrated waveguide) Vivaldi array antenna is proposed and analyzed. The antenna consisted of 4 Vivaldi structure radiation elements fed by an equal power divider with SIW technology. The radiation element is composed of antipodal index gradient microstrip lines on both sides of the substrate. The measured reflection coefficient of the array antenna is less than −10 dB from 8.88 GHz to 10.02 GHz. The measured gain of the array antenna is 13.3 dB on 9.5 GHz....

  10. Whip antenna design for portable rf systems

    Science.gov (United States)

    Ponnapalli, Saila; Canora, Frank J.

    1995-12-01

    Whip type antennas are probably the most commonly used antennas in portable rf systems, such as cordless and cellular phones, rf enabled laptop computers, personal digital assistants (PDAs), and handheld computers. Whip antennas are almost always mounted on the chassis which contains the radio and other electronics. The chassis is usually a molded plastic which is coated with a conducting paint for EMI purposes. The chassis which appears as a lossy conductor to the antenna, has several effects -- detuning, altering the gain of the antenna, and shadowing its radiation pattern. Extensive modeling and measurements must be performed in order to fully characterize the affects of the chassis on the whip antenna, and to optimize antenna type, orientation and position. In many instances, modeling plays a more important role in prediction of the performance of whip antennas, since measurements become difficult due to the presence of common mode current on feed cables. In this paper models and measurements are used to discuss the optimum choice of whip antennas and the impact of the chassis on radiation characteristics. A modeling tool which has been previously described and has been successfully used to predict radiated field patterns is used for simulations, and measured and modeled results are shown.

  11. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    V. Jebaraj

    2014-12-01

    Full Text Available Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation technique with different shapes of slot in the orthogonal direction. A single feed configuration based symmetric slotted microstrip antenna is adapted to realize the compact circularly polarized microstrip antennas. Based on the perimeter, the size of the slot on microstrip slot antenna are studied and compared. The Operating frequency of the antenna is 912MHz that can be tuned by varying the perimeter of the slot while the keeping the circularly polarized radiation unchanged. The schematic and layout are configured by using Advanced Design System (ADS. Return loss, Resonant Frequency, Axial Ratio (AR, and Gain were determined for the proposed system using ADS. A measured 3dB Axial Ratio (AR bandwidth around 6MHz with 16MHz impedance bandwidth has been achieved for the antenna on a RO3004C substrate with dielectric constant 3.38.

  12. Broadband Suspended Microstrip Antenna For Circular Polarization

    OpenAIRE

    Kasabegoudar, VG; Vinoy, KJ

    2009-01-01

    In this paper we propose a circularly polarized (CP) microstrip antenna on a suspended substrate with a coplanar capacitive feed and a slot within the rectangular patch. The antenna has an axial ratio bandwidth (< 3 dB) of 7.1%. The proposed antenna exhibits a much higher impedance bandwidth of about 49% (S11 < -10 dB) and also yields return loss better than -15 dB in the useful range of circular polarization. Measured characteristics of the antenna are in good agreement with the simulated re...

  13. Matching Parasitic Antenna for Single RF MIMO

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Nielsen, Rasmus Hjorth;

    2012-01-01

    order to have such performance, an antenna with rich pattern modes is required by the system, thus the ESPAR antenna is investigated. The critical part on such antenna is parasitic element impedance matching. Unlike the conventional smith-chart matching method which assumes the minimal resistance is...... zero and with goal of 50 ohm or 75 ohm matching, matching on such parasitic antenna will adopt negative value as well. This paper presents a matching network with controllable impedance even to the range of negative values....

  14. Handbook of smart antennas for RFID systems

    CERN Document Server

    2010-01-01

    The Handbook of Smart Antennas for RFID Systems is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications.

  15. Flexible Microstrip Antenna for Skin Contact Application

    OpenAIRE

    Sudhir Shrestha; Mangilal Agarwal; Parvin Ghane; Kody Varahramyan

    2012-01-01

    Microstrip antennas are finding a growing medical application in imaging, diagnosis, and treatment. This paper presents a flexible microstrip antenna that can be placed in contact with the human skin. The developed antenna is only 0.25 mm thick, has 32 mm × 31 mm dimensions, and −19 dB measured | 1 1 | parameter at 2.45 GHz. A specific application of the antenna in microwave breast imaging is considered. Analytical results using simulation models and experimental results using skin phantoms...

  16. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon;

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which can...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  17. Analysis on two novel spherical helical antennas

    Institute of Scientific and Technical Information of China (English)

    Hou ZHANG; Yingzeng YIN; Dongyu XIA

    2009-01-01

    Two novel spherical helical antennas are designed by projecting the planar equiangular spiral antenna onto hemisphere and partial sphere surfaces.Their radiation properties are analyzed by the moment method with curved basis and test function,and the curves of the voltage standing wave ratio (VSWR),gain,polarization and pattern that change with frequency are also given,respectively.It can be seen that the circular polarization band of the novel hemispherical helical antenna is broader.The gain curve of the partial spherical helical antenna is flatter and the structure is simpler.

  18. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...

  19. Resonance spectra of diabolo optical antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Simpkins, Blake; Caldwell, Joshua D. [Naval Research Laboratory, 4555 Overlook Ave., SW Washington, DC 20375 (United States)

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  20. Switchable Electromagnetic Bandgap Surface Wave Antenna

    Directory of Open Access Journals (Sweden)

    Qiang Bai

    2014-01-01

    Full Text Available This paper presents a novel switchable electromagnetic bandgap surface wave antenna that can support both a surface wave and normal mode radiation for communications at 2.45 GHz. In the surface wave mode, the antenna has a monopole-like radiation pattern with a measured gain of 4.4 dBi at ±49° and a null on boresight. In the normal mode, the antenna operates like a back-fed microstrip patch antenna.

  1. Wideband Monopole Antenna for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Umar

    2013-03-01

    Full Text Available This paper presents a circular patch antenna for WLAN applications with wideband characteristics. It is shown that impedance of the antenna is matched over wideband by using the partial ground plane and quarter wave transformer with slotted TX-Line. Ansoft HFSS is used for simulation tool to map the numerical results for the return loss frequency behavior of antenna. Measure of bandwidth, return loss and radiation pattern are also reported with satisfactory performance. As the patch is circular in shape so substrate is kept in the same shape. The shape of the substrate is also discussed in details for specific antenna designs.

  2. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  3. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M;

    2011-01-01

    The field of antenna measurements is lacking a Golden Standard, i.e. an antenna of which the pattern is known by definition. To gain confidence in the performance of a range, including the procedures and skills of the operators, range comparison has been a popular tool for over three decades. In......, specifically designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable...

  4. Mathcad computer applications predicting antenna parameters from antenna physical dimensions and ground characteristics

    OpenAIRE

    Gerry, Donald D.

    1993-01-01

    Approved for public release; distribution is unlimited. This report provides the documentation for a set of computer applications for the evaluation of antenna parameters. The applications are written for the Mathcad personal computer software for various antenna types listed in the thesis index. Antenna dimen Lieutenant Commander, United States Navy

  5. TOLPA (Tripod Omnidirectional Low Profile Antenna): a vertically polarized antenna with 90% bandwidth

    OpenAIRE

    Zürcher, J.-F.

    2013-01-01

    A new vertically polarized omnidirectional antenna, inspired by an old design, has been studied, optimized, realized and measured. With a radiation pattern similar to the classical monopole on a ground plane, the proposed antenna concept provides a much larger bandwidth and a very low profile. This antenna has numerous potential applications for mobile communications, UWB and others.

  6. Fronthaul Compression and Transmit Beamforming Optimization for Multi-Antenna Uplink C-RAN

    OpenAIRE

    Zhou, Yuhan; Yu, Wei

    2016-01-01

    This paper considers the joint fronthaul compression and transmit beamforming design for the uplink cloud radio access network (C-RAN), in which multi-antenna user terminals communicate with a cloud-computing based centralized processor (CP) through multi-antenna base-stations (BSs) serving as relay nodes. A compress-and-forward relaying strategy, named the VMAC scheme, is employed, in which the BSs can either perform single-user compression or Wyner-Ziv coding to quantize the received signal...

  7. TDRS MA Antenna ESD Qualification Program

    Science.gov (United States)

    Mikkelson, E.; Malek, S.; Leung, P.; Seki, S.; Lee, E.; Baldauf, J.

    1998-11-01

    A single antenna element from the Multiple Access array on the TDRS H,I,J spacecraft was tested for electrostatic discharge. The element consisted of a copper trace on a Kevlar/Nomex honeycomb sandwich, all beneath a sunshield. The objective was not only to measure the ground current generated by a discharge, but to determine whether a discharge that couples in-band to the RF communications signal could cause either damage to a sensitive low-noise amplifier downstream, or through repetition an increase in the overall bit error rate of the communications channel. Therefore, measurements of the discharge events focused on the RF inband peak power and the overall discharge rate. The testing used 25 and 90 keV electron beams, with the sample at both room temperature and the minimum on-orbit expected temperature (-80C). Based on the test results, RF limiters were added to ensure extra margin for the ESD protection of the LNAs. Measured discharge rates were not high enough to increase the overall bit error rate.

  8. 60-GHz-Band Switched-Beam Eight-Sector Antenna with SP8T Switch for 180° Azimuth Scan

    Science.gov (United States)

    Miura, Amane; Ohira, Masataka; Kitazawa, Shoichi; Ueba, Masazumi

    This paper proposes a new switched-beam eight-sector antenna for multi-gigabit wireless LAN in the 60-GHz band. Our antenna system introduces access-point (AP) and user-terminal (UT) antennas having the same sec θ pattern in the elevation plane so that the received signal power at the receiver is kept constant, independent of the position of the UT. For this system, an eight-sector antenna, a single-pole eight-throw (SP8T) switch, and a beam control unit are integrated as the switched-beam eight-sector antenna. The specifications of the antenna are wide bandwidth (≥3GHz), high-gain (≥13dBi at θ=66°), and wide coverage area in both azimuth (0° ≤ φ ≤ 180°) and elevation planes (0° ≤ θ ≤ 66°). The antenna beam is steered within the specified response time (which is short) by the Media Access Control (MAC). In our antenna, both high gain for a wide elevation angle and wide bandwidth are obtained by using the proposed closely spaced waveguide slot array antenna, which is used as each sector of the eight-sector antenna. The SP8T switch with the beam control unit enables 180° beam scan in the azimuth plane. In a component evaluation, the eight-sector antenna achieves a 10-dB return loss bandwidth of 8GHz with more than 40-dB port-to-port isolation. Radiation characteristics of the eight-sector antenna indicate that it covers 82% of the entire coverage area at the center frequency and that the coverage rate in the operating frequency band is from 78% to 88%. The performance of the SP8T switch and the beam control unit is verified by measuring the insertion loss at all eight ports and the switching response time. In the antenna system evaluation, measurement by using two prototype antennas as the AP and the UT antennas in the usage condition indicates that the measured received signal power meets the specified constant power for the specified wide elevation angle range, independent of the position of the UT. These experimental results verify the

  9. A telemetry antenna system for unmanned air vehicles

    OpenAIRE

    DOĞAN, Mustafa; Dogan, Mustafa; Üstüner, Fatih; Ustuner, Fatih

    2010-01-01

    This paper presents a low VSWR high gain telemetry antenna system manufactured for UAVs that provides 360± coverage in the roll plane of the UAV. Proposed telemetry antenna system includes four telemetry antennas, one power divider that has one input and four output terminals which feeds the telemetry antennas with equal magnitude and phase. Proposed high gain telemetry antennas are based on the feeding of the microstrip patch antenna via aperture coupling. Full coverage in the roll plane of ...

  10. Improved patch antenna performance by using a metamaterial cover

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-ming; HU Jun

    2007-01-01

    A new patch antenna system with a metamaterial cover is presented in this paper. The impedance, radiation pattern, and directivity of such an antenna are studied. A performance comparison between the conventional patch antenna and the new metamaterial patch antenna is given. The results show that the directivity of the metamaterial patch antenna is significantly improved. The effect of the metamaterial cover's layer numbers on the radiation pattern of the patch antenna is also studied.

  11. CPW-Fed Ring Antenna For UWB Applications

    OpenAIRE

    Sheetal Kamboj; Amit Kumar

    2014-01-01

    This paper presents a Coplanar waveguide feed ( CPW) monopole ring antenna for ultra wideband applications. The proposed antenna consist of ring type patch embedded with horizontal strip in the patch. The parametric study is performed to understand the characteristics of the proposed antenna. The antenna exhibits impedance bandwidth from 3.7 GHz to 10.7 GHz. The various antenna parameters are studied. The proposed antenna is suitable for UWB applications.

  12. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B0. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B0. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  13. Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas

    Science.gov (United States)

    Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)

    2008-01-01

    Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.

  14. Breadboard Signal Processor for Arraying DSN Antennas

    Science.gov (United States)

    Jongeling, Andre; Sigman, Elliott; Chandra, Kumar; Trinh, Joseph; Soriano, Melissa; Navarro, Robert; Rogstad, Stephen; Goodhart, Charles; Proctor, Robert; Jourdan, Michael; Rayhrer, Benno

    2008-01-01

    A recently developed breadboard version of an advanced signal processor for arraying many antennas in NASA s Deep Space Network (DSN) can accept inputs in a 500-MHz-wide frequency band from six antennas. The next breadboard version is expected to accept inputs from 16 antennas, and a following developed version is expected to be designed according to an architecture that will be scalable to accept inputs from as many as 400 antennas. These and similar signal processors could also be used for combining multiple wide-band signals in non-DSN applications, including very-long-baseline interferometry and telecommunications. This signal processor performs functions of a wide-band FX correlator and a beam-forming signal combiner. [The term "FX" signifies that the digital samples of two given signals are fast Fourier transformed (F), then the fast Fourier transforms of the two signals are multiplied (X) prior to accumulation.] In this processor, the signals from the various antennas are broken up into channels in the frequency domain (see figure). In each frequency channel, the data from each antenna are correlated against the data from each other antenna; this is done for all antenna baselines (that is, for all antenna pairs). The results of the correlations are used to obtain calibration data to align the antenna signals in both phase and delay. Data from the various antenna frequency channels are also combined and calibration corrections are applied. The frequency-domain data thus combined are then synthesized back to the time domain for passing on to a telemetry receiver

  15. Open access

    DEFF Research Database (Denmark)

    Dorch, Bertil Fabricius; Demaio, Alessandro; Hersch, Fred

    2012-01-01

    This week, we celebrate open access week – an event aimed at bringing attention to this rapidly emerging form of scientific publication and its ethical imperatives. Traditionally, knowledge breakthroughs and scientific discoveries are shared through publication in academic journals. Peer...... ideas, break down barriers to science and make knowledge accessible to the masses – but this is not actually the case....

  16. Open Access

    Science.gov (United States)

    Suber, Peter

    2012-01-01

    The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work "open access": digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder…

  17. Enabling Technologies for Fabrication of Large Area Flexible Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible, foldable, and/or inflatable antenna systems open up a wealth of opportunities. Integrating antenna elements and related electronics onto flexible...

  18. Micro strip Patch Antenna and its Applications: a Survey

    Directory of Open Access Journals (Sweden)

    Indrasen Singh

    2011-09-01

    Full Text Available The study of microstrip patch antennas has made great progress in recent years. Compared with conventional antennas, microstrip patch antennas have more advantages and better prospects. They are lighter in weight, low volume, low cost, low profile, smaller in dimension and ease of fabrication and conformity. Moreover, the microstrip patch antennas can provide dual and circular polarizations, dual-frequency operation, frequency agility, broad band-width, feedline flexibility, beam scanning omnidirectional patterning. In this paper we discuss the microstrip antenna, types of microstrip antenna, feeding techniques and application of microstrip patch antenna with their advantage and disadvantages over conventional microwave antennas.

  19. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  20. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  1. Ultrawideband antennas design and applications

    CERN Document Server

    Valderas, Daniel; Puente, David

    2010-01-01

    Ultrawideband (UWB) technology, positioned as the cutting edge of research and development, paves the way to meet the emerging demands set by broadband wireless applications, such as high-speed data transmission, medical imaging, short-range radars, electromagnetic testing, etc. This breathtaking resource builds upon the basics of UWB technology to provide a complete compilation of figures of merit along with a vital state-of-the-art of the different antenna alternatives that are to be employed according to the specific application. Without excessive recourse to mathematics, this volume emphas

  2. HF spectrum occupancy and antennas

    OpenAIRE

    Yurdanur Tulunay; Yildirim Bahadirlar; Ersin Tulunay; Haris Haralambous; Lefteris Economou; Joaquim Azevedo; António Casimiro; A. Serdar Türk; E. Michael Warrington

    2009-01-01

    This paper deals with the research made during the COST 296 action in the WG2, WP 2.3 in the antennas and

    HF spectrum management fields, focusing the Mitigation of Ionospheric Effects on Radio Systems as the subject of this COST action.



  3. Solar energy collection by antennas

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R.; Green, M.A.; Puzzer, T. [University of New South Wales, Sydney (Australia). Centre for Advanced Silicon Photovoltaics and Photonics

    2002-12-01

    The idea of collecting solar electromagnetic radiation with antenna-rectifier (rectenna) structures was proposed three decades ago but has not yet been achieved. The idea has been promoted as having potential to achieve efficiency approaching 100% but thermodynamic considerations imply a lower limit of 85.4% for a non-frequency-selective rectenna and 86.8% for one with infinite selectivity, assuming maximal concentration in each case. This paper reviews the history and technical context of solar rectennas and discusses the major issues: thermodynamic efficiency limits, rectifier operation at optical frequencies, harmonics production and electrical noise. (author)

  4. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... of the emerging and huge demand for an increasing number of ever smaller mobile communication devices. The classical investigations of fundamental ESA performance limitations are usually formulated in terms of a lower bound upon the radiation quality factor Q, because for ESAs, Q is directly related...

  5. Combined Calibration Method and its Realization for Direction Finding Antenna Systems with Patch Antennas

    Directory of Open Access Journals (Sweden)

    R. Seller

    2007-09-01

    Full Text Available A novel radio channel compensation method aiming to give optimal calibration for microstrip antenna array systems is presented in this paper, realized for an actual DOA measurement antenna system using microstrip antennas to sample the electromagnetic field, operating at 4.5GHz. This new approach considers mismatch between antennas and channel RF ports, channel transmission inequalities, and also decreases the effects of multipath propagation components of calibration reference signals by placing the calibration reference signal feeding network on the microstrip antenna array bearer, directly beside the antenna patches. It is combined with orthogonal spread spectrum calibration signal utility for continuous uninterrupted measurements. The spread spectrum calibration signal is orthogonal to the continuous wave (CW signal to be measured, therefore, the 2 signals can be separated in the receiver, enabling them to be present simultaneously. DOA measurement results are shown, measured with the realized integrated microstrip patch antenna array with calibration network hardware.

  6. The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks

    Science.gov (United States)

    Lakshmanan, Sriram; Sundaresan, Karthikeyan; Rangarajan, Sampath; Sivakumar, Raghupathy

    Interference among co-channel users is a fundamental problem in wireless networks, which prevents nearby links from operating concurrently. Directional antennas allow the radiation patterns of wireless transmitters to be shaped to form directed beams. Conventionally, such beams are assumed to improve the spatial reuse (i.e. concurrency) in indoor wireless networks. In this paper, we use experiments in an indoor office setting of Wifi Access points equipped with directional antennas, to study their potential for interference mitigation and spatial reuse. In contrast to conventional wisdom, we observe that the interference mitigation benefits of directional antennas are minimal. On analyzing our experimental traces we observe that directional links do not reduce interference to nearby links due to the lack of signal confinement due to indoor multipath fading. We then use the insights derived from our study to develop an alternative approach that provides better interference reduction in indoor networks compared to directional links.

  7. Measurement of radiofrequency emissions around the Sugar Loaf broadcasting antenna Port Hills

    International Nuclear Information System (INIS)

    This report and measurements described in it have been undertaken to determine radio frequency levels in publicly accessible areas around the Sugar Loaf (Christchurch, New Zealand) broadcasting antenna and ascertain whether it is being operated in accordance with New Zealand Standard 6609.1:1990 Radiofrequency radiation - Part 1 : Maximum exposure levels 100kHz-300GHz. Measurements were made on 9 February 1998. Maximum exposures of 8 microW/cm2 were detected in the car park area, immediately below the Sugar Loaf antenna. This is 4% of the maximum of 200 microW/cm2 specified for public exposure levels in NZS 6609.1:1990. As the distance from the antenna increased, the exposure levels decreased markedly and in general, were below 2 microW/cm2. The measurements showed that the site is operating in accordance with NZS 6609.1:1990. (author). 2 appendices

  8. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    Energy Technology Data Exchange (ETDEWEB)

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  9. A Rectangular Ring, Open-Ended Monopole Antenna with Two Symmetric Strips for WLAN and WiMAX Applications

    Directory of Open Access Journals (Sweden)

    Joong-Han Yoon

    2013-01-01

    Full Text Available A triple-band rectangular ring, open-ended monopole antenna with symmetric L strips for wireless local area network (WLAN/Worldwide Interoperability of Microwave Access (WiMAX applications is proposed. The proposed antenna consists of two symmetric folded arms and L strips. Based on the concept, a prototype of the proposed triple antenna has been designed, fabricated, and tested. The numerical and experimental results demonstrated that the proposed antenna satisfied the −10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. Furthermore, this paper presented and discussed the 2D radiation patterns and 3D gains according to the results of the experiment. The proposed antenna’s peak gain varied between 2.17 and 4.93 dBi, and its average gain varied between −2.97 and −0.53 dBi.

  10. Juno Microwave Radiometer Patch Array Antennas

    Science.gov (United States)

    Chamberlain, N.; Chen, J.; Focardi, P.; Hodges, R.; Hughes, R.; Jakoboski, J.; Venkatesan, J.; Zawadzki, M.

    2009-01-01

    Juno is a mission in the NASA New Frontiers Program with the goal of significantly improving our understanding of the formation and structure of Jupiter. This paper discusses the modeling and measurement of the two patch array antennas. An overview of the antenna architecture, design and development at JPL is provided, along with estimates of performance and the results of measurements.

  11. Antenna Design Exploiting the Duplex Isolation

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2013-01-01

    A novel design addressing the antenna bandwidth issue for future communication standards on handsets is presented. It consists of a tunableantenna- pair for operation with a tunable front-end. The antennas are narrow-band and frequency-reconfigurable. This Letter focuses on the low communication ...

  12. Koch-Fractal Yagi-Uda Antenna

    DEFF Research Database (Denmark)

    Teisbæk, Henrik Bjørn; Jakobsen, Kaj Bjarne

    2009-01-01

    A Yagi-Uda antenna constructed of three Koch fractal elements is presented. Simulated and measured characteristics of the antenna shows a half-power beam-width of 64◦ achieved with dimensions below a third of a wavelength. Furthermore, the Koch dipole and its size miniaturization capabilities are...

  13. 38 GHz Antennas on Micromachined Silicon Substrates.

    OpenAIRE

    Marcelli, Romolo; Dragoman, M.; Neculoiu, Dan; Giacomozzi, Flavio; Muller, Alexandru; Nitescu, N.

    2001-01-01

    A new configuration of a double folded double slot CPW feed micromachined antenna array was realized on a 1.5 µm thin three-layer dielectric membrane fabricated on a silicon substrate. The antenna was designed for an operating frequency of 38 GHz, and the double folded configuration was used for minimizing the membrane extension.

  14. Slotted waveguide antennas for practical radar systems

    OpenAIRE

    Sekretarov, S. S.; Vavriv, D. M.

    2009-01-01

    This article summarizes recent results on the development, fabrication, and application of slotted waveguide antenna systems for practical radar systems, including Ka-band helicopter collision avoidance and weather radar, Ku-band surveillance and tracking radar, and X-band airborne SAR system. The corresponding design solutions, antenna characteristics, and test results are presented and discussed.

  15. 47 CFR 74.1237 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.1237 Section 74.1237... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be... at which there is available a suitable signal from the primary station. The transmitting...

  16. Multiple Antennas Arm Effective MIMO Systems

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2007-01-01

    Understanding the interactions among different combinations of receive and transmit antenna elements can help increase the capacity of cellular wireless systems.......Understanding the interactions among different combinations of receive and transmit antenna elements can help increase the capacity of cellular wireless systems....

  17. Miniaturization of UWB Antennas on Organic Material

    Directory of Open Access Journals (Sweden)

    Symeon Nikolaou

    2016-01-01

    Full Text Available Three planar, CPW-fed, UWB antennas with increasingly reduced size are presented and the miniaturization method is discussed. The first antenna is a CPW-fed elliptical slot with an uneven U-shaped tuning stub, the second antenna is a cactus shaped monopole, and the third one is a miniaturized version of the cactus shaped monopole antenna. All presented antennas have a simulated and measured return loss below −10 dB over the 3.1 to 10.6 GHz UWB frequency range and mostly omnidirectional radiation patterns. The proposed antennas are fabricated on liquid crystal polymer (LCP. The CPW-fed slot antenna requires an overall board dimension of 38 mm × 40 mm, and the evolved cactus monopole is confined in a 28 mm × 32 mm board, while the final miniaturized cactus monopole is printed on 28 mm × 20 mm board, resulting in a 41% and 63% size reduction, respectively. Using both simulations and measurements, the paper analyzes the response of all three antennas and discusses and demonstrates the effectiveness of the implemented miniaturization method.

  18. Compact Spiral Loaded Printed Monopole Antenna

    OpenAIRE

    Bao, Xiulong; Ammann, Max

    2010-01-01

    A novel miniaturized printed monopole structure is proposed. The antenna comprises a printed monopole strip which is loaded by a spiral located on the rearside connected by a via. The inductive loading provided by the spiral enables considerable miniaturization of antenna. A parametric study of key dimensional parameters and groundplane are discussed.

  19. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    Science.gov (United States)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  20. A simple EHF hemispheric coverage antenna

    Science.gov (United States)

    Lee, J. C.

    1994-08-01

    A circulary polarized, axially symmetric, wide-beam radiator is required in many applications, including TT&C for UAV's and satellites. This report discusses some existing wide-beam antenna designs including divergent lenses and reflectors and introduces a new antenna design. Using a simple dielectric ring in conjunction with a dielectric loaded circular waveguide opening, a near ideal, axially symmetric, hemispheric coverage antenna with circular polarization of good axial ratio and wide-band impedance match is realized. Mechanically, the antenna is small, lightweight, and low cost. The dielectric used is the common Rexolite. Since no lossy materials or resonant scatterers are used, the antenna performance is inherently broadband and low loss. A K sub a-band prototype as well as compact designs for both Q- and K-bands are described.

  1. A Microstripe Slotted Patch Antenna Using Amc

    Directory of Open Access Journals (Sweden)

    Manju Saini,

    2014-04-01

    Full Text Available Microstrip patch antenna offer an attractive solution to compact and ease-low-cost design of modern wireless communication system due to their many advantages as light weight and low volume, low profile, planer configuration which can be easily made conformal to low fabrication cost and capability of obtaining dual and triple frequency operations. A microstrip patch antenna with bandwidth enhancement by means of artificial magnetic conductor (AMC/electromagnetic band-gap structure (EBG is studied in this paper. The three different geometry shapes, the U, E and H are developed from rectangular patch. The antennas studied in this paper are simulated using sonnet software and results compared with the conventional rectangular patch antenna. The results obtained clearly shows that , bandwidth of conventional rectangular microstrip antenna can be enhanced has been studied

  2. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions a...... essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit on...... subsequently tuned to 50 ohms simply by cutting out the excessive arm length. This tuning technique is especially useful in practical applications, since it allows the antenna to be tuned in-place and thereby compensate for various inaccuracies as well as for an antenna environment....

  3. Structurally Integrated Antenna Concepts for HALE UAVs

    Science.gov (United States)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  4. Textile UWB Antenna Bending and Wet Performances

    Directory of Open Access Journals (Sweden)

    Mai A. R. Osman

    2012-01-01

    Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.

  5. STUDY ON A NOVEL ELLIPSOIDAL HELICAL ANTENNA

    Institute of Scientific and Technical Information of China (English)

    Xia Dongyu; Zhang Hou; Wang Chong; Zhang Qianyue

    2007-01-01

    A novel ellipsoidal helical antenna is proposed and studied in this letter.As a special instance,the hemispherical helical antennas are analyzed firstly,which indicates that the characteristics of a two-arm unit are better than that of a single-arm unit.Based on this,the ellipsoidal helical antenna,formed by changing the axial direction's dimension of the two-arm hemispherical helical antenna,is analyzed by the moment method with curved basic and testing function.The effects to VSWR (Voltage Standing Wave Ratio),gain,polarization and patterns by the axial direction's dimensions are investigated.The study results provide dependable gist to the choice of antenna format according to the practical requirements.

  6. DESIGN OF PIFA ANTENNA FOR MEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A.Umamakeswari

    2013-02-01

    Full Text Available The emerging techniques in the medical field include the use of bio implantable antennas to diagnose the diseases. The major disadvantage of these techniques is the side-effects caused by the radiations in the human body. There have been a lot of advancements in this area to reduce the radiation emitted. One among them is the use of PIFA antenna inside an indestructible capsule (Polyetheretherketones which is helpful in both short and long range communications. The workincludes the design of PIFA antenna using IE3D and MATLAB software. The characteristics of the antenna are analyzed with the aim to reduce the size and radiation effect of antenna and to increase thegain, efficiency and data rate.

  7. WIRELESS ENERGY TRANSFER USING MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    Leong Kah Meng

    2014-01-01

    Full Text Available This study presents a concept on wireless energy transmission using microstrip antenna pairs. Microstrip antenna is chosen in its implementation in wireless energy transfer application primarily due to its characteristics: Its ease of analysis, fabrication and their attractive radiation characteristics. The outcome of this research is the fabrication of two microstrip antennas with resonant frequency of 1.94 GHz and 2.5 GHz respectively. The performance and the power gain for each of microstrip antennas which act as the transmitter and receiver respectively were evaluated within certain distance. The limitations of the experiment as well as the possible solutions in increasing system efficiency are being discussed. Experiment shows that the microstrip antenna with a lower resonant frequency performs better in long distance wireless energy transmission.

  8. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  9. Evolutionary Optimization of Yagi-Uda Antennas

    Science.gov (United States)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.

    2001-01-01

    Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.

  10. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  11. Enhancement of Antenna Performance for Data Transmission

    International Nuclear Information System (INIS)

    In remote radiation measurements that are being developed at the Department of Engineering Physics, Faculty of Engineering Gadjah Mada University, has constraints on the quality of its communications system. The problem that needs to be resolved is on antenna system. Optimum antenna performance, potentially increase effectively telecommunication quality, and minimizing error in data communication system. In every antenna parameter measurement that used in this research, the conclusion is antenna that tuned in 141.6 MHz frequency (A state) is more better than it tuned in 145.6 MHz frequency (B state). Antenna in A state can reach value of ρ at least 0.01 the return-loss measured at 53.98 dB and field strength meter show 1.95 volt. It compared with B state antenna, where it has ρ value at least only can reach 0.19 then return-loss measured only at 20.44 dB and the measuring by field strength meter only 1.2 volts in the same range with A state antenna. In this research, the same antenna is tuned in every frequency, but the maximum result has reached in antenna that tuned in 141.6 MHz frequency. The conclusion of this research is every antenna only has one optimum working frequency in a band (but it is not harmonic band). This information is important and can be used as references for any practitioner in field of telemetry system and tele-control although for radio communication practitioner. (author)

  12. Antenna complexes protect Photosystem I from Photoinhibition

    Directory of Open Access Journals (Sweden)

    Hienerwadel Rainer

    2009-06-01

    Full Text Available Abstract Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed.

  13. Evolutionary Optimization of a Quadrifilar Helical Antenna

    Science.gov (United States)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated antenna synthesis via evolutionary design has recently garnered much attention in the research literature. Evolutionary algorithms show promise because, among search algorithms, they are able to effectively search large, unknown design spaces. NASA's Mars Odyssey spacecraft is due to reach final Martian orbit insertion in January, 2002. Onboard the spacecraft is a quadrifilar helical antenna that provides telecommunications in the UHF band with landed assets, such as robotic rovers. Each helix is driven by the same signal which is phase-delayed in 90 deg increments. A small ground plane is provided at the base. It is designed to operate in the frequency band of 400-438 MHz. Based on encouraging previous results in automated antenna design using evolutionary search, we wanted to see whether such techniques could improve upon Mars Odyssey antenna design. Specifically, a co-evolutionary genetic algorithm is applied to optimize the gain and size of the quadrifilar helical antenna. The optimization was performed in-situ in the presence of a neighboring spacecraft structure. On the spacecraft, a large aluminum fuel tank is adjacent to the antenna. Since this fuel tank can dramatically affect the antenna's performance, we leave it to the evolutionary process to see if it can exploit the fuel tank's properties advantageously. Optimizing in the presence of surrounding structures would be quite difficult for human antenna designers, and thus the actual antenna was designed for free space (with a small ground plane). In fact, when flying on the spacecraft, surrounding structures that are moveable (e.g., solar panels) may be moved during the mission in order to improve the antenna's performance.

  14. Array Antennas Based Joint Beamforming for IEEE 802.11n Wi-Fi

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2015-09-01

    Full Text Available In order to achieve array gain and spatial diversity or multiplexing gain simultaneously, a novel joint beamforming based on MIMO and array antenna techniques, referred to as J-BF, is proposed for the LTE and Wifi downlink. Array gain is achieved from array antenna based beamforming, referred to as AA-BF. Spatial diversity and multiplexing gains are achieved from MIMO based beamforming, referred to as MIMO-BF. To implement J-BF, i.e., joint AA-BF and MIMO-BF, an access point (AP is equipped with separate array antennas. Before sending any data-frame in the J-BF mode, firstly, based on the estimated omni-directional CSI, the directional beam can be formed by the array antenna, and the array gain is achieved. Secondly, based on the estimated directional CSI, MIMO-BF is implemented to achieve the spatial diversity or multiplexing gain. More importantly, the J-BF algorithm maintains compatibility with 802.11n and there is not any change in terminals. Simulation results show that the proposed scheme can support the joint AA-BF and MIMO-BF effectively and provide much higher array gain or spatial gains than the traditional MIMO or array antenna respectively.

  15. Wide frequency independently controlled dual-band inkjet-printed antenna

    KAUST Repository

    AbuTarboush, Hattan F.

    2014-01-08

    A low-cost inkjet-printed multiband monopole antenna is presented. The unique advantage of the proposed antenna is the freedom to adjust and set the dual-band of the antenna independently over a wide range (148.83%). To demonstrate the independent control feature, the 2.4 and 3.4 GHz bands for the wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications are selected as an example. The measured impedance bandwidths for the 2.4 and 3.4 GHz are 15.2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications such as GPS, PCS, GSM 1800, 1900, UMTS, and up to 5-GHz WLAN and WiMAX applications. The mechanism of independent control of each radiator through dimensional variation is discussed in detail. The antenna has a compact size of 10 × 37.3 × 0.44 mm3, leaving enough space for the driving electronics on the paper substrate. The measured results from the prototype are in good agreement with the simulated results. Owing to inkjet printing on an ordinary paper, the design is extremely light weight and highly suitable for low cost and large volume manufacturing. © The Institution of Engineering and Technology 2013.

  16. Design and realization of a planar ultrawideband antenna with notch band at 3.5 GHz.

    Science.gov (United States)

    Azim, Rezaul; Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin; Arshad, Haslina

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31-3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245

  17. Investigation of microwave antennas with improved performances

    Science.gov (United States)

    Zhou, Rongguo

    This dissertation presents the investigation of antennas with improved performances at microwave frequencies. It covers the following three topics: the study of the metamaterial with near-zero index of refraction and its application in directive antenna design, the design technique of a wideband circularly polarized patch antenna for 60GHz wireless application and the investigation of a novel direction of arrival (DOA) estimation technique inspired by human auditory system. First, the metamaterial composed of two-dimensional (2-D) metallic wire arrays is investigated as an effective medium with an effective index of refraction less than unity (neff effective medium parameters (permittivity epsilon eff, permeability mueff and neff ) of a wire array are extracted from the finite-element simulated scattering parameters and verified through a 2-D electromagnetic band gap (EBG) structure case study. A simple design methodology for directive monopole antennas is introduced by embedding a monopole within a metallic wire array with neff effect of the monopole antenna is demonstrated in both simulation and experiment at X-band (8 -- 12 GHz). The measured antenna properties including return loss and radiation patterns are in good agreement with simulation results. Parametric studies of the antenna system are performed. The physical principles and interpretations of the directive monopole antenna embedded in the wire array medium are also discussed. Second, a fully packaged wideband circularly polarized patch antenna is designed for 60GHz wireless communication. The patch antenna incorporates a diagonal slot at the center and features a superstrate and an air cavity backing to achieve desired performances including wide bandwidth, high efficiency and low axial ratio. The detailed design procedure of the circularly polarized antenna, including the design of the microstrip-fed patch antenna and the comparison of the performances of the antenna with different feeding interfaces

  18. Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

    Directory of Open Access Journals (Sweden)

    Jian Dong

    2016-01-01

    Full Text Available In order to incorporate different communication standards into a single device, a compact quad-band slot antenna is proposed in this paper. The proposed antenna is composed of a dielectric substrate, T-shaped microstrip patch with a circle slot and an inverted L-slot, and a comb-shaped ground on the back of the substrate. By adopting these structures, it can produce four different bands, while maintaining a small size and a simple structure. Furthermore, a prototype of the quad-band antenna is designed and fabricated. The simulated and measured results show that the proposed antenna can operate over the 1.79–2.63 GHz, 3.46–3.97 GHz, 4.92–5.85 GHz, and 7.87–8.40 GHz, which can cover entire PCS (Personal Communications Service, 1.85–1.99 GHz, UMTS (Universal Mobile Telecommunications System, 1.92–2.17 GHz, WCDMA (wideband code-division multiple access, 2.1 GHz, Bluetooth (2.4–2.48 GHz, WiBro (Wireless Broad band access service, 2.3–3.39 GHz, WLAN (Wireless Local Area Networks, 2.4/5.2/5.8 GHz, WiMAX (Worldwide Interoperability for Microwave Access, 2.5/3.5/5.5 GHz, and X-band SATcom applications (7.9~8.4 GHz. The proposed antenna is particularly attractive for mobile devices integrating multiple communication systems.

  19. Planetary protection for Europa radar sounder antenna

    Science.gov (United States)

    Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu; McEachen, Michael; Allen, Scotty; Kirchner, Donald; Blankenship, Donald

    2016-05-01

    The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods.

  20. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  1. Compact Triple Band Slotted Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Ram Singh Kushwaha

    2012-03-01

    Full Text Available This paper presents a compact triple band slot microstrip patch antenna for 1.7/2.92 GHz WLAN applications. The radiating element of the proposed antenna consists of Swastika symbol slot operating at 1.8 GHz, 2.09 GHz, and 2.92 GHz bands. The antenna size is very compact (50 mm x 50 mm x 1.6 mm and covers 1.8 GHz to 2.92 GHz and can be used for AMPS, GSM and WLAN applications. The antenna is fed from a single 50 Ω coaxial cable. Using IE3D software package of Zeland, according to the set size, the antenna is simulated. The composite effect of integrating these techniques and by introducing the novel slotted patch offers a low profile, wide bandwidth, high gain and compact antenna element. The computer simulation results show that the antenna can realize wide band characters with each band having good impedance bandwidth (VSWR ≤ 2 for all the three resonant frequencies.

  2. Compact Directional Microwave Antenna for Localized Heating

    Science.gov (United States)

    Fink, Patrick W.; Lin, Gregory Y.; Chu, Andrew W.; Dobbins, Justin A.; Arndt, G. Dickey; Ngo, Phong

    2008-01-01

    A directional, catheter-sized cylindrical antenna has been developed for localized delivery of microwave radiation for heating (and thus killing) diseased tissue without excessively heating nearby healthy tissue. By "localized" is meant that the antenna radiates much more in a selected azimuthal direction than in the opposite radial direction, so that it heats tissue much more on one side than it does on the opposite side. This antenna can be inserted using either a catheter or a syringe. A 2.4-mm prototype was tested, although smaller antennas are possible. Prior compact, cylindrical antennas designed for therapeutic localized hyperthermia do not exhibit such directionality; that is, they radiate in approximately axisymmetric patterns. Prior directional antennas designed for the same purpose have been, variously, (1) too large to fit within catheters or (2) too large, after deployment from catheters, to fit within the confines of most human organs. In contrast, the present antenna offers a high degree of directionality and is compact enough to be useable as a catheter in some applications.

  3. Logo Antenna for 5.8 GHz Wireless Communications

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work the un...

  4. Multiport antenna systems for space-time communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Pelosi, Mauro; Pedersen, Gert Frølund

    The paper presents the concept of multiport antenna systems where multiple active and passive ports are deployed. The passive ports, implemented via tunable reactance-assisted (parasitic) antennas, can alter the far-field and near-field properties of the antenna system expressed by the antenna...

  5. 47 CFR 80.290 - Auxiliary receiving antenna.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Auxiliary receiving antenna. 80.290 Section 80... antenna. An auxiliary receiving antenna must be provided when necessary to avoid unauthorized interruption or reduced efficiency of the required watch because the normal receiving antenna is not...

  6. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  7. 47 CFR 17.4 - Antenna structure registration.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna structure registration. 17.4 Section 17... ANTENNA STRUCTURES General Information § 17.4 Antenna structure registration. (a) Effective July 1, 1996, the owner of any proposed or existing antenna structure that requires notice of proposed...

  8. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  9. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2006-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas, in particular), bow-tie antennas, and other. Some numerical and experimental results are...

  10. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2004-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas in particular), bow-tie antennas, and other. Some numerical and experimental results are...

  11. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas in particular), bow-tie antennas, and other. Some numerical and experimental results are...

  12. Accessible Knowledge - Knowledge on Accessibility

    DEFF Research Database (Denmark)

    Kirkeby, Inge Mette

    2015-01-01

    Although serious efforts are made internationally and nationally, it is a slow process to make our physical environment accessible. In the actual design process, architects play a major role. But what kinds of knowledge, including research-based knowledge, do practicing architects make use of when...... designing accessible environments? The answer to the question is crucially important since it affects how knowledge is distributed and how accessibility can be ensured. In order to get first-hand knowledge about the design process and the sources from which they gain knowledge, 11 qualitative interviews...... were conducted with architects with experience of designing for accessibility. The analysis draws on two theoretical distinctions. The first is research-based knowledge versus knowledge used by architects. The second is context-independent knowledge versus context-dependent knowledge. The practitioners...

  13. Smart antenna technology for structural health monitoring applications

    Science.gov (United States)

    Özdemir, Tayfun; Goykhman, Yuriy; Oberdier, Larry; Lynch, Jerome

    2010-04-01

    A smart antenna has been developed for structural health monitoring. The antenna is based on Monarch's GEN 2 selfstructuring antenna (SSA) technology and provides polarization and beam-diversity for improving signal-to-noise ratio (SNR). The antenna works with University of Michigan's Narada platform, where a microcontroller monitors the RSSI and selects the best beam to maintain reliable RF link. Antenna has two wide beams for each polarization and the beams are selected by applying appropriate DC voltages to the RF switches on the antenna aperture. Paper presents the GEN C antenna, which is a smaller version of the GEN 2B with comparable performance features.

  14. Compact antennas for wireless communications and terminals theory and design

    CERN Document Server

    Laheurte, Jean-Marc

    2012-01-01

    Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, recon

  15. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  16. Modeling of the EAST ICRF antenna with ICANT Code

    Science.gov (United States)

    Qin, Chengming; Zhao, Yanping; Colas, L.; Heuraux, S.

    2007-09-01

    A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.

  17. A Review of the Four Dimension Antenna Arrays

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-wen; NIE Zai-ping

    2006-01-01

    The four dimensional (4D) antenna arrays introduce a fourth dimension, time, into conventional antenna arrays to offer greater flexibility in the design of high performance antenna arrays. This paper presents the tutorial on the study of 4D antenna arrays and the review of the recent research findings on 4D antenna arrays. Issues considered include the theory of 4D antenna arrays, different time modulation schemes, numerical simulation results, and some experimental results on their applications to low sidelobe designs. Throughout the discussion, some challenging issues on the study of 4D antenna arrays are highlighted.

  18. Location Refinement and Power Coverage Analysis Based on Distributed Antenna

    Institute of Scientific and Technical Information of China (English)

    赵晓楠; 侯春萍; 汪清; 陈华; 浦亮洲

    2016-01-01

    To establish wireless channel suitable for the cabin environment, the power coverage was investigated with distributed antenna system and centralized antenna system based on the actual measurement of channel im-pulse response. The results indicated that the distributed antenna system has more uniform power coverage than the centralized antenna system. The average relative errors of receiving power of both antennas were calculated. The optimal position of the centralized antenna was obtained by Gaussian function refinement, making the system achieve a better transmission power with the same coverage effect, and providing a reference for antenna location in the future real communication in the cabin.

  19. Design of Monopole Antenna Based on Fractal Geometry

    OpenAIRE

    Zhao Yuanqing; Qiu Jinghui; Wang Wei

    2014-01-01

    This paper presents a circular disc monopole antenna based on fractal geometry. The antenna is designed to be applied in UWB systems. So it is essential to ensure that the bandwidth of the antenna ranges from 3.1 GHz to 10.6 GHz, that is, IEEE 802.15.3a. However, the proposed antenna has achieved working in the required bandwidth. Compared to the antennas illustrated in most similar literatures, the proposed antenna has a much smaller size, which makes the antenna possible to be integrated wi...

  20. Open access

    CERN Document Server

    Suber, Peter

    2012-01-01

    The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work "open access": digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder consent, and many authors, musicians, filmmakers, and other creators who depend on royalties are understandably unwilling to give their consent. But for 350 years, scholars have written peer-reviewed journal articles for impact, not for money, and are free to consent to open access without losing revenue. In this concise introduction, Peter Suber tells us what open access is and isn't, how it benefits authors and readers of research, how we pay for it, how it avoids copyright problems, how it has moved from the periphery to the mainstream, and what its future may hold. Distilling a decade of Suber's influential writing and thinking about open access, this is the indispe...

  1. Multifrequency broadband polarized horn antenna

    Science.gov (United States)

    Green, K. A.

    1981-03-01

    A corrugated conical horn antenna is simultaneously fed a multiplicity of signals, two for each of five frequencies, with each of a pair of signals fed in each of two orthogonal planes for excitation of a desired spherical hybrid mode. The lowest frequency is fed into the horn through orthogonal pairs of colinear slots, each pair being fed by coaxial tee power dividers. Other signals are fed through a circular waveguide connected to the vertex. The highest frequency signals are fed through orthogonal ports near the far end of the circular waveguide. The intermediate frequency signals are fed through orthogonal ports spaced along the waveguide. Filtering is incorporated for each to maintain isolation and low insertion loss.

  2. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  3. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper;

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  4. Lens Antenna For Mobile/Satellite Communication

    Science.gov (United States)

    Bodnar, D. G.; Rainer, B. K.

    1988-01-01

    Flat, compact antenna made of stripline elements aimed at fixed elevation angle but steered electronically in azimuth. Design simplified by maintaining fixed elevation and relying on width of beam to cover desired elevation range. Need for phase shifter at each radiating element eliminated by arranging elements in circles and feeding through stripline disks called "R-KR lenses". Used in Mobile/Satellite Service, antenna mounted on top of vehicle on Earth and used to keep transmitted and received antenna beams aimed approximately toward communication satellite.

  5. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book deals with the design, numerical simulation, state of the art fabrication processes and methods, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of different topologies, such as: Planar Inverted F, Printed Monopoles, Micropoles and Microstrips. Novel trends, materials, and fabrication and measurement techniques used in this vital field of antenna systems are also discussed.To the best of the editor's knowledge, at the time of publication, there are no published books targeting the vital topic of flexible antennas specifically and/or se

  6. Ultra-wideband conformal helmet antenna

    OpenAIRE

    Lebaric, J.; Ah-Tuan Tan

    2000-01-01

    The article of record may be found at http://dx.doi.org/10.1.1109/APMC.2000.926116 This paper presents the development of an ultra-wideband (300 to 3000 MHz), vertically polarized, nearly omni-directional (in azimuth) communications antenna integrated into the camouflage cover of a standard military-issue Kevlar helmet. The Helmet Camouflage Cover Antenna (referred to as the “helmet antenna”) is one of three antennas (with the combined frequency coverage from 2 to 2000 MHz) based on the an...

  7. Implanted Antennas in Medical Wireless Communications

    CERN Document Server

    Rahmat-Samii, Yahya; Balanis, Constantine

    2006-01-01

    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  8. Experimental demonstration of superdirective dielectric antenna

    Energy Technology Data Exchange (ETDEWEB)

    Krasnok, Alexander E.; Filonov, Dmitry S.; Belov, Pavel A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Simovski, Constantin R. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Aalto University, School of Electric and Electronic Engineering, Aalto FI76000 (Finland); Kivshar, Yuri S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2014-03-31

    We propose and demonstrate experimentally a simple approach for achieving superdirectivity of emitted radiation for electrically small antennas based on a spherical dielectric resonator with a notch excited by a dipole source. Superdirectivity is achieved without using complex antenna arrays and for a wide range of frequencies. We also demonstrate the steering effect for a subwavelength displacement of the source. Finally, unlike previously known superdirective antennas, our design has significantly smaller losses, at the operation frequency radiation efficiency attains 80%, and matching holds in the 3%-wide frequency band without any special matching technique.

  9. Wideband Circularly Polarized Dielectric Rod Antenna

    OpenAIRE

    Min Guo; Ji-Jun Yan; Shun-Shi Zhong; Zhu Sun

    2012-01-01

    A new dielectric rod antenna (DRA) is introduced to produce circular polarization (CP) over a wide frequency band without a complex feed network. Along with the simulated results, measured results of the antenna prototype are presented, showing a 3 dB axial ratio (AR) CP bandwidth of 17.7%. The radiation characteristics of the fabricated antenna are also demonstrated showing the measured gain of better than 6.2 dBi. Moreover, the measured impedance bandwidth (VSWR ≤2) reaches 20.1%, from 8.75...

  10. Build a circularly polarized waveguide slot antenna

    Science.gov (United States)

    Kisliuk, M.; Axelrod, A.

    1987-06-01

    The development and design of a circularly polarized waveguide slot antenna are described. Consideration is given to the resonance frequency, radiation efficiencies, excitement, and resonant conductance of the transverse and longitudinal slots. The transverse and longitudinal slots in a rectangular guide are analyzed. The voltage distribution across the slot is calculated from the solution of a standard transmission line equation; and using the Poynting theorem the fields scattered by the slot in an arbitrary frequency range are determined. The proposed antenna is examined using an equivalent circuit; a diagram of the circuit is given. The radiation, slot, and antenna efficiencies are measured.

  11. Channels, propagation and antennas for mobile communications

    CERN Document Server

    Vaughan, Rodney; Bach Andersen, J

    2003-01-01

    This exceptional text introduces the reader to the theory and basis of antennas and propagation in the rapidly developing field of mobile communications. Topics covered include basic multipath mechanisms and propagation, and propagation modelling as well as short term channel behavior from two path and many path models and scenarios. Also, the basics of antenna design and operation are discussed including array antennas. This book promises to be a valuable reference work for many years to come, and will be an important addition to the bookshelves of telecommunications engineers and researcher

  12. Resonant double loop antenna development at ORNL

    International Nuclear Information System (INIS)

    As part of the development of ion cyclotron resonant heating (ICRH) systems for fusion research, Oak Ridge National Laboratory (ORNL) has built resonant double loop (RDL) antennas for the Tokamak Fusion Test Reactor (TFTR) (Princeton Plasma Physics Laboratory, Princeton, NJ, US) and Tore Supra (Centre d'Etudes Nucleaire, Cadarache, France). Each antenna has been designed to deliver 4 MW of power. The electrical circuit and the mechanical philosophy employed are the same for both antennas, but different operating environments lead to substantial differences in the designs of specific components. A description and a comparison of the technologies developed in the two designs are presented. 5 refs., 4 figs., 1 tab

  13. Planar Tri-Band Antenna Design

    Directory of Open Access Journals (Sweden)

    M. Pokorny

    2008-04-01

    Full Text Available The paper briefly uncovers techniques used for a design of compact planar antennas in order to achieve the wideband and the multi-band capability. The main topic is aimed to the multi-objective optimization using genetic algorithms. A quarter-wavelength planar inverted-F antenna (PIFA using a slot and shorted parasitic patches is chosen to cover GSM900, GSM1800 and ISM2400 bands. A global multi-objective optimization uses a binary genetic algorithm with a composite objective function to tune this antenna. The impedance match and the direction of maximum gain are desired parameters to improve.

  14. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  15. A directional antenna for borehole radar

    International Nuclear Information System (INIS)

    The borehole radar system developed during phase II of the International Stripa Project has been successfully applied to mapping fracture zones up to 100 meters from the borehole in granite. The techniques previously used to determine the orientation of fracture zones (single hole reflection, crosshole reflection, crosshole tomography) have been supplemented with a directional antenna, which makes it possible to determine the orientation from measurements in a single borehole. The antenna works by synthesizing four signals to produce directional information. Tests performed in Stripa show that the resolution of the antenna is about 50

  16. Wideband Reconfigurable Rolled Planar Monopole Antenna

    OpenAIRE

    Ruvio, Giuseppe; Ammann, Max

    2007-01-01

    A novel technique to reconfigure the frequency range of a planar monopole antenna is presented. By adjusting the degree of spiral tightness, a shift of the well-matched operating frequency range is achieved. The proposed antenna is capable of covering the frequencies in the range from 2.9 to 15 GHz, depending on the degree of spiral tightness. The antenna yields a high-efficiency across the full operating bandwidth. Radiation patterns show good omni-directional features in all primary cuts an...

  17. Antenna development for high field plasma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kong, X.; Domier, C. W.; Luhmann, N. C. Jr. [Department of Applied Science, University of California at Davis, Davis, California 95616 (United States)

    2010-10-15

    Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) are two microwave nonperturbing plasma visualization techniques that employ millimeter-wave imaging arrays with lens-coupled planar antennas, yielding time-resolved images of temperature (via ECEI) and electron density (via MIR) fluctuations within high temperature magnetic fusion plasmas. A series of new planar antennas have been developed that extend this technology to frequencies as high as 220 GHz for use on high field plasma devices with toroidal fields in excess of 3 T. Antenna designs are presented together with theoretical calculations, simulations, and experimental measurements.

  18. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    Science.gov (United States)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  19. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    Science.gov (United States)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  20. UHF RFID Antenna: Printed Dipole Antenna with a CPS Matching Circuit and Inductively Coupled Feed

    OpenAIRE

    Nenad Popović

    2011-01-01

    This paper presents simulated (WIPL‐D pro) and measured results of a UHF RFID antenna realized with a dipole matched to a CPS (Coplanar Stripline) and inductively coupled with a small rectangular loop. Such a design enables achieving and controlling high values of the inductive reactance that is necessary for obtaining good match of the antenna to an Application Specific Integrated Circuit (ASIC) chip. The antenna is characterized by a simple and robust design, which results in low‐cost re...

  1. Range-Angle-Dependent Beamforming by Frequency Diverse Array Antenna

    OpenAIRE

    Wen-Qin Wang; Huaizong Shao; Jingye Cai

    2012-01-01

    This paper proposes a range-angle-dependent beamforming for frequency diverse array (FDA) antenna systems. Unlike conventional phased-array antenna, the FDA antenna employs a small amount of frequency increment compared to the carrier frequency across the array elements. The use of frequency increment generates an antenna pattern that is a function of range, time and angle. The range-angle-dependent beamforming allows the FDA antenna to transmit energy over a desired range or angle. This prov...

  2. A Linearly and Circularly Polarized Active Integrated Antenna

    OpenAIRE

    Khoshniat, Ali

    2011-01-01

    This thesis work presents a new harmonic suppression technique for microstrip patch antennas. Harmonic suppression in active integrated antennas is known as an effective method to improve the efficiency of amplifiers in transmitter side. In the proposed design, the antenna works as the radiating element and, at the same time, as the tuning load for the amplifier circuit that is directly matched to the antenna. The proposed active antenna architecture is easy to fabricate and is symmetric, so ...

  3. Circularly Polarized Solar Antenna for Airborne Communication Nodes

    OpenAIRE

    O’Conchubhair, Oisiin; Narbudowicz, Adam; McEvoy, Patrick; Ammann, Max

    2015-01-01

    A circularly polarized solar cell antenna consisting of four sequentially rotated printed inverted-F antennas is proposed. Four multicrystalline silicon solar cells act as the ground plane and the antenna is suitable for low power airborne communication nodes and wireless sensor networks. The antenna design was developed to allow 100% insolation of the cells when directly facing a light source. The low-profile antenna minimises shadowing of the solar cell for oblique angle insolation.

  4. Antenna Evaluation for Ultra-Wideband Microwave Imaging

    OpenAIRE

    Elise C. Fear; Trevor Williams; Campbell, Mark A.; Jeremie Bourqui

    2010-01-01

    Numerous antenna designs have been proposed for microwave breast imaging utilizing an ultra-wideband frequency range. The antennas are typically compact, operate in an immersion medium, and have a band covering at least 2–10 GHz. We have developed 3 antennas for our UWB microwave breast imaging system. In this contribution, we compare the performance of the antennas in order to gain insight into the relationship between antenna performance metrics and image quality.

  5. Modern antenna measurements and diagnostics including phaseless techniques

    OpenAIRE

    Rahmat-Samii, Yahya; Yaccarino, R. G.

    1997-01-01

    Microwave antenna imaging techniques are a practical and popular method for antenna diagnostic analysis. Phase retrieval methods, however, are just beginning to emerge as an alternative mircowave antenna measurements technique when phase cannot be directly measured. This article focuses on recent advances in microwave antenna imaging, diagnostic techniques, and phase retrieval methods for bi-polar planar near-field antenna measurements. An overview of the bi-polar planar near-field technique ...

  6. Planar MIMO Antenna with Slits for WBAN Applications

    OpenAIRE

    Do-Gu Kang; Jinpil Tak; Jaehoon Choi

    2014-01-01

    A planar MIMO antenna with slits for WBAN applications is proposed. The antenna consists of two PIFAs, ground pads, and two slits. By adding ground pads, the antenna size is reduced with improved impedance matching. Through two slits in a ground plane, the isolation characteristic is improved and the resonant frequency can be controlled. To analyze the antenna performance on a human body, the proposed antenna on a human equivalent flat phantom is investigated through simulations. Regardless o...

  7. A Novel Wideband Semi-planar Miniaturized Antenna

    OpenAIRE

    Ruvio, Giuseppe; Ammann, Max

    2007-01-01

    A semi-planar miniaturized antenna which operates over the FCC allocated UWB spectrum is presented. The small antenna comprises a folded conducting element connected to a printed section. Several solutions are introduced which create different current paths increasing the effective dimensions of the antenna. The antenna is examined for the stand-alone case and for the antenna mounted in various locations on a larger handset-type groundplane. The impedance and radiation characteristics ...

  8. An Introduction of Aperture Coupled Microstrip Slot Antenna

    OpenAIRE

    Zarreen Aijaz; S.C Shrivastava

    2010-01-01

    A microstrip slot antenna is very small and lightweight still it has the problem of back radiation due to which power loss occurs and the SAR increases. To reduce the back lobe a technique introduces i.e. aperture coupled microstrip slot antenna which reduces the back lobe as well as increases the bandwidth of the antenna. Aperture coupled microstrip slot antenna couples the patch antenna with microstripline through an aperture.

  9. Directional Pattern Analysis of a Linear Phased Antenna

    Directory of Open Access Journals (Sweden)

    Jan Haring

    2008-01-01

    Full Text Available An antenna array is a system compound from simply radiators (dipoles, microstrip antennas, that together form desired radiation pattern. Phased array antennas consist of multiple stationary antenna elements, that are fed coherently and use variable phase or time-delay control at each element to scan a beam to given angles in space. Variable amplitude control is sometimes also provided for antenna pattern shaping.

  10. Dual-Frequency Operation of Bow-Tie Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    钟顺时; 张需溥

    2005-01-01

    Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.

  11. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  12. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    OpenAIRE

    B.T.P.Madhav; S.S. Mohan Reddy; Neha Sharma; J. Ravindranath Chowdary; Bala Rama Pavithra; K.N.V.S. Kishore; G Sriram; B. Sachin Kumar

    2013-01-01

    In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  13. Performance Characterization of Radial Stub Microstrip Bow-Tie Antenna

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2013-04-01

    Full Text Available In this paper a novel radial stub feeding microstrip bow-tie antenna is designed to operate between C and X band and its performance characterization is presented. This antenna is having simple structure and topology over other stub loaded antennas. In addition the proposed antenna adjusts to the desired frequency easily. Antenna output parameters like radiation pattern, axial ratio, directive gain andquality factor are simulated and presented in this current work.

  14. Time-domain antenna studies for videopulse subsurface radars

    OpenAIRE

    Boryssenko, Anatoliy O.

    1999-01-01

    The results of time-domain theoretical and experimental studies of ultra-wide band antennas with impulse excitation in radiating and receiving modes are presented. The antennas under consideration, like a monopole antenna, a dipole antenna and a horn-like antenna, are used widely for high-resolution videopulse subsurface (ground-penetrating) radars and should be operated near the border between two medias with different electrical properties.

  15. Automated Antenna Design with Evolutionary Algorithms

    Science.gov (United States)

    Linden, Derek; Hornby, Greg; Lohn, Jason; Globus, Al; Krishunkumor, K.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  16. Access French

    CERN Document Server

    Grosz, Bernard

    2014-01-01

    Access is the major new language series designed with the needs of today's generation of students firmly in mind. Whether learning for leisure or business purposes or working towards a curriculum qualification, Access French is specially designed for adults of all ages and gives students a thorough grounding in all the skills required to understand, speak, read and write contemporary French from scratch. The coursebook consists of 10 units covering different topic areas, each of which includes Language Focus panels explaining the structures covered and a comprehensive glossary. Learning tips

  17. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    Science.gov (United States)

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  18. Cylindrical Dielectric Resonator Antennas with Harmonic Control as an Active Antenna Radiator

    Directory of Open Access Journals (Sweden)

    L. Lucci

    2009-01-01

    Full Text Available A cylindrical dielectric resonator antenna is proposed as a radiator for an active integrated antenna. Harmonic tuning, which is the key step in designing active antenna radiators, is achieved via a combination of shape factor control over the resonator and insertion of reactive elements in the feed system. Numerical simulations are carried out in a finite elements framework and a layout for the complete antenna is proposed, aimed at compactness for subsequent utilization of the radiator as an element in an active array for satellite communications.

  19. Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design

    Directory of Open Access Journals (Sweden)

    Jérôme Wenger

    2012-01-01

    Full Text Available Plasmonic antennas offer promising opportunities to control the emission of quantum objects. As a consequence, the fluorescence enhancement factor is widely used as a figure of merit for a practical antenna realization. However, the fluorescence enhancement factor is not an intrinsic property of the antenna. It critically depends on several parameters, some of which are often disregarded. In this contribution, I explore the influence of the setup collection efficiency, emitter's quantum yield, and excitation intensity. Improperly setting these parameters may significantly alter the enhancement values, leading to potential misinterpretations. The discussion is illustrated by an antenna example of a nanoaperture surrounded by plasmonic corrugations.

  20. Modelling of mixed-phasing antenna-plasma interactions on JET A2 antennas

    International Nuclear Information System (INIS)

    The use of mixed(monopole-dipole)-phasing of a set of ion cyclotron range of frequency antennas is potentially useful to optimize tokamak performance. However, recent mixed-phasing experiments on JET, described here, showed undesirable antenna-plasma interactions under certain circumstances. A possible physical mechanism to explain the experimental results is discussed, namely, rf-driven dc parallel currents flowing between adjacent antennas with different phasings can lead to arcing on the antenna with the largest sheath voltage. Means of controlling the interaction are discussed. (author)

  1. Dual-Band Integrated Antennas for DVB-T Receivers

    Directory of Open Access Journals (Sweden)

    Andrea D'alessandro

    2013-01-01

    Full Text Available An overview on compact Planar Inverted-F Antennas (PIFAs that are suitable for monitor-equipped devices is presented. In particular, high efficiency PIFAs (without any dielectric layer with a percentage bandwidth (%BW greater than 59% (470–862 MHz DVB-T band are considered. In this context, two PIFA configurations are reviewed, where a dual-band feature has been obtained, in the 3300–3800 MHz (14% percentage bandwidth WiMAX and 2400–2484 MHz (2.7% percentage bandwidth WLAN IEEE 802.11b,g frequency bands, respectively, to also guarantee web access to on-demand services. The two PIFAs fill an overall volume of  mm3 and  mm3, respectively. They are composed of a series of branches, properly dimensioned and separated to generate the required resonances. Finally, to show the extreme flexibility of the previous two configurations, a novel dual-band L-shape PIFA has been designed. A reflection coefficient less than −6 dB and −10 dB and an antenna gain of around 2 dBi and 6.3 dBi have been obtained in the 470–862 MHz DVB-T band and the 2400–2484 MHz WLAN band, respectively. The L-shape PIFA prototype can be obtained by properly cutting and folding a single metal sheet, thus resulting in a relatively low-cost and mechanically robust antenna configuration.

  2. Wideband P-Shaped Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    M.Khalily

    2013-04-01

    Full Text Available A novel P-shaped dielectric resonator antenna (DRA is presented and investigated for wideband wireless application. By using P-shaped resonator, a wideband impedance bandwidth of 80% from 3.5 to 8.2 GHz is achieved. The antenna covers all of wireless systems like C-band, 5.2, 5.5 and 5.8 GHz-WLAN and WiMax. The proposed antenna has a low profile and the thickness of the resonator is only 5.12 mm, which is 0.06-0.14 free space wavelength. A parametric study is presented. The proposed DRA is built and the characteristics of the antenna are measured. Very good agreement between numerical and measured results is obtained.

  3. General properties of dielectric optical antennas.

    Science.gov (United States)

    Schuller, Jon A; Brongersma, Mark L

    2009-12-21

    Using Mie theory we derive a number of general results concerning the resonances of spherical and cylindrical dielectric antennas. Specifically, we prove that the peak scattering cross-section of radiation-limited antennas depends only on the resonance frequency and thus is independent of refractive index and size, a result which is valid even when the resonator is atomic-scale. Furthermore, we derive scaling limits for the bandwidth of dielectric antennas and describe a cylindrical mode which is unique in its ability to support extremely large bandwidths even when the particle size is deeply subwavelength. Finally, we show that higher Q antennas may couple more efficiently to an external load, but the optimal absorption cross-section depends only on the resonance frequency. PMID:20052120

  4. Whistler wave ducting caused by antenna actions

    International Nuclear Information System (INIS)

    Whistler waves launched from an antenna damp away for small incident power. With increasing power, undamped nondiverging waves (the ducted waves) are observed, together with a field-aligned density trough and electron heating. However, the density trough is found not only in the wave propagation regime (ω/ω/sub c/1). This implies that the density depression is mainly created by the effect of the antenna near-zone field rather than by the wave radiation pressure. The intense localized field near the antenna gives rise to electron heating which leads to the density trough. The ducting of antenna-launched whistler waves has been explained as a filamentation instability in terms of nonlinear wave-plasma interactions

  5. Metamaterial Multiband Antenna for Wireless Application

    Directory of Open Access Journals (Sweden)

    Nader AZIZI

    2014-01-01

    Full Text Available In this work a Multi-band antenna along with the innovative metamaterial structure is proposed which consists of a circular geometry incorporated with c shaped structure. This work is mainly focused on increasing the potential parameters of planar antennas and analyzing the multi band operation of proposed antenna. The impedance bandwidth of proposed antenna are covered and utilized frequency range of (2.6~3.1 GHz, (3.5~4.4 GHz and (4.7~6.2 GHz. For verifying that the proposed metamaterial structure possesses Negative values of Permeability and Permittivity within the operating frequency ranges, Nicolson-Ross-Weir method (NRW has been employed. For simulation purpose HFSS Software has been used.

  6. Implantable microwave antennas for thermal therapy

    Science.gov (United States)

    Stauffer, Paul R.

    1998-04-01

    The purpose of this article is to review the physical construction and power deposition characteristics of interstitial microwave antennas that may be used for highly localized heating of tissue at depth in the human body. Several different antenna designs are described and matched with potential clinical applications that range from moderate temperature Hyperthermia therapy to tissue- necrosing Thermal Ablation therapy. Typical clinical procedures are outlined for thermal treatment of target sites such as brain, prostate, heart, and gynecologic region tissues. Associated methods of implanting the antennas and coupling microwave energy into the surrounding tissue are also described, including the use of single or multi-chamber stiff, flexible or inflatable balloon type catheters, with or without circulating air or water cooling. With numerous references to the primary literature, this material should provide a framework for analyzing potential new applications for interstitial microwave antennas, as derived from the physical capabilities and limitations of the available hardware and techniques.

  7. Advanced Antenna for Digital Beamforming SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a wideband (500 MHz) L-band phased-array antenna for airborne Synthetic Aperture Radar (SAR) applications based on a novel approach that will make possible...

  8. Phase shifter for antenna beam steering

    Science.gov (United States)

    Jindal, Ravi; Razban, Tchanguiz

    2016-03-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  9. Optimization of Far-Field Antenna Range

    Directory of Open Access Journals (Sweden)

    O. Cerny

    2015-12-01

    Full Text Available Measurements of test antennas are performed on antenna ranges. The operated microwave far-field outdoor range was built-up in 1970’s and therefore it was not appropriate for the today measurements. Thus, it was decided to perform the complete reconstruction and testing. Some results of new ample measurement campaign are just given. The optimization of antenna range using merely measurement is very inefficient, and therefore that is done by numerical simulations. Consequently the paper surveys briefly electromagnetic wave propagation over irregular terrain. The physical optics approximation of vector problem was chosen. That allows the comparison of selected numerical simulations and measurements for the reconstructed far-field range. A possibility of antenna range optimizing by using numerical simulation considering various constraints is verified.

  10. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, and stands ready...

  11. Textile Antenna for 50 ohm Applications

    Directory of Open Access Journals (Sweden)

    Robi Dahal

    2012-01-01

    Full Text Available The new generation of textile materials have the capability to conduct electricity and at the same time be wearable. There are much more applications involved if an antenna is made from parts that are totally wearable. This new property of conductivity in textile materials is used to implement the wireless functions to clothing. In general, the antennas are made of highly conductive metal with is a solid structure, which results in stable output. The challenge with textile antenna is output stability which is given by pure textile material of the radiating element, dielectric material and also ground, which can be can be folded and twisted. The paper presents the design and fabricated output results of the textile antenna which is used for the 50 ohm system (as GPS or WLAN at 2,45 GHz.

  12. Fast cooling techniques for gravitational wave antennas

    CERN Document Server

    Furtado, S R

    2002-01-01

    The resonant-mass technique for the detection of gravitational waves may involve, in the near future, the cooling of very large masses (about 100 tons) from room temperature (300 K) to extreme cryogenic temperatures (20 mK). To cool these detectors to cryogenic temperatures an exchange gas (helium) is used, and the heat is removed from the antenna to the cold reservoir by thermal conduction and natural convection. With the current technique, cooling times of about 1 month can be obtained for cylindrical bar antennas of 2.5 tons. Should this same technique be used to cool a 100 ton spherical antenna the cooling time would be about 10 months, making the operation of these antennas impracticable. In this paper, we study the above-mentioned cooling technique and others, such as thermal switching and forced convection from room temperature to liquid nitrogen temperature (77 K) using an aluminium truncated icosahedron of 19 kg weight and 25 cm diameter.

  13. Development of ceramic-free antenna feeder

    International Nuclear Information System (INIS)

    We have proposed a ceramics-free antenna feeder line employing a ridged waveguide as a local support for IC antenna of next-generation tokamaks. One fourth mock-up model of the all metal waveguide designed for the ITER ICRF system is fabricated and electrical characteristics of the model including the coaxial line - waveguide converter are measured. Power reflection coefficient of the model including the coax-waveguide converter to the input coaxial line is estimated to be less than 15% below the cut-off frequency of 107 MHz and less than 3% above the cut-off frequency. It is found that this ceramics-free antenna support employing a ridged waveguide is quite available for IC antenna of next-generation tokamaks. (author)

  14. Microfabricated G-Band Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  15. Slot Coupled Patch Array Antenna Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is an antenna array whose beam is controlled digitally. The Phase 1 effort will assess the method needed to achieve the gain, bandwidth, and...

  16. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  17. NRAO RF Anechoic Chamber & Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  18. Microfabricated Millimeter-Wave Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  19. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  20. MEMS-Enabled Smart Reconfigurable Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A prototype wearable smart reconfigurable antenna for the Suit will be built to be used during NASA's EVA operations on lunar surface. The design is based on the...

  1. A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

    OpenAIRE

    Yingsong Li; Wenhua Yu

    2015-01-01

    A miniaturized triple band monopole antenna with a small size is proposed and its performance is investigated both numerically and experimentally for worldwide interoperability for microwave access (WiMAX) and wireless local area network (WLAN) applications. The three resonance frequencies are realized by using a toothbrush-shaped patch (TSP), a meander line (ML), and an inverted U-shaped patch (IUSP). The center frequencies of the triple bands can be controlled by adjusting th...

  2. Deployable Wide-Aperture Array Antennas

    Science.gov (United States)

    Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Chu, Andrew; Scully, Robert C.

    2005-01-01

    Inexpensive, lightweight array antennas on flexible substrates are under development to satisfy a need for large-aperture antennas that can be stored compactly during transport and deployed to full size in the field. Conceived for use aboard spacecraft, antennas of this type also have potential terrestrial uses . most likely, as means to extend the ranges of cellular telephones in rural settings. Several simple deployment mechanisms are envisioned. One example is shown in the figure, where the deployment mechanism, a springlike material contained in a sleeve around the perimeter of a flexible membrane, is based on a common automobile window shade. The array can be formed of antenna elements that are printed on small sections of semi-flexible laminates, or preferably, elements that are constructed of conducting fabric. Likewise, a distribution network connecting the elements can be created from conventional technologies such as lightweight, flexible coaxial cable and a surface mount power divider, or preferably, from elements formed from conductive fabrics. Conventional technologies may be stitched onto a supporting flexible membrane or contained within pockets that are stitched onto a flexible membrane. Components created from conductive fabrics may be attached by stitching conductive strips to a nonconductive membrane, embroidering conductive threads into a nonconductive membrane, or weaving predetermined patterns directly into the membrane. The deployable antenna may comprise multiple types of antenna elements. For example, thin profile antenna elements above a ground plane, both attached to the supporting flexible membrane, can be used to create a unidirectional boresight radiation pattern. Or, antenna elements without a ground plane, such as bow-tie dipoles, can be attached to the membrane to create a bidirectional array such as that shown in the figure. For either type of antenna element, the dual configuration, i.e., elements formed of slots in a conductive

  3. The investigation of radiation characteristics of Fresnel antenna for Q-band

    OpenAIRE

    Magro, V. I.; Morozov, V M

    2003-01-01

    The general approach to analysis of zonal Fresnel antenna is considered. The frequency characteristics of Fresnel antenna are analyzed. The radiation characteristics of the Fresnel antenna are considered.

  4. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... inherently decoupled when integrated on the same handset, while also other parameters such as frequency duplex distance and interaction with the users body influence the mutual coupling....

  5. Nonlinear effects in microwave antenna feeds

    OpenAIRE

    Semenikhina, Diana V.

    1995-01-01

    The theoretical basis for the analysis of experimentally observed nonlinear effects and associated electromagnetic compatibility problems in microwaves antenna feeds has been absent so far. This caused the necessity of carrying out the present work. The paper is aimed on the research of interior nonlinear electromagnetic problems. Here, the analysis of nonlinear effects arising in microstrip antenna feed line on a concentrated nonlinear element such as diode is carried out. Evaluations of non...

  6. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-22

    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  7. Highly sensitive beam steering with plasmonic antenna

    OpenAIRE

    Guanghao Rui; Qiwen Zhan

    2014-01-01

    In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna...

  8. Broadband high efficiency active integrated antenna

    OpenAIRE

    Qin, Yi

    2007-01-01

    Active integrated antenna (MA) is a very popular topic of research during recent decades. This is mostly due to its advantages, such as compact size, multiple functions and low cost, etc. The MA system can be regarded as an active microwave circuit which the output or input port is free space instead of a conventional 50-ohm interface. The major drawbacks of the conventional MA include narrow bandwidth, low efficiency, etc. An experimental investigation on broadband slot-coupled antenna is ca...

  9. Circularly Polarized Broadband RFID Microstrip Tag Antenna

    OpenAIRE

    B. Rajini; G. V. Subrahmanyam

    2014-01-01

    In recent years, the application of radio frequency identification (RFID) operating in the ultra-high frequency (UHF) band (860-960MHz) are expanding exponentially, due to the advantages such as long reading distance, high data transfer rate, and small tag size. So the design of a CP tag antenna with broadband characteristic is presently one of the most challenging topics. This project presents a square patch passive RFID tag antenna designed for UHF band. To a...

  10. Investigation of a Short Conical Helix Antenna

    OpenAIRE

    Nakano, Hisamatsu; Mikawa, Takao; Yamauchi, Junji

    1985-01-01

    The input impedance, radiation pattern, axial ratio, and power gain of a conical helix antenna with a short arm are calculated as a function of frequency, using theoretically determined current distributions. It is shown that the antenna radiates a circularly polarized wave over a frequency range ratio of about 1:1.2, having a power gain of about 7.7 dB. The experimental results are also presented.

  11. Optimization of RFID antenna web materials

    OpenAIRE

    Perttu, Inkeri

    2015-01-01

    Radio frequency identification can be used to identify items which have antenna attached. The use of radio frequency identification continues to grow which leads to the development of the industry. Antennas can be manufactures with several methods. Etching is the most common method and the substrate used is polyethylene terephthalate (PET). This Master’s Thesis is about more sustainable manufacturing method and materials used in the process. The investigated process manufactures first a s...

  12. Optical nano-antennas and metamaterials

    OpenAIRE

    Sailing He; Yanxia Cui; Yuqian Ye; Pu Zhang; Yi Jin

    2009-01-01

    We review some recent approaches to transmission enhancement and light harvesting based on optical nano-antennas and metamaterials. Nano-cavity antennas are used to enhance the extraordinary transmission of TM-polarized light through vertical nano-slits in a metal film. The enhanced transmission of TE-polarized waves through an array of subwavelength-slits in a thin metal film at low frequencies (including microwave) is also investigated. Light harvesting with a metamaterial cloaking shell is...

  13. Broadband Approximations for Doubly Curved Reflector Antenna

    OpenAIRE

    V. Schejbal; J. Pidanic

    2010-01-01

    The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn) producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth ...

  14. OPTIMAL DESIGN OF SMART ANTENNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    Gao Feng; Liu Qizhong; Shan Runhong; Zhang Hou

    2004-01-01

    This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.

  15. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  16. Far-infrared imaging antenna arrays

    OpenAIRE

    Neikirk, Dean P.; Rutledge, David B.; Muha, Michael S.; Park, Hyeon; Yu, Chang-Xuan

    1982-01-01

    A far-infrared imaging antenna array has been demonstrated for the first time. The array is a line of evaporated silver bow-tie antennas on a fused-quartz substrate with bismuth-microbolometer detectors. The measured optical transfer function shows that the system is diffraction limited. This imaging array should find direct application in fusion plasma diagnostics. If the microbolometers can be replaced by more sensitive diode detectors, the array should also find application in radiometry a...

  17. Broadband circularly polarized antennas for UHF SATCOM

    OpenAIRE

    Tekin, İbrahim; Tekin, Ibrahim; Manzhura, Oksana; Niver, Edip

    2011-01-01

    Novel circularly polarized (CP) antenna configurations derived from Moxon type antenna (bent dipole element over a ground plane) for broadband VHF SATCOM applications. A sequence of topologies starting from a single vertical element to two vertical elements of the Moxon arms, then widened strip arm elements were studied. Further, arms were widened to bow tie structures with bents at 900.for achieving broadband operation. Bow tie elements were further split and optimized at a certain angle to...

  18. Adjusting Surfaces Of Large Antenna Reflectors

    Science.gov (United States)

    Padula, Sharon L.; Adelman, Howard M.; Bailey, Marion C.; Hoftka, Raphael T.

    1989-01-01

    New approach more effective than traditional rms-surface-distortion approach. Optimization procedure for control of shape of reflector of large space antenna (LSA). Main feature is shape-controlling mathematical mechanism driven by need to satisfy explicit EM design requirements. Uses standard finite-element structural analysis, aperture-integration EM analysis, and constrained optimization techniques to predict set of actuator inputs that improves performance of antenna while minimizing applied control effort. Procedure applicable to wide variety of LSA concepts.

  19. Design and Development of VSAT Antenna Feed .

    Directory of Open Access Journals (Sweden)

    S. Christopher

    1996-10-01

    Full Text Available The paper deals with the design and development of a dual polarised corrugated conical horn employed as a feed for parabolic reflector antennas used in very small aperture terminal applications. The VSAT antenna feed is designed, fabricated and tested to operate over a band from 3.7 GHz to 6.5GHz with good pattern symmetry, low side lobes and low cross-polarisation.

  20. 3-D transponder antennas for future SHF RFID applications

    Science.gov (United States)

    Zichner, R.; Baumann, R. R.

    2011-12-01

    The radio frequency identification (RFID) technology is omnipresent since a few years. Some of the most popular fields of application are the use for security tasks, for logistics and for the consumer segment. For example, chip card or key ring sized RFID transponders can allow wireless access to secured rooms. The number of applications for wireless data transmission for the identification and tracking of objects increases every year. There is a large development need for highly functional and inexpensive RFID transponders due to the ever-increasing demand on improved reliability, higher data rates and read and write ranges of the RFID systems. Therefore, research was performed on new 3-D transponder antennas for the Super High Frequency Band around 5.8 GHz. Additionally, wave propagation effects and the influence of different dielectric environments were considered. Parallel to the design of the novel antenna structures, the printing process for inexpensive manufacturing was investigated. The gained results are the basis for prospective RFID applications.

  1. Electronically steerable millimeter-wave antennas

    Science.gov (United States)

    Varadan, Vijay K.; Varadan, Vasundara V.; Jose, K. A.; Kelly, James F.

    1994-05-01

    In this paper, electronically steerable microstrip and leaky wave antennas using tunable ferroelectric material are proposed. These antennas are lightweight, low volume, low profile, and conformal. They have low fabrication costs and are easily mass produced. They are thin and do not perturb the aerodynamics of a host automobile or aircraft. Linear, circular, and dual polarization are achieved with simple changes in feed position. Beam steering is accomplished by varying the relative phase between radiating elements. In planar array, both horizontal and vertical beam can be combined to provide full scanning capabilities. Tunable ceramic phase shifters are used in these antennas. In microstrip antennas, they are deposited as thin films on the feed lines whereas in the leaky wave antennas they have been used as a traveling waveguide with a ground plane on one side and metallic periodic grating on the opposite side. The dielectric properties of the ferroelectric material are changed by a bias voltage applied to the waveguide which in turn controls the leaky wave direction of the antenna. A simple experiment is presented which shows a good agreement with the theoretical prediction.

  2. ICRF antenna performance on Tore Supra

    Science.gov (United States)

    Goulding, R. H.; Carter, M. D.; Harris, J. H.; Hoffman, D. J.; Hogan, J. T.; Ryan, P. M.; Beaumont, B.; Bremond, S.; Hutter, T.

    1997-04-01

    Resonant double loop (RDL) ion cyclotron range of frequencies (ICRF) Antennas have operated on Tore Supra at power levels up to ˜3.5 MW per 2-element launcher. The RDL configuration is of particular interest because it has operated at high power densities (15 MW/m2 on Tore Supra) and is the topology chosen for the ITER ICRF launchers. Two Faraday shield designs are in use which produce different loading for nearly identical antenna radial positions, and different heating patterns on antenna surfaces due to rf/edge plasma interaction. Loading and maximum antenna voltage for a given power level have been found to vary between the different antennas in a frequency dependent manner. This behavior has been analyzed using a lossy transmission model. In addition, antenna surface heating patterns have been found to be highly phase dependent and reproducible over time. Strong localized power fluxes are often observed to determine the launcher power limit rather than internal voltages and currents.

  3. ICRF antenna performance on Tore Supra

    International Nuclear Information System (INIS)

    Resonant double loop (RDL) ion cyclotron range of frequencies (ICRF) Antennas have operated on Tore Supra at power levels up to ∼3.5MW per 2-element launcher. The RDL configuration is of particular interest because it has operated at high power densities (15MW/m2 on Tore Supra) and is the topology chosen for the ITER ICRF launchers. Two Faraday shield designs are in use which produce different loading for nearly identical antenna radial positions, and different heating patterns on antenna surfaces due to rf/edge plasma interaction. Loading and maximum antenna voltage for a given power level have been found to vary between the different antennas in a frequency dependent manner. This behavior has been analyzed using a lossy transmission model. In addition, antenna surface heating patterns have been found to be highly phase dependent and reproducible over time. Strong localized power fluxes are often observed to determine the launcher power limit rather than internal voltages and currents. copyright 1997 American Institute of Physics

  4. Advanced ICRF antenna design for R-TOKAMAK

    International Nuclear Information System (INIS)

    The advanced ICRF antennas designed for the R-TOKAMAK (a proposal in the Institute of Plasma Physics, Nagoya University) are described. They are a standard loop antenna and a panel heater antenna for fast wave heating, and a waveguide antenna for ion Bernstein wave heating. The standard loop antenna is made of Al-alloy and has a simple structure to install because of radioactivation by D-T neutrons. For a high power heating, a new type antenna called 'Panel heater antenna' is proposed, and it has a wide radiation area and is able to select a parallel wave number. The field pattern of the panel heater antenna is measured. The feasibility of the waveguide antenna is discussed for the ion Bernstein wave heating. The radiation from the aperture of the double ridge waveguide is experimentally estimated with a load simulating the plasma. (author)

  5. Improvement of Power Efficiency using Smart Antenna System in MANETs

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    2014-11-01

    Full Text Available Performance of ad-hoc networks is low under omnidirectional antenna systems compared to smart antenna system. Directional antennas cover large area {&} save some amount of transmitted power because it focuses in desired direction accordance with mobility of nodes while Omni-directional antennas cover small area {&} needs large transmitted power as compared to Smart Antenna System (SAS. In this paper, we will overcome the problem of unnecessary transmitted power wastage with omnidirectional antenna system in ad-hoc wireless networks by using Smart Antenna Systems (SAS. We will calculate {&} analyze transmitted power variations with different number of mobile nodes in mobile ad-hoc networks [MANETs] with smart antenna system (SAS {&} Omni-directional antenna system in different conditions. Firstly, we will calculate {&} analyze transmitted power during flooding of packets means in case of route creation, and secondly, when communication will established between transmitter {&} receiver

  6. Analysis of equivalent antenna based on FDTD method

    Institute of Scientific and Technical Information of China (English)

    Yun-xing YANG; Hui-chang ZHAO; Cui DI

    2014-01-01

    An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD) method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is air)takes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  7. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  8. Design of Monopole Antenna Based on Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Zhao Yuanqing

    2014-01-01

    Full Text Available This paper presents a circular disc monopole antenna based on fractal geometry. The antenna is designed to be applied in UWB systems. So it is essential to ensure that the bandwidth of the antenna ranges from 3.1 GHz to 10.6 GHz, that is, IEEE 802.15.3a. However, the proposed antenna has achieved working in the required bandwidth. Compared to the antennas illustrated in most similar literatures, the proposed antenna has a much smaller size, which makes the antenna possible to be integrated with portable devices. Firstly, the antenna was designed through CST Microwave Studio. Then, the antenna was fabricated according to the simulated results. At last, the comparison between the simulated results and measured results was carried out which demonstrated good consistency.

  9. Performance Evaluation & Application of Smart Antenna in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nidhi jain

    2011-09-01

    Full Text Available This research work provides a method for forming a communications link of Wireless Sensor Networks (WSN by enabling each WSN to act as a smart antenna. Each WSN is simulated as a set of randomly placed sensor nodes within a planar area. The proposed method involves a searching WSN, a receiving WSN and a link budget for establishing the link. The searching WSN has the task of transmitting a search beam in order to find adjacent WSNs. We also demonstrate that for a given required gain level we can spatially thin the array without significant loss of gain or the effects of grating lobes. The receiving WSN uses a spread spectrum based space division multiple access (SDMA receiver. This receiver is simulated to determine the direction of arrival from the searching WSN and to extract the location information from the searching WSN’s signal with additive white Gaussian noise.

  10. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2015-01-01

    A novel verticall A novel vertically polarized dpolarize , omnidirection omnidirectional l , printed slot loop antenna h sprinted slot loop antenna has been designed, simulated, fabricated, and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform a...

  11. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    antenna diagnostics and perform a detailed systematic study of the extreme near-field of a standard gain horn at 60GHz from planar and spherical near-field measurement data. The magnitude and phase of all three rectangular components of the electric and the magnetic aperture fields are calculated, as is......We previously demonstrated that 60 GHz planarnear-field antenna measurements without external frequency conversion can provide far-field radiation patterns in good agreement with spherical near-field antenna measurements in spite of thecable flexing and thermal drift effects [P.I.Popa, S. Pivnenko......,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set-up to...

  12. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A; Breinbjerg, Olav

    2007-01-01

    measurement accuracy, have been reported previously, we validate here the new antenna diagnostics technique through an experimental investigation of a commercially available offset reflector antenna, where a tilt of the feed and surface distortions are intentionally introduced. The effects of these errors......A new antenna diagnostics technique has been developed for the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark. The technique is based on the transformation of the Spherical Wave Expansion (SWE) of the radiated field, obtained from a spherical near...... will be detected in the antenna far-field pattern, and the accuracy and ability of the diagnostics technique to subsequently identify them will be investigated. Real measurement data will be employed for each test case....

  13. SIW HIGH GAIN SLOT ANTENNA FOR WLAN/WIMAX APPLICATION

    OpenAIRE

    Neda Akbari; Javad Nourinia; Ch. Ghobadi

    2014-01-01

    In this paper with using substrate integrated waveguide technology and slot antenna, an antenna array with 8 (2×4) elements has been designed. The antenna substrate is ROGERs 4003 with two different thickness. In lower substrate with 0.5 mm thickness fed network of antenna is putted and upper substrate with 1.5 mm thickness slot in order to radation is embedded. The proposed antenna is designed in C band for WLAN/WiMAX application. Pattern of antenna is directive with peak gain about...

  14. U Patch Antenna for RFID and Wireless Applications

    International Nuclear Information System (INIS)

    in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna. (author)

  15. Logo Antenna for 5.8 GHz Wireless Communications (invited)

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work the...... university logo has been used. The designed logo antenna has a measured and simulated 3-dB bandwidth of 153.1 MHz (2.6%) and 165.6 MHz (2.9%), respectively. The aperture fed, omnidirectional logo antenna is little hand sensitive....

  16. Logo Antenna for 5.8 GHz Wireless Communications

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work the...... university logo has been used. The designed logo antenna has a measured and simulated 3-dB bandwidth of 153.1 MHz (2.6%) and 165.6 MHz (2.9%), respectively. The aperture fed, omnidirectional logo antenna is little hand sensitive....

  17. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-05-01

    In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.

  18. Field of View Analysis of SeaWinds Reflector Antenna

    Science.gov (United States)

    Wu, T.; Chandler, C.

    1994-01-01

    Antennas are often mounted among many other instruments on the spacecraft platform. The electromagnetic interference (EMI) and compatibility (EMC) issues are of great concern to the antenna and spacecraft system design engineers. Considering the rotating reflector antenna of the NASA SeaWinds Scatterometer on the Japanes ADEOS II spacecraft, it is desirable to determine the antenna's field of view (FOV) performance. In other words, how far should the other boxes be kept away from the reflector antenna to minimize the blockage/diffraction effects on the antenna's performance requirements.

  19. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small...

  20. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  1. Radio fiber bursts and fast magnetoacoustic wave trains

    CERN Document Server

    Karlický, M; Jelínek, P

    2012-01-01

    We present a model for dm-fiber bursts that is based on assuming fast sausage magnetoacoustic wave trains that propagate along a dense vertical filament or current sheet. Eight groups of dm-fiber bursts that were observed during solar flares were selected and analyzed by the wavelet analysis method. To model these fiber bursts we built a semi-empirical model. We also did magnetohydrodynamic simulations of a propagation of the magnetoacoustic wave train in a vertical and gravitationally stratified current sheet. In the wavelet spectra of the fiber bursts computed at different radio frequencies we found the wavelet tadpoles, whose head maxima have the same frequency drift as the drift of fiber bursts. It indicates that the drift of these fiber bursts can be explained by the propagating fast sausage magnetoacoustic wave train. Using new semi-empirical and magnetohydrodynamic models with a simple radio emission model we generated the artificial radio spectra of the fiber bursts, which are similar to the observed ...

  2. The Segmented Bifilar Contrawound Toroidal Helical Antenna.

    Science.gov (United States)

    Vanvoorhies, Kurt Louis

    The segmented bifilar contrawound toroidal helical antenna, a.k.a. QuadContra antenna creates a toroidal magnetic current whose radiated electromagnetic fields emulate those of an electric dipole located normal to the plane of the toroidal helix. This antenna is a magnetic dual of the constant current electric loop antenna. Its principal advantages of reduced size and low profile result from both its circular geometry and from the velocity factor of its slow wave contrawound helical structure. This antenna is constructed by winding two conductors in contrawound relation to each other on a toroidal form, dividing the winding into an even number of segments, and reversing the pitch sense of each conductor from one segment to another. Feed ports are located on the conductors at the segment boundaries, and are connected in alternate phase to a central signal terminal via balanced and tuned transmission line elements. At resonance, each winding segment supports a quarter-wave sinusoidal current distribution. Toroidal electric current components are canceled, and poloidal current components are enhanced in the resulting anti-symmetric mode current distribution. This study measured and simulated the velocity factor, input impedance, bandwidth and simulated the radiation gain and pattern for a variety of linear and toroidal structures. The velocity factor, modeled as a power function of the ratio of axial winding length to wire length, was two to three times slower for the anti-symmetric mode contrawound helix than for a comparable monofilar helix. The radiation characteristics of the antenna were simulated using the OSU ESP4 Moment Method based program, after making extensive improvements to accommodate a wide variety of antenna configurations and to automatically find resonant frequencies. The simulated QuadContra antenna radiates with vertically polarization in a dipole-like pattern having a gain about 2 dB less than the dipole. The gain falls off dramatically for

  3. A Design of 45-Degree Dual-Polarization Broadband Plane Station Antenna

    OpenAIRE

    Jianming Zhou

    2015-01-01

    A new broadband planar dual-polarization base station antenna is proposed, the antenna consists of two broadband plane coplanar base station antenna units, and so it has features of plane antenna. Two broadband plane station antenna units can, respectively, form double polarization in the direction. We analyzed the relative positions between the two antenna units and their effects on the performances of the antenna, especially for the influence of isolation. Broadband antenna has the characte...

  4. The Schenberg spherical antenna: status report

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, O.D.; Alves, M.E.S.; Barroso, J.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2009-07-01

    Full text. Here we present a status report of the Schenberg antenna, which started commissioning runs in September 2006 under the full support of FAPESP. In its first commissioning runs we tested three preliminary parametric transducer systems, which did not achieve a high enough performance for placing the antenna sensitivity in the range of the calibrator capacitor. Instead of improving the calibrator, making it capable of introducing a larger input force, we decided to go to a radical upgrading operation: replacing the three transducers for a complete set of six transducers, with better sensitivity and arranged according to the truncated icosahedron configuration, plus two extra ones; starting to install the dilution refrigerator; installing wires, cables, and amplifiers for the complete set of transducer circuits; and a new suspension and vibration isolation system for the cabling and microstrip antennas. We also have been developing a new set of transducers, microwave oscillators, microstrip antenna pairs, and studying an innovative approach, which could transform Schenberg into a broadband gravitational wave detector by the use of an ultra-high sensitivity non-resonant nanogap transducer, constructed by the application of recent achievements of nanotechnology. A spherical antenna, such as Schenberg or Mini-Grail, could add to this quality the advantage of wave position and polarity determination. (author)

  5. Metamaterial Inspired Microstrip Antenna Investigations Using Metascreens

    Directory of Open Access Journals (Sweden)

    Muhammad Tauseef Asim

    2015-01-01

    Full Text Available A dual layer periodically patterned metamaterial inspired antenna on a low cost FR4 substrate is designed, simulated, fabricated, and tested. The eigenmode dispersion simulations are performed indicating the left handed metamaterial characteristics and are tunable with substrate permittivity. The same metamaterial unit cell structure is utilized to fabricate a metascreen. This metascreen is applied below the proposed metamaterial antenna and next used as superstrate above a simple patch to study the effects on impedance bandwidth, gain, and radiation patterns. The experimental results of these antennas are very good and closely match with the simulations. More importantly, the resonance for the proposed metamaterial antenna with metascreen occurs at the left handed (LH eigenfrequency of the metamaterial unit cell structure. The measured −10 dB bandwidths are 14.56% and 22.86% for the metamaterial antenna with single and double metascreens, respectively. The metascreens over the simple patch show adjacent dual band response. The first and second bands have measured −10 dB bandwidths of 9.6% and 16.66%. The simulated peak gain and radiation efficiency are 1.83 dBi and 74%, respectively. The radiation patterns are also very good and could be useful in the UWB wireless applications.

  6. Advanced Antenna Techniques and High Order Sectorization with Novel Network Tessellation for Enhancing Macro Cell Capacity in DC-HSDPA Network

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Sheikh

    2013-10-01

    Full Text Available Mobile operators commonly use macro cells with traditional wide beam antennas for wider coverage in thecell, but future capacity demands cannot be achieved by using them only. It is required to achieve maximumpractical capacity from macro cells by employing higher order sectorization and by utilizing all possibleantenna solutions including smart antennas. This paper presents enhanced tessellation for 6-sector sitesand proposes novel layout for 12-sector sites. The main target of this paper is to compare the performanceof conventional wide beam antenna, switched beam smart antenna, adaptive beam antenna and differentnetwork layouts in terms of offering better received signal quality and user throughput. Splitting macro cellinto smaller micro or pico cells can improve the capacity of network, but this paper highlights theimportance of higher order sectorization and advance antenna techniques to attain high Signal toInterference plus Noise Ratio (SINR, along with improved network capacity. Monte Carlo simulations atsystem level were done for Dual Cell High Speed Downlink Packet Access (DC-HSDPA technology withmultiple (five users per Transmission Time Interval (TTI at different Intersite Distance (ISD. Theobtained results validate and estimate the gain of using smart antennas and higher order sectorization withproposed network layout.

  7. Slow-plasmon resonant nano-strip antennas

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, Jonas; Boltasseva, Alexandra;

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons SPPs is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is found ...

  8. Dual-polarized feed antenna apparatus and method of use

    Science.gov (United States)

    Sarehraz, Mohammed (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)

    2009-01-01

    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  9. Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Beermann, J.; Boltasseva, Alexandra; Bozhevolnyi, S.I.

    2008-01-01

    Resonant scattering by gold nanostrip antennas due to constructive interference of counterpropagating slow surface plasmon polaritons (SPPs) is analyzed, including the quasistatic limit of ultrasmall antennas, and experimentally demonstrated. The phase of slow SPP reflection by strip ends is found...

  10. Yagi-Uda Antenna For L-Band Frequency Range

    OpenAIRE

    Gulshan Sharma; Anand N. Sharma; Ashish Duvey; P. K. Singhal

    2012-01-01

    A yagi-uda antenna for L-band (1-   2GHz) frequency range is presented. The designing formulas and related antenna characteristics such as return loss, radiation pattern and gain were also discussed in this paper.

  11. Tri-band small monopole antenna based on SRR units

    Science.gov (United States)

    Shehata, Gehan; Mohanna, Mahmoud; Rabeh, Mohammed Lotfy

    2015-12-01

    In this paper a novel design for a tri-band monopole antenna coupled with metamaterial units is introduced. The proposed antenna was designed to cover WiMAX (2.5, 3.5) and WLAN (5.2) bands. In our proposal, a coplanar waveguide (CPW) fed circular-disk monopole antenna is coupled with three split ring resonator (SRR) units which exist on its back side. In our design a monopole antenna and SRR units are designed first to resonate at 5.2 GHz and 2.5 GHz respectively. In addition, antenna is loaded with post to force resonance at 3.5 GHz. SRR units are used for 2.5 GHz resonance to miniaturize antenna size, and our proposed antenna considered an electrically small antenna (ESA) at its first resonance frequency. Simulated and measured results exhibit a good agreement that validate our design.

  12. Efficient Wearable Antennas for Astronaut EVA Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR Subtopic O1.02 (Antenna Technology), Pharad proposes to create a new class of highly efficient body wearable antennas suitable for...

  13. Elevation angle dependence of the SMA antenna focus position

    CERN Document Server

    Matsushita, S; Sakamoto, K; Hunter, T R; Patel, N A; Sridharan, T K; Wilson, R W; Matsushita, Satoki; Saito, Masao; Sakamoto, Kazushi; Hunter, Todd R.; Patel, Nimesh A.; Sridharan, Tirupati K.; Wilson, Robert W.

    2006-01-01

    We report the measurement results and compensation of the antenna elevation angle dependences of the Sub-millimeter Array (SMA) antenna characteristics. Without optimizing the subreflector (focus) positions as a function of the antenna elevation angle, antenna beam patterns show lopsided sidelobes, and antenna efficiencies show degradations. The sidelobe level increases and the antenna efficiencies decrease about 1% and a few %, respectively, for every 10 degrees change in the elevation angle at the measured frequency of 237 GHz. We therefore obtained the optimized subreflector positions for X (azimuth), Y (elevation), and Z (radio optics) focus axes at various elevation angles for all the eight SMA antennas. The X axis position does not depend on the elevation angle. The Y and Z axes positions depend on the elevation angles, and are well fitted with a simple function for each axis with including a gravity term (cosine and sine of elevation, respectively). In the optimized subreflector positions, the antenna ...

  14. Design and analysis of coupled-resonator reconfigurable antenna

    Science.gov (United States)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2016-01-01

    In this paper, a coupled resonator with the microstrip patch antenna is proposed as a frequency reconfigurable antenna. The ground plane of the proposed microstrip patch antenna is modified with the proposed resonator structure to obtain reconfigurable characteristics. The resonator structure consists of two square split rings. The incorporation of proposed resonator structure with antenna makes it single-band antenna. The characteristics of proposed resonator structure can effectively deactivate by closing the splits of rings using switches, and hence, the dual-band characteristics of the antenna are recovered. The finite integration technique of computer simulation technology microwave studio is used throughout the investigation. The measurement of antenna performances is taken in an anechoic chamber. The measured and simulated performances of proposed reconfigurable antenna show very good agreement.

  15. Flange on microwave antenna subreflector cuts ground noise

    Science.gov (United States)

    Potter, P. D.

    1964-01-01

    The subreflector of a microwave antenna has been redesigned so that its outer edge has a conical flange. This reduces noise by causing ground energy radiation to cancel out before entering the antenna.

  16. A tunable microwave slot antenna based on graphene

    International Nuclear Information System (INIS)

    The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO2 layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO2. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower than a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband

  17. A tunable microwave slot antenna based on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, Mircea; Aldrigo, Martino; Vasilache, D.; Dinescu, A. [National Institute for Research and Development in Microtechnology (IMT), Str. Erou Iancu Nicolae 126 A, 077190 Bucharest-Voluntari (Romania); Neculoiu, Dan; Bunea, Alina-Cristina, E-mail: alina.bunea@imt.ro [National Institute for Research and Development in Microtechnology (IMT), Str. Erou Iancu Nicolae 126 A, 077190 Bucharest-Voluntari (Romania); “Politehnica” University of Bucharest, Bd. Iuliu Maniu 1-3, 061071, Bucharest (Romania); Deligeorgis, George; Konstantinidis, George [Foundation for Research and Technology Hellas (FORTH), P.O. Box 1527, Vassilika Vuton, Heraklion 71110, Crete, Hellas (Greece); Mencarelli, Davide; Pierantoni, Luca [Università Politecnica delle Marche, via Brecce Bianche 12, 60131 Ancona (Italy); Modreanu, M. [Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork (Ireland)

    2015-04-13

    The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO{sub 2} layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO{sub 2}. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower than a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.

  18. Computational Investigation of Microstrip Antennas in Plasma Environment

    CERN Document Server

    Vyas, Hardik; Gupta, Sanjeev

    2016-01-01

    Microstrip antennas are extensively used in spacecraft systems and other applications where they encounter a plasma environment. A detailed computational investigation of change in antenna radiation properties in the presence of plasma has been presented in this paper. The study shows antenna properties such as the resonant frequency, return loss, radiation properties and the different characteristics of the antenna changes when it is surrounded by plasma. Particular focus of the work is to understand the causes behind these changes by correlating the complex propagation constant in the plasma medium, field distribution on the patch and effective dielectric of the antenna substrate with antenna parameter variations. The study also provides important insights to explore the possibilities of designing tunable microstrip antenna where the substrate can be replaced with plasma and important antenna characteristics can be controlled by varying the plasma density.

  19. A Novel Triangular Shaped UWB Fractal Antenna Using Circular Slot

    Science.gov (United States)

    Shahu, Babu Lal; Pal, Srikanta; Chattoraj, Neela

    2016-03-01

    The article presents the design of triangular shaped fractal based antenna with circular slot for ultra wideband (UWB) application. The antenna is fed using microstrip line and has overall dimension of 24×24×1.6 mm3. The proposed antenna is covering the wide frequency bandwidth of 2.99-11.16 GHz and is achieved using simple fractal based triangular-circular geometries and asymmetrical ground plane. The antenna is designed and parametrical studies are performed using method of moment (MOM) based Full Wave Electromagnetic (EM) software Simulator Zeland IE3D. The prototype of proposed antenna is fabricated and tested to compare the simulated and measured results of various antenna parameters. The antenna has good impedance bandwidth, nearly constant gain and stable radiation pattern. Measured return loss shows fair agreement with simulated one. Also measured group delay variation obtained is less than 1.0 ns, which proves good time domain behavior of the proposed antenna.

  20. Design and optimization of LTE 1800 MIMO antenna.

    Science.gov (United States)

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi. PMID:24967440

  1. When Is Open Access Not Open Access?

    OpenAIRE

    MacCallum, Catriona J.

    2007-01-01

    As open access grows in prominence, so too has confusion about what open access means; such confusion arises from a genuine misunderstanding of open access by funders, authors, editors, and publishers alike.

  2. Hybrid Deployable Foam Antennas and Reflectors

    Science.gov (United States)

    Rivellini, Tommaso; Willis, Paul; Hodges, Richard; Spitz, Suzanne

    2006-01-01

    Hybrid deployable radio antennas and reflectors of a proposed type would feature rigid narrower apertures plus wider adjoining apertures comprising reflective surfaces supported by open-cell polymeric foam structures (see figure). The open-cell foam structure of such an antenna would be compressed for compact stowage during transport. To initiate deployment of the antenna, the foam structure would simply be released from its stowage mechanical restraint. The elasticity of the foam would drive the expansion of the foam structure to its full size and shape. There are several alternatives for fabricating a reflective surface supported by a polymeric foam structure. One approach would be to coat the foam with a metal. Another approach would be to attach a metal film or a metal-coated polymeric membrane to the foam. Yet another approach would be to attach a metal mesh to the foam. The hybrid antenna design and deployment concept as proposed offers significant advantages over other concepts for deployable antennas: 1) In the unlikely event of failure to deploy, the rigid narrow portion of the antenna would still function, providing a minimum level of assured performance. In contrast, most other concepts for deploying a large antenna from compact stowage are of an "all or nothing" nature: the antenna is not useful at all until and unless it is fully deployed. 2) Stowage and deployment would not depend on complex mechanisms or actuators, nor would it involve the use of inflatable structures. Therefore, relative to antennas deployed by use of mechanisms, actuators, or inflation systems, this antenna could be lighter, cheaper, amenable to stowage in a smaller volume, and more reliable. An open-cell polymeric (e.g., polyurethane) foam offers several advantages for use as a compressible/expandable structural material to support a large antenna or reflector aperture. A few of these advantages are the following: 3) The open cellular structure is amenable to compression to a very

  3. Dielectric resonator antenna for applications in nanophotonics.

    Science.gov (United States)

    Malheiros-Silveira, Gilliard N; Wiederhecker, Gustavo S; Hernández-Figueroa, Hugo E

    2013-01-14

    Optical nanoantennas, especially of the dipole type, have been theoretically and experimentally demonstrated by many research groups. Likewise, the plasmonic waveguides and optical circuits have experienced significant advances. In radio frequencies and microwaves a category of antenna known as dielectric resonator antenna (DRA), whose radiant element is a dielectric resonator (DR), has been designed for several applications, including satellite and radar systems. In this letter, we explore the possibilities and advantages to design nano DRAs (NDRAs), i. e., DRAs for nanophotonics applications. Numerical demonstrations showing the fundamental antenna parameters for a circular cylindrical NDRA type have been carried out for the short (S), conventional (C), and long (L) bands of the optical communication spectrum. PMID:23389016

  4. Antenna model of the Purcell effect

    CERN Document Server

    Krasnok, Alexander E; Simovski, Constantin R; Tretyakov, Sergei A; Poddubny, Alexander N; Miroshnichenko, Andrey E; Kivshar, Yuri S; Belov, Pavel A

    2015-01-01

    The Purcell effect - the modification of the spontaneous emission rate in presence of resonant cavities or other resonant objects - is a fundamental effect of quantum electrodynamics. However, a change of the emission rate caused by environment different from free space has a classical counterpart. Not only quantum emitters, but any small antenna tuned to the resonance is an oscillator with radiative losses, and the influence of the environment on its radiation can be understood and measured in terms of the antenna radiation resistance. We present a general approach which is applicable to measurements of the Purcell factor for radio antennas and to calculations of these factors for quantum emitters. Our methodology is suitable for calculation and measurement of both electric and magnetic Purcell factors, it is versatile and applies to various frequency ranges. The approach is illustrated by a general equivalent scheme and allows the Purcell factor to be expressed through the continious radiation of a small an...

  5. Wideband Circularly Polarized Dielectric Rod Antenna

    Directory of Open Access Journals (Sweden)

    Min Guo

    2012-01-01

    Full Text Available A new dielectric rod antenna (DRA is introduced to produce circular polarization (CP over a wide frequency band without a complex feed network. Along with the simulated results, measured results of the antenna prototype are presented, showing a 3 dB axial ratio (AR CP bandwidth of 17.7%. The radiation characteristics of the fabricated antenna are also demonstrated showing the measured gain of better than 6.2 dBi. Moreover, the measured impedance bandwidth (VSWR ≤2 reaches 20.1%, from 8.75 GHz to 10.7 GHz, while the CP beamwidth (AR ≤3 dB at the central frequency is measured over 120°.

  6. E-SHAPED STACKED BROADBAND PATCH ANTENNA

    Directory of Open Access Journals (Sweden)

    Bharat Rochani

    2014-10-01

    Full Text Available A coaxial feed modified E-shaped patch antenna has been presented with parametric study of the antenna parameters. The proposed antenna is designed for WLAN and WiMAX applications from 5 – 6 GHz. The 5 – 6 GHz band has been chosen because it provides higher data rate (>50 Mbps for laptops, note-book computers and many new wireless digital applications devices without interference. Although current 5.0 GHz wireless computer network systems operated from 5.15 GHz – 5.35 GHz band. But in future, for faster data rate 5.725 – 5.85 GHz band becomes popular in addition to 5.15 – 5.35 GHz.

  7. Compact acoustic antenna design using labyrinthine metamaterials

    Science.gov (United States)

    Ren, Chunyu

    2015-05-01

    We present an effective design and architecture for a class of acoustic antennas in air. The work begins with a conformal transformation method that yields the preliminary design, which is constructed using an isotropic but inhomogeneous material. However, the desired material parameters have been unavailable until now. Here we show that by scaling up the refractive index and optimizing the geometry in the preliminary design, a series of square antennas can be achieved to exhibit an excellent beam-collimating effect. An important part of our strategy is that the device's thickness and material properties can be tailored easily to greatly facilitate its realization. It is also demonstrated that the proposed antenna can be made very thin and readily implemented using labyrinthine acoustic metamaterials.

  8. Broadband Approximations for Doubly Curved Reflector Antenna

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2010-12-01

    Full Text Available The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth changes, sidelobe levels and aperture efficiencies are given for frequency changes approximately up to four times operating frequency. A comparison of approximated and measured patterns of doubly curved reflector antennas shows that the given approximation could be reliably used for analyses of pattern changes due to very broad frequency changes.

  9. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  10. Antenna-coupled microcavities for terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Madéo, J., E-mail: Julien.madeo@univ-paris-diderot.fr; Todorov, Y.; Sirtori, C. [Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, UMR7162, 75013 Paris (France)

    2014-01-20

    We have investigated the capacitive coupling between dipolar antennas and metal-dielectric-metal wire microcavities with strong sub-wavelength confinement in the terahertz region. The coupling appears in reflectivity measurements performed on arrays of antenna-coupled elements, which display asymmetric Fano lineshapes. The experimental data are compared to a temporal coupled-mode theory and finite elements electromagnetic simulations. We show that the Fano interferences correspond to coupling between a subradiant mode (microcavity) and a superradiant mode (antennas). This phenomenon allows one to enhance and control the radiative coupling of the strongly confined mode with the vacuum. These concepts are very useful for terahertz optoelectronic devices based on deep-sub-wavelength active regions.

  11. Wireless communication system via nanoscale plasmonic antennas.

    Science.gov (United States)

    Merlo, Juan M; Nesbitt, Nathan T; Calm, Yitzi M; Rose, Aaron H; D'Imperio, Luke; Yang, Chaobin; Naughton, Jeffrey R; Burns, Michael J; Kempa, Krzysztof; Naughton, Michael J

    2016-01-01

    Present on-chip optical communication technology uses near-infrared light, but visible wavelengths would allow system miniaturization and higher energy confinement. Towards this end, we report a nanoscale wireless communication system that operates at visible wavelengths via in-plane information transmission. Here, plasmonic antenna radiation mediates a three-step conversion process (surface plasmon → photon → surface plasmon) with in-plane efficiency (plasmon → plasmon) of 38% for antenna separation 4λ0 (with λ0 the free-space excitation wavelength). Information transmission is demonstrated at bandwidths in the Hz and MHz ranges. This work opens the possibility of optical conveyance of information using plasmonic antennas for on-chip communication technology. PMID:27555451

  12. Antenna-coupled microwave kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Day, P.K. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)]. E-mail: Peter.K.Day@jpl.nasa.gov; Leduc, H.G. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Goldin, A. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Vayonakis, T. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Mazin, B.A. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Kumar, S. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Gao, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Zmuidzinas, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-04-15

    We report on the development of Microwave Kinetic Inductance Detectors (MKIDs) coupled to planar antennas for millimeter/submillimeter wavelengths. The MKID is a relatively new type of superconducting photon detector which is applicable from millimeter-wave frequencies to X-rays. Photons are absorbed in a superconductor, producing quasiparticle excitations, which change the surface reactance (kinetic inductance) of the superconductor. The changes in kinetic inductance are monitored using microwave high-Q thin-film superconducting resonators. Because the MKID is particularly amenable to frequency-domain multiplexing, with likely detector multiplexing factors of {approx}10{sup 3} or more per cryogenic amplifier, these detectors are well suited for use in large arrays. We have fabricated MKIDs coupled to submillimeter slot-array antennas using microstrip lines and have detected power from a thermal radiation source. We discuss the potential of antenna-coupled MKID arrays for ground and space-based millimeter/submillimeter imaging.

  13. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  14. Far-infrared imaging antenna arrays

    Science.gov (United States)

    Neikirk, D. P.; Rutledge, D. B.; Muha, M. S.; Park, H.; Yu, C.-X.

    1982-01-01

    A far-infrared monolithic imaging antenna array with diffraction-limited resolution has been demonstrated. The optical system is similar to an oil-immersion microscope, except that the position of the object and the image are interchanged. The array is a series of evaporated silver bow-tie antennas of 75 nm thick, spaced at 310 microns, on a fused-quartz substrate; the bow angle of 60 deg gives an impedance of 150 ohm to match to bismuth microbolometers. The measured responsivity of the array elements is 1-2 V/W at the relatively low bias of 1 mA. Previous measurements have shown that the bolometers are 1/f noise limited up to 100 kHz and that they have a frequency response of 5 MHz. The antenna array should be adequate for far-infrared plasma interferometer measurements.

  15. Lower Hybrid antennas for nuclear fusion experiments

    CERN Document Server

    Hillairet, Julien; Bae, Young-Soon; Bai, X; Balorin, C; Baranov, Y; Basiuk, V; Bécoulet, A; Belo, J; Berger-By, G; Brémond, S; Castaldo, C; Ceccuzzi, S; Cesario, R; Corbel, E; Courtois, X; Decker, J; Delmas, E; Delpech, L; Ding, X; Douai, D; Ekedahl, A; Goletto, C; Goniche, M; Guilhem, D; Hertout, P; Imbeaux, F; Litaudon, X; Magne, R; Mailloux, J; Mazon, D; Mirizzi, F; Mollard, P; Moreau, P; Oosako, T; Petrzilka, V; Peysson, Y; Poli, S; Preynas, M; Prou, M; Saint-Laurent, F; Samaille, F; Saoutic, B

    2015-01-01

    The nuclear fusion research goal is to demonstrate the feasibility of fusion power for peaceful purposes. In order to achieve the conditions similar to those expected in an electricity-generating fusion power plant, plasmas with a temperature of several hundreds of millions of degrees must be generated and sustained for long periods. For this purpose, RF antennas delivering multi-megawatts of power to magnetized confined plasma are commonly used in experimental tokamaks. In the gigahertz range of frequencies, high power phased arrays known as "Lower Hybrid" (LH) antennas are used to extend the plasma duration. This paper reviews some of the technological aspects of the LH antennas used in the Tore Supra tokamak and presents the current design of a proposed 20 MW LH system for the international experiment ITER.

  16. A Two Element Plasma Antenna Array

    Directory of Open Access Journals (Sweden)

    F. Sadeghikia

    2013-10-01

    Full Text Available This theoretical study presents the characteristics of plasma monopole antennas in the VHF/UHF range using finite difference time domain (FDTD simulation. Results show that more broadband characteristics can be obtained by increasing the diameter of the plasma tube and that the minor lobes diminish in intensity as diameter increases. Furthermore, the nulls are replaced by low level radiation. Since the collision frequency, which is a function of gas pressure, represents the loss mechanism of plasma, decreasing its value increases the gain and radar cross section (RCS of the antenna. Theoretical modeling shows that at higher plasma frequencies with respect to the signal frequency, the gain and radar cross section of the plasma antenna are high enough and that the impedance curves are altered as the plasma frequency varies. Using these preliminary studies, mutual impedance and gain of a broadside array of two parallel side-by-side plasma elements is presented.

  17. A Wideband High-Gain Dual-Polarized Slot Array Patch Antenna for WiMAX Applications in 5.8 GHz

    Directory of Open Access Journals (Sweden)

    Amir Reza Dastkhosh

    2012-01-01

    Full Text Available A low-cost, easy-to-fabricate, wideband and high-gain dual-polarized array antenna employing an innovative microstrip slot patch antenna element is designed and fabricated. The design parameters of the antenna are optimized using commercial softwares (Microwave Office and Zeland IE3D to get the suitable -parameters and radiation patterns. Finally, the simulation results are compared to the experimental ones and a good agreement is demonstrated. The antenna has an approximately bandwidth of 14% (5.15–5.9 GHz which covers Worldwide Interoperability Microwave Access (WiMAX/5.8. It also has the peak gain of 26 dBi for both polarizations and high isolation between two ports over a wide bandwidth.

  18. A New Metasurface Superstrate Structure for Antenna Performance Enhancement

    OpenAIRE

    Mohammad Rashed Iqbal Faruque; Mandeep Jit Singh; Mohammad Habib Ullah; Mohammad Tariqul Islam

    2013-01-01

    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from...

  19. Radar antenna pointing for optimized signal to noise ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter; Marquette, Brandeis [General Atomics Aeronautical Systems, Inc., San Diego, CA

    2013-01-01

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  20. Downsizing Antenna Technologies for Mobile and Satellite Communications

    Science.gov (United States)

    Huang, J.; Densmore, A.; Tulintseff, A.; Jamnejad, V.

    1993-01-01

    Due to the increasing and stringent functional requirements (larger capacity, longer distances, etc.) of modern day communication systems, higher antenna gains are generally needed. This higher gain implies larger antenna size and mass which are undesirable to many systems. Consequently, downsizing antenna technology becomes one of the most critical areas for research and development efforts. Techniques to reduce antenna size can be categorized and are briefly discussed.