WorldWideScience

Sample records for antenna radiation patterns

  1. Numerical calculation of radiation pattern of plasma channel antenna

    International Nuclear Information System (INIS)

    Xia Xinren; Yin Chengyou

    2010-01-01

    The idea of plasma channel antenna (PCA) for high power microwave weapon is presented in this paper. The radiation pattern of PCA is calculated. The directivity functions of general antenna are derived. The near electromagnetic model of PCA is created based on physical circumstances. The electromagnetic fields of PCA and surrounding air in cylindrical coordinate are given. The dispersion equation of PCA is deduced by applying the boundary conditions of electromagnetic fields. The surface wave vector of PCA is achieved. The variations of radiation characteristic with plasma density, antenna length and antenna radius are emphatically discussed. The controllability of PCA's radiation patterns is confirmed. (authors)

  2. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao; Liu, Yuanan [School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, P. O. Box. 282, Beijing, 100876 (China); Ghassemlooy, Zabih [Optical Communications Research Group, NCRLab, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-06-15

    This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in different positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.

  3. Radiation Pattern of Chair Armed Microstrip Antenna

    Science.gov (United States)

    Mishra, Rabindra Kishore; Sahu, Kumar Satyabrat

    2016-12-01

    This work analyzes planar antenna conformable to chair arm shaped surfaces for WLAN application. Closed form expressions for its radiation pattern are developed and validated using measurements on prototype and commercial EM code at 2.4 GHz.

  4. A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns

    Science.gov (United States)

    Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-07-01

    In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.

  5. Design of optimal linear antennas with maximally flat radiation patterns

    Science.gov (United States)

    Minkovich, B. M.; Mints, M. Ia.

    1990-02-01

    The paper presents an explicit solution to the problem of maximizing the aperture area utilization coefficient and obtaining the best approximation in the mean of the sectorial U-shaped radiation pattern of a linear antenna, when Butterworth flattening constraints are imposed on the approximating pattern. Constraints are established on the choice of the smallest and large antenna dimensions that make it possible to obtain maximally flat patterns, having a low sidelobe level and free from pulsations within the main lobe.

  6. EM Modeling of Far-Field Radiation Patterns for Antennas on the GMA-TT UAV

    Science.gov (United States)

    Mackenzie, Anne I.

    2015-01-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  7. Reconfigurable antennas radiations using plasma Faraday cage

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2015-01-01

    International audience; This letter presents a new reconfigurable plasma antenna associated with a Faraday cage. The Faraday cage is realized using a fluorescent lamp. A patch antenna with a broadside radiation pattern or a monopole antenna with an end-fire radiation pattern , operating at 2.45 GHz, is placed inside Faraday cage. The performance of the reconfigurable system is observed in terms of input reflection coefficient, gain and radiation pattern via simulation and measurement. It is s...

  8. A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern

    KAUST Repository

    Su, Zhen

    2018-04-06

    Internet of things (IoT) applications need wireless connectivity on devices with very small footprints, and in RF obscure environments. The antenna for such applications must work on multiple GSM bands (preferred choice for network connectivity), provide near isotropic radiation pattern to maintain orientation insensitive communication, be small in size so that it can be integrated with futuristic miniaturized IoT devices, and be low in cost to be implemented on billions of devices. This paper presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost. The proposed antenna consists of a meander line antenna that is folded on the faces of a 3D package with two variations, 0.375λ length for narrowband version and 0.67λ length for the wideband version. Theoretical conditions to achieve near isotropic radiation pattern with bent wire antennas on a 3D surface have been derived. The antenna has been optimized to operate with embedded electronics and a large metallic battery. The antenna provides 8.9% and 34.4% bandwidths, at 900 and 1800 MHz respectively with decent near isotropic radiation behavior.

  9. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com [Department of Electronics Engineering, Rajasthan Technical University, Kota (India)

    2016-03-09

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  10. Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator

    Institute of Scientific and Technical Information of China (English)

    Gopi RAM; Durbadal MANDAL; Sakti Prasad GHOSHAL; Rajib KAR

    2017-01-01

    In this paper, an optimal design of linear antenna arrays having microstrip patch antenna elements has been carried out. Cat swarm optimization (CSO) has been applied for the optimization of the control parameters of radiation pattern of an antenna array. The optimal radiation patterns of isotropic antenna elements are obtained by optimizing the current excitation weight of each element and the inter-element spacing. The antenna arrays of 12, 16, and 20 elements are taken as examples. The arrays are de-signed by using MATLAB computation and are validated through Computer Simulation Technology-Microwave Studio (CST-MWS). From the simulation results it is evident that CSO is able to yield the optimal design of linear antenna arrays of patch antenna elements.

  11. Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom

    Directory of Open Access Journals (Sweden)

    Tian Hong Loh

    2014-08-01

    Full Text Available This paper presents a study into radiation pattern measurements of an electrically small dielectric resonator antenna (DRA operating between 2.4 and 2.5 GHz in the industrial, scientific and medical (ISM radio band for body-centric wireless communication applications. To eliminate the distortion of the radiation pattern associated with the unwanted radiation from a metallic coaxial cable feeding the antenna we have replaced it with a fibre optic feed and an electro-optical (EO transducer. The optical signal is then converted back to RF using an Opto-Electric Field Sensor (OEFS system. To ensure traceable measurements of the radiation pattern performance of the wearable antenna a generic head and torso solid anthropomorphic phantom model has been employed. Furthermore, to illustrate the benefits of the method, numerical simulations of the co-polar and cross-polar H-plane radiation patterns at 2.4, 2.45, and 2.5 GHz are compared with the measured results obtained using: (i an optical fibre; and (ii a metallic coaxial cable.

  12. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    Science.gov (United States)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  13. Theory of antennas for gravitational radiation

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa; Narihara, Kazumichi; Fujimoto, Masakatsu.

    1976-01-01

    A theory of antennas for gravitational radiation is presented. On the basis of the eigenmode system and the structure symmetry, the emission and reception characteristics and the directivity pattern of antennas are treated. The antenna thermal noise is discussed in connection with the coupling constant of vibration sensors and with the effect of cold-damping. (auth.)

  14. The use of antenna radiation pattern in node localisation algorithms for wireless sensor networks

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-08-01

    Full Text Available due to the limited accuracy inherent to the current ranging model. These models, however, make the assumption that the antenna radiation pattern is omnidirectional targeted to simplifying the complexity of the algorithms. An increasing number of sensor...

  15. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Pal Arindam

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  16. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Arindam Pal

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for 2×2 MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  17. Equipment: Antenna systems

    Science.gov (United States)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  18. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  19. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  20. Base Station Antenna Pattern Distortion in Practical Urban Deployment Scenarios

    DEFF Research Database (Denmark)

    Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard

    2014-01-01

    In real urban deployments, base station antennas are typically not placed in free space conditions. Therefore, the radiation pattern can be affected by mounting structures and nearby obstacles located in the proximity of the antenna (near-field), which are often not taken into consideration. Also...... presents a combination of near-field and far-field simulations aimed to provide an overview of the distortion experienced by the base station antenna pattern in two different urban deployment scenarios: rooftop and telecommunications tower. The study illustrates how, in comparison with the near...

  1. An ultra-wideband pattern reconfigurable antenna based on graphene coating

    Science.gov (United States)

    Jiang, YanNan; Yuan, Rui; Gao, Xi; Wang, Jiao; Li, SiMin; Lin, Yi-Yu

    2016-11-01

    An ultra-wideband pattern reconfigurable antenna is proposed. The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating. It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate. By changing the DC bias voltages to the different gating pads, the surface impedance of the graphene coating can be freely controlled. Due to the tunability of graphene's surface impedance, the radiation pattern of the proposed antenna can be reconfigured. A transmission line method is used to illustrate the physical mechanism of the proposed antenna. The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%. Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, and 61361005), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFBB139003 and 2014GXNSFAA118283), Program for Innovation Research Team of Guilin University of Electromagnetic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.

  2. Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2016-01-01

    International audience; This letter presents a new reconfigurable antenna associated with a plasma Faraday shield effect. The Faraday shield effect is realized by using a fluorescent lamp. A patch antenna operating at 2.45 GHz is placed inside the lamp. The performance of the reconfigurable system is observed in terms of S11, gain and radiation patterns by simulation and measurement. It is shown that by switching ON the fluorescent lamp, the gain of the antenna decreases and the antenna syste...

  3. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  4. The vertical pattern of microwave radiation around BTS (Base Transceiver Station) antennae in Hashtgerd township.

    Science.gov (United States)

    Nasseri, Simin; Monazzam, Mohammadreza; Beheshti, Meisam; Zare, Sajad; Mahvi, Amirhosein

    2013-12-20

    New environmental pollutants interfere with the environment and human life along with technology development. One of these pollutants is electromagnetic field. This study determines the vertical microwave radiation pattern of different types of Base Transceiver Station (BTS) antennae in the Hashtgerd city as the capital of Savojbolagh County, Alborz Province of Iran. The basic data including the geographical location of the BTS antennae in the city, brand, operator type, installation and its height was collected from radio communication office, and then the measurements were carried out according to IEEE STD 95. 1 by the SPECTRAN 4060. The statistical analyses were carried out by SPSS16 using Kolmogorov Smirnov test and multiple regression method. Results indicated that in both operators of Irancell and Hamrah-e-Aval (First Operator), the power density rose with an increase in measurement height or decrease in the vertical distance of broadcaster antenna. With mix model test, a significant statistical relationship was observed between measurement height and the average power density in both types of the operators. With increasing measuring height, power density increased in both operators. The study showed installing antennae in a crowded area needs more care because of higher radiation emission. More rigid surfaces and mobile users are two important factors in crowded area that can increase wave density and hence raise public microwave exposure.

  5. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  6. Radiation characteristics of input power from surface wave sustained plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)

    2016-09-15

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  7. Radiation characteristics of input power from surface wave sustained plasma antenna

    International Nuclear Information System (INIS)

    Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.

    2016-01-01

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  8. Design, Analysis, and Verification of Ka-Band Pattern Reconfigurable Patch Antenna Using RF MEMS Switches

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2016-08-01

    Full Text Available This paper proposes a radiating pattern reconfigurable antenna by employing RF Micro-electromechanical Systems (RF MEMS switches. The antenna has a low profile and small size of 4 mm × 5 mm × 0.4 mm, and mainly consists of one main patch, two assistant patches, and two RF MEMS switches. By changing the RF MEMS switches operating modes, the proposed antenna can switch among three radiating patterns (with main lobe directions of approximately −17.0°, 0° and +17.0° at 35 GHz. The far-field vector addition model is applied to analyse the pattern. Comparing the measured results with analytical and simulated results, good agreements are obtained.

  9. Modification of parabolic dish antenna pattern using two symmetrically placed circular flat plates

    Science.gov (United States)

    Thorpe, Glen C.

    1987-12-01

    This study aims to formulate a method of predicting the far field pattern of a parabolic dish antenna with two moveable flat plates mounted symmetrically on either side of the feed horn. The approach taken has been to first analyze the radiation pattern of the antenna with the disks at certain heights out from the surface of the dish. To do this the near-field radiation in amplitude and phase was measured over a plane surface in the near-field and the values were then transformed into the far field using a Fast Fourier Transform. Far field pattern values of the antenna were directly measured for each setting of the plates. The results obtained from the Fast Fourier Transform of the near field data were in good agreement with the values obtained by measurement. Finally, an approximate model of the antenna was developed and implemented as a computer program. This model, while relatively unsophisticated, provided some insights into the changes in the near field phase distribution caused by the moveable circular flat plates.

  10. Airborne evaluation/verification of antenna patterns of broadcasting stations

    NARCIS (Netherlands)

    Witvliet, Ben

    2006-01-01

    This paper describes a method for airborne evaluation and verification of the antenna patterns of broadcasting stations. Although it is intended for governmental institutions and broadcasters it may be also of interest to anyone who wants to evaluate large radiating structures. An airborne

  11. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  12. A New Agile Radiating System Called Electromagnetic Band Gap Matrix Antenna

    Directory of Open Access Journals (Sweden)

    Hussein Abou Taam

    2014-01-01

    Full Text Available Civil and military applications are increasingly in need for agile antenna devices which respond to wireless telecommunications, radars, and electronic warfare requirements. The objective of this paper is to design a new agile antenna system called electromagnetic band gap (EBG matrix. The working principle of this antenna is based on the radiating aperture theory and constitutes the subject of an accepted CNRS patent. In order to highlight the interest and the originality of this antenna, we present a comparison between it and a classical patch array only for the (one-dimensional 1D configuration by using a rigorous full wave simulation (CST Microwave software. In addition, EBG matrix antenna can be controlled by specific synthesis algorithms. These algorithms use inside their; optimization loop an analysis procedure to evaluate the radiation pattern. The analysis procedure is described and validated at the end of this paper.

  13. A Low-Profile and Compact Split-Ring Antenna with Horizontally Polarized Omnidirectional Radiation

    Directory of Open Access Journals (Sweden)

    Kittima Lertsakwimarn

    2015-01-01

    Full Text Available This paper presents a low-profile and compact printed antenna having an omnidirectional radiation pattern with horizontal polarization to the ground. The proposed antenna consists of an inner small fed ring, an outer coupled split ring, and a ground plane. The overall dimension of the proposed antenna is 45 mm × 50.5 mm × 11.6 mm (0.138λ0 × 0.155λ0 × 0.036λ0. The −10-dB S11 of the antenna covers the 920-MHz RFID band, and the gain is about 1.45 dBi in the parallel direction to the ground plane. The measured results show good agreements with the simulated results. Furthermore, the reasons for the low-profile structure and the omnidirectional radiation pattern are also discussed.

  14. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    Energy Technology Data Exchange (ETDEWEB)

    Djidel, S.; Bouamar, M.; Khedrouche, D., E-mail: dkhedrouche@yahoo.com [LASS (Laboratoired’Analyse des Signaux et Systèmes), Department of Electronics, University of M’sila BP.166, Route Ichebilia, M’sila, 28000 Algeria (Algeria)

    2016-04-21

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  15. Radio antennas

    Science.gov (United States)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  16. Antenna theory: Analysis and design

    Science.gov (United States)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  17. Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern

    Science.gov (United States)

    Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio

    2012-01-01

    bicone fs aperture increases, the gain increase becomes less until one reaches a point of diminishing returns. In order to overcome this problem, a shaped aperture is used. Rather than the standard linear bicone, a parabolic bicone was found to reduce the amount of phase variation as the aperture increases. In fact, the phase variation is half of the standard linear bicone, which leads to higher gain with smaller aperture sizes. The antenna pattern radiated from this parabolic-shaped bicone antenna has fairly high side lobes. The Juno project requested that these sidelobes be minimized. This was accomplished by adding corrugations to the parabolic shape. This corrugated-shaped bicone antenna had reasonably low sidelobes, and the appropriate gain and beamwidth to meet project requirements.

  18. Maximally flat radiation patterns of a circular aperture

    Science.gov (United States)

    Minkovich, B. M.; Mints, M. Ia.

    1989-08-01

    The paper presents an explicit solution to the problems of maximizing the area utilization coefficient and of obtaining the best approximation (on the average) of a sectorial Pi-shaped radiation pattern of an antenna with a circular aperture when Butterworth conditions are imposed on the approximating pattern with the aim of flattening it. Constraints on the choice of admissible minimum and maximum antenna dimensions are determined which make possible the synthesis of maximally flat patterns with small sidelobes.

  19. New perspective on single-radiator multiple-port antennas for adaptive beamforming applications.

    Science.gov (United States)

    Byun, Gangil; Choo, Hosung

    2017-01-01

    One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays.

  20. New perspective on single-radiator multiple-port antennas for adaptive beamforming applications.

    Directory of Open Access Journals (Sweden)

    Gangil Byun

    Full Text Available One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays.

  1. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo

    2014-09-01

    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  2. Research on Radiation Characteristic of Plasma Antenna through FDTD Method

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2014-01-01

    Full Text Available The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML. Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  3. Research on radiation characteristic of plasma antenna through FDTD method.

    Science.gov (United States)

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  4. Flexible Hilbert-Curve Loop Antenna Having a Triple-Band and Omnidirectional Pattern for WLAN/WiMAX Applications

    Directory of Open Access Journals (Sweden)

    Dang-Oh Kim

    2012-01-01

    Full Text Available A triple-band flexible loop antenna is proposed for WLAN/WiMAX applications in this paper. The proposed antenna is formed by the third-order Hilbert-curve and bending type structure which provides flexible characteristics. Even though the radius of the curvature for bending antennas is changed, a triple-band feature still remains in the proposed antenna. Moreover, the antenna exhibits the characteristics of omnidirectional radiation pattern and circular polarization. To verify the receiving performance of antenna, a simulation on the antenna factor was conducted by an EM simulator. Based on these results, the suggested antenna makes a noteworthy performance over typical loop antennas.

  5. Back radiation suppression through a semi-transparent round ground plane for a mm-Wave monopole antenna

    KAUST Repository

    Klionovski, Kirill; Farooqui, Muhammad Fahad; Shamim, Atif

    2017-01-01

    Omnidirectional radiation pattern with minimum backward radiation is highly desirable for millimeter-wave telecommunication antennas. In this work, we propose a round, semitransparent ground plane of radius 0.8λ with uniform impedance distribution that can reduce the back radiation of a monopole antenna by 8.8 dB as compared with a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  6. Back radiation suppression through a semi-transparent round ground plane for a mm-Wave monopole antenna

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    Omnidirectional radiation pattern with minimum backward radiation is highly desirable for millimeter-wave telecommunication antennas. In this work, we propose a round, semitransparent ground plane of radius 0.8λ with uniform impedance distribution that can reduce the back radiation of a monopole antenna by 8.8 dB as compared with a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  7. Resonant-bar gravitational radiation antennas

    International Nuclear Information System (INIS)

    Blair, D.G.

    1987-01-01

    This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)

  8. Ultra-wideband horn antenna with abrupt radiator

    Science.gov (United States)

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  9. Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna

    KAUST Repository

    Klionovski, Kirill

    2017-06-21

    Omnidirectional radiation pattern with minimum backward radiation is highly desirable for base station antennas to minimize the multipath effects. Semitransparent ground planes have been used to reduce the backward radiation, but mostly with complicated non-uniform impedance distribution. In this work, we propose, for the first time, a round semitransparent ground plane of radius 0.8 λ with uniform impedance distribution that can improve the front-to-back ratio of a wideband patch antenna by 11.6 dB as compared to a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  10. Reconfigurable antenna using plasma reflector

    Science.gov (United States)

    Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan

    2018-02-01

    This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.

  11. Adaptive Forming of the Beam Pattern of Microstrip Antenna with the Use of an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Janusz Dudczyk

    2012-01-01

    Full Text Available Microstrip antenna has been recently one of the most innovative fields of antenna techniques. The main advantage of such an antenna is the simplicity of its production, little weight, a narrow profile, and easiness of integration of the radiating elements with the net of generators power systems. As a result of using arrays consisting of microstrip antennas; it is possible to decrease the size and weight and also to reduce the costs of components production as well as whole application systems. This paper presents possibilities of using artificial neural networks (ANNs in the process of forming a beam from radiating complex microstrip antenna. Algorithms which base on artificial neural networks use high parallelism of actions which results in considerable acceleration of the process of forming the antenna pattern. The appropriate selection of learning constants makes it possible to get theoretically a solution which will be close to the real time. This paper presents the training neural network algorithm with the selection of optimal network structure. The analysis above was made in case of following the emission source, setting to zero the pattern of direction of expecting interference, and following emission source compared with two constant interferences. Computer simulation was made in MATLAB environment on the basis of Flex Tool, a programme which creates artificial neural networks.

  12. Antenna Beam Pattern Characteristics of HAPS User Terminal

    Science.gov (United States)

    Ku, Bon-Jun; Oh, Dae Sub; Kim, Nam; Ahn, Do-Seob

    High Altitude Platform Stations (HAPS) are recently considered as a green infrastructure to provide high speed multimedia services. The critical issue of HAPS is frequency sharing with satellite systems. Regulating antenna beam pattern using adaptive antenna schemes is one of means to facilitate the sharing with a space receiver for fixed satellite services on the uplink of a HAPS system operating in U bands. In this letter, we investigate antenna beam pattern characteristics of HAPS user terminals with various values of scan angles of main beam, null position angles, and null width.

  13. OPERATION MODES AND CHARACTERISTICS OF PLASMA DIPOLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Nikolay Nikolaevich Bogachev

    2014-02-01

    Full Text Available Existence modes of  surface electromagnetic wave on a plasma cylinder, operating modes and characteristics of the plasma antenna were studied in this paper. Solutions of the dispersion equation of surface wave were obtained for a plasma cylinder with finite radius for different plasma density values. Operation modes of the plasma asymmetric dipole antenna with finite length and radius were researched by numerical simulation. The electric field distributions of  the plasma antenna in near antenna field and the radiation pattern were obtained. These characteristics were compared to characteristics of the similar metal antenna. Numerical models verification was carried out by comparing of the counted and measured metal antenna radiation patterns.

  14. Computation of antenna pattern correlation and MIMO performance by means of surface current distribution and spherical wave theory

    Directory of Open Access Journals (Sweden)

    O. Klemp

    2006-01-01

    Full Text Available In order to satisfy the stringent demand for an accurate prediction of MIMO channel capacity and diversity performance in wireless communications, more effective and suitable models that account for real antenna radiation behavior have to be taken into account. One of the main challenges is the accurate modeling of antenna correlation that is directly related to the amount of channel capacity or diversity gain which might be achieved in multi element antenna configurations. Therefore spherical wave theory in electromagnetics is a well known technique to express antenna far fields by means of a compact field expansion with a reduced number of unknowns that was recently applied to derive an analytical approach in the computation of antenna pattern correlation. In this paper we present a novel and efficient computational technique to determine antenna pattern correlation based on the evaluation of the surface current distribution by means of a spherical mode expansion.

  15. Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies

    Science.gov (United States)

    Teperik, Tatiana V.; Burokur, Shah Nawaz; de Lustrac, André; Sabanowski, Guy; Piau, Gérard-Pascal

    2017-07-01

    We demonstrate numerically and experimentally an ultra-thin (≈ λ/240) metasurface-based invisibility cloak for low frequency antenna applications. We consider a monopole antenna mounted on a ground plane and a cylindrical metallic obstacle of diameter smaller than the wavelength located in its near-field. To restore the intrinsic radiation patterns of the antenna perturbed by this obstacle, a metasurface cloak consisting simply of a metallic patch printed on a dielectric substrate is wrapped around the obstacle. Using a finite element method based commercial electromagnetic solver, we show that the radiation patterns of the monopole antenna can be restored completely owing to electromagnetic modes of the resonant cavity formed between the patch and obstacle. The metasurface cloak is fabricated, and the concept is experimentally demonstrated at 125 MHz. Performed measurements are in good agreement with numerical simulations, verifying the efficiency of the proposed cloak.

  16. A new radiation stripline ICRF antenna design for EAST Tokamak

    International Nuclear Information System (INIS)

    Qin, C. M.; Zhao, Y. P.; Wan, B. N.; Li, J.; Zhang, X. J.; Yang, Q. X.; Yuan, S.; Braun, F.; Notedame, J.-M.; Kasahara, H.

    2014-01-01

    A new type of toroidal long Radiation Stripline Antenna (RSA) is presented, which can effectively improve antenna radiation, leading in reduction of max voltage on transmission line and decrease of the sensitivity to ELM's of the ICRF system at some frequencies. Based on the new concept, a 4-straps RSA is proposed for EAST device. Using 3-D computing simulator code (HFSS), RF current distribution, S-parameters and electromagnetic field distribution on and near the RSA ICRF antenna are analyzed and compared with present ICRF antenna on EAST

  17. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  18. Antenna Characterization for the JOLT Impulsive Radiator via Low-Voltage Measurements

    Science.gov (United States)

    Tyo, J. S.; Schoenberg, J. S. H.; Baum, C. E.; Prather, W. D.; Hackett, R.; Burger, J. W.; Farr, E. G.; Giri, D. V.; McLemore, D. P.

    The JOLT system is a highly directive, impulse-like radiator. The antenna for JOLT is a 10-ft-diameter half-impulse radiating antenna (HIRA). JOLT was one of the first impulse radiating systems to employ a half IRA. For that reason, extensive measurements were made with a prototype, scale model HIRA in order to understand the performance of this class of antenna. In addition, a series of low-voltage antenna subsystem tests were performed with the full JOLT antenna before it was couple to the pulsed power and run at high voltage. The low-voltage measurements proved to be quite valuable, as an important manufacturing defect—a failure to mount the dish perpendicular to the ground plane—was identified and mitigated.

  19. Synthesis of ultrawideband radiation of combined antenna arrays excited by nanosecond bipolar voltage pulses

    International Nuclear Information System (INIS)

    Koshelev, V I; Plisko, V V; Sevostyanov, E A

    2017-01-01

    To broaden the spectrum of high-power ultrawideband radiation, it is suggested to synthesize an electromagnetic pulse summing the pulses of different length in free space. On the example of model pulses corresponding to radiation of combined antennas excited by bipolar voltage pulses of the length of 2 and 3 ns, the possibility of twofold broadening of the radiation spectrum was demonstrated. Radiation pulses with the spectrum width exceeding three octaves were obtained. Pattern formation by the arrays of different geometry excited by the pulses having different time shifts was considered. Optimum array structure with the pattern maximum in the main direction was demonstrated on the example of a 2×2 array. (paper)

  20. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    and in-phase fields in the slot in order to obtain an omnidirectional radiation pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due...

  1. Liquid Crystal Bow-Tie Microstrip antenna for Wireless Communication Applications

    Directory of Open Access Journals (Sweden)

    B.T.P.Madhav

    2014-06-01

    Full Text Available In this paper we presented the design and analysis of Bow-Tie antenna on liquid crystal substrate, which is suitable for the Bluetooth/WLAN-2.4/WiBree/ZigBee applications. The Omni-directional radiation patterns along with moderate gain make the proposed antenna suitable for above mentioned applications. Details of the antenna design and simulated results Return loss, Input impedance, Radiation Patterns, E-Field, H-Field and Current Distributions, VSWR are presented and discussed. The proposed antenna is simulated at 2.4 GHz using Ansoft HFSS-11.

  2. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi; Sun, Ying

    2016-01-01

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from

  3. Optically controlled reconfigurable antenna for 5G future broadband cellular communication networks

    DEFF Research Database (Denmark)

    Costa, I.F. da; Spadoti, D. H.; Cerqueira Sodre Jr., Arismar

    2017-01-01

    This paper presents an optically controlled reconfigurable antenna for millimetre-wave frequency range. Silicon switches are used to control the optical reconfiguration, modifying the frequency response and radiation pattern of the antenna design. Therefore, the system can switch between the ligh......This paper presents an optically controlled reconfigurable antenna for millimetre-wave frequency range. Silicon switches are used to control the optical reconfiguration, modifying the frequency response and radiation pattern of the antenna design. Therefore, the system can switch between...

  4. On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    KAUST Repository

    Sallam, Mai O.; Serry, Mohamed; Shamim, Atif; Sedky, Sherif; Soliman, Ezzeldin A.

    2016-01-01

    In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.

  5. On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    KAUST Repository

    Sallam, Mai O.

    2016-12-19

    In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.

  6. Curtain Antenna Array Simulation Research Based on MATLAB

    Directory of Open Access Journals (Sweden)

    Hongbo LIU

    2014-01-01

    Full Text Available For the radiating capacity of curtain antenna array, this paper constructs a three- line-four-column curtain antenna array using cage antenna as the antenna array element and obtains a normalizing 3D radiation patterns through conducting simulation with MATLAB. Meanwhile, the relationships between the antenna spacing and the largest directivity coefficient, as well as the communication frequency and largest directivity coefficient are analyzed in this paper. It turns out that the max value will generate when the antenna spacing is around 18 m and the best communication effect will be achieved when the communication frequency is about 12.4 MHz.

  7. Radiation pattern synthesis of planar antennas using the iterative sampling method

    Science.gov (United States)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  8. Compressive Sensing for Millimeter Wave Antenna Array Diagnosis

    KAUST Repository

    Eltayeb, Mohammed E.

    2018-01-08

    The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to wind and atmospheric conditions, outdoor millimeter wave antenna elements are subject to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. Handheld devices are also subject to blockages from random finger placement and/or finger prints. These blockages cause absorption and scattering to the signal incident on the array, modify the array geometry, and distort the far-field radiation pattern of the array. This paper studies the effects of blockages on the far-field radiation pattern of linear arrays and proposes several array diagnosis techniques for millimeter wave antenna arrays. The proposed techniques jointly estimate the locations of the blocked antennas and the induced attenuation and phase-shifts given knowledge of the angles of arrival/departure. Numerical results show that the proposed techniques provide satisfactory results in terms of fault detection with reduced number of measurements (diagnosis time) provided that the number of blockages is small compared to the array size.

  9. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  10. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif; Salama, Khaled N.; Sedky, S.; Soliman, E. A.

    2012-01-01

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  11. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif

    2012-07-28

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  12. COMPACT DUAL-BAND INVERTED L SHAPED MONOPOLE ANTENNA FOR WLAN APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K Sumathi

    2015-12-01

    Full Text Available A highly compact and an optimized design of an Inverted L shaped printed monopole antenna with a simple compact ground plane is proposed. To make the designed antenna suitable for implantation it is embedded in FR-4 substrate and is presented. The antenna is designed for dual-band operation at 2.4GHz and 5.2GHz. It is suitable for Wireless Local Area Network (WLAN applications with return loss (S11 < -10dB. The antenna has two different resonant current paths that support two resonances at 2.44GHz and 5.18GHz (forming an F-shaped structure. The size of the antenna is 32.5mm × 19.6mm × 1.6mm. The antenna design is simulated using the tool Advanced Design System (ADS 2014. This antenna design has good return loss and radiation characteristics in both the required frequency bands. The radiation pattern obtained from the proposed antenna is an Omni directional radiation pattern in the E and H plane over the frequency ranges 2.4GHz and 5.2GHz.

  13. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  14. Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2010-01-01

    Full Text Available Diversity antennas play an important role in wireless communications. However, mutual coupling between multiple ports of a diversity antenna has significant effects on wireless radio links and channel capacity. In this paper, dual-port pattern diversity antennas for femtocell applications are proposed to cover GSM1800, UMTS, and WLAN frequency bands. The channel capacities of the proposed antennas and two ideal dipoles with different mutual coupling levels are investigated in an indoor environment. The relation between mutual coupling and channel capacity is observed through investigations of these antennas.

  15. A Novel Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure

    Directory of Open Access Journals (Sweden)

    N. Marwah

    2016-08-01

    Full Text Available A novel feeding structure in magneto-electric dipole antenna is proposed and analyzed, which is simpler and better in performance than previous designs, involving differential feeding.  Due to this improved feeding structure, the antenna has achieved an impedance bandwidth of 133.3% ( 0.5 GHz – 2.5 GHz, resulting into an ultra-wide band antenna. The maximum broadside gain 7.5dBi with unidirectional radiation pattern has also been reported for the entire the range of operation. Symmetry in E-plane and H-plane radiation patterns has been observed due to the symmetry in structure and excitation of antenna. The antenna has also been able to achieve cross polarization levels.

  16. Radiation quality factor of spherical antennas with material cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    This paper gives a description of the radiation quality factor and resonances of spherical antennas with material cores. Conditions for cavity and radiating resonances are given, and a theoretical description of the radiation quality factor, as well as simple expressions describing the relative...

  17. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    Borg, G.; Harris, J.

    1999-01-01

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  18. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  19. Definition of accurate reference pattern for the DTU-ESA VAST12 antenna

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Breinbjerg, Olav; Burgos, Sara

    2009-01-01

    In this paper, the DTU-ESA 12 GHz validation standard (VAST12) antenna and a dedicated measurement campaign carried out in 2007-2008 for the definition of its accurate reference pattern are first described. Next, a comparison between the results from the three involved measurement facilities...... is presented. Then, an accurate reference pattern of the VAST12 antenna is formed by averaging the three results taking into account the estimated uncertainties of each result. Finally, the potential use of the reference pattern for benchmarking of antenna measurement facilities is outlined....

  20. Quantitative thermographic imagery in the evaluation of antenna heating patterns

    International Nuclear Information System (INIS)

    Pearce, J.A.; Baughman, R.R.

    1984-01-01

    In quantitative thermographic imaging the temperature distribution of a surface is inferred from measurement of the radiant energy leaving the surface. Digital image processing and calibration methods allow the subtraction of preexisting temperature gradients so that precise heating patterns can be obtained. The primary limitation of quantitative thermography is that noise in the photodetector limits minimum resolvable temperature difference to around 0.5 0 C since frame integration cannot be used on the transient temperature distributions expected. The authors have developed and evaluated nonlinear smoothing operators which reduce the noise variance so that temperature differences of 0.1 0 C can be measured. They have applied digital thermographic imaging in the measurement of heating patterns obtained from two roughly orthogonal microwave antennas: a spiral antenna and a bow-tie antenna. These two antenna types are orthogonal in that the spiral has an H-field essentially normal to the phantom surface and the bow-tie has an E-field essentially normal to the surface. The resulting heating patterns clearly show the effect of non-uniform phantom electrical properties on the heating profiles obtained

  1. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    Science.gov (United States)

    Radway, Matthew J.

    with exceptionally stable and clean radiation patterns without use of an absorbing cavity. The multiarming technique allows the spiral to retain its pattern integrity at frequencies well below those of comparable two-armed spiral antennas. A quadrifilar helix-type of end-loading is applied to the end of the spiral, resulting in dramatically-improved low-frequency gain. Careful application of resistive end-loading allows good impedance matching at frequencies as low as one-half of the Mode 1 cutoff frequency, while providing acceptable radiation efficiency due to effective use of the available antenna volume. A novel dual-layering technique for reducing the spiral's modal impedance is presented, allowing the antenna to present a good impedance match to a 50 ohm system. The third application of mode theory has been to exploit the wideband multi-mode capability of the multi-armed spiral antenna to implement a simple wide-band radiation pattern nulling technique on a multi-armed spiral antenna. It is shown that wideband nulling is possible and that, in contrast to traditional array antennas, grating lobes do not appear even over extremely wide bandwidths. Simple techniques for addressing the phenomenon of null rotation with frequency are discussed. Finally, mode theory has been used to analyze beamformer non-idealities. This has led to the revelation that the spectral distribution of beamformer errors is at least as important as the magnitude of those errors. Proper choice of beamformer topology can result in noticeable improvement in the antenna performance.

  2. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  3. Modelling of UWB Antenna Perturbed by Human Phantom in Spherical Harmonics Space

    DEFF Research Database (Denmark)

    Mhedhbi, Meriem; Avrillon, Stephane; Pedersen, Troels

    2014-01-01

    is attractive for simulation purposes. We propose a simple model for the spherical harmonics coefficients allowing to predict the antenna behavior perturbed by a human phantom. The model is based on knowledge of the spherical harmonic coefficients of antenna in free space and the antenna-phantom distance.......In this paper we study how the antenna radiation pattern is perturbed in the presence of a human phantom in terms of changes in the coefficients of the spherical harmonic antenna representation. The spherical harmonic basis allows for a compact representation of the antenna pattern which...

  4. Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    Directory of Open Access Journals (Sweden)

    Fraga-Rosales Hector

    2017-01-01

    Full Text Available In this paper, a microstrip bowtie patch antenna (MBPA for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation employing near-field equipment. The experimental results are described in detail intending to agree well with the simulated predictions. The antenna was designed, measured and built and its far field performance was evaluated with a 2.11 GHz resonant frequency. The azimuth and elevation antenna patterns, antenna gain and, the matching frequency were the main parameters obtained to analyze the antenna behaviour. The antenna has a gain approximately equal to 8.77 dBi and its beam-widths are higher than 100° in E plane.

  5. Ultrasmall Dual-Band Metamaterial Antennas Based on Asymmetrical Hybrid Resonators

    Directory of Open Access Journals (Sweden)

    Ji-Xu Zhu

    2016-01-01

    Full Text Available A new type of hybrid resonant circuit model is investigated theoretically and experimentally. The resonant model consists of a right hand (RH patch part and a composite right and left handed (CRLH part (RH + CRLH, which determines a compact size and also a convenient frequency modulation characteristic for the proposed antennas. For experimental demonstration, two antennas are fabricated. The former dual-band antenna operating at f-1=3.5 GHz (Wimax and f+1=5.25 GHz (WLAN occupies an area of 0.21λ0×0.08λ0, and two dipolar radiation patterns are obtained with comparable gains of about 6.1 and 6.2 dB, respectively. The latter antenna advances in many aspects such as an ultrasmall size of only 0.16λ0×0.08λ0, versatile radiation patterns with a monopolar pattern at f0=2.4 GHz (Bluetooth, and a dipole one at f+1=3.5 GHz (Wimax and also comparable antenna gains. Circuit parameters are extracted and researched. Excellent performances of the antennas based on hybrid resonators predict promising applications in multifunction wireless communication systems.

  6. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    Science.gov (United States)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  7. Explore the Capability of ESPAR Antennas for Low Cost Communication

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Papadias, C.

    ESPAR antenna systems are composed of one active and several parasitic elements and by changing the characteristic of the parasitic elements on the antenna, the radiation pattern will also change. Such characteristic makes ESPAR antenna useful in many applications, e.g., single RF MIMO transmission...... and imaginary part. So a matching network is required to control the load value. This paper presents an idea of adjusting the parasitic ESPAR antenna loads with controllable passive elements. According to simulation, the control circuit consumes less than 1mW power on 64 patterns selection, which explores...

  8. Babinet-Inverted Optical Yagi-Uda Antenna for Unidirectional Radiation to Free Space

    Science.gov (United States)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q.-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won

    2014-06-01

    Plasmonic nanoantennas are key elements in nanophotonics capable of directing radiation or enhancing the transition rate of a quantum emitter. Slot-type magnetic-dipole nanoantennas, which are complementary structures of typical electric-dipole-type antennas, have received little attention, leaving their antenna properties largely unexplored. Here we present a novel magnetic-dipole-fed multi-slot optical Yagi-Uda antenna. By engineering the relative phase of the interacting surface plasmon polaritons between the slot elements, we demonstrate that the optical antenna exhibits highly unidirectional radiation to free space. The unique features of the slot-based magnetic nanoantenna provide a new possibility of achieving integrated features such as energy transfer from one waveguide to another by working as a future optical via.

  9. Miniaturized Balanced Antenna with Integrated Balun for Practical LTE Applications

    Directory of Open Access Journals (Sweden)

    I. T. E. Elfergani

    2017-06-01

    Full Text Available A design of dual-band balanced antenna structure operating in the 700 and 2600MHz LTE bands is studied and investigated. The overall dimensions of the radiator are 50 × 18 × 7 mm^3 allowing it to be easily concealed within mobile handsets. A broad-band balun is designed and integrated with the antenna handset in order to provide the feeding network and perform the measurements of the antenna radiation performance. Prototypes of proposed antenna with and without balun are fabricated and verified. The simulated and practical results with and without the handheld effects in terms of reflection coefficient, power gain and radiation pattern, are studied and shown reasonable agreement.

  10. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...... with a symmetric radiation pattern in the forward and backward directions....

  11. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  12. Electromagnetic on-aircraft antenna radiation in the presence of composite plates

    Science.gov (United States)

    Kan, S. H-T.; Rojas, R. G.

    1994-01-01

    The UTD-based NEWAIR3 code is modified such that it can model modern aircraft by composite plates. One good model of conductor-backed composites is the impedance boundary condition where the composites are replaced by surfaces with complex impedances. This impedance-plate model is then used to model the composite plates in the NEWAIR3 code. In most applications, the aircraft distorts the desired radiation pattern of the antenna. However, test examples conducted in this report have shown that the undesired scattered fields are minimized if the right impedance values are chosen for the surface impedance plates.

  13. Modified Sierpinski Gasket Patch Antenna for UMTS and 2.4/5.2 WLAN

    Directory of Open Access Journals (Sweden)

    Y. E. Ali

    2013-05-01

    Full Text Available A modified Sierpinski Gasket fractal antenna for multiband application is proposed in this paper. The modified ground plane and the microstrip feed are used to obtain the wider bandwidth at the resonance frequency. The antenna is designed and printed on two layers FR-4 substrate (ϵr=4.4 and h=1.6 mm to cover the UMTS and 2.4/5.2 WLAN. The radiation pattern of the proposed antenna is similar to an omnidirectional. The proposed antenna has maximum gain of 1.88, 1.6, 4.31 dB at 2, 2.4, 5.2 GHz, respectively The properties of the antenna such as return losses, radiation pattern, input resistance and gain are determined via numerical CST Microwave Studio 2010 software.

  14. Multiobjective Synthesis of Steerable UWB Circular Antenna Array considering Energy Patterns

    Directory of Open Access Journals (Sweden)

    Leopoldo A. Garza

    2015-01-01

    Full Text Available True-time delay antenna arrays have gained a prominent attention in ultrawideband (UWB applications such as directional communications and radar. This paper presents the design of steerable UWB circular array by using a multiobjective time-domain synthesis of energy pattern for circular antenna arrays. By this way we avoid individual beamforming for each frequency in UWB spectrum if the problem was addressed from the frequency domain. In order to obtain an energy pattern with low side lobe level and a desired main beam, the synthesis presented is performed by optimizing the true-time delays and amplitude coefficients for the antenna elements in a circular geometry. The method of Differential Evolution for Multiobjective Optimization (DEMO is used as the optimization algorithm in this work. This design of steerable UWB circular arrays considers the optimization of the true-time exciting delays and the amplitude coefficients across the antenna elements to operate with optimal performance in the whole azimuth plane (360°. A comparative analysis of the performance of the optimized design with the case of conventional progressive delay excitations is achieved. The provided results show a good performance for energy patterns and for their respective power patterns in the UWB spectrum.

  15. User Interaction with Inverted-F Antennas Integrated into Laptop PCMCIA Cards

    Directory of Open Access Journals (Sweden)

    J. Guterman

    2008-06-01

    Full Text Available This paper evaluates the overall laptop integration effects on the performance of commercial 2.4 GHz Inverted-F antennas built into PCMCIA cards. A generic laptop model is used to represent the antenna housing effects while an anatomical shape homogenous human model is used to estimate the electromagnetic interaction between the antenna and the user. The antenna performance is evaluated for different card locations in terms of reflection coefficient, far-field gain pattern and radiation efficiency. The human exposure to EM radiation is analyzed in terms of Specific Absorption Rate.

  16. A 3D printed dual GSM band near isotropic on-package antenna

    KAUST Repository

    Zhen, Su

    2017-10-25

    In this paper, we propose an on-package dual band monopole antenna with near-isotropic radiation pattern for GSM mobile applications. The proposed antenna is well matched for both GSM 900 and 1800 bands and provides decent gain for both the bands (1.67 and 3.27 dBi at 900 MHz and 1800 MHz respectively). The antenna is printed with silver ink on a 3D printed polymer based package. The package houses the GSM electronics and the battery. By optimizing the antenna arms width and length, a near-isotropic radiation pattern is achieved. Unlike the published isotropic antennas which are either single band or large in size, the proposed antenna covers both GSM bands with required bandwidth and is only half wavelength long. The design is low cost and highly suitable for various GSM applications such as localization, in additional to conventional communication applications.

  17. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  18. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  19. Maximum super angle optimization method for array antenna pattern synthesis

    DEFF Research Database (Denmark)

    Wu, Ji; Roederer, A. G

    1991-01-01

    Different optimization criteria related to antenna pattern synthesis are discussed. Based on the maximum criteria and vector space representation, a simple and efficient optimization method is presented for array and array fed reflector power pattern synthesis. A sector pattern synthesized by a 2...

  20. Antenna-coupled terahertz radiation from joule-heated single-wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    M. Muthee

    2011-12-01

    Full Text Available In this letter an experimental method is introduced that allows detection of terahertz (THz radiation from arrays of joule-heated Single-Walled Carbon Nanotubes (SWCNTs, by coupling this radiation through integrated antennas and a silicon lens. The radiation forms a diffraction-limited beam with a total maximum radiated power of 450 nW, significantly greater than the power estimated from Nyquist thermal noise (8 nW. The physical radiation process is unknown at this stage, but possible explanations for the high radiated power are discussed briefly. The emission has a typical bandwidth of 1.2 THz and can be tuned to different frequencies by changing the dimensions of the antennas. Arrays of the devices could be integrated in CMOS integrated circuits, and find application in THz systems, such as in near-range medical imaging.

  1. Radiation and scattering from cylindrically conformal printed antennas. Ph.D. Thesis Final Report

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1994-01-01

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.

  2. A modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    , but not for balanced antennas like loops or dipoles. In this paper, a modified Wheeler cap method is proposed for the radiation efficiency measurement of balanced electrically small antennas and a three-port network model of the Wheeler cap measurement is introduced. The advantage of the modified method...... is that it is wideband, thus does not require any balun, and both the antenna input impedance and radiation efficiency can be obtained. An electrically small loop antenna and a wideband dipole were simulated and measured according to the proposed method and the results of measurements and simulations are presented...

  3. Printing of Wearable Antenna on Textile

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2018-01-01

    Full Text Available A wearable antenna which is meant to be a part of the clothing used for communication purposes includes tracking, navigation and mobile computing has been seen in demand due to the recent miniaturization of wireless devices. Printing of conductive ink provides flexibility properties on electronics thus allowing it to be used on conformal surfaces. However, the current printing techniques mostly suffer from ink incompatibility and limited of substrates to be printed with. Hence, this paper intend to discloses the printing of wearable antenna using alternative technique via syringe-based deposition system with conductive ink on textile. A validation between simulation and measurement of return loss, (S11 and radiation pattern of the antenna printed is also performed. It was found that a functional antenna is successfully printed on textile since the performances obtained are as expected. The antenna resonated at a minimum resonant frequency of 1.82 GHz which the S11 gathered at-18.90 dB. The radiation pattern for both simulation and measurement is as predicted since both have a larger magnitude of the main lobe than the side lobe. The magnitude of the main lobe from measurement was observed to be 8.83 dB higher than the magnitude of the main lobe of the simulation which is only 3.77 dB. It is proven that the syringe-based deposition system is capable of printing functional antenna on textile.

  4. Theoretical analysis on radiation and reception characteristics of an oblate spheroidal antenna for electron plasma waves

    International Nuclear Information System (INIS)

    Ohnuki, S.; Adachi, S.; Ohnuma, T.

    1978-01-01

    The radiation and reception characteristics of the oblate spheroidal antenna for electron plasma waves are theoretically investigated. The analysis is carried out as a boundary-value problem. The formulas for the radiation and reception characteristics such as radiation impedance, electron charge distributions, radiated wave potential, directional properties, and receiving voltage of the oblate spheroidal antenna are analytically obtained. As a result, it is concluded that the radiation and reception characteristics of the antennas are not uniquely determined by k/sub p/a (k/sub p/ is the wave number of an electron plasma wave, and a is the radius of the circular-plate antenna), but are determined by two out of three factors, k/sub p/a, zeta (radius divided by Debye length), and ω/ω/sub p/ (angular signal frequency to angular plasma frequency). This conclusion is in marked contrast to the conventional theory in which the charge distribution on the antenna is assumed a priori as uniform and, thus, the antenna characteristics are uniquely determined by k/sub p/a. It is claimed that the experimental results obtained hitherto support the present new theory

  5. Radiation-Induced Correlation between Molecules Nearby Metallic Antenna Array

    Directory of Open Access Journals (Sweden)

    Yoshiki Osaka

    2015-01-01

    Full Text Available We theoretically investigate optical absorption of molecules embedded nearby metallic antennas by using discrete dipole approximation method. It is found that the spectral peak of the absorption is shifted due to the radiation-induced correlation between the molecules. The most distinguishing feature of our work is to show that the shift is largely enhanced even when the individual molecules couple with localized surface plasmons near the different antennas. Specifically, we first consider the case that two sets of dimeric gold blocks with a spacing of a few nanometers are arranged and reveal that the intensity and spectral peak of the optical absorption strongly depend on the position of the molecules. In addition, when the dimeric blocks and the molecules are periodically arranged, the peak shift is found to increase up to ~1.2 meV (300 GHz. Because the radiation-induced correlation is essential for collective photon emission, our result implies the possibility of plasmon-assisted superfluorescence in designed antenna-molecule complex systems.

  6. Crossed-Slot Cavity-Backed Antenna with Improved Hemispherical Coverage

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav; Østergaard, Allan

    2005-01-01

    The paper presents the results of the investigation of the crossed-slot cavity-backed antenna with the complementary crossed electric dipoles added to compensate the circularly polarized (CP) radiation pattern degradation near the horizon. Dependences of the radiation characteristics...... of the modified crossed-slot cavity-backed antenna on the length, width and height of the crossed electric dipoles are shown. Effects of a finite size ground plane are taken into account due to a full wave electromagnetic analysis software utilized in the parametrical investigations. Simulated and measured...... results for a selected antenna configuration prove that the properly adjusted crossed electric dipoles are able to improve the coverage and CP polarization characteristics of the crossed-slot cavity-backed antenna....

  7. Non-linear excitation of gravitational radiation antennae

    International Nuclear Information System (INIS)

    Blair, D.G.

    1982-01-01

    A mechanism of non-linear excitation is proposed to explain observed excess noise in gravitational radiation antennae, driven by low frequency vibration. The mechanism is analogous to the excitation of a violin string by low frequency bowing. Numerical estimates for Weber bars suspended by cables are in good agreement with observations. (Auth.)

  8. Efficient Implementation of GPR Data Inversion in Case of Spatially Varying Antenna Polarizations

    NARCIS (Netherlands)

    Wang, J.; Aubry, P.J.; Yarovyi, O.

    2018-01-01

    Ground penetrating radar imaging from the data acquired with arbitrarily oriented dipole-like antennas is considered. To take into account variations of antenna orientations resulting in spatial rotation of antenna radiation patterns and polarizations of transmitted fields, the full-wave method

  9. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    Science.gov (United States)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  10. Small Device For Short-Range Antenna Measurements Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  11. 2-D Fractal Wire Antenna Design and Performance

    Science.gov (United States)

    Tebbens, S. F.; Barton, C. C.; Peterman, D. J.; Ewing, J. J.; Abbott, C. S.; Rizki, M. M.

    2017-12-01

    A 2-D fractal wire antenna uses a fractal (self-similar) pattern to increase its length by iteration and can receive or transmit electromagnetic radiation. 2-D fractals are shapes that, at their mathematical limit (of infinite iterations) have an infinite length. The fractal dimension describes the degree of space filling. A fundamental property of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that can be very compact, wideband and multiband. As the number of iterations increases, the antenna tends to have additional frequencies that minimize far field return loss. This differs from traditional antenna designs in that a single fractal antenna can operate well at multiple frequencies. We have created a MATLAB code to generate deterministic and stochastic modes of fractal wire antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, and number of iterations have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance.

  12. Reactively loaded arrays based on overlapping sub-arrays with flat-top radiation pattern

    NARCIS (Netherlands)

    Maximidis, R. T.; Smolders, A. B.; Toso, G.; Caratelli, D.

    2017-01-01

    The design of reactively-loaded antenna arrays featuring a pulse-shaped radiation pattern for limited scan-angle applications is presented. The use of the reactive loading allows reducing the complexity of the feeding structure, eliminating the need for complex overlapping beam-forming networks and

  13. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  14. Near-field characteristics of radiating-wave simulator antenna based on TEM horn

    International Nuclear Information System (INIS)

    Tian Chunming; Ge Debiao

    2004-01-01

    This paper presents a novel antenna of NEMP (nuclear electromagnetic pulse) radiating-wave simulator, which is analyzed and optimized using the finite-difference time domain (FDTD) method. The intense voltage pulse is fed as the source to this antenna by the coaxial line. The parallel plate transmission line and the size of the transverse electromagnetic horn are optimized. The near field of antenna is analyzed, and the effects of the size on the near field are also given. The antenna designed in this paper can well satisfy the requirement for studying the EMP effects

  15. Fabrication and impact performance of three-dimensionally integrated microstrip antennas with microstrip and coaxial feeding

    International Nuclear Information System (INIS)

    Yao, Lan; Wang, Xin; Xu, Fujun; Zhao, Da; Jiang, Muwen; Qiu, Yiping

    2009-01-01

    A conformal load-bearing antenna structure (CLAS) combines the antenna into a composite structure such that it can carry the designed load while functioning as an antenna. In this paper, two types of new 3D integrated microstrip antennas (3DIMAs) with different feeding methods are designed to work at the radar L-band. Different from the conventional CLAS, the radiating patch and the ground plane of the 3DIMA are both composed of woven conductive wires and are bonded into the 3D composite physically by Z-yarns, greatly improving the damage tolerance of the antenna. The return loss of the coaxial-fed antenna is −13.15 dB with a resonant frequency of 1.872 GHz, while that of the microstrip-fed antenna is −31.50 dB with a resonant frequency of 1.33 GHz. Both of the 3DIMAs have similar radiation patterns to that of the traditionally designed microstrip antenna. In addition, an experimental investigation of the impact response of the coaxial-fed 3DIMA was carried out and the results showed the radiation pattern had almost no change even when the antenna received an impact energy of 15 J, exhibiting superior impact resistance to that of a conventional microstrip antenna

  16. Characteristics of the wire biconical antenna used for EMC measurements

    Science.gov (United States)

    Austin, Brian A.; Fourie, Andre P. C.

    1991-08-01

    The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.

  17. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  18. Multi-band Monopole Antennas Loaded with Metamaterial TL

    Science.gov (United States)

    Song, Zhi-jie; Liang, Jian-gang

    2015-05-01

    A novel metamaterial transmission line (TL) by loading complementary single Archimedean spiral resonator pair (CSASRP) is investigated and used to design a set of multi-frequency monopole antennas. The particularity is that the CSASRP which features dual-shunt branches in the equivalent circuit model is directly etched in the signal strip. By smartly controlling the element parameters, three antennas are designed and one of them covering UMTS and Bluetooth bands is fabricated and measured. The antenna exhibits impedance matching better than -10 dB and normal monopolar radiation patterns at working bands of 1.9-2.22 and 2.38-2.5 GHz. Moreover, the loaded element also contributes to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. The proposed antenna is also more compact over previous designs.

  19. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  20. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    Directory of Open Access Journals (Sweden)

    Fanrong Kong

    2018-02-01

    Full Text Available The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  1. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    Science.gov (United States)

    Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao

    2018-02-01

    The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  2. Design of 5.8 GHz Integrated Antenna on 180nm Complementary Metal Oxide Semiconductor (CMOS) Technology

    Science.gov (United States)

    Razak, A. H. A.; Shamsuddin, M. I. A.; Idros, M. F. M.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2018-03-01

    This project discusses the design and simulation performances of integrated loop antenna. Antenna is one of the main parts in any wireless radio frequency integrated circuit (RFIC). Naturally, antenna is the bulk in any RFIC design. Thus, this project aims to implement an integrated antenna on a single chip making the end product more compact. This project targets 5.8 GHz as the operating frequency of the integrated antenna for a transceiver module based on Silterra CMOS 180nm technology. The simulation of the antenna was done by using High Frequency Structure Simulator (HFSS). This software is industrial standard software that been used to simulate all electromagnetic effect including antenna simulation. This software has ability to simulate frequency at range of 100 MHz to 4 THz. The simulation set up in 3 dimension structure with driven terminal. The designed antenna has 1400um of diameter and placed on top metal layer. Loop configuration of the antenna has been chosen as the antenna design. From the configuration, it is able to make the chip more compact. The simulation shows that the antenna has single frequency band at center frequency 5.8 GHz with -48.93dB. The antenna radiation patterns shows, the antenna radiate at omnidirectional. From the simulation result, it could be concluded that the antenna have a good radiation pattern and propagation for wireless communication.

  3. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  4. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    Directory of Open Access Journals (Sweden)

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  5. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

    Directory of Open Access Journals (Sweden)

    H. Ja’afar

    2016-06-01

    Full Text Available This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consists of 12 commercial fluorescent tubes aligned in series containing a mixture of Argon gas and mercury vapor which upon electrification forms plasma columns. The plasma behaves as a conductor and acts as a reflector in radiation, in the condition where plasma frequency,ωp is higher than operating frequency. From this concepts, when all plasma elements are activated or switched to ON, the radiation signal from monopole antenna will trapped inside the plasma blanket and meanwhile when one or more plasma elements is deactivated (switched OFF, the radiation from monopole antenna will escape. This antenna has the capability to change its patterns with beam direction at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330° at frequency 2.4 GHz. The proposed antenna has been successfully fabricated and measured with conclusive results.

  6. Design and Characterization of CMOS On-Chip Antennas for 60 GHz Communications

    Directory of Open Access Journals (Sweden)

    D.Titz

    2012-04-01

    Full Text Available In this paper, we present the design and the measurement of two antennas realized on a 130nm CMOS process. They both radiate in the 60 GHz band and are dedicated to Wireless Personal Area Network (WPAN applications. The antennas are manufactured within the frame of a multi-wafer project with several surrounding microelectronic circuits. The first antenna is an Inverted-F antenna (IFA. It has a maximum gain of -8 dBi and a -10 dB matching bandwidth of 20%. The second radiator is a meandered dipole. It has a maximum gain of -14 dBi and a -10 dB matching bandwidth of 10%. The challenging measurement of their reflection coefficient and their gain radiation pattern are presented. Simulated versus measured curves are analyzed. We especially demonstrate the necessity to take into account the closest microelectronic circuits of the antennas for accurate modeling of the radiating performance of 60 GHz on-chip dies.

  7. An Optimized Circuit in Plastic Meander Line Antenna for 2.45 GHz Applications

    Directory of Open Access Journals (Sweden)

    Farhat Majeed

    2016-01-01

    Full Text Available Researchers seek to design electrically small planar antennas for RFID applications. Using multiparameter optimization, various meander line antennas were designed for the lowest resonant frequency and maximum radiation efficiencies for a fixed grid size. One such design for highest radiation efficiency was optimized for microwave frequencies by including an impedance matching structure. The antenna was printed with silver ink on a plexiglass substrate using the circuit in plastic (CiP technique of embedded electrical components. The measured scattering parameter (S11 was −18.43 dB at resonance. The radiation efficiency of the antenna measured using simple and improved Wheeler cap method was 74.4/74.1%. The radiation pattern of electrically small CiP antenna was doughnut-shaped with main lobe magnitude of 0.453 dB and an angular width of 84.2° in elevation plane. The measured 10 dB fractional bandwidth of the antenna was 18.98%. The results are compared with silver/copper in air antennas optimized for achieving the highest radiation efficiency for a fixed grid size. Plastic antennas are viable at microwave frequencies.

  8. 2-D Fractal Carpet Antenna Design and Performance

    Science.gov (United States)

    Barton, C. C.; Tebbens, S. F.; Ewing, J. J.; Peterman, D. J.; Rizki, M. M.

    2017-12-01

    A 2-D fractal carpet antenna uses a fractal (self-similar) pattern to increase its perimeter by iteration and can receive or transmit electromagnetic radiation within its perimeter-bounded surface area. 2-D fractals are shapes that, at their mathematical limit (infinite iterations) have an infinite perimeter bounding a finite surface area. The fractal dimension describes the degree of space filling and lacunarity which quantifies the size and spatial distribution of open space bounded by a fractal shape. A key aspect of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that are very compact, wideband and multiband. As the number of iterations increases, the antenna operates at higher and higher frequencies. Manifestly different from traditional antenna designs, a fractal antenna can operate at multiple frequencies simultaneously. We have created a MATLAB code to generate deterministic and stochastic modes of Sierpinski carpet fractal antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, number of iterations, and lacunarities have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance

  9. Opto-microwave, Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    Science.gov (United States)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-11-01

    The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming

  10. Compressive Sensing for Blockage Detection in Vehicular Millimeter Wave Antenna Arrays

    KAUST Repository

    Eltayeb, Mohammed E.; Al-Naffouri, Tareq Y.; Heath, Robert W.

    2017-01-01

    The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to mobility, some vehicular antenna elements might be subjected to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. These particles cause absorption and scattering to the signal incident on the array, and as a result, change the array geometry. This distorts the radiation pattern of the array mostly with an increase in the sidelobe level and decrease in gain. In this paper, we propose a blockage detection technique for millimeter wave vehicular antenna arrays that jointly estimates the locations of the blocked antennas and the attenuation and phase-shifts that result from the suspended particles. The proposed technique does not require the antenna array to be physically removed from the vehicle and permits real-time array diagnosis. Numerical results show that the proposed technique provides satisfactory results in terms of block detection with low detection time provided that the number of blockages is small compared to the array size.

  11. Compressive Sensing for Blockage Detection in Vehicular Millimeter Wave Antenna Arrays

    KAUST Repository

    Eltayeb, Mohammed E.

    2017-02-07

    The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to mobility, some vehicular antenna elements might be subjected to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. These particles cause absorption and scattering to the signal incident on the array, and as a result, change the array geometry. This distorts the radiation pattern of the array mostly with an increase in the sidelobe level and decrease in gain. In this paper, we propose a blockage detection technique for millimeter wave vehicular antenna arrays that jointly estimates the locations of the blocked antennas and the attenuation and phase-shifts that result from the suspended particles. The proposed technique does not require the antenna array to be physically removed from the vehicle and permits real-time array diagnosis. Numerical results show that the proposed technique provides satisfactory results in terms of block detection with low detection time provided that the number of blockages is small compared to the array size.

  12. Novel method to control antenna currents based on theory of characteristic modes

    Science.gov (United States)

    Elghannai, Ezdeen Ahmed

    Characteristic Mode Theory is one of the very few numerical methods that provide a great deal of physical insight because it allows us to determine the natural modes of the radiating structure. The key feature of these modes is that the total induced antenna current, input impedance/admittance and radiation pattern can be expressed as a linear weighted combination of individual modes. Using this decomposition method, it is possible to study the behavior of the individual modes, understand them and therefore control the antennas behavior; in other words, control the currents induced on the antenna structure. This dissertation advances the topic of antenna design by carefully controlling the antenna currents over the desired frequency band to achieve the desired performance specifications for a set of constraints. Here, a systematic method based on the Theory of Characteristic Modes (CM) and lumped reactive loading to achieve the goal of current control is developed. The lumped reactive loads are determined based on the desired behavior of the antenna currents. This technique can also be used to impedance match the antenna to the source/generator connected to it. The technique is much more general than the traditional impedance matching. Generally, the reactive loads that properly control the currents exhibit a combination of Foster and non-Foster behavior. The former can be implemented with lumped passive reactive components, while the latter can be implemented with lumped non-Foster circuits (NFC). The concept of current control is applied to design antennas with a wide band (impedance/pattern) behavior using reactive loads. We successfully applied this novel technique to design multi band and wide band antennas for wireless applications. The technique was developed to match the antenna to resistive and/or complex source impedance and control the radiation pattern at these frequency bands, considering size and volume constraints. A wide band patch antenna was

  13. Horn antenna design studies. Citations from the International Aerospace Abstract data base

    Science.gov (United States)

    Gallagher, M. K.

    1980-01-01

    These citations from the international literature describe the antenna radiation patterns, polarization characteristics, wave propagation, noise temperature, wave diffraction, and wideband communication of various horn antennas. This updated bibliography contains 217 citations, 63 of which are new entries to the previous edition.

  14. Modified Vivaldi antenna with improved gain and phase center stability

    DEFF Research Database (Denmark)

    Zhang, Shuai

    2016-01-01

    A modified Vivaldi antenna is proposed with improved gain and phase centre stability. By applying a high permittivity dielectric substrate, the realized gain is enlarged while maintaining the compactness of the designed antenna. With a redistributed comb-shape corrugation the phase centre stabili...... of the antenna is significantly improved. The designed modified Vivaldi antenna covers the lower UWB band of 3.1-5 GHz with a realized gain higher than 10 dBi. A stable phase centre and radiation patterns over the operating band are realized....

  15. Gain Enhanced On-Chip Folded Dipole Antenna Utilizing Artificial Magnetic Conductor at 94 GHz

    KAUST Repository

    Nafe, Mahmoud; Syed, Ahad; Shamim, Atif

    2017-01-01

    On-chip antennas suffer from low gain values and distorted radiation patterns due to lossy and high permittivity Si substrate. An ideal solution would be to isolate the lossy Si substrate from the antenna through a Perfect Electric Conductor (PEC) ground plane, however the typical CMOS stack up which has multiple metal layers embedded in a thin oxide layer does not permit this. In this work, an Artificial Magnetic Conductor (AMC) reflecting surface has been utilized to isolate the Si substrate from the antenna. Contrary to the previous reports, the AMC structure is completely embedded in the thin oxide layer with the ground plane above the Si substrate. In this approach, the AMC surface acts for the first time as both a reflector and a silicon shield. As a result the antenna radiation pattern is not distorted and its gain is improved by 8 dB. The fabricated prototype demonstrates good impedance and radiation characteristics.

  16. Gain Enhanced On-Chip Folded Dipole Antenna Utilizing Artificial Magnetic Conductor at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2017-09-05

    On-chip antennas suffer from low gain values and distorted radiation patterns due to lossy and high permittivity Si substrate. An ideal solution would be to isolate the lossy Si substrate from the antenna through a Perfect Electric Conductor (PEC) ground plane, however the typical CMOS stack up which has multiple metal layers embedded in a thin oxide layer does not permit this. In this work, an Artificial Magnetic Conductor (AMC) reflecting surface has been utilized to isolate the Si substrate from the antenna. Contrary to the previous reports, the AMC structure is completely embedded in the thin oxide layer with the ground plane above the Si substrate. In this approach, the AMC surface acts for the first time as both a reflector and a silicon shield. As a result the antenna radiation pattern is not distorted and its gain is improved by 8 dB. The fabricated prototype demonstrates good impedance and radiation characteristics.

  17. Circuital characteristics and radiation properties of an UWB electric-magnetic planar antenna for Ku-band applications

    NARCIS (Netherlands)

    Haider, S.N.; Caratelli, D.; Yarovoy, A.G.

    2013-01-01

    A planar, directive antenna with large fractional bandwidth is introduced in this paper. A detailed discussion on the proposed antenna topology and its architecture is reported. The proposed element is a combination of a patch and a loop radiator. A proper combination of the electric field radiator

  18. Body-Worn Spiral Monopole Antenna for On-Body Communications (Invited Paper)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    A novel body-worn spiral monopole antenna is presented. The antenna consists of a ground plane and a spiral monopole. The antenna was designed for Ear-to-Ear (E2E) communication between In-the-Ear (ITE) hearing instruments at 2.45 GHz and has been simulated, prototyped, and measured. The antenna ...... yielded a measured and simulated E2E path gain at 2.45 GHz of –82.1 dB and –85.9 dB, respectively. The radiation pattern of the antenna when mounted in the ear is presented and discussed....

  19. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... in the period 2005–2006 following a series of investigatory measurements and facility updates during 2003–2005. Antenna diagnostics by a SWE-to-PWE transformation presents a case where highly accurate antenna measurements and a plane wave back-projection enable antenna diagnostics by examination...

  20. Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kerim Guney

    2015-01-01

    Full Text Available An evolutionary method based on backtracking search optimization algorithm (BSA is proposed for linear antenna array pattern synthesis with prescribed nulls at interference directions. Pattern nulling is obtained by controlling only the amplitude, position, and phase of the antenna array elements. BSA is an innovative metaheuristic technique based on an iterative process. Various numerical examples of linear array patterns with the prescribed single, multiple, and wide nulls are given to illustrate the performance and flexibility of BSA. The results obtained by BSA are compared with the results of the following seventeen algorithms: particle swarm optimization (PSO, genetic algorithm (GA, modified touring ant colony algorithm (MTACO, quadratic programming method (QPM, bacterial foraging algorithm (BFA, bees algorithm (BA, clonal selection algorithm (CLONALG, plant growth simulation algorithm (PGSA, tabu search algorithm (TSA, memetic algorithm (MA, nondominated sorting GA-2 (NSGA-2, multiobjective differential evolution (MODE, decomposition with differential evolution (MOEA/D-DE, comprehensive learning PSO (CLPSO, harmony search algorithm (HSA, seeker optimization algorithm (SOA, and mean variance mapping optimization (MVMO. The simulation results show that the linear antenna array synthesis using BSA provides low side-lobe levels and deep null levels.

  1. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  2. Simulation of photoconductive antennas for terahertz radiation

    Directory of Open Access Journals (Sweden)

    Carlos Criollo

    2015-01-01

    Full Text Available Simulation of terahertz (THz emission based on PC antennas imposes a challenge to couple the semiconductor carrier phenomena, optical transport and the THz energy transport. In this paper a Multi-physics simulation for coupling these phenomena using COMSOL Multi-physics 4.3b is introduced. The main parameters of THz photoconductive (PC antenna as THz emitter have been reviewed and discussed. The results indicate the role of each parameter in the resulting photocurrent waveform and THz frequency: The radiated THz photocurrent waveform is determined by the photoconductive gap (the separation between the metallic electrodes, the incident laser illumination and the DC excitation voltage; while the THz frequency depends on the dipole length. The optimization of these parameters could enhance the emission. The simulations extend the advance of compact and cost-effective THz emitters.

  3. Effects of a reentry plasma sheath on the beam pointing properties of an array antenna

    Directory of Open Access Journals (Sweden)

    Bowen Bai

    2018-03-01

    Full Text Available The reduction in the gain of an on-board antenna caused by a reentry plasma sheath is an important effect that contributes to the reentry “blackout” problem. Using phased array antenna and beamforming technology could provide higher gain and an increase in the communication signal intensity. The attenuation and phase delay of the electromagnetic (EM waves transmitting through the plasma sheath are direction-dependent, and the radiation pattern of the phased array antenna is affected, leading to a deviation in the beam pointing. In this paper, the far-field pattern of a planar array antenna covered by a plasma sheath is deduced analytically by considering both refraction and mutual coupling effects. A comparison between the analytic results and the results from an electromagnetic simulation is carried out. The effect of the plasma sheath on the radiation pattern and the beam pointing errors of the phased array antenna is studied systematically, and the derived results could provide useful information for the correction of pointing errors.

  4. Fully inkjet printed wide band cantor fractal antenna for RF energy harvesting application

    KAUST Repository

    Bakytbekov, Azamat; Maza, Armando Rodriguez; Nafe, Mahmoud; Shamim, Atif

    2017-01-01

    and an omnidirectional radiation pattern. In this work, a novel Cantor fractal antenna has been designed which fulfills the above mentioned performance requirements. Antenna has been realized through a combination of 3D inkjet printing of plastic substrate and 2D inkjet

  5. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  6. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2015-10-26

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano-particle based metallic ink. The integration of lens enhances the gain by around 7 dB giving a peak gain of about 16.4 dBi at 9.4 GHz. The helical antenna operates in the end-fire mode and radiates a left-hand circularly polarized (LHCP) pattern. The 3-dB axial ratio (AR) bandwidth of the antenna with lens is 3.2 %. Due to integration of lens and fully printed processing, this antenna configuration offers high gain performance and requires low cost for manufacturing.

  7. Radiation Characteristics of the Cavity Backed Antenna in Conducting Cone

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A technique using finite element and boundary integral method (FE-BI) and reciprocity theorem is presented to analyze the radiation characteristics of cavity backed antenna mounted on a conducting cone. The electric fields inside the cavity and on the aperture are obtained using finite element and boundary integral method. The far-field characteristic of the antenna is computed using reciprocity theorem. The paper begins with a general description of the method. An application of this method is given and the numerical result is compared with the experimental result.

  8. Novel Cross-Type Network for Wide-Tuning-Range Reconfigurable Multiband Antennas

    Directory of Open Access Journals (Sweden)

    Chieh-Sen Lee

    2014-01-01

    Full Text Available This paper presents a cross-type network design with a novel reconfigurable functionality to realize a tunable multiband antenna. By attaching a reconfigurable network at the feeding port of a broadband antenna, multi-input impedance adjustment enables the production of multimatching operating bands. Each band can be independently controlled by a single component with a considerably wide tuning range and high selectivity. The experiments in this study involved using an ultra-wideband (UWB antenna connected to the proposed cross-type network. The tunable antenna operates in a dual band of fL (1.39 to 2.34 GHz and fH (2.1 to 3.6 GHz with tunable frequency ratios of 168% and 132%, respectively. The average bandwidths at fL and fH are approximately 50 MHz and 148 MHz, respectively, implying narrowband operation. The measured radiation pattern revealed that the tunable antenna exhibits a nearly omnidirectional radiation pattern at both 1.8 and 3.5 GHz. The network circuit architecture can be extended to the multiband function type by adopting this matching approach. The amount of shunt matches determines the number of operation bands.

  9. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a

  10. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ...

  11. Correction of failure in antenna array using matrix pencil technique

    International Nuclear Information System (INIS)

    Khan, SU; Rahim, MKA

    2017-01-01

    In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique (MPT). The failure of a sensor in antenna array can damage the radiation power pattern in terms of sidelobes level and nulls. In the developed technique, the radiation pattern of the array is sampled to form discrete power pattern information set. Then this information set can be arranged in the form of Hankel matrix (HM) and execute the singular value decomposition (SVD). By removing nonprincipal values, we obtain an optimum lower rank estimation of HM. This lower rank matrix corresponds to the corrected pattern. Then the proposed technique is employed to recover the weight excitation and position allocations from the estimated matrix. Numerical simulations confirm the efficiency of the proposed technique, which is compared with the available techniques in terms of sidelobes level and nulls. (paper)

  12. Two-Dimensional Time-Domain Antenna Arrays for Optimum Steerable Energy Pattern with Low Side Lobes

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This document presents the synthesis of different two-dimensional time-domain antenna arrays for steerable energy patterns with side lobe levels. The research is focused on the uniform and nonuniform distributions of true-time exciting delays and positions of antenna elements. The uniform square array, random array, uniform concentric ring array, and rotated nonuniform concentric ring array geometries are particularly studied. These geometries are synthesized by using the well-known sequential quadratic programming. The synthesis regards the optimal true-time exciting delays and optimal positions of pulsed antenna elements. The results show the capabilities of the different antenna arrays to steer the beam in their energy pattern in time domain and how their performance is in frequency domain after the synthesis in time domain.

  13. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    International Nuclear Information System (INIS)

    Habib Ullah, M; Islam, M T

    2014-01-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < −10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart. (paper)

  14. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    Science.gov (United States)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  15. Fractal Based Triple Band High Gain Monopole Antenna

    Science.gov (United States)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  16. Reconfigurable Magneto-Electric Dipole Antennas for Base Stations in Modern Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Lei Ge

    2018-01-01

    Full Text Available Magneto-electric (ME dipole antennas, with the function of changing the antenna characteristics, such as frequency, polarization, or radiation patterns, are reviewed in this paper. The reconfigurability is achieved by electrically altering the states of diodes or varactors to change the surface currents distributions or reflector size of the antenna. The purpose of the designs is to obtain agile antenna characteristics together with good directive radiation performances, such as low cross-polarization level, high front-to-back ratio, and stable gain. By reconfiguring the antenna capability to support more than one wireless frequency standard, switchable polarizations, or cover tunable areas, the reconfigurable ME dipole antennas are able to switch functionality as the mission changes. Therefore, it can help increase the communication efficiency and reduce the construction cost. This shows very attractive features in base station antennas of modern wireless communication applications.

  17. Electrical performance verification methodology for large reflector antennas: based on the P-band SAR payload of the ESA BIOMASS candidate mission

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Nielsen, Jeppe Majlund

    2013-01-01

    pattern and gain of the entire antenna including support and satellite structure with an appropriate computational software. A preliminary investigation of the proposed methodology was carried out by performing extensive simulations of different verification approaches. The experimental validation......In this paper, an electrical performance verification methodology for large reflector antennas is proposed. The verification methodology was developed for the BIOMASS P-band (435 MHz) synthetic aperture radar (SAR), but can be applied to other large deployable or fixed reflector antennas for which...... the verification of the entire antenna or payload is impossible. The two-step methodology is based on accurate measurement of the feed structure characteristics, such as complex radiation pattern and radiation efficiency, with an appropriate Measurement technique, and then accurate calculation of the radiation...

  18. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    International Nuclear Information System (INIS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-01-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S_1_1) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  19. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  20. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Science.gov (United States)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  1. Development of Radio Frequency Antenna Radiation Simulation Software

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Rozaimah Abd Rahim; Noor Ezati Shuib; Wan Saffiey Wan Abdullah

    2014-01-01

    Antennas are widely used national wide for radio frequency propagation especially for communication system. Radio frequency is electromagnetic spectrum from 10 kHz to 300 GHz and non-ionizing. These radiation exposures to human being have radiation hazard risk. This software was under development using LabVIEW for radio frequency exposure calculation. For the first phase of this development, software purposely to calculate possible maximum exposure for quick base station assessment, using prediction methods. This software also can be used for educational purpose. Some results of this software are comparing with commercial IXUS and free ware NEC software. (author)

  2. Generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure

    CERN Document Server

    Wu, Xuan Hui

    2008-01-01

    This book gives a step-by-step presentation of a generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. Normally, a radiation problem requires a full wave analysis which may be time consuming. The beauty of the generalized transmission line method is that it transforms the radiation problem for a specific type of structure, say the multilayer structure excited by an antenna, into a circuit problem that can be efficiently analyzed. Using the Reciprocity Theorem and far-field approximation, the method computes the far-zone radiation due to

  3. Design and Measurement of a 2.45 Ghz On-Body Antenna Optimized for Hearing Instrument Applications

    DEFF Research Database (Denmark)

    Kvist, Søren Helstrup; Jakobsen, Kaj Bjarne; Thaysen, Jesper

    2012-01-01

    A balanced PIFA-inspired antenna design is presented for use with the 2:45 GHz ear-to-ear radio channel. The antenna is designed such that the radiated electric fields are primarily polarized normal to the surface of the head, in order to obtain a high on-body path gain (jS21 j). The antenna...... structure can be made conformal to the outer surface of a hearing instrument, such that the bandwidth of the antenna is optimized given the available volume. The radiation patterns, ear-to-ear path gain and available bandwidth is measured and compared to the simulated results. It is found that the antenna...

  4. Influence of Antenna Characteristics on Elevation Dependence of Building Penetration Loss for High Elevation Links

    Directory of Open Access Journals (Sweden)

    M. Kvicera

    2012-12-01

    Full Text Available Building penetration loss models presented in our previous paper [1] were valid for various scenarios, propagation conditions, frequency bands and hemispherical receiving antenna pointing towards zenith. These models had a significantly rising trend of penetration loss with increasing elevation angle of the link in common. In this paper we show that when working with non-isotropic terminal antennas, this trend relates primarily to the elevation trend of the corresponding reference level dependent on the receiving antenna radiation pattern. This is demonstrated by the results of single-input multiple-output (SIMO measurement trials performed at L-band in an office building and a brick building in the city of Prague. Further, based on the detailed analysis, a method to modify the elevation trend of a particular penetration loss model for different receiving antenna radiation patterns is derived and experimentally validated.

  5. Correlation properties of dual polarized antennas with finite pattern orthogonality in mobile fading channels

    Directory of Open Access Journals (Sweden)

    G. Armbrecht

    2007-06-01

    Full Text Available Starting from planar broadband log.-per. antenna design, offering the possibility of dual-polarized reception properties, in this article a generalized mathematical approach for rapidly estimating the resulting signal correlation coefficient in a stochastically modeled propagation environment solely based on measured or simulated radiation characteristics of one single antenna element is presented. The obtained results are marking an upper limit and are describing the worst-case scenario according to the signal correlation at the antenna feeding points in terms of line-of-sight (LOS reception in main beam direction. The knowledge of the derived relationship may be helpful especially for antenna designers to combine antenna performance values with the significant communication system performance parameters, as e.g. in case of Multiple-Input Multiple-Output (MIMO and diversity configurations.

  6. An Antenna Measurement System Based on Optical Feeding

    Directory of Open Access Journals (Sweden)

    Ryohei Hosono

    2013-01-01

    the advantage of the system is demonstrated by measuring an ultra-wideband (UWB antenna both by the optical and electrical feeding systems and comparing with a calculated result. Ripples in radiation pattern due to the electrical feeding are successfully suppressed by the optical feeding. For example, in a radiation measurement on the azimuth plane at 3 GHz, ripple amplitude of 1.0 dB that appeared in the electrical feeding is reduced to 0.3 dB. In addition, a circularly polarized (CP antenna is successfully measured by the proposed system to show that the system is available not only for amplitude but also phase measurements.

  7. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  8. Narrowband-to-Narrowband Frequency Reconfiguration with Harmonic Suppression Using Fractal Dipole Antenna

    Directory of Open Access Journals (Sweden)

    S. A. Hamzah

    2013-01-01

    Full Text Available Harmonic suppressed fractal antenna with switches named TMFDB25 is developed to select desired frequency band from 400 MHz to 3.5 GHz. The radiating element length is changed to tune the operating frequency while the stub is used to eliminate the undesired harmonic frequency. The balun circuit is reduced by 75% from the original size. The antenna is built on a low loss material. It has the ability to select a single frequency out of fifteen different bands and maintain the omnidirectional radiation pattern properties. Furthermore, the antenna is designed, built, and tested. Simulation and measurement results show that the antenna operates well at the specific frequency range. Therefore, the antenna is suitable to be used for switching frequencies in the band of TV, GSM900/1800, 3G, ISM 2.4 GHz, and above.

  9. A Compact Printed Quadruple Band-Notched UWB Antenna

    Directory of Open Access Journals (Sweden)

    Xiaoyin Li

    2013-01-01

    Full Text Available A novel compact coplanar waveguide- (CPW- fed ultrawideband (UWB printed planar volcano-smoke antenna (PVSA with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.

  10. High-performance low-power smart antenna for smart world applications

    CSIR Research Space (South Africa)

    Lysko, AA

    2014-10-01

    Full Text Available with the summary in Section IV. II. ANTENNA SYSTEM DESCRIPTION The antenna introduced in this paper is an advanced and compact array antenna-based system which sends/receives the signals into/from the air, with the direction of transmission/reception being... of radiation pattern. The optimization variables were the height of the antenna’s active and parasitic elements and the radius at which the parasitic elements are away from the active element. The manufactured prototype is shown in Fig. 1b. It is compact...

  11. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  12. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Science.gov (United States)

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  13. Radiation and scattering by cavity-backed antennas on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1993-01-01

    Conformal arrays are popular antennas for aircraft and missile platforms due to their inherent low weight and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to scattering and radiation by cavity-backed structures in an infinite, metallic cylinder. In particular, the formulation specifics such as weight functions, dyadic Green's function, implementation details, and particular difficulties inherent to cylindrical structures are discussed. Special care is taken to ensure that the resulting computer program has low memory demand and minimal computational requirements. Both scattering and radiation parameters are computed and validated as much as possible.

  14. Evaluation of a quarterwave stub antenna for TIROS satellite application

    Science.gov (United States)

    Stogner, L. B.

    1980-06-01

    The TIROS-N quarterwave stub antenna communicated accurate position locations during low power level operations based on data processed by the Local User's Terminal (LUT) and Service ARGOS. This style of antenna is the marine mammal transmitter package. The antenna gain and radiation pattern and vertical polarization enhance the applicability. However, for marine mammal transmitter applications, a spring at the base of the antenna is required to provide flexibility and protection to the animal and the antenna must serve as a seawater sensor requiring it to be insulated from the seawater environment except at the sensory location. These problems appear solved for the NIMBUS system, and the TIROS system will be designed accordingly.

  15. Broadband Loop Antenna on Soft Contact Lens for Wireless Ocular Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    Ssu-Han Ting

    2014-01-01

    Full Text Available This paper presents a novel loop antenna with broadband for wireless ocular physiological monitoring (WOPM. The antenna is fabricated on a thin-film poly-para-xylylene C (parylene C substrate with a small thickness of 11 μm and dimension of π×6.5×6.5 mm2. With the advantage of small size, the proposed antenna is suitable to apply to the soft contact lens and transmit the signal in microelectromechanical Systems (MEMS. Because the pig's eye and human's eye have similar parameters of conductivity and permittivity, the experimental results are obtained by applying the proposed antenna on the pig's eye and cover from 1.54 to 6 GHz for ISM band (2.4 and 5.8 GHz applications. The measured antenna radiation patterns, antenna gains, and radiation efficiency will be demonstrated in this paper, which are suitable for application of wireless ocular physiological monitoring.

  16. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi

    2016-11-03

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from the desired design performance specifications can resulted. In this paper, the detection of faults is addressed from a statistical point of view as a fault detection problem. Specifically, a statistical method rested on the GLR principle is used to detect potential faults in linear arrays. To assess the strength of the GLR-based monitoring scheme, three case studies involving different types of faults were performed. Simulation results clearly shown the effectiveness of the GLR-based fault-detection method to monitor the performance of linear antenna arrays.

  17. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-06-01

    Full Text Available Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  18. Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground

    Science.gov (United States)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.

  19. Ferrite LTCC-based antennas for tunable SoP applications

    KAUST Repository

    Shamim, Atif

    2011-07-01

    For the first time, ferrite low temperature co-fired ceramic (LTCC) tunable antennas are presented. These antennas are frequency tuned by a variable magnetostatic field produced in a winding that is completely embedded inside the ferrite LTCC substrate. Embedded windings have reduced the typically required magnetic bias field for antenna tuning by over 95%. The fact that large electromagnets are not required for tuning makes ferrite LTCC with embedded bias windings an ideal platform for advanced tunable system-on-package applications. Measurements of rectangular microstrip patch antennas on a ferrite LTCC substrate display a maximum tuning range of 610 MHz near 12 GHz. Two different bias windings and their effect on the antenna performance are discussed, as is the effect of antenna orientation with respect to the bias winding. The antenna radiation patterns are measured under biased and unbiased conditions, showing a stable co-polarized linear gain. © 2011-2012 IEEE.

  20. Decreasing the radiation quality factor of magnetic dipole antennas by a magnetic-coated metal core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    To achieve the Chu lower bound for the radiation Q, an electrically small magnetic dipole antenna should not store any magnetic energy internally to the minimum sphere enclosing the antenna. As shown in our previous works, the internal stored magnetic energy can be reduced, although not entirely...... eliminated, by introducing a solid magnetic core inside the antenna. In this paper, using analytical results obtained though the vector spherical wave theory, we show that the internal stored magnetic energy can be further reduced, and the Chu lower bound reached, for a spherical magnetic dipole antenna...

  1. A Multiband Proximity-Coupled-Fed Flexible Microstrip Antenna for Wireless Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Andrea Casula

    2016-01-01

    Full Text Available A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computer-aided design software (CAD, CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45 GHz and C-band (5.2 GHz, and the Wi-Max 3.5 GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°.

  2. LTE Radiated Data Throughput Measurements, Adopting MIMO 2x2 Reference Antennas

    DEFF Research Database (Denmark)

    Szini, Istvan Janos; Pedersen, Gert Frølund; Barrio, Samantha Caporal Del

    2012-01-01

    Long Term Evolution (LTE) requires Multiple Input Multiple Output (MIMO) antenna systems. Consequently a new over-the-air (OTA) test methodology need to be created to make proper assessment of LTE devices radiated performance. The antenna specific parameters i.e. total antenna efficiency, gain...... imbalance and correlation coefficient, are essential for a proper MIMO antenna system design. However it can't be use directly to assess the LTE device system performance, since a multiplicity of other factors are involved, e.g. power amplifier load- pull, low noise amplifier source-pull, self interference...... noise, baseband algorithm and other factors. Several standard organizations are working towards a consensus over the proper OTA MIMO test method, however so far results of measurement campaigns have ambiguous results not allowing a desirable progress [1]. Initially presented at one of several MIMO OTA...

  3. Low-cost Antenna Positioning System Designed with Axiomatic Design

    Directory of Open Access Journals (Sweden)

    Timothy Foley Joseph

    2017-01-01

    Full Text Available The Engineering Optimization and Modeling Center at Reykjavik University has been carrying out research on antenna CAD, including the simulation-driven design of novel antenna topologies. However, simulation is not enough to validate a design: a custom RF anechoic chamber has been built to quantify antenna performance, particularly in terms of field properties such as radiation patterns. Such experiments require careful positioning of the antenna in the chamber accurately in 3-axis with a short development time, challenging material constraints, and minimal funding. Axiomatic Design Theory principles were applied to develop an automated 3-axis positioner system for a reference antenna and the antenna to be calibrated. Each axis can be individually controlled with a repeatability of 1 degree. This 3000 USD device can be fabricated using easily available components and rapid prototyping tools.

  4. A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern

    KAUST Repository

    Su, Zhen; Klionovski, Kirill; Bilal, Rana Muhammad; Shamim, Atif

    2018-01-01

    presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost

  5. In-the-Ear Circular-Shaped Balanced Inverted-A Antenna for Hearing Instruments

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2016-01-01

    for impedance matching. It is self-resonant and well matched in the entire ISM band from 2.40 GHz to 2.48 GHz. The simulated and measured peak ear-to-ear path gain |S21| is −74.5 dB and −72.9 dB, respectively. The radiation pattern of the antenna is analyzed and the implications of the radiation pattern...

  6. Fully inkjet printed wide band cantor fractal antenna for RF energy harvesting application

    KAUST Repository

    Bakytbekov, Azamat

    2017-06-07

    Energy harvesting from ambient RF signals is feasible, particularly from the GSM bands such as 900MHz, 1800MHz and the 3G band at 2.1GHz. This requires a wideband receive antenna which can cover all these bands with decent gain performance and an omnidirectional radiation pattern. In this work, a novel Cantor fractal antenna has been designed which fulfills the above mentioned performance requirements. Antenna has been realized through a combination of 3D inkjet printing of plastic substrate and 2D inkjet printing of metallic nanoparticles based ink. The stable impedance and radiation performance of the antenna over a bandwidth of 0.8GHz to 2.2GHz (93 %) shows the feasibility of its employment in wide band energy harvesting applications.

  7. Finite-element-analysis of fields radiated from ICRF antenna

    International Nuclear Information System (INIS)

    Yamanaka, Kaoru; Sugihara, Ryo.

    1984-04-01

    In several simple geometries, electromagnetic fields radiated from a loop antenna, on which a current oscillately flows across the static magnetic field B-vector 0 , are calculated by the finite element method (FEM) as well as by analytic methods in a cross section of a plasma cylinder. A finite wave number along B-vector 0 is assumed. Good agreement between FEM and the analytic solutions is obtained, which indicates the accuracy of FEM solutions. The method is applied to calculations of fields from a half-turn antenna and reasonable results are obtained. It is found that a straightforward application of FEM to problems in an anisotropic medium may bring about erroneous results and that an appropriate coordinate transformation is needed for FEM to become applicable. (author)

  8. Design and analysis of high gain array antenna for wireless communication applications

    Directory of Open Access Journals (Sweden)

    Sri Jaya LAKSHMI

    2015-05-01

    Full Text Available The array of antennas generally used for directing the radiated power towards a desired angular sector. Arrays can be used to synthesize a required pattern that cannot be achieved with a single element. The geometrical arrangement, number of elements, phases of the array elements and relative amplitudes depends on the angular pattern. This paper is focused on the issues related to the design and implementation of 4×1 array microstrip antenna with aperture coupled corporate feed for wireless local area network applications. Parametric analysis with change in element spacing is attempted in this work to understand the directional characteristics of the radiation pattern. Gain of more than 14 db and the efficiency more than 93% is achieved from the current design at desired frequency band.

  9. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    Science.gov (United States)

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  10. The Simulation and Experiment of a Non-Cross-Feeding Printed Log-Periodic Antenna

    Directory of Open Access Journals (Sweden)

    Chun-Ying Kang

    2015-01-01

    Full Text Available A non-cross-fed printed log-periodic antenna is simulated and studied experimentally. To avoid complex feeding with long coaxial line, the non-cross-feeding structure is applied in this antenna. The software CST Microwave Studio is employed to simulate the proposed antenna, and the optimized antenna model is obtained. According to the simulation results, the antenna prototype is produced and measured. Simulation and measured results show that the antenna is with S11<-10 dB in band of 4.2–9.2 GHz. And the radiation pattern and gain vary steadily in this band, which achieves requirements for wideband antenna. This antenna design can be extended to the design of the antenna integrated in communication circuit.

  11. A miniaturized micro strip antenna based on sinusoidal patch geometry for implantable biomedical applications

    Science.gov (United States)

    Ibrahim, Omar A.; Elwi, Taha A.; Islam, Naz E.

    2012-11-01

    A miniaturized microstrip antenna is analyzed for implantable biomedical applications. The antenna is designed using two different commercial software packages, CST Microwave Studio and HFSS, to validate the results. The proposed design operates in the WMTS frequency band. The antenna performance is tested inside the human body, Hugo model. The antenna design is readjusted to get the desired resonant frequency. The resonant frequency, bandwidth, gain, and radiation pattern of the proposed antenna are provided in this paper. Furthermore, the effect of losses inside human body due to the fat layer is recognized.

  12. The Use of Conductive Ink in Antenna Education and Design

    Science.gov (United States)

    Addison, David W.

    Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the requirements of a compact Global Navigation Satellite System (GNSS) antenna while showing a competitive performance within the current market. One best design is shown along with three other structures. These antennas consist of a bowtie cross-dipole over a reflective disc with conductive-ink grounded structures. In addition to the GNSS antennas, a linear elliptical dipole over a reflective disc with conductive grounded structures is presented. This elliptical antenna design attempts to find the maximum impedance bandwidth beyond the GNSS band. The inexpensive nature of conductive ink allows for its use in a classroom to demonstrate antenna behavior as part of antenna education. An inexpensive approach to the patch antenna using conductive ink is described and paired with a system made of off-the-shelf parts. The system is capable of measuring the power of the received signal. The received signal measurement is not as accurate as using a anechoic chamber but pattern details are visible. This is used to demonstrate aspects of the Friis transmission equation such as distance, polarization, radiation pattern shape, and loss.

  13. Compact Modified Swastika Shape Patch Antenna for WLAN/WiMAX Applications

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available A compact simple structure modified Swastika shape multiband patch antenna is designed and investigated. The antenna, which occupies an overall dimension of 0.305λ × 0.305λ × 0.012λ at lower frequency, has a simple structure which comprises of a planar wide square slot in the ground with four slits and Swastika shape radiation patch with a rectangular slot. The proposed Swastika shape antenna was designed and analyzed by using a finite element method based high frequency structural simulator HFSS. The experimental and numerical results exhibit that the antenna operates over the frequency ranges 950 MHz (2.28–3.23 GHz, 660 MHz (3.28–3.94 GHz, and 1120 MHz (5.05–6.17 GHz suitable for WLAN (2.4/5.2/5.8 GHz and WiMAX 2.5/3.5/5.5 GHz applications. It has a good omnidirectional radiation pattern and reaches 3.97 dBi at 2.44 GHz, 4.04 dBi at 3.5 GHz, and 3.25 dBi at the band of 5.98 GHz. A prototype is fabricated and then measured. The experimental and simulation results show good impedance bandwidth, radiation pattern, and stable gain across the operating bands.

  14. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  15. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif; Sharawi, Mohammad Said

    2017-01-01

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  16. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  17. Asymmetric Shaped-Pattern Synthesis for Planar Antenna Arrays

    Directory of Open Access Journals (Sweden)

    T. M. Bruintjes

    2016-01-01

    Full Text Available A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog beamformer.

  18. PARAMETRIC ANALYSIS OF A MINIATURIZED INVERTED II SHAPED ANTENNA FOR WIRELESS SENSOR NETWORK APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Shanmugapriya

    2015-06-01

    Full Text Available A compact and simple design of a CPW-fed planar antenna for wireless sensor network antenna application with a better size reduction is presented. The proposed antenna consists of an inverted ? shaped metal patch on a printed circuit board fed by a 50-O coplanar waveguide (CPW. The parametric analysis of length and width are made. The designed antenna’s physical dimensions are 32 mm (length x 26 mm (width x 1.6 mm (height. The antenna structure has been modeled and fabricated and its performance has been evaluated using a method of moment based electromagnetic simulator, IE3D .The return loss of -22.5 dB and VSWR of 1.34 dB are noted. The radiation pattern of the antenna proves that it radiates in all direction. The antenna is fabricated and tested and the measured results go in good agreement with simulated one.

  19. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Directory of Open Access Journals (Sweden)

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  20. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    Science.gov (United States)

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11WLAN (5.2/5.8 GHz) applications.

  1. Biologically inspired coupled antenna beampattern design

    Energy Technology Data Exchange (ETDEWEB)

    Akcakaya, Murat; Nehorai, Arye, E-mail: makcak2@ese.wustl.ed, E-mail: nehorai@ese.wustl.ed [Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2010-12-15

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  2. Rectangular Ring Antenna Excited by Circular Disc Monopole for WiMAX System

    Directory of Open Access Journals (Sweden)

    Souphanna Vongsack

    2014-01-01

    Full Text Available This research presents a rectangular ring antenna excited by a circular disc monopole (CDM mounted in front of a square reflector. The proposed antenna is designed to cover a frequency range of 2.300–5.825 GHz and thereby is suitable for WiMAX applications. Multiple parametric studies were carried out using the CST Microwave Studio simulation program. A prototype antenna was fabricated and experimented. The measurements were taken and compared with the simulation results, which indicates good agreement between both results. The prototype antenna produces an impedance bandwidth (|S11| < −10 dB that covers the WiMAX frequency range and a constant unidirectional radiation pattern (θ=0° and ∅=90°. The minimum and maximum gains are 3.7 and 8.7 dBi, respectively. The proposed antenna is of compact size and has good unidirectional radiation performance. Thus, it is very suitable for a multitude of WiMAX applications.

  3. A Minimized MIMO-UWB Antenna with High Isolation and Triple Band-Notched Functions

    Science.gov (United States)

    Kong, Yuanyuan; Li, Yingsong; Yu, Kai

    2016-11-01

    A compact high isolation MIMO-UWB antenna with triple frequency rejection bands is proposed for UWB communication applications. The proposed MIMO-UWB antenna consists of two identical UWB antennas and each antenna element has a semicircle ring shaped radiation patch fed by a bend microstrip feeding line for covering the UWB band, which operates from 2.85 GHz to 11.79 GHz with an impedance bandwidth of 122.1 %. By etching a L-shaped slot on the ground plane, and embedding an "anchor" shaped stub into the patch and integrating an open ring under the semicircle shaped radiation patch, three notch bands are realized to suppress WiMAX (3.3-3.6 GHz), WLAN(5.725-5.825 GHz) and uplink of X-band satellite (7.9-8.4 GHz) signals. The high isolation with S21<-20 dB in most UWB band is obtained by adding a protruded decoupling structure. The design procedure of the MIMO-UWB antenna is given in detail. The proposed MIMO-UWB antenna is simulated, fabricated and measured. Experimental results demonstrate that the proposed MIMO-UWB antenna has a stable gain, good impedance match, high isolation, low envelope correlation coefficient and good radiation pattern at the UWB operating band and it can provide three designated notch bands.

  4. Tunable antenna radome based on graphene frequency selective surface

    Science.gov (United States)

    Qu, Meijun; Rao, Menglou; Li, Shufang; Deng, Li

    2017-09-01

    In this paper, a graphene-based frequency selective surface (FSS) is proposed. The proposed FSS exhibits a tunable bandpass filtering characteristic due to the alterable conductivity of the graphene strips which is controlled by chemical potential. Based on the reconfigurable bandpass property of the proposed FSS, a cylindrical antenna radome is designed using the FSS unit cells. A conventional omnidirectional dipole can realize a two-beam directional pattern when it is placed into the proposed antenna radome. Forward and backward endfire radiations of the dipole loaded with the radome is realized by properly adjusting the chemical potential. The proposed antenna radome is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems when the gain of a conventional antenna needs to be enhanced.

  5. A Codesigned Compact Dual-Band Filtering Antenna with PIN Loaded for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Shanxiong Chen

    2014-01-01

    Full Text Available A codesigned compact dual-band filtering antenna incorporating a PIN diode for 2.45/5.2 GHz wireless local area network (WLAN applications is proposed in this paper. The integrated filtering antenna system consists of a simple monopole radiator, a microstrip dual-band band-pass filter, and a PIN diode. The performance of the filtering antenna is notably promoted by optimizing the impedance between the antenna and the band-pass filter, with good selectivity and out-of-band rejection. The design process follows the approach of the synthesis of band-pass filter. In addition, the PIN diode is incorporated in the filtering antenna for further size reduction, which also widens the coverage of the bandwidth by about 230% for 2.4 GHz WLAN. With the presence of small size and good filtering performances, the proposed filtering antenna is a good candidate for the wireless communication systems. Prototypes of the proposed filtering antenna incorporating a PIN diode are fabricated and measured. The measured results including return losses and radiation patterns are presented.

  6. Envelope correlation in (N, N) MIMO antenna array from scattering parameters

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2006-01-01

    the envelope correlation coefficient. This approach has the advantage that it does not require knowledge of the antenna radiation pattern. Numerical data that include conductor and permittivity loss are shown to validate the approach. Using the scattering parameters for calculating the envelope correlation......A simple closed-form equation to calculate the envelope correlation between any two receiver or transmitter antennas in a multi-input multi-output (MIMO) system of an arbitrary number of elements is derived. The equation uses the scattering parameters obtained at the antenna feed point to calculate...

  7. Gsm 1900Umts Printed Monopole Antenna For Mobile Base Station

    Directory of Open Access Journals (Sweden)

    Nyi Nyi Lwin

    2015-08-01

    Full Text Available In this paper printed rectangular monopole antenna which is basically printed microstrip patch antenna with partial ground plane is designed for mobile base station. The substrate FR4 with a relative permittivity of 4.4 and thickness 1.8 is used in design. In addition the printed monopole antenna is of low profile in appearance and suitable for most application. The proposed antenna can cover GSM1900 1850-1990 MHz and UMTS 1920-2170 MHz bands. Design and simulation processes are carried out with the aid of FEKO software which is used for the analysis of electromagnetic problems. Simulation results of the return loss gain and radiation patterns are presented.

  8. Lower Bound for the Radiation $Q$ of Electrically Small Magnetic Dipole Antennas With Solid Magnetodielectric Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    A new lower bound for the radiation $Q$ of electrically small spherical magnetic dipole antennas with solid magnetodielectric core is derived in closed form using the exact theory. The new bound approaches the Chu lower bound from above as the antenna electrical size decreases. For $ka, the new...... bound is lower than the bounds for spherical magnetic as well as electric dipole antennas composed of impressed electric currents in free space....

  9. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  10. Design Studies of Ultra-Wideband Microstrip Antennas with a Small Capacitive Feed

    Directory of Open Access Journals (Sweden)

    Veeresh G. Kasabegoudar

    2007-01-01

    Full Text Available The design of an ultra-wideband microstrip patch antenna with a small coplanar capacitive feed strip is presented. The proposed rectangular patch antenna provides an impedance bandwidth of nearly 50%, and has stable radiation patterns for almost all frequencies in the operational band. Results presented here show that such wide bandwidths are also possible for triangular and semiellipse geometries with a similar feed arrangement. The proposed feed is a very small strip placed very close to the radiator on a substrate above the ground plane. Shape of the feed strip can also be different, so long as the area is not changed. Experimental results agree with the simulated results. Effects of key design parameters such as the air gap between the substrate and the ground plane, the distance between radiator patch and feed strip, and the dimensions of the feed strip on the input characteristics of the antenna have been investigated and discussed. As demonstrated here, the proposed antenna can be redesigned for any frequency in the L-, S-, C-, or X-band. A design criterion for the air gap has been empirically obtained to enable maximum antenna bandwidth for all these operational frequencies.

  11. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif

    2017-01-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  12. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill

    2017-11-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  13. Metasurface Reflector (MSR Loading for High Performance Small Microstrip Antenna Design.

    Directory of Open Access Journals (Sweden)

    Md Rezwanul Ahsan

    Full Text Available A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15 is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%, 467 to 606 MHz (29% and 758 MHz to 1062 MHz (40% for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz RFID, WiMAX (3.5/5.5 GHz and WLAN (5.2/5.8 GHz applications.

  14. RFID antenna design for circular polarization in UHF band

    Science.gov (United States)

    Shahid, Hamza; Khan, Muhammad Talal Ali; Tayyab, Umais; Irshad, Usama Bin; Alkhazraji, Emad; Javaid, Muhammad Sharjeel

    2017-05-01

    A miniature half cross dipole antenna for defense and aerospace RFID applications in UHF band is presented. The dipole printed line arms are half crossed shape on top of dielectric substrate backed by reactive impedance surface. The antenna fed by a coaxial cable at the gap separating the dipole arms. Our design is intended to work at 2.42 GHz for RFID readers. The radiation pattern obtained has HPBW of 112, return loss of 22.24 dB and 90 MHz bandwidth.

  15. Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)

    Science.gov (United States)

    Sato, T.; Inooka, Y.; Fukao, S.; Kato, S.

    1986-01-01

    As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed.

  16. Finite difference time domain modeling of spiral antennas

    Science.gov (United States)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  17. Design and investigation of sectoral circular disc monopole fractal antenna and its backscattering

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2017-02-01

    Full Text Available This article presents the design of sectoral circular disc fractal antenna. The proposed antenna has been excited using CPW – feed. The measured result of this antenna offers the ultra wideband characteristics from 3.265 GHz to 15.0 GHz. The measured and simulated results are compared and found in good agreement. The impedance match of the antenna throughout the band is improved by incorporating the rectangular slots in the ground plane. The measured radiation patterns of this antenna are nearly omni-directional in H-plane and bidirectional in E-plane. The backscattering of antenna is also discussed and calculated for antenna mode and structural mode scattering. This type of antenna is useful for UWB system, microwave imaging and vehicular radar, precision positioning location.

  18. Improved Microstrip Antenna with HIS Elements and FSS Superstrate for 2.4 GHz Band Applications

    Directory of Open Access Journals (Sweden)

    Praphat Arnmanee

    2018-01-01

    Full Text Available This research presents a microstrip antenna integrated with the high-impedance surface (HIS elements and the modified frequency selective surface (FSS superstrate for 2.4 GHz band applications. The electromagnetic band gap (EBG structure was utilized in the fabrication of both the HIS and FSS structures. An FR-4 substrate with 120 mm × 120 mm × 0.8 mm in dimension (W × L × T and a dielectric constant of 4.3 was used in the antenna design. In the antenna development, the HIS elemental structure was mounted onto the antenna substrate around the radiation patch to suppress the surface wave, and the modified FSS superstrate was suspended 20 mm above the radiating patch to improve the directivity. Simulations were carried out to determine the optimal dimensions of the components and the antenna prototype subsequently fabricated and tested. The simulation and measured results were agreeable. The experimental results revealed that the proposed integrated antenna (i.e., the microstrip antenna with the HIS and FSS structures outperformed the conventional microstrip antenna with regard to reflection coefficient, the radiation pattern, gain, and radiation efficiency. Specifically, the proposed antenna could achieve the measured antenna gain of 10.14 dBi at 2.45 GHz and the reflection coefficient of less than −10 dB and was operable in the 2.39–2.51 GHz frequency range.

  19. A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2015-01-01

    Full Text Available A new kind of circular polarization leaky-wave antenna with N-shaped slots cut in the upper side of substrate integrated waveguide (SIW is investigated and presented. The radiation pattern and polarization axial ratio of the leaky-wave antenna are studied. The results show that the width of N-shaped slots has significant effect on the circular polarization property of the antenna. By properly choosing structural parameters, the SIW based leaky-wave antenna can realize circular polarization with excellent axial ratio in 8 GHz satellite band.

  20. Design of microwave dielectric resonator antenna using MZTO-CSTO composite

    Czech Academy of Sciences Publication Activity Database

    Rajput, S.S.; Keshri, S.; Gupta, V.R.; Gupta, N.; Bovtun, Viktor; Petzelt, Jan

    2012-01-01

    Roč. 38, č. 3 (2012), s. 2355-2362 ISSN 0272-8842 Institutional research plan: CEZ:AV0Z10100520 Keywords : composites * permittivity * dielectric resonator antenna * radiation pattern Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.789, year: 2012

  1. A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

    Directory of Open Access Journals (Sweden)

    Aiting Wu

    2013-01-01

    Full Text Available A compact CPW-fed planar UWB antenna with dual band-notched property is presented. The dual band rejection is achieved by etching a C-shaped slot on the radiation patch and two L-shaped parasitic strips in the ground plane. The experimental and measured results show that the proposed antenna exhibits an impedance bandwidth over an ultrawideband frequency range from 2.4 to 12.5 GHz with VSWR less than 2, except for two stopbands at 3.3 to 3.75 GHz and 5.07 to 5.83 GHz for filtering the WiMAX and WLAN signals, respectively. It also demonstrates a nearly omnidirectional radiation pattern. The fabricated antenna has a tiny size, only 32 mm × 32 mm × 0.508 mm. The simulated results are compared with the measured performance and show good agreement. The simple structure, compact size, and good characteristics make the proposed antenna an excellent candidate for UWB applications.

  2. Antenna Array Construction on a Mobile Terminal Chassis at 3.5 GHz for LTE Advanced

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    This paper proposes a method of constructing an antenna array on the typical ground plane of the modern mobile terminal. An IFA and a slot in a metal frame antenna elements have been used to illustrate the proposed method. The radiation pattern of the element is recorded at the chosen number of t...

  3. A Compact Flexible and Frequency Reconfigurable Antenna for Quintuple Applications

    Directory of Open Access Journals (Sweden)

    M. U. Hassan

    2017-09-01

    Full Text Available A novel, compact coplanar waveguide fed flexible antenna is presented. The proposed design uses flexible Rogers RT/duroid 5880 (0.508mm thickness as a substrate with small size of 30×28.4 mm^2. Two switches are integrated on the antenna surface to change the current distribution which consequently changes the resonance frequency under different conditions of switches, thereby making it a frequency reconfigurable antenna. The antenna design is simulated on CST®MWS®. The proposed antenna exhibits VSWR less than 2 and appreciable radiation patterns with positive gain over desired frequency bands. Good agreement exists between simulated and measured results. On the basis of results, the proposed antenna is envisioned to be deployed for the following applications; aeronautical radio navigation [4.3 GHz], AMT fixed services [4.5 GHz], WLAN [5.2 GHz], Unlicensed WiMAX [5.8 GHz] and X-band [7.5 GHz].

  4. The Study and Implementation of Electrically Small Printed Antennas for an Integrated Transceiver Design

    Energy Technology Data Exchange (ETDEWEB)

    Speer, Pete [Univ. of Kansas, Lawrence, KS (United States)

    2009-04-28

    This work focuses on the design and evaluation of the inverted-F, meandering-monopole, and loop antenna geometries. These printed antennas are studied with the goal of identifying which is suitable for use in a miniaturized transceiver design and which has the ability to provide superior performance using minimal Printed Circuit Board (PCB) space. As a result, the main objective is to characterize tradeoffs and identify which antenna provides the best compromise among volume, bandwidth and efficiency. For experimentation purposes, three types of meandering-monopole antenna are examined resulting in five total antennas for the study. The performance of each antenna under study is evaluated based upon return loss, operational bandwidth, and radiation pattern characteristics. For our purposes, return loss is measured using the S11-port reflection coefficient which helps to characterize how well the small antenna is able to be efficiently fed. Operational bandwidth is measured as the frequency range over which the antenna maintains 2:1 Voltage Standing Wave Ratio (VSWR) or equivalently has 10-dB return loss. Ansoft High Frequency Structure Simulator (HFSS) is used to simulate expected resonant frequency, bandwidth, VSWR, and radiation pattern characteristics. Ansoft HFSS simulation is used to provide a good starting point for antenna design before actual prototype are built using an LPKF automated router. Simulated results are compared with actual measurements to highlight any differences and help demonstrate the effects of antenna miniaturization. Radiation characteristics are measured illustrating how each antenna is affected by the influence of a non-ideal ground plane. The antenna with outstanding performance is further evaluated to determine its maximum range of communication. Each designs range performance is evaluated using a pair of transceivers to demonstrate round-trip communication. This research is intended to provide a knowledge base which will help

  5. Multislot microstrip antenna for ultra-wide band applications

    Directory of Open Access Journals (Sweden)

    Noor M. Awad

    2018-01-01

    Full Text Available In this paper designs of both planar ultra-wide band (UWB antenna and UWB antenna with two rejected bands are given. The antenna consists of a rectangular patch etched on FR4-substrate with 50 Ω feed line. The rectangular patch has one round cut at each corner with one slot in the ground plane. The simulated bandwidth with return loss (RL ⩾ 10 dB is 3.42–11.7 GHz. The rejected bands are the WLAN and X-bands, achieved by inserting slots in the patch and the feed. The simulated results of the proposed antenna indicate higher gain at the passbands while a sharp drop at the rejected bands is seen. The radiation pattern is of dipole shape in the E-plane and almost omnidirectional in the H-plane. The high frequency structure simulator (HFSS is used to design and simulate the antennas behavior over the different frequency ranges. Measurements confirm the antenna characteristic as predicted in the simulation with a slight shift in frequencies.

  6. Realization and Measurement of a Wearable Radio Frequency Identification Tag Antenna

    Directory of Open Access Journals (Sweden)

    Shudao ZHOU

    2014-06-01

    Full Text Available The realization and measurements of a wearable Radio Frequency Identification tag antenna which achieves good simulation results in the Ultimate High Frequency band under the standard of the United States in design procedures is presented. The wearable tag antenna is constructed using a flexible substrate, on whose surface the antenna patch is adhered. A bowtie shape is chosen as the geometry of the antenna patch because of its large bandwidth that brings to the tag and its simple structure. The substrate of the tag antenna is realized using a foam material while the patch on the substrate surface is cut out from copper foil tape. Then, the impedance of the realized tag antenna is extracted from S parameters which are measured with a vector network analyzer with a coaxial fixture. Finally, the radiation pattern of the tag is characterized by normalized reading distances of different directions of the antenna integrated with a microchip, thus indicating the validity of the realized tag antenna.

  7. Application of the modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas in complex environment

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    In this paper, application of a modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small antennas is presented. It is shown that the limitations on the cavity dimension can be overcome and thus measurement in a large cavity is possible. The cavity loss...... is investigated, and a modified radiation efficiency formula that includes the cavity loss is introduced. Moreover, a modification of the technique is proposed that involves the antenna working complex environment inside the Wheeler Cap and thus makes possible measurement of an antenna close to a hand or head...

  8. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  9. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2012-01-01

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  10. Analysis of a Waveguide-Fed Metasurface Antenna

    Science.gov (United States)

    Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.

    2017-11-01

    The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.

  11. Polarized Uniform Linear Array System: Beam Radiation Pattern, Beamforming Diversity Order, and Channel Capacity

    Directory of Open Access Journals (Sweden)

    Xin Su

    2015-01-01

    Full Text Available There have been many studies regarding antenna polarization; however, there have been few publications on the analysis of the channel capacity for polarized antenna systems using the beamforming technique. According to Chung et al., the channel capacity is determined by the density of scatterers and the transmission power, which is obtained based on the assumption that scatterers are uniformly distributed on a 3D spherical scattering model. However, it contradicts the practical scenario, where scatterers may not be uniformly distributed under outdoor environment, and lacks the consideration of fading channel gain. In this study, we derive the channel capacity of polarized uniform linear array (PULA systems using the beamforming technique in a practical scattering environment. The results show that, for PULA systems, the channel capacity, which is boosted by beamforming diversity, can be determined using the channel gain, beam radiation pattern, and beamforming diversity order (BDO, where the BDO is dependent on the antenna characteristics and array configurations.

  12. Characterisation and optimisation of a coplanar waveguide fed logarithmic spiral antenna

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    transmission line to the balanced CPS transmission line. The balun exhibits an insertion loss of less than 3 dB in a frequency band from sub-100 kHz and up to a frequency of 3.85 GHz. The numerical results presented are based on simulations using the IE3D Version 6.03 for Windows 98. The obtained numerical...... pattern, due to the absorbing material. Only half of the input power is transformed into radiated power due to the presence of the absorber. The simulated performance of the spiral antenna is very promising. The simulations indicated that the antenna has a radiation efficiency of more than 70...

  13. A Series-Fed Linear Substrate-Integrated Dielectric Resonator Antenna Array for Millimeter-Wave Applications

    Directory of Open Access Journals (Sweden)

    Ke Gong

    2018-01-01

    Full Text Available A series-fed linear substrate-integrated dielectric resonator antenna array (SIDRAA is presented for millimeter-wave applications, in which the substrate-integrated dielectric resonator antenna (SIDRA elements and the feeding structure can be codesigned and fabricated using the same planar process. A prototype 4 × 1 SIDRAA is designed at Ka-band and fabricated with a two-layer printed circuit board (PCB technology. Four SIDRAs are implemented in the Rogers RT6010 substrate using the perforation technique and fed by a compact substrate-integrated waveguide (SIW through four longitudinal coupling slots within the Rogers RT5880 substrate. The return loss, radiation patterns, and antenna gain were experimentally studied, and good agreement between the measured and simulated results is observed. The SIDRAA example provides a bandwidth of about 10% around 34.5 GHz for 10 dB return loss and stable broadside radiation patterns with the peak gain of 10.5–11.5 dBi across the band.

  14. Characterization of Personal Privacy Devices (PPD) radiation pattern impact on the ground and airborne segments of the local area augmentation system (LAAS) at GPS L1 frequency

    Science.gov (United States)

    Alkhateeb, Abualkair M. Khair

    Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on

  15. High efficiency carbon nanotube thread antennas

    Science.gov (United States)

    Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo

    2017-10-01

    Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

  16. Design and Analysis of Ultra-wideband Micro Strip Patch Antenna with Notch Band Characteristics

    Directory of Open Access Journals (Sweden)

    Kumar Omprakash

    2016-01-01

    Full Text Available A new design of ultra-wideband (UWB micro strip patch antenna with notch band characteristic for wireless local area network (WLAN application is presented in this paper. The proposed antenna consists of a rectangular patch with a partial ground plane that is fed by 50 Ω micro strip line. A notch band function is created by inserting overlapped one U-shape and one C-shape slot on the radiator patch, added additional patch to the ground plane side and slit in truncated ground plane. The proposed antenna potentially minimized frequency interference between WLAN and UWB system. This antenna with the size of 26 mm × 32 mm (W×L and the simulated results show that the antenna can operate over the frequency band between 3.1 and 10.45 GHz for voltage standing wave ratio (VSWR > 2 with band notch 5.06-5.825 GHz. Besides in the working band, the antenna shows good radiation pattern in the H-plane and the E-plane and has good time domain characteristic.

  17. Multiband and wideband monopole antenna for GSM900 and other wireless applications

    KAUST Repository

    Abutarboush, Hattan; Nasif, H.; Nilavalan, Rajagopal; Cheung, Sing Wai

    2012-01-01

    In this letter, the design of a compact monopole antenna for multiband and wideband operations is proposed. The antenna has three distinct frequency bands, centered at 0.94, 2.7, and 4.75 GHz. The antenna has a compact size of only 30×40×1.57 mm$ 3 including the ground plane. The multiband and wideband operations are achieved by using an E-shaped slot on the ground plane. The design procedure is also discussed. The frequency bands can be independently controlled by using the parameters of the E-slot. The impedance bandwidth, current distributions, radiation patterns, gain, and efficiency of the antenna are studied by computer simulation and measurements. © 2011 IEEE.

  18. A Small Planar Antenna for 4G Mobile Phone Application

    Directory of Open Access Journals (Sweden)

    Hu Jian-rong

    2016-01-01

    Full Text Available The analysis and design of a small planar multiband antenna operating in the 4G frequency bands are presented. The numerical and experimental results demonstrated that the proposed antenna satisfies the requirement of 6 dB return loss for the impedance bandwidth of the LTE700/LTE2300/LTE2500 and WiMAX3500 bands. The gains at 750 MHz/2.3 GHz/2.6 GHz/3.5 GHz are 2.1 dBi/4.9 dBi/4.7 dBi/4.3 dBi, respectively. The measured radiation patterns verify the suitability of the antenna to be employed in mobile phones. The dimensions of the radiant patch are 49 × 10 mm2. The proposed antenna can be easily fabricated and customized to various 4G mobile phones as a compact internal antenna.

  19. Waveguide-Based Antenna Arrays for 5G Networks

    Directory of Open Access Journals (Sweden)

    Arismar Cerqueira Sodré

    2018-01-01

    Full Text Available This work reports the development of two high-performance waveguide-based antenna arrays for 5G cellular networks, operating in the underutilized millimetre wave (mm-wave frequency spectrum. Two different scenarios of mm-wave communications are proposed for illustrating the applicability of the proposed arrays, which provide specific radiation patterns, namely, 12 dBi gain omnidirectional coverage in the 28 GHz band and dual-band sectorial coverage using the 28 and 38 GHz bands with gain up to 15.6 dBi. Numerical and experimental results of the array reflection coefficient, radiation pattern, and gain have been shown in an excellent agreement.

  20. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  1. Mantle cloaking for co-site radio-frequency antennas

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Alessio, E-mail: alessio.monti@uniroma3.it; Barbuto, Mirko [“Niccolò Cusano” University, Via Don Carlo Gnocchi 3, Rome 00166 (Italy); Soric, Jason; Alù, Andrea [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Ramaccia, Davide; Vellucci, Stefano; Toscano, Alessandro; Bilotti, Filiberto [Department of Engineering, “Roma Tre” University, Via Vito Volterra 62, Rome 00146 (Italy); Trotta, Fabrizio [Antenna Department, ELETTRONICA S.p.A., Via Tiburtina Valeria Km 13700, Rome 00131 (Italy)

    2016-03-14

    We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems.

  2. Mantle cloaking for co-site radio-frequency antennas

    International Nuclear Information System (INIS)

    Monti, Alessio; Barbuto, Mirko; Soric, Jason; Alù, Andrea; Ramaccia, Davide; Vellucci, Stefano; Toscano, Alessandro; Bilotti, Filiberto; Trotta, Fabrizio

    2016-01-01

    We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems.

  3. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  4. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  5. An Envelope Correlation Formula for (N,N MIMO Antenna Arrays Using Input Scattering Parameters, and Including Power Losses

    Directory of Open Access Journals (Sweden)

    Y. A. S. Dama

    2011-01-01

    Full Text Available The scattering parameter formulation for the envelope correlation in an (N,N MIMO antenna array has been modified to take the intrinsic antenna power losses into account. This method of calculation provides a major simplification over the use of antenna radiation field patterns. Its accuracy is illustrated in three examples, which also show that the locations of the correlation minima are sensitive to the intrinsic losses.

  6. Analysis and Design of a Novel Multiband Antenna for Mobile Terminals

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2015-01-01

    Full Text Available A multiband planar terminal antenna with a compact size of 40 mm × 24 mm is proposed in this paper. This antenna consists of a monopole patch with two slots on it and a meandering strip loaded on the top. Two parasitic stubs and a branch on the ground are used to adjust and widen the impedance bandwidth of the antenna. Simulations and measurements are carried out to study the antenna performances in terms of impedance matching, efficiency, gain, and radiation patterns. Both of simulation and measurement results are shown to illustrate the good performance of the proposed antenna. The antenna can operate at 450–474 MHz, 860–1040 MHz, 1705–2428 MHz, and 2500–2710 MHz. These operating bandwidths cover GSM900, DCS, PCS, UMTS, LTE2500, and LTE’s low frequency band (450–470 MHz. It is very suitable for multifunctional terminal applications in wireless communication systems.

  7. On the Remarkable Features of the Lower Limits of Charge and the Radiated Energy of Antennas as Predicted by Classical Electrodynamics

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-05-01

    Full Text Available Electromagnetic energy radiated by antennas working in both the frequency domain and time domain is studied as a function of the charge associated with the current in the antenna. The frequency domain results, obtained under the assumption of sinusoidal current distribution, show that, for a given charge, the energy radiated within a period of oscillation increases initially with L/λ and then starts to oscillate around a steady value when L/λ > 1. The results show that for the energy radiated by the antenna to be equal to or larger than the energy of one photon, the oscillating charge in the antenna has to be equal to or larger than the electronic charge. That is, U ≥ hν or UT ≥ h ⇒ q ≥ e, where U is the energy dissipated over a period, ν is the frequency of oscillation, T is the period, h is Planck’s constant, q is the rms value of the oscillating charge, and e is the electronic charge. In the case of antennas working in the time domain, it is observed that UΔt ≥ h/4π ⇒ q ≥ e, where U is the total energy radiated, Δt is the time over which the energy is radiated, and q is the charge transported by the current. It is shown that one can recover the time–energy uncertainty principle of quantum mechanics from this time domain result. The results presented in this paper show that when quantum mechanical constraints are applied to the electromagnetic energy radiated by a finite antenna as estimated using the equations of classical electrodynamics, the electronic charge emerges as the smallest unit of free charge in nature.

  8. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  9. A Dual Band Slotted Patch Antenna on Dielectric Material Substrate

    Directory of Open Access Journals (Sweden)

    M. Habib Ullah

    2014-01-01

    Full Text Available A low profile, compact dual band slotted patch antenna has been designed using finite element method-based high frequency full-wave electromagnetic simulator. The proposed antenna fabricated using LPKF printed circuit board (PCB fabrication machine on fiberglass reinforced epoxy polymer resin material substrate and the performance of the prototype has been measured in a standard far-field anechoic measurement chamber. The measured impedance bandwidths of (reflection coefficient <-10 dB 12.26% (14.3–16.2 GHZ, 8.24% (17.4–18.9 GHz, and 3.08% (19.2–19.8 have been achieved through the proposed antenna prototype. 5.9 dBi, 3.37 dBi, and 3.32 dBi peak gains have been measured and simulated radiation efficiencies of 80.3%, 81.9%, and 82.5% have been achieved at three resonant frequencies of 15.15 GHz, 18.2 GHz, and 19.5 GHz, respectively. Minimum gain variation, symmetric, and almost steady measured radiation pattern shows that the proposed antenna is suitable for Ku and K band satellite applications.

  10. Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

    Directory of Open Access Journals (Sweden)

    Chunxia Cheng

    2014-01-01

    Full Text Available A triband omnidirectional circularly polarized dielectric resonator antenna with a top-loaded modified Alford loop for GSM, WLAN, and WiMAX applications is proposed. Fed by an axial probe, the DRA (dielectric resonator antenna radiates like a vertically polarized electric monopole. The top-loaded modified Alford loop provides an equivalent horizontally polarized magnetic dipole mode at triband. Omnidirectional CP (circular polarized fields can be obtained when the two orthogonally polarized fields are equal in amplitude with phase quadrature. The antenna has been successfully simulated, fabricated, and measured. The experimental and numerical results exhibit that the antenna can obtain usable CP bandwidths of 1.925–1.955 GHz, 2.36–2.48 GHz, and 3.502–3.53 GHz with return loss larger than 10 dB and axial ratio less than 3 dB. In addition, over the three bands, the antenna obtains very good omnidirectional CP radiation patterns in the azimuth plane. Moreover, an average CP gain in the azimuth plane of 1.2, 1.6, and −1.5 dBic for the lower, middle, and upper bands has been obtained.

  11. Design methodology of single-feed compact near-isotropic antenna design

    KAUST Repository

    Su, Zhen

    2017-06-07

    The abundance of mobile wireless devices is giving rise to a new paradigm known as Internet of Things. In this paradigm, wireless devices will be everywhere and communicating with each other. Since they will be oriented randomly in the environment, they should be able to communicate equally in all directions in order to have stable communication link. Hence, compact near isotropic antennas are required, which can enable orientation insensitive communication. In this paper, we propose a simple design methodology to design a compact near-isotropic wire antenna based on equal vector potentials. As a proof of concept, a quarter wavelength monopole antennas has been designed that is wrapped on a 3D-printed box keeping the vector potentials in three orthogonal different directions equal. By optimizing the dimension of the antenna arms, a nearly isotropic radiation pattern is thus achieved. The results show that the antenna has a maximum gain of 2.2dBi at 900 MHz with gain derivation of 9.4dB.

  12. A CPW-Fed Rectangular Ring Monopole Antenna for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Sangjin Jo

    2014-01-01

    Full Text Available We present a simple coplanar waveguide- (CPW- fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of 21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.

  13. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Bora, Dhiraj

    2011-01-01

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  14. Quality Factor and Radiation Efficiency of Dual-Mode Self-Resonant Spherical Antennas With Lossy Magnetodielectric Cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2014-01-01

    For spherical antennas consisting of a solid magnetodielectric lossy core with an impressed surface current density exciting a superposition of the ${\\rm TE}_{mn}$ and ${\\rm TM}_{mn}$ spherical modes, we analytically determine the radiation quality factor $Q$ and radiation efficiency $e$ . Also, we...

  15. Analysis of a Compact Wideband Slotted Antenna for Ku Band Applications

    Directory of Open Access Journals (Sweden)

    M. R. Ahsan

    2014-01-01

    Full Text Available The design procedure and physical module of a compact wideband patch antenna for Ku band application are presented in this paper. Finite element method based on 3D electromagnetic field solver has been utilized for the designing and analyzing process of proposed microstrip line fed modified E-H shaped electrically small patch antenna. After successful completion of the design process through various simulations, the proposed antenna has been fabricated on printed circuit board (PCB and its characteristics have been studied. The parameters of the proposed antenna prototype have been measured in standard far-field rectangular shape anechoic measurement compartment. It is apparent from the measured antenna parameters that the proposed antenna achieved almost stable variation of radiation pattern over the entire operational band with 1380 MHz of -10 dB return loss bandwidth. The maximum gain of 7.8 dBi and 89.97% average efficiency within the operating band from 17.15 GHz to 18.53 GHz ensure the suitability of the proposed antenna for Ku band applications.

  16. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    Science.gov (United States)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  17. Tri Band Dual Polarized Patch Antenna System For Next Generation Cellular Networks

    Directory of Open Access Journals (Sweden)

    Syed Daniyal Ali Shah

    2017-12-01

    Full Text Available In fifth generation networks much emphasis is given to reduce the handset and base station sizes while incorporating even more features for ubiquitous connectivity. Polarization diversity is one of the methods in which a single multi-polarized antenna brings the advantages of antenna diversity. The multiband handset antennas can be made dual-polarized for improved compensation of fading effects of propagation environment especially in terrestrial bands. This paper focuses on the outcomes of the development of a horizontal and vertical polarized patch antenna scheme that operates on 3 bands 900 MHz 1.8 GHz and 2.4 GHz. The antenna system is tested for gain directivity reflection loss polarization radiation pattern and other parameters. The results are published and found are found to satisfy the requirements of cellular and data communication networks in the specified bands.

  18. Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer

    NARCIS (Netherlands)

    Štumpf, M.; De Hoop, A.T.; Lager, I.E.

    2010-01-01

    Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two?dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave

  19. Time-Zone-Pattern Satellite Broadcasting Antenna

    Science.gov (United States)

    Galindo, Victor; Rahmat-Samii, Yahya; Imbriale, William A.; Cohen, Herb; Cagnon, Ronald R.

    1988-01-01

    Direct-broadcast satellite antenna designs provide contoured beams to match four time zones in 48 contiguous states and spot beams for Alaska, Hawaii, and Puerto Rico presented in 29-page report. Includes descriptions of procedures used to arrive at optimized designs. Arrangements, amplitudes, and phases of antenna feeds presented in tables. Gain contours shown graphically. Additional tables of performance data given for cities in service area of Eastern satellite.

  20. A Compact Size 4–19.1 GHz Heart Shape UWB Antenna with Triangular Patches

    Directory of Open Access Journals (Sweden)

    Gokmen Isik

    2013-01-01

    Full Text Available An ultrawideband antenna is designed, simulated, and realized. To overcome the narrow bandwidth characteristics of basic patch antennas, the structure of the radiation pattern is optimized by the aid of elliptical and rectangular patches. Also triangular patches are applied to the antenna edge in order to enhance the VSWR and gain properties. A typical VSWR of 1.5 (less than 2 in the whole frequency range and a typical gain of 2 dBi (mainly above 1 dBi in the whole frequency range are observed. The simulations present that the designed antenna has a bandwidth ratio of ~5 : 1 within the frequency range of 4–19.1 GHz with compact dimensions of 25 × 26 mm2. It is fabricated on a 0.5 mm thick, RO3035 substrate. The input impedance, gain, and radiation characteristics of the antenna are also presented. With these properties, it is verified that, with its novel shape, the proposed antenna can be used for various UWB applications.

  1. Experimental Results of Novel DoA Estimation Algorithms for Compact Reconfigurable Antennas

    Directory of Open Access Journals (Sweden)

    Henna Paaso

    2017-01-01

    Full Text Available Reconfigurable antenna systems have gained much attention for potential use in the next generation wireless systems. However, conventional direction-of-arrival (DoA estimation algorithms for antenna arrays cannot be used directly in reconfigurable antennas due to different design of the antennas. In this paper, we present an adjacent pattern power ratio (APPR algorithm for two-port composite right/left-handed (CRLH reconfigurable leaky-wave antennas (LWAs. Additionally, we compare the performances of the APPR algorithm and LWA-based MUSIC algorithms. We study how the computational complexity and the performance of the algorithms depend on number of selected radiation patterns. In addition, we evaluate the performance of the APPR and MUSIC algorithms with numerical simulations as well as with real world indoor measurements having both line-of-sight and non-line-of-sight components. Our performance evaluations show that the DoA estimates are in a considerably good agreement with the real DoAs, especially with the APPR algorithm. In summary, the APPR and MUSIC algorithms for DoA estimation along with the planar and compact LWA layout can be a valuable solution to enhance the performance of the wireless communication in the next generation systems.

  2. Composite GPS Patch Antenna for the AR Bandwidth Enhancement

    Directory of Open Access Journals (Sweden)

    Minkil Park

    2016-01-01

    Full Text Available A composite Global Positioning System (GPS patch antenna with a quadrature 3 dB hybrid coupler was designed and implemented for working RHCP and had a broadband axial ratio (AR bandwidth. We designed two patches as a FR-4 patch and 1.5 mm thickness thin ceramic patch with a quadrature 3 dB hybrid coupler. A CP radiation pattern was achieved, and the AR bandwidth improved by incorporating a quadrature 3 dB hybrid coupler feed structure in a micro-strip patch antenna. SMD by chip elements was applied to the quadrature 3 dB hybrid coupler. For the composite FR-4 and ceramic patch antennas, the VSWR measurement showed a 2 : 1 ratio over the entire design band, and the 3 dB AR bandwidth was 295 and 580 MHz for the FR-4 patch and ceramic patch antennas, respectively. The antenna gains for the composite FR-4 and ceramic patch antennas were measured as 1.36–2.75 and 1.47–2.71 dBi with 15.11–25.3% and 19.25–28.45% efficiency, respectively.

  3. An inkjet printed near isotropic 3-D antenna with embedded electronics for wireless sensor applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    A 3-D (cube-shaped) antenna, which has been inkjet printed on a paper substrate and integrated with embedded electronics, is presented for the first time. A 1.5λ0 dipole is uniquely implemented on all the faces of the cube to achieve near isotropic radiation pattern. The antenna measures 13mm × 13mm × 13mm, where each side of the cube corresponds to only 0.1λ0 (at 2.4 GHz). Measurements with driving electronics placed inside the cube have shown that the antenna performance is not affected by the presence of embedded circuits. The cube antenna design is highly suitable for mobile sensing applications.

  4. Implementation and investigation of circular slot UWB antenna with dual-band-notched characteristics

    Directory of Open Access Journals (Sweden)

    DadashZadeh Gholamreza

    2011-01-01

    Full Text Available Abstract The design and analysis of an ultra wideband aperture antenna with dual-band-notched characteristics are presented. The proposed antenna consists of a circular ring exciting stub on the front side and a circular slot on the back ground plane. By utilizing a parasitic strip and a T-shaped stub on the antenna structure, two notched bands of 850 MHz (3.5-4.35 GHz and 900 MHz (5.05-5.95 GHz are achieved. The proposed antenna is fabricated and measured. Measured results show that this antenna operates from 2.3 GHz to upper 11 GHz for voltage standing wave ratio less than 2, except two frequency notched bands of 3.5-4.35 and 5.05-5.95 GHz. Moreover, the experimental results show that proposed antenna has stable radiation patterns and constant gain. A conceptual circuit model, which is based on the measured impedance of the proposed antenna, is also shown to investigate the dual-band-notched characteristics.

  5. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field....... The reconstruction of the extreme near field on the basis of near- or far-field measurements is thus an essential step in antenna diagnostics....

  6. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)

    2016-03-09

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  7. An efficient fringe integral equation method for optimizing the antenna location on complex bodies

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter; Breinbjerg, Olav

    2001-01-01

    The radiation pattern of an antenna mounted nearby, or directly on, a complex three-dimensional (3D) structure can be significantly influenced by this structure. Integral equations combined with the method of moments (MoM) provide an accurate means for calculating the scattering from the structures...... in such applications. The structure is then modelled by triangular or rectangular surface patches with corresponding surface current expansion functions. A MoM matrix which is independent of the antenna location can be obtained by modelling the antenna as an impressed electric or magnetic source, e.g., a slot antenna...... can be modelled by a magnetic Hertzian dipole. For flush-mounted antennas, or antennas mounted in close vicinity of the scattering structure, the nearby impressed source induces a highly peaked surface current on the scattering structure. For the low-order basis functions usually applied...

  8. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

    Directory of Open Access Journals (Sweden)

    Avez Syed

    2016-01-01

    Full Text Available A low-cost coplanar waveguide fed compact ultrawideband (UWB antenna with band rejection characteristics for wireless local area network (WLAN is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9–13.7 GHz with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1–5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications.

  9. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    Science.gov (United States)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  10. Reconfigurable antenna options for 2.45/5 GHz wireless body area networks in healthcare applications.

    Science.gov (United States)

    Abbas, Syed Muzahir; Ranga, Yogesh; Esselle, Karu P

    2015-01-01

    This paper presents electronically reconfigurable antenna options in healthcare applications. They are suitable for wireless body area network devices operating in the industrial, scientific, and medical (ISM) band at 2.45 GHz and IEEE 802.11 Wireless Local Area Network (WLAN) band at 5 GHz (5.15-5.35 GHz, 5.25-5.35 GHz). Two types of antennas are investigated: Antenna-I has a full ground plane and Antenna-II has a partial ground plane. The proposed antennas provide ISM operation in one mode while in another mode they support 5 GHz WLAN band. Their performance is assessed for body centric wireless communication using a simplified human body model. Antenna sensitivity to the gap between the antenna and the human body is investigated for both modes of each antenna. The proposed antennas exhibit a wide radiation pattern along the body surface to provide wide coverage and their small width (14 mm) makes them suitable for on-body communication in healthcare applications.

  11. A Compact RFID Reader Antenna for UHF Near-Field and Far-Field Operations

    Directory of Open Access Journals (Sweden)

    Lai Xiao zheng

    2013-01-01

    Full Text Available A compact loop antenna is presented for mobile ultrahigh frequency (UHF radio frequency identification (RFID application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz. The proposed loop configuration, with a split-ring resonator (SRR coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively.

  12. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas

    Directory of Open Access Journals (Sweden)

    Dries Van Baelen

    2018-01-01

    Full Text Available A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15–5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna’s figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.

  13. Onset of color decoherence for soft gluon radiation in a medium

    Science.gov (United States)

    Mehtar-Tani, Y.; Salgado, C. A.; Tywoniuk, K.

    2011-12-01

    We report on recent studies of the phenomenon of color decoherence in jets in QCD media. The effect is most clearly observed in the radiation pattern of a quark-antiquark antenna, created in the same quantum state, traversing a dense color deconfined plasma. Multiple scattering with the medium color charges gradually destroys the coherence of the antenna. In the limit of opaque media, this ultimately leads to independent radiation off the antenna constituents. Accordingly, radiation off the total charge vanishes implying a memory loss effect induced by the medium.

  14. A CPW-Fed Quasi-PIFA Antenna Using Quasi-Lumped Resonators for Mobile Phones

    Directory of Open Access Journals (Sweden)

    Majid Rafiee

    2015-01-01

    Full Text Available A novel single CPW-fed Quasi-Planar Inverted-F Antenna (PIFA using quasi-lumped elements is developed for mobile communication handheld terminals operating at 2.6 GHz. The antenna is composed of an inductor covered by a set of interdigital and parasitic capacitors. The proposed antenna achieves a measured bandwidth of 11% for return loss with the antenna gain of about 4 dBi. The antenna is designed in single layer (zero height which is appropriate to be used in thin devices where a small room is considered for the antenna. The proposed antenna is suitable for use in Long Term Evolution band 7. The operating frequency of introduced antenna depends on the number of interdigital fingers and inductor length rather than the total resonator patch only, so that the operating frequency can be altered while the total patch size remains unchanged. The calculated operating frequency is confirmed by simulation and measurement. Also the dipole-like simulated radiation pattern is confirmed by measurement.

  15. Optimized dipole antennas on photonic band gap crystals

    International Nuclear Information System (INIS)

    Cheng, S.D.; Biswas, R.; Ozbay, E.; McCalmont, S.; Tuttle, G.; Ho, K.

    1995-01-01

    Photonic band gap crystals have been used as a perfectly reflecting substrate for planar dipole antennas in the 12--15 GHz regime. The position, orientation, and driving frequency of the dipole antenna on the photonic band gap crystal surface, have been optimized for antenna performance and directionality. Virtually no radiated power is lost to the photonic crystal resulting in gains and radiation efficiencies larger than antennas on other conventional dielectric substrates. copyright 1995 American Institute of Physics

  16. Electrically small circularly polarized spherical antenna with air core

    DEFF Research Database (Denmark)

    Kim, O. S.

    2013-01-01

    An electrically small circularly polarized self-resonant spherical antenna with air core is presented. The antenna is a modified multiarm spherical helix exciting TM10 and TE10 spherical modes with equal radiated power, and thus yielding perfect circular polarization over the entire far......-field sphere (except the polar regions, where the radiation is low). The self-resonance is achieved by exciting higher-order TM modes, which provide the necessary electric stored energy in the near-field, while contributing negligibly to the far-field radiation of the antenna. The antenna has electrical size...

  17. Circularly Polarized Low-Profile Antenna for Radiating Parallel to Ground Plane for RFID Reader Applications

    Directory of Open Access Journals (Sweden)

    Kittima Lertsakwimarn

    2013-01-01

    Full Text Available This paper presents a low-profile printed antenna with double U-shaped arms radiating circular polarization for the UHF RFID readers. The proposed antenna consists of double U-shaped strip structures and a capacitive feeding line to generate circular polarization. A part of the U-shaped arms is bent by 90° to direct the main beam parallel to the ground plane. From the results, -10 dB |S11| and 3 dB axial ratio of the antenna cover a typical UHF RFID band from 920 MHz to 925 MHz. The bidirectional beam is obtained with the maximum gain of 1.8 dBic in the parallel direction to the ground plane at the 925 MHz. The overall size of the proposed antenna including ground plane is 107 mm × 57 mm × 12.8 mm (0.33λ0 × 0.17λ0 × 0.04λ0.

  18. Mobile applications of photovoltaic planar antennas - SOLPLANT {sup registered}; Mobile Anwendungen von Solaren Planarantennen - SOLPLANT {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, C.; Kirchhof, J. [Institut fuer Solare Energieversorgungstechnik (ISET), Kassel (Germany); Henze, N. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Hochfrequenztechnik

    2005-07-01

    This paper describes the application of photovoltaic (PV) Solar Planar Antennas in mobile applications. The radiating patch element of a planar antenna is replaced by a solar cell. Furthermore radiating slots can be built due to the cell spacing in a solar cell array. The original feature of a solar cell (DC current generation) remains, but additionally the solar cell is now able to receive and transmit electromagnetic waves. Both single solar cells as well as solar cell arrays can be used as antennas. This new approach, the ''Solar Planar Antenna - SOLPLANT {sup registered} '', avoids disadvantages of conventional applications, when solar cells and antennas are used in combination. Based on these considerations, a product development concept was originated at whose basic idea has been registered as a patent in Germany, Europe, Japan and USA. Four applications are presented: a solar cell GPS antenna for vehicular applications, a solar cell slot antenna for mobile communications (GSM), an environmental metering station with GSM function and a Worldspace Satellite Radio, equipped with a SOLPLANT {sup registered} antenna. The aim of the first two products is to integrate these antennas into vehicular glass roofs which are covered with photovoltaic solar cells in order to deliver the electric power for the indoor ventilation of the car. The GPS antenna provides circular polarisation and a main lobe in zenith direction whereas the GSM antenna is vertically polarized and has a monopole-like radiation pattern. Both antennas are built up with commonly used solar cells. The comparison of measured and simulated antenna properties shows a good agreement. At last, some applications on high altitude platforms for wireless communication services and remote sensing are depicted. (ORIG.)

  19. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts.

    Science.gov (United States)

    Koprivica, Mladen; Neskovic, Natasa; Neskovic, Aleksandar; Paunovic, George

    2014-01-01

    As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m(-1), which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were <1 and 2 V m(-1), respectively.

  20. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts

    International Nuclear Information System (INIS)

    Koprivica, M.; Neskovic, N.; Neskovic, A.; Paunovic, G.

    2014-01-01

    As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m -1 , which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were -1 , respectively. (authors)

  1. Optically Transparent Nano-Patterned Antennas: A Review and Future Directions

    Directory of Open Access Journals (Sweden)

    Seung Yoon Lee

    2018-05-01

    Full Text Available Transparent antennas have been continuously developed for integration with solar cells, vehicular communications, and ultra-high-speed communications such as 5G in recent years. A transparent antenna takes advantage of spatial extensibility more so than all other antennas in terms of wide range of usable area. In addition, the production price of transparent antennas is steadily decreasing due to the development of nano-process technology. This paper reviews published studies of transparent antennas classified by various materials in terms of optical transmittance and electrical, sheet resistance. The transparent electrodes for the transparent antenna are logically classified and the transparent antennas are described according to the characteristics of each electrode. Finally, the contributions transparent antennas can make toward next-generation 5G high-speed communication are discussed.

  2. Radiation from communication antenna and electrical cable generator

    International Nuclear Information System (INIS)

    Rozaimah Abdul Rahim; Norzehan Ngadiron

    2009-01-01

    Lack of knowledge about radio frequency wave antenna emitter and electrical cable cause misunderstanding among public that make this technologies dangerous, thereby can harm the public hearths. Malaysian Nuclear Agency as one technical body in Malaysia that specialized in this matter had already explained it to the public about this issue long time ago. Basically, non-ionizing radiation are one of the electromagnetic radiation that can be produced naturally or artificially. It consists of two main component, electrical field and magnetic field that propagated with velocity of light. Energy for this radiation less than 12.4 eV, wave distance more than 100 nm with frequency less than 3000 THz. With low energy, this radiation cannot go to ionizing process. Exposure to this radiation also can cause biological effect, acute and chronic. For human that expose to this radiation, direct effect only involved in thermal effect which suddenly increasing of temperature in body. This can cause heat stress, heat stroke and cataract in eyes lens. For infrared, visible light, ultraviolet and laser, the critical organ are eyes and skins. In Malaysia, Telecommunication Department had already produce guideline , Regulatory Framework on the sharing communication infrastructures 1988 that mentioned about all the guideline that must be obey by all the network operator including safety aspect, especially for radio wave and micro wave with frequency from 30 MHz to 300 GHz. The other agencies that produced standards such as SIRIM specialized in level of exposure for electromagnetic radiation until 3 kHz. For the other non-ionizing radiation, guideline from ICNIRP, WHO or others will be referred. For the public the main problem for this issues are psychology problem, political influence and jealously. For Malaysian Nuclear Agency, public awareness must be proceeded in order to give knowledge and understanding about this matter so that the public will not fear in the future.

  3. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  4. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  5. Generation of OAM Radio Waves Using Circular Vivaldi Antenna Array

    Directory of Open Access Journals (Sweden)

    Changjiang Deng

    2013-01-01

    Full Text Available This paper gives a feasible and simple solution of generating OAM-carrying radio beams. Eight Vivaldi antenna elements connect sequentially and fold into a hollow cylinder. The circular Vivaldi antenna array is fed with unit amplitude but with a successive phase difference from element to element. By changing the phase difference at the steps of 0, ±45°, ±90°, ±135°, and 180°, the OAM radio beam can be generated with mode numbers 0, ±1, ±2, ±3, and 4. Simulations show that the OAM states of ±2 and ±3 are the same as the traditional states, while the OAM states of 0, ±1, and 4 differ at the boresight. This phenomenon can be explained by the radiation pattern difference between Vivaldi antenna and tripole antenna. A solution of distinguishing OAM states is also proposed. The mode number of OAM can be distinguished with only 2 receivers.

  6. Performance Investigations of Quasi-Yagi Loop and Dipole Antennas on Silicon Substrate for 94 GHz Applications

    Directory of Open Access Journals (Sweden)

    Osama M. Haraz

    2014-01-01

    Full Text Available This paper introduces the design and implementation of two high gain Quasi-Yagi printed antennas developed on silicon substrate for 94 GHz imaging applications. The proposed antennas are based on either driven loop or dipole antennas fed by a coplanar waveguide (CPW feeding structure. For better matching with the driven antennas, a matching section has been added between the CPW feedline and the driven antenna element. To improve the gain of either loop or dipole antennas, a ground reflector and parasitic director elements have been added. Two Quasi-Yagi antenna prototypes based on loop and dipole antenna elements have been fabricated and experimentally tested using W-band probing station (75–110 GHz. The measured results show good agreement with simulated results and confirm that the proposed antennas are working. In addition, a feed and matching configuration is proposed to enable coupling a microbolometer element to the proposed Quasi-Yagi antenna designs for performing radiation pattern measurements.

  7. Plasma antennas driven by 5–20 kHz AC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiansen, E-mail: 67093058@qq.com; Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng [Merchant Marine College, Shanghai Maritime University, Shanghai, 201306 (China)

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  8. Computation of the radiation Q of dielectric-loaded electrically small antennas in integral equation formulations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    A new technique for estimating the impedance frequency bandwidth of electrically small antennas loaded with magneto-dielectric material from a single-frequency simulation in a surface integral equation solver is presented. The estimate is based on the inverse of the radiation Q computed using newly...... derived expressions for the stored energy and the radiated power of arbitrary coupled electric and magnetic currents in free space....

  9. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  10. Paper-based inkjet-printed tri-band U-slot monopole antenna for wireless applications

    KAUST Repository

    Abutarboush, Hattan

    2012-01-01

    Realization of a U-slot tri-band monopole antenna on a low-cost paper substrate using inkjet-printed technology is presented for the first time. The U-shaped slot is optimized to enhance the bandwidth and to achieve tri-band operation of 1.57, 3.2, and 5 GHz with measured impedance bandwidths of 3.21%, 28.1%, and 36%, respectively. The antenna is fabricated through a metallic nanoparticle ink on a standard commercial paper. Thus, the antenna can be used to cover the GPS, WiMAX, HiperLAN/2, and WLAN. The antenna has a compact size of 12 × 37.3 × 0.44 mm3 , leaving enough space for the driving electronics on the paper substrate. The impedance bandwidth, current distributions, radiation patterns, gain, and efficiency of the antenna have been studied through computer simulations and measurements. © 2002-2011 IEEE.

  11. Innovative Radiating Systems for Train Localization in Interference Conditions

    Directory of Open Access Journals (Sweden)

    C. Vegni

    2013-01-01

    Full Text Available The design of innovative radiating systems based on the metamaterial technology for GNSS (Global Navigation Satellite System applications in radio frequency (RF interference conditions is proposed. To this aim, firstly two typical adaptive array techniques (i.e., nulling and beam-forming are discussed and tradeed off. Secondly, FRPA (Fixed Radiation Pattern Antenna and CRPA (Controlled Radiation Pattern Antenna phased array configurations of miniaturized patch antennas are studied by means of electromagnetic commercial tools and phased array optimization algorithms. This process leads to the identification of a phased array design. Benefits and drawbacks for GNSS applications are highlighted. Finally, the design of the phased array is applied to a GNSS user receiver in a navigation realistic environment. Simulation results are obtained in a realistic scenario for railway applications, comprising of a GNSS satellite constellation, a GNSS user receiver (i.e., on-board train equipment running along a track in Western Australia, and a constellation of interfering satellites. Navigation service performances (i.e., user location accuracy and service availability are computed taking into account the adaptive array radiation pattern in two different modes (i.e., FRPA or CRPA and band-limited white noise interference.

  12. A Time Modulated Printed Dipole Antenna Array for Beam Steering Application

    Directory of Open Access Journals (Sweden)

    Ruchi Gahley

    2017-01-01

    Full Text Available This paper presents time modulated beam steered antenna array without phase shifters. The beam steering is analyzed considering a two-element time modulated antenna array (TMAA of printed dipoles with microstrip via-hole balun. The proposed array resonates at the Industrial, Scientific, and Medical (ISM radio bands, 2.45 GHz and 5.8 GHz, and offers wide bandwidth inherited due to modified structure of ground plane. Array elements are excited by complex exponential excitation signal through broadband power divider and radio frequency (RF switches to achieve amplitude and phase variation without phase shifters. Differential Evolution algorithm is used to modify the time sequences of the RF switches connected to the antennas to generate radiation pattern with optimum dynamic efficiency by suppressing sideband radiations. Also switch-on time instant of RF switch connected to the subsequent element is modulated to steer the beam towards different directions. The proposed prototype is fabricated followed by parametric optimization. The fabrication results agree significantly well with simulated results.

  13. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  14. The Analysis of a Wideband Strip-Helical Antenna with 1.1 Turns

    Directory of Open Access Journals (Sweden)

    Xihui Tang

    2016-01-01

    Full Text Available A wideband strip-helical antenna with 1.1 turns is analyzed numerically and experimentally. By replacing the traditional wire helix with wide metallic strip, the forward traveling current on the strip helix with about one turn smoothly decays to the minimum value at the open end of the helix. Therefore, the strip helix can excite a wideband circular polarization (CP wave with 50-ohm impedance matching. The proposed antenna is printed on a hollow-cylinder with a substrate relative permittivity of εr=2.2 and a thickness of h=0.5 mm. A 50 Ω coaxial cable is directly connected to excite the strip-helical antenna without any additional impedance matching section. The ground plane is placed below the antenna in order to provide a directional radiation pattern. To demonstrate this method, a prototype of 1.1-turn strip-helical antenna is tested. The test shows that the proposed antenna can reach an overlapped bandwidth of 46% with height of 0.52λ0, where λ0 is the wavelength in free space at the center operation frequency.

  15. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  16. ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES

    International Nuclear Information System (INIS)

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2012-01-01

    Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f p and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f p by LW eigenmodes. The EM wave power emitted near f p is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f p radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

  17. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  18. Minimum Q circularly polarized electrically small spherical antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2011-01-01

    The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed...... magnetic-coated PEC core the stored energies of these modes balance each other making the antenna self-resonant and at the same time ensuring a perfect circularly polarized radiation. Numerical results for a practical dual-mode electrically small antenna confirm the theoretical predictions. A 4-arm...

  19. 47 CFR 78.105 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... planes. (2) New periscope antenna systems will be authorized upon a certification that the radiation, in...

  20. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

    Science.gov (United States)

    Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy

    2018-04-01

    Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

  1. Restoring Low Sidelobe Antenna Patterns with Failed Elements in a Phased Array Antenna

    Science.gov (United States)

    2016-02-01

    optimum low sidelobes are demonstrated in several examples. Index Terms — Array signal processing, beams, linear algebra , phased arrays, shaped...beam antennas. I. INTRODUCTION For many phased array antenna applications , low spatial sidelobes are required, and it is desirable to maintain...represented by a linear combination of low sidelobe beamformers with no failed elements, ’s, in a neighborhood around under the constraint that the linear

  2. Micromachined On-Chip Dielectric Resonator Antenna Operating at 60 GHz

    KAUST Repository

    Sallam, Mai

    2015-06-01

    This paper presents a novel cylindrical Dielectric Resonator Antenna (DRA) suitable for millimeter-wave on-chip systems. The antenna was fabricated from a single high resistivity silicon wafer via micromachining technology. The new antenna was characterized using HFSS and experimentally with good agreement been found between the simulations and experiment. The proposed DRA has good radiation characteristics, where its gain and radiation efficiency are 7 dBi and 79.35%, respectively. These properties are reasonably constant over the working frequency bandwidth of the antenna. The return loss bandwidth was 2.23 GHz, which corresponds to 3.78% around 60 GHz. The antenna was primarily a broadside radiator with -15 dB cross polarization level.

  3. Ultrawideband Vivaldi Antenna for DVB-T, WLAN, and WiMAX Applications

    Directory of Open Access Journals (Sweden)

    Dalia M. Elsheakh

    2014-01-01

    Full Text Available Compact Vivaldi patch antenna with a parasitic meander line is presented in this paper. A PIN diode switch is used to connect and disconnect ultrahigh frequency band (UHF with ultrawide bandwidth (UWB. The operating frequencies can be switched among different services, depending on the switching states (ON/OFF to add the lower band when required. This antenna is suitable for portable DVB-T which extended from 450 MHz to 850 MHz receiver applications and the WLAN (Wireless Local Area Network IEEE 802.11b,g (5.1–5.8 GHz frequency bands and WiMAX band (3.3–3.8 GHz. The measured reflection coefficient of the proposed antenna is compared with the simulated one; good agreement is observed. Also, simulated radiation pattern of the antenna is presented. All simulations are carried out using the EM commercial simulator, high frequency structure simulator (HFSS ver.13.

  4. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.

    Science.gov (United States)

    Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo

    2014-12-01

    With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Circularly Polarized Antenna Array Fed by Air-Bridge Free CPW-Slotline Network

    Directory of Open Access Journals (Sweden)

    Yilin Liu

    2017-01-01

    Full Text Available A novel design of 1×2 and 2×2 circularly polarized (CP microstrip patch antenna arrays is presented in this paper. The two CP antenna arrays are fed by sequentially rotated coplanar waveguide (CPW to slotline networks and are processed on 1 mm thick single-layer FR4 substrates. Both of the two arrays are low-profile and lightweight. An air-bridge free CPW-slotline power splitter is appropriately designed to form the feeding networks and realize the two CP antenna arrays. The mechanism of circular polarization in this design is explained. The simulated and measured impedance bandwidths as well as the 3 dB axial ratio bandwidths and the radiation patterns of the two proposed antenna arrays are presented. This proposed design can be easily extended to form a larger plane array with good performance owing to its simple structure.

  6. Microstrip patch antenna for simultaneous strain and temperature sensing

    Science.gov (United States)

    Mbanya Tchafa, F.; Huang, H.

    2018-06-01

    A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.

  7. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    International Nuclear Information System (INIS)

    Yi, Xiaohua; Cho, Chunhee; Wang, Yang; Cooper, James; Tentzeris, Manos M; Leon, Roberto T

    2013-01-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack. (paper)

  8. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  9. Excitation of propagating magnetization waves by microstrip antennas

    Science.gov (United States)

    Dmitriev, V. F.; Kalinikos, B. A.

    1988-11-01

    We discuss the self-consistent theory of excitation of dipole-exchange magnetization waves by microstrip antennas in a metal-dielectric-ferrite-dielectric-metal stratified structure, magnetized under an arbitrary angle to the surface. Spin-wave Green's functions are derived, describing the response of the spin-system to a spatially inhomogeneous varying magnetic field. The radiative resistance of microstrip antenna is calculated. In this case the distribution of surface current density in the antenna is found on the basis of the analytic solution of a singular integral equation. The nature of the effect of metallic screens and redistributed surface current densities in the antenna on the frequency dependence of the resistive radiation is investigated. Approximate relations are obtained, convenient for practical calculations of radiative resistance of microstrip antennas both in a free and in a screened ferromagnetic film. The theoretical calculations are verified by data of experiments carried out on monocrystalline films of iron-yttrium garnet.

  10. Electric Dipole Antenna: A Source of Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2013-07-01

    Full Text Available In this article, the gravitational scalar potential due to an oscillating electric dipole antenna placed in empty space is derived. The gravitational potential obtained propagates as a wave. The gravitational waves have phase velocity equal to the speed of light in vacuum (c at the equatorial plane of the electric dipole antenna, unlike electromagnetic waves from the dipole antenna that cancel out at the equatorial plane due to charge symmetry.

  11. The Ultrawideband Leaky Lens Antenna

    NARCIS (Netherlands)

    Bruni, S.; Neto, A.; Marliani, F.

    2007-01-01

    A novel directive and nondispersive antenna is presented: the ultrawideband (UWB) leaky lens. It is based on the broad band Cherenkov radiation occurring at a slot printed between different infinite homogeneous dielectrics. The first part of the paper presents the antenna concept and the UWB design.

  12. Antenna Parts and Waveguide Transmission Line of Short Pulse Radar System Design

    Directory of Open Access Journals (Sweden)

    M. E. Golubcov

    2014-01-01

    Full Text Available The main point of this research was работы являлось to create a stand to explore the application of short pulse radio signals in radar. The stand consists of antenna and waveguide elements. Each element out to guarantee operation in X-band with 10 percent working bank and 5 percent instantaneous bandwidth and the power output gotta be 1.5 kW. The form of the antenna beam patten need to be similar to cosecant pattern Side-lobe level need to be less than -25 dB. Background level got to be at least -30 dB. Wave friction, which is radiated from the antenna aperture, got to simultaneous formed in a space.As the most easily realizing variant of such antenna cutting parabolic mirror antenna with offset irradiator was chosen. The irradiator phase centre is shifted from the focal point of the paraboloid to form a cosecant pattern. Method of physical optics is used for the analysis of antennas. Calculating pattern of horn irradiator and mirror antenna which were met the requirements was received. The construction choice was limited by the preproduction possibilities, mass and dimensions. Mirror antenna consists of skeleton framing with mirroring elements which are fixing on it. Mirroring plane is multiplex and consists off rectangular planes made by hydroforming method. Antenna was tested and adjusted at the antenna darkroom after fabricating. The results were meted requirements.Besides the mirror antenna and the horn antenna waveguide elements, waveguide bends and rotating joints were calculated, manufactured and researched. All calculations included the manufacturers tolerances, technological corner R etc. As the construction base of rotating joint coaxial waveguide was chosen. The decision on the one hand: let keep the axial symmetry of excited wave at rotating part of the waveguide, on the other hand there’s no necessary to apply resonant rings, which are plug into dielectric beads for the transition from rotating ring part to

  13. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    Science.gov (United States)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  14. Harmonic Suppressed Slot Antennas Using Rectangular/Circular Defected Ground Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Saeid Ghaffarian

    2012-01-01

    Full Text Available Two wide rectangle-shaped microstrip-fed 2.6-GHz slot antennas using defected ground structures (DGSs with a low design complexity are proposed to achieve wideband harmonic suppression. To accomplish this, two rectangular DGSs (RDGSs in the first antenna and two circular DGSs (CDGSs in the second one with various dimensions are etched into the ground plane, which could have a wideband-stop characteristic. Simulated and measured reflection coefficients indicate that the two proposed structures effectively suppress the second and third harmonics up to 23 dB between 3.5 and 10.5 GHz with a maximum ripple of 2.4 dB. In addition, the radiation patterns and peak gains of the antennas can be suppressed at least 17 dB and 7.1 dBi, respectively, at the third harmonic frequency of 7.86 GHz.

  15. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR.

    Science.gov (United States)

    Rahman, MuhibUr; Park, Jung-Dong

    2018-03-19

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  16. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR

    Directory of Open Access Journals (Sweden)

    MuhibUr Rahman

    2018-03-01

    Full Text Available In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT. Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs on the radiating patch and placing two rectangular split-ring resonators (RSRR near the feedline-patch junction of the conventional ultra-wideband (UWB antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  17. Design of CPW-Fed Antenna with Defected Substrate for Wideband Applications

    Directory of Open Access Journals (Sweden)

    Amar Sharma

    2016-01-01

    Full Text Available A CPW-fed defected substrate microstrip antenna is proposed. The proposed antenna shows wideband applications by choosing suitable defected crown shaped substrate. Defected substrate also reduces the size of an antenna. The radiating patch of proposed antenna is taken in the form of extended U-shape. The space around the radiator is utilized by extending the ground plane on both sides of radiator. Simulation of proposed antenna is done on Ansoft’s High Frequency Structure Simulator (HFSS v. 14. Measured results are in good agreement with simulated results. The prototype is taken with dimensions 36 mm × 42 mm × 1.6 mm that achieves good return loss, constant group delay, and good radiation characteristics within the entire operating band from 4.5 to 13.5 GHz (9.0 GHz with 100% impedance bandwidth at 9.0 GHz centre frequency. Thus, the proposed antenna is applicable for C and X band applications.

  18. Computational Electromagnetic Studies for Low-Frequency Compensation of the Reflector Impulse-radiating Antenna

    Science.gov (United States)

    2015-03-26

    like the “winner”. Now the time domain characteris- tics are compared for a full understanding of the antenna performance. The boresight impulse...radio frequency distinct native attributes 121 TD time domain TDR time domain reflectometry TEM transverse electromagnetic TRP total radiated power UHF...cies. These undesirable backlobes have never been hypothesized, predicted or mea- sured, likely due in part to their alignment outside the primary

  19. Experiments with dipole antennas

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.

  20. A Compact Kapton-based Inkjet Printed Multiband Antenna for Flexible Wireless Devices

    KAUST Repository

    Ahmed, Sana

    2015-04-20

    A low cost inkjet printed multiband antenna envisioned for integration into flexible and conformal mobile devices is presented. The antenna structure contains a novel triangular iterative design with coplanar waveguide (CPW) feed, printed on a Kapton polyimide-based flexible substrate with dimensions of 70 x 70 x 0.11 mm3. The antenna covers four wide frequency bands with measured impedance bandwidths of 54.4%, 14%, 23.5% and 17.2%, centered at 1.2, 2.0, 2.6 and 3.4 GHz, respectively, thus, enabling it to cover GSM 900, GPS, UMTS, WLAN, ISM, Bluetooth, LTE 2300/ 2500 and WiMAX standards. The antenna has omnidirectional radiation pattern with a maximum gain of 2.1 dBi. To characterize the flexibility of the antenna, the fabricated prototype is tested in convex and concave bent configurations for radii of 78mm and 59mm. The overall performance remains unaffected, except a minor shift of 20 MHz and 60 MHz in S11, for concave bending at both radii. The compact, lightweight and conformal design as well as multiband performance in bent configurations, proves the suitability of the antenna for future electronic devices.

  1. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  2. A Flexible Monopole Antenna with Dual-Notched Band Function for Ultrawideband Applications

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2014-01-01

    Full Text Available We present a flexible ultrawideband (UWB planar monopole antenna with dual-notched band characteristic printed on a polyimide substrate. The antenna is fed by a step coplanar waveguide (CPW that provides smooth transitional impedance for improved matching. It operates from 2.76 to 10.6 GHz with return loss greater than 10 dB except for the notch band to reduce the interference with existing 3.5 GHz WiMAX band and 5.5 GHz WLAN band. With a combination of rectangular and circle patches in which the U-shaped slot is carved, the overall size of antenna is 30 mm × 20 mm. Moreover, a pair of arc-shaped stubs located at both sides of the feed line is utilized to create the notch band for WiMAX band. The results also show that the antenna has omnidirectional radiation pattern and smooth gain over the entire operational band.

  3. Exposure to electromagnetic radiation from GSM and UMTS base station antennas

    International Nuclear Information System (INIS)

    Oliveira, C.; Carpinteiro, G.; Correia, L.M.

    2003-01-01

    This paper discusses processes for measurement of GSM and UMTS signal strength on different scenarios, regarding base stations compliance evaluation with radiation exposure limits. Recommendations to minimize exposure from base station antennas' radiation are also established. Propagation models application and their importance to base stations security evaluation are analysed. An application example of the use of these models in a software tool development is given. A measurement campaign to collect real data from base stations in Lisbon is described, and propagation models applicability is discussed. Radiation reference levels were never exceeded on the analysed base stations. The worst-case detected was about five time (in terms of electric field strength) below security limits adopted by the European Union Council. Nevertheless, in general, the measured stations were at least thirteen times below limits. Scenarios where differences between measurements and limits are lower and exposure on buildings' rooftops with base stations and indoors. (author)

  4. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    Science.gov (United States)

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  5. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  6. Real-Time Imaging with Frequency Scanning Array Antenna for Industrial Inspection Applications at W band

    Science.gov (United States)

    Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge

    2018-01-01

    A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.

  7. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  8. A Planar UWB Antenna with Switchable Single/Double Band-Rejection Characteristics

    Directory of Open Access Journals (Sweden)

    V. Sharbati

    2016-09-01

    Full Text Available In this Paper, a reconfigurable antenna with capability to operate in the ultrawideband (UWB mode from 2.85 to 14.4 GHz with switchable notch bands of 3.25–4.26 GHz, 5.1–5.9 GHz or 7.1-7.8 GHz, is presented. The proposed antenna has a simple configuration and compact size of 17 × 14 mm2. To make the band-notches, three methods (methods of slot antenna, parasitic patches and backplane structure are used. To achieve the reconfigurability, three PIN diode are placed on the proposed antenna. A PIN diode is inserted over the L-shaped parasitic element and the rectangular patch, another one is placed between the two parasitic elements on the ground plane, and other across the square ring-shaped slot, respectively. Antenna performance can be changed by adjusting the status of the PIN diodes that make the band-notches in applications bands (WLAN, WiMAX/C-band and X-band. Good group delay and monopole-like radiation pattern characteristics are achieved in the frequency band of interest. The antenna performance both by simulation and by experiment indicates that it is suitable and a good candidate for UWB applications.

  9. Radiation Field of a Square, Helical Beam Antenna

    DEFF Research Database (Denmark)

    Knudsen, Hans Lottrup

    1952-01-01

    square helices are used. Further, in connection with corresponding rigorous formulas for the field from a circular, helical antenna with a uniformly progressing current wave of constant amplitude the present formulas may be used for an investigation of the magnitude of the error introduced in Kraus......' approximate calculation of the field from a circular, helical antenna by replacing this antenna with an ``equivalent'' square helix. This investigation is carried out by means of a numerical example. The investigation shows that Kraus' approximate method of calculation yields results in fair agreement...

  10. SAR antenna design for ambiguity and multipath suppression

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Dich, Mikael

    1993-01-01

    A high resolution airborne synthetic aperture radar (SAR) has been developed at the Electromagnetics Institute (EMI) for remote sensing applications. The paper considers the radiation of antennas for a SAR system from a systems perspective. The basic specifications of an idealised antenna...... are obtained from the required swath and the azimuth footprint needed for the SAR processing. The radiation from a real antenna causes unwanted signal returns that lead to intensity variations (multipath) and ghost echoes (ambiguity). Additional specifications are deduced by considering these signals...

  11. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  12. Design of optical antenna for solar energy collection

    International Nuclear Information System (INIS)

    Gallo, Michele; Mescia, Luciano; Losito, Onofrio; Bozzetti, Michele; Prudenzano, Francesco

    2012-01-01

    In this paper, an antenna array is designed in order to transform the thermal energy, provided by the Sun and re-emitted from the Earth, in electricity. The proposed antenna array is constituted by four square spirals of gold printed on a low cost dielectric substrate. A microstrip line, embedded into the substrate, is used to feed the array and to collect the thermal radiation. The dispersive behavior of gold at infrared frequencies has been taken into account through the Lorentz–Drude model. Simulations have been conducted in order to investigate the behavior of the antenna array illuminated by a circularly polarized plane wave with an amplitude chosen according to the Stefan–Boltzmann radiation law. An output current of about 3.8 μA has been simulated at 28.3 THz, i.e. at the frequency of the Earth emitted radiation. Moreover, these infrared antennas could be coupled with other components to obtain direct rectification of infrared radiation. As a consequence, these structures further optimized could be a promising alternative to the conventional photovoltaic solar cells.

  13. A Microwave Holographic Procedure for Large Symmetric Reflector Antennas Using a Fresnel-Zone Field Data Processing

    Directory of Open Access Journals (Sweden)

    Giuseppe Mazzarella

    2012-01-01

    Full Text Available In this paper we propose a new holographic procedure for the diagnostic of large reflector antennas, based on the direct use of the Fresnel-field pattern. The relation leading from the Fresnel field to the current on the reflector surface is formulated in the least-squares sense as a discrete data inverse problem and then regularized by using a singular value decomposition approach. A detailed theoretical analysis of the problem and full assessment of the presented technique are provided. Simulations are carried out by using the radiative near-field pattern generated with a commercial software. Results show good accuracy and robustness to noise for the retrieval of the panel-to-panel misalignment of a reflector antenna.

  14. HF Meander-Line Antenna Simulations and Investigations for NVIS on a HMMV

    Science.gov (United States)

    2016-09-28

    Hong   Kong ,  2011,  pp.  194-­‐197.     [3]C.  C.  Lin,  S.  W.  Kuo  and  H.  R...ideal  radiation   conditions  for  the   simulated  antenna.  The  simulated  gain  pattern  in  figure  2  shows  a...meters.     Future   Work     Reducing  the  coupling  between  the  radiating  elements  of

  15. Study of the Interaction User Head-Ultrawideband MIMO Antenna Array for Mobile Terminals

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Franek, Ondrej

    2016-01-01

    aspects of the interaction are considered: 1) the influence of the user head on the antenna operation, and 2) the exposure of the human head tissue to antenna electromagnetic radiation. The first aspect is related to the degradation of the antenna performance in a proximity to the user which is evaluated......This paper presents a numerical study of the interaction between the user head and MIMO antenna array for mobile phones. The antenna array is composed of two identical antennas and covers the frequency ranges 698-990 MHz and 1710-5530 MHz with a good radiation efficiency in free space. The two...... by the reduction of the antenna radiation efficiency. The second aspect refers to the antenna operation effect on the human and the exposure of the user head is studied by Specific Absorption Ratio (SAR)....

  16. Design and Simulation of a Compact UWB MIMO Antenna with Mutual Coupling Reduction

    Directory of Open Access Journals (Sweden)

    Narges Malekpoor

    2016-01-01

    Full Text Available In this paper, A compact multiple-input-multiple-output (MIMO antenna with a small size of 26×31mm2 is proposed for portable ultrawideband (UWB applications. The antenna consists of two square-monopole antenna with microstrip-fed by a 50- Ω printed on one side of the substrate. To enhance isolation and increase impedance bandwidth, two long ground stubs are added to the ground plane on the other side. Simulation is used to study the antenna performance in terms of reflection coefficients at the two input ports, coupling between the two input ports, radiation pattern, realized peak gain, efficiency and envelope correlation coefficient. Results show that the MIMO antenna has an impedance bandwidth ( for S22< -10 dB of larger than 3.1–10.6 GHz, low mutual coupling ( for S21< 3 dB of less than -16 dB, and a low envelope correlation coefficient of less than 0.003 across the frequency band, making it a good candidate for portable UWB applications.

  17. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  18. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    Science.gov (United States)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  19. Mesh parameters influence on transparent and active antennas performance at microwaves

    Directory of Open Access Journals (Sweden)

    Alexis Martin

    2017-08-01

    Full Text Available Optically transparent and active square loop coplanar antennas operating in X-band are investigated in this letter. The frequency tunability is provided by a surface mounted beam-lead varactor with micrometric size, thereby no-visible to the naked eye. The influence of the metal mesh parameters on the sheet resistance (from 0.05 Ω/sq to 0.54 Ω/sq, the optical transparency (from 66% to 89% and the microwave performance (return loss, resonance frequency, radiation pattern and gain of such antennas is evaluated, compared with those of an opaque counterpart, and finally discussed. This study paves the way of their promising implementation on new surfaces, namely building and car windows for future wireless communications systems.

  20. 3D-Printed Super-Wideband Spidron Fractal Cube Antenna with Laminated Copper

    Directory of Open Access Journals (Sweden)

    Oh Heon Kwon

    2017-09-01

    Full Text Available In this paper, a 3D-printed super-wideband (SWB Spidron fractal cube antenna is proposed. The Spidron fractal configuration is utilized as a self-complementary structure on each face of a 3D frame to attain SWB characteristics. The antenna is excited through a tapered microstrip balun for both mode transforming and impedance matching. A prototype of the proposed antenna, including the 3D frame fabricated with the help of a 3D printer and Spidron fractal patches made of copper tape, is experimentally verified. The measured −10 dB reflection ratio bandwidth is 34:1 (0.44–15.38 GHz. The peak gain varies from 3.42 to 9.29 dBi within the operating frequency bandwidth. The measured radiation patterns are nearly omnidirectional at all operating frequency bands.

  1. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    B. F. Zong

    2016-04-01

    Full Text Available In this paper, a broadband circularly polarized (CP microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL based sequential rotation (SR feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a 2×2 antenna array comprising sequentially rotated coupled stacked CP antenna elements is designed, fabricated and measured. Both the simulated and measured results indicate that the performances of the antenna element are further enhanced when the SR network is used. The antenna array exhibits the VSWR less than 1.8 dB from 4 GHz to 7 GHz and the 3 dB axial ratio (AR from 4.4 GHz to 6.8 GHz. Also, high peak gain of 13.7 dBic is obtained. Besides, the normalized radiation patterns at the operating frequencies are symmetrical and the side lobe levels are low at φ=0º and φ=90º.

  2. A Compact UWB Antenna with a Quarter-Wavelength Strip in a Rectangular Slot for 5.5 GHz Band Notch

    Directory of Open Access Journals (Sweden)

    Pichet Moeikham

    2013-01-01

    Full Text Available The limitation of the electromagnetic interferences (EMIs caused by UWB radiating sources into WLAN/WiMAX communication systems operating in the frequency band located around 5.5 GHz requires the adoption of appropriate design features. To this purpose, a notch filter integrated into an UWB antenna, which is able to ensure a better electrical insulation between the two mentioned communication systems with respect to that already presented by the authors Moeikham et al. (2011, is proposed in this paper. The proposed filter, consisting in a rectangular slot including a quarter-wavelength strip integrated on the lower inner edge of the UWB radiating patch, is capable of reducing the energy emission in the frequency range between 5.1 and 5.75 GHz resulting in lower EMIs with sensible electronic equipments working in this frequency band. The antenna structure has no need to be tuned after inserting the rectangle slot with a quarter-wavelength strip. The proposed antenna has potential to minimize the EMIs at a frequency range from 5.1 to 5.75 GHz. The radiation patterns are given nearly omnidirectional in plane and likely bidirectional in plane at all frequencies by the proposed antenna. Therefore, this antenna is suitable to apply for various UWB applications.

  3. Design of Wideband Dual-Polarized Planar Antenna Using Multimode Concept

    Directory of Open Access Journals (Sweden)

    Deqiang Yang

    2016-01-01

    Full Text Available A wideband dual-polarized planar antenna is designed and analyzed by using the theory of characteristic modes (TCM. The eigenvalue, eigencurrent, characteristic pattern, and modal weighting coefficient are analyzed to bring physical insight to this kind of antenna. The results demonstrate that there are two modes resonant in the operating band for each polarization, which have been combined to form a wider frequency band. A bandwidth of 60.2% (1.72–3.2 GHz for VSWR < 1.5 with high isolation of 32 dB is achieved simultaneously. The size of the radiator structure is 0.33λ0 × 0.33λ0 × 0.22λ0 (λ0 refers to the center operating frequency.

  4. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application

    Science.gov (United States)

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-01-01

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954

  5. The directivity of a compact antenna: an unforgettable figure of merit

    Directory of Open Access Journals (Sweden)

    Ziolkowski Richard W.

    2017-01-01

    Full Text Available When an electrically small antenna is conceived, designed, simulated, and tested, the main emphasis is usually placed immediately on its impedance bandwidth and radiation efficiency. All too often it is assumed that its directivity will only be that of a Hertzian dipole and, hence, its directivity becomes a minor consideration. This is particularly true if such a compact antenna radiates in the presence of a large ground plane. Attention is typically focused on the radiator and its size, while the ground plane is forgotten. This has become a too frequent occurrence when antennas, such as patch antennas that have been augmented with metamaterial structures, are explored. In this paper, it is demonstrated that while the ground plane has little impact on the resonance frequency and impedance bandwidth of patch antennas or metamaterial-inspired three-dimensional magnetic EZ antennas, it has a huge impact on their directivity performance. Moreover, it is demonstrated that with both a metamaterial-inspired two-element array and a related Huygens dipole antenna, one can achieve broadside-radiating electrically small systems that have high directivities. Several common and original designs are used to highlight these issues and to emphasize why a fundamental figure of merit such as directivity should never be overlooked.

  6. Low-Profile, Dual-Wavelength, Dual-Polarized Antenna

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.

  7. Analysis And Simulation Of Low Profile Planar Inverted - F Antenna Design For WLAN Operation In Portable Devices

    Directory of Open Access Journals (Sweden)

    Zaw Htet Lwin

    2015-08-01

    Full Text Available This paper presents a compact planar invertedF antenna PIFA design for WLAN operation in portable devices. The proposed design has size of 8 x 21 mm and provides peak directive gain of 5.78dBi with the peak return loss of -33.89dB and input impedance of 50.28amp8486. It covers a 10dB return loss bandwidth of 410MHz 2.37GHz 2.789GHz. Its VSWR varies from 1.96 to 1.93 within the antenna return loss bandwidth. As the dimension of the proposed antenna is very small the antenna is promising to be embedded within the different portable devices employing WiFi applications. This paper includes the return loss as a function of frequency with varying the different parameters VSWR input resistance radiation pattern and current distribution of the proposed antenna.

  8. A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

    Directory of Open Access Journals (Sweden)

    Bo Yan

    2013-01-01

    Full Text Available A novel ultrawideband (UWB antenna which has a triple-band notch function is presented. The proposed antenna can block interfering signals from C-band satellite communication systems, IEEE802.11a, and HIPERLAN/2 WLAN systems for example. The antenna is excited by using novel common direction rectangular complementary split-ring resonators (CSRR fabricated on radiating patch of the dielectric substrate with coplanar waveguide (CPW feed strip line. The voltage standing wave ratio (VSWR of the proposed antenna is less than 2.0 in the frequency band from 2.8 to 12 GHz, while showing a very sharp band-rejection performance at 3.9 GHz, 5.2 GHz, and 5.9 GHz. The measurement results show that the proposed antenna provides good omnidirectional field pattern over its whole frequency band excluding the rejected band, which is suitable for UWB applications.

  9. A Compact Multiple Notched Ultra-Wide Band Antenna with an Analysis of the CSRR-TO-CSRR Coupling for Portable UWB Applications.

    Science.gov (United States)

    Rahman, MuhibUr; Ko, Dong-Sik; Park, Jung-Dong

    2017-09-25

    We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband.

  10. Inflatable antenna for earth observing systems

    Science.gov (United States)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  11. Modelling the Impact of Ground Planes on Antenna Radiation Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The Method of Auxiliary Sources is employed to model the impact of finite ground planes on the radiation from antennas. In many cases the computational cost of available commercial tools restricts the simulations to include only a small ground plane or, by use of the image principle, the infinitely...... large ground plane. The method proposed here makes use of results from such simulations to model large and moderate-sized finite ground planes. The method is applied to 3 different antenna test cases and a total of 5 different ground planes. Firstly it is validated through comparison with reference...... and measured reference solutions and the method is thus found to be a useful tool in determining the impact of finite ground planes....

  12. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2015-01-01

    In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface. Unlike conventional ground plane reflecting surfaces, AMC surfaces generally enhance the radiation and impedance characteristics of close-by antennas. Based on this property, a ring-based AMC reflecting surface has been designed in the oxide layer for on-chip antennas operating at 94 GHz. Furthermore, a folded dipole antenna with its associ- ated planar feeding structures has been optimized and integrated with the developed ring-based AMC surface. The proposed design is then fabricated at KAUST clean- room facilities. Prototype characterization showed very promising results with good correlation to simulations, with the antenna exhibiting an impedance bandwidth of 10% (90-100 GHz) and peak gain of -1.4 dBi, which is the highest gain reported for on-chip antennas at this frequency band without the use of any external o↵-chip components or post-fabrication steps.

  13. A Wideband High-Gain Dual-Polarized Slot Array Patch Antenna for WiMAX Applications in 5.8 GHz

    Directory of Open Access Journals (Sweden)

    Amir Reza Dastkhosh

    2012-01-01

    Full Text Available A low-cost, easy-to-fabricate, wideband and high-gain dual-polarized array antenna employing an innovative microstrip slot patch antenna element is designed and fabricated. The design parameters of the antenna are optimized using commercial softwares (Microwave Office and Zeland IE3D to get the suitable -parameters and radiation patterns. Finally, the simulation results are compared to the experimental ones and a good agreement is demonstrated. The antenna has an approximately bandwidth of 14% (5.15–5.9 GHz which covers Worldwide Interoperability Microwave Access (WiMAX/5.8. It also has the peak gain of 26 dBi for both polarizations and high isolation between two ports over a wide bandwidth.

  14. A Novel Ancient Coin-Like Fractal Multiband Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    Zhen Yu

    2017-01-01

    Full Text Available This study proposes a novel square-circle structure fractal multibroadband planar antenna, similar to an ancient Chinese coin-like structure, for second generation (2G, third generation (3G, fourth generation (4G, WLAN, and navigation wireless applications. The device is based on the principles and structural features of conventional monopole antenna elements, combined with the advantages of microstrip antennas and fractal geometry. A fractal method was presented for circular nested square slotted structures, similar to an ancient Chinese copper coin. The proposed antenna adapted five iterations on a fractal structure radiator, which covers more than ten mobile applications in three broad frequency bands with a bandwidth of 70% (1.43–2.97 GHz for DCS1800, TD-SCDMA, WCDMA, CDMA2000, LTE33-41, Bluetooth, GPS (Global Positioning System, BDS (BeiDou Navigation Satellite System, GLONSS (Global Navigation Satellite System, GALILEO (Galileo Satellite Navigation System, and WLAN frequency bands, 16.32% (3.32–3.91 GHz for LTE42, LTE43, and WiMAX frequency bands, and 10.92% (4.85–5.41 GHz for WLAN frequency band. The proposed antenna was fabricated on a 1.6 mm thick G10/FR4 substrate with a dielectric constant of 4.4 and a size of 88.5 × 60 mm2. The measurement results reveal that the omnidirectional radiation patterns achieve a gain of 1.16–3.75 dBi and an efficiency of 40–72%. The good agreement between the measurement results and simulation validates the proposed design approach and satisfies the requirements for various wireless applications.

  15. A plug’n’play WiFi surface-mount dual-loop antenna

    Directory of Open Access Journals (Sweden)

    Pedro Chamorro-Posada

    2017-04-01

    Full Text Available We present the design, modelling and characterization in the 2.4 GHz band of a B-shaped antenna consisting of a dual circular loop over a conductor plane. The proposed design is intrinsically unbalanced and features a very good match to a 50 Ω line at resonance, which makes our device essentially plug’n’play for a coaxial cable feed. Another interesting property of the proposed antenna is its simplicity of construction. The antenna has been modelled using the moment method. A prototype resonant at 2.4 GHz has been built and we have measured its impedance in this spectral region. The radiation pattern and the gain at resonance have also been characterized and the device has been shown to provide 6.31 dBi gain. The overall properties of the device make it an excellent option to provide WiFi connectivity when required in open hardware implementations.

  16. Dual Wideband Antenna for WLAN/WiMAX and Satellite System Applications Based on a Metamaterial Transmission Line

    International Nuclear Information System (INIS)

    Jin Da-Lin; Hong Jing-Song; Xiong Han

    2012-01-01

    A dual band planar antenna based on metamaterial transmission lines is presented for WLAN, WiMAX, and satellite system communication applications. This antenna is composed of an interdigital capacitor and a ground plane with triangular shaped slots on its top edges to broaden the impedance bandwidth. The measured bandwidth for 10 dB return loss is from 3.29 to 4.27 GHz and 5.04 to 9.8 GHz, covering the 5.2/5.8 GHz WLAN, 3.5/5.5 GHz WiMAX bands, and the X-band satellite communication systems at 7.4 GHz. The proposed antenna exhibits stable monopole-like radiation patterns and enough gains across the dual operating bands

  17. Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2016-09-01

    Full Text Available In this paper, small printed urn-shape triple notch ultra-wideband (UWB monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz, WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz, and X-band downlink satellite system (7.25–7.75 GHz and other multiple wireless services as close range radar (8–12 GHz in X-band & satellite communication (12–18 GHz in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz. In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

  18. GO Shaping of Omnidirectional Dual-Reflector Antennas with Arbitrary Main-Beam Direction in Elevation Plane by Connecting Conic Sections

    Directory of Open Access Journals (Sweden)

    Rafael A. Penchel

    2018-01-01

    Full Text Available This work discusses an alternative geometrical optics (GO technique to synthesize omnidirectional dual-reflector antennas with uniform aperture phase distribution together with an arbitrary main-beam direction for the antenna radiation pattern. Sub- and main reflectors are bodies of revolution generated by shaped curves defined by local conic sections consecutively concatenated. The shaping formulation is derived for configurations like ADC (axis-displaced Cassegrain and ADE (axis-displaced ellipse omnidirectional antennas. As case studies, two configurations fed by a TEM coaxial horn are designed and analyzed by a hybrid technique based on mode matching and method of moments in order to validate the GO shaping procedure.

  19. Reconfigurable micromachined antenna with polarization diversity for mm-wave applications

    KAUST Repository

    Sallam, Mai O.

    2012-03-01

    In this paper a novel MEMS antenna with reconfigurable polarization operating at 60 GHz is presented. This antenna can provide vertical linear polarization, horizontal linear polarization, left hand circular polarization (LHCP), or right hand circular polarization (RHCP) based on the states of the switches present in the feeding network. The proposed antenna is characterized by having its radiating elements isolated from the feeding circuitry via a ground plane without the need for wafer bonding or hybrid integration. Such advantage results in good electric performance while maintains low fabrication cost. The antenna parameters are optimized using HFSS and the results are cross-validated using CST. The good agreement between the two simulators, confirms that the proposed antenna enjoys attractive radiation characteristics for all polarization senses. © 2012 IEEE.

  20. Reconfigurable micromachined antenna with polarization diversity for mm-wave applications

    KAUST Repository

    Sallam, Mai O.; Soliman, Ezzeldin A.; Sedky, Sherif

    2012-01-01

    In this paper a novel MEMS antenna with reconfigurable polarization operating at 60 GHz is presented. This antenna can provide vertical linear polarization, horizontal linear polarization, left hand circular polarization (LHCP), or right hand circular polarization (RHCP) based on the states of the switches present in the feeding network. The proposed antenna is characterized by having its radiating elements isolated from the feeding circuitry via a ground plane without the need for wafer bonding or hybrid integration. Such advantage results in good electric performance while maintains low fabrication cost. The antenna parameters are optimized using HFSS and the results are cross-validated using CST. The good agreement between the two simulators, confirms that the proposed antenna enjoys attractive radiation characteristics for all polarization senses. © 2012 IEEE.

  1. DUAL POLARIZATION ANTENNA ARRAY WITH VERY LOW CROSS POLARIZATION AND LOW SIDE LOBES

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to an antenna array adapted to radiate or receive electromagnetic waves of one or two polarizations with very low cross polarization and low side lobes. An antenna array comprising many antenna elements, e.g. more than ten antenna elements, is provided in which...... formation of grating lobes are inhibited in selected directions of the radiation and cross polarization within the main lobe is suppressed at least 30 dB below the main lobe peak value. According to a preferred embodiment of the invention, the antenna elements of the antenna array comprise probe-fed patches...

  2. Radiation properties of moving constellations of (nano) satellites: A complexity study

    NARCIS (Netherlands)

    Bruinsma, Wessel P.; Hes, Robin P.; Bosma, Sjoerd; Lager, Ioan E.; Bentum, Marinus Jan

    2016-01-01

    The (computational) complexity involved by beamforming in moving constellations of (nano) satellites is investigated by means of illustrative numerical experiments. While the number of radiators in such three-dimensional (3D) array antennas is not large, evaluating their radiation patterns entails

  3. Effects of wafer-level packaging on millimetre-wave antennas

    KAUST Repository

    Abutarboush, Hattan

    2011-11-01

    A cost-effective antenna package suitable for mass production mm-wave applications is investigated. Different packaging material that can be possibly used in mm-wave antennas are presented and compared. Moreover, this study investigates different methods of packaging millimetre-wave (60 GHz) MEMS antennas. The paper first introduces the custom needs for optimum operation of the MEMS antenna and then examines the current available enabling technologies for packaging. The sensitivity of the antenna\\'s reflection coefficient, gain and radiation efficiency to the packaging environment is investigated through EM simulations. © 2011 IEEE.

  4. Early Wheel Train Damage Detection Using Wireless Sensor Network Antenna

    Science.gov (United States)

    Fazilah, A. F. M.; Azemi, S. N.; Azremi, A. A. H.; Soh, P. J.; Kamarudin, L. M.

    2018-03-01

    Antenna for a wireless sensor network for early wheel trains damage detection has successfully developed and fabricated with the aim to minimize the risk and increase the safety guaranty for train. Current antenna design is suffered in gain and big in size. For the sensor, current existing sensor only detect when the wheel malfunction. Thus, a compact microstrip patch antenna with operating frequency at 2.45GHz is design with high gain of 4.95dB will attach to the wireless sensor device. Simulation result shows that the antenna is working at frequency 2.45GHz and the return loss at -34.46dB are in a good agreement. The result also shows the good radiation pattern and almost ideal VSWR which is 1.04. The Arduino Nano, LM35DZ and ESP8266-07 Wi-Fi module is applied to the core system with capability to sense the temperature and send the data wirelessly to the cloud. An android application has been created to monitor the temperature reading based on the real time basis. The mainly focuses for the future improvement is by minimize the size of the antenna in order to make in more compact. In addition, upgrade an android application that can collect the raw data from cloud and make an alarm system to alert the loco pilot.

  5. Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave

    International Nuclear Information System (INIS)

    Duanmu Gang; Zhao Changming; Liang Chao; Xu Yuemin

    2014-01-01

    This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time-domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication. (plasma technology)

  6. Smart reconfigurable parabolic space antenna for variable electromagnetic patterns

    Science.gov (United States)

    Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh

    2018-02-01

    An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).

  7. Numerical Simulation of Plasma Antenna with FDTD Method

    International Nuclear Information System (INIS)

    Chao, Liang; Yue-Min, Xu; Zhi-Jiang, Wang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconBgurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design

  8. Numerical simulation of plasma antenna with FDTD method

    International Nuclear Information System (INIS)

    Liang Chao; Xu Yuemin; Wang Zhijiang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design. (authors)

  9. A Rectangular Ring, Open-Ended Monopole Antenna with Two Symmetric Strips for WLAN and WiMAX Applications

    Directory of Open Access Journals (Sweden)

    Joong-Han Yoon

    2013-01-01

    Full Text Available A triple-band rectangular ring, open-ended monopole antenna with symmetric L strips for wireless local area network (WLAN/Worldwide Interoperability of Microwave Access (WiMAX applications is proposed. The proposed antenna consists of two symmetric folded arms and L strips. Based on the concept, a prototype of the proposed triple antenna has been designed, fabricated, and tested. The numerical and experimental results demonstrated that the proposed antenna satisfied the −10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. Furthermore, this paper presented and discussed the 2D radiation patterns and 3D gains according to the results of the experiment. The proposed antenna’s peak gain varied between 2.17 and 4.93 dBi, and its average gain varied between −2.97 and −0.53 dBi.

  10. Time Domain Characterization of 1-2 GHz Circular-ended Bowtie Antenna Using Normalizad Impulse Response

    Directory of Open Access Journals (Sweden)

    Joko Suryana

    2010-10-01

    Full Text Available Frequency domain analysis is a powerful and compact tool for characterizing the antenna parameters such as gain, radiation pattern and the impedance as a function of frequency. However, if time or space is a major concern, such as in the GPR appication, the time domain analysis would be a very important tool due to their unique capability for determining the echo delay and range profile of target image. In this paper, we will describe the classical theory of system characterization in time domain, and then also propose the mathematical model for characterizing the 1 - 2 GHz circular-ended Bowtie antenna. From the measurement results, we concluded that the implemented Bowtie antenna has good normalized impulse response with very small ringing, so it is suitable for GPR applications.

  11. A Twin Spiral Planar Antenna for UWB Medical Radars

    Directory of Open Access Journals (Sweden)

    Giuseppe A. Zito

    2013-01-01

    Full Text Available A planar-spiral antenna to be used in an ultrawideband (UWB radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

  12. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2015-08-04

    Nowadays, there is a growing demand for high frequency-bandwidth mm-wave (30-300 GHz) electronic wireless transceiver systems to support applications such as high data-rate wireless communication and high resolution imaging. Such mm-wave systems are becoming more feasible due to the extreme transistor downscaling in silicon-based integrated circuits, which enabled densely-integrated high-speed elec- tronics operating up to more than 100 GHz with low fabrication cost. To further enhance system integrability, it is required to implement all wireless system compo- nents on the chip. Presently, the last major barrier to true System-on-Chip (SoC) realization is the antenna implementation on the silicon chip. Although at mm-wave frequencies the antenna size becomes small enough to fit on chip, the antenna performance is greatly deteriorated due the high conductivity and high relative permittivity of the silicon substrate. The negative e↵ects of the silicon substrate could be avoided by using a metallic reflecting surface on top of silicon, which e↵ectively isolates the antenna from the silicon. However, this approach has the shortcoming of having to implement the antenna on the usually very thin silicon oxide layer of a typical CMOS fabrication process (10’s of μm). This forces the antenna to be in a very close proximity (less than one hundredth of a wavelength) to the reflecting surface. In this regime, the use of conventional metallic reflecting surface for silicon shielding has severe e↵ects on the antenna performance as it tends to reduce the antenna radiation resistance resulting in most of the energy being absorbed rather than radiated. In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface

  13. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    Energy Technology Data Exchange (ETDEWEB)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru; Nekrasov, E. S. [Institute of High Current Electronics SB RAS, IHCE SB RAS, Tomsk 634055 (Russian Federation)

    2016-03-15

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.

  14. Antenna Controller Replacement Software

    Science.gov (United States)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  15. Extraordinary electromagnetic transmission by antenna arrays and frequency selective surfaces having compound unit cells with dissimilar elements

    Energy Technology Data Exchange (ETDEWEB)

    Loui, Hung; Strassner, II, Bernd H.

    2018-03-20

    The various embodiments presented herein relate to extraordinary electromagnetic transmission (EEMT) to enable multiple inefficient (un-matched) but coupled radiators and/or apertures to radiate and/or pass electromagnetic waves efficiently. EEMT can be utilized such that signal transmission from a plurality of antennas and/or apertures occurs at a transmission frequency different to transmission frequencies of the individual antennas and/or aperture elements. The plurality of antennas/apertures can comprise first antenna/aperture having a first radiating area and material(s) and second antenna/aperture having a second radiating area and material(s), whereby the first radiating/aperture area and second radiating/aperture area can be co-located in a periodic compound unit cell. Owing to mutual coupling between the respective antennas/apertures in their arrayed configuration, the transmission frequency of the array can be shifted from the transmission frequencies of the individual elements. EEMT can be utilized for an array of evanescent of inefficient radiators connected to a transmission line(s).

  16. Compact Elliptically Tapered Slot Antenna with Non-uniform Corrugations for Ultra-wideband Applications

    Directory of Open Access Journals (Sweden)

    F. G. Zhu

    2013-04-01

    Full Text Available A small size elliptically tapered slot antenna (ETSA fed by coplanar waveguide (CPW for ultra-wideband (UWB applications is proposed. It is printed on an FR4 substrate and occupies a size of 37×34×0.8 mm^3. A pair of quarter circular shapes is etched on the radiator to reduce the size. To overcome the limitation of uniform corrugation, non-uniform corrugation is utilized to reduce the cross-polarization level. A parametric study is carried out to investigate the effects of circular cut and corrugations. In order to validate the design, a prototype is fabricated and measured. Both simulated and measured results confirm that the proposed antenna achieves a good performance of a reflection coefficient below -10 dB from 3.1 GHz to 10.6 GHz, including a maximum antenna gain of 8.1dBi, directional patterns in the end-fire direction, low cross-polarization level below -20 dB and linear phase response. The antenna is promising for applications in UWB impulse radar imaging.

  17. 47 CFR 73.6025 - Antenna system and station location.

    Science.gov (United States)

    2010-10-01

    ... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station... clearly the radiation characteristics of the antenna above and below the horizontal plane. In cases where...

  18. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  19. Conformal Lightweight Antenna Structures for Aeronautical Communication Technologies

    Science.gov (United States)

    Meador, Mary Ann

    2017-01-01

    This project is to develop antennas which enable beyond line of sight (BLOS) command and control for UAVs. We will take advantage of newly assigned provisional Ku-band spectrum for UAVs and use unique antenna designs to avoid interference with ground systems. This will involve designing antennas with high isotropic effective radiated power (EIRP) and ultra-low sidelobes. The antennas will be made with polymer aerogel as a substrate to both reduce weight and improve performance, as demonstrated in an Aero Seedling. In addition, designing the antennas to be conformal to the aircraft fuselage will reduce drag.

  20. Compact super-wideband optical antenna

    Science.gov (United States)

    Wang, Wen C.; Forber, Richard; Bui, Kenneth

    2009-05-01

    We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.

  1. Small Square Reconfigurable Antenna with Switchable Single/Tri-Band Functions

    Directory of Open Access Journals (Sweden)

    M. Borhani Kakhki

    2016-04-01

    Full Text Available A novel frequency reconfigurable slot antenna for suitable switchable radiations at WLAN and a tri-band at Bluetooth, WiMAX and upper WLAN applications is designed and fabricated. Switchable frequency responses are achieved by implementation of a PIN diode within the antenna ground plane. The antenna structure is consist of a square radiation patch with an E-shaped slot, a modified ground plane with an inverted T-shaped strip that act as a parasitic stub and two parallel slots and a protruded strip which is connected to the parasitic stub with a PIN diode. The presented antenna has a compact size of 20×20 mm2 while providing switchable radiations at 2.36-2.5 GHz Bluetooth, 3.51-3.79 GHz WiMAX, and 5.47-5.98 GHz WLAN when diode is ON and 5.04-6.13 GHz WLAN when diode is OFF.

  2. Bandwidth enhancement of monopole antenna with DGS for SHF and reconfigurable structure for WiMAX, WLAN and C-band applications

    Science.gov (United States)

    Beigi, P.; Mohammadi, P.

    2017-11-01

    In this study a reconfigurable antenna for WiMAX, WLAN, C-bands and SHF applications has been presented. The main body of antenna includes rectangular and L-shaped slotted ground plane and a rectangular patch with slotted feed line, for impedance bandwidth enhancement. In the proposed antenna, a PIN diode is used to adjust the frequency band to SHF, WiMAX, WLAN and C-bands applications. When PIN diode is forward-biased, the antenna covers the 3.5-31 GHz frequency range (i.e. a 160% bandwidth) and when the PIN diode is in its off-state, it operates between 3.4-5.8 GHz. The designed antenna, with a very small size of 12 × 18 × 1.6 mm3, has been fabricated and tested. The radiation pattern is approximately omnidirectional. Simulations and experimental results are in a good agreement with each other and suggest good performance for the presented antenna.

  3. A Low Profile Ultrawide Band Monopole Antenna for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Srinivas Doddipalli

    2017-01-01

    Full Text Available A low profile pentagonal shaped monopole antenna is designed and presented for wearable applications. The main objective of this paper is to design a miniaturized ultrawide band monopole planar antenna which can work efficiently in free space but also on the surface of the human body. The impact of human tissues on antenna performance is explained using the proposed pentagonal monopole antenna. The antenna is designed with a pentagonal radiator and a matched feed line of 50 ohm and square slots are integrated on defected ground of FR4 substrate with a size of 15 mm × 25 mm to achieve ultrawide band (UWB performance in free space and human proximity. This overall design will enhance the antenna performance with wide bandwidth ranging from 2.9 GHz to 11 GHz. Specific absorption rate (SAR of the proposed antenna on dispersive phantom model is also measured to observe the exposure of electromagnetic energy on human tissues. The simulated and measured results of the proposed antenna exhibit wide bandwidth and radiation characteristics in both free space and human proximity.

  4. Reconfigurable Antenna for Medical Applications

    Directory of Open Access Journals (Sweden)

    Elizabeth RUFUS

    2009-12-01

    Full Text Available Microwave imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration, non invasive and non ionizing nature and low cost. The resolution is one of the major problems faced in such systems, which can be improved by applying signal processing techniques. The key element for the microwave imaging system is the antenna. This paper present a fractal antenna which has low profile, light weight and is easy to be fabricated. It has been successfully demonstrated to have multiband characteristics. The simulated results show that the proposed antenna has very good radiation characteristics suitable for imaging applications.

  5. Dual-Resonant Implantable Circular Patch Antenna for Biotelemetry Communication

    Directory of Open Access Journals (Sweden)

    Rongqiang Li

    2016-01-01

    Full Text Available A compact broadband implantable circular patch antenna is designed and experimentally demonstrated for Medical Implant Communications Service (MICS band (402–405 MHz. Compared with other similar implantable antennas, the proposed antenna incorporates three advantages for biotelemetry communication. First, it can realize a broad impedance bandwidth by exhibiting dual resonances. Second, it can obtain a compact structure by introducing two arc-shaped slots, a rectangular slot and a circular slot on metal radiating patch. Finally, it can display a friendly shape by using a circular structure. The proposed antenna occupies a volume of about 431.5 mm3 (10.42 × 1.27π mm3, which is a compromise between miniaturization and bandwidth. The measured −10 dB impedance bandwidth is 55 MHz (385–440 MHz. Furthermore, the radiation performance and human body safety consideration of the antenna are examined and characterized.

  6. Structural-electrical coupling optimisation for radiating and scattering performances of active phased array antenna

    Science.gov (United States)

    Wang, Congsi; Wang, Yan; Wang, Zhihai; Wang, Meng; Yuan, Shuai; Wang, Weifeng

    2018-04-01

    It is well known that calculating and reducing of radar cross section (RCS) of the active phased array antenna (APAA) are both difficult and complicated. It remains unresolved to balance the performance of the radiating and scattering when the RCS is reduced. Therefore, this paper develops a structure and scattering array factor coupling model of APAA based on the phase errors of radiated elements generated by structural distortion and installation error of the array. To obtain the optimal radiating and scattering performance, an integrated optimisation model is built to optimise the installation height of all the radiated elements in normal direction of the array, in which the particle swarm optimisation method is adopted and the gain loss and scattering array factor are selected as the fitness function. The simulation indicates that the proposed coupling model and integrated optimisation method can effectively decrease the RCS and that the necessary radiating performance can be simultaneously guaranteed, which demonstrate an important application value in engineering design and structural evaluation of APAA.

  7. A note on antennas: Definitions and methods

    DEFF Research Database (Denmark)

    Bach, Henning

    1987-01-01

    Definitions of scattered and diffracted fields, originally given by R. F. Millar, are reviewed and supplemented. The definitions are used to discuss relations between results obtained by commonly used pattern prediction methods for reflector antennas.......Definitions of scattered and diffracted fields, originally given by R. F. Millar, are reviewed and supplemented. The definitions are used to discuss relations between results obtained by commonly used pattern prediction methods for reflector antennas....

  8. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  9. A Novel Class of Reconfigurable Spherical Fermat Spiral Multi-port Antennas

    Science.gov (United States)

    Caratelli, D.; Yarovoy, A.; Haider, N.

    Reconfigurability in antenna systems is a desired characteristic that has attracted attention in the past years. In this work, a novel class of spherical Fermat spiral multi-port antennas for next-generation wireless communications and radar applications is presented. The device modelling is carried out by using a computationally enhanced locally conformal finite-difference time-domain full-wave procedure. In this way, the circuital characteristics and radiation properties of the antennas are investigated accurately. The structure reconfigurability, in terms of frequency of operation and radiation efficiency, is technically performed by a suitable solid-state tuning circuitry adopted to properly change the feeding/loading conditions at the input ports of the antenna.

  10. Novel Miniaturized Octaband Antenna for LTE Smart Handset Applications

    Directory of Open Access Journals (Sweden)

    Haixia Liu

    2015-01-01

    Full Text Available A novel octaband LTE mobile phone antenna is presented, which has a compact size with the overall dimension of 35 mm × 9 mm × 3 mm. The miniaturized octaband antenna is implemented by a simple prototype of three parts which include a folded monopole as feeding element, main radiator element, and parasitic radiator element. The main and parasitic radiator elements are excited by the folded monopole feeding element coupling and shorting to the handset ground plane. A wide bandwidth in low-frequency bands covering from 747 MHz to 960 MHz (LTE Band13/GSM850/GSM900 is contributed by both main and parasitic radiator elements. In addition, the folded monopole is designed to resonate at 2530 MHz, and the coupling between the feeding element and main radiator element is designed to resonate at 1840 MHz. Subsequently, the wide bandwidth in high-frequency bands covering from 1710 MHz to 2690 MHz (DCS1800/PCS1900/WCDMA2100/LTE2300/LTE2500 is contributed by both structures. The antenna has the total efficiency up to 30% in low bands and up to 75% in high bands, respectively. At the same time, the proposed miniaturized octaband LTE mobile phone antenna is fabricated and tested to verify the design.

  11. Adaptive Antenna System for Both 4G LTE and 5G Cellular Systems

    Science.gov (United States)

    Henderson, Kendrick Q. T.

    Given the steep increase in the use of mobile communication systems, the current 4G/LTE (Long Term Evolution), cellular system will not be able to handle the increase in data. It is estimated that by 2020 the bandwidth requirements will be 10 times greater than what LTE can sustain. A new 5th generation (5G) communication system has been proposed to meet this demand. The physical layer or the antenna is the most critical part of any wireless communication systems as it is the interface between the free space medium and an electrical circuit. It sets the margin for almost all design parameters in the system such as the system noise and bandwidth. Several interactions of antennas have been proposed over the years for cellular services. These antennas are of various geometries, bandwidths, and radiation patterns with almost all having linear polarization. This thesis attempts to solve the multiple LTE antenna problem by creating a simple antenna that covers most of the LTE bands (850-2700 MHz) as well as introducing an antenna system at the 28 GHz 5G band. This allows for a greater educated hypothesis into what 5G can offer at the physical layer. The proposed concept will provide a solution to the co-existence problem of upcoming 5G wireless systems to be interoperable with existing 4G/LTE system.

  12. An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding.

    Science.gov (United States)

    Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin

    2017-08-29

    For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.

  13. A Low-Profile WLAN Antenna with Inductor and Tuning Stub for Broadband Impedance Matching

    Directory of Open Access Journals (Sweden)

    Woo-Su Kim

    2014-01-01

    Full Text Available This paper presents a low-profile multiband antenna suitable for wireless local area networks (WLANs, using a chip inductor and tuning stub for broadband impedance matching. The proposed antenna is compact 12×10×1 mm3 and covers three bands: 2.4-GHz (2.400–2.484 GHz, 5.2-GHz (5.150–5.350 GHz, and 5.8-GHz (5.725–5.825 GHz. The measured 10-dB bandwidths are 12.0% (2.28–2.57 GHz in the lower band for 2.4-GHz WLANs and 39.1% (4.81–7.15 GHz in the upper band for 5 GHz-WLANs. The measured peak gain of the antenna is between 2.7 and 4.39 dBi and the radiation patterns are omnidirectional.

  14. Improvement of antenna decoupling in radar systems

    Science.gov (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  15. High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies

    International Nuclear Information System (INIS)

    de Lustrac, A.; Gadot, F.; Akmansoy, E.; Brillat, T.

    2001-01-01

    In this letter, we experimentally demonstrate the capability of a controllable photonic bandgap (CPBG) material to conform the emitted radiation of a planar antenna at 12 GHz. The CPBG material is a variable conductance lattice fabricated with high-frequency PIN diodes soldered along metallic stripes on dielectric printed boards. Depending on the diode bias, the emitted radiation of the antenna can be either transmitted or totally reflected by the material. In the transmission state, the antenna radiation is spatially filtered by the CPBG material in a sharp beam perpendicular to the surface of the material. [copyright] 2001 American Institute of Physics

  16. Full characterisation of a background limited antenna coupled KID over an octave of bandwidth for THz radiation

    NARCIS (Netherlands)

    Bueno, J.; Yurduseven, O.; Yates, S. J. C.; Llombart, N.; Murugesan, V.; Thoen, D. J.; Baryshev, A. M.; Neto, A.; Baselmans, J. J. A.

    2017-01-01

    We present the design, fabrication, and full characterisation (sensitivity, beam pattern, and frequency response) of a background limited broadband antenna coupled kinetic inductance detector covering the frequency range from 1.4 to 2.8 THz. This device shows photon noise limited performance with a

  17. Design of a novel high efficiency antenna for helicon plasma sources

    Science.gov (United States)

    Fazelpour, S.; Chakhmachi, A.; Iraji, D.

    2018-06-01

    A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.

  18. Study of LCP based flexible patch antenna array

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif; Roy, Langis

    2012-01-01

    Wrapping of a two element LCP based patch antenna array is studied in this work. For the first time, the designed array is bent in both E and H planes to observe the effect on the radiation and impedance performance of the antenna. The 38 GHz

  19. Rectifying antenna and method of manufacture

    Science.gov (United States)

    Bhansali, Shekhar (Inventor); Buckle, Kenneth (Inventor); Goswami, D. Yogi (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor)

    2006-01-01

    In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element.

  20. Design of books inventory with RFID antenna in library management system

    Directory of Open Access Journals (Sweden)

    Cheng Ching-Chien

    2017-01-01

    Full Text Available A 915 MHz printed radio-frequency-identification (RFID antennas with the characteristics of good gain and omnidirectional beam wave is constructed and evaluated in this study. The objective is to find out their best reading rates for providing effective wireless communications among RFID antenna during the library book inventory process. And an optimal library inventory system which is based on electromagnetic identification (EMID technology is proposed, which is constructed to find the optimal tag location for a book, test the tag readability for bookshelves, and connect a couple of multi-layer bookshelves with multiplexers and updat the tag reading status in the database of the computer terminal. The fabricated antenna reader and the proposed system are embedded into different locations of bookshelves and tested at the library of Cheng Shiu University in Taiwan. According to the experimental results, the designed prototype of the antenna reader has the characteristics of the directional radiation pattern, good gain, simple shape, low cost and is easy to be integrated into the bookshelf. And the designed library inventory system can authenticate the location of a book automatically. They can benefit administrating librarians with the capabilities of decreasing the library inventory processing time and reducing the possibility of the books being misplaced.

  1. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  2. Elliptical metasurfaces for cloaking and antenna applications at microwave and terahertz frequencies

    Science.gov (United States)

    Mehrpourbernety, Hossein

    microwave frequencies. In this work, we propose a novel approach to reduce the mutual coupling between two closely spaced strip dipole antennas with the elliptical metasurfaces formed by conformal printed arrays of sub-wavelength periodic elements. We show that by covering each strip with the metasurface cloak, the antennas become invisible to each other and their radiation patterns are restored as if they were isolated. The electromagnetic scattering analysis pertained to the case of antennas with the frequencies far from each other is shown to be as a good approximation of a 2-D metallic strip scattering cancellation problem solved by expressing the incident and scattered fields in terms of radial and angular Mathieu functions, with the use of sheet impedance boundary conditions at the metasurface. In addition, we extend the novel approach based on the concept of mantle cloaking in order to reduce the mutual near-field and far-field coupling between planar antennas in printed technology. To present the idea, we consider two microstrip-fed monopole antennas resonating at slightly different frequencies and show that by cloaking the radiating part of each antenna, the antennas become invisible to each other, and thus, the mutual coupling between the antennas is suppressed drastically. The cloak structure is realized by a conformal elliptical metasurface formed by confocal printed arrays of sub-wavelength periodic elements, partially embedded in the substrate. The presence of the metasurfaces leads to the restoration of the radiation patterns of the antennas as if they were isolated.

  3. DESIGN OF MULTILAYER APERTURE COUPLED STACKED MICROSTRIP PATCH ANTENNA FOR WLAN APPLICATIONS

    Directory of Open Access Journals (Sweden)

    P. Jothilakshmi

    2015-10-01

    Full Text Available One of the major drawbacks of microstrip patch antenna is its narrow bandwidth. The solution of this problem is to use aperture coupled stacked micro strip patch antenna. The antenna uses a combination of aperture coupled feeding technique and multi- layer radiating patch in order for the radiating elements are increase the gain bandwidth. The ‘I’ and ‘H’ shaped aperture slots are etched onto the ground plane. It is used to transfer the energy from feed line to stacked patch. A variation of the feed line length controls the selected aperture slots to be active. The waves from the selected activated aperture slots will radiate to particular radiating patch and achieve the desired resonant frequency. The air gap is used to avoid coupling loss between the aperture slots and stacked patches. The observed simulated and measured results show that the proposed antenna structure resonated at 2.51 GHz frequency with reduced return loss and optimum voltage standing wave ratio.

  4. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  5. Numerical Investigation of a Chip Printed Antenna Performances for Wireless Implantable Body Area Network Applications

    Science.gov (United States)

    Ramli, N. H.; Jaafar, H.; Lee, Y. S.

    2018-03-01

    Recently, wireless implantable body area network (WiBAN) system become an active area of research due to their various applications such as healthcare, support systems for specialized occupations and personal communications. Biomedical sensors networks mounted in the human body have drawn greater attention for health care monitoring systems. The implantable chip printed antenna for WiBAN applications is designed and the antenna performances is investigated in term of gain, efficiency, return loss, operating bandwidth and radiation pattern at different environments. This paper is presents the performances of implantable chip printed antenna in selected part of human body (hand, chest, leg, heart and skull). The numerical investigation is done by using human voxel model in built in the CST Microwave Studio Software. Results proved that the chip printed antenna is suitable to implant in the human hand model. The human hand model has less complex structure as it consists of skin, fat, muscle, blood and bone. Moreover, the antenna is implanted under the skin. Therefore the signal propagation path length to the base station at free space environment is considerably short. The antenna’s gain, efficiency and Specific Absorption Rate (SAR) are - 13.62dBi, 1.50 % and 0.12 W/kg respectively; which confirms the safety of the antenna usage. The results of the investigations can be used as guidance while designing chip implantable antenna in future.

  6. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  7. Design of a Compact Tuning Fork-Shaped Notched Ultrawideband Antenna for Wireless Communication Application

    Science.gov (United States)

    Shakib, M. N.; Moghavvemi, M.; Mahadi, W. N. L.

    2014-01-01

    A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of 0.182λ × 0.228λ × 0.018λ where λ is the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size. PMID:24723835

  8. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    International Nuclear Information System (INIS)

    Mohd Ali, N I; Misran, N; Mansor, M F; Jamlos, M F

    2017-01-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified. (paper)

  9. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    Science.gov (United States)

    Ali, N. I. Mohd; Misran, N.; Mansor, M. F.; Jamlos, M. F.

    2017-05-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified.

  10. A Method of Auxiliary Sources Approach for Modelling the Impact of Ground Planes on Antenna

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    The Method of Auxiliary Sources (MAS) is employed to model the impact of finite ground planes on the radiation from antennas. Two different antenna test cases are shown and the calculated results agree well with reference measurements......The Method of Auxiliary Sources (MAS) is employed to model the impact of finite ground planes on the radiation from antennas. Two different antenna test cases are shown and the calculated results agree well with reference measurements...

  11. A Low VSWR and High Efficiency Waveguide Feed Antenna Array

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fang

    2018-01-01

    Full Text Available A low VSWR and high efficiency antenna array operating in the Ku band for satellite communications is presented in this paper. To achieve high radiation efficiency and broad enough bandwidth, all-metal radiation elements and full-corporate waveguide feeding network are employed. As the general milling method is used in the multilayer antenna array fabrication, the E-plane waveguide feeding network is adopted here to suppress the wave leakage caused by the imperfect connectivity between adjacent layers. A 4 × 8 elements array prototype was fabricated and tested for verification. The measured results of proposed antenna array show bandwidth of 6.9% (13.9–14.8 GHz for VSWR < 1.5. Furthermore, antenna gain and efficiency of higher than 22.2 dBi and 80% are also exhibited, respectively.

  12. An improved broadband E patch microstrip antenna for wireless communications

    Science.gov (United States)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  13. Antenna Miniaturization in Complex Electromagnetic Environments

    DEFF Research Database (Denmark)

    Zhang, Jiaying

    improved compared to the 2-D planar electrically small loop antennas. Measurement Techniques for ESAs In this dissertation we proposed two novel measurement techniques for electrically small antennas. A modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small....... Moreover, the modified Wheeler cap method for measurements of small antennas in complex environments is further developed. A cable-free impedance and gain measurement technique for electrically small antennas is also proposed. The electromagnetic model of this technique is derived by using the spherical...... wave expansion, and it is valid for arbitrary electrically small AUT at arbitrary distances between the probe and AUT. The whole measurement setup is modeled by the cascade of three coupled multipleort networks. The electromagnetic model, the simulation results, and the obtained measurement results...

  14. A Probe-Compensated Helicoidal NF-FF Transformation for Aperture Antennas Using a Prolate Spheroidal Expansion

    Directory of Open Access Journals (Sweden)

    Amedeo Capozzoli

    2012-01-01

    Full Text Available A new probe-compensated near-field-far-field (NF-FF transformation for aperture antennas in a cylindrical scanning geometry is presented. Such a technique takes the advantage of the NF data acquisition made according to a very efficient sampling strategy along a helix and exploits a proper aperture field expansion based on the use of the prolate spheroidal wave functions (PSWFs, accounting for the a priori information on shape and size of the antenna under test. The unknown aperture field expansion coefficients of the PSWFs are evaluated from the acquired voltage samples by an inversion process using a regularized version of the singular value decomposition method. Experimental results on connected and disconnected radiating aperture antennas, including sum and difference patterns, show the effectiveness of the approach and, in particular, how it enables a serious reduction of the measurement points without impairing the FF estimation accuracy.

  15. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  16. Design of a Small Modified Minkowski Fractal Antenna for Passive Deep Brain Stimulation Implants

    Directory of Open Access Journals (Sweden)

    Sara Manafi

    2014-01-01

    Full Text Available A small planar modified Minkowski fractal antenna is designed and simulated in dual frequency bands (2.4 and 5.8 GHz for wireless energy harvesting by deep brain stimulation (DBS devices. The designed antenna, physically being confined inside a miniaturized structure, can efficiently convert the wireless signals in dual ISM frequency bands to the energy source to recharge the DBS battery or power the pulse generator directly. The performance metrics such as the return loss, the specific absorption rate (SAR, and the radiation pattern within skin and muscle-fat-skin tissues are evaluated for the designed antenna. The gain of the proposed antenna is 3.2 dBi at 2.4 GHz and 4.7 dBi at 5.8 GHz; also the averaged SAR of the antenna in human body tissue is found to be well below the legally allowed limit at both frequency bands. The link budget shows the received power at the distance of 25 cm at 2.4 GHz and 5.8 GHz are around 0.4 mW and 0.04 mW, which can empower the DBS implant. The large operational bandwidth, the physical compactness, and the efficiency in wireless signal reception make this antenna suitable in being used in implanted biomedical devices such as DBS pulse generators.

  17. Characterization of inkjet-printing HF and UHF antennas for RFID applications

    Science.gov (United States)

    Tarapata, Grzegorz; Paczesny, Daniel; Kawecki, Krzysztof

    2013-10-01

    The aim of this work was to perform a set of RFID antennas on flexible plastic substrates designed for range of HF and UHF band. The samples was fabricated using inkjet printing technology and conductive material base on silver nanopartilces ink. Fabricated antennas have been characterized, and the results were compared with the parameters of antennas made with usage of classical PCB technology on FR4 laminate with copper metallization. The paper presents studies on the impact of elastic substrates and conductive materials on antennas electrical parameters, as well as the communication range of the resulting RFID tags. During the experiment two patterns of HF and three patterns of UHF antennas was examined and the antennas was realized on different types of substrates, such as PET, Kapton® and FR4.

  18. A Novel Low RCS Design Method for X-Band Vivaldi Antenna

    Directory of Open Access Journals (Sweden)

    XiaoXiang He

    2012-01-01

    Full Text Available A novel low radar cross-section (RCS design method is proposed, and its application on Vivaldi antenna that covers the entire X band is investigated. According to the difference of the current distribution on the radiator when the antenna radiates or scatters, the shape of the metal radiator is modified, so that maximally 19.2 dBsm RCS reduction is achieved which satisfied radiation performance. Simulated and measured results about gain, S11, and RCS are presented. As a result, the effectiveness of the presented low RCS design method is validated.

  19. Radiations FR of telephone antennas and Public health: the state of the art

    International Nuclear Information System (INIS)

    Ubeda Maeso, A.; Trillo Ruiz, M. A.

    1999-01-01

    Today, mobile telephone is envisioned as one of the most significant innovations in communication. The growing development of this system asks for increasing amounts of antennas, installed in base transceiver stations (BTS) connection mobile stations (MS, hand held phones) to each other and to the conventional telephone network. Depending on the area, antennas are generally mounted in BTS located either on the top of buildings (in urban areas) or in towers (in rural or less populated areas). In both of the cases, the visual impact of BTS is significant for people living or working close to them. This visual evidence, together with some information, usually inconsistent or incomplete, released in media other than the scientific literature, have generated increasing feelings of phobia to alleged detrimental consequences of the uncontrolled exposure to radio waves emitted by the antennas. Such feelings, identified previously in countries where mobile telephony has been used for years in a regular basis, are now significantly growing in Spain and motivate many of the questions asked to information services of public agencies and institutions. The aim of the present article is to address some of the most frequently asked questions on the topic and to review the state of the art of our knowledge on the putative effects of the exposure to the electromagnetic radiation emitted by the aerials. Also, elementary notions are provided on the functioning of mobile telephony that may help the reader to better understand some technical aspects concerning the topic. (Author) 54 refs

  20. Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas

    Science.gov (United States)

    Salmerón, José F.; Molina-Lopez, Francisco; Briand, Danick; Ruan, Jason J.; Rivadeneyra, Almudena; Carvajal, Miguel A.; Capitán-Vallvey, L. F.; de Rooij, Nico F.; Palma, Alberto J.

    2014-02-01

    We report the modeling, and geometrical and electrical characterization, of inkjet and screen-printed patterns on different polymeric substrates for use as antennas in radio-frequency identification (RFID) applications. We compared the physical and electrical characteristics of two silver nanoparticle-based commercial inkjet-printable inks and one screen-printable silver paste, when deposited on polyimide (PI), polyethylene terephthalate (PET), and polyetherimide (PEI) substrates. First, the thickness of the inkjet-printed patterns was predicted by use of an analytical model based on printing conditions and ink composition. The predicted thickness was confirmed experimentally, and geometrical characterization of the lines was completed by measuring the root-mean-square roughness of the patterns. Second, direct-current electrical characterization was performed to identify the printing conditions yielding the lowest resistivity and sheet resistance. The minimum resistivity for the inkjet-printing method was 8.6 ± 0.8 μΩ cm, obtained by printing four stacked layers of one of the commercial inks on PEI, whereas minimum resistivity of 44 ± 7 μΩ cm and 39 ± 4 μΩ cm were obtained for a single layer of screen-printed ink on polyimide (PI) with 140 threads/cm mesh and 90 threads/cm mesh, respectively. In every case, these minimum values of resistivity were obtained for the largest tested thickness. Coplanar waveguide transmission lines were then designed and characterized to analyze the radio-frequency (RF) performance of the printed patterns; minimum transmission losses of 0.0022 ± 0.0012 dB/mm and 0.0016 ± 0.0012 dB/mm measured at 13.56 MHz, in the high-frequency (HF) band, were achieved by inkjet printing on PEI and screen printing on PI, respectively. At 868 MHz, in the ultra-high-frequency band, the minimum values of transmission loss were 0.0130 ± 0.0014 dB/mm for inkjet printing on PEI and 0.0100 ± 0.0014 dB/mm for screen printing on PI. Although the

  1. Compact Dual-Band Zeroth-Order Resonance Antenna

    International Nuclear Information System (INIS)

    Xu He-Xiu; Wang Guang-Ming; Gong Jian-Qiang

    2012-01-01

    A novel microstrip zeroth-order resonator (ZOR) antenna and its equivalent circuit model are exploited with two zeroth-order resonances. It is constructed based on a resonant-type composite right/left handed transmission line (CRLH TL) using a Wunderlich-shaped extended complementary single split ring resonator pair (W-ECSSRRP) and a series capacitive gap. The gap either can be utilized for double negative (DNG) ZOR antenna or be removed to engineer a simplified elision-negative ZOR (ENG) antenna. For verification, a DNG ZOR antenna sample is fabricated and measured. Numerical and experimental results agree well with each other, indicating that the omnidirectional radiations occur at two frequency bands which are accounted for by two shunt branches in the circuit model. The size of the antenna is 49% more compact than its previous counterpart. The superiority of W-ECSSRRP over CSSRRP lies in the lower fundamental resonance of the antenna by 38.2% and the introduction of a higher zeroth-order resonance. (fundamental areas of phenomenology(including applications))

  2. A Novel Compact Dual-Polarized Antenna

    Directory of Open Access Journals (Sweden)

    Yong Cheng

    2016-01-01

    Full Text Available A novel compact dual-polarized antenna is proposed. The antenna has a 1.43% impedance bandwidth which is from 1801 MHz to 1827 MHz for return loss larger than 10 dB. The isolation between the two ports is above 28 dB in the bandwidth, and the gain is 6.6 dBi. The proposed antenna not only consists of a full-planar structure, but also is easy to be fabricated for its simple structure. Additionally, a section of slots and slits is cut on the radiation patch to reduce the area of it to 54% compared with the conventional square patch.

  3. Quad Band Handset Antenna for LTE MIMO and WLAN Application

    Directory of Open Access Journals (Sweden)

    H. S. Wong

    2014-01-01

    Full Text Available A compact quad band antenna for long-term evolution (LTE MIMO and WLAN application in the handset is presented in this paper. The proposed antenna comprises two symmetrical quarter wavelength radiating strips and a slotted ground plane. On the ground plane, a T-shaped slot is cut from the bottom. Two symmetrical P-shaped slots are etched at both sides of the ground plane. The radiating strips and slots generate a lower resonant at 780 MHz and an upper resonant at 2.350 GHz to cover LTE 700 Band 14, LTE 2300, 2.4 GHz WLAN, and LTE 2500. A novel isolation technique by placing a rectangular patch between the radiating strips is presented. The rectangular patch creates a dedicated current path for each radiating strip. The proposed antenna has high isolation of less than −18 dBi at LTE 2300, 2.4 GHz WLAN, and LTE 2500 band.

  4. The electromagnetic interferent antennae for gravitational waves detection

    International Nuclear Information System (INIS)

    Kulak, A.

    1984-01-01

    An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)

  5. Investigation of Flexible Textile Antennas and AMC Reflectors

    Directory of Open Access Journals (Sweden)

    M. Mantash

    2012-01-01

    Full Text Available In this paper, two different methods for fabric characterization are presented: a single frequency method and a broadband method. Felt and denim fabrics are characterized, and patch antennas are designed using these substrates to test both methods. Prototypes of the antennas on felt and denim are manufactured using conductive textile (called electrotextile aiming to obtain fully flexible antennas. The prototypes are characterized in anechoic chamber to be compared and obtain conclusions related to the characterization methods. A new dual-band hexagonal AMC reflector combinable with antennas is also proposed to improve their performance and reduce the backward radiation to the human body. A novel broadband CPW-fed monopole antenna is designed to be combined with the AMC. The resulted prototype is characterized and compared with the performance of the CPW-fed antenna alone.

  6. Angle-resolved polarimetry of antenna-mediated fluorescence

    NARCIS (Netherlands)

    Mohtashami, A.; Osorio, C.I.; Koenderink, A.F.

    2015-01-01

    Optical phase-array antennas can be used to control not only the angular distribution but also the polarization of fluorescence from quantum emitters. The emission pattern of the resulting system is determined by the properties of the antenna, the properties of the emitters, and the strength of the

  7. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  8. 3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications

    Science.gov (United States)

    Skinner, Matthew

    In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.

  9. A Modal Description of Multiport Antennas

    Directory of Open Access Journals (Sweden)

    Jonathan J. Lynch

    2011-01-01

    Full Text Available This paper presents a modal description of multiport antennas that leads directly to a rigorous network representation and simple quadratic expressions for gain, efficiency, and effective area. The analysis shows that the transmitting and receiving properties of an element antenna array are exactly described by a 2×2 element scattering matrix together with a set of orthonormal mode functions and accounts for effects such as mutual coupling, scattering, reflection, and losses. The approach is quite general, only requiring that the antenna be finite and reciprocal. The scattering network description simplifies accounting of power flow while retaining a close connection to the physical antenna characteristics. The orthonormal mode functions provide a complete basis for radiated and received fields, facilitating beamforming. The theory provides rigorous definitions of input-output signals and links them to the underlying electromagnetics in a straightforward manner.

  10. Radiation Pattern Reconstruction from the Near-Field Amplitude Measurement on Two Planes Using PSO

    Directory of Open Access Journals (Sweden)

    Z. Novacek

    2005-12-01

    Full Text Available The paper presents a new approach to the radiation patternreconstruction from near-field amplitude only measurement over a twoplanar scanning surfaces. This new method for antenna patternreconstruction is based on the global optimization PSO (Particle SwarmOptimization. The paper presents appropriate phaseless measurementrequirements and phase retrieval algorithm together with a briefdescription of the particle swarm optimization method. In order toexamine the methodologies developed in this paper, phaselessmeasurement results for two different antennas are presented andcompared to results obtained by a complex measurement (amplitude andphase.

  11. A Novel Dual Ultrawideband CPW-Fed Printed Antenna for Internet of Things (IoT Applications

    Directory of Open Access Journals (Sweden)

    Qasim Awais

    2018-01-01

    Full Text Available This paper presents a dual-band coplanar waveguide (CPW fed printed antenna with rectangular shape design blocks having ultrawideband characteristics, proposed and implemented on an FR4 substrate. The size of the proposed antenna is just 25 mm × 35 mm. A novel rounded corners technique is used to enhance not only the impedance bandwidth but also the gain of the antenna. The proposed antenna design covers two ultrawide bands which include 1.1–2.7 GHz and 3.15–3.65 GHz, thus covering 2.4 GHz Bluetooth/Wi-Fi band and most of the bands of 3G, 4G, and a future expected 5G band, that is, 3.4–3.6 GHz. Being a very low-profile antenna makes it very suitable for the future 5G Internet of Things (IoT portable applications. A step-by-step design process is carried out to obtain an optimized design for good impedance matching in the two bands. The current densities and the reflection coefficients at different stages of the design process are plotted and discussed to get a good insight into the final proposed antenna design. This antenna exhibits stable radiation patterns on both planes, having low cross polarization and low back lobes with a maximum gain of 8.9 dB. The measurements are found to be in good accordance with the simulated results.

  12. An offset-fed 20/30 GHz dual-band circularly polarized reflectarray antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Vesterdal, Niels; Gothelf, Ulrich

    2013-01-01

    A dual-frequency circularly polarized offset reflectarray antenna for Ka-band satellite communication is presented. The reflectarray is designed using the concentric dual split-loop element which enables full 360° phase adjustment simultaneously in two separate frequency bands. The elements have...... been optimized to suppress the cross-polar reflection. Thereafter, the element data is used for synthesis of the reflectarray layout and computation of the associated radiation patterns. The reflectarray is 400mm × 400mm and radiates LHCP at 19.95 GHz and RHCP at 29.75 GHz. Aperture efficiencies of 58......% and 60% are obtained at these frequencies, and the cross-polarization is more than 25 dB below peak gain....

  13. Design and Development of Compact Microstrip Patch Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    R. Nagendra

    2017-09-01

    Full Text Available In this paper, a novel dual band microstrip patch antenna based on composite patch antenna and radiating part. By selecting a suitable offset feed position, it is feasible to provide 50Ω characteristic impedance and thus making better impedance matching. The proposed antenna has been improved broader bandwidth by using RT Duroid substrate. The radiating part is plays a important role in creating a lower operating band (2.45 GHz in addition to achieve miniaturization. The proposed antenna has to be fabricated with RT / Duroid substrate and dimensions of 19 × 22 × 0.8 mm. The measured -10 dB bandwidth of 200 MHz at 2.45 GHz and 990 MHz at 5.45 GHz, which is quite useful for Industrial, Scientific and Medical (ISM and WLAN applications.

  14. Dual Feed, Single Element Antenna for WiMAX MIMO Application

    Directory of Open Access Journals (Sweden)

    Frank M. Caimi

    2008-01-01

    Full Text Available A novel u-shaped single element antenna having two feed ports is compared with two equal length monopoles separated by a distance equivalent to the width. A discussion of relative performance metrics is provided for MIMO applications, and measured data is given for comparison. Good impedance match and isolation of greater than −10 dB are observed over the operating bandwidth from 2.3 to 2.39 GHz. The antenna patterns are highly uncorrelated, as illustrated by computation of the antenna pattern correlation coefficient for the two comparison monopoles.

  15. Quality factor of an electrically small magnetic dipole antenna with magneto-dielectric core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    In this work, we investigate the radiation Q of electrically small magnetic dipole antennas with magneto-dielectric core versus the antenna electrical size, permittivity and permeability of the core. The investigation is based on the exact theory for a spherical magnetic dipole antenna...

  16. Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation

    Science.gov (United States)

    Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.

    2017-10-01

    The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.

  17. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    Science.gov (United States)

    Shao, Shuai

    proximity and designing broad band and mechanically robust RFID tag antennas for elastic materials. As a first step, the effects of dielectric materials on an antenna's impedance match and radiation pattern are investigated. The detuning effect is quantified based on the theoretical frequency scaling and effective permittivity of a dielectric material of finite thickness. Using simple formulas, the operational range of a tag can be predicted without intensive full-wave simulations of different materials. Next, a spectral domain Green's function is applied to compute the antenna pattern when the tag is mounted on or inside a layered medium. The optimal placement of the tag is found based on the focusing effect that the material has on the gain pattern of the antenna. For tires, the steel ply in the sidewall of a tire looks like a periodic wire grating. The performance of an antenna placed close to a wire grating is predicted using Floquet theory. The results indicate that steel plies embedded in the tire can be utilized as a reflector to further focus the gain pattern and increase the read range of a tag. Using these design tools and theoretical analysis, several broadband RFID tag antennas are designed for multi-layered materials. A novel stretchable conductive textile (E-fiber) based tag antenna is also developed for placement in elastic materials. Prototype antennas are fabricated and embedded in a tire during the tire manufacturing process. Experimental results indicate that tags with the new antennas achieve significant improvement compared with commercially available tags.

  18. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  19. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  20. SKALA, a log-periodic array antenna for the SKA-low instrument: design, simulations, tests and system considerations

    Science.gov (United States)

    de Lera Acedo, E.; Razavi-Ghods, N.; Troop, N.; Drought, N.; Faulkner, A. J.

    2015-10-01

    The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellent performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted to the development (design and test of the first prototypes) of an active ultra-wideband antenna element for the low-frequency instrument of the SKA radio telescope. The antenna element and differential low noise amplifier described here were originally designed to cover the former SKA-low band (70-450 MHz) but it is now aimed to cover the re-defined SKA-low band (50-350 MHz) and furthermore the antenna is capable of performing up to 650 MHz with the current design. The design is focused on maximum sensitivity in a wide field of view (+/- 45° from zenith) and low cross-polarization ratios. Furthermore, the size and cost of the element has to be kept to a minimum as millions of these antennas will need to be deployed for the full SKA in very compact configurations. The primary focus of this paper is therefore to discuss various design implications for the SKA-low telescope.

  1. Low-Cost Printed Flexible Antenna by Using an Office Printer for Conformal Applications

    Directory of Open Access Journals (Sweden)

    Kashif Nisar Paracha

    2018-01-01

    Full Text Available A low-cost inkjet printing method for antenna fabrication on a polyethylene terephthalate (PET substrate is presented in this paper. An office inkjet printer is used to have desired patterns of silver nanoparticle ink on the PET substrate without any postprocessing. Silver nanoparticle ink cures instantly as soon as it is ejected from the printer on a chemically treated PET substrate. The thickness of the silver nanoparticle layer was measured to be 300 nm with a sheet resistance of as low as 0.3 Ω/sq and a conductivity around 1.11 × 107 S/m with single layer deposition. A coplanar waveguide- (CPW- fed Z-shape planar antenna on the PET substrate achieved the measured radiation efficiency of 62% and the IEEE gain of 1.44 dBi at 2.45 GHz. The printed antenna is also tested in bending conditions to ascertain its performance for the Internet of things (IoT conformal applications for the future 5G network.

  2. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source

    Science.gov (United States)

    Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.

    2015-06-01

    One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.

  3. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  4. Phase shifter for antenna beam steering

    International Nuclear Information System (INIS)

    Jindal, Ravi; Razban, Tchanguiz

    2016-01-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  5. Experimental study on propagation properties of large size TEM antennas

    International Nuclear Information System (INIS)

    Zhang Guowei; Wang Haiyang; Chen Weiqing; Wang Wei; Zhu Xiangqin; Xie Linshen

    2014-01-01

    The propagation properties of large size TEM antennas were studied by experiment. The size of the TEM antennas is 60 m × 20 m × 10 m and the character Impedance is 120 Ω. A kind of dielectric foil switch is designed compactly with TEM antennas which can generate double exponential waveform with altitude of 10 kV and rise time of l.2 ns. The radiated field distribution was measured. The relationship between rise time/altitude and distance were provided, and the propagation properties of large size TEM antennas were summarized. (authors)

  6. A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2014-01-01

    Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.

  7. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  8. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    KAUST Repository

    Shamim, Atif; Arsalan, Muhammad; Roy, L; Salama, Khaled N.

    2012-01-01

    with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been

  9. Frequency Reconfigurable Antenna for Deca-Band 5 G/LTE/WWAN Mobile Terminal Applications

    Science.gov (United States)

    Yang, Lingsheng; Cheng, Biyu; Jia, Hongting

    2018-04-01

    In this paper, a frequency reconfigurable antenna for 5 G/LTE/WWAN mobile terminal applications is presented. The proposed antenna consists of a radiation element which is folded on a dielectric cuboid. Four PIN diodes located on the antenna element are used for frequency reconfigration. By controlling the states of four PIN diodes with an 8-bit microcontroller, a broad band which can cover deca-band as LTE700/2300/2500, GSM850/900/1800/1900, UMTS 2100, WLAN2400 and the future 5 G or LTE3600 is obtained with a compacted size of 40×8×5mm3. The antenna gain, efficiency and radiation characteristics are also shown.

  10. Multiple-Active Multiple-Passive Antenna Systems and Applications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2013-01-01

    -passive (MAMP) antenna topologies, as explained in Sect. 8.1. Then, Sect. 8.2 proposes MAMP antenna structures with application to reconfigurable MIMO transmission in the presence of antenna mutual coupling under poor scattering channel conditions. For this purpose, the section presents an adaptive MAMP antenna...... system capable of changing its transmission parameters via passive radiators attached to tunable loads, according to the structure of the RF propagation channel. The hybrid MAMP array structure can be tractably analyzed using the active element response vector (instead of the classical steering vector...... adaptive MAMP system can be limited to practical dimensions whereas the passive antennas require no extra RF hardware, thus meeting the cost, space, and power constrains of the users’ mobile terminals. The simulation results show that the adaptive MAMP system, thanks to its “adaptivity”, is able to achieve...

  11. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  12. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  13. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    Science.gov (United States)

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna

  14. Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless lan applications

    Science.gov (United States)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.

  15. A High-gain and Low-scattering Waveguide Slot Antenna of Artificial Magnetic Conductor Octagonal Ring Arrangement

    Directory of Open Access Journals (Sweden)

    X. Liu

    2016-04-01

    Full Text Available A novel design of high-gain and low-scattering waveguide slot antenna is proposed in this paper. Firstly the scattering pattern of artificial magnetic conductor (AMC composite surface is estimated by array factor analysis method. The comparison between octagonal ring arrangement and chessboard arrangement proves that the former arrangement has the characteristic of diffuseness-like and expands the bandwidth of radar cross section (RCS reduction. Secondly, the metal surface of waveguide slot antenna (WSA is replaced by the octagonal ring arrangement composite surface (ORACS. The gain is improved because of spurious radiation units which are around the slot. At the same time using the phase cancellation principle, a backscatter null achieves RCS reduction in the vertical direction. Experimental results show that the novel antenna after loading with the ORACS, the gain is improved by 5dB; the bandwidth of RCS reduction (reduction greater than 10dB is 5.24-5.92 GHz.

  16. Next Generation of Magneto-Dielectric Antennas and Optimum Flux Channels

    Science.gov (United States)

    Yousefi, Tara

    There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter is not always possible since in the HF through low UHF bands, critical to Military and Security functions, this quarter-wavelength requirement would result in impractically large antennas. Despite an error based on a false assumption in the 1950’s, which had severely underestimated the efficiency of magneto-dielectric antennas, recently demonstrated magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal applications. Whereas conventional metal-and-dielectric antennas carrying radiating electric currents suffer a significant disadvantage when placed conformal to the conducting surface of a platform, because they induce opposing image currents in the surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. Their magnetic currents produce co-linear image currents in electrically conducting surfaces. However, the permeable antennas built to date have not yet attained the wide bandwidth expected because the magnetic-flux-channels carrying the wave have not been designed to guide the wave near the speed of light at all frequencies. Instead, they tend to lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in detail and presented the design approach and

  17. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    Science.gov (United States)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and

  18. Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate

    Science.gov (United States)

    Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi

    2018-04-01

    One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.

  19. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  20. Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer: Geometric properties of antenna patterns and their angular power

    International Nuclear Information System (INIS)

    Kudoh, Hideaki; Taruya, Atsushi

    2005-01-01

    We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the unresolved galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extragalactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity h eff ∼10 -20 Hz -1/2 may reach l∼8-10 at f∼f * =10 mHz in the case of the single LISA detector. However, the cross correlation of optimal interferometric variables is blind to the monopole (l=0) intensity anisotropy, and also to the dipole (l=1) in some case, irrespective of the frequency band. Besides, all the self-correlated signals are shown to be blind to the odd multipole moments (l=odd), independently of the frequency band

  1. Design and Verification of MIMO 2x2 Reference Antennas

    DEFF Research Database (Denmark)

    Szini, Istvan Janos; Pedersen, Gert Frølund; Estrada, J.

    2012-01-01

    The development and initial discussion of a reference MIMO 2×2 antenna concept has been presented in [1]. The reference antenna concept has been created to eliminate the uncertainties linked to the unknown antenna performance of the few LTE MIMO 2×2 reference devices or golden standards currently...... available for evaluating radiated data throughput measurement methodologies and test facilities. The proposed concept is based on simple antennas with a well-known Figure of Merit (FoM) and controllable performance. In this paper we present the recent developments on the antenna concept and report...... on the first measured performance at uniform incoming power distribution, figures and correlations between different measurement labs....

  2. Compact 1 × 2 and 2 × 2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

    Directory of Open Access Journals (Sweden)

    Venkata Kishore Kothapudi

    2018-04-01

    Full Text Available In this paper, compact linear dual polarized series-fed 1 × 2 linear and 2 × 2 planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and 50-Ω matched transformer. Matching between a radiating patch and the 50-Ω microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (λ/4 impedance transformer placed at both horizontal and vertical planes, in the case of the 2 × 2 planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are 1.9305 × 0.9652 × 0.05106 λ03 and 1.9305 × 1.9305 × 0.05106 λ03, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient (S11 results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth > 140 MHz (9.56–9.72 GHz defined by S11 140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol, gain, efficiency, front-to-back ratio, half-power beam width at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

  3. A Design of 45-Degree Dual-Polarization Broadband Plane Station Antenna

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2015-01-01

    Full Text Available A new broadband planar dual-polarization base station antenna is proposed, the antenna consists of two broadband plane coplanar base station antenna units, and so it has features of plane antenna. Two broadband plane station antenna units can, respectively, form double polarization in the direction. We analyzed the relative positions between the two antenna units and their effects on the performances of the antenna, especially for the influence of isolation. Broadband antenna has the characteristics of the broadband station antenna, and bandwidth is also guaranteed. The measured results show that the antenna can obtain 45% relative bandwidth, and 30 dB isolation degree also can be got, and the radiation performance is also good. Measurement results confirmed that the antenna gain can be guaranteed among 48% relative bandwidth, 15 dB of gain is got among bandwidth of 1.69–2.78 GHz, the isolation degree of different polarization method can reach 30 dB, and the measurement gain of two polarization methods of antenna both can reach 8.5 dBi.

  4. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    KAUST Repository

    Shamim, Atif

    2012-07-28

    The surge of highly integrated and multifunction wireless devices has necessitated the designers to think outside the box for solutions that are unconventional. The new trends have provided the impetus for low cost and compact RF System-on-Chip (SoC) approaches [1]. The major advantages of SoC are miniaturization and cost reduction. A major bottleneck to the true realization of monolithic RF SoC transceivers is the implementation of on-chip antennas with circuitry. Though complete integrated transceivers with on-chip antennas have been demonstrated, these designs are generally for high frequencies. Moreover, they either use non-standard CMOS processes or additional fabrication steps to enhance the antenna efficiency, which in turn adds to the cost of the system [2-3]. Another challenge related to the on-chip antennas is the characterization of their radiation properties. Most of the recently reported work (summarized in Table I) shows that very few on-chip antennas are characterized. Our previous work [4], demonstrated a Phase Lock Loop (PLL) based transmitter (TX) with an on-chip antenna. However, the radiation from the on-chip antenna experienced strong interference due to 1) some active circuitry on one side of the chip and 2) the PCB used to mount the chip in the anechoic chamber. This paper presents, for the first time, a complete 5.2 GHz (UNII band) transceiver with separate TX and receiver (RX) antennas. To the author\\'s best knowledge, its size of 3 mm2 is the smallest reported for a UNII band transceiver with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been discussed. © 2010 IEEE.

  5. A New Metasurface Superstrate Structure for Antenna Performance Enhancement.

    Science.gov (United States)

    Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal

    2013-07-31

    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.

  6. Collimation method using an image processing technique for an assembling-type antenna

    Science.gov (United States)

    Okuyama, Toshiyuki; Kimura, Shinichi; Fukase, Yutaro; Ueno, Hiroshi; Harima, Kouichi; Sato, Hitoshi; Yoshida, Tetsuji

    1998-10-01

    To construct highly precise space structures, such as antennas, it is essential to be able to collimate them with high precision by remote operation. Surveying techniques which are commonly used for collimating ground-based antennas cannot be applied to space systems, since they require relatively sensitive and complex instruments. In this paper, we propose a collimation method that is applied to mark-patterns mounted on an antenna dish for detecting very slight displacements. By calculating a cross- correlation function between the target and reference mark- patterns, and by interpolating this calculated function, we can measure the displacement of the target mark-pattern in sub-pixel precision. We developed a test-bed for the measuring system and evaluated several mark-patterns suitable for our image processing technique. A mark-pattern with which enabled to detect displacement within an RMS error of 1/100 pixels was found. Several tests conducted using this chosen pattern verified the robustness of the method to different light conditions and alignment errors. This collimating method is designed for application to an assembling-type antenna which is being developed by the Communications Research Laboratory.

  7. Electrical properties of spherical dipole antennas with lossy material cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2012-01-01

    A spherical magnetic dipole antenna with a linear, isotropic, homogenous, passive, and lossy material core is modeled analytically, and closed form expressions are given for the internally stored magnetic and electric energies, the radiation efficiency, and radiation quality factor. This model...... and all the provided expressions are exact and valid for arbitrary core sizes, permeability, permittivity, electric and magnetic loss tangents. Arbitrary dispersion models for both permeability and permittivity can be applied. In addition, we present an investigation for an antenna of fixed electrical...

  8. New Flexible Medical Compact Antenna: Design and Analysis

    Directory of Open Access Journals (Sweden)

    Yann Mahe

    2012-01-01

    Full Text Available Some results on embedded antennas for medical wireless communication systems are presented. Medical telemetry can advantageously assist medical diagnostics. For example, you can better locate a diseased area by monitoring temperature inside the human body. In order to establish efficient wireless links in such an environment, a special attention should be paid to the antenna design. It is required to be of a low profile, very small regardless of the working frequency—434 MHz in the ISM band, safe, and cost effective. Design of the as-considered antenna is proposed based on a simple model. The approach has been demonstrated for a compact flexible antenna with a factor of 10 with respect to the half-wave antenna, rolling up inside an ingestible pill. Measured and calculated impedance behaviour and radiation characteristics of the modified patch are determined. Excellent agreement was found between experiment and theory.

  9. Closely Mounted Compact Wideband Diversity Antenna for Mobile Phone Applications

    Directory of Open Access Journals (Sweden)

    Bunggil Yu

    2012-01-01

    Full Text Available Here a compact wideband diversity antenna covering the PCS/UMTS/WiMAX bands with high isolation and low enveloped correlation coefficient (ECC is proposed. To widen the bandwidth, the proposed antenna uses a structure with a gap-coupled feed and an inductively shorted line that has capacitive compensation between the radiator and the ground plane. Also, a suspended line with a parasitic element is used to enhance the isolation between the two antennas.

  10. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    Directory of Open Access Journals (Sweden)

    Rafati A.

    2015-09-01

    Full Text Available Introduction: The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz. Materials and Methods: Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T, the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz as stimuli. Results: The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion: These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  11. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study.

    Science.gov (United States)

    Rafati, A; Rahimi, S; Talebi, A; Soleimani, A; Haghani, M; Mortazavi, S M J

    2015-09-01

    The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog's isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer's antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  12. Superconducting microstrip antennas: An experimental comparison of two feeding methods

    International Nuclear Information System (INIS)

    Richard, M.A.; Claspy, P.C.; Bhasin, K.B.

    1993-01-01

    The recent discovery of high-temperature superconductors (HTS's) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. In this paper, two methods for feeding HTS microstrip antennas at K and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gap-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals

  13. Accurate 3D Mapping Algorithm for Flexible Antennas

    Directory of Open Access Journals (Sweden)

    Saed Asaly

    2018-01-01

    Full Text Available This work addresses the problem of performing an accurate 3D mapping of a flexible antenna surface. Consider a high-gain satellite flexible antenna; even a submillimeter change in the antenna surface may lead to a considerable loss in the antenna gain. Using a robotic subreflector, such changes can be compensated for. Yet, in order to perform such tuning, an accurate 3D mapping of the main antenna is required. This paper presents a general method for performing an accurate 3D mapping of marked surfaces such as satellite dish antennas. Motivated by the novel technology for nanosatellites with flexible high-gain antennas, we propose a new accurate mapping framework which requires a small-sized monocamera and known patterns on the antenna surface. The experimental result shows that the presented mapping method can detect changes up to 0.1-millimeter accuracy, while the camera is located 1 meter away from the dish, allowing an RF antenna optimization for Ka and Ku frequencies. Such optimization process can improve the gain of the flexible antennas and allow an adaptive beam shaping. The presented method is currently being implemented on a nanosatellite which is scheduled to be launched at the end of 2018.

  14. All-dielectric rod antenna array for terahertz communications

    Science.gov (United States)

    Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao

    2018-05-01

    The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.

  15. Sensitivity of a combined gravitational antenna

    International Nuclear Information System (INIS)

    Kulagin, V.V.; Rudenko, V.N.

    1986-01-01

    A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order

  16. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Louche, F.

    2005-01-01

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  17. Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

    Directory of Open Access Journals (Sweden)

    C. Baccouch

    2016-11-01

    Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

  18. A Reconfigurable Metal-Plasma Yagi-Yuda Antenna for Microwave Applications

    Directory of Open Access Journals (Sweden)

    Giulia Mansutti

    2017-05-01

    Full Text Available This paper is an extension of the work originally presented at the European Microwave Conference (EuMC about a reconfigurable hybrid metal-plasma Yagi-Uda antenna operating at 1.55 GHz: this antenna consists of metallic reflector and active element and two plasma directors. The conference work showed through full-wave numerical simulations (CST Microwave Studio how it is possible to achieve reconfigurability with respect to the gain by turning on/off the plasma discharges. However the model that was used to represent the plasma discharges was quite ideal, so one comment that was provided questioned the actual possibility of achieving reconfigurability in a real system. Consequently we performed extensive measurements of different plasma discharges and thanks to the collected data, we noticed some important differences between the full-wave numerical model of the plasma that we used in the conference paper and the actual plasma discharges that were generated in the experimental setup: the dielectric vessel and the metallic electrodes used respectively to confine and generate the plasma have an influence on the radiation pattern of the antenna and so they must be included in the design procedure; the cylindrical plasma discharge is much easier to realize when the cylinder diameter is at least 3mm; and finally the collision frequency of the plasma in realistic cases is pretty higher than the one adopted in our previous work. Therefore this work presents a feasibility study of a more detailed and realistic model of our antenna with respect to the plasma discharges. We will show that reconfigurability can still be achieved through a proper design of the overall antenna, thus paving the way to an actual realization of the proposed reconfigurable Yagi-Uda.

  19. Array elements for a DBS flat-plate antenna

    Science.gov (United States)

    Maddocks, M. C. D.

    1988-07-01

    The introduction of a direct broadcast by satellite (DBS) television service requires suitable receiving antennas to be available. An alternative to the parabolic dish antenna is a flat-plate antenna. The overall design of a circularly-polarized flat-plate antenna which can be mounted flat on the wall of a building has been considered in a companion Report. In this Report various types of elements are investigated and their advantages and disadvantages discussed. The most suitable element for use in a flat-plate array is identified as a linearly-polarized folded-dipole element; its performance is reported here. Linearly-polarized elements are found to perform better than circularly-polarized elements and could be used with a polarization converter to receive the circularly-polarized radiation that would be transmitted by DBS.

  20. Mitigation of Unwanted Forward Narrow-band Radiation from PCBs with a Metamaterial Unit Cell

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2013-01-01

    Mitigation of EMI from a PCB is obtained through the use of a metamaterial unit cell. The focus is on the reduction of narrow-band radiation in the forward hemisphere when the resonant element is etched on a layer located between the source of radiation and the ground plane. As opposed to previous...... publications in the literature, the aim of this work is the application of a filter to scattered radiation, generalizing the former characterizations based solely upon transmission lines’ insertion loss. The radiating area accounts for traces and components placed on the top layer of a PCB and is simulated via...... a patch antenna. The study exhibits how the radiation pattern and the electric field on the patch antenna change within and outside the resonance bandwidth of the parasitic element. An EMC assessment provides experimental verification of the operating principle....

  1. Investigation of a nanostrip patch antenna in optical frequencies

    Science.gov (United States)

    Kashyap, Nitesh; Wani, Zamir Ahmad; Jain, Rishi; Khusboo; Dinesh Kumar, V.

    2014-08-01

    This is the first report and investigation of a patch antenna in optical frequency range. Variety of plasmonic nanoantenna reported so far is good at enhancing the local field intensity of light by orders of magnitude. However, their far-field radiation efficiency is very poor. The proposed patch antenna emits a directional beam with high efficacy in addition to enhancing the intensity of near field. The nano-patch antenna (NPA) consists of a square patch of gold film of dimension 480 nm2, placed on a substrate of dielectric constant \\varepsilon_{{r}} = 3.9 and thickness 150 nm with a ground plane of gold film of dimension 1,080 nm2. The NPA resonates at 210 THz and has gain nearly 2 dB and radiation efficiency 45.18 %. The NPA might be useful in variety of applications such as optical communication, nano-photonics, biosensing, and spectroscopy.

  2. GRAVITATIONAL RADIATION

    Directory of Open Access Journals (Sweden)

    Metin SALTIK

    1996-03-01

    Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.

  3. Designing a fractal antenna of 2400 MHz

    International Nuclear Information System (INIS)

    Miranda Hamburger, Fabio

    2012-01-01

    The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es

  4. Circularly Polarized Slotted Microstrip Patch Antenna with Finite Ground Plane

    Directory of Open Access Journals (Sweden)

    Sanyog Rawat

    2012-12-01

    Full Text Available In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24% with an axial ratio bandwidth of 4.05%.

  5. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Syed Imran Hussain Shah

    2017-11-01

    Full Text Available In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900–1120 MHz and 15% (2.1–2.45 GHz for the unfolded state and 20% (1.3–1.6 GHz and 14% (2.3–2.5 GHz for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.

  6. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications.

    Science.gov (United States)

    Shah, Syed Imran Hussain; Lim, Sungjoon

    2017-11-20

    In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN) applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900-1120 MHz) and 15% (2.1-2.45 GHz) for the unfolded state and 20% (1.3-1.6 GHz) and 14% (2.3-2.5 GHz) for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.

  7. 5G MIMO Conformal Microstrip Antenna Design

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.

  8. Assessment of radiofrequency/microwave radiation emitted by the antennas of rooftop-mounted mobile phone base stations

    International Nuclear Information System (INIS)

    Keow, M. A.; Radiman, S.

    2006-01-01

    Radiofrequency (RF) and microwave (MW) radiation exposures from the antennas of rooftop-mounted mobile telephone base stations have become a serious issue in recent years due to the rapidly evolving technologies in wireless telecommunication systems. In Malaysia, thousands of mobile telephone base stations have been erected all over the country, most of which are mounted on the rooftops. In view of public concerns, measurements of the RF/MW levels emitted by the base stations were carried out in this study. The values were compared with the exposure limits set by several organisations and countries. Measurements were performed at 200 sites around 47 mobile phone base stations. It was found that the RF/MW radiation from these base stations were well below the maximum exposure limits set by various agencies. (authors)

  9. Design, simulation and analysis a microstrip antenna using PU-EFB substrate

    Science.gov (United States)

    Mahmud, S. N. S.; Jusoh, M. A.; Jasim, S. E.; Zamani, A. H.; Abdullah, M. H.

    2018-04-01

    A low cost, light weight and easy to fabricate are the most important factor for future antennas. Microstrip patch antennas offer these advantages and suitable for communication and sensor application. This paper presents a design of simple microstrip patch antenna working on operating frequency of 2.4 GHz. The designed process has been carried out using MATLAB and HFSS software by entering 2.3 for the dielectric constant of PU-EFB. The results showed that high return loss, low bandwidth and good antenna radiation efficiency of which are -21.98 dB, 0.28 dB and 97.33%, respectively.

  10. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    effective (or equivalent) isotropic radiated power (EIRP), an HG tip antenna inside a blade gives stronger direct pulse amplitudes and better pulse waveforms for accurate and reliable distance estimations than the LG. Moreover, the direct pulse with the HG antenna is also closer to the blade surface, which...... in free space have similar realized gain when allocated inside blades, so that the emission power for the HG and LG antennas in blades can be the same. The antenna gain impacts on time-domain pulse waveforms and power distributions around a blade are carefully investigated (with the tip antenna inside...... a blade). Higher antenna gain enlarges both direct pulse and multipath but in different levels. To verify the simulations, time-domain measurements are performed with a full 37-meter blade. Pulse waveforms and power delay profiles are measured. From all the studies, it follows that: with the similar...

  11. Manufacture of a conformal multilayer rf antenna substrate using excimer mask imaging technology and a 6-axis robot

    Science.gov (United States)

    Charrier, Michel; Everett, Daniel; Fieret, Jim; Karrer, Tobias; Rau, Sven; Valard, Jean-Luc

    2001-06-01

    A novel method is presented to produce a high precision pattern of copper tracks on both sides of a 4-layer conformal radar antenna made of PEI polymer and shaped as a truncated pseudo-parabolic cylinder. The antenna is an active emitter-receiver so that an accuracy of a fraction of the wavelength of the microwave radiation is required. After 2D layer design in Allegro, the resulting Gerber file-format circuits are wrapped around the antenna shape, resulting in a cutter-path file which provides the input for a postprocessor that outputs G-code for robot- and laser control. A rules file contains embedded information such as laser parameters and mask aperture related to the Allegro symbols. The robot consists of 6 axes that manipulate the antenna, and 2 axes for the mask plate. The antenna can be manipulated to an accuracy of +/- 20 micrometers over its full dimensions of 200x300x50 mm. The four layers are constructed by successive copper coating, resist coating, laser ablation, copper etching, resist removal, insulation polyimide film lamination and laser dielectric drilling for microvia holes and through-holes drilling. Applications are in space and aeronautical communication and radar detection systems, with possible extensions to automotive and mobile hand-sets, and land stations.

  12. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  13. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    Science.gov (United States)

    Schubert, M.; Honecker, F.; Monaco, F.; Schmid-Lorch, D.; Schütz, H.; Stober, J.; Wagner, D.

    2012-09-01

    Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG) is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  14. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2012-09-01

    Full Text Available Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  15. Antenna Design for Directivity-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2012-01-01

    Full Text Available Antenna performance can be described by two fundamental parameters: directivity and radiation efficiency. Here, we demonstrate nanoantenna designs in terms of improved directivity. Performance of the antennas is demonstrated in Raman scattering experiments. The radiated beam is directed out of the plane by using a ground plane reflector for easy integration with commercial microscopes. Parasitic elements and parabolic and waveguide nanoantennas with a ground plane are explored. The nanoantennas were fabricated by a series of electron beam evaporation steps and focused ion beam milling. As we have shown previously, the circular waveguide nanoantenna boosts the measured Raman signal by 5.5x with respect to a dipole antenna over a ground plane; here, we present the design process that led to the development of that circular waveguide nanoantenna. This work also shows that the parabolic nanoantenna produces a further fourfold improvement in the measured Raman signal with respect to a circular waveguide nanoantenna. The present designs are nearly optimal in the sense that almost all the beam power is coupled into the numerical aperture of the microscope. These designs can find applications in microscopy, spectroscopy, light-emitting devices, photovoltaics, single-photon sources, and sensing.

  16. Ultra-Wideband Printed Slot Radiators with Controllable Frequency Characteristics

    Directory of Open Access Journals (Sweden)

    S. L. Chernyshev

    2015-01-01

    Full Text Available We have studied the possibility of creating ultra-wideband (UWB antennas with controlled frequency response of matching based on the printed slot antenna Vivaldi by introducing controlled resonators directly into the structure of the radiator. In the area of irregular slotline there are printed switched resonators with variable capacitance (varactor model, which allow tuning the frequency characteristics for each state of switching cavities, providing bandpass and band-barrage properties of the antenna. The investigation of reconfigurable printed resonators in the system of reconfigurable resonators of a bandpass filter is conducted. The paper considers filter to provide restructuring in the band (3-9 GHz. Electrodynamic simulation of the device was carried out in the time domain using a finite integration method. A bandstop reconfigurable filter is also investigated. The filter located on the substrate opposite the slit is based on tunable L-shaped resonator that has one end connected to the short-circuitor through the board metallization; the other end remains open and is brought into the region of interaction with the slotline. Such filter provides an effective narrow-band suppression and can be easily tuned to the desired frequency channel. The combination of these two types of filters allows you to create a controlled print Vivaldi slot antenna with combined properties. The paper investigates parameters of the scattering and radiation pattern of the antenna in different modes.

  17. Analyzing the disturbing effects of microwave probe on mm-wave antenna pattern measurements

    NARCIS (Netherlands)

    Reniers, A.C.F.; Dommele, van A.R.; Huang, M.D.; Herben, M.H.A.J.

    2014-01-01

    Realizing an antenna measurement environment with specific supporting structures and interconnection between the antenna under test and measurement equipment like a vector network analyzer in the mm-wave range is not as trivial as for the much lower frequencies. Commonly used interconnection methods

  18. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  19. Investigation of graphene based miniaturized terahertz antenna for novel substrate materials

    Directory of Open Access Journals (Sweden)

    Rajni Bala

    2016-03-01

    Full Text Available The selection of appropriate substrate material acts as a performance regulator for miniaturized graphene patch antenna. The substrate material not only controls the transport properties of graphene but also influences the resonant properties of the graphene patch antenna. The edge fed microstrip line graphene based rectangular patch antenna is designed here for operating in the frequency range 2.67–2.92 THz for wireless applications. The performance is investigated for silicon nitride, aluminum oxide, boron nitride, silica and quartz substrate materials on the basis of return loss, voltage standing wave ratio (VSWR, absorption cross section, bandwidth and radiation efficiency. The comparison of results shows that silicon nitride exhibits overall excellent performance by the virtue of having higher bandwidth and radiation efficiency as compared to other chosen substrate materials.

  20. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    Science.gov (United States)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been