WorldWideScience

Sample records for antenna measurement facilities

  1. International Mapping of Antenna-Measurement Facilities

    DEFF Research Database (Denmark)

    Boccia, Luigi; Breinbjerg, Olav; Di Massa, Giuseppe

    2006-01-01

    This paper presents a comprehensive international mapping of antenna-measurement facilities. This initiative, conducted within the framework of the Antenna Centre of Excellence (ACE) of the European Union, is oriented toward all institutions having research, development, or operational activities...... measurements, in particular from the wireless communication industry, to identify and contact antenna-measurement facilities. The first phase of the mapping showed a significant and encouraging reaction to this initiative, with more than 50 European facilities currently registered. The next phase aims...

  2. Stockbridge Antenna Measurement and Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Stockbridge Antenna Measurement Facility is located 23 miles southwest of AFRL¹s Rome Research Site. This unique measurement facility is designed to evaluate the...

  3. Description and Results: Antenna Measurement Facility Comparisons [Measurements Corner

    DEFF Research Database (Denmark)

    Alberica Saporetti, Maria; Foged, Lars; Sierra Castañer, Manuel

    2017-01-01

    In recent years, formalized facility comparison activities have become important for the documentation and validation of laboratory proficiency and competence and mandatory for achieving accreditation such as that of the International Organization for Standardization (ISO) 17025 or similar...... for Antennas (VISTA) IC1102, including still ongoing campaigns [3]-[5]. Results of these activities have led to improvements in antenna measurement procedures and protocols in facilities and standards [6], [7]. Due to the direct benefits available to the participants, the activities have been very successful...

  4. Comparison of Antenna Measurement Facilities with the DTU-ESA 12 GHz Validation Standard Antenna within the EU Antenna Centre of Excellence

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Pallesen, Janus Engberg; Breinbjerg, Olav

    2009-01-01

    The primary objective of many antenna measurement facilities is to provide a specified high accuracy of the measured data. The validation of an antenna measurement facility is the process of proving that such a specified accuracy can be achieved. Since this constitutes a very challenging task, an...

  5. Recent Advances in Antenna Measurement Techniques at the DTU-ESA Spherical Near-Field Antenna Test Facility

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Pivnenko, Sergey; Kim, Oleksiy S.

    2014-01-01

    This paper reports recent antenna measurement projects and research at the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark. High-accuracy measurement projects for the SMOS, SENTINEL-1, and BIOMASS missions of the European Space Agency were driven...

  6. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... in the period 2005–2006 following a series of investigatory measurements and facility updates during 2003–2005. Antenna diagnostics by a SWE-to-PWE transformation presents a case where highly accurate antenna measurements and a plane wave back-projection enable antenna diagnostics by examination...

  7. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  8. An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center

    Science.gov (United States)

    Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

    2002-10-01

    For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

  9. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  10. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  11. ICH antenna development on the ORNL RF Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Bigelow, T.S.; Haste, G.R.; Hoffman, D.J.; Livesey, R.L.

    1987-01-01

    A compact resonant loop antenna is installed on the ORNL Radio Frequency Test Facility (RFTF). Facility characteristics include a steady-state magnetic field of ∼ 0.5 T at the antenna, microwave-generated plasmas with n e ∼ 10 12 cm -3 and T e ∼ 8 eV, and 100 kW of 25-MHz rf power. The antenna is tunable from ∼22--75 MHz, is designed to handle ≥1 MW of rf power, and can be moved 5 cm with respect to the port flange. Antenna characteristics reported and discussed include the effect of magnetic field on rf voltage breakdown at the capacitor, the effects of magnetic field and plasma on rf voltage breakdown between the radiating element and the Faraday shield, the effects of graphite on Faraday shield losses, and the efficiency of coupling to the plasma. 2 refs., 4 figs

  12. Feasibility of antenna-to-antenna isolation measurements at S-band in the Facility for Antenna and Radar-cross-section Measurements (FARM)

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-01

    Frequency-domain antenna-coupling measurements performed in the compact-range room of the FARM, will actually be dominated by reflected components from the ceiling, floor, walls, etc., not the direct freespace coupling. Consequently, signal processing must be applied to the frequency-domain data to extract the direct free-space coupling. The analysis presented above demonstrates that it is possible to do so successfully.

  13. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  14. ICRH antenna S-matrix measurements and plasma coupling characterisation at JET

    Science.gov (United States)

    Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET

    2018-04-01

    The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at  >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.

  15. 47 CFR 2.948 - Description of measurement facilities.

    Science.gov (United States)

    2010-10-01

    ... description of the measurement facilities employed. (1) If the measured equipment is subject to the... number; (v) FCC Registration Number (FRN); (vi) A statement as to whether or not the laboratory performs... supporting structures, and all structures within 5 times the distance between the measuring antenna and the...

  16. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  17. Measurement of Antenna Bore-Sight Gain

    Science.gov (United States)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  18. 47 CFR 73.54 - Antenna resistance and reactance measurements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna resistance and reactance measurements... measurements. (a) The resistance of an omnidirectional series fed antenna is measured at either the base of the... the point of common radiofrequency input to the directional antenna system after the antenna has been...

  19. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  20. Measurement of LHCD antenna position in Aditya tokamak

    International Nuclear Information System (INIS)

    Ambulkar, K K; Sharma, P K; Virani, C G; Parmar, P R; Thakur, A L; Kulkarni, S V

    2010-01-01

    To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.

  1. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  2. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  3. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    ,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set...

  4. Experimental measurements of the ion cyclotron antennas' coupling and rf characteristics

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Becraft, W.R.; Caughman, J.B.O.; Owens, T.L.

    1985-01-01

    The rf coupling capabilities and characteristics of various antennas have been measured. The tested antenna configurations include the simple loop antenna operated at resonant lengths as used on Alcator-C, the cavity antenna proposed for Doublet III-D and the resonant double loop, asymmetric resonant double loop, and U-slot antennas. Models of the voltage, magnetic fields outside the structure, and current have been correlated with the measurements made on these antennas. From these measurements and from typical observations of ICRH coupling in tokamaks, we are studying power and frequency limitations on each antenna and the causes of the limitations. A comparison of the technology, performance, and power limitations of each type of antenna is presented

  5. Definition of accurate reference pattern for the DTU-ESA VAST12 antenna

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Breinbjerg, Olav; Burgos, Sara

    2009-01-01

    In this paper, the DTU-ESA 12 GHz validation standard (VAST12) antenna and a dedicated measurement campaign carried out in 2007-2008 for the definition of its accurate reference pattern are first described. Next, a comparison between the results from the three involved measurement facilities...... is presented. Then, an accurate reference pattern of the VAST12 antenna is formed by averaging the three results taking into account the estimated uncertainties of each result. Finally, the potential use of the reference pattern for benchmarking of antenna measurement facilities is outlined....

  6. Measurement of electrostatically formed antennas using photogrammetry and theodolites

    Science.gov (United States)

    Goslee, J. W.; Hinson, W. F.; Kennefick, J. F.; Mihora, D. J.

    1984-01-01

    An antenna concept is presently being evaluated which has extremely low mass and high surface precision for potential depolyment from the Space Shuttle. This antenna concept derives its reflector surface quality from the application of electrostatic forces to tension and form a thin membrane into the desired concave reflector surface. The Shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center (LaRC) has built, and is currently testing, a subscale (1/20 scale) membrane reflector model of such an antenna. Several surface measurement systems were evaluated as part of the experimental surface measuring efforts. The surface measurement systems are addressed as well as some of the preliminary measurement results.

  7. Reflection measurement of waveguide-injected high-power microwave antennas.

    Science.gov (United States)

    Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong

    2015-12-01

    A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.

  8. Design and Verification of MIMO 2x2 Reference Antennas

    DEFF Research Database (Denmark)

    Szini, Istvan Janos; Pedersen, Gert Frølund; Estrada, J.

    2012-01-01

    The development and initial discussion of a reference MIMO 2×2 antenna concept has been presented in [1]. The reference antenna concept has been created to eliminate the uncertainties linked to the unknown antenna performance of the few LTE MIMO 2×2 reference devices or golden standards currently...... available for evaluating radiated data throughput measurement methodologies and test facilities. The proposed concept is based on simple antennas with a well-known Figure of Merit (FoM) and controllable performance. In this paper we present the recent developments on the antenna concept and report...... on the first measured performance at uniform incoming power distribution, figures and correlations between different measurement labs....

  9. A cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Zhang, Jiaying; Breinbjerg, Olav

    2010-01-01

    are represented in terms of spherical wave expansions (SWEs), and the propagation is accounted for by a transmission formula. In this paper the measurement results by the proposed technique will be presented for several AUTs, including a standard gain horn antenna, a monopole antenna, and an electrically small......Impedance and gain measurements for electrically small antennas represent a great challenge due to influences of the feeding cable. The leaking current along the cable and scattering effects are two main issues caused by the feed line. In this paper, a novel cable-free antenna impedance and gain...... measurement technique for electrically small antennas is proposed. The antenna properties are extracted by measuring the signal scattered by the antenna under test (AUT), when it is loaded with three known loads. The technique is based on a rigorous electromagnetic model where the probe and AUT...

  10. Near-Field Antenna Measurements Using Photonic Sensor of Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Masanobu Hirose

    2012-01-01

    Full Text Available We have been developing a photonic sensor system to measure the electric near-field distribution at a distance shorter than one wavelength from the aperture of an antenna. The photonic sensor is a type of Mach-Zehnder interferometer and consists of an array antenna of 2.4 mm height and 2 mm width on a LiNbO3 substrate (0.5 mm thickness, 8 mm length, and 3 mm width supported by a glass pipe. The photonic sensor can be considered to be a receiving infinitesimal dipole antenna that is a tiny metallic part printed on a small dielectric plate at microwave frequency. Those physical and electrical features make the photonic sensor attractive when used as a probe for near-field antenna measurements. We have demonstrated that the system can be applied to planar, spherical, and cylindrical near-field antenna measurements without any probe compensation approximately below 10 GHz. We show the theories and the measurements using the photonic sensor in the three near-field antenna measurement methods.

  11. Realization and Measurement of a Wearable Radio Frequency Identification Tag Antenna

    Directory of Open Access Journals (Sweden)

    Shudao ZHOU

    2014-06-01

    Full Text Available The realization and measurements of a wearable Radio Frequency Identification tag antenna which achieves good simulation results in the Ultimate High Frequency band under the standard of the United States in design procedures is presented. The wearable tag antenna is constructed using a flexible substrate, on whose surface the antenna patch is adhered. A bowtie shape is chosen as the geometry of the antenna patch because of its large bandwidth that brings to the tag and its simple structure. The substrate of the tag antenna is realized using a foam material while the patch on the substrate surface is cut out from copper foil tape. Then, the impedance of the realized tag antenna is extracted from S parameters which are measured with a vector network analyzer with a coaxial fixture. Finally, the radiation pattern of the tag is characterized by normalized reading distances of different directions of the antenna integrated with a microchip, thus indicating the validity of the realized tag antenna.

  12. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  13. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  14. Removing the Impact of Baluns from Measurements of a Novel Antenna for Cosmological HI Measurements

    Science.gov (United States)

    Trung, Vincent; Ewall-Wice, Aaron Michael; Li, Jianshu; Hewitt, Jacqueline; Riley, Daniel; Bradley, Richard F.; Makhija, Krishna; Garza, Sierra; HERA Collaboration

    2018-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a low-frequency radio interferometer aiming to detect redshifted 21 cm emission from neutral hydrogen during the Epoch of Reionization at frequencies between 100 and 200 MHz. Extending HERA’s performance to lower frequencies will enable detection of radio waves at higher redshifts, when models predict that gas between galaxies was heated by X-rays from the first stellar-mass black holes. The isolation of foregrounds that are four orders of magnitude brighter than the faint cosmological signal presents and unprecedented set of design specifications for our antennas, including sensitivity and spectral smoothness over a large bandwidth. We are developing a broadband sinuous antenna feed for HERA, extending the bandwidth from 50 to 220 MHz, and we are verifying antenna performance with field measurements and simulations. Electromagnetic simulations compute the differential S-parameters of the antenna. We measure these S-parameters through a lossy balun attached to an unbalanced vector network analyzer. Removing the impact of this balun is critical in obtaining an accurate comparison between our simulations and measurements. I describe measurements to characterize the baluns and how they are used to remove the balun’s impact on the antenna S-parameter measurements. Field measurements of the broadband sinuous antenna dish at MIT and Green Bank Observatory are used to verify our electromagnetic simulations of the broadband sinuous antenna design. After applying our balun corrections, we find that our field measurements are in good agreement with the simulation, giving us confidence that our feeds will perform as designed.

  15. An Antenna Measurement System Based on Optical Feeding

    Directory of Open Access Journals (Sweden)

    Ryohei Hosono

    2013-01-01

    the advantage of the system is demonstrated by measuring an ultra-wideband (UWB antenna both by the optical and electrical feeding systems and comparing with a calculated result. Ripples in radiation pattern due to the electrical feeding are successfully suppressed by the optical feeding. For example, in a radiation measurement on the azimuth plane at 3 GHz, ripple amplitude of 1.0 dB that appeared in the electrical feeding is reduced to 0.3 dB. In addition, a circularly polarized (CP antenna is successfully measured by the proposed system to show that the system is available not only for amplitude but also phase measurements.

  16. Antenna Characterization for the JOLT Impulsive Radiator via Low-Voltage Measurements

    Science.gov (United States)

    Tyo, J. S.; Schoenberg, J. S. H.; Baum, C. E.; Prather, W. D.; Hackett, R.; Burger, J. W.; Farr, E. G.; Giri, D. V.; McLemore, D. P.

    The JOLT system is a highly directive, impulse-like radiator. The antenna for JOLT is a 10-ft-diameter half-impulse radiating antenna (HIRA). JOLT was one of the first impulse radiating systems to employ a half IRA. For that reason, extensive measurements were made with a prototype, scale model HIRA in order to understand the performance of this class of antenna. In addition, a series of low-voltage antenna subsystem tests were performed with the full JOLT antenna before it was couple to the pulsed power and run at high voltage. The low-voltage measurements proved to be quite valuable, as an important manufacturing defect—a failure to mount the dish perpendicular to the ground plane—was identified and mitigated.

  17. Preliminary measurements with a 4 K gravitational wave antenna

    International Nuclear Information System (INIS)

    Boughn, S.P.; McAshan, M.S.; Paik, H.J.; Taber, R.C.; Fairbank, W.M.; Giffard, R.P.

    1975-01-01

    The behavior of a small resonant gravitational wave antenna cooled to 4 K has been measured. This antenna is the prototype for a much larger system designed to be cooled eventually below 10 mK. Noise levels have been observed in the fundamental mechanical mode of the antenna corresponding to temperatures below 50 K. The antenna is a 680 kg cylindrical bar of aluminum clad with a layer of 0.38 mm thick niobium-titanium. It is levitated on a magnetic field of 0.2 T provided by a set of curved superconducting coils. The helium tank is suspended by low resonant-frequency springs and acoustic isolation stacks constructed of alternate layers of rubber and iron. This suspension is mechanically independent of the rest of the cryostat. Measurements have shown that the magnetic levitation stage provides a further vibration attenuation in excess of 50 dB at the frequency of the antenna mode. When levitated at an exchange gas pressure of 0.01 Pa the energy decay time for the fundamental bar mode at 1312 Hz has been measured to be 40 s. This corresponds to a Q of 3.3 x 10 5 . For the experiments to be described the bar carries at one end an acceleration transducer, operating in a non-resonant mode. (Auth.)

  18. 60 GHz antenna measurement setup using a VNA without external frequency conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2014-01-01

    an alternative solution which makes use of a standard wideband VNA without external frequency conversion units. The operational capability of the Planar Near-Field (PNF) Antenna Measurement Facility at the Technical University of Denmark was recently extended to 60 GHz employing an Agilent E8361A VNA (up to 67...... GHz). The upgrade involved procurement of very few additional components: two cables operational up to 65 GHz and an openended waveguide probe for tests in U-band (40-60 GHz). The first tests have shown good performance of the PNF setup: 50-60 dB dynamic range and small thermal drift in magnitude...... and phase, 0.06 dB and 6 degrees peak-to-peak deviations over 4 hours. A PNF measurement of a 25 dBi Standard Gain Horn was carried out and the results were compared to those from the DTU-ESA Spherical Near-Field Facility with a good agreement in the validity region. Uncertainty investigations regarding...

  19. On Small Antenna Measurements in a Realistic MIMO Scenario

    DEFF Research Database (Denmark)

    Yanakiev, Boyan; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2010-01-01

    . The problem using coaxial cable is explained and a solution suitable for long distance channel sounding is presented. A large scale measurement campaign is then described. Special attention is paid to bring the measurement setup as close as possible to a realistic LTE network of the future, with attention......This paper deals with the challenges related to evaluating the performance of multiple, small terminal antennas within a natural MIMO environment. The focus is on the antenna measurement accuracy. First a method is presented for measuring small phone mock-ups, with the use of optical fibers...

  20. Swept frequency measurements of microwave antennas in feline and canine brain

    International Nuclear Information System (INIS)

    Salcman, M.; Neuberth, G.; Nudelman, R.W.; Ferraro, F.T.; Hartman, M.

    1986-01-01

    Interstitial microwave hyperthermia may prove to be an important therapy for malignant brain tumors. For safety and efficiency, the size and number of intracranial microwave antennas needs to be limited. Low power swept frequency measurements of VSWR were carried out in the brains of anesthetized cats and dogs utilizing stereotactically placed monopole antennas. The coupling efficiency of antennas at any frequency was degraded (VSWR>2:1) if a length of antenna less than 2h was inserted or if a plastic catheter was utilized. Such measurements indicate that (h) can be shortened 25% from the resonant length without seriously degrading antenna performance. The total length can be halved if a catheter with a high dielectric is used. High power tests (2-10w) of short antennas at 915 MHz in a ceramic catheter (e = 10) at 45-50 0 C produce thermal fields approximately 2 cm in diameter in normal brain. It should be possible to efficiently and safely heat human brain tumors of average size utilizing these antennas and catheters at 915 MHz

  1. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  2. Small Device For Short-Range Antenna Measurements Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  3. Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR

    Directory of Open Access Journals (Sweden)

    S. A. Cohn

    Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R2 = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing

  4. Experimental Study on RFID Antenna Reading Areas in a Tunnel System

    Directory of Open Access Journals (Sweden)

    Kai Kordelin

    2017-01-01

    Full Text Available We study optimized antenna reading area mappings for a radiofrequency identification- (RFID- based access monitoring system, used in an underground nuclear waste storage facility. We shortly introduce the access monitoring system developed for the ONKALO tunnel in Finland and describe the antenna mounting points as well as the research area. Finally, we study the measurement results of the antenna reading areas and factors that affect the reading area size. Based on our results, in addition to antenna location and direction, absorption to obstacles, reflections, diffraction, scattering, and refraction affect the antenna reading area.

  5. Application of Ruze Equation for Inflatable Aperture Antennas

    Science.gov (United States)

    Welch, Bryan W.

    2008-01-01

    Inflatable aperture reflector antennas are an emerging technology that NASA is investigating for potential uses in science and exploration missions. As inflatable aperture antennas have not been proven fully qualified for space missions, they must be characterized properly so that the behavior of the antennas can be known in advance. To properly characterize the inflatable aperture antenna, testing must be performed in a relevant environment, such as a vacuum chamber. Since the capability of having a radiofrequency (RF) test facility inside a vacuum chamber did not exist at NASA Glenn Research Center, a different methodology had to be utilized. The proposal to test an inflatable aperture antenna in a vacuum chamber entailed performing a photogrammetry study of the antenna surface by using laser ranging measurements. A root-mean-square (rms) error term was derived from the photogrammetry study to calculate the antenna surface loss as described by the Ruze equation. However, initial testing showed that problems existed in using the Ruze equation to calculate the loss due to errors on the antenna surface. This study utilized RF measurements obtained in a near-field antenna range and photogrammetry data taken from a laser range scanner to compare the expected performance of the test antenna (via the Ruze equation) with the actual RF patterns and directivity measurements. Results showed that the Ruze equation overstated the degradation in the directivity calculation. Therefore, when the photogrammetry study is performed on the test antennas in the vacuum chamber, a more complex equation must be used in light of the fact that the Ruze theory overstates the loss in directivity for inflatable aperture reflector antennas.

  6. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  7. Planar, Faceted and Curved Array Antenna Research at TNO Physics and Electronics Laboratory

    NARCIS (Netherlands)

    Visser, H.J.

    1999-01-01

    An overview is presented of research carried out at TNO Physics and Electronics Laboratory in the field of phased anay antennas. Started is with a brief historical overview and a presentation of the antenna measurement facilities. Then full wave analysis methods for infinite planar waveguide arrays

  8. The healthiness of JT-60 ICRF antenna and development of its temperature measurement device

    International Nuclear Information System (INIS)

    Hiranai, Shinichi; Yokokura, Kenji; Moriyama, Shinichi; Sato, Tomio; Ishii, Kazuhiro; Fujii, Tsuneyuki

    1998-03-01

    Ion Cyclotron Range of Frequency (ICRF) heating system in JT-60 employs two antennas to couple RF power in the range of 100 MHz to the plasma. The antennas are installed in the vacuum vessel of JT-60, facing to the high temperature plasma. Due to the severe heat load from the plasma, parts of the antenna surface are suffering from melt. It is important to investigate the mechanism of the heat load and the melting. 'Temperature measurement for ICRF antenna surface' employing an infrared thermographic camera has been developed, in order to investigate the heat load to the antenna and to maintain the antenna available. We have succeeded in minimizing the melting damage of the antenna surface using the temperature measurement device. (author)

  9. A modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    , but not for balanced antennas like loops or dipoles. In this paper, a modified Wheeler cap method is proposed for the radiation efficiency measurement of balanced electrically small antennas and a three-port network model of the Wheeler cap measurement is introduced. The advantage of the modified method...... is that it is wideband, thus does not require any balun, and both the antenna input impedance and radiation efficiency can be obtained. An electrically small loop antenna and a wideband dipole were simulated and measured according to the proposed method and the results of measurements and simulations are presented...

  10. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Pal Arindam

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  11. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Arindam Pal

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for 2×2 MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  12. Measurement of the effects of Faraday shields on ICRH antenna coupling

    International Nuclear Information System (INIS)

    Kwon, M.; Thomas, C.E. Jr.; Rettig, C.L.

    1990-01-01

    Compact loop antennas are being applied to several fusion experiments. Although individual configurations vary, all of these antennas generally comprise a current strap in a recessed box and a Faraday shield. The effect of the cross-sectional shape of the current strap on voltage and current levels was measured. In this work the coupling characteristics of cavity antennas that have current straps with the previously evaluated cross-sectional shapes re tested with several Faraday shields. Impedances and relative fields are measured for various combinations of the current strap and Faraday shield. The experiments show that the fractional reduction in the magnetic flux linkage to the plasma resulting from the addition of any particular Faraday shield i virtually independent of the shape of the current strap. This is true in spite of the fact that the same mechanism which is responsible for the reduction in flux is also responsible for a significant redistribution of the antenna current on the current strap. Thus the process of optimizing antennas is reduced to that of separately optimizing the current strap and Faraday shield

  13. Radio antennas

    Science.gov (United States)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  14. Analyzing the disturbing effects of microwave probe on mm-wave antenna pattern measurements

    NARCIS (Netherlands)

    Reniers, A.C.F.; Dommele, van A.R.; Huang, M.D.; Herben, M.H.A.J.

    2014-01-01

    Realizing an antenna measurement environment with specific supporting structures and interconnection between the antenna under test and measurement equipment like a vector network analyzer in the mm-wave range is not as trivial as for the much lower frequencies. Commonly used interconnection methods

  15. RF field measurements in the vicinity of an ICRF antenna

    International Nuclear Information System (INIS)

    Majeski, R.; Intrator, T.; Roberts, D.; Hershkowitz, N.; Tataronis, J.; Grossmann, W.

    1988-01-01

    Measurements of the rf fields near an ICRF antenna installed in the central cell of the Phaedrus-B tandem mirror have been made, both in vacuum and in the presence of plasma. The antenna is a Faraday shielded partial turn loop. The front surface of the Faraday shield is composed of cylindrical elements in an arrangement similar to the Faraday shield design employed on TFTR. The antenna is run at relatively low power levels, in the 3.5-10 MHz frequency range. Two other ICRF systems in the phaedrus-B central cell sustain and heat the plasma at the 400 KW level. The vacuum field measurements are compared with the predictions of the ARGUS code, which models details of the Faraday shield structure. Fields in the plasma are modelled by the ANTENA code. Particle currents collected by the Faraday shield during plasma operation are also observed

  16. Long-Range Channel Measurements on Small Terminal Antennas Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan; Nielsen, Jesper Ødum; Christensen, Morten

    2012-01-01

    In this paper, details are given on a novel measurement device for radio propagation-channel measurements. To avoid measurement errors due to the conductive cables on small terminal antennas, as well as to improve the handling of the prototypes under investigation, an optical measurement device has...

  17. Measurement of radiofrequency emissions around the Sugar Loaf broadcasting antenna Port Hills

    International Nuclear Information System (INIS)

    Keep, Laura-Beth

    1998-01-01

    This report and measurements described in it have been undertaken to determine radio frequency levels in publicly accessible areas around the Sugar Loaf (Christchurch, New Zealand) broadcasting antenna and ascertain whether it is being operated in accordance with New Zealand Standard 6609.1:1990 Radiofrequency radiation - Part 1 : Maximum exposure levels 100kHz-300GHz. Measurements were made on 9 February 1998. Maximum exposures of 8 microW/cm 2 were detected in the car park area, immediately below the Sugar Loaf antenna. This is 4% of the maximum of 200 microW/cm 2 specified for public exposure levels in NZS 6609.1:1990. As the distance from the antenna increased, the exposure levels decreased markedly and in general, were below 2 microW/cm 2 . The measurements showed that the site is operating in accordance with NZS 6609.1:1990. (author). 2 appendices

  18. Antenna theory: Analysis and design

    Science.gov (United States)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  19. Structural Design of the DTU-ESA MM-Wave Validation Standard Antenna

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Markussen, Christen Malte

    2015-01-01

    A new specially designed antenna to be used for inter-comparisons and validation of antenna test facilities is under development in cooperation between DTU and TICRA under a contract from the European Space Agency. The antenna is designed to be extremely thermally and mechanically stable...... in the range of temperatures 20±5°C under arbitrary orientation in the gravity field. The antenna has a characteristic length of approximately 500mm. And in order to obtain very low measuring error, the allowable deformations of the reflector and feeds are down to 2.5μm. The antenna is modelled structurally...... is connected via a glued contact formulation in MSC.MARC. Because of the size and the complexity of the model a computer cluster is applied to solve the analyses. This paper describes the structural solution to meet these extremely strict stability requirements and the structural analyses done in order...

  20. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    Science.gov (United States)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  1. Determination of antenna factors using a three-antenna method at open-field test site

    Science.gov (United States)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  2. Diagnostics of the SMOS radiometer antenna system at the DTU-ESA spherical near-field antenna test facility

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, A.; Pivnenko, Sergey

    2007-01-01

    The recently developed Spherical Wave Expansion-to-Plane Wave Expansion (SWE-to-PWE) antenna diagnostics technique is employed in an investigation of the antenna system in the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) for ESA’s Soil Moisture and Ocean Salinity (SMOS) mission...

  3. A calibrated, broadband antenna for plasma RF emission measurements below 1 GHz

    International Nuclear Information System (INIS)

    Spence, P.D.; Rosenberg, D.; Roth, J.R.

    1984-01-01

    A constant impedance, constant aperture antenna can make possible broadband plasma RF emission measurements which yield relative and absolute power levels. However, good technique must be followed for the immersion of such an RF probe into plasma radiation. The authors have used a complementary conical spiral antenna to observe plasma RF emission over the frequency range 100 ≤ν≤ 1200 MHz. The RF emission was emitted by a modified Penning discharge. The RF emission from the discharge typically exhibits harmonic structure over a broad frequency range, necessitating a broadband antenna with a flat frequency response curve to allow detailed spectral analysis. The antenna consists of two metal strips of approximately uniform width wound helically on a cone made of Lexan plastic. Since the antenna is a balanced network, a balun is employed to make the transition to a 50-ohm coaxial line. The antenna feed method is critical in maintaining a uniform impedance network. Neglecting stray transmission line effects, the probe circuit for the frequency range 100 ≤ν≤ 500 MHz is 50 ohms due to the spectrum analyzer, paralleled by 291 ohms due to balun magnetization; the combination is fed by a 144 ohm probe aperture

  4. Equipment: Antenna systems

    Science.gov (United States)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  5. Double phi-Step theta-Scanning Technique for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi

    2008-01-01

    Probe-corrected spherical near-field antenna measurements with an arbitrary probe set certain requirements on an applicable scanning technique. The computational complexity of the general high-order probe correction technique for an arbitrary probe, that is based on the Phi scanning, is O(N4...... a specific double Phi-step thetas scanning technique for spherical near-field antenna measurements. This technique not only constitutes an alternative spherical scanning technique, but it also enables formulating an associated probe correction technique for arbitrary probes with the computational complexity...

  6. LTE Radiated Data Throughput Measurements, Adopting MIMO 2x2 Reference Antennas

    DEFF Research Database (Denmark)

    Szini, Istvan Janos; Pedersen, Gert Frølund; Barrio, Samantha Caporal Del

    2012-01-01

    Long Term Evolution (LTE) requires Multiple Input Multiple Output (MIMO) antenna systems. Consequently a new over-the-air (OTA) test methodology need to be created to make proper assessment of LTE devices radiated performance. The antenna specific parameters i.e. total antenna efficiency, gain...... imbalance and correlation coefficient, are essential for a proper MIMO antenna system design. However it can't be use directly to assess the LTE device system performance, since a multiplicity of other factors are involved, e.g. power amplifier load- pull, low noise amplifier source-pull, self interference...... noise, baseband algorithm and other factors. Several standard organizations are working towards a consensus over the proper OTA MIMO test method, however so far results of measurement campaigns have ambiguous results not allowing a desirable progress [1]. Initially presented at one of several MIMO OTA...

  7. Analysis of the effect of mobile phone base station antenna loading on localized SAR and its consequences for measurements.

    Science.gov (United States)

    Hansson, Björn; Thors, Björn; Törnevik, Christer

    2011-12-01

    In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom. Copyright © 2011 Wiley Periodicals, Inc.

  8. Reflectarray antennas theory, designs, and applications

    CERN Document Server

    Nayeri, Payam; Elsherbeni, Atef Z

    2018-01-01

    This book provides engineers with a comprehensive review of the state-of-the-art in reflectarray antenna research and development. The authors describe, in detail, design procedures for a wide range of applications, including broadband, multi-band, multi-beam, contour-beam, beam-scanning, and conformal reflectarray antennas. They provide sufficient coverage of basic reflectarray theory to fully understand reflectarray antenna design and analysis such that the readers can pursue reflectarray research on their own. Throughout the book numerous illustrative design examples including numerical and experimental results are provided. Featuring in-depth theoretical analysis along with practical design examples, Reflectarray Antennas is an excellent text/reference for engineering graduate students, researchers, and engineers in the field of antennas. It belongs on the bookshelves of university libraries, research institutes, and industrial labs and research facilities.

  9. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident...

  10. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    Science.gov (United States)

    Eheduru, Marcellinus

    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation

  11. Characteristics of the wire biconical antenna used for EMC measurements

    Science.gov (United States)

    Austin, Brian A.; Fourie, Andre P. C.

    1991-08-01

    The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.

  12. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  13. Analysis and suppression of reflections in far-field antenna measurement ranges

    OpenAIRE

    Sierra Castañer, Manuel; Cano Facila, Francisco Jose; Foged, Lars Jacob; Saccardi, Francesco; Nader Kawassaki, Guilherme; Raimundi, Lucas dos Reis; Vilela Rezende, Stefano Albino

    2013-01-01

    This paper presents the analysis of the reflections in two kind of spherical far field ranges: one if the classical acquisition where the AUT is rotated and the second one corresponds to the systems where the AUT is fixed and the antenna probe is rotated. In large far field systems this is not possible, but this can be used to the measurement of small antennas, for instance, with the SATIMO StarGate system. In both cases, it is assumed that only one frequency is acquired and the results shoul...

  14. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    Science.gov (United States)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC

  15. Design and Measurement of a 2.45 Ghz On-Body Antenna Optimized for Hearing Instrument Applications

    DEFF Research Database (Denmark)

    Kvist, Søren Helstrup; Jakobsen, Kaj Bjarne; Thaysen, Jesper

    2012-01-01

    A balanced PIFA-inspired antenna design is presented for use with the 2:45 GHz ear-to-ear radio channel. The antenna is designed such that the radiated electric fields are primarily polarized normal to the surface of the head, in order to obtain a high on-body path gain (jS21 j). The antenna...... structure can be made conformal to the outer surface of a hearing instrument, such that the bandwidth of the antenna is optimized given the available volume. The radiation patterns, ear-to-ear path gain and available bandwidth is measured and compared to the simulated results. It is found that the antenna...

  16. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  17. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field....... The reconstruction of the extreme near field on the basis of near- or far-field measurements is thus an essential step in antenna diagnostics....

  18. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  19. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  20. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  1. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  2. Analysis of antenna position measurements and weather station network data during the ALMA long baseline campaign of 2015

    Science.gov (United States)

    Hunter, Todd R.; Lucas, Robert; Broguière, Dominique; Fomalont, Ed B.; Dent, William R. F.; Phillips, Neil; Rabanus, David; Vlahakis, Catherine

    2016-07-01

    In a radio interferometer, the geometrical antenna positions are determined from measurements of the observed delay to each antenna from observations across the sky of many point sources whose positions are known to high accuracy. The determination of accurate antenna positions relies on accurate calibration of the dry and wet delay of the atmosphere above each antenna. For the Atacama Large Millimeter/Submillimeter Array (ALMA), with baseline lengths up to 15 kilometers, the geography of the site forces the height above mean sea level of the more distant antenna pads to be significantly lower than the central array. Thus, both the ground level meteorological values and the total water column can be quite different between antennas in the extended configurations. During 2015, a network of six additional weather stations was installed to monitor pressure, temperature, relative humidity and wind velocity, in order to test whether inclusion of these parameters could improve the repeatability of antenna position determinations in these configurations. We present an analysis of the data obtained during the ALMA Long Baseline Campaign of October through November 2015. The repeatability of antenna position measurements typically degrades as a function of antenna distance. Also, the scatter is more than three times worse in the vertical direction than in the local tangent plane, suggesting that a systematic effect is limiting the measurements. So far we have explored correcting the delay model for deviations from hydrostatic equilibrium in the measured air pressure and separating the partial pressure of water from the total pressure using water vapor radiometer (WVR) data. Correcting for these combined effects still does not provide a good match to the residual position errors in the vertical direction. One hypothesis is that the current model of water vapor may be too simple to fully remove the day-to-day variations in the wet delay. We describe possible new avenues of

  3. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  4. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  5. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  6. ALMA Achieves Major Milestone With Antenna-Link Success

    Science.gov (United States)

    2007-03-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on March 2, when two ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. The milestone achievement, technically termed "First Fringes," came at the ALMA Test Facility (ATF) on the grounds of the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. NRAO is a facility of the National Science Foundation (NSF), managed by Associated Universities, Incorporated (AUI). AUI also is designated by NSF as the North American Executive for ALMA. ALMA Test Facility ALMA Test Facility, New Mexico: VertexRSI antenna, left; AEC antenna, right. CREDIT: Drew Medlin, NRAO/AUI/NSF Click on image for page of graphics and full information Faint radio waves emitted by the planet Saturn were collected by the two ALMA antennas, then processed by new, state-of-the-art electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. Such pairs of antennas are the basic building blocks of multi-antenna imaging systems such as ALMA and the VLA. In such a system, each antenna is combined electronically with every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly-detailed image of the astronomical object under observation. When completed in 2012, ALMA will have 66 antennas. The successful Saturn observation began at 7:13 p.m., U.S. Mountain Time Friday (0213 UTC Saturday). The planet's radio emissions at a frequency of 104 GigaHertz (GHz) were tracked by the ALMA system for more than an hour. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO

  7. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    Energy Technology Data Exchange (ETDEWEB)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru; Nekrasov, E. S. [Institute of High Current Electronics SB RAS, IHCE SB RAS, Tomsk 634055 (Russian Federation)

    2016-03-15

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.

  8. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    Science.gov (United States)

    Trichopoulos, Georgios C.

    . Additionally, a butterfly-shaped antenna layout is introduced that enables broadband imaging. The alternative design presented here, allows for video-rate imaging in the 0.6--1.2 THz band and maintains a small antenna footprint, resulting in densely packed FPAs. In both antenna designs, we optimize the impedance matching between the antennas and the integrated electronic devices, thus achieving optimum responsivity levels for high sensitivity and low noise performance. Subsequently, we present the design details of the first THz camera and the first THz camera images captured. With the realized THz camera, imaging of concealed objects is achieved with space. Thus, the hybrid electromagnetic model allows fast and accurate design of THz antennas and modeling of the complete THz imaging system. Finally, motivated by the novel THz antenna layouts and the quasioptical techniques, we developed a novel non-contact probe measurement method for on-chip device characterization. In the THz regime, traditional contact probes are too small and fragile, thus inhibiting accurate and reliable circuit measurements. By integrating the device under test (DUT) with THz antennas that act as the measurement probes, we may couple the incident and reflected signal from and to the network analyzer without residing to any physical connection.

  9. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  10. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  11. Reduction of Truncation Errors in Planar Near-Field Aperture Antenna Measurements Using the Gerchberg-Papoulis Algorithm

    DEFF Research Database (Denmark)

    Martini, Enrica; Breinbjerg, Olav; Maci, Stefano

    2008-01-01

    A simple and effective procedure for the reduction of truncation errors in planar near-field measurements of aperture antennas is presented. The procedure relies on the consideration that, due to the scan plane truncation, the calculated plane wave spectrum of the field radiated by the antenna is...

  12. Errors of first-order probe correction for higher-order probes in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy

    2004-01-01

    An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....

  13. 3-D analysis on arbitrarily-shaped ICRF antennas and Faraday shields

    International Nuclear Information System (INIS)

    Chen, G.L.; Whealton, J.H.; Baity, F.W.; Hoffman, D.J.; Owens, T.L.

    1986-01-01

    Cavity antennas with Faraday shields are proposed to couple ion cyclotron radio frequency power for heating fusion plasmas. This application requires small, high-power, low-frequency antennas. The results are presented of a theoretical study of the ICRF antennas being developed for this purpose at the Radio Frequency Test Facility (RFTF). The objectives of this work are to optimize experimental designs and to confirm test results

  14. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  15. Application of the modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas in complex environment

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    In this paper, application of a modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small antennas is presented. It is shown that the limitations on the cavity dimension can be overcome and thus measurement in a large cavity is possible. The cavity loss...... is investigated, and a modified radiation efficiency formula that includes the cavity loss is introduced. Moreover, a modification of the technique is proposed that involves the antenna working complex environment inside the Wheeler Cap and thus makes possible measurement of an antenna close to a hand or head...

  16. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  17. Antenna Miniaturization in Complex Electromagnetic Environments

    DEFF Research Database (Denmark)

    Zhang, Jiaying

    improved compared to the 2-D planar electrically small loop antennas. Measurement Techniques for ESAs In this dissertation we proposed two novel measurement techniques for electrically small antennas. A modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small....... Moreover, the modified Wheeler cap method for measurements of small antennas in complex environments is further developed. A cable-free impedance and gain measurement technique for electrically small antennas is also proposed. The electromagnetic model of this technique is derived by using the spherical...... wave expansion, and it is valid for arbitrary electrically small AUT at arbitrary distances between the probe and AUT. The whole measurement setup is modeled by the cascade of three coupled multipleort networks. The electromagnetic model, the simulation results, and the obtained measurement results...

  18. Antenna design and implementation for the future space Ultra-Long wavelength radio telescope

    Science.gov (United States)

    Chen, Linjie; Aminaei, Amin; Gurvits, Leonid I.; Wolt, Marc Klein; Pourshaghaghi, Hamid Reza; Yan, Yihua; Falcke, Heino

    2018-04-01

    In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth's ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole-type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 - 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.

  19. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    International Nuclear Information System (INIS)

    Li Chen; Tan Qiu-Lin; Xue Chen-Yang; Zhang Wen-Dong; Li Yun-Zhi; Xiong Ji-Jun

    2015-01-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. (paper)

  20. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    Science.gov (United States)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  1. Assessment of Measurement Distortions in GNSS Antenna Array Space-Time Processing

    Directory of Open Access Journals (Sweden)

    Thyagaraja Marathe

    2016-01-01

    Full Text Available Antenna array processing techniques are studied in GNSS as effective tools to mitigate interference in spatial and spatiotemporal domains. However, without specific considerations, the array processing results in biases and distortions in the cross-ambiguity function (CAF of the ranging codes. In space-time processing (STP the CAF misshaping can happen due to the combined effect of space-time processing and the unintentional signal attenuation by filtering. This paper focuses on characterizing these degradations for different controlled signal scenarios and for live data from an antenna array. The antenna array simulation method introduced in this paper enables one to perform accurate analyses in the field of STP. The effects of relative placement of the interference source with respect to the desired signal direction are shown using overall measurement errors and profile of the signal strength. Analyses of contributions from each source of distortion are conducted individually and collectively. Effects of distortions on GNSS pseudorange errors and position errors are compared for blind, semi-distortionless, and distortionless beamforming methods. The results from characterization can be useful for designing low distortion filters that are especially important for high accuracy GNSS applications in challenging environments.

  2. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  3. Low-SAR metamaterial-inspired printed monopole antenna

    Science.gov (United States)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2017-01-01

    In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.

  4. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  5. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  6. Electrical characterization of the JET A2 antenna: Comparison of model with measurements

    International Nuclear Information System (INIS)

    Ryan, P.M.; Goulding, R.H.; Bhatnagar, V.; Kaye, A.; Wade, T.

    1993-01-01

    The JET experiment is replacing its previous (Al) antennas with upgraded designs (A2) for its upcoming ''pumped diverter'' operation. These antennas are more directional than the previous two-strap Al antennas when operated as a phased array. The frequency range is 23 to 57 MHz. A full-scale low power ''flat'' mockup was tested at JET; strap lengths were adjusted to give balanced operation with resonance at 42 MHz. A second mockup module, differing only slightly from the original, was subsequently fabricated and both modules were sent to ORNL for additional measurements and to test the operation of the power compensator circuit. There are benefits to using a transmission line model to characterize coupled antenna systems, primarily in the ease of incorporating the antennas into the overall analysis of the transmission, tuning, and matching system. The characteristics of the array under arbitrary phasing are also needed for the design, analysis, and control of the power compensator. There are aspects of the JET A2 antenna geometry that differ considerably from previously modeled cases. Each transmission line feeds two poloidally-stacked straps connected in parallel. The parallel straps present different electrical loads at the match point due to geometrical differences. Currents in one section of the strap influence other sections of the same strap as well as in neighboring straps due to internal inductive coupling. The lengths of the inner and outer straps differ; moreover, the inner straps are fed from ports located behind the outer straps, resulting in increased coupling between the inner and outer straps due to the long feed lines and in greater disparity between the electrical loads presented at the inner and outer feed ports. The present effort is to determine whether a more general coupled transmission line model can characterize the array response with sufficient accuracy for the purpose of design and analysis

  7. High efficiency carbon nanotube thread antennas

    Science.gov (United States)

    Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo

    2017-10-01

    Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

  8. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  9. Microwave Correlation Measurement Crossed-pair Antennas ...

    African Journals Online (AJOL)

    We propose here new processes, an add and square correlation radiometer and the non-resonant perturbation, which thoroughly investigated for different muscle phantom materials to define the optimum penetration depth of the electromagnetic field at fixed distance between the antennas. Keywords: Microwave correlation ...

  10. A smart car for the surface shape measurement of large antenna based on laser tracker

    Science.gov (United States)

    Gu, Yonggang; Hu, Jing; Jin, Yi; Zhai, Chao

    2012-09-01

    The geometric accuracy of the surface shape of large antenna is an important indicator of antenna’s quality. Currently, high-precision measurement of large antenna surface shape can be performed in two ways: photogrammetry and laser tracker. Photogrammetry is a rapid method, but its accuracy is not enough good. Laser tracker can achieve high precision, but it is very inconvenient to move the reflector (target mirror) on the surface of the antenna by hand during the measurement. So, a smart car is designed to carry the reflector in this paper. The car, controlled by wireless, has a small weight and a strong ability for climbing, and there is a holding bracket gripping the reflector and controlling reflector rise up and drop down on the car. During the measurement of laser tracker, the laser beam between laser tracker and the reflector must not be interrupted, so two high-precision three-dimensional miniature electronic compasses, which can real-time monitor the relative angle between the holding bracket and the laser tracker’s head, are both equipped on the car and the head of laser tracker to achieve automatic alignment between reflector and laser beam. With the aid of the smart car, the measurement of laser tracker has the advantages of high precision and rapidity.

  11. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    Jiang, X-J; Jalali Mazlouman, S; Menon, C; Mahanfar, A; Vaughan, R G

    2012-01-01

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  12. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  13. Quad-Band U-Slot Antenna for Mobile Applications

    Directory of Open Access Journals (Sweden)

    R. L. Ruiz

    2006-06-01

    Full Text Available In this paper, two different planar quad-band antennas are designed, modeled, fabricated and measured. Subsequently, the antennas are redesigned using an electromagnetic band gap substrate (EBG. Those new planar antennas operate in four frequency bands: 900 MHz, 1 800 MHz (both GSM, 1 900 MHz (USA and 2 400 to 2 500 MHz (Bluetooth The antenna has four narrow U-shaped slots etched to the patch. Using software, CST Microwave Studio [1], Zeland IE3D [2], and FEMLAB [3], simulations have been carried out to investigate the antenna's performance and characteristics. The antennas designed have been also built and measured to compare the real results with those obtained from the simulations.

  14. Realisation of a test facility for the ITER ICRH antenna plug-in by means of a mock-up with salted water load

    International Nuclear Information System (INIS)

    Messiaen, A.; Dumortier, P.; Koch, R.; Lamalle, P.; Louche, F.; Martini, J.L.; Vervier, M.

    2005-01-01

    By the use of a mock-up operated at higher frequency it is possible to measure with good accuracy the rf characteristics of an ICRH antenna, the plasma loading being simulated by a water tank in front of it. This concept has motivated the construction of the mock-up of the antenna array foreseen for ITER

  15. Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network

    Science.gov (United States)

    Navarro, Robert

    2006-01-01

    The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..

  16. Evaluation of detectable angle of mid-infrared slot antennas

    Science.gov (United States)

    Obara, R.; Horikawa, J.; Shimakage, H.; Kawakami, A.

    2017-07-01

    For evaluations of a mid-infrared (MIR) detectors with antenna, we constructed an angular dependence measurement system of the antenna properties. The fabricated MIR detector consisted of twin slot antennas and a bolometer. The area of the slot antennas was designed to be 2.6 × 0.2 μm2 as to resonate at 61 THz, and they were located parallel and separated 1.6 μm each other. The bolometer was fabricated using by a 7.0-nm thick NbN thin film, and located at the center of the twin antennas. We measured polarization angle dependence and directivity, and showed that the MIR antennas have polarization dependence and directivity like radiofrequency antennas.

  17. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    Borg, G.; Harris, J.

    1999-01-01

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  18. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    Group Delay variations versus frequency is an essential factor which can cause distortion and degradation in the signals. Usually this is an issue in wideband communication systems, such as satellite communication systems, which are used for transmitting wideband data. However, group delay can also...... become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  19. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  20. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin

    2011-07-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without an integrated negative impedance converter designed to cancel out the antenna\\'s input capacitance at resonance frequency was designed, simulated, constructed and measured for implementation in RFID applications. © 2011 IEEE.

  1. A W-Band Radiometer with the Offset Parabolic Antenna for Radiometric Measurements

    Directory of Open Access Journals (Sweden)

    Li Wu

    2016-01-01

    Full Text Available This paper deals with the development of a W-band noise-adding radiometer which combines the millimeter-wave (MMW radiometric measurements with a high-resolution imager. The offset parabolic antenna is presented to achieve an accurate measurement and a high resolution. To reduce the cross-polarization level of the antenna, a multimode feed horn with a multistep structure is proposed to match the focal region fields of the reflector. It has advantages over the corrugated horns in lower mass and easier manufacturing. In addition, due to an unavoidable settling time for the noise-adding radiometer output signal passing through the low-pass filter, a theoretical criterion for the optimum duty cycle determination to reject extraneous contributions from the transient is proposed in this paper. The appropriate duty cycle threshold is 0.33 for the developed W-band radiometer. Also, a geometric correction method is presented to correct the obtained passive image suffering from a distortion for a better image interpretation. Preliminary experimental results are given to illustrate and verify the presented techniques.

  2. Inflatable antenna for earth observing systems

    Science.gov (United States)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  3. Investigation of Diagonal Antenna-Chassis Mode in Mobile Terminal LTE MIMO Antennas for Bandwidth Enhancement

    DEFF Research Database (Denmark)

    Zhang, Shuai; Zhao, Kun; Ying, Zhinong

    2015-01-01

    mechanism of the mismatch of these three bandwidth ranges is also explained. Furthermore, the diagonal antenna-chassis mode is also studied for MIMO elements in the adjacent and diagonal corner locations. As a practical example, a wideband collocated LTE MIMO antenna is proposed and measured. It covers......A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...... the bands of 740960 and 1700-2700 MHz, where the total efficiencies are better than -3.4 and -1.8 dB, with lower than 0.5 and 0.1, respectively. The measurements agree well with the simulations. Since the proposed method only needs to modify the excitation locations of the MIMO elements on the chassis...

  4. A Design of 45-Degree Dual-Polarization Broadband Plane Station Antenna

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2015-01-01

    Full Text Available A new broadband planar dual-polarization base station antenna is proposed, the antenna consists of two broadband plane coplanar base station antenna units, and so it has features of plane antenna. Two broadband plane station antenna units can, respectively, form double polarization in the direction. We analyzed the relative positions between the two antenna units and their effects on the performances of the antenna, especially for the influence of isolation. Broadband antenna has the characteristics of the broadband station antenna, and bandwidth is also guaranteed. The measured results show that the antenna can obtain 45% relative bandwidth, and 30 dB isolation degree also can be got, and the radiation performance is also good. Measurement results confirmed that the antenna gain can be guaranteed among 48% relative bandwidth, 15 dB of gain is got among bandwidth of 1.69–2.78 GHz, the isolation degree of different polarization method can reach 30 dB, and the measurement gain of two polarization methods of antenna both can reach 8.5 dBi.

  5. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  6. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  7. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    Science.gov (United States)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  8. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  9. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  10. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  11. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2012-01-01

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  12. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  13. Modeling, Simulation, and Measurement of Balanced Antipodal Vivaldi (BAV) Antennas for Fully Polarimetric Forward-Looking Ground-Penetrating Radar (FLGPR) Receive Channels

    Science.gov (United States)

    2017-08-01

    Current Vivaldi Elements and Replacement Antennas Considered The majority of the design process was conducted through modeling and simulation ...ARL-TR-8111 ● AUG 2017 US Army Research Laboratory Modeling, Simulation , and Measurement of Balanced Antipodal Vivaldi (BAV...ARL-TR-8111 ● AUG 2017 US Army Research Laboratory Modeling, Simulation , and Measurement of Balanced Antipodal Vivaldi (BAV) Antennas for

  14. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  15. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Falk, L.

    1991-07-01

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  16. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  17. Ion cyclotron resonance heating (ICRH) start-up antenna for the mirror fusion test facility (MFTF-B)

    International Nuclear Information System (INIS)

    McCarville, T.M.; Romesser, T.E.

    1985-01-01

    The purpose of the ICRH start-up antenna on MFTF-B is to heat the plasma and control the ion distribution as the density increases during start-up. The antenna, consisting of two center fed half turn loops phased 180 0 apart, has been designed for 1 MW of input power, with a goal of coupling 400 kW into the ions. To vary the heating frequency relative to the local ion cyclotron frequency, the antenna is tunable over a range from 7.5 to 12.5 MHz. The thermal requirements common to low duty cycle ICRH antennas are especially severe for the MFTF-B antenna. The stress requirements are also unique, deriving from the possibility of seismic activity or JxB forces if the magnets unexpectedly quench. Considerable attention has been paid to contact control at high current bolt-up joints, and arranging geometries so as to minimize the possibility of voltage breakdown

  18. Printing of Wearable Antenna on Textile

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2018-01-01

    Full Text Available A wearable antenna which is meant to be a part of the clothing used for communication purposes includes tracking, navigation and mobile computing has been seen in demand due to the recent miniaturization of wireless devices. Printing of conductive ink provides flexibility properties on electronics thus allowing it to be used on conformal surfaces. However, the current printing techniques mostly suffer from ink incompatibility and limited of substrates to be printed with. Hence, this paper intend to discloses the printing of wearable antenna using alternative technique via syringe-based deposition system with conductive ink on textile. A validation between simulation and measurement of return loss, (S11 and radiation pattern of the antenna printed is also performed. It was found that a functional antenna is successfully printed on textile since the performances obtained are as expected. The antenna resonated at a minimum resonant frequency of 1.82 GHz which the S11 gathered at-18.90 dB. The radiation pattern for both simulation and measurement is as predicted since both have a larger magnitude of the main lobe than the side lobe. The magnitude of the main lobe from measurement was observed to be 8.83 dB higher than the magnitude of the main lobe of the simulation which is only 3.77 dB. It is proven that the syringe-based deposition system is capable of printing functional antenna on textile.

  19. The electromagnetic interferent antennae for gravitational waves detection

    International Nuclear Information System (INIS)

    Kulak, A.

    1984-01-01

    An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)

  20. Experimental study of a swept reflectometer with a single antenna for plasma density profile measurement

    International Nuclear Information System (INIS)

    Calderon, M.A.G.; Simonet, F.

    1984-12-01

    The feasibility of a swept microwave reflectometer, with one antenna only, for plasma electron density measurement is studied. Experimental results obtained in the laboratory by simulating the plasma with a metallic mirror are presented

  1. Precision Antenna Measurement System (PAMS) Engineering Services

    Science.gov (United States)

    1978-04-01

    8217) = receiving antenna gain for vertical polarization. The total direct signal power is Following Beck /narn and Spizzachino , the specular component...method may be valid for the problem. Very often, however, the physical optics 92 approach baaed on a solution of the wave equation will have to

  2. Superconducting microstrip antennas: An experimental comparison of two feeding methods

    International Nuclear Information System (INIS)

    Richard, M.A.; Claspy, P.C.; Bhasin, K.B.

    1993-01-01

    The recent discovery of high-temperature superconductors (HTS's) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. In this paper, two methods for feeding HTS microstrip antennas at K and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gap-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals

  3. Ferrite LTCC-based antennas for tunable SoP applications

    KAUST Repository

    Shamim, Atif

    2011-07-01

    For the first time, ferrite low temperature co-fired ceramic (LTCC) tunable antennas are presented. These antennas are frequency tuned by a variable magnetostatic field produced in a winding that is completely embedded inside the ferrite LTCC substrate. Embedded windings have reduced the typically required magnetic bias field for antenna tuning by over 95%. The fact that large electromagnets are not required for tuning makes ferrite LTCC with embedded bias windings an ideal platform for advanced tunable system-on-package applications. Measurements of rectangular microstrip patch antennas on a ferrite LTCC substrate display a maximum tuning range of 610 MHz near 12 GHz. Two different bias windings and their effect on the antenna performance are discussed, as is the effect of antenna orientation with respect to the bias winding. The antenna radiation patterns are measured under biased and unbiased conditions, showing a stable co-polarized linear gain. © 2011-2012 IEEE.

  4. A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2014-01-01

    Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.

  5. Multichannel microwave interferometer with an antenna switching system for electron density measurement in a laboratory plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kawamori, Eiichirou; Lin, Yu-Hsiang [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Mase, Atsushi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga 816-8580 (Japan); Nishida, Yasushi; Cheng, C. Z. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Plasma and Space Science Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-02-15

    This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.

  6. Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom

    Directory of Open Access Journals (Sweden)

    Tian Hong Loh

    2014-08-01

    Full Text Available This paper presents a study into radiation pattern measurements of an electrically small dielectric resonator antenna (DRA operating between 2.4 and 2.5 GHz in the industrial, scientific and medical (ISM radio band for body-centric wireless communication applications. To eliminate the distortion of the radiation pattern associated with the unwanted radiation from a metallic coaxial cable feeding the antenna we have replaced it with a fibre optic feed and an electro-optical (EO transducer. The optical signal is then converted back to RF using an Opto-Electric Field Sensor (OEFS system. To ensure traceable measurements of the radiation pattern performance of the wearable antenna a generic head and torso solid anthropomorphic phantom model has been employed. Furthermore, to illustrate the benefits of the method, numerical simulations of the co-polar and cross-polar H-plane radiation patterns at 2.4, 2.45, and 2.5 GHz are compared with the measured results obtained using: (i an optical fibre; and (ii a metallic coaxial cable.

  7. LLL transient-electromagnetics-measurement facility

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Miller, E.K.; Hudson, H.G.

    1975-01-01

    The operation and hardware of the Lawrence Livermore Laboratory's transient-electromagnetics (EM)-measurement facility are described. The transient-EM range is useful for determining the time-domain transient responses of structures to incident EM pulses. To illustrate the accuracy and utility of the EM-measurement facility, actual experimental measurements are compared to numerically computed values

  8. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  9. 5G MIMO Conformal Microstrip Antenna Design

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.

  10. Comparison of the FFT/matrix inversion and system matrix techniques for higher-order probe correction in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2011-01-01

    correction of general high-order probes, including non-symmetric dual-polarized antennas with independent ports. The investigation was carried out by processing with each technique the same measurement data for a challenging case with an antenna under test significantly offset from the center of rotation...

  11. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M

    2011-01-01

    designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable electrical....../V-band of telecom satellites. The paper will address requirements for future VASTs and possible architecture for multi-frequency Validation Standard antennas....

  12. Miniaturization of Multiple-Layer Folded Patch Antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2009-01-01

    A new folded patch antenna with multiple layers was developed in this paper, by folding the patch in a proper way, and a highly miniaturized antenna can be realized. The multiple layer patch with 4-layer and 6-layer are designed and evaluated at 2.4 GHz, 915 MHz, and 415 MHz respectively. Then a 4...... layer patch is fabricated and measured to validate the design method. The theoretical analysis, design and simulations, fabrications, as well as the measurements are presented in this paper. All the results show that the folded patch antenna is a good candidate in making a highly miniaturized compact...

  13. Antenna design for mobile devices

    CERN Document Server

    Zhang, Zhijun

    2017-01-01

    - Integrates state-of-the-art technologies with a special section for step-by-step antenna design - Features up-to-date bio-safety and electromagnetic compatibility regulation compliance and latest standards - Newly updated with MIMO antenna design, measurements and requirements - Accessible to readers of many levels, from introductory to specialist - Written by a practicing expert who has hired and trained numerous engineers

  14. Performance Verification on UWB Antennas for Breast Cancer Detection

    Directory of Open Access Journals (Sweden)

    Vijayasarveswari V.

    2017-01-01

    Full Text Available Breast cancer is a common disease among women and death figure is continuing to increase. Early breast cancer detection is very important. Ultra wide-band (UWB is the promising candidate for short communication applications. This paper presents the performance of different types of UWB antennas for breast cancer detection. Two types of antennas are used i.e: UWB pyramidal antenna and UWB horn antenna. These antennas are used to transmit and receive the UWB signal. The collected signals are fed into developed neural network module to measure the performance efficiency of each antenna. The average detection efficiency is 88.46% and 87.55% for UWB pyramidal antenna and UWB horn antenna respectively. These antennas can be used to detect breast cancer in the early stage and save precious lives.

  15. OPERATION MODES AND CHARACTERISTICS OF PLASMA DIPOLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Nikolay Nikolaevich Bogachev

    2014-02-01

    Full Text Available Existence modes of  surface electromagnetic wave on a plasma cylinder, operating modes and characteristics of the plasma antenna were studied in this paper. Solutions of the dispersion equation of surface wave were obtained for a plasma cylinder with finite radius for different plasma density values. Operation modes of the plasma asymmetric dipole antenna with finite length and radius were researched by numerical simulation. The electric field distributions of  the plasma antenna in near antenna field and the radiation pattern were obtained. These characteristics were compared to characteristics of the similar metal antenna. Numerical models verification was carried out by comparing of the counted and measured metal antenna radiation patterns.

  16. DEVELOPMENT OF CONCEPT OF HARDWARE-SOFTWARE COMPLEX OF MODULAR DESIGN FOR DETERMINATION OF ANTENNA SYSTEMS׳ CHARACTERISTICS BASED ON MEASUREMENTS IN THE NEAR FIELD

    Directory of Open Access Journals (Sweden)

    A. G. Buday

    2017-01-01

    Full Text Available Measuring the amplitude-phase distribution of the radiation field of complex antenna systems on a certain surface close to the radiating aperture allows solving the problem of reconstructing the free-space diagram in the far field and also helps in determining the influence of various structural elements and defects of radiating surfaces on formation of directional diagram. The purpose of this work was to develop a universal hardware-software complex of a modular design aimed for determining the characteristics of wide range of antenna systems in respect of measurements of the amplitude-phase distribution of the radiation field in the near zone.The equations that connect the structure of radiation fields of the antenna system at various distances from it in planar, cylindrical and spherical coordinate systems as well as structural diagrams of the hardware part of measuring complexes have been analyzed.As a result, the concept of constructing a universal hardware-software complex for measuring the radiation field of various types of antenna systems with any type of measurement surface for solving a wide range of applied problems has been developed. A modular structure of hardware and software has been proposed; it allows reconfiguring the complex rapidly in order to measure the characteristics of any particular antenna system at all stages of product development and testing, and also makes the complex economically accessible even for small enterprises and organizations.

  17. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  18. Self-Resonant Electrically Small Loop Antennas for Hearing-Aids Application

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Breinbjerg, Olav

    2010-01-01

    Two novel self-resonant electrically small antennas are proposed in this paper, which are designed for hearing aids applications. They are miniaturized by using the capacitive and inductive coupling mechanism between two loops, and the antenna impedance can be matched to a specific value without...... using any additional matching network and lumped components. The dimension of the proposed antenna is 0.10λ0×0.03λ0, and it is designed to be resonant at 900 MHz. Both the analytical model and numerical simulations are discussed and explained. The antenna is also fabricated and measured in an anechoic...... chamber. The measurement methods for electrically small antennas are reported....

  19. Current Monitoring System for ITER Like ICRH Antenna

    International Nuclear Information System (INIS)

    Argouarch, A.

    2006-01-01

    On TS antennas, the power transfer optimization from ICRH antenna to Plasma load is performed using feedback internal matching system. Experimental handling is required to mach the reactive impedance accordingly to the fluctuant plasma loading. As part of the development of the new ICRH prototype antenna, an additional measurement system based on Rogowski coils was developed to monitor the current distribution in antenna straps. The objective is to control module and phase of the antenna current straps with measurement provided by the coil system. Matching capacitors values, generators power and phase can also be controlled using the output of the devices, improving the real time matching control of the array. This paper details the new measurement layout, the Rogowski coil, and the whole system connected on each strap design for RF currents measurement between 40 MHz - 60 MHz for maximum amplitude of 1 kA. On the new ICRH prototype antenna, the measurement coils are coupled to the point where the strap currents are short circuited to the frame. The module and phase measurements are performed with the coils by direct magnetic induction in a vacuum and high temperature environment. Also, the Rogowski coils were characterized at low level power with vector network analyzer and the design adapted in order to obtain a controlled and reproducible gain in the desire bandwidth. The transconductive function is established with an experimental gain near -80 dB between primary circuit and inductive signal generated by the Rogowski coil. In a second step, the system with its associated electronic was qualified under high RF power. First results with high RF current (closed to 500 A at 57 MHz) match the desire Rogowski coil response. Compromises with electrical response at low power level and the coil under thermal/RF stresses were the most challenging part of the development. The overall response of the system and the current module/phase measurements are promising. A proper

  20. Body-Worn Spiral Monopole Antenna for On-Body Communications (Invited Paper)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    A novel body-worn spiral monopole antenna is presented. The antenna consists of a ground plane and a spiral monopole. The antenna was designed for Ear-to-Ear (E2E) communication between In-the-Ear (ITE) hearing instruments at 2.45 GHz and has been simulated, prototyped, and measured. The antenna ...... yielded a measured and simulated E2E path gain at 2.45 GHz of –82.1 dB and –85.9 dB, respectively. The radiation pattern of the antenna when mounted in the ear is presented and discussed....

  1. Microstrip patch antenna for simultaneous strain and temperature sensing

    Science.gov (United States)

    Mbanya Tchafa, F.; Huang, H.

    2018-06-01

    A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.

  2. Design and investigation of sectoral circular disc monopole fractal antenna and its backscattering

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2017-02-01

    Full Text Available This article presents the design of sectoral circular disc fractal antenna. The proposed antenna has been excited using CPW – feed. The measured result of this antenna offers the ultra wideband characteristics from 3.265 GHz to 15.0 GHz. The measured and simulated results are compared and found in good agreement. The impedance match of the antenna throughout the band is improved by incorporating the rectangular slots in the ground plane. The measured radiation patterns of this antenna are nearly omni-directional in H-plane and bidirectional in E-plane. The backscattering of antenna is also discussed and calculated for antenna mode and structural mode scattering. This type of antenna is useful for UWB system, microwave imaging and vehicular radar, precision positioning location.

  3. Current phase control test based on real-time measurement of impedance matrix of ICRF antennas

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K., E-mail: saito@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kumazawa, R.; Seki, T.; Kasahara, H.; Yokota, M.; Nomura, G.; Shimpo, F.; Mutoh, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    New ion cyclotron range of frequencies (ICRF) antennas have just been installed in the large helical device (LHD). These side-by-side ICRF antennas are symmetrical and designed to launch fast waves with various wave numbers parallel to the magnetic field line. The wave number can be controlled by changing the current phase on the straps; however, the mutual coupling between antennas changes antenna impedances, even if the plasma parameters are constant, leading to an increase in the reflected power. In addition to the current phase control, impedance matching devices must be tuned for the protection of tetrode tubes and efficient power injection. For this purpose, the impedance matrix of ICRF antennas must be determined, and it can be deduced from the forward and reflected waves at the outlet of the power amplifier by assuming geometric symmetry and reciprocity of the antennas. Using half-scale antennas, we successfully demonstrated simultaneous impedance matching and current phase control.

  4. Preparing ITER ICRF: development and analysis of the load resilient matching systems based on antenna mock-up measurements

    International Nuclear Information System (INIS)

    Messiaen, A.; Vervier, M.; Dumortier, P.; Grine, D.; Lamalle, P.U.; Durodie, F.; Koch, R.; Louche, F.; Weynants, R.

    2009-01-01

    The reference design for the ICRF antenna of ITER is constituted by a tight array of 24 straps grouped in eight triplets. The matching network must be load resilient for operation in ELMy discharges and must have antenna spectrum control for heating or current drive operation. The load resilience is based on the use of either hybrid couplers or conjugate-T circuits. However, the mutual coupling between the triplets at the low expected loading strongly counteracts the load resilience and the spectrum control. Using a mock-up of the ITER antenna array with adjustable water load matching solutions are designed. These solutions are derived from transmission line modelling based on the measured scattering matrix and are finally tested. We show that the array current spectrum can be controlled by the anti-node voltage distribution and that suitable decoupler circuits can not only neutralize the adverse mutual coupling effects but also monitor this anti-node voltage distribution. A matching solution using four 3 dB hybrids and the antenna current spectrum feedback control by the decouplers provides outstanding performance if each pair of poloidal triplets undergoes a same load variation. Finally, it is verified by modelling that this matching scenario has the same antenna spectrum and load resilience performances as the antenna array loaded by plasma as described by the TOPICA simulation. This is true for any phasing and frequency in the ITER frequency band. The conjugate-T solution is presently considered as a back-up option.

  5. Specific absorption rate and electric field measurements in the near field of six mobile phone base station antennas.

    Science.gov (United States)

    Toivonen, Tommi; Toivo, Tim; Puranen, Lauri; Jokela, Kari

    2009-05-01

    In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm x 500 mm x 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole-body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole-body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole-body average SAR, if the distance to the antenna was less than 240 mm. Copyright 2009 Wiley-Liss, Inc.

  6. Development of ceramic-free antenna feeder

    International Nuclear Information System (INIS)

    Moriyama, S.; Kimura, H.; Fujii, T.; Saigusa, M.; Arai, H.

    1994-01-01

    We have proposed a ceramics-free antenna feeder line employing a ridged waveguide as a local support for IC antenna of next-generation tokamaks. One fourth mock-up model of the all metal waveguide designed for the ITER ICRF system is fabricated and electrical characteristics of the model including the coaxial line - waveguide converter are measured. Power reflection coefficient of the model including the coax-waveguide converter to the input coaxial line is estimated to be less than 15% below the cut-off frequency of 107 MHz and less than 3% above the cut-off frequency. It is found that this ceramics-free antenna support employing a ridged waveguide is quite available for IC antenna of next-generation tokamaks. (author)

  7. In-the-Ear Spiral Monopole Antenna for Hearing Instruments

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2014-01-01

    A novel in-the-ear (ITE) antenna solution for hearing instruments that operates at 2.45 GHz is presented. The antenna consists of a quarter wave monopole and a ground plane that are placed in the ear. The simulated path gain | S 21 |is − 86 dB and the measured path gain is − 80 dB. Simulations an...... and measurements show that the antenna covers the entire 2.40 – 2.48 GHz industrial, scientific and medical (ISM) band. It is the first ever ITE-antenna solution that demonstrates the possibility of establishing an ear-to-ear link by using a standard Bluetooth chip...

  8. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-01-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  9. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.

    2011-08-21

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  10. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a

  11. Full-duplex MIMO system based on antenna cancellation technique

    DEFF Research Database (Denmark)

    Foroozanfard, Ehsan; Franek, Ondrej; Tatomirescu, Alexandru

    2014-01-01

    The performance of an antenna cancellation technique for a multiple-input– multiple-output (MIMO) full-duplex system that is based on null-steering beamforming and antenna polarization diversity is investigated. A practical implementation of a symmetric antenna topology comprising three dual......-polarized patch antennas operating at 2.4 GHz is described. The measurement results show an average of 60 dB self-interference cancellation over 200 MHz bandwidth. Moreover, a decoupling level of up to 22 dB is achieved for MIMO multiplexing using antenna polarization diversity. The performance evaluation...

  12. New Modelling Capabilities in Commercial Software for High-Gain Antennas

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Lumholt, Michael; Meincke, Peter

    2012-01-01

    characterization of the reflectarray element, an initial phaseonly synthesis, followed by a full optimization procedure taking into account the near-field from the feed and the finite extent of the array. Another interesting new modelling capability is made available through the DIATOOL software, which is a new...... type of EM software tool aimed at extending the ways engineers can use antenna measurements in the antenna design process. The tool allows reconstruction of currents and near fields on a 3D surface conformal to the antenna, by using the measured antenna field as input. The currents on the antenna...... surface can provide valuable information about the antenna performance or undesired contributions, e.g. currents on a cable,can be artificially removed. Finally, the CHAMP software will be extended to cover reflector shaping and more complex materials,which combined with a much faster execution speed...

  13. The Simulation and Experiment of a Non-Cross-Feeding Printed Log-Periodic Antenna

    Directory of Open Access Journals (Sweden)

    Chun-Ying Kang

    2015-01-01

    Full Text Available A non-cross-fed printed log-periodic antenna is simulated and studied experimentally. To avoid complex feeding with long coaxial line, the non-cross-feeding structure is applied in this antenna. The software CST Microwave Studio is employed to simulate the proposed antenna, and the optimized antenna model is obtained. According to the simulation results, the antenna prototype is produced and measured. Simulation and measured results show that the antenna is with S11<-10 dB in band of 4.2–9.2 GHz. And the radiation pattern and gain vary steadily in this band, which achieves requirements for wideband antenna. This antenna design can be extended to the design of the antenna integrated in communication circuit.

  14. Geodetic antenna calibration test in the Antarctic environment

    Science.gov (United States)

    Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.

    2006-01-01

    TransAntarctic Mountain DEFormation (TAMDEF) Monitoring Network is the NSF-sponsored OSU and USGS project, aimed at measuring crustal motion in the Transantarctic Mountains of Victoria Land using GPS carrier phase measurements. Station monumentation, antenna mounts, antenna types, and data processing strategies were optimized to achieve mm-level estimates for the rates of motion. These data contributes also to regional Antarctic frame definition. Significant amount of data collected over several years allow the investigation of unique aspects of GPS geodesy in Antarctica, to determine how the error spectrum compares to the mid-latitude regions, and to identify the optimum measurement and data processing schemes for Antarctic conditions, in order to test the predicted rates of motion (mm-level w.r.t. time). The data collection for the TAMDEF project was initiated in 1996. The primary antenna used has been the Ashtech L1/L2 Dorne Margolin (D/M) choke ring. A few occupations involved the use of a Trimble D/M choke ring. The data were processed using the antenna calibration data available from the National Geodetic Survey (NGS). The recent developments in new antenna designs that are lighter in weight and lower in cost are being considered as a possible alternative to the bulkier and more expensive D/M choke ring design. In November 2003, in situ testing of three alternative models of L1/L2 antennas was conducted at a site located in the vicinity of McMurdo Station, Antarctica (S77.87, E166.56). The antenna models used in this test were: Ashtech D/M choke ring, Trimble D/M choke ring, Trimble Zephyr, and the NovAtel GPS-702. Two stations, spaced within 30 meters, were used in the test. Both had the characteristics similar to the stations of the TAMDEF network, i.e., the UNAVCO fixed-height, force-centered level mounts with a constant antenna offset were used, ensuring extreme stability of the antenna/ mount/pin set up. During each of the four 3-day test data collection

  15. Reconfigurable antennas radiations using plasma Faraday cage

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2015-01-01

    International audience; This letter presents a new reconfigurable plasma antenna associated with a Faraday cage. The Faraday cage is realized using a fluorescent lamp. A patch antenna with a broadside radiation pattern or a monopole antenna with an end-fire radiation pattern , operating at 2.45 GHz, is placed inside Faraday cage. The performance of the reconfigurable system is observed in terms of input reflection coefficient, gain and radiation pattern via simulation and measurement. It is s...

  16. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-12-19

    The gain of an antenna can be enhanced through the integration of a lens, however this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, with a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB giving a peak gain of about 12.9 dBi at 8.8 GHz.

  17. Compact Dual-Band Zeroth-Order Resonance Antenna

    International Nuclear Information System (INIS)

    Xu He-Xiu; Wang Guang-Ming; Gong Jian-Qiang

    2012-01-01

    A novel microstrip zeroth-order resonator (ZOR) antenna and its equivalent circuit model are exploited with two zeroth-order resonances. It is constructed based on a resonant-type composite right/left handed transmission line (CRLH TL) using a Wunderlich-shaped extended complementary single split ring resonator pair (W-ECSSRRP) and a series capacitive gap. The gap either can be utilized for double negative (DNG) ZOR antenna or be removed to engineer a simplified elision-negative ZOR (ENG) antenna. For verification, a DNG ZOR antenna sample is fabricated and measured. Numerical and experimental results agree well with each other, indicating that the omnidirectional radiations occur at two frequency bands which are accounted for by two shunt branches in the circuit model. The size of the antenna is 49% more compact than its previous counterpart. The superiority of W-ECSSRRP over CSSRRP lies in the lower fundamental resonance of the antenna by 38.2% and the introduction of a higher zeroth-order resonance. (fundamental areas of phenomenology(including applications))

  18. Throughput Measurement of a Dual-Band MIMO Rectangular Dielectric Resonator Antenna for LTE Applications.

    Science.gov (United States)

    Nasir, Jamal; Jamaluddin, Mohd Haizal; Ahmad Khan, Aftab; Kamarudin, Muhammad Ramlee; Yen, Bruce Leow Chee; Owais, Owais

    2017-01-13

    An L-shaped dual-band multiple-input multiple-output (MIMO) rectangular dielectric resonator antenna (RDRA) for long term evolution (LTE) applications is proposed. The presented antenna can transmit and receive information independently using fundamental TE 111 and higher order TE 121 modes of the DRA. TE 111 degenerate mode covers LTE band 2 (1.85-1.99 GHz), 3 (1.71-1.88 GHz), and 9 (1.7499-1.7849 GHz) at f r = 1.8 GHz whereas TE 121 covers LTE band 7 (2.5-2.69 GHz) at f r = 2.6 GHz, respectively. An efficient design method has been used to reduce mutual coupling between ports by changing the effective permittivity values of DRA by introducing a cylindrical air-gap at an optimal position in the dielectric resonator. This air-gap along with matching strips at the corners of the dielectric resonator keeps the isolation at a value more than 17 dB at both the bands. The diversity performance has also been evaluated by calculating the envelope correlation coefficient, diversity gain, and mean effective gain of the proposed design. MIMO performance has been evaluated by measuring the throughput of the proposed MIMO antenna. Experimental results successfully validate the presented design methodology in this work.

  19. Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas.

    Science.gov (United States)

    van Wyk, Marnus J; Bingle, Marianne; Meyer, Frans J C

    2005-09-01

    International bodies such as International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineering (IEEE) make provision for human exposure assessment based on SAR calculations (or measurements) and basic restrictions. In the case of base station exposure this is mostly applicable to occupational exposure scenarios in the very near field of these antennas where the conservative reference level criteria could be unnecessarily restrictive. This study presents a variety of critical aspects that need to be considered when calculating SAR in a human body close to a mobile phone base station antenna. A hybrid FEM/MoM technique is proposed as a suitable numerical method to obtain accurate results. The verification of the FEM/MoM implementation has been presented in a previous publication; the focus of this study is an investigation into the detail that must be included in a numerical model of the antenna, to accurately represent the real-world scenario. This is accomplished by comparing numerical results to measurements for a generic GSM base station antenna and appropriate, representative canonical and human phantoms. The results show that it is critical to take the disturbance effect of the human phantom (a large conductive body) on the base station antenna into account when the antenna-phantom spacing is less than 300 mm. For these small spacings, the antenna structure must be modeled in detail. The conclusion is that it is feasible to calculate, using the proposed techniques and methodology, accurate occupational compliance zones around base station antennas based on a SAR profile and basic restriction guidelines. (c) 2005 Wiley-Liss, Inc.

  20. Analysis of a Compact Wideband Slotted Antenna for Ku Band Applications

    Directory of Open Access Journals (Sweden)

    M. R. Ahsan

    2014-01-01

    Full Text Available The design procedure and physical module of a compact wideband patch antenna for Ku band application are presented in this paper. Finite element method based on 3D electromagnetic field solver has been utilized for the designing and analyzing process of proposed microstrip line fed modified E-H shaped electrically small patch antenna. After successful completion of the design process through various simulations, the proposed antenna has been fabricated on printed circuit board (PCB and its characteristics have been studied. The parameters of the proposed antenna prototype have been measured in standard far-field rectangular shape anechoic measurement compartment. It is apparent from the measured antenna parameters that the proposed antenna achieved almost stable variation of radiation pattern over the entire operational band with 1380 MHz of -10 dB return loss bandwidth. The maximum gain of 7.8 dBi and 89.97% average efficiency within the operating band from 17.15 GHz to 18.53 GHz ensure the suitability of the proposed antenna for Ku band applications.

  1. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif; Salama, Khaled N.; Sedky, S.; Soliman, E. A.

    2012-01-01

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  2. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif

    2012-07-28

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  3. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  4. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  5. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  6. Recent results from CODALEMA and the Nançay radio facilities related to cosmic-ray measurements

    Directory of Open Access Journals (Sweden)

    Dallier Richard

    2017-01-01

    Full Text Available Since 2003, the NanÇay Radio Observatory hosts the CODALEMA experiment, dedicated to radio detection of cosmic ray induced extensive air showers. CODALEMA also features the R&D EXTASIS project, aiming at detecting the lowfrequency signal ([2-6] MHz produced at the sudden disappearance of the air shower particles hitting the ground. The 3 current antenna arrays present different antenna density and extent, and can be operated in a joint mode to record simultaneously the radio signal coming from air showers. Therefore, the NanÇay facilities may offer a complete description of the air shower induced electric field at small, medium and large scale, and over an unique and very wide frequency band (from ~ 2 to 200 MHz.

  7. Influence of the Antennas on the Ultra-Wideband Transmission

    Directory of Open Access Journals (Sweden)

    Werner Wiesbeck

    2005-03-01

    Full Text Available Spectrum is presently one of the most valuable goods worldwide as the demand is permanently increasing and it can be traded only locally. Since the United States Federal Communications Commission (FCC has opened the spectrum from 3.1 GHz to 10.6 GHz, that is, a bandwidth of 7.5 GHz, for unlicensed use with up to −41.25 dBm/MHz EIRP, numerous applications in communications and sensor areas are showing up. Like all wireless devices, these have an antenna as an integral part of the air interface. The antennas are modeled as linear time-invariant (LTI systems with a transfer function. The measurement of the antenna's frequency-dependent directional transfer function is described. Quality measures for the antennas like the peak value of the transient response, its width and ringing, as well as the transient gain are discussed. The application of these quality measures is shown for measurements of different UWB antennas.

  8. The Transportable Measurements Facility (TMF) System Description.

    Science.gov (United States)

    1980-05-23

    sites using different antennas, antenna/site characterization, ATCRBS-mode and DABS-mode processor evaluation, and DABS-based ATC and ATARS system...conditions met. 34 TABLE 3 TMF DATA RECORDED DURING EXPERIMENTS By Word Type 1) By Parameter Word No. of Bits Experiment Number 8 Physical Location Number of

  9. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K; Taniguchi, T; Kubota, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  10. The Use of Conductive Ink in Antenna Education and Design

    Science.gov (United States)

    Addison, David W.

    Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the requirements of a compact Global Navigation Satellite System (GNSS) antenna while showing a competitive performance within the current market. One best design is shown along with three other structures. These antennas consist of a bowtie cross-dipole over a reflective disc with conductive-ink grounded structures. In addition to the GNSS antennas, a linear elliptical dipole over a reflective disc with conductive grounded structures is presented. This elliptical antenna design attempts to find the maximum impedance bandwidth beyond the GNSS band. The inexpensive nature of conductive ink allows for its use in a classroom to demonstrate antenna behavior as part of antenna education. An inexpensive approach to the patch antenna using conductive ink is described and paired with a system made of off-the-shelf parts. The system is capable of measuring the power of the received signal. The received signal measurement is not as accurate as using a anechoic chamber but pattern details are visible. This is used to demonstrate aspects of the Friis transmission equation such as distance, polarization, radiation pattern shape, and loss.

  11. Occupational exposure to radiofrequency fields in antenna towers

    International Nuclear Information System (INIS)

    Alanko, T.; Hietanen, M.

    2007-01-01

    Exposure of workers to radiofrequency fields was assessed in two medium-sized antenna towers. Towers had transmitting antennas from different networks, e.g. mobile phone networks, radio and digital TV sub-stations and amateur radio. The levels of radiofrequency fields were measured close to the ladders of the towers. All measured values were below ICNIRP occupational reference levels. (authors)

  12. Dual Polarized Monopole Patch Antennas for UWB Applications with Elimination of WLAN Signals

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2016-05-01

    Full Text Available This paper presents the design, fabrication and measurement of dual polarized microstrip patch antennas for ultra wideband (UWB applications with notch at 5-6 GHz band. The proposed antenna rejects the wireless local area network (WLAN signals and work properly in the entire remaining ultra-wideband. Two antennas are designed for two different frequency bands of ultra wideband and both antennas together produce the entire ultra wideband with notch at 5-6 GHz band. The antennas are fed by a 50 coaxial probe and the entire design is optimized using CST Microwave Studio. The bandwidth of 3.1-5 GHz is achieved by the optimized design of Antenna-1 and the bandwidth of 6 -10.6 GHz is achieved by the optimized design of Antenna-2. The bandwidth of the optimized combined antenna is 3.1-10.6 GHz with elimination of the 5-6 GHz band. Both antennas are simulated, developed and measured. The simulated and measured results are presented. The two designed dual polarized antennas i.e. Antenna-1 and Antenna-2 can be used for 3.1-5 GHz band and 6-10.6 GHz band dual polarized applications, respectively, and the combined antenna structure can be used for UWB dual polarized applications with elimination of 5-6 GHz band signals.

  13. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2005-02-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  14. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  15. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    effective (or equivalent) isotropic radiated power (EIRP), an HG tip antenna inside a blade gives stronger direct pulse amplitudes and better pulse waveforms for accurate and reliable distance estimations than the LG. Moreover, the direct pulse with the HG antenna is also closer to the blade surface, which...... in free space have similar realized gain when allocated inside blades, so that the emission power for the HG and LG antennas in blades can be the same. The antenna gain impacts on time-domain pulse waveforms and power distributions around a blade are carefully investigated (with the tip antenna inside...... a blade). Higher antenna gain enlarges both direct pulse and multipath but in different levels. To verify the simulations, time-domain measurements are performed with a full 37-meter blade. Pulse waveforms and power delay profiles are measured. From all the studies, it follows that: with the similar...

  16. Tri-band small monopole antenna based on SRR units

    Directory of Open Access Journals (Sweden)

    Gehan Shehata

    2015-12-01

    Full Text Available In this paper a novel design for a tri-band monopole antenna coupled with metamaterial units is introduced. The proposed antenna was designed to cover WiMAX (2.5, 3.5 and WLAN (5.2 bands. In our proposal, a coplanar waveguide (CPW fed circular-disk monopole antenna is coupled with three split ring resonator (SRR units which exist on its back side. In our design a monopole antenna and SRR units are designed first to resonate at 5.2 GHz and 2.5 GHz respectively. In addition, antenna is loaded with post to force resonance at 3.5 GHz. SRR units are used for 2.5 GHz resonance to miniaturize antenna size, and our proposed antenna considered an electrically small antenna (ESA at its first resonance frequency. Simulated and measured results exhibit a good agreement that validate our design.

  17. A Low Profile Ultrawide Band Monopole Antenna for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Srinivas Doddipalli

    2017-01-01

    Full Text Available A low profile pentagonal shaped monopole antenna is designed and presented for wearable applications. The main objective of this paper is to design a miniaturized ultrawide band monopole planar antenna which can work efficiently in free space but also on the surface of the human body. The impact of human tissues on antenna performance is explained using the proposed pentagonal monopole antenna. The antenna is designed with a pentagonal radiator and a matched feed line of 50 ohm and square slots are integrated on defected ground of FR4 substrate with a size of 15 mm × 25 mm to achieve ultrawide band (UWB performance in free space and human proximity. This overall design will enhance the antenna performance with wide bandwidth ranging from 2.9 GHz to 11 GHz. Specific absorption rate (SAR of the proposed antenna on dispersive phantom model is also measured to observe the exposure of electromagnetic energy on human tissues. The simulated and measured results of the proposed antenna exhibit wide bandwidth and radiation characteristics in both free space and human proximity.

  18. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  19. Fractal Based Triple Band High Gain Monopole Antenna

    Science.gov (United States)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  20. High Rate User Ka-Band Phased Array Antenna Test Results

    Science.gov (United States)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  1. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  2. Design and performance of the ALMA-J prototype antenna

    Science.gov (United States)

    Ukita, Nobuharu; Saito, Masao; Ezawa, Hajime; Ikenoue, Bungo; Ishizaki, Hideharu; Iwashita, Hiroyuki; Yamaguchi, Nobuyuki; Hayakawa, Takahiro

    2004-10-01

    The National Astronomical Observatory of Japan has constructed a prototype 12-m antenna of the Atacama Compact Array to evaluate its performance at the ALMA Test Facility in the NRAO VLA observatory in New Mexico, the United States. The antenna has a CFRP tube backup structure (BUS) with CFRP boards to support 205 machined Aluminum surface panels. Their accuracies were measured to be 5.9 m rms on average. A chemical treatment technique of the surface panels has successfully applied to scatter the solar radiation, which resulted in a subreflector temperature increase of about 25 degrees relative to ambient temperature during direct solar observations. Holography measurements and panel adjustments led to a final surface accuracy of 20 m rms, (weighted by 12dB edge taper), after three rounds of the panel adjustments. Based on a long term temperature monitoring of the BUS and thermal deformation FEM calculation, the BUS thermal deformation was estimated to be less than 3.1 m rms. We have employed gear drive mechanism both for a fast position switching capability and for smooth drive at low velocities. Servo errors measured with angle encoders were found to be less than 0.1 arcseconds rms at rotational velocities below 0.1 degrees s-1 and to increase to 0.7 arcseconds rms at the maximum speed of the 'on-the-fly' scan as a single dish, 0.5 deg s-1 induced by the irregularity of individual gear tooth profiles. Simultaneous measurements of the antenna motion with the angle encoders and seismic accelerometers mounted at the primary reflector mirror edges and at the subreflector showed the same amplitude and phase of oscillation, indicating that they are rigid, suggesting that it is possible to estimate where the antenna is actually pointing from the encoder readout. Continuous tracking measurements of Polaris during day and night have revealed a large pointing drift due to thermal distortion of the yoke structure. We have applied retrospective thermal corrections to

  3. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts.

    Science.gov (United States)

    Koprivica, Mladen; Neskovic, Natasa; Neskovic, Aleksandar; Paunovic, George

    2014-01-01

    As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m(-1), which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were <1 and 2 V m(-1), respectively.

  4. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts

    International Nuclear Information System (INIS)

    Koprivica, M.; Neskovic, N.; Neskovic, A.; Paunovic, G.

    2014-01-01

    As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m -1 , which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were -1 , respectively. (authors)

  5. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  6. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.

    2017-12-05

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  7. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  8. Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2016-01-01

    International audience; This letter presents a new reconfigurable antenna associated with a plasma Faraday shield effect. The Faraday shield effect is realized by using a fluorescent lamp. A patch antenna operating at 2.45 GHz is placed inside the lamp. The performance of the reconfigurable system is observed in terms of S11, gain and radiation patterns by simulation and measurement. It is shown that by switching ON the fluorescent lamp, the gain of the antenna decreases and the antenna syste...

  9. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  10. Novel Wideband Metallic Patch Antennas with Low Profile

    Directory of Open Access Journals (Sweden)

    Zhong-Xiang Zhang

    2017-01-01

    Full Text Available Two planar metallic patch (MP antennas with low profiles are investigated and compared in this paper. The MP of each antenna consists of metallic patch cells and it is centrally fed by a rectangular slot. Two modes with close resonance frequencies are excited, providing a quite wide bandwidth. The antenna principle is explained clearly through a parametric study. Simulated and measured results show that the MP antennas with profile of 0.06λ0 can obtain a 10 dB impedance bandwidth of ~32% and an average gain of ~10 dBi.

  11. CPW-fed wearable antenna at 2.4 GHz ISM band

    Science.gov (United States)

    Muhammad, Zuraidah; Shah, S. M.; Abidin, Z. Z.; Asyhap, Adel Y. I.; Mustam, S. M.; Ma, Y.

    2017-09-01

    A wearable antenna working in 2.4 GHz for Industrial, Scientific and Medical (ISM) radio bands is presented in this work. The proposed antenna is a rectangular textile antenna with a coplanar waveguide (CPW) feeding on a cotton jeans as the substrate material. The antenna has a compact size with dimensions of 30 × 30 mm2 which makes it an attractive solution in a wearable antenna construction. The linear characteristics of the antenna are investigated to evaluate the performance of the antenna. The simulation and measurements results are compared and they agree well with each other.

  12. Simulating the JET ITER-like Antenna circuit

    International Nuclear Information System (INIS)

    Van Eester, D.; Lerche, E.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Vrancken, M.; Argouarch, A.; Blackman, T.; Jacquet, P.; Mayoral, M.-L.; Monakhov, I.; Nightingale, M.; Wooldridge, E.; Whitehurst, A.; Goulding, R. H.

    2009-01-01

    A set of simulation/interpretation tools based on transmission line theory and on the RF model developed by M. Vrancken has been developed to study the ITER-like Antenna (ILA) at JET. For given tuning element settings, the unique solution of the equations governing the ILA circuit requires solving a system of coupled linear equations relating the voltages and currents at the antenna straps and other key locations. This computation allows cross-checking predicted values against measured experimental ones. Further more, a minimization procedure allows improving the correspondence with the quantities measured in the circuit during shots, thus coping with unavoidable errors arising from uncertainties in the measurements or from inaccuracies in the adopted RF model. Typical applications are e.g. fine-tuning of the second-stage of the ILA circuit for increased ELM-resilience, cross-checking the calibration of the measurements throughout the circuit and predicting the antenna performance and matching conditions in new plasma scenarios.

  13. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  14. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  15. Helicon plasma with additional immersed antenna

    International Nuclear Information System (INIS)

    Aanesland, A; Charles, C; Boswell, R W; Fredriksen, A

    2004-01-01

    A 'primary' RF power (H-power) at 13.56 MHz is coupled to a plasma source excited by an external double saddle field Helicon antenna. A 'secondary' RF power (S-power), also at 13.56 MHz but with variable phase, is additionally coupled by inserting a second antenna in contact with the plasma through one end of the source. The immersed antenna can be grounded or floating, allowing a self-bias to form in the latter case. Changes in the plasma density and electron temperature are measured in both cases with varying power on the immersed antenna. The plasma potential increases dramatically with S-power in the grounded case, and is found to be similar in size to the sum of the plasma potential and the self-bias formed in the floating case for all powers. Hence, the sheath between the immersed antenna and the plasma is shown to be equal in both the grounded and floating cases. Although the power efficiency does not vary significantly as a function of the S-power, it is consistently lower for the grounded case possibly as a result of a dc current to ground. The plasma parameters are drastically changed as the phase between the two antennae are varied (floating case), and a sinusoidal function was fitted to the plasma parameters as a function of the phase shift. The calculated power loss to the antenna indicates that the power efficiency of the immersed antenna, as the phase is changed, is altered from 80% to 10%

  16. Characterization of polymer silver pastes for screen printed flexible RFID antennas

    Science.gov (United States)

    Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta

    Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.

  17. Planar C-Band Antenna with Electronically Controllable Switched Beams

    Directory of Open Access Journals (Sweden)

    Mariano Barba

    2009-01-01

    Full Text Available The design, manufacturing, and measurements of a switchable-beam antenna at 3.5 GHz for WLL or Wimax base station antennas in planar technology are presented. This antenna performs a discrete beam scan of a 60∘ sector in azimuth and can be easily upgraded to 5 or more steps. The switching capabilities have been implemented by the inclusion of phase shifters based on PIN diodes in the feed network following a strategy that allows the reduction of the number of switches compared to a classic design. The measurements show that the design objectives have been achieved and encourage the application of the acquired experience in antennas for space applications, such as X-band SAR and Ku-band DBS.

  18. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  19. FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, G. [SKA SA, 3rd Floor, The Park, Park Road, Pinelands, 7405 (South Africa); McQuinn, M. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Greenhill, L. J., E-mail: gbernardi@ska.ac.za [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-01-20

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ∼ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered {sup s}pectrally smooth{sup )}. Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ∼fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

  20. Design and Fabrication of a Reconfigurable MEMS-Based Antenna

    KAUST Repository

    Martinez, Miguel Angel Galicia

    2011-06-22

    This thesis presents the design and fabrication of a customized in house Micro-Electro-Mechanical-Systems (MEMS) process based on-chip antenna that is both frequency and polarization reconfigurable. It is designed to work at both 60 GHz and 77 GHz through MEMS switches. This antenna can also work in both horizontal and vertical linear polarizations by utilizing a moveable plate. The design is intended for Wireless Personal Area Networks (WPAN) and automotive radar applications. Typical on-chip antennas are inefficient and difficult to reconfigure. Therefore, the focus of this work is to develop an efficient on-chip antenna solution, which is reconfigurable in frequency and in polarization. A fractal bowtie antenna is employed for this thesis, which achieves frequency reconfigurability through MEMS switches. The design is simulated in industry standard Electromagnetic (EM) simulator Ansoft HFSS. A novel concept for horizontal to vertical linear polarization agility is introduced which incorporates a moveable polymer plate. For this work, a microprobe is used to move the plate from the horizontal to vertical position. For testing purposes, a novel mechanism has been designed in order to feed the antenna with RF-probes in both horizontal and vertical positions. A simulated gain of approximately 0 dB is achieved at both target frequencies (60 and 77 GHz), in both horizontal and vertical positions. In all the cases mentioned above (both frequencies and positions), the antenna is well matched (< -10 dB) to the 50 Ω system impedance. Similarly, the radiation nulls are successfully shifted by changing the position of the antenna from horizontal to vertical. The complete design and fabrication of the reconfigurable MEMS antenna has been done at KAUST facilities. Some challenges have been encountered during its realization due to the immaturity of the customized MEMS fabrication process. Nonetheless, a first fabrication attempt has highlighted such shortcomings. According

  1. Lunar Noise-Temperature Increase Measurements at S-Band, X-Band, and Ka-Band Using a 34-Meter-Diameter Beam-Waveguide Antenna

    Science.gov (United States)

    Morabito, D. D.

    2006-08-01

    The Moon radiates energy at infrared and microwave wavelengths, in addition to reflecting sunlight at optical wavelengths. As a result, an antenna pointed at or near the Moon will cause an increase in receiver noise temperature that needs to be accounted for in telemetry, radio science, or ranging link budgets. The Deep Space Network may be required to use its antennas in future lunar robotic or human missions, and thus it is important to understand the nature of this temperature increase as a function of observing frequency, lunar phase, and angular offset of the antenna beam from the center of the lunar disk. This article quantifies such a set of measurements acquired at DSS 13, a 34-m-diameter research and development beam-waveguide antenna located at Goldstone, California, at three different telecommunication frequencies, S-band (2.3 GHz), X-band (8.4 GHz), and Ka-band (32 GHz), over a wide range of lunar phase, for both disk-centered and limb-centered positions of the antenna beam.

  2. Miniaturised self-resonant split-ring resonator antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    at the resonance is governed by the arc length of the monopole. Numerical and experimental results are presented for an antenna configuration of 1/23.4 wavelength in diameter (ka~0.134). The antenna is tuned to 50 ohms without any matching network, and its efficiency is measured to be 17.5%....

  3. Antenna conditioning with insulating antenna tiles in Phaedrus-T

    International Nuclear Information System (INIS)

    Intrator, T.; Probert, P.; Doczy, M.; Diebold, D.; Brouchous, D.

    1994-01-01

    In the course of our Alfven wave heating and current drive experiments several different two and four strap antennas have been installed in Phaedrus-T. The motivation focusing the redesign of the antenna into a four strap design was to enable traveling wave phasing, and to reduce the k parallel ∼0 component of the wavenumber spectrum, and consequent edge power deposition. The latest modifications to the 4 strap antenna have dramatically improved its behavior, and enabled us to suppress its RF power induced impurity generation. The remaining gas reflux fueling is significant and is not local to the antenna

  4. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  5. A CPW-Fed Quasi-PIFA Antenna Using Quasi-Lumped Resonators for Mobile Phones

    Directory of Open Access Journals (Sweden)

    Majid Rafiee

    2015-01-01

    Full Text Available A novel single CPW-fed Quasi-Planar Inverted-F Antenna (PIFA using quasi-lumped elements is developed for mobile communication handheld terminals operating at 2.6 GHz. The antenna is composed of an inductor covered by a set of interdigital and parasitic capacitors. The proposed antenna achieves a measured bandwidth of 11% for return loss with the antenna gain of about 4 dBi. The antenna is designed in single layer (zero height which is appropriate to be used in thin devices where a small room is considered for the antenna. The proposed antenna is suitable for use in Long Term Evolution band 7. The operating frequency of introduced antenna depends on the number of interdigital fingers and inductor length rather than the total resonator patch only, so that the operating frequency can be altered while the total patch size remains unchanged. The calculated operating frequency is confirmed by simulation and measurement. Also the dipole-like simulated radiation pattern is confirmed by measurement.

  6. Composite GPS Patch Antenna for the AR Bandwidth Enhancement

    Directory of Open Access Journals (Sweden)

    Minkil Park

    2016-01-01

    Full Text Available A composite Global Positioning System (GPS patch antenna with a quadrature 3 dB hybrid coupler was designed and implemented for working RHCP and had a broadband axial ratio (AR bandwidth. We designed two patches as a FR-4 patch and 1.5 mm thickness thin ceramic patch with a quadrature 3 dB hybrid coupler. A CP radiation pattern was achieved, and the AR bandwidth improved by incorporating a quadrature 3 dB hybrid coupler feed structure in a micro-strip patch antenna. SMD by chip elements was applied to the quadrature 3 dB hybrid coupler. For the composite FR-4 and ceramic patch antennas, the VSWR measurement showed a 2 : 1 ratio over the entire design band, and the 3 dB AR bandwidth was 295 and 580 MHz for the FR-4 patch and ceramic patch antennas, respectively. The antenna gains for the composite FR-4 and ceramic patch antennas were measured as 1.36–2.75 and 1.47–2.71 dBi with 15.11–25.3% and 19.25–28.45% efficiency, respectively.

  7. Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    Directory of Open Access Journals (Sweden)

    Fraga-Rosales Hector

    2017-01-01

    Full Text Available In this paper, a microstrip bowtie patch antenna (MBPA for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation employing near-field equipment. The experimental results are described in detail intending to agree well with the simulated predictions. The antenna was designed, measured and built and its far field performance was evaluated with a 2.11 GHz resonant frequency. The azimuth and elevation antenna patterns, antenna gain and, the matching frequency were the main parameters obtained to analyze the antenna behaviour. The antenna has a gain approximately equal to 8.77 dBi and its beam-widths are higher than 100° in E plane.

  8. Implementation and investigation of circular slot UWB antenna with dual-band-notched characteristics

    Directory of Open Access Journals (Sweden)

    DadashZadeh Gholamreza

    2011-01-01

    Full Text Available Abstract The design and analysis of an ultra wideband aperture antenna with dual-band-notched characteristics are presented. The proposed antenna consists of a circular ring exciting stub on the front side and a circular slot on the back ground plane. By utilizing a parasitic strip and a T-shaped stub on the antenna structure, two notched bands of 850 MHz (3.5-4.35 GHz and 900 MHz (5.05-5.95 GHz are achieved. The proposed antenna is fabricated and measured. Measured results show that this antenna operates from 2.3 GHz to upper 11 GHz for voltage standing wave ratio less than 2, except two frequency notched bands of 3.5-4.35 and 5.05-5.95 GHz. Moreover, the experimental results show that proposed antenna has stable radiation patterns and constant gain. A conceptual circuit model, which is based on the measured impedance of the proposed antenna, is also shown to investigate the dual-band-notched characteristics.

  9. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  10. Phase shifter for antenna beam steering

    International Nuclear Information System (INIS)

    Jindal, Ravi; Razban, Tchanguiz

    2016-01-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  11. Body-Worn Spiral Monopole Antenna for Body-Centric Communications (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2016-01-01

    A novel body-worn spiral monopole antenna is presented. The antenna consists of a ground plane and a spiral monopole. The antenna is designed for Ear-to-Ear (E2E) communication between In-the-Ear (ITE) Hearing Instruments (HIs) at 2.45 GHz and has been simulated, prototyped and measured. The ante...

  12. Textile UWB Antenna Bending and Wet Performances

    Directory of Open Access Journals (Sweden)

    Mai A. R. Osman

    2012-01-01

    Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.

  13. Statistical Modeling of Antenna: Urban Equipment Interactions for LTE Access Points

    Directory of Open Access Journals (Sweden)

    Xin Zeng

    2012-01-01

    Full Text Available The latest standards for wireless networks such as LTE are essentially based on small cells in order to achieve a large network capacity. This applies for antennas to be deployed at street level or even within buildings. However, antennas are commonly designed, simulated, and measured in ideal conditions, which is not the real situation for most applications where antennas are often deployed in proximity to objects acting as disturbers. In this paper, three conventional wireless access point scenarios (antenna-wall, antenna-shelter, and antenna lamppost are investigated for directional or omnidirectional antennas. The paper first addresses the definition of three performance indicators for such scenarios and secondly uses such parameters towards the statistical analysis of the interactions between the wall and the antennas.

  14. Validation of the LH antenna code ALOHA against Tore Supra experiments

    International Nuclear Information System (INIS)

    Hillairet, J.; Ekedahl, A.; Kocan, M.; Gunn, J. P.; Goniche, M.

    2009-01-01

    Comparisons between ALOHA code predictions and experimental measurements of reflection coefficients for the two different Lower Hybrid Current Drive (LHCD) antennas (named C2 and C3) in Tore Supra are presented. A large variation of density in front of the antennas was obtained by varying the distance between the plasma and the antennas. Low power ( 2 ) was used in order to avoid non-linear effects on the wave coupling. Results obtained with ALOHA are in good agreement with the experimental measurements for both Tore Supra antennas and show that ALOHA is an efficient LH predictive tool.

  15. A New Metasurface Superstrate Structure for Antenna Performance Enhancement.

    Science.gov (United States)

    Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal

    2013-07-31

    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.

  16. Antenna Controller Replacement Software

    Science.gov (United States)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  17. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  18. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Directory of Open Access Journals (Sweden)

    Yuharu Shinki

    2017-08-01

    Full Text Available This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  19. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  20. A Compact Annular Ring Microstrip Antenna for WSN Applications

    Directory of Open Access Journals (Sweden)

    Daihua Wang

    2012-06-01

    Full Text Available A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna’s performance of a steel installation base. By using a chip resistor of large resistance (120 Ω the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  1. Fluorescence polarization measures energy funneling in single light-harvesting antennas--LH2 vs conjugated polymers.

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J; Sforazzini, Giuseppe; Anderson, Harry L; Pullerits, Tõnu; Scheblykin, Ivan G

    2015-10-19

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.

  2. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    KAUST Repository

    Shamim, Atif; Arsalan, Muhammad; Roy, L; Salama, Khaled N.

    2012-01-01

    with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been

  3. Battery-less wireless interrogation of microstrip patch antenna for strain sensing

    International Nuclear Information System (INIS)

    Xu, X; Huang, H

    2012-01-01

    This paper presents a battery-less wireless interrogation system that can measure the resonant frequency of a microstrip patch antenna with a fine resolution. Since the antenna resonant frequency is sensitive to strain-induced deformations, wireless interrogation of the antenna sensor for strain measurement was demonstrated. By implementing a microwatt impedance switching circuit at the sensor node, the antenna backscattering is amplitude modulated at the sensor node so that it can be separated from the structural backscattering at the interrogator. The sensor node can be powered by a small photocell and thus achieve battery-less operation. The operating principle of the wireless interrogation system is first described, followed by the implementation and characterization of the wireless interrogation system. The antenna resonant frequency shifts were correlated to the applied strains through a static tensile experiment. An excellent agreement between the experimental results and the analytical prediction was obtained. A power transmission model was established and validated with experimental measurements. Based on this power transmission model, we estimated that the maximum interrogation distance of the wireless strain measurement system is 26 m. (paper)

  4. Ferrite LTCC-based antennas for tunable SoP applications

    KAUST Repository

    Shamim, Atif; Bray, Joey R.; Hojjat, Nasrin; Roy, Langis

    2011-01-01

    tunable system-on-package applications. Measurements of rectangular microstrip patch antennas on a ferrite LTCC substrate display a maximum tuning range of 610 MHz near 12 GHz. Two different bias windings and their effect on the antenna performance

  5. Small and Robust Antennas for Concrete Embedded Sensors

    DEFF Research Database (Denmark)

    Rindorf, Lars; Jakobsen, Kaj Bjarne

    2009-01-01

    We study a small antenna for a structural health monitoring sensor. The sensor is cast into concrete. The sensor monitors the humidity and temperature of the concrete, which is a harsh environment. From measured material parameters of the concrete we estimate the signal loss and the antenna detun...

  6. A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Directory of Open Access Journals (Sweden)

    M. Dhaouadi

    2014-12-01

    Full Text Available The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz, which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications.

  7. Analysis and Design of a Novel Multiband Antenna for Mobile Terminals

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2015-01-01

    Full Text Available A multiband planar terminal antenna with a compact size of 40 mm × 24 mm is proposed in this paper. This antenna consists of a monopole patch with two slots on it and a meandering strip loaded on the top. Two parasitic stubs and a branch on the ground are used to adjust and widen the impedance bandwidth of the antenna. Simulations and measurements are carried out to study the antenna performances in terms of impedance matching, efficiency, gain, and radiation patterns. Both of simulation and measurement results are shown to illustrate the good performance of the proposed antenna. The antenna can operate at 450–474 MHz, 860–1040 MHz, 1705–2428 MHz, and 2500–2710 MHz. These operating bandwidths cover GSM900, DCS, PCS, UMTS, LTE2500, and LTE’s low frequency band (450–470 MHz. It is very suitable for multifunctional terminal applications in wireless communication systems.

  8. 10 GHz microstrip spanar antennas: an experimental analysis

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Azman, Hazwani; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abd; Rahim, Yahaya Abd; Pee, Ahmad Nairn Che; Motsidi, Mohamad Radzi; Othman, Mohd Fairuz Iskandar

    2014-01-01

    This paper presents Spanar Antenna designed using CST Microwave Studio Simulation 2011. The proposed antenna was designed to operate at 10 GHz, which suggested return loss, S 11 must be less than -10 dB and voltage standing wave ratio (VSWR) must be less than 2. The best performance of simulation of Spanar Antenna was obtained at a small size of 24.8 mm × 8.0 mm with dimension board of FR4 substrate 31.7 mm × 18.5 mm. The thickness (h) and dielectric constant (εr) of substrate were 1.6 mm and 4.7. An analysis between simulation result and measurement result has been compared in order to see the antenna performance.

  9. Performance Study of Screen-Printed Textile Antennas after Repeated Washing

    Directory of Open Access Journals (Sweden)

    Kazani I.

    2014-06-01

    Full Text Available The stability of wearable textile antennas after 20 reference washing cycles was evaluated by measuring the reflection coefficient of different antenna prototypes. The prototypes’ conductive parts were screen-printed on several textile substrates using two different silver-based conductive inks. The necessity of coating the antennas with a thermoplastic polyurethane (TPU coating was investigated by comparing coated with uncoated antennas. It is shown that covering the antennas with the TPU layer not only protects the screen-printed conductive area but also prevents delamination of the multilayered textile fabric substrates, making the antennas washable for up to 20 cycles. Furthermore, it is proven that coating is not necessary for maintaining antenna operation and this up to 20 washing cycles. However, connector detachment caused by friction during the washing process was the main problem of antenna performance degradation. Hence, other flexible, durable methods should be developed for establishing a stable electrical connection.

  10. Measurements of loop antenna loading in RF heating experiments on the KT-5C tokamak

    International Nuclear Information System (INIS)

    Zhai Kan; Deng Bihe; Wen Yizhi; Wan Shude; Liu Wandong; Yu Wen; Yu Changxun

    1997-01-01

    A new method to measure the loop antenna loadings in the RF wave heating experiments (IBWH at reasonable RF power with relatively low frequency) on the KT-5C device is presented. The method is characterized by determining the RF current ratio only, so it eases the needs of instruments and simplifies the requirements for calibration and data processing in the experiments

  11. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2015-01-01

    In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface. Unlike conventional ground plane reflecting surfaces, AMC surfaces generally enhance the radiation and impedance characteristics of close-by antennas. Based on this property, a ring-based AMC reflecting surface has been designed in the oxide layer for on-chip antennas operating at 94 GHz. Furthermore, a folded dipole antenna with its associ- ated planar feeding structures has been optimized and integrated with the developed ring-based AMC surface. The proposed design is then fabricated at KAUST clean- room facilities. Prototype characterization showed very promising results with good correlation to simulations, with the antenna exhibiting an impedance bandwidth of 10% (90-100 GHz) and peak gain of -1.4 dBi, which is the highest gain reported for on-chip antennas at this frequency band without the use of any external o↵-chip components or post-fabrication steps.

  12. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2016-01-01

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B_0. The other antenna is an elongated loop with dipole moment parallel to B_0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  13. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  14. An improved broadband E patch microstrip antenna for wireless communications

    Science.gov (United States)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  15. Multislot microstrip antenna for ultra-wide band applications

    Directory of Open Access Journals (Sweden)

    Noor M. Awad

    2018-01-01

    Full Text Available In this paper designs of both planar ultra-wide band (UWB antenna and UWB antenna with two rejected bands are given. The antenna consists of a rectangular patch etched on FR4-substrate with 50 Ω feed line. The rectangular patch has one round cut at each corner with one slot in the ground plane. The simulated bandwidth with return loss (RL ⩾ 10 dB is 3.42–11.7 GHz. The rejected bands are the WLAN and X-bands, achieved by inserting slots in the patch and the feed. The simulated results of the proposed antenna indicate higher gain at the passbands while a sharp drop at the rejected bands is seen. The radiation pattern is of dipole shape in the E-plane and almost omnidirectional in the H-plane. The high frequency structure simulator (HFSS is used to design and simulate the antennas behavior over the different frequency ranges. Measurements confirm the antenna characteristic as predicted in the simulation with a slight shift in frequencies.

  16. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  17. Hybrid Methods in Designing Sierpinski Gasket Antennas

    Directory of Open Access Journals (Sweden)

    Mudrik Alaydrus

    2010-12-01

    Full Text Available Sierpinki gasket antennas as example of fractal antennas show multiband characteristics. The computer simulation of Sierpinksi gasket monopole with finite ground needs prohibitively large computer memory and more computational time. Hybrid methods consist of surface integral equation method and physical optics or uniform geometrical theory of diffraction should alleviate this computational burdens. The so-called full hybridization of the different methods with modifying the incoming electromagnetic waves in case of hybrid method surface integral equation method and physical optics and modification of the Greens function for hybrid method surface integral equation method and uniform geometrical theory of diffraction plays the central role in the observation. Comparison between results of different methods are given and also measurements of three Sierpinksi gasket antennas. The multiband characteristics of the antennas still can be seen with some reduction and enhancement of resonances.

  18. New Flexible Medical Compact Antenna: Design and Analysis

    Directory of Open Access Journals (Sweden)

    Yann Mahe

    2012-01-01

    Full Text Available Some results on embedded antennas for medical wireless communication systems are presented. Medical telemetry can advantageously assist medical diagnostics. For example, you can better locate a diseased area by monitoring temperature inside the human body. In order to establish efficient wireless links in such an environment, a special attention should be paid to the antenna design. It is required to be of a low profile, very small regardless of the working frequency—434 MHz in the ISM band, safe, and cost effective. Design of the as-considered antenna is proposed based on a simple model. The approach has been demonstrated for a compact flexible antenna with a factor of 10 with respect to the half-wave antenna, rolling up inside an ingestible pill. Measured and calculated impedance behaviour and radiation characteristics of the modified patch are determined. Excellent agreement was found between experiment and theory.

  19. Antenna-coupled bolometer arrays using transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J. [Department of Physics, University of California, Berkeley, California 94720 (United States)]. E-mail: mmyers@cosmology.berkeley.edu; Ade, Peter [School of Physics and Astronomy, Cardiff University, Cardiff, Wales (United Kingdom); Arnold, Kam [Department of Physics, University of California, Berkeley, California 94720 (United States); Engargiola, Greg [Department of Astronomy, University of California, Berkeley, California 94720 (United States); Holzapfel, Bill [Department of Physics, University of California, Berkeley, California 94720 (United States); Lee, Adrian T. [Department of Physics, University of California, Berkeley, California 94720 (United States); O' Brient, Roger [Department of Physics, University of California, Berkeley, California 94720 (United States); Richards, Paul L. [Department of Physics, University of California, Berkeley, California 94720 (United States); Smith, Andy [Northrop Grumman, Redondo Beach, California 90278 (United States); Spieler, Helmuth [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tran, Huan T. [Department of Physics, University of California, Berkeley, California 94720 (United States)

    2006-04-15

    We are developing antenna-coupled Transition-Edge Sensor (TES) bolometer arrays for use in measurements of the CMB polarization. TES bolometers have many well-known advantages over conventional bolometers, such as increased speed, linearity, and the existence of readout multiplexers. Antenna-coupled bolometers use an on-chip planar antenna to couple light into the bolometer. The antenna directivity and polarization sensitivity, along with the potential for on-chip band defining filters and channelizing circuits, allow a significant increase in focal plane integration. This eliminates the bulky horns, quasioptical filters, dichroics, and polarizers which might otherwise be needed in a conventional bolometric system. This simplification will ease the construction of receivers with larger numbers of pixels. We report on the fabrication and optical testing of single antenna-coupled bolometer pixels with integrated band defining filters. We will also discuss current progress on fabrication of a bolometer array based on this design.

  20. Development of a new lower hybrid antenna module using a poloidal power divider

    International Nuclear Information System (INIS)

    Maebara, Sunao; Seki, Masami; Suganuma, Kazuaki

    1996-07-01

    The antenna using poloidal power divider is an effective method for simplification of Lower Hybrid Current Drive (LHCD) antenna system. This method should allow to reduce the power density in the antenna while maintaining a good flexibility of N parallel spectrum of waves. For this purpose, three types of poloidal power divider which split the power in three, and the 3 x 6 multi-junction module were developed. r.f. properties and outgassing of these components were evaluated using the CEA Cadarache RF Test Facility. A good power dividing ratio of 33 ± 4% was obtained for each of these poloidal dividers, and the reflection coefficient was lower value than 1.5%. For the 3 x 6 multi-junction, reflection coefficient was less than 1.3% and r.f. losses lower than 1.0% were measured. On the other hand, it was found in the scattering matrix analysis that reflection coefficient at plasma has to be less than a few % in order to operate these components under available conditions. In combination with two poloidal power dividers connected to the 3 x 6 multi-junction module, quasi stationary operation for r.f. injection time of 1000 sec at 300 kW was demonstrated under water cooling. In this case, it was found that the outgassing rate is in the lower range of 10 -7 Pam 3 s -1 m -2 within the maximum module temperature of ∼100degC. This report describes the experimental and analytical results of a new lower hybrid (LH) antenna module using the poloidal power divider. (author)

  1. Low-Profile, Dual-Wavelength, Dual-Polarized Antenna

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.

  2. Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas

    Science.gov (United States)

    Paal, Leslie; Mukai, Ryan; Vilntrotter, Victor; Cornish, Timothy; Lee, Dennis

    2009-01-01

    A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal

  3. Evolution of the large Deep Space Network antennas

    Science.gov (United States)

    Imbriale, William A.

    1991-12-01

    The evolution of the largest antenna of the US NASA Deep Space Network (DSN) is described. The design, performance analysis, and measurement techniques, beginning with its initial 64-m operation at S-band (2295 MHz) in 1966 and continuing through the present ka-band (32-GHz) operation at 70 m, is described. Although their diameters and mountings differ, these parabolic antennas all employ a Cassegrainian feed system, and each antenna dish surface is constructed of precision-shaped perforated-aluminum panels that are secured to an open steel framework

  4. Experimental study on propagation properties of large size TEM antennas

    International Nuclear Information System (INIS)

    Zhang Guowei; Wang Haiyang; Chen Weiqing; Wang Wei; Zhu Xiangqin; Xie Linshen

    2014-01-01

    The propagation properties of large size TEM antennas were studied by experiment. The size of the TEM antennas is 60 m × 20 m × 10 m and the character Impedance is 120 Ω. A kind of dielectric foil switch is designed compactly with TEM antennas which can generate double exponential waveform with altitude of 10 kV and rise time of l.2 ns. The radiated field distribution was measured. The relationship between rise time/altitude and distance were provided, and the propagation properties of large size TEM antennas were summarized. (authors)

  5. Eight-Element Antenna Array for LTE 3.4-3.8 GHz Mobile Handset Applications

    Science.gov (United States)

    Yang, Lingsheng; Ji, Ming; Cheng, Biyu; Ni, Bo

    2017-05-01

    In this letter, an eight-element Multiple-input multiple-output (MIMO) antenna system for LTE mobile handset applications is proposed. The antenna array consists of eight 3D inverted F-shaped antennas (3D-IFA), and the measured -10 dB impedance bandwidth is 3.2-3.9 GHz which can cover the LTE bands 42 and 43 (3.4-3.8 GHz). By controlling the rotation of the antenna elements, no less than 10 dB isolation between antenna elements can be obtained. After using the specially designed meandered slots on the ground as decoupling structures, the measured isolation can be further improved to higher than 13 dB between the antenna elements at the whole operating band.

  6. Electromagnetic model of a near-field cable-free impedance and gain measurement technique for electrically small antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    the signal scattered by it when it is loaded in turn with three known loads. The determination of the antenna impedance and gain is formulated by using the spherical wave expansion technique. The advantages of this measurement technique are summarized as follows. First, the limited dynamic range problem...

  7. Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System.

    Science.gov (United States)

    Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2018-01-19

    A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm 2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.

  8. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  9. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  10. A Dual Band Slotted Patch Antenna on Dielectric Material Substrate

    Directory of Open Access Journals (Sweden)

    M. Habib Ullah

    2014-01-01

    Full Text Available A low profile, compact dual band slotted patch antenna has been designed using finite element method-based high frequency full-wave electromagnetic simulator. The proposed antenna fabricated using LPKF printed circuit board (PCB fabrication machine on fiberglass reinforced epoxy polymer resin material substrate and the performance of the prototype has been measured in a standard far-field anechoic measurement chamber. The measured impedance bandwidths of (reflection coefficient <-10 dB 12.26% (14.3–16.2 GHZ, 8.24% (17.4–18.9 GHz, and 3.08% (19.2–19.8 have been achieved through the proposed antenna prototype. 5.9 dBi, 3.37 dBi, and 3.32 dBi peak gains have been measured and simulated radiation efficiencies of 80.3%, 81.9%, and 82.5% have been achieved at three resonant frequencies of 15.15 GHz, 18.2 GHz, and 19.5 GHz, respectively. Minimum gain variation, symmetric, and almost steady measured radiation pattern shows that the proposed antenna is suitable for Ku and K band satellite applications.

  11. Design and Characterization of CMOS On-Chip Antennas for 60 GHz Communications

    Directory of Open Access Journals (Sweden)

    D.Titz

    2012-04-01

    Full Text Available In this paper, we present the design and the measurement of two antennas realized on a 130nm CMOS process. They both radiate in the 60 GHz band and are dedicated to Wireless Personal Area Network (WPAN applications. The antennas are manufactured within the frame of a multi-wafer project with several surrounding microelectronic circuits. The first antenna is an Inverted-F antenna (IFA. It has a maximum gain of -8 dBi and a -10 dB matching bandwidth of 20%. The second radiator is a meandered dipole. It has a maximum gain of -14 dBi and a -10 dB matching bandwidth of 10%. The challenging measurement of their reflection coefficient and their gain radiation pattern are presented. Simulated versus measured curves are analyzed. We especially demonstrate the necessity to take into account the closest microelectronic circuits of the antennas for accurate modeling of the radiating performance of 60 GHz on-chip dies.

  12. An Optimized Circuit in Plastic Meander Line Antenna for 2.45 GHz Applications

    Directory of Open Access Journals (Sweden)

    Farhat Majeed

    2016-01-01

    Full Text Available Researchers seek to design electrically small planar antennas for RFID applications. Using multiparameter optimization, various meander line antennas were designed for the lowest resonant frequency and maximum radiation efficiencies for a fixed grid size. One such design for highest radiation efficiency was optimized for microwave frequencies by including an impedance matching structure. The antenna was printed with silver ink on a plexiglass substrate using the circuit in plastic (CiP technique of embedded electrical components. The measured scattering parameter (S11 was −18.43 dB at resonance. The radiation efficiency of the antenna measured using simple and improved Wheeler cap method was 74.4/74.1%. The radiation pattern of electrically small CiP antenna was doughnut-shaped with main lobe magnitude of 0.453 dB and an angular width of 84.2° in elevation plane. The measured 10 dB fractional bandwidth of the antenna was 18.98%. The results are compared with silver/copper in air antennas optimized for achieving the highest radiation efficiency for a fixed grid size. Plastic antennas are viable at microwave frequencies.

  13. Gain Enhancement of a Microstrip Patch Antenna Using a Reflecting Layer

    Directory of Open Access Journals (Sweden)

    Anwer Sabah Mekki

    2015-01-01

    Full Text Available A low profile, unidirectional, dual layer, and narrow bandwidth microstrip patch antenna is designed to resonate at 2.45 GHz. The proposed antenna is suitable for specific applications, such as security and military systems, which require a narrow bandwidth and a small antenna size. This work is mainly focused on increasing the gain as well as reducing the size of the unidirectional patch antenna. The proposed antenna is simulated and measured. According to the simulated and measured results, it is shown that the unidirectional antenna has a higher gain and a higher front to back ratio (F/B than the bidirectional one. This is achieved by using a second flame retardant layer (FR-4, coated with an annealed copper of 0.035 mm at both sides, with an air gap of 0.04λ0 as a reflector. A gain of 5.2 dB with directivity of 7.6 dBi, F/B of 9.5 dB, and −18 dB return losses (S11 are achieved through the use of a dual substrate layer of FR-4 with a relative permittivity of 4.3 and a thickness of 1.6 mm. The proposed dual layer microstrip patch antenna has an impedance bandwidth of 2% and the designed antenna shows very low complexity during fabrication.

  14. Hybrid Robust Optimization for the Design of a Smartphone Metal Frame Antenna

    Directory of Open Access Journals (Sweden)

    Sungwoo Lee

    2018-01-01

    Full Text Available Hybrid robust optimization that combines a genetical swarm optimization (GSO scheme with an orthogonal array (OA is proposed to design an antenna robust to the tolerances arising during the fabrication process of the antenna in this paper. An inverted-F antenna with a metal frame serves as an example to explain the procedure of the proposed method. GSO is adapted to determine the design variables of the antenna, which operates on the GSM850 band (824–894 MHz. The robustness of the antenna is evaluated through a noise test using the OA. The robustness of the optimized antenna is improved by approximately 61.3% relative to that of a conventional antenna. Conventional and optimized antennas are fabricated and measured to validate the experimental results.

  15. Prototype specification of antenna and radio front-end schemes for PAN devices

    DEFF Research Database (Denmark)

    Wang, Yu; Nguyen, Hung Tuan; johansson, Anders

    2007-01-01

    be implemented in the prototype directly, or used as references in antenna selections for the prototype. Interference mitigation on antenna system level for both HDR and LDR systems is investigated. For the LDR system, interference from the HDR system and UWB systems is identified as most critical. Front......This document provides antenna system specifications for the MAGNET Beyond prototype. Requirements on selecting antenna elements and diversity antenna systems are presented. A number of antenna elements and diversity systems suitable for MAGNET systems are specified. Presented antennas can......-end filtering with high attenuation on 5.2 GHz is suggested to suppress interference from the HDR system. A low-complexity switching diversity antenna system is designed to mitigate UWB interference. The performance of proposed scheme is evaluated with measured channels. The implementation of the scheme...

  16. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  17. Finishing and Commissioning the New Arecibo HF Facility

    Science.gov (United States)

    Sulzer, M. P.; Gonzalez, S. A.

    2011-12-01

    The imminent completion of the major tasks in the construction of the New Arecibo HF facility means that we must verify that the components are working as intended. The antenna system and the transmitters must be separately commissioned before they can be connected together so that we an be sure it will provide 83 dbW at 8.175 MHz, and 80 dbW at 5.1 MHz. The antenna system will be ready for initial testing in September. It Illuminates the 305 meter dish using dipoles near the surface of the dish transmitting upward to a wire mesh sub-reflector. There are three crossed dipoles for each of the two frequencies. The dipoles are supported on towers mounted on concrete pads underneath the dish. Each dipole element is connected to a transmitter through a three inch coax line. The tower foundations are nearly complete, and the towers will be erected in early September, and we expect to have at least one crossed dipole in place for initial testing by the end of September. We will need to make some measurements on the antenna system to ensure that it meets our requirements. One requirement is to match the antenna impedance to the transmission line and the transmitter closely enough to meet the transmitter specifications, the closer, the better. We have additional requirements; for example, it is necessary for efficient use of the facility that the polarization be close to circular. In most experiments, we want O mode excitation. If we were to transmit linear only half the power would reach the reflection height. The symmetry of the system assures that most of the conditions for achieving accurate circular polarization are met, but one condition is not: that exciting the transmitters driving the orthogonal elements at 90 degrees assures 90 degree separation in the corresponding antenna currents. One of the dipoles of each pair points toward the center of the array. If we think of the three crossed dipoles as consisting of a reference and two that are excited relative to it

  18. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    Science.gov (United States)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).

  19. The Study and Implementation of Electrically Small Printed Antennas for an Integrated Transceiver Design

    Energy Technology Data Exchange (ETDEWEB)

    Speer, Pete [Univ. of Kansas, Lawrence, KS (United States)

    2009-04-28

    This work focuses on the design and evaluation of the inverted-F, meandering-monopole, and loop antenna geometries. These printed antennas are studied with the goal of identifying which is suitable for use in a miniaturized transceiver design and which has the ability to provide superior performance using minimal Printed Circuit Board (PCB) space. As a result, the main objective is to characterize tradeoffs and identify which antenna provides the best compromise among volume, bandwidth and efficiency. For experimentation purposes, three types of meandering-monopole antenna are examined resulting in five total antennas for the study. The performance of each antenna under study is evaluated based upon return loss, operational bandwidth, and radiation pattern characteristics. For our purposes, return loss is measured using the S11-port reflection coefficient which helps to characterize how well the small antenna is able to be efficiently fed. Operational bandwidth is measured as the frequency range over which the antenna maintains 2:1 Voltage Standing Wave Ratio (VSWR) or equivalently has 10-dB return loss. Ansoft High Frequency Structure Simulator (HFSS) is used to simulate expected resonant frequency, bandwidth, VSWR, and radiation pattern characteristics. Ansoft HFSS simulation is used to provide a good starting point for antenna design before actual prototype are built using an LPKF automated router. Simulated results are compared with actual measurements to highlight any differences and help demonstrate the effects of antenna miniaturization. Radiation characteristics are measured illustrating how each antenna is affected by the influence of a non-ideal ground plane. The antenna with outstanding performance is further evaluated to determine its maximum range of communication. Each designs range performance is evaluated using a pair of transceivers to demonstrate round-trip communication. This research is intended to provide a knowledge base which will help

  20. Sensitivity of a combined gravitational antenna

    International Nuclear Information System (INIS)

    Kulagin, V.V.; Rudenko, V.N.

    1986-01-01

    A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order

  1. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    Directory of Open Access Journals (Sweden)

    Karrar Naji Salman

    Full Text Available In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  2. On diversity performance of two-element coupling element based antenna structure for mobile terminal

    DEFF Research Database (Denmark)

    Al-Hadi, Azremi Abdullah; Toivanen, Juha; Laitinen, Tommi

    2010-01-01

    .1 and the diversity gain is equal to 10.2 dB at 99% reliability level using selection combining technique across simulation and both measurement methods. The measurement techniques are compared to show how accurately the diversity performance of a mobile terminal antenna can be estimated.......In wireless communication systems, multipath interference has a significant impact on system design and performance. Fast fading is caused by the coherent summation of one or more echoes from many reflection points reaching the receive antenna. Antenna diversity can be used to mitigate multipath...... fading. The main challenge of antenna diversity in practical application is the integration of multiple antennas on a small ground plane. Two-element antenna structure based on coupling element antenna concept for diversity application has been studied in previous work and it has shown to be feasible...

  3. Reduction of truncation errors in planar, cylindrical, and partial spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Cano-Fácila, Francisco José; Pivnenko, Sergey; Sierra-Castaner, Manuel

    2012-01-01

    spectrum (PWS) is reliable only within a known region. The second domain is the field distribution over the antenna under test (AUT) plane in which the desired field is assumed to be concentrated on the antenna aperture. The method can be applied to any scanning geometry, but in this paper, only the planar...

  4. Dual-Beam Antenna Design for Autonomous Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Jean-Marie Floc'h

    2012-01-01

    Full Text Available This paper describes our contribution in the ANR project called CAPNET dedicated to the site security (autonomous sensor network. The network is autonomous in term of energy and it is very easy to deploy on the site (the time to deploy each node of the network is around 10 minutes. The first demonstrator was deployed in the fire base station of Brest, France with 10 nodes with a security perimeter around 1.5 km. Our contribution takes place in the field of antennas, with the development of two systems: a single-beam antenna reserved for the supervisor or the last node of the network, and a dual-beam antenna dedicated to the node in linear configuration. For the design and optimization of antennas, we use HFSS CAD software from ANSOFT. The antennas have been designed and successfully measured.

  5. Multi-band Monopole Antennas Loaded with Metamaterial TL

    Science.gov (United States)

    Song, Zhi-jie; Liang, Jian-gang

    2015-05-01

    A novel metamaterial transmission line (TL) by loading complementary single Archimedean spiral resonator pair (CSASRP) is investigated and used to design a set of multi-frequency monopole antennas. The particularity is that the CSASRP which features dual-shunt branches in the equivalent circuit model is directly etched in the signal strip. By smartly controlling the element parameters, three antennas are designed and one of them covering UMTS and Bluetooth bands is fabricated and measured. The antenna exhibits impedance matching better than -10 dB and normal monopolar radiation patterns at working bands of 1.9-2.22 and 2.38-2.5 GHz. Moreover, the loaded element also contributes to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. The proposed antenna is also more compact over previous designs.

  6. Crossed-Slot Cavity-Backed Antenna with Improved Hemispherical Coverage

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav; Østergaard, Allan

    2005-01-01

    The paper presents the results of the investigation of the crossed-slot cavity-backed antenna with the complementary crossed electric dipoles added to compensate the circularly polarized (CP) radiation pattern degradation near the horizon. Dependences of the radiation characteristics...... of the modified crossed-slot cavity-backed antenna on the length, width and height of the crossed electric dipoles are shown. Effects of a finite size ground plane are taken into account due to a full wave electromagnetic analysis software utilized in the parametrical investigations. Simulated and measured...... results for a selected antenna configuration prove that the properly adjusted crossed electric dipoles are able to improve the coverage and CP polarization characteristics of the crossed-slot cavity-backed antenna....

  7. A Compact Flexible and Frequency Reconfigurable Antenna for Quintuple Applications

    Directory of Open Access Journals (Sweden)

    M. U. Hassan

    2017-09-01

    Full Text Available A novel, compact coplanar waveguide fed flexible antenna is presented. The proposed design uses flexible Rogers RT/duroid 5880 (0.508mm thickness as a substrate with small size of 30×28.4 mm^2. Two switches are integrated on the antenna surface to change the current distribution which consequently changes the resonance frequency under different conditions of switches, thereby making it a frequency reconfigurable antenna. The antenna design is simulated on CST®MWS®. The proposed antenna exhibits VSWR less than 2 and appreciable radiation patterns with positive gain over desired frequency bands. Good agreement exists between simulated and measured results. On the basis of results, the proposed antenna is envisioned to be deployed for the following applications; aeronautical radio navigation [4.3 GHz], AMT fixed services [4.5 GHz], WLAN [5.2 GHz], Unlicensed WiMAX [5.8 GHz] and X-band [7.5 GHz].

  8. A Novel Design of Frequency Reconfigurable Antenna for UWB Application

    Science.gov (United States)

    Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao

    2016-09-01

    In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.

  9. A Method of Auxiliary Sources Approach for Modelling the Impact of Ground Planes on Antenna

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    The Method of Auxiliary Sources (MAS) is employed to model the impact of finite ground planes on the radiation from antennas. Two different antenna test cases are shown and the calculated results agree well with reference measurements......The Method of Auxiliary Sources (MAS) is employed to model the impact of finite ground planes on the radiation from antennas. Two different antenna test cases are shown and the calculated results agree well with reference measurements...

  10. 3D Inkjet Printed Helical Antenna with Integrated Lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-08-30

    The gain of an antenna can be enhanced through the integration of a lens, although this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, through a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB, which provides a peak gain of about 12.9 dBi at 8.8 GHz. The 3-dB axial ratio (AR) bandwidth of the antenna with the lens is 5.5%. This work also reports the complete characterization of this new process in terms of minimum features sizes and achievable conductivities. Due to monolithic integration of the lens through a fully printed process, this antenna configuration offers high gain performance by using a low cost and rapid fabrication technique. © 2016 IEEE.

  11. Quantitative thermographic imagery in the evaluation of antenna heating patterns

    International Nuclear Information System (INIS)

    Pearce, J.A.; Baughman, R.R.

    1984-01-01

    In quantitative thermographic imaging the temperature distribution of a surface is inferred from measurement of the radiant energy leaving the surface. Digital image processing and calibration methods allow the subtraction of preexisting temperature gradients so that precise heating patterns can be obtained. The primary limitation of quantitative thermography is that noise in the photodetector limits minimum resolvable temperature difference to around 0.5 0 C since frame integration cannot be used on the transient temperature distributions expected. The authors have developed and evaluated nonlinear smoothing operators which reduce the noise variance so that temperature differences of 0.1 0 C can be measured. They have applied digital thermographic imaging in the measurement of heating patterns obtained from two roughly orthogonal microwave antennas: a spiral antenna and a bow-tie antenna. These two antenna types are orthogonal in that the spiral has an H-field essentially normal to the phantom surface and the bow-tie has an E-field essentially normal to the surface. The resulting heating patterns clearly show the effect of non-uniform phantom electrical properties on the heating profiles obtained

  12. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  13. Exploiting of the Compression Methods for Reconstruction of the Antenna Far-Field Using Only Amplitude Near-Field Measurements

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2010-06-01

    Full Text Available The novel approach exploits the principle of the conventional two-plane amplitude measurements for the reconstruction of the unknown electric field distribution on the antenna aperture. The method combines a global optimization with a compression method. The global optimization method (GO is used to minimize the functional, and the compression method is used to reduce the number of unknown variables. The algorithm employs the Real Coded Genetic Algorithm (RCGA as the global optimization approach. The Discrete Cosine Transform (DCT and the Discrete Wavelet Transform (DWT are applied to reduce the number of unknown variables. Pros and cons of methods are investigated and reported for the solution of the problem. In order to make the algorithm faster, exploitation of amplitudes from a single scanning plane is also discussed. First, the algorithm is used to obtain an initial estimate. Subsequently, the common Fourier iterative algorithm is used to reach global minima with sufficient accuracy. The method is examined measuring the dish antenna.

  14. Fabrication and Testing of Pyramidal X- Band Standard Horn Antenna

    Directory of Open Access Journals (Sweden)

    Hasan F. Khazaal

    2017-11-01

    Full Text Available Standard horn antennas are an important device to evaluate many types of antennas, since they are used as a reference to any type of antennas within the microwave frequency bands. In this project the fabrication process and tests of standard horn antenna operating at X-band frequencies have been proposed. The fabricated antenna passed through multi stages of processing of its parts until assembling the final product. These stages are (milling, bending, fitting and welding. The assembled antenna subjected to two types of tests to evaluate its performance. The first one is the test by two port network analyzer to point out S & Z parameters, input resistance, and the voltage standing wave ratio of the horn, while the second test was done using un-echoic chamber to measure the gain, side lobes level and the half power beam width. The results of testing come nearly as a theoretical value of the most important of antenna parameters, like; gain, side lobe level, -3 dB beam width, return loss and voltage standing wave ratio "VSWR", input Impedance.

  15. Smart antennas in aerospace applications

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with

  16. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...

  17. A Codesigned Compact Dual-Band Filtering Antenna with PIN Loaded for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Shanxiong Chen

    2014-01-01

    Full Text Available A codesigned compact dual-band filtering antenna incorporating a PIN diode for 2.45/5.2 GHz wireless local area network (WLAN applications is proposed in this paper. The integrated filtering antenna system consists of a simple monopole radiator, a microstrip dual-band band-pass filter, and a PIN diode. The performance of the filtering antenna is notably promoted by optimizing the impedance between the antenna and the band-pass filter, with good selectivity and out-of-band rejection. The design process follows the approach of the synthesis of band-pass filter. In addition, the PIN diode is incorporated in the filtering antenna for further size reduction, which also widens the coverage of the bandwidth by about 230% for 2.4 GHz WLAN. With the presence of small size and good filtering performances, the proposed filtering antenna is a good candidate for the wireless communication systems. Prototypes of the proposed filtering antenna incorporating a PIN diode are fabricated and measured. The measured results including return losses and radiation patterns are presented.

  18. One- and two-dimensional antenna arrays for microwave wireless power transfer (MWPT) systems and dual-antenna transceivers

    Science.gov (United States)

    Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang

    2018-06-01

    In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.

  19. Multifunctional Antenna with Reconfigurable Ultra-Wide Band Characteristics

    Directory of Open Access Journals (Sweden)

    A. Verma

    2017-09-01

    Full Text Available In this paper a multifunctional antenna is presented which offers an ultra-wideband (UWB operation, an UWB operation with two switchable notches and reconfigurable dual-band operation for WiMAX and WLAN applications, respectively. Total seven functions/states could be achieved from a single antenna using an electronic switching. The antenna uses dual slots on the ground plane to provide a wide bandwidth, ranging from 3.1 GHz to 10.6 GHz. U-Shaped slot and C-Shaped printed strip in the ground are used to generate two notches at 3.6 GHz(WiMAX and 5.2 GHz (WLAN/ WiFi bands, respectively. Moreover, four parasitic strips are added in the feed side to make antenna functional at either3.6 GHz or 5.2 GHz or both. Total Five PIN diodes are required to obtain seven operations from the proposed antenna. Seven structures are fabricated and measured to verify the seven states and results are found in good agreement with estimated results obtained from the simulation.

  20. Antenna characteristics and air-ground interface deembedding methods for stepped-frequency ground-penetrating radar measurements

    DEFF Research Database (Denmark)

    Karlsen, Brian; Larsen, Jan; Jakobsen, Kaj Bjarne

    2000-01-01

    The result from field-tests using a Stepped-Frequency Ground Penetrating Radar (SF-GPR) and promising antenna and air-ground deembedding methods for a SF-GPR is presented. A monostatic S-band rectangular waveguide antenna was used in the field-tests. The advantages of the SF-GPR, e.g., amplitude...... and phase information in the SF-GPR signal, is used to deembed the characteristics of the antenna. We propose a new air-to-ground interface deembedding technique based on Principal Component Analysis which enables enhancement of the SF-GPR signal from buried objects, e.g., anti-personal landmines...

  1. Rover Low Gain Antenna Qualification for Deep Space Thermal Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert; Prater, Jack L.

    2013-01-01

    A method to qualify the Rover Low Gain Antenna (RLGA) for use during the Mars Science Laboratory (MSL) mission has been devised. The RLGA antenna must survive all ground operations, plus the nominal 670 Martian sol mission that includes the summer and winter seasons of the Mars thermal environment. This qualification effort was performed to verify that the RLGA design, its bonding, and packaging processes are adequate. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed on the RLGA hardware before the start of the qualification test. Functional intermittent RF tests were performed during thermal chamber breaks over the course of the complete qualification test. For the return loss measurements, the RLGA antenna was moved to a test area. A vector network analyzer was calibrated over the operational frequency range of the antenna. For the RLGA, a simple return loss measurement was performed. A total of 2,010 (3 670 or 3 times mission thermal cycles) thermal cycles was performed. Visual inspection of the RLGA hardware did not show any anomalies due to the thermal cycling. The return loss measurement results of the RLGA antenna after the PQV (Package Qualification and Verification) test did not show any anomalies. The antenna pattern data taken before and after the PQV test at the uplink and downlink frequencies were unchanged. Therefore, the developed design of RLGA is qualified for a long-duration MSL mission.

  2. Application of the iterative probe correction technique for a high-order probe in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav

    2006-01-01

    An iterative probe-correction technique for spherical near-field antenna measurements is examined. This technique has previously been shown to be well-suited for non-ideal first-order probes. In this paper, its performance in the case of a high-order probe (a dual-ridged horn) is examined....

  3. Aircraft Horizontal Thrust Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is designed to support the DoD mission by providing unique air vehicle installed engine performance (thrust output) measurements. This system consists...

  4. Saturated excitation of Fluorescence to quantify excitation enhancement in aperture antennas

    KAUST Repository

    Aouani, Heykel

    2012-07-23

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas. © 2012 Optical Society of America.

  5. Saturated excitation of Fluorescence to quantify excitation enhancement in aperture antennas

    KAUST Repository

    Aouani, Heykel; Hostein, Richard; Mahboub, Oussama; Devaux, Eloï se; Rigneault, Hervé ; Ebbesen, Thomas W.; Wenger, Jé rô me

    2012-01-01

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas. © 2012 Optical Society of America.

  6. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  7. Photogrammetry Of A Parabolic Antenna

    Science.gov (United States)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  8. Miniaturized CPW-Fed Triband Antenna with Asymmetric Ring for WLAN/WiMAX Applications

    Directory of Open Access Journals (Sweden)

    Shanshan Huang

    2014-01-01

    Full Text Available A compact CPW-fed triband slot antenna for WLAN/WiMAX applications is proposed. The proposed antenna is formed by an asymmetric ring, an inverted L-strip, and a straight strip. By employing these structures, the antenna can generate three operation bands with compact size and simple structure. The measured and simulated results show the presented antenna has impedance bandwidths of 100 MHz (2.39–2.49 GHz, 360 MHz (3.36–3.72 GHz, and 760 MHz (5.13–5.89 GHz, which covers both WLAN in the 2.4/5.2 GHz bands and WiMAX in the 3.5/5.5 GHz bands. The antenna is successfully simulated and measured, showing triple bands can be obtained by using three different radiators and also indicating that the proposed antenna is suitable for the WiMAX/WLAN applications.

  9. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.

    Science.gov (United States)

    Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo

    2014-12-01

    With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Performance of Antenna Selection in MIMO System Using Channel Reciprocity with Measured Data

    Directory of Open Access Journals (Sweden)

    Peerapong Uthansakul

    2011-01-01

    Full Text Available The channel capacity of MIMO system increases as a function of antenna pairs between transmitter and receiver but it suffers from multiple expensive RF chains. To reduce cost of RF chains, antenna selection (AS method can offer a good tradeoff between expense and performance. For a transmitting AS system, channel state information (CSI feedback is required to choose the best subset of available antennas. However, the delay and error in feedback channel are the most dominant factors to degrade performances. In this paper, the concept of AS method using reciprocal CSI instead of feedback channel is proposed. The capacity performance of proposed system is investigated by own developing Testbed. The obtained results indicate that the reciprocity technique offers a capacity close to a system with perfect CSI and gains a higher capacity than a system without AS method. This benefit is from 0.9 to 2.2 bps/Hz at SNR 10 dB.

  11. Highly Compact MIMO Antenna System for LTE/ISM Applications

    Directory of Open Access Journals (Sweden)

    Lingsheng Yang

    2015-01-01

    Full Text Available Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO antenna system for LTE2300 (used in Asia and Africa and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λ at 2.20 GHz. Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.

  12. Dual-Resonant Implantable Circular Patch Antenna for Biotelemetry Communication

    Directory of Open Access Journals (Sweden)

    Rongqiang Li

    2016-01-01

    Full Text Available A compact broadband implantable circular patch antenna is designed and experimentally demonstrated for Medical Implant Communications Service (MICS band (402–405 MHz. Compared with other similar implantable antennas, the proposed antenna incorporates three advantages for biotelemetry communication. First, it can realize a broad impedance bandwidth by exhibiting dual resonances. Second, it can obtain a compact structure by introducing two arc-shaped slots, a rectangular slot and a circular slot on metal radiating patch. Finally, it can display a friendly shape by using a circular structure. The proposed antenna occupies a volume of about 431.5 mm3 (10.42 × 1.27π mm3, which is a compromise between miniaturization and bandwidth. The measured −10 dB impedance bandwidth is 55 MHz (385–440 MHz. Furthermore, the radiation performance and human body safety consideration of the antenna are examined and characterized.

  13. A Reconfigurable WiMAX Antenna for Directional and Broadside Application

    Directory of Open Access Journals (Sweden)

    M. Jusoh

    2013-01-01

    Full Text Available A novel reconfigurable compact patch array antenna for directional and broadside application is proposed. The presented antenna has successfully been able to function for directional beam at 320° or 35° and divisive broadside beam at 43° and 330°. This is realized in the unique form of aperture coupled spiral feeding technique and positioning of the radiating elements at 0°, 90,° and 180°. The switchable feature is effectively performed by the configuration of three PIN diodes. All PIN diodes are positioned at the specific location of the aperture coupled structure. It is discovered in simulation that the switches can be represented with a copper strip line or touchstone (TS block . The proposed antenna design operates at 2.37 GHz to 2.41 GHz and has a maximum gain of 6.4 dB and efficiency of 85.97%. Such antenna produces a broadside HPBW with a wider bandwidth covering from −90° to 90° compared to the normal microstrip antenna which could only provide HPBW of −50° to 50°. Moreover, the proposed antenna has small physical dimension of 100 mm by 100 mm. The simulation and measurement results have successfully exhibited the idea of the presented antenna performance. Therefore, the antenna is sufficiently competent in the smart WiMAX antenna application.

  14. Extending the Bandwidth of a Superdirective First-Order Probe for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2015-01-01

    . This contribution shows that a very narrow frequency bandwidth peculiar to superdirective antennas can be extended to practical values by the proper design of the array elements as well as by relaxing the maximum directivity condition, while keeping |µ| = 1 modes dominating in the radiation spectrum of the antenna...

  15. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  16. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  17. Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch.

    Science.gov (United States)

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2018-05-15

    In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured -10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68⁻3.97 GHz) and 70.55% (1.89⁻3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results.

  18. Performance Investigations of Quasi-Yagi Loop and Dipole Antennas on Silicon Substrate for 94 GHz Applications

    Directory of Open Access Journals (Sweden)

    Osama M. Haraz

    2014-01-01

    Full Text Available This paper introduces the design and implementation of two high gain Quasi-Yagi printed antennas developed on silicon substrate for 94 GHz imaging applications. The proposed antennas are based on either driven loop or dipole antennas fed by a coplanar waveguide (CPW feeding structure. For better matching with the driven antennas, a matching section has been added between the CPW feedline and the driven antenna element. To improve the gain of either loop or dipole antennas, a ground reflector and parasitic director elements have been added. Two Quasi-Yagi antenna prototypes based on loop and dipole antenna elements have been fabricated and experimentally tested using W-band probing station (75–110 GHz. The measured results show good agreement with simulated results and confirm that the proposed antennas are working. In addition, a feed and matching configuration is proposed to enable coupling a microbolometer element to the proposed Quasi-Yagi antenna designs for performing radiation pattern measurements.

  19. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Science.gov (United States)

    Rogers, Lesley J; Vallortigara, Giorgio

    2008-06-04

    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  20. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Directory of Open Access Journals (Sweden)

    Lesley J Rogers

    Full Text Available Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  1. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  2. ICRF antenna and feedthrough development at ORNL

    International Nuclear Information System (INIS)

    Baity, F.W.; Bryan, W.E.; Hoffman, D.J.; Owens, T.L.; Rettig, C.L.; Schechter, D.E.

    1985-01-01

    The rf technology program at Oak Ridge National Laboratory is highlighted. Simply stated, the objective of the program is to develop the technology for ion cyclotron range of frequencies heating of the fusion machines leading up to a reactor. Results from an investigation of the importance of current strap shaping in compact antenna design are presented. Designs of the Doublet III-D and Advanced Toroidal Facility compact loop launchers are described, as are the vacuum feedthroughs for the West German tokamak TEXTOR and the Tandem Mirror Experiment Upgrade (TMX-U)

  3. Miniaturized Balanced Antenna with Integrated Balun for Practical LTE Applications

    Directory of Open Access Journals (Sweden)

    I. T. E. Elfergani

    2017-06-01

    Full Text Available A design of dual-band balanced antenna structure operating in the 700 and 2600MHz LTE bands is studied and investigated. The overall dimensions of the radiator are 50 × 18 × 7 mm^3 allowing it to be easily concealed within mobile handsets. A broad-band balun is designed and integrated with the antenna handset in order to provide the feeding network and perform the measurements of the antenna radiation performance. Prototypes of proposed antenna with and without balun are fabricated and verified. The simulated and practical results with and without the handheld effects in terms of reflection coefficient, power gain and radiation pattern, are studied and shown reasonable agreement.

  4. High Gain Antenna Calibration on Three Spacecraft

    Science.gov (United States)

    Hashmall, Joseph A.

    2011-01-01

    This paper describes the alignment calibration of spacecraft High Gain Antennas (HGAs) for three missions. For two of the missions (the Lunar Reconnaissance Orbiter and the Solar Dynamics Observatory) the calibration was performed on orbit. For the third mission (the Global Precipitation Measurement core satellite) ground simulation of the calibration was performed in a calibration feasibility study. These three satellites provide a range of calibration situations-Lunar orbit transmitting to a ground antenna for LRO, geosynchronous orbit transmitting to a ground antenna fer SDO, and low Earth orbit transmitting to TDRS satellites for GPM The calibration results depend strongly on the quality and quantity of calibration data. With insufficient data the calibration Junction may give erroneous solutions. Manual intervention in the calibration allowed reliable parameters to be generated for all three missions.

  5. The magnet measurement facility for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Doose, C.; Hogrefe, R.; Kim, K.; Merl, R.

    1993-01-01

    A magnet measurement facility has been developed to measure the prototype and production magnets for the Advance Photon Source. The measurement facility is semi-automatic in measurement control and data analysis. One dipole system and three rotating coil measurement systems for quadrupole and sextupole magnets and corresponding probe coils are described

  6. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  7. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong

    2011-06-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong; Hasna, Mazen Omar; Yang, Hongchuan; Alouini, Mohamed-Slim

    2011-01-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  9. A Novel Metamaterial MIMO Antenna with High Isolation for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Khac Kiem

    2015-01-01

    Full Text Available A compact 2×2 metamaterial-MIMO antenna for WLAN applications is presented in this paper. The MIMO antenna is designed by placing side by side two single metamaterial antennas which are constructed based on the modified composite right/left-handed (CRLH model. By adding another left-handed inductor, the total left-handed inductor of the modified CRLH model is increased remarkably in comparison with that of conventional CRLH model. As a result, the proposed metamaterial antenna achieves 60% size reduction in comparison with the unloaded antenna. The MIMO antenna is electrically small (30 mm × 44 mm with an edge-to-edge separation between two antennas of 0.06λ0 at 2.4 GHz. In order to reduce the mutual coupling of the antenna, a defected ground structure (DGS is inserted to suppress the effect of surface current between elements of the proposed antenna. The final design of the MIMO antenna satisfies the return loss requirement of less than −10 dB in a bandwidth ranging from 2.38 GHz to 2.5 GHz, which entirely covers WLAN frequency band allocated from 2.4 GHz to 2.48 GHz. The antenna also shows a high isolation coefficient which is less than −35 dB over the operating frequency band. A good agreement between simulation and measurement is shown in this context.

  10. A high-gain high-power L-band antenna for field test applications

    Science.gov (United States)

    Abe, David K.; Tran, George T.; Knop, C. M.

    1995-09-01

    A high-gain, prime-focus parabolic dish antenna system was designed and constructed for experimental use in the field. The antenna was designed to radiate in L-band at peak power levels exceeding 1 X 106 watts. A 3.6 m diameter, commercial off-the-shelf parabolic dish antenna was modified with a custom-designed waveguide horn feed. The system was mounted on an antenna pedestal to allow for fine (approximately 0.001 degrees) elevation and azimuth control; the antenna and pedestal were mounted on a 4.3 m long trailer for mobility in the field. The antenna has a measured gain of 32 dBi and a 3-dB beamwidth of approximately 4.5 degrees. The system was successfully operated in the field in L-band at peak power levels exceeding 5 MW. The design, calibration, and testing of the antenna system will be presented.

  11. Efficient Placement of Directional Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  12. Design of a rectenna system for GSM-900 band using novel broadside 2 × 1 array antenna

    Directory of Open Access Journals (Sweden)

    Manish Singh

    2017-05-01

    Full Text Available In this study, a rectenna operating at the GSM-900 frequency band has been fabricated and tested. This rectenna composed of a 2 × 1 T-shaped monopole array antenna and an energy processing circuit. In order to reduce the gap between adjacent antenna elements in the array structure, the proposed array antenna uses a ground stub. Compared with other array antennas, the proposed array antenna with the ground stub reduces the size up to 50% without affecting the gain and bandwidth. An antenna prototype is fabricated and experimentally tested. The measured antenna's gain and bandwidth are 3.2 and 152 MHz, respectively, hence showing its suitability for radio-frequency (RF energy harvesting application. For this to be feasible, the developed array antenna is matched with the rectifier at GSM-900 using a single stub matching network. The measured result demonstrates that the proposed rectifier circuit offers the conversion efficiency of 21.2 and 63.6% for an input power of −20 and 0 dBm, respectively. Finally, the rectifier performance is attested experimentally with the developed array antenna. The rectenna's measured RF-to-dc conversion efficiency was found to be 60% at the far-field distance from the transmitting antenna.

  13. Design of a Compact Tuning Fork-Shaped Notched Ultrawideband Antenna for Wireless Communication Application

    Science.gov (United States)

    Shakib, M. N.; Moghavvemi, M.; Mahadi, W. N. L.

    2014-01-01

    A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of 0.182λ × 0.228λ × 0.018λ where λ is the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size. PMID:24723835

  14. Dual Band Parasitic Element Patch Antenna for LTE/WLAN Applications

    Directory of Open Access Journals (Sweden)

    BAG Biplab

    2017-05-01

    Full Text Available In this paper, a single layer coaxial fed dual band slotted microstrip antenna is proposed. The proposed antenna consists of two direct couple parasitic elements and L-shape slots on the main resonating element. Two resonant modes are excited and it covers 4G LTE and WLAN middle band. The -10dB impedance bandwidth for resonant frequency of 2.35GHz and 5.28GHz are 140MHz (2.25-2.39GHz and 570MHz (5.18-5.75GHz, respectively. The measured VSWR at 2.35GHz is 1.27 and at 5.28GHz is 1.41. The proposed antenna is simple in design and compact in size. The simulated and measured results are in good agreement.

  15. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    Science.gov (United States)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  16. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  17. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Ertürk, M. Arcan [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 and Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States); El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A., E-mail: bottoml@mri.jhu.edu [Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2015-03-15

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  18. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Science.gov (United States)

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  19. Monitoring local heating around an interventional MRI antenna with RF radiometry

    International Nuclear Information System (INIS)

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  20. A Small Planar Antenna for 4G Mobile Phone Application

    Directory of Open Access Journals (Sweden)

    Hu Jian-rong

    2016-01-01

    Full Text Available The analysis and design of a small planar multiband antenna operating in the 4G frequency bands are presented. The numerical and experimental results demonstrated that the proposed antenna satisfies the requirement of 6 dB return loss for the impedance bandwidth of the LTE700/LTE2300/LTE2500 and WiMAX3500 bands. The gains at 750 MHz/2.3 GHz/2.6 GHz/3.5 GHz are 2.1 dBi/4.9 dBi/4.7 dBi/4.3 dBi, respectively. The measured radiation patterns verify the suitability of the antenna to be employed in mobile phones. The dimensions of the radiant patch are 49 × 10 mm2. The proposed antenna can be easily fabricated and customized to various 4G mobile phones as a compact internal antenna.

  1. A High Isolation MIMO Antenna without Decoupling Structure for LTE 700 MHz

    Directory of Open Access Journals (Sweden)

    Yanjie Wu

    2015-01-01

    Full Text Available This paper presents a long-term evolution (LTE 700 MHz band multiple-input-multiple-output (MIMO antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λ at 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz with S11≤−6 dB and S21≤−23 dB.

  2. Diffraction studies applicable to 60-foot microwave research facilities

    Science.gov (United States)

    Schmidt, R. F.

    1973-01-01

    The principal features of this document are the analysis of a large dual-reflector antenna system by vector Kirchhoff theory, the evaluation of subreflector aperture-blocking, determination of the diffraction and blockage effects of a subreflector mounting structure, and an estimate of strut-blockage effects. Most of the computations are for a frequency of 15.3 GHz, and were carried out using the IBM 360/91 and 360/95 systems at Goddard Space Flight Center. The FORTRAN 4 computer program used to perform the computations is of a general and modular type so that various system parameters such as frequency, eccentricity, diameter, focal-length, etc. can be varied at will. The parameters of the 60-foot NRL Ku-band installation at Waldorf, Maryland, were entered into the program for purposes of this report. Similar calculations could be performed for the NELC installation at La Posta, California, the NASA Wallops Station facility in Virginia, and other antenna systems, by a simple change in IBM control cards. A comparison is made between secondary radiation patterns of the NRL antenna measured by DOD Satellite and those obtained by analytical/numerical methods at a frequency of 7.3 GHz.

  3. Investigating antennas as ignition aid for automotive HID lamps

    International Nuclear Information System (INIS)

    Bergner, A; Engelhardt, M; Bienholz, S; Ruhrmann, C; Hoebing, T; Groeger, S; Mentel, J; Awakowicz, P

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case. (paper)

  4. Measurement of Outflow Facility Using iPerfusion.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Elevated intraocular pressure (IOP is the predominant risk factor for glaucoma, and reducing IOP is the only successful strategy to prevent further glaucomatous vision loss. IOP is determined by the balance between the rates of aqueous humour secretion and outflow, and a pathological reduction in the hydraulic conductance of outflow, known as outflow facility, is responsible for IOP elevation in glaucoma. Mouse models are often used to investigate the mechanisms controlling outflow facility, but the diminutive size of the mouse eye makes measurement of outflow technically challenging. In this study, we present a new approach to measure and analyse outflow facility using iPerfusion™, which incorporates an actuated pressure reservoir, thermal flow sensor, differential pressure measurement and an automated computerised interface. In enucleated eyes from C57BL/6J mice, the flow-pressure relationship is highly non-linear and is well represented by an empirical power law model that describes the pressure dependence of outflow facility. At zero pressure, the measured flow is indistinguishable from zero, confirming the absence of any significant pressure independent flow in enucleated eyes. Comparison with the commonly used 2-parameter linear outflow model reveals that inappropriate application of a linear fit to a non-linear flow-pressure relationship introduces considerable errors in the estimation of outflow facility and leads to the false impression of pressure-independent outflow. Data from a population of enucleated eyes from C57BL/6J mice show that outflow facility is best described by a lognormal distribution, with 6-fold variability between individuals, but with relatively tight correlation of facility between fellow eyes. iPerfusion represents a platform technology to accurately and robustly characterise the flow-pressure relationship in enucleated mouse eyes for the purpose of glaucoma research and with minor modifications, may be applied

  5. A 94 GHz CMOS based oscillator transmitter with an on-chip meandered dipole antenna

    KAUST Repository

    Cheema, Hammad M.

    2015-10-26

    A miniaturized 94 GHz oscillator transmitter in 65nm CMOS is presented. An extremely small silicon foot-print of 0.25mm2 is achieved through meandering of the top-metal dipole antenna, conjugate matching between the oscillator and the antenna without impedance matching elements and efficient placement of the oscillator circuit within the antenna. The antenna demonstrates bandwidth of 90 to 99 GHz (10%) and a gain of -6dBi. The use of parasitic aware antenna-circuit code-sign strategy results in an accurate measured oscillation frequency of 94.1 GHz. The oscillator exhibits a measured output power of -25 dBm, phase noise of -88 dBc/Hz at 1 MHz offset and consumes 8.4mW from a 1V supply. © 2015 IEEE.

  6. Paper-based inkjet-printed tri-band U-slot monopole antenna for wireless applications

    KAUST Repository

    Abutarboush, Hattan

    2012-01-01

    Realization of a U-slot tri-band monopole antenna on a low-cost paper substrate using inkjet-printed technology is presented for the first time. The U-shaped slot is optimized to enhance the bandwidth and to achieve tri-band operation of 1.57, 3.2, and 5 GHz with measured impedance bandwidths of 3.21%, 28.1%, and 36%, respectively. The antenna is fabricated through a metallic nanoparticle ink on a standard commercial paper. Thus, the antenna can be used to cover the GPS, WiMAX, HiperLAN/2, and WLAN. The antenna has a compact size of 12 × 37.3 × 0.44 mm3 , leaving enough space for the driving electronics on the paper substrate. The impedance bandwidth, current distributions, radiation patterns, gain, and efficiency of the antenna have been studied through computer simulations and measurements. © 2002-2011 IEEE.

  7. Dual Feed, Single Element Antenna for WiMAX MIMO Application

    Directory of Open Access Journals (Sweden)

    Frank M. Caimi

    2008-01-01

    Full Text Available A novel u-shaped single element antenna having two feed ports is compared with two equal length monopoles separated by a distance equivalent to the width. A discussion of relative performance metrics is provided for MIMO applications, and measured data is given for comparison. Good impedance match and isolation of greater than −10 dB are observed over the operating bandwidth from 2.3 to 2.39 GHz. The antenna patterns are highly uncorrelated, as illustrated by computation of the antenna pattern correlation coefficient for the two comparison monopoles.

  8. Direct shaft torque measurements in a transient turbine facility

    International Nuclear Information System (INIS)

    Beard, Paul F; Povey, Thomas

    2011-01-01

    This paper describes the development and implementation of a shaft torque measurement system for the Oxford Turbine Research Facility (formerly the Turbine Test Facility (TTF) at QinetiQ, Farnborough), or OTRF. As part of the recent EU TATEF II programme, the facility was upgraded to allow turbine efficiency measurements to be performed. A shaft torque measurement system was developed as part of this upgrade. The system is unique in that, to the authors' knowledge, it provided the first direct measurement of shaft torque in a transient turbine facility although the system has wider applicability to rotating test facilities in which power measurement is a requirement. The adopted approach removes the requirement to quantify bearing friction, which can be difficult to accurately calibrate under representative operating conditions. The OTRF is a short duration (approximately 0.4 s run time) isentropic light-piston facility capable of matching all of the non-dimensional parameters important for aerodynamic and heat studies, namely Mach number, Reynolds number, non-dimensional speed, stage pressure ratio and gas-to-wall temperature ratio. The single-stage MT1 turbine used for this study is a highly loaded unshrouded design, and as such is relevant to modern military, or future civil aero-engine design. Shaft torque was measured directly using a custom-built strain gauge-based torque measurement system in the rotating frame of reference. This paper describes the development of this measurement system. The system was calibrated, including the effects of temperature, to a traceable primary standard using a purpose-built facility. The bias and precision uncertainties of the measured torque were ±0.117% and ±0.183%, respectively. To accurately determine the shaft torque developed by a turbine in the OTRF, small corrections due to inertial torque (associated with changes in the rotational speed) and aerodynamic drag (windage) are required. The methods for performing these

  9. ANTWKB: a code for the simulation of ion cyclotron antennas in tokamaks

    International Nuclear Information System (INIS)

    Brambilla, M.

    1995-04-01

    We have developed a code which evaluates the complex input impedance, the loading, and the spectral distribution of the launched power, of metallic antennas for ion cyclotron heating of large tokamak plasmas. The current distribution along the conductors is obtained selfconsistently from a variational method. The plasma response is evaluated assuming that the WKB approximation can be used already at the plasma edge, thereby avoiding the lengthy integration of the wave equations in the plasma. This makes possible systematic scans over frequency or other parameters, while retaining a sufficiently large number of Fourier components in the radiated fields to ensure convergence of both the resistive and reactive part of the power. Optionally, the code can evaluate the antenna response in vacuum or with a dummy load, for comparison with test bank measurements. We have applied the code to a few antennas of practical interest. The code reproduces accurately the expected transmission-line-like behaviour of a simple feeder-to-short antenna, and reasonably well the measured properties of the folded antenna of the ASDEX Upgrade ICRF experiment. This antenna is found to have particularly favourable properties, since its outer conductors present to the plasma a relatively uniform current over a broad range of frequencies, which, moreover, is always larger than in the return conductors. The loading of the ''violin antenna'' recently proposed for use in ITER is found to be satisfactory in the vicinity of antenna resonance, although rather poor at other frequencies. In the case of simple strap antennas replacing the short by an adjustable capacity, as in TORE SUPRA, is confirmed to be a good way of optimizing the loading. (orig.)

  10. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  11. Design of CPW-Fed Antenna with Defected Substrate for Wideband Applications

    Directory of Open Access Journals (Sweden)

    Amar Sharma

    2016-01-01

    Full Text Available A CPW-fed defected substrate microstrip antenna is proposed. The proposed antenna shows wideband applications by choosing suitable defected crown shaped substrate. Defected substrate also reduces the size of an antenna. The radiating patch of proposed antenna is taken in the form of extended U-shape. The space around the radiator is utilized by extending the ground plane on both sides of radiator. Simulation of proposed antenna is done on Ansoft’s High Frequency Structure Simulator (HFSS v. 14. Measured results are in good agreement with simulated results. The prototype is taken with dimensions 36 mm × 42 mm × 1.6 mm that achieves good return loss, constant group delay, and good radiation characteristics within the entire operating band from 4.5 to 13.5 GHz (9.0 GHz with 100% impedance bandwidth at 9.0 GHz centre frequency. Thus, the proposed antenna is applicable for C and X band applications.

  12. Metering instrument of quality factor Q of gravitational wave antenna

    International Nuclear Information System (INIS)

    Jia-yan, C.; Tong-ren, G.

    1982-01-01

    The quality factor, Q, of gravitational wave antenna depends on the material property as well as external conditions, such as temperature, residual pressure in vacuum tank, support type, additional loss from transducer on antenna, etc. In order to find out the relationship between the antenna Q and external conditions automatical operating in succession is required. The authors have designed and made a metering instrument for quality factor Q. The metering instrument of Q can measure Q of the metal cylinder and other bar of higher Q. It can give data of the measurement at regular intervals as desired. It can measure accurately the longitudinal fundamental mode frequency of the cylinder with a digital frequency meter record oscillating signal from metering instrument. Because the metering instrument excites free-vibration of the cylinder with free-running type and keep up the stationary amplitude for a long time. (Auth.)

  13. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  14. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

    Directory of Open Access Journals (Sweden)

    H. Ja’afar

    2016-06-01

    Full Text Available This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consists of 12 commercial fluorescent tubes aligned in series containing a mixture of Argon gas and mercury vapor which upon electrification forms plasma columns. The plasma behaves as a conductor and acts as a reflector in radiation, in the condition where plasma frequency,ωp is higher than operating frequency. From this concepts, when all plasma elements are activated or switched to ON, the radiation signal from monopole antenna will trapped inside the plasma blanket and meanwhile when one or more plasma elements is deactivated (switched OFF, the radiation from monopole antenna will escape. This antenna has the capability to change its patterns with beam direction at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330° at frequency 2.4 GHz. The proposed antenna has been successfully fabricated and measured with conclusive results.

  15. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  16. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  17. Wideband Tunable PIFA Antenna with Loaded Slot Structure for Mobile Handset and LTE Applications

    Directory of Open Access Journals (Sweden)

    I. Elfergani

    2014-04-01

    Full Text Available A compact planar inverted F antenna (PIFA with a tunable frequency response is presented. Tuning of the resonant frequency is realized by loading a varactor on an embedded slot of the proposed antenna structure without further optimizing other antenna geometry parameters. The antenna exhibits a wide frequency range from 1570 to 2600 MHz with a good impedance matching (S11 ≤-10 dB covering the GPS, PCS, DCS, UMTS, WLAN and LTE systems. To validate the theoretical model and design concept, the antenna prototype was fabricated and measured. The compact size of the antenna is 15mm × 8mm × 3mm, which makes this antenna a good candidate for mobile handset and wireless communication applications.

  18. Electromagnetic reciprocity in antenna theory

    CERN Document Server

    Stumpf, Martin

    2018-01-01

    The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.

  19. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif

    2017-01-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  20. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill

    2017-11-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  1. Selective Electron Beam Melting Manufacturing of Electrically Small Antennas

    Directory of Open Access Journals (Sweden)

    Saad Mufti

    2017-11-01

    Full Text Available Real estate pressures in modern electronics have resulted in the need for electrically small antennas, which have subsequently garnered interest amongst researchers and industry alike. These antennas are characterized by their largest dimensions translating to a fraction of the operating wavelength; such a diminutive size comes at the expense of reduced gain and efficiency, and a worse overall match to a corresponding power source. In order to compensate for this deterioration in performance, antenna designers must turn towards increasingly complex and voluminous geometries, well beyond the capabilities of traditional manufacturing techniques. We present voluminous metal antennas, based on a novel inverted-F design, and fabricated using the emergent selective electron beam melting manufacturing technique, a type of powder bed fusion process. As predicted by small antenna theory, simulation results presented show in increase in the antenna’s efficiency as it is voluminously expanded into the third dimension. Measurement results illustrate that key trends observed from simulations are upheld; however, further understanding of the electromagnetic properties of raw materials, in particular how these change during the printing process, is needed. Nevertheless, this type of additive manufacturing technique is suitable for rapid prototyping of novel and complex antenna geometries, and is a promising avenue for further research and maturation.

  2. High Isolation Dual-Polarized Patch Antenna with Hybrid Ring Feeding

    Directory of Open Access Journals (Sweden)

    Xian-Jing Lin

    2017-01-01

    Full Text Available This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.

  3. Satellite Antenna Pointing Procedure Driven by the Ground Service Quality

    Science.gov (United States)

    Yasui, Yoshitsugu

    A satellite antenna alignment technique is proposed to ensure terrestrial service quality for users. The antenna bore sight orientation is calculated directly from measured data acquired from general ground receivers, which intercept the communication radio waves from any position on the earth's surface. The method coordinates the satellite pointing parameters with signal strength at the receivers while considering location-specific geographical and antenna radiation characteristics and control accuracy. The theoretical development and its validity are examined in the course of equation derivation. Actual measured data of an existing satellite at the maneuver was applied to the method, and the capability was demonstrated and verified. With the wide diversity of satellite usage, such as for mobile communications, temporary network deployment or post-launch positioning accommodations, the proposed method provides a direct evaluation of satellite communication performance at the service level, in conjunction with using high frequency spot beam antennas, which are highly susceptible to pointing gain. This can facilitate swift and flexible satellite service planning and deployment for operators.

  4. Hierarchical sinuous-antenna phased array for millimeter wavelengths

    Science.gov (United States)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-03-01

    We present the design, fabrication, and measured performance of a hierarchical sinuous-antenna phased array coupled to superconducting transition-edge-sensor (TES) bolometers for millimeter wavelengths. The architecture allows for dual-polarization wideband sensitivity with a beam width that is approximately frequency-independent. We report on measurements of a prototype device, which uses three levels of triangular phased arrays to synthesize beams that are approximately constant in width across three frequency bands covering a 3:1 bandwidth. The array element is a lens-coupled sinuous antenna. The device consists of an array of hemispherical lenses coupled to a lithographed wafer, which integrates TESs, planar sinuous antennas, and microwave circuitry including band-defining filters. The approximately frequency-independent beam widths improve coupling to telescope optics and keep the sensitivity of an experiment close to optimal across a broad frequency range. The design can be straightforwardly modified for use with non-TES lithographed cryogenic detectors such as kinetic inductance detectors. Additionally, we report on the design and measurements of a broadband 180° hybrid that can simplify the design of future multichroic focal planes including but not limited to hierarchical phased arrays.

  5. The DTU-ESA Millimeter-Wave Validation Standard Antenna – Manufacturing and Testing

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    A new precision tool for antenna test range qualification and inter-comparisons at mm-waves – the mm-VAST antenna – is under development at the Technical University of Denmark (DTU) in collaboration with TICRA under a European Space Agency (ESA) contract. The DTU-ESA mm-VAST antenna will facilita...... mechanical design, fabrication and assembling procedures. The performance verification test plan as well as first measurement results are also discussed....

  6. A New Fractal Multiband Antenna for Wireless Power Transmission Applications

    Directory of Open Access Journals (Sweden)

    Taoufik Benyetho

    2018-01-01

    Full Text Available The Microwave Power Transmission (MPT is the possibility of feeding a system without contact by using microwave energy. The challenge of such system is to increase the efficiency of transmitted energy from the emitter to the load. This can be achieved by rectifying the microwave energy using a rectenna system composed of an antenna of a significant gain associated with a rectifier with a good input impedance matching. In this paper, a new multiband antenna using the microstrip technology and fractal geometry is developed. The fractal antenna is validated into simulation and measurement in the ISM (industrial, scientific, and medical band at 2.45 GHz and 5.8 GHz and it presents a wide aperture angle with an acceptable gain for both bands. The final antenna is printed over an FR4 substrate with a dimension of 60 × 30 mm2. These characteristics make the antenna suitable for a multiband rectenna circuit use.

  7. A CPW-Fed Rectangular Ring Monopole Antenna for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Sangjin Jo

    2014-01-01

    Full Text Available We present a simple coplanar waveguide- (CPW- fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of 21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.

  8. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  9. A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

    Directory of Open Access Journals (Sweden)

    Aiting Wu

    2013-01-01

    Full Text Available A compact CPW-fed planar UWB antenna with dual band-notched property is presented. The dual band rejection is achieved by etching a C-shaped slot on the radiation patch and two L-shaped parasitic strips in the ground plane. The experimental and measured results show that the proposed antenna exhibits an impedance bandwidth over an ultrawideband frequency range from 2.4 to 12.5 GHz with VSWR less than 2, except for two stopbands at 3.3 to 3.75 GHz and 5.07 to 5.83 GHz for filtering the WiMAX and WLAN signals, respectively. It also demonstrates a nearly omnidirectional radiation pattern. The fabricated antenna has a tiny size, only 32 mm × 32 mm × 0.508 mm. The simulated results are compared with the measured performance and show good agreement. The simple structure, compact size, and good characteristics make the proposed antenna an excellent candidate for UWB applications.

  10. Wide frequency independently controlled dual-band inkjet-printed antenna

    KAUST Repository

    AbuTarboush, Hattan F.

    2014-01-08

    A low-cost inkjet-printed multiband monopole antenna is presented. The unique advantage of the proposed antenna is the freedom to adjust and set the dual-band of the antenna independently over a wide range (148.83%). To demonstrate the independent control feature, the 2.4 and 3.4 GHz bands for the wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications are selected as an example. The measured impedance bandwidths for the 2.4 and 3.4 GHz are 15.2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications such as GPS, PCS, GSM 1800, 1900, UMTS, and up to 5-GHz WLAN and WiMAX applications. The mechanism of independent control of each radiator through dimensional variation is discussed in detail. The antenna has a compact size of 10 × 37.3 × 0.44 mm3, leaving enough space for the driving electronics on the paper substrate. The measured results from the prototype are in good agreement with the simulated results. Owing to inkjet printing on an ordinary paper, the design is extremely light weight and highly suitable for low cost and large volume manufacturing. © The Institution of Engineering and Technology 2013.

  11. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    Science.gov (United States)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  12. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    Science.gov (United States)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been

  13. Experimental measurements at the MASURCA facility

    International Nuclear Information System (INIS)

    Assal, W.; Bosq, J.C.; Mellier, F.

    2012-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented. (authors)

  14. Experimental Measurements at the MASURCA Facility

    Science.gov (United States)

    Assal, W.; Bosq, J. C.; Mellier, F.

    2012-12-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.

  15. Experimental measurements at the Masurca facility

    International Nuclear Information System (INIS)

    AssaI, W.; Bosq, J. C.; Mellier, F.

    2009-01-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, Masurca (meaning 'mock-up facility for fast breeder reactor studies at Cadarache') is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems...). For this purpose electronics modules are implemented to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electrical and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at Masurca will be presented. (authors)

  16. Computer simulation and implementation of defected ground structure on a microstrip antenna

    Science.gov (United States)

    Adrian, H.; Rambe, A. H.; Suherman

    2018-03-01

    Defected Ground Structure (DGS) is a method reducing etching area on antenna ground to form desirable antenna’s ground field. This paper reports the method impact on microstrip antennas working on 1800 and 2400 MHz. These frequencies are important as many radio network applications such mobile phones and wireless devices working on these channels. The assessments were performed by simulating and fabricating the evaluated antennas. Both simulation data and implementation measurements show that DGS successfully improves antenna performances by increasing bandwidth up to 19%, reducing return loss up to 109% and increasing gain up to 33%.

  17. K-space polarimetry of bullseye plasmon antennas.

    Science.gov (United States)

    Osorio, Clara I; Mohtashami, Abbas; Koenderink, A Femius

    2015-04-30

    Surface plasmon resonators can drastically redistribute incident light over different output wave vectors and polarizations. This can lead for instance to sub-diffraction sized nanoapertures in metal films that beam and to nanoparticle antennas that enable efficient conversion of photons between spatial modes, or helicity channels. We present a polarimetric Fourier microscope as a new experimental tool to completely characterize the angle-dependent polarization-resolved scattering of single nanostructures. Polarimetry allows determining the full Stokes parameters from just six Fourier images. The degree of polarization and the polarization ellipse are measured for each scattering direction collected by a high NA objective. We showcase the method on plasmonic bullseye antennas in a metal film, which are known to beam light efficiently. We find rich results for the polarization state of the beamed light, including complete conversion of input polarization from linear to circular and from one helicity to another. In addition to uncovering new physics for plasmonic groove antennas, the described technique projects to have a large impact in nanophotonics, in particular towards the investigation of a broad range of phenomena ranging from photon spin Hall effects, polarization to orbital angular momentum transfer and design of plasmon antennas.

  18. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  19. The phase accumulation and antenna near field of microscopic propagating spin wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Crosby S.; Kostylev, Mikhail, E-mail: mikhail.kostylev@uwa.edu.au; Ivanov, Eugene [School of Physics M013, The University of Western Australia, Crawley, WA 6009 (Australia); Ding, Junjia; Adeyeye, Adekunle O. [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2014-01-20

    We studied phase accumulation by the highly non-reciprocal magnetostatic surface spin waves in thin Permalloy microstripes excited and received by microscopic coplanar antennae. We find that the experimentally measured characteristic length of the near field of the antenna is smaller than the total width of the coplanar. This is confirmed by our numerical simulations. Consequently, the distance over which the spin wave accumulates its phase while travelling between the input and output antennae coincides with the distance between the antennae symmetry axes with good accuracy.

  20. The phase accumulation and antenna near field of microscopic propagating spin wave devices

    International Nuclear Information System (INIS)

    Chang, Crosby S.; Kostylev, Mikhail; Ivanov, Eugene; Ding, Junjia; Adeyeye, Adekunle O.

    2014-01-01

    We studied phase accumulation by the highly non-reciprocal magnetostatic surface spin waves in thin Permalloy microstripes excited and received by microscopic coplanar antennae. We find that the experimentally measured characteristic length of the near field of the antenna is smaller than the total width of the coplanar. This is confirmed by our numerical simulations. Consequently, the distance over which the spin wave accumulates its phase while travelling between the input and output antennae coincides with the distance between the antennae symmetry axes with good accuracy

  1. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  2. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  3. Antenna Design for Directivity-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2012-01-01

    Full Text Available Antenna performance can be described by two fundamental parameters: directivity and radiation efficiency. Here, we demonstrate nanoantenna designs in terms of improved directivity. Performance of the antennas is demonstrated in Raman scattering experiments. The radiated beam is directed out of the plane by using a ground plane reflector for easy integration with commercial microscopes. Parasitic elements and parabolic and waveguide nanoantennas with a ground plane are explored. The nanoantennas were fabricated by a series of electron beam evaporation steps and focused ion beam milling. As we have shown previously, the circular waveguide nanoantenna boosts the measured Raman signal by 5.5x with respect to a dipole antenna over a ground plane; here, we present the design process that led to the development of that circular waveguide nanoantenna. This work also shows that the parabolic nanoantenna produces a further fourfold improvement in the measured Raman signal with respect to a circular waveguide nanoantenna. The present designs are nearly optimal in the sense that almost all the beam power is coupled into the numerical aperture of the microscope. These designs can find applications in microscopy, spectroscopy, light-emitting devices, photovoltaics, single-photon sources, and sensing.

  4. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  5. The ICRF antennas for TFTR

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Colestock, P.L.; Gardner, W.L.; Hosea, J.C.; Nagy, A.; Stevens, J.; Swain, D.W.; Wilson, J.R.

    1988-01-01

    Two compact loop antennas have been designed to provide ion cyclotron resonant frequency (ICRF) heating for TFTR. The antennas can convey a total of 10 MW to accomplish core heating in either high-density or high-temperature plasmas. The near-term goal of heating TFTR plasmas and the longer-term goals of ease in handling (for remote maintenance) and high reliability (in an inaccessible tritium tokamak environment) were major considerations in the antenna designs. The compact loop configuration facilitates handling because the antennas fit completely through their ports. Conservative design and extensive testing were used to attain the reliability required for TFTR. This paper summarizes how these antennas will accomplish these goals. 5 figs, 1 tab

  6. Phased Array Antenna Testbed Development at the NASA Glenn Research Center

    Science.gov (United States)

    Lambert, Kevin M.; Kubat, Gregory; Johnson, Sandra K.; Anzic, Godfrey

    2003-01-01

    Ideal phased array antennas offer advantages for communication systems, such as wide-angle scanning and multibeam operation, which can be utilized in certain NASA applications. However, physically realizable, electronically steered, phased array antennas introduce additional system performance parameters, which must be included in the evaluation of the system. The NASA Glenn Research Center (GRC) is currently conducting research to identify these parameters and to develop the tools necessary to measure them. One of these tools is a testbed where phased array antennas may be operated in an environment that simulates their use. This paper describes the development of the testbed and its use in characterizing a particular K-Band, phased array antenna.

  7. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  8. Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters

    Science.gov (United States)

    1991-01-01

    The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.

  9. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    Directory of Open Access Journals (Sweden)

    Mohammad Habib Ullah

    2013-11-01

    Full Text Available A new meta-surface structure (MSS with a near-zero refractive index (NZRI is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS, a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.

  10. Potential Improvements to VLBA UV-Coverages by the Addition of a 32-m Peruvian Antenna

    Science.gov (United States)

    Horiuchi, S.; Murphy, D. W.; Ishitsuka, J. K.; Ishitsuka, M.

    2005-12-01

    A plan is being currently developed to convert a 32-m telecomunications antenna in the Peruvian Andes into a radio astronomy facility. Significant improvements to stand-alone VLBA UV-coverages can be obtained with the addition of this southern hemisphere telescope to VLBA observations.

  11. A Low VSWR and High Efficiency Waveguide Feed Antenna Array

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fang

    2018-01-01

    Full Text Available A low VSWR and high efficiency antenna array operating in the Ku band for satellite communications is presented in this paper. To achieve high radiation efficiency and broad enough bandwidth, all-metal radiation elements and full-corporate waveguide feeding network are employed. As the general milling method is used in the multilayer antenna array fabrication, the E-plane waveguide feeding network is adopted here to suppress the wave leakage caused by the imperfect connectivity between adjacent layers. A 4 × 8 elements array prototype was fabricated and tested for verification. The measured results of proposed antenna array show bandwidth of 6.9% (13.9–14.8 GHz for VSWR < 1.5. Furthermore, antenna gain and efficiency of higher than 22.2 dBi and 80% are also exhibited, respectively.

  12. Research on the Scattering Characteristics and the RCS Reduction of Circularly Polarized Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    W. Jiang

    2013-01-01

    Full Text Available Based on the study of the radiation and scattering of the circularly polarized (CP antenna, a novel radar cross-section (RCS reduction technique is proposed for CP antenna in this paper. Quasi-fractal slots are applied in the design of the antenna ground plane to reduce the RCS of the CP antenna. Both prototype antenna and array are designed, and their time-, frequency-, and space-domain characteristics are studied to authenticate the proposed technique. The simulated and measured results show that the RCS of the prototype antenna and array is reduced up to 7.85 dB and 6.95 dB in the band of 1 GHz–10 GHz. The proposed technique serves a candidate in the design of low RCS CP antennas and arrays.

  13. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    B. F. Zong

    2016-04-01

    Full Text Available In this paper, a broadband circularly polarized (CP microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL based sequential rotation (SR feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a 2×2 antenna array comprising sequentially rotated coupled stacked CP antenna elements is designed, fabricated and measured. Both the simulated and measured results indicate that the performances of the antenna element are further enhanced when the SR network is used. The antenna array exhibits the VSWR less than 1.8 dB from 4 GHz to 7 GHz and the 3 dB axial ratio (AR from 4.4 GHz to 6.8 GHz. Also, high peak gain of 13.7 dBic is obtained. Besides, the normalized radiation patterns at the operating frequencies are symmetrical and the side lobe levels are low at φ=0º and φ=90º.

  14. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  15. Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)

    Science.gov (United States)

    Sato, T.; Inooka, Y.; Fukao, S.; Kato, S.

    1986-01-01

    As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed.

  16. Experiments with dipole antennas

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.

  17. Design and test of voltage and current probes for EAST ICRF antenna impedance measurement

    Science.gov (United States)

    Jianhua, WANG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Shuai, YUAN; Xinjun, ZHANG; Hua, YANG; Chengming, QIN; Yan, CHENG; Yuqing, YANG; Guillaume, URBANCZYK; Lunan, LIU; Jian, CHENG

    2018-04-01

    On the experimental advanced superconducting tokamak (EAST), a pair of voltage and current probes (V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance, and supplement the conventional measurement technique based on voltage probe arrays. The coupling coefficients of V/I probes are sensitive to their sizes and installing locations, thus they should be determined properly to match the measurement range of data acquisition card. The V/I probes are tested in a testing platform at low power with various artificial loads. The testing results show that the deviation of coupling resistance is small for loads R L > 2.5 Ω, while the resistance deviations appear large for loads R L phase measurement error is the more significant factor leads to deleterious results rather than the amplitude measurement error. To exclude the possible ingredients that may lead to phase measurement error, the phase detector can be calibrated in steady L-mode scenario and then use the calibrated data for calculation under H-mode cases in EAST experiments.

  18. Biosecurity measures in 48 isolation facilities managing highly infectious diseases.

    Science.gov (United States)

    Puro, Vincenzo; Fusco, Francesco M; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-06-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an "insider attack."

  19. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    Science.gov (United States)

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  20. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  1. Terahertz Harmonic Operation of Microwave Fresnel Zone Plate Lens and Antenna: Frequency Filtering and Space Resolution Properties

    Directory of Open Access Journals (Sweden)

    Hristo D. Hristov

    2011-01-01

    Full Text Available This paper examines the binary Fresnel zone plate (FZP lens frequency-harmonic and space-resolution focusing, and its application as a FZP lens antenna. A microwave FZP lens antenna (FZPA radiates both at design (90 GHz and terahertz (THz odd harmonic frequencies. Frequency and space domain antenna operation are studied analytically by use of the vector diffraction integral applied to a realistic printed FZPA. It is found that all harmonic gain peaks are roughly identical in form, bandwidth, and top values. At each harmonic frequency, the FZPA has a beamwidth that closely follows the Rayleigh resolution criterion. If the lens/antenna resolution is of prime importance and the small aperture efficiency is a secondary problem the microwave-design FZP lens antenna can be of great use at much higher terahertz frequencies. Important feature of the microwave FZP lens is its broader-zone construction compared to the equal in resolution terahertz-design FZP lens. Thus, unique and expensive microtechnology for the microwave FZP lens fabrication is not required. High-order harmonic operation of the FZP lens or lens antenna could find space resolution and frequency filtering applications in the terahertz and optical metrology, imaging tomography, short-range communications, spectral analysis, synchrotron facilities, and so on.

  2. When to Perform Antenna Measurements in a Near-Field Range or a Short Tapered Chamber

    Science.gov (United States)

    2017-03-01

    results for future antennas under test in the most cost-effective manner (man-hours, custom mount, etc.) 15. SUBJECT TERMS electromagnetic, chamber...to obtain the results for future antennas under test (AUTs) in the most cost-effective manner (man-hours, custom mounting, etc.). The NFR and...the most cost-effective manner to obtain AUT data be established for either the NFR or tapered anechoic chamber. The NFR can obtain planar

  3. Compressive Sensing for Millimeter Wave Antenna Array Diagnosis

    KAUST Repository

    Eltayeb, Mohammed E.

    2018-01-08

    The radiation pattern of an antenna array depends on the excitation weights and the geometry of the array. Due to wind and atmospheric conditions, outdoor millimeter wave antenna elements are subject to full or partial blockages from a plethora of particles like dirt, salt, ice, and water droplets. Handheld devices are also subject to blockages from random finger placement and/or finger prints. These blockages cause absorption and scattering to the signal incident on the array, modify the array geometry, and distort the far-field radiation pattern of the array. This paper studies the effects of blockages on the far-field radiation pattern of linear arrays and proposes several array diagnosis techniques for millimeter wave antenna arrays. The proposed techniques jointly estimate the locations of the blocked antennas and the induced attenuation and phase-shifts given knowledge of the angles of arrival/departure. Numerical results show that the proposed techniques provide satisfactory results in terms of fault detection with reduced number of measurements (diagnosis time) provided that the number of blockages is small compared to the array size.

  4. Multiband Patch Antenna for Femtocell Application

    Directory of Open Access Journals (Sweden)

    M. R. Zaman

    2014-01-01

    Full Text Available A microstrip patch antenna for multiple LTE (long term evaluation frequency bands for femtocell application is proposed in this paper. Distributed antenna solution (DAS has been introduced in cellular network to achieve homogenous indoor coverage. Femtocell is the latest extension to these solutions. It is a smart solution to both coverage and capacity scales. Femtocell operation in LTE band is occupied by higher frequency bands. For multiband femtocell application, miniature antenna design is quite essential. The antenna proposed here is composed of basic monopole structure with two parasitic elements at both sides of the active element. A rectangular slot is introduced at the ground plane of the proposed antenna. The antenna is designed using ElnoS HK light CCL substrate material of relative permittivity of 9.4, dielectric loss-tangent of 0.003 and thickness of 3 mm. The S11 response of the antenna is shown to have a bandwidth of 1.01 GHz starting from 1.79 GHz to 2.8 GHz. The characteristics of the antenna are analysed using Ansoft HFSS software.

  5. Liquid Crystal Polymer (LCP) based antenna for flexible system on package (SoP) applications

    KAUST Repository

    Marnat, Loic; Shamim, Atif

    2012-01-01

    The design, fabrication and measurement of a bowtie antenna on a flexible Liquid Crystal Polymer (LCP) substrate is reported in this paper. The antenna is fed by a balun transition which helps improve the gain up to 5.1 dB. The antenna performance is analyzed for both planar and curved substrates. The comparison between simulation and measurements shows a good agreement. This structure can either be used to sense the bending of the substrate or use the bending to tilt the beam. © 2012 IEEE.

  6. Liquid Crystal Polymer (LCP) based antenna for flexible system on package (SoP) applications

    KAUST Repository

    Marnat, Loic

    2012-06-01

    The design, fabrication and measurement of a bowtie antenna on a flexible Liquid Crystal Polymer (LCP) substrate is reported in this paper. The antenna is fed by a balun transition which helps improve the gain up to 5.1 dB. The antenna performance is analyzed for both planar and curved substrates. The comparison between simulation and measurements shows a good agreement. This structure can either be used to sense the bending of the substrate or use the bending to tilt the beam. © 2012 IEEE.

  7. A Compact Frequency Reconfigurable Antenna for LTE Mobile Handset Applications

    Directory of Open Access Journals (Sweden)

    Munyong Choi

    2015-01-01

    Full Text Available A compact (8 × 62 × 5 mm3; 2.48 cc frequency reconfigurable antenna that uses electrical switching with PIN diodes is proposed for the low frequency LTE band (699 MHz–862 MHz, high frequency LTE band (2496 MHz–2690 MHz, GSM850/900 bands (824 MHz–960 MHz, and DCS/PCS/WCDMA bands (1710 MHz–2170 MHz. The penta-band PIFA is first designed for GSM850/900/DCS/PCS/WCDMA bands by using two slits and ground pins within a limited antenna volume (8 × 54.6 × 5 mm3; 2.18 cc. The frequency reconfigurable antenna based on this penta-band PIFA is thus proposed to additionally cover all LTE bands. The proposed antenna has two PIN diodes with an optimal location. For State 1 (PIN diode 1: ON state, PIN diode 2: OFF state, the proposed antenna covers the low frequency LTE band, DCS/PCS/WCDMA bands, and high frequency LTE band. For State 2 (PIN diode 1: OFF state, PIN diode 2: ON state, the antenna covers the GSM850/900 bands. Simulated and measured results show that the total efficiency of the proposed antenna was greater than 40% for all operating frequency bands.

  8. Reconfigurable dual-band metamaterial antenna based on liquid crystals

    Science.gov (United States)

    Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun

    2018-05-01

    In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward  ‑16° to forward  +13° at 7.2 GHz and backward  ‑9° to forward  +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.

  9. An inkjet printed near isotropic 3-D antenna with embedded electronics for wireless sensor applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    A 3-D (cube-shaped) antenna, which has been inkjet printed on a paper substrate and integrated with embedded electronics, is presented for the first time. A 1.5λ0 dipole is uniquely implemented on all the faces of the cube to achieve near isotropic radiation pattern. The antenna measures 13mm × 13mm × 13mm, where each side of the cube corresponds to only 0.1λ0 (at 2.4 GHz). Measurements with driving electronics placed inside the cube have shown that the antenna performance is not affected by the presence of embedded circuits. The cube antenna design is highly suitable for mobile sensing applications.

  10. Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System

    Directory of Open Access Journals (Sweden)

    Endra Wijaya

    2013-11-01

    Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.

  11. U.S., European ALMA Partners Award Prototype Antenna Contracts

    Science.gov (United States)

    2000-03-01

    The U.S. and European partners in the Atacama Large Millimeter Array (ALMA) project have awarded contracts to U.S. and Italian firms, respectively, for two prototype antennas. ALMA is a planned telescope array, expected to consist of 64 millimeter-wave antennas with 12-meter diameter dishes. The array will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert, and is scheduled to be completed sometime in this decade. On February 22, 2000, Associated Universities Inc. (AUI) signed an approximately $6.2 million contract with Vertex Antenna Systems, of Santa Clara, Calif., for construction of one prototype ALMA antenna. AUI operates the U.S. National Radio Astronomy Observatory (NRAO) for the National Science Foundation under a cooperative agreement. The European partners contracted with the consortium of European Industrial Engineering and Costamasnaga, of Mestre, Italy, on February 21, 2000, for the production of another prototype. (Mestre is located on the inland side of Venice.) The two antennas must meet identical specifications, but will inherently be of different designs. This will ensure that the best possible technologies are incorporated into the final production antennas. Only one of the designs will be selected for final production. Several technical challenges must be met for the antennas to perform to ALMA specifications. Each antenna must have extremely high surface accuracy (25 micrometers, or one-third the diameter of a human hair, over the entire 12-meter diameter). This means that, when completed, the surface accuracy of the ALMA dishes will be 20 times greater than that of the Very Large Array (VLA) antennas, and about 50 times greater than dish antennas for communications or radar. The ALMA antennas must also have extremely high pointing accuracy (0.6 arcseconds). An additional challenge is that the antennas, when installed at the ALMA site in Chile, will be exposed to the ravages of weather at 16,500 feet (5000 meters

  12. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    agility (1.17 GHz to 1.58 GHz), full polarization reconfiguration was added to the design by controlling ports excitation of circular patch using RF switches (vertical linear, horizontal linear, right-handed circular polarization (RHCP) and left-handed circular polarization (LHCP)). This deign maintains good gain and radiation efficiency over the tunable range as well as acceptable co-polarization and cross-polarization separation for different polarizations. Since many communications applications require beam steering ability, in our third design, we designed and developed a linear phased array antenna using a modified version of our frequency agile polarization reconfigurable antenna for beam steering applications. This design offers wide frequency agility (1.50 GHz to 2.40 GHz), full polarization reconfiguration (vertical linear, horizontal linear, LHCP and RHCP) as well as beam steering of +/-52° and +/-28° at 1.5 GHz and 2.4 GHz, respectively. In this 1x4 array, the excitation magnitude and phase of each element was controlled by an analog beamforming feed network (BFN) for beam steering purposes. The required excitation for each element to steer the beam toward a desired location was calculated using projection matrix method (PMM) which uses measured active element pattern (AEP) as its input. This array antenna performance for frequency agility, radiation quality for each polarization and beam steering capability was obtained in the acceptable range. In the last design, the full spherical dual null steering capability of a triple mode circular microstrip patch antenna was investigated. By combining the radiation patterns of three individual modes of microstrip circular patch antenna, two nulls have been generated. These nulls can be repositioned in the upper hemisphere by controlling excitation ratio of each mode. The modes excitation ratio to steer the nulls toward the desired positions was calculated using a derivative free hybrid optimization method. This

  13. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    Science.gov (United States)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  14. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    Science.gov (United States)

    Radway, Matthew J.

    Since their invention about 55 years ago, spiral antennas have earned a reputation for providing stable impedance and far-field patterns over multi-decade frequency ranges. For the first few decades these antennas were researched for electronic warfare receiving applications, primarily in the 2-18 GHz range. This research was often done under conditions of secrecy, and often by private contractors who did not readily share their research, and now have been defunct for decades. Even so, the body of literature on the two-armed variant of these antennas is rich, often leading non-specialists to the misconception that these antennas are completely understood. Furthermore, early work was highly experimental in nature, and was conducted before modern data collection and postprocessing capabilities were widespread, which limited the range of the studies. Recent research efforts have focused on extending the application of spirals into new areas, as well as applying exotic materials to `improve' their performance and reduce their size. While interesting results have been obtained, in most instances these were incomplete, often compromising the frequency independent nature of these antennas. This thesis expands the role of the multi-armed spiral outside of its traditional niche of receive-only monopulse direction finding. As a first step, careful study of the spiral-antenna mode theory is undertaken with particular attention paid to the concepts of mode filtering and modal decomposition. A technique for reducing the modal impedance of high arm-count spirals is introduced. The insights gained through this theoretical study are first used to improve the far-field performance of the coiled-arm spiral antenna. Specifically, expanding the number of arms on a coiled arm spiral from two to four while providing proper excitation enables dramatically improved broadside axial ratio and azimuthal pattern uniformity. The multiarming technique is then applied to the design of an antenna

  15. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  16. On the truncation of the azimuthal mode spectrum of high-order probes in probe-corrected spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Laitinen, Tommi

    2011-01-01

    Azimuthal mode (m mode) truncation of a high-order probe pattern in probe-corrected spherical near-field antenna measurements is studied in this paper. The results of this paper provide rules for appropriate and sufficient m-mode truncation for non-ideal first-order probes and odd-order probes wi...

  17. Combline antennas for launching traveling fast waves

    International Nuclear Information System (INIS)

    Moeller, C.P.; Gould, R.W.; Phelps, D.A.; Pinsker, R.I.

    1994-01-01

    The combline structure shows promise for launching traveling fast magnetosonic waves with adjustable n parallel (3 ≤ n parallel ≤ 6) for current drive. In this paper, the dispersion and damping properties of the combline antenna with and without a Faraday shield are given. The addition of a Faraday shield which eliminates the electrostatic coupling between current straps as well as between the straps and plasma offers the advantage of eliminating the need for the lumped capacitors which are otherwise required with this structure. The results of vacuum dispersion and damping measurements on a low power model antenna are also given. (author)

  18. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  19. GBO RF Anechoic Chamber & Antenna Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  20. Broadband Loop Antenna on Soft Contact Lens for Wireless Ocular Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    Ssu-Han Ting

    2014-01-01

    Full Text Available This paper presents a novel loop antenna with broadband for wireless ocular physiological monitoring (WOPM. The antenna is fabricated on a thin-film poly-para-xylylene C (parylene C substrate with a small thickness of 11 μm and dimension of π×6.5×6.5 mm2. With the advantage of small size, the proposed antenna is suitable to apply to the soft contact lens and transmit the signal in microelectromechanical Systems (MEMS. Because the pig's eye and human's eye have similar parameters of conductivity and permittivity, the experimental results are obtained by applying the proposed antenna on the pig's eye and cover from 1.54 to 6 GHz for ISM band (2.4 and 5.8 GHz applications. The measured antenna radiation patterns, antenna gains, and radiation efficiency will be demonstrated in this paper, which are suitable for application of wireless ocular physiological monitoring.

  1. Wearable Inset-Fed FR4 Microstrip Patch Antenna Design

    Science.gov (United States)

    Zaini, S. R. Mohd; Rani, K. N. Abdul

    2018-03-01

    This project proposes the design of a wireless body area network (WBAN) microstrip patch antenna covered by the jeans fabric as the outer layer operating at the center frequency, fc of 2.40 GHz. Precisely, the microstrip patch antenna with the inset-fed edge technique is designed and simulated systematically by using the Keysight Advanced Design System (ADS) software where the FR4 board with the dielectric constant, ɛr of 4.70, dissipation factor or loss tangent, tan δ of 0.02 and height, h of 1.60 mm is the chosen dielectric substrate. The wearable microstrip patch antenna design is then fabricated using the FR4 printed circuit board (PCB) material, hidden inside the jeans fabric, and attached to clothing, such as a jacket accordingly. Simulation and fabrication measurement results show that the designed microstrip patch antenna characteristics can be applied significantly within the industrial, scientific, and medical (ISM) radio band, which is at fc = 2.40 GHz.

  2. Co-design of on-chip antennas and circuits for a UNII band monolithic transceiver

    KAUST Repository

    Shamim, Atif

    2012-07-28

    The surge of highly integrated and multifunction wireless devices has necessitated the designers to think outside the box for solutions that are unconventional. The new trends have provided the impetus for low cost and compact RF System-on-Chip (SoC) approaches [1]. The major advantages of SoC are miniaturization and cost reduction. A major bottleneck to the true realization of monolithic RF SoC transceivers is the implementation of on-chip antennas with circuitry. Though complete integrated transceivers with on-chip antennas have been demonstrated, these designs are generally for high frequencies. Moreover, they either use non-standard CMOS processes or additional fabrication steps to enhance the antenna efficiency, which in turn adds to the cost of the system [2-3]. Another challenge related to the on-chip antennas is the characterization of their radiation properties. Most of the recently reported work (summarized in Table I) shows that very few on-chip antennas are characterized. Our previous work [4], demonstrated a Phase Lock Loop (PLL) based transmitter (TX) with an on-chip antenna. However, the radiation from the on-chip antenna experienced strong interference due to 1) some active circuitry on one side of the chip and 2) the PCB used to mount the chip in the anechoic chamber. This paper presents, for the first time, a complete 5.2 GHz (UNII band) transceiver with separate TX and receiver (RX) antennas. To the author\\'s best knowledge, its size of 3 mm2 is the smallest reported for a UNII band transceiver with two on-chip antennas. Both antennas are characterized for their radiation properties through an on-wafer custom measurement setup. The strategy to co-design on-chip antennas with circuits, resultant trade-offs and measurement challenges have also been discussed. © 2010 IEEE.

  3. ON ELLIPTICALLY POLARIZED ANTENNAS IN THE PRESENCE OF GROUND

    Science.gov (United States)

    The effect of ground reflections upon the far field of an elliptically polarized antenna of ar itrary orientation with r spect to ground is...investigated. The equation of the polarization ellipse produced by an elliptically polarized antenna in the presence of ground is derived, AND SEVERAL...EXAMPLES ILLUSTRATE THE VARIATION IN THE AXIS RATIO OF THE POLARIZATION ELLIPSE AS A FUNCTION OF THE GEOMETRY OF THE MEASURING SETUP. A method is presented

  4. Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

    Directory of Open Access Journals (Sweden)

    Kazuki Ide

    2010-01-01

    Full Text Available The present paper describes the gain enhancement of a small and low-profile linear antenna with capacitive feed (C-feed using three metallic layers. The antenna has very small leakage current on the outer conductor of the coaxial cable and can easily control the imaginary part of the input impedance. The gain of the stacked three-layer meander line antenna, with the meander line in the middle layer being opposite to that of the other two layers, has increased by around 7 dB compared to the single layered C-feed antenna. The antenna gain is discussed based on simulated and measured results, which demonstrates that the antenna has successfully achieved the acceptable impedance and sufficient gain for mobile terminals and RFID tags.

  5. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  6. Resonant Frequency Calculation and Optimal Design of Peano Fractal Antenna for Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Jian Li

    2012-01-01

    Full Text Available Ultra-high-frequency (UHF approaches have caught increasing attention recently and have been considered as a promising technology for online monitoring partial discharge (PD signals. This paper presents a Peano fractal antenna for UHF PD online monitoring of transformer with small size and multiband. The approximate formula for calculating the first resonant frequency of the Peano fractal antenna is presented. The results show that the first resonant frequency of the Peano fractal antenna is smaller than the Hilbert fractal antenna when the outer dimensions are equivalent approximately. The optimal geometric parameters of the antenna were obtained through simulation. Actual PD experiments had been carried out for two typically artificial insulation defect models, while the proposed antenna and the existing Hilbert antenna were both used for the PD measurement. The experimental results show that Peano fractal antenna is qualified for PD online UHF monitoring and a little more suitable than the Hilbert fractal antenna for pattern recognition by analyzing the waveforms of detected UHF PD signals.

  7. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  8. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  9. Compact super-wideband optical antenna

    Science.gov (United States)

    Wang, Wen C.; Forber, Richard; Bui, Kenneth

    2009-05-01

    We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.

  10. Design and Simulation of Horn Antenna Using CST Software for GPR System

    Science.gov (United States)

    Joret, Ariffuddin; Sulong, M. S.; Abdullah, M. F. L.; Madun, Aziman; Haimi Dahlan, Samsul

    2018-04-01

    Detection of underground object can be made using a GPR system. This system is classified as a non-destructive technique (NDT) where the ground areas need not to be excavated. The technique used by the GPR system is by measuring the reflection of electromagnetic wave signal produced and detected by antenna which is known as the transmitter and the receiver antenna. In this study, a GPR system was studied by means of simulation using a Horn antenna as a transceiver antenna. The electromagnetic wave signal in this simulation is produced by current signal of an antenna which having a shape of modulation of Gaussian pulse which is having spectrum from 8 GHz until 12 GHz. CST and MATLAB Software are used in this GPR system simulation. A model of a Horn antenna has been designed using the CST software before the GPR’s system simulation modeled by adding a model of background in front of the Horn antenna. The simulation results show that the output signal of the Horn antenna can be used in detecting embedded object which are made from material of wood and iron. In addition, the simulation result has successfully developed a 3D model image of the GPR system using output signal of the Horn antenna. The embedded iron object in the GPR system simulation can be seen clearly by using this 3D image.

  11. Microgravity vertical gradient measurement in the site of VIRGO interferometric antenna (Pisa plain, Italy

    Directory of Open Access Journals (Sweden)

    F. Fidecaro

    2008-06-01

    Full Text Available The site of the European Gravitational Observatory (EGO located in the countryside near Pisa (Tuscany, Italy was investigated by a microgravity vertical gradient (MVG survey. The EGO site houses the VIRGO interferometric antenna for gravitational waves detection. The microgravity survey aims to highlight the gravity anomalies of high-frequency related to more superficial geological sources in order to obtain a detailed model of the lithologic setting of the VIRGO site, that will allow an estimate of the noise induced by seismic waves and by Newtonian interference. This paper presents the results of the gradiometric survey of 2006 in the area of the interferometric antenna. MVG measurements allow us to enhance the high frequency signal strongly associated with the shallow structures. The gradient gravity map shows a main negative pattern that seems related to the trending of the high density layer of gravel that was evidenced in geotechnical drillings executed along the orthogonal arms during the construction of the VIRGO complex. Calibrating the relationship between the vertical gradient and the depth of the gravel interface we have computed a model of gravity gradient for the whole VIRGO site, defining the 3D distribution of the top surface of this layer. This latter shows a NE-SW negative pattern that may represent a palaeo-bed alluvial of the Serchio from the Bientina River system.

  12. Wideband Circularly Polarized Printed Ring Slot Antenna for 5 GHz – 6 GHz

    Science.gov (United States)

    Nasrun Osman, Mohamed; Rahim, Mohamad Helmi A.; Jusoh, Muzammil; Sabapathy, Thennarasan; Rahim, Mohamad Kamal A.; Norlyana Azemi, Saidatul

    2018-03-01

    This paper presents the design of circularly polarized printed slot antenna operating at 5 – 6 GHz. The proposed antenna consists of L-shaped feedline on the top of structure and circular ring slot positioned at the ground plane underneath the substrate as a radiator. A radial and narrow slot in the ground plane provides coupling between the L-shaped feedline and circular ring slot. The circular polarization is realized by implementing the slits perturbation located diagonally to perturb the current flow on the slot structure. The antenna prototype is fabricated on FR4 substrate. The simulated and measured results are compared and analyzed to demonstrate the performance of the antenna. Good measured of simulated results are obtained at the targeted operating frequency. The simulated -10dB reflection coefficient bandwidths and axial ratio are 750 MHz and 165 MHz, respectively. The investigation on the affect of the important parameters towards the reflection coefficient and axial are also presented. The proposed antenna is highly potential to be used for wireless local area network (WLAN) and wireless power transfer (WPT).

  13. Theory and design of a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2014-03-01

    For the first time, a theoretical model is presented to predict the frequency tuning of a patch antenna on a partially magnetized ferrite substrate. Both extraordinary (E) and ordinary (O) modes of the antenna are studied. The permeability tensor of the partially magnetized ferrite is calculated through the proposed theoretical model and is subsequently used to analyze the antenna\\'s performance in a microwave simulator. Prototype antennas were built, using two different bias windings, embedded in a multilayer ferrite LTCC substrate, to demonstrate E and O mode tuning. The use of embedded windings negates the requirement of bulky electromagnets, thus providing miniaturization. The concept also eliminates the demagnetization effect, thus reducing the typically required bias fields by 95%. The prototype measurements at 13 GHz demonstrate an E-mode tuning range of 10%. The proposed theoretical model has been validated by simulations and measurements. The design is highly suitable for compact, light-weight, tunable and reconfigurable microwave systems. © 1963-2012 IEEE.

  14. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    International Nuclear Information System (INIS)

    Yi, Xiaohua; Cho, Chunhee; Wang, Yang; Cooper, James; Tentzeris, Manos M; Leon, Roberto T

    2013-01-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack. (paper)

  15. Precision Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs measurements and calibration of antennas for satellites and aircraft or groundbased systems. The chamber is primarily used for optimizing antenna...

  16. An Approach for Smart Antenna Testbed

    Science.gov (United States)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  17. A Multiband Proximity-Coupled-Fed Flexible Microstrip Antenna for Wireless Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Andrea Casula

    2016-01-01

    Full Text Available A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computer-aided design software (CAD, CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45 GHz and C-band (5.2 GHz, and the Wi-Max 3.5 GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°.

  18. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms......, it was subsequently tuned to 50 ohms simply by cutting out the excessive arm length. This tuning technique is especially useful in practical applications, since it allows the antenna to be tuned in-place and thereby compensate for various inaccuracies as well as for an antenna environment....

  19. Benchmark simulations of ICRF antenna coupling

    International Nuclear Information System (INIS)

    Louche, F.; Lamalle, P. U.; Messiaen, A. M.; Compernolle, B. van; Milanesio, D.; Maggiora, R.

    2007-01-01

    The paper reports on ongoing benchmark numerical simulations of antenna input impedance parameters in the ion cyclotron range of frequencies with different coupling codes: CST Microwave Studio, TOPICA and ANTITER 2. In particular we study the validity of the approximation of a magnetized plasma slab by a dielectric medium of suitably chosen permittivity. Different antenna models are considered: a single-strap antenna, a 4-strap antenna and the 24-strap ITER antenna array. Whilst the diagonal impedances are mostly in good agreement, some differences between the mutual terms predicted by Microwave Studio and TOPICA have yet to be resolved

  20. Temperature Measurements in the Magnetic Measurement Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  1. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  2. ALMA Partners Award Prototype Antenna Contracts in Europe and the USA

    Science.gov (United States)

    2000-03-01

    The European and U.S. partners in the Atacama Large Millimeter Array (ALMA) project have awarded contracts to firms in Italy and the USA, respectively, for two prototype antennas. ALMA is a planned telescope array, expected to consist of 64 millimeter-wave antennas with 12-meter diameter dishes, cf. ESO Press Release 09/99 and ESO PR Video Clip 08/99. The array will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert, and is scheduled to be completed sometime in this decade. The European partners contracted with the consortium of European Industrial Engineering and Costamasnaga (Mestre, Italy), on February 21, 2000, for the production of one prototype ALMA antenna. On February 22, 2000, Associated Universities Inc. signed a contract with Vertex Antenna Systems (Santa Clara, California), for construction of another prototype antenna. The two antennas must meet identical specifications, but will inherently be of different designs. This will ensure that the best possible technologies are incorporated into the final production antennas. Several technical challenges must be met for the antennas to perform to ALMA specifications. Each antenna must have extremely high surface accuracy (25 µm, or one-third the diameter of a human hair, over the entire 12-meter diameter). This means that, when completed, the surface accuracy of the ALMA dishes will be 20 times greater than that of the Very Large Array (VLA) antennas near Socorro (New Mexico, USA), and about 50 times greater than dish antennas for communications or radar. The ALMA antennas must also have extremely high pointing accuracy (0.6 arcseconds). An additional challenge is that the antennas, when installed at the ALMA site in Chile, will be exposed to the ravages of weather at 5000 m elevation. All previous millimeter-wavelength antennas that meet such exacting specifications for surface accuracy and pointing accuracy have been housed within telescope enclosures. The U.S. and European

  3. Narrowband-to-Narrowband Frequency Reconfiguration with Harmonic Suppression Using Fractal Dipole Antenna

    Directory of Open Access Journals (Sweden)

    S. A. Hamzah

    2013-01-01

    Full Text Available Harmonic suppressed fractal antenna with switches named TMFDB25 is developed to select desired frequency band from 400 MHz to 3.5 GHz. The radiating element length is changed to tune the operating frequency while the stub is used to eliminate the undesired harmonic frequency. The balun circuit is reduced by 75% from the original size. The antenna is built on a low loss material. It has the ability to select a single frequency out of fifteen different bands and maintain the omnidirectional radiation pattern properties. Furthermore, the antenna is designed, built, and tested. Simulation and measurement results show that the antenna operates well at the specific frequency range. Therefore, the antenna is suitable to be used for switching frequencies in the band of TV, GSM900/1800, 3G, ISM 2.4 GHz, and above.

  4. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Bora, Dhiraj

    2011-01-01

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  5. Magnetic materials for mobile communication antennas substrate application

    Science.gov (United States)

    Chen, Hui; Liang, Difei; Li, Weijia; Pang, Chao

    2017-11-01

    In this work, 3Ba0.7Sr0.3O·2CoO·10.8Fe2O3 and Ba2Co2Fe12O22 had been fabricated successfully by conventional ceramic process. Crystallographic structure and electromagnetic properties of two kind of hexagonal ferrite with different sintering temperature were investigated. X-ray Diffraction (XRD), Agilent-N5230A Network Analyzer were used to measure ferrite samples. The mobile phone antenna performance was analysed by HFSS. The results revealed that the main phase of two ferrite samples generated at lower temperature due to additive. The optimized parameters of ferrite are sintering temperature at 1000°C. And to emulate antenna model by HFSS find that Z-type and Y-type ferrite substrate can contribute to antenna frequency shifting, radiation efficiency were affected a little.

  6. A Compact Printed Quadruple Band-Notched UWB Antenna

    Directory of Open Access Journals (Sweden)

    Xiaoyin Li

    2013-01-01

    Full Text Available A novel compact coplanar waveguide- (CPW- fed ultrawideband (UWB printed planar volcano-smoke antenna (PVSA with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.

  7. CIRCULARLY POLARIZED SLOT ANTENNA WITH COMPACT SIZE FOR WLAN/WIMAX APPLICATION

    Directory of Open Access Journals (Sweden)

    Azim Rezaei Motlagh

    2014-01-01

    Full Text Available In this letter a circle patch that have two slots in ground and patch is presented. The antenna is operated in WLAN/WiMAX at 4.7~6 GHz. The 3dB axial ratio bandwidth is 0.5GHz at 5.3~5.8GHz. Comparison results between measured and simulated of antenna are acceptable.

  8. First plasma experiments in Tore Supra with a new generation of high heat flux limiters for RF antennas

    International Nuclear Information System (INIS)

    Agarici, G.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Bucalossi, J.; Colas, L.; Durocher, A.; Gargiulo, L.; Ladurelle, L.; Lombard, G.; Martin, G.; Mollard, P.

    2000-01-01

    During the 1997 and 1998 Tore Supra shutdown, a first set of new antenna guard limiters was installed on one of the three ion cyclotron resonance heating (ICRH) antennas of Tore Supra. This limiter, which was one of the main technological studies of the 1998 campaign, was widely experimented in real plasma conditions, thus allowing the validation in situ, for the first time, of the technology of active metal casting (AMC) for plasma facing components. The huge improvement in the thermal response of the new limiter generation, compared to the old one, is shown on plasma pulses made identical in terms of antenna position and injected RF power profile. By using the infrared cameras installed inside Tore Supra and viewing the antennas front, the power density fluxes received by the carbon fibre composite (CFC) surface of the limiter were evaluated by correlation with the heat load tests made on the electrons beam facility of CEA/Framatome

  9. Scattering Effects of Solar Panels on Space Station Antenna Performance

    Science.gov (United States)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  10. 3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications

    Science.gov (United States)

    Skinner, Matthew

    In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.

  11. Radiation Pattern of Chair Armed Microstrip Antenna

    Science.gov (United States)

    Mishra, Rabindra Kishore; Sahu, Kumar Satyabrat

    2016-12-01

    This work analyzes planar antenna conformable to chair arm shaped surfaces for WLAN application. Closed form expressions for its radiation pattern are developed and validated using measurements on prototype and commercial EM code at 2.4 GHz.

  12. Multiband and wideband monopole antenna for GSM900 and other wireless applications

    KAUST Repository

    Abutarboush, Hattan; Nasif, H.; Nilavalan, Rajagopal; Cheung, Sing Wai

    2012-01-01

    In this letter, the design of a compact monopole antenna for multiband and wideband operations is proposed. The antenna has three distinct frequency bands, centered at 0.94, 2.7, and 4.75 GHz. The antenna has a compact size of only 30×40×1.57 mm$ 3 including the ground plane. The multiband and wideband operations are achieved by using an E-shaped slot on the ground plane. The design procedure is also discussed. The frequency bands can be independently controlled by using the parameters of the E-slot. The impedance bandwidth, current distributions, radiation patterns, gain, and efficiency of the antenna are studied by computer simulation and measurements. © 2011 IEEE.

  13. Optical response of bowtie antennas

    Science.gov (United States)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  14. Joule loss on a Faraday shield of JT-60 ICRF test antenna

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki; Saigusa, Mikio; Ikeda, Yoshitaka; Kimura, Haruyuki; Hirashima, Teruhisa; Uehara, Munenori.

    1988-01-01

    Joule loss on a Faraday shield of JT-60 ICRF test antenna with a conductive casing is investigated at the frequency range of 120 MHz. The magnetic field radiated from the antenna is measured by three-dimensionally scanning an rf probe both inside and outside the antenna casing. The magnetic field perpendicular to the Faraday shield, B x , is found to be the largest component near the Faraday shield. It consequently gives the major part of the joule loss on the Faraday shield. The temperature distribution of the Faraday shield due to joule loss is measured directly with a thermocamera. It is confirmed that the area of the high temperature rise is consistent with the peak positions of the B x field. Faraday shield resistance which is estimated from power measurements agrees with the theoretical value. (author)

  15. A comparison of goniophotometric measurement facilities

    DEFF Research Database (Denmark)

    Thorseth, Anders; Lindén, Johannes; Dam-Hansen, Carsten

    2016-01-01

    In this paper, we present the preliminary results of a comparison between widely different goniophotometric and goniospectroradiometric measurement facilities. The objective of the comparison is to increase consistency and clarify the capabilities among Danish test laboratories. The study will seek...... to find the degree of equivalence between the various facilities and methods. The collected data is compared by using a three-way variation of principal component analysis, which is well suited for modelling large sets of correlated data. This method drastically decreases the number of numerical values...

  16. A Modal Approach to Compact MIMO Antenna Design

    Science.gov (United States)

    Yang, Binbin

    MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored

  17. Aspects of High-Q Tunable Antennas and Their Deployment for 4G Mobile Communications

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Svendsen, Simon

    2016-01-01

    Tunable antennas are very promising for future generations of mobile communications, where broad frequency coverage will be required increasingly. This work describes the design of small high-Quality factor (Q) tunable antennas based on Micro-Electro-Mechanical Systems (MEMS), which are capable...... of operation in the frequency ranges 600 - 960 MHz and 1710 - 2690 MHz. Some aspects of high-Q tunable antennas are investigated through experimental measurements and the result are presented. Results show that more than -30 dB of isolation can be achieved between the Transmit (Tx) and Receive (Rx) antennas...

  18. Improved Microstrip Antenna with HIS Elements and FSS Superstrate for 2.4 GHz Band Applications

    Directory of Open Access Journals (Sweden)

    Praphat Arnmanee

    2018-01-01

    Full Text Available This research presents a microstrip antenna integrated with the high-impedance surface (HIS elements and the modified frequency selective surface (FSS superstrate for 2.4 GHz band applications. The electromagnetic band gap (EBG structure was utilized in the fabrication of both the HIS and FSS structures. An FR-4 substrate with 120 mm × 120 mm × 0.8 mm in dimension (W × L × T and a dielectric constant of 4.3 was used in the antenna design. In the antenna development, the HIS elemental structure was mounted onto the antenna substrate around the radiation patch to suppress the surface wave, and the modified FSS superstrate was suspended 20 mm above the radiating patch to improve the directivity. Simulations were carried out to determine the optimal dimensions of the components and the antenna prototype subsequently fabricated and tested. The simulation and measured results were agreeable. The experimental results revealed that the proposed integrated antenna (i.e., the microstrip antenna with the HIS and FSS structures outperformed the conventional microstrip antenna with regard to reflection coefficient, the radiation pattern, gain, and radiation efficiency. Specifically, the proposed antenna could achieve the measured antenna gain of 10.14 dBi at 2.45 GHz and the reflection coefficient of less than −10 dB and was operable in the 2.39–2.51 GHz frequency range.

  19. Low-cost low-power UHF RFID tag with on-chip antenna

    Energy Technology Data Exchange (ETDEWEB)

    Xi Jingtian; Yan Na; Che Wenyi; Xu Conghui; Wang Xiao; Yang Yuqing; Jian Hongyan; Min Hao, E-mail: jtxi@fudan.edu.c [State Key Laboratory of ASIC and System, Auto-ID Laboratory, Fudan University, Shanghai 201203 (China)

    2009-07-15

    This paper presents an EPC Class 1 Generation 2 compatible tag with on-chip antenna implemented in the SMIC 0.18 {mu}m standard CMOS process. The UHF tag chip includes an RF/analog front-end, a digital baseband, and a 640-bit EEPROM memory. The on-chip antenna is optimized based on a novel parasitic-aware model. The rectifier is optimized to achieve a power conversion efficiency up to 40% by applying a self-bias feedback and threshold compensation techniques. A good match between the tag circuits and the on-chip antenna is realized by adjusting the rectifier input impedance. Measurements show that the presented tag can achieve a communication range of 1 cm with 1 W reader output power using a 1 x 1 cm{sup 2} single-turn loop reader antenna.

  20. Design and Development of Compact Microstrip Patch Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    R. Nagendra

    2017-09-01

    Full Text Available In this paper, a novel dual band microstrip patch antenna based on composite patch antenna and radiating part. By selecting a suitable offset feed position, it is feasible to provide 50Ω characteristic impedance and thus making better impedance matching. The proposed antenna has been improved broader bandwidth by using RT Duroid substrate. The radiating part is plays a important role in creating a lower operating band (2.45 GHz in addition to achieve miniaturization. The proposed antenna has to be fabricated with RT / Duroid substrate and dimensions of 19 × 22 × 0.8 mm. The measured -10 dB bandwidth of 200 MHz at 2.45 GHz and 990 MHz at 5.45 GHz, which is quite useful for Industrial, Scientific and Medical (ISM and WLAN applications.

  1. Design of a Compact Wideband Antenna Array for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2013-12-01

    Full Text Available In the paper, wideband antenna arrays aimed at microwave imaging applications and SAR applications operating at Ka band were designed. The antenna array feeding network is realized by a low-loss SIW technology. Moreover, we have replaced the large feed network comprised of various T and Y junctions by a simple broadband network of compact size to more reduce losses in the substrate integrated waveguide and also save space on the PCB. The designed power 8-way divider is complemented by a wideband substrate integrated waveguide to a grounded coplanar waveguide transition and directly connected to the antenna elements. The measured results of antenna array are consistent with our simulation. Obtained results of the developed array demonstrated improvement compared to previously developed binary feed networks with microstrip or SIW splitters.

  2. Overview of the West Valley Vitrification Facility transfer cart control system

    International Nuclear Information System (INIS)

    Bradley, E.C.; Rupple, F.R.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) has designed the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system will operate the cart under battery power by wireless control. The equipment includes cart mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas

  3. Theory of the JET ICRH antenna

    International Nuclear Information System (INIS)

    Theilhaber, K.

    1984-01-01

    The JET antenna has been conceived as a 'limiter antenna', completely recessed in a lateral frame which has the dual purpose of protecting the conductors and limiting the plasma radius. The coupling of this antenna is calculated in slab geometry, using a variational formulation which finds the self-consistent currents in the antenna elements. Full account is taken of the modes excited inside the limiter frame and of their coupling to waves in the inhomogeneous plasma. This yields the antenna impedance as a function of frequency and the field structure inside the plasma, including power fluxes and dispersion, as a function of penetration. (author)

  4. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov

    2012-01-01

    ), this facility has been used to measure natural doses in feldspar using the decaying NIR RL signal.Secondly, we present a method for mapping radiation field of the built-in 90Sr/90Y β-source and estimating grain-location specific dose-rates. This is important for the accuracy of single grain results, when......This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non...... radiation field is spatially non-uniform across the sample area. We document the effect of this correction method and further investigate on the effect of lifting the source to achieve a better dose-rate uniformity.Finally we summarise two recently-developed novel facilities to help investigate (i) the time...

  5. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-05-01

    In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.

  6. Modification of parabolic dish antenna pattern using two symmetrically placed circular flat plates

    Science.gov (United States)

    Thorpe, Glen C.

    1987-12-01

    This study aims to formulate a method of predicting the far field pattern of a parabolic dish antenna with two moveable flat plates mounted symmetrically on either side of the feed horn. The approach taken has been to first analyze the radiation pattern of the antenna with the disks at certain heights out from the surface of the dish. To do this the near-field radiation in amplitude and phase was measured over a plane surface in the near-field and the values were then transformed into the far field using a Fast Fourier Transform. Far field pattern values of the antenna were directly measured for each setting of the plates. The results obtained from the Fast Fourier Transform of the near field data were in good agreement with the values obtained by measurement. Finally, an approximate model of the antenna was developed and implemented as a computer program. This model, while relatively unsophisticated, provided some insights into the changes in the near field phase distribution caused by the moveable circular flat plates.

  7. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  8. The photovoltaic planar antenna - high-tech with multifunctional utilisation of the physical properties of solar cells. Paper; Die photovoltaische Planarantenne - High-Tec durch multifunktionale Nutzung der physikalischen Eigenschaften von Solarzellen. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, C.; Kirchhof, J.; Henze, N. [Institut fuer Solare Energieversorgungstechnik (ISET), Kassel (Germany)

    2001-07-01

    The use of the photovoltaic energy conversion for power supply has been practised successfully in communication technological facilities for years. Problems often arise regarding the optimal installation locations and orientations of the components Solar-Cell/-module and antenna, because they mutually visually or electromagnetically often disturb themselves. The partly very high direct costs also cause difficulties at the simultaneous use of both components. The vision arising at the ISET, was to use this unintentional effect of the parasitical irradiation as new multifunctional quality of solar cells. The ''Solar Planar Antenna'' could take both radio and energy supply functions of electric equipment or systems and make completely new equipment design and system concepts possible. After some finally promising tests the ''Solar Planar Antenna'' was applied as German, European, US-American and Japanese patent. The name SOLPLANT became a registered trademark. The ''Solar Planar Antenna'' shall be used in products where the simultaneous use of photovoltaic and Radio Frequency facilities are still incompatible. Some of the possible applications are compact measurement stations with RF-based communication, GPS-based navigation systems, communication base stations, antenna and battery charger at mobile telephone handsets, ''Bluetooth'' based computer devices and accessories like keyboards, trackballs or organisers. Together with a digital signal conditioning in combination with an array of ''Solar Planar Antennas'' a digital coil forming is possible. With this feature the antenna can be used as high gain antenna and it is possible to blind out noise and distortions. [German] Die Nutzung der photovoltaischen Energiewandlung zur Stromversorgung wird in kommunikationstechnischen Einrichtungen seit Jahren erfolgreich praktiziert. Probleme bereiten oft die optimalen

  9. An interstitial miniature antenna for localized in vivo 31P spectroscopy

    International Nuclear Information System (INIS)

    Hentschel, M.; Wust, P.; Faehling, H.; Richter, R.; Vogl, T.; Semmler, W.; Wolf, K.J.; Felix, R.

    1996-01-01

    Phosphorus spectroscopy can be used to assess response in tumor therapy and to monitor response. Methodical problems of localisation and contamination make it more difficult to interpret and reproduce the spectra. Interstitial and endoluminal spectroscopy antennas placed directly within or close to the tumor could provide help in this problem. We developed an interstitial 31 P MRS antenna together with a tuning network which can be used in thermometry catheters for hyperthermia within an internal lumen of 1.1 mm in diameter. A prototype of this type of miniature antenna suitable for use in Siemens MRI scanners at 1.5 T was described spectroscopically with regard to excitation profile, range and SNR. Results: In terms of quality, the excitation profiles of the interstitial antennas in relation to orientation correspond to those of comparable but considerably larger endocavitary antennas and catheter coils for MR imaging and spectroscopy. Maximum sensitivity was achieved by aligning the coil normal perpendicular to the B 0 field. Signal losses of up to 50% have to be reckoned with when using other orientations. The maximum range of the interstitial antenna was determined using spectroscopy and was found to be 5 mm, i.e. 9 times coil radius. The sensitivity of the studied type of interstitial antenna allows in vivo 31 P spectroscopy to be performed despite the unusually low axial dimension (coil radius r=0.55 mm). The prototype of the described interstitial antenna was used to measure an in vivo spectrum from the back muscle of a rabbit in 10 min. Nevertheless, the detection volume of at least some ml necessary for 31 P spectroscopy results mainly from the large antenna length. Conclusion: The sensitivity of the interstitial antenna needs to be further improved in order to assess treatment response in patients. (orig./MG) [de

  10. Multiband Photonic Phased-Array Antenna

    Science.gov (United States)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  11. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  12. Single-Antenna Temperature- and Humidity-Sounding Microwave Receiver

    Science.gov (United States)

    Hoppe, Daniel J.; Pukala, David M.; Lambrigtsen, Bjorn H.; Soria, Mary M.; Owen, Heather R.; Tanner, Alan B.; Bruneau, Peter J.; Johnson, Alan K.; Kagaslahti, Pekka P.; Gaier, Todd C.

    2011-01-01

    For humidity and temperature sounding of Earth s atmosphere, a single-antenna/LNA (low-noise amplifier) is needed in place of two separate antennas for the two frequency bands. This results in significant mass and power savings for GeoSTAR that is comprised of hundreds of antennas per frequency channel. Furthermore, spatial anti-aliasing would reduce the number of horns. An anti-aliasing horn antenna will enable focusing the instrument field of view to the hurricane corridor by reducing spatial aliasing, and thus reduce the number of required horns by up to 50 percent. The single antenna/receiver assembly was designed and fabricated by a commercial vendor. The 118 183-GHz horn is based upon a profiled, smooth-wall design, and the OMT (orthomode transducer) on a quad-ridge design. At the input end, the OMT presents four ver y closely spaced ridges [0.0007 in. (18 m)]. The fabricated assembly contains a single horn antenna and low-noise broadband receiver front-end assembly for passive remote sensing of both temperature and humidity profiles in the Earth s atmosphere at 118 and 183 GHz. The wideband feed with dual polarization capability is the first broadband low noise MMIC receiver with the 118 to 183 GHz bandwidth. This technology will significantly reduce PATH/GeoSTAR mass and power while maintaining 90 percent of the measurement capabilities. This is required for a Mission-of-Opportunity on NOAA s GOES-R satellite now being developed, which in turn will make it possible to implement a Decadal-Survey mission for a fraction of the cost and much sooner than would otherwise be possible.

  13. Microwave Imaging Sensor Using Compact Metamaterial UWB Antenna with a High Correlation Factor

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-07-01

    Full Text Available The design of a compact metamaterial ultra-wideband (UWB antenna with a goal towards application in microwave imaging systems for detecting unwanted cells in human tissue, such as in cases of breast cancer, heart failure and brain stroke detection is proposed. This proposed UWB antenna is made of four metamaterial unit cells, where each cell is an integration of a modified split ring resonator (SRR, capacitive loaded strip (CLS and wire, to attain a design layout that simultaneously exhibits both a negative magnetic permeability and a negative electrical permittivity. This design results in an astonishing negative refractive index that enables amplification of the radiated power of this reported antenna, and therefore, high antenna performance. A low-cost FR4 substrate material is used to design and print this reported antenna, and has the following characteristics: thickness of 1.6 mm, relative permeability of one, relative permittivity of 4.60 and loss tangent of 0.02. The overall antenna size is 19.36 mm × 27.72 mm × 1.6 mm where the electrical dimension is 0.20 λ × 0.28 λ × 0.016 λ at the 3.05 GHz lower frequency band. Voltage Standing Wave Ratio (VSWR measurements have illustrated that this antenna exhibits an impedance bandwidth from 3.05 GHz to more than 15 GHz for VSWR < 2 with an average gain of 4.38 dBi throughout the operating frequency band. The simulations (both HFSS and computer simulation technology (CST and the measurements are in high agreement. A high correlation factor and the capability of detecting tumour simulants confirm that this reported UWB antenna can be used as an imaging sensor.

  14. Matching of Tore Supra ICRH antennas

    International Nuclear Information System (INIS)

    Ladurelle, L.; Beaumont, B.; Kuus, H.; Lombard, G.

    1994-01-01

    An automatic matching method is described for Tore Supra ICRH antennas based on impedance variations seen at their feed points. Error signals derived from directional voltage and phase measurements in the feeder allow to control the matching capacitors values for optimal power transmission. (author) 5 refs.; 9 figs

  15. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book covers the design, numerical simulation, state of the art fabrication processes, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of various topologies, such as: Printed Monopoles, Micropoles and Microstrips. It serves as a vital reference source for scientists and engineers in this field.

  16. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    Science.gov (United States)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  17. Investigation of Vertical Microwave Publishing Caused by the Base Transceiver Station (BTS Antennas in Hashtgerd City

    Directory of Open Access Journals (Sweden)

    Simin Naseri

    2013-12-01

    Full Text Available Background and Objectives: New Hazards interface the environment and human life along with technology development. One of these pollutants is electromagnetic field and it’s known and unknown bad effects on the environment, this study determines the vertical publishing (height measurement of microwave antennas in the city of Hashtgerd. Methods: The basic information including the geographical location of the BTS antennas in the city, brand, the operator type, installation and its height was received from CRA and radio communications, and then the measuring was done by using the standard method of IEEE STD 95. 1 by the SPECTRAN 4060, and by using crane elevator in 17-meters height near the BTS antennas (15 meters.analysis were done by Spss16 and by Kolmogorov Smirnov test, multiple regression method. Results: Results show that in the both operators of Irancell and Hamrah-e-aval, density will increase by increasing measurement height or decreasing the vertical distance of broadcaster antenna. Regarding to the mix model test, a meaningful statistical relationship can be seen between measurement height and the density average in both types of the operators. Conclusion: while measuring height increased or in other words got closer to the antennas, density average increased in both operators, so the highest number was reported in the minimum vertical distance compared to the Irancell operator antenna was 25 mw/m2 and the lowest number was related to Hamrah-e-aval operator in the maximum vertical distance which was 0.02mw/m2. Thus, people stationed in the tall buildings parallel with installation height of antennas or in less vertical distance of them, are more exposed to the waves.

  18. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2015-08-04

    . Unlike conventional ground plane reflecting surfaces, AMC surfaces generally enhance the radiation and impedance characteristics of close-by antennas. Based on this property, a ring-based AMC reflecting surface has been designed in the oxide layer for on-chip antennas operating at 94 GHz. Furthermore, a folded dipole antenna with its associ- ated planar feeding structures has been optimized and integrated with the developed ring-based AMC surface. The proposed design is then fabricated at KAUST clean- room facilities. Prototype characterization showed very promising results with good correlation to simulations, with the antenna exhibiting an impedance bandwidth of 10% (90-100 GHz) and peak gain of -1.4 dBi, which is the highest gain reported for on-chip antennas at this frequency band without the use of any external o↵-chip components or post-fabrication steps.

  19. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  20. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    and in-phase fields in the slot in order to obtain an omnidirectional radiation pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due...

  1. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  2. Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design

    Directory of Open Access Journals (Sweden)

    Jérôme Wenger

    2012-01-01

    Full Text Available Plasmonic antennas offer promising opportunities to control the emission of quantum objects. As a consequence, the fluorescence enhancement factor is widely used as a figure of merit for a practical antenna realization. However, the fluorescence enhancement factor is not an intrinsic property of the antenna. It critically depends on several parameters, some of which are often disregarded. In this contribution, I explore the influence of the setup collection efficiency, emitter's quantum yield, and excitation intensity. Improperly setting these parameters may significantly alter the enhancement values, leading to potential misinterpretations. The discussion is illustrated by an antenna example of a nanoaperture surrounded by plasmonic corrugations.

  3. Wideband Dual-Polarization Patch Antenna Array With Parallel Strip Line Balun Feeding

    DEFF Research Database (Denmark)

    Zhang, Jin; Lin, Xianqi; Nie, Liying

    2016-01-01

    A wideband dual-polarization patch antenna array is proposed in this letter. The array is fed by a parallel strip line balun, which is adopted to generate 180° phase shift in a wide frequency range. In addition, this balun has simple structure, very small phase shift error, and good ports isolati...... is higher than 30 dB. The simulation and measurement turns out to be similar. This antenna array can be used in TD-LTE base stations, and the design methods are also useful to other wideband microstrip antennas....

  4. Design and optimization of LTE 1800 MIMO antenna.

    Science.gov (United States)

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  5. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  6. An Integrated 4-element Slot-Based MIMO and an UWB Sensing Antenna System for CR Platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    This paper presents a novel integrated antenna system for cognitive radio (CR) applications. The design consists of a compact 4- element reconfigurable annular slot based multiple-input-multiple-output (MIMO) antenna system integrated within an ultra-wide-band (UWB) sensing antenna. All the antenna elements are planar in structure and designed on a single substrate (RO-4350) with dimensions 60×120×1.5 mm3. The frequency reconfigurable slot based MIMO antenna system is tuned over a wide frequency band from 1.77 GHz to 2.51 GHz while the UWB sensing antenna is covering from 0.75~7.65 GHz The proposed antenna system is suitable for CR enabled wireless devices. The envelope correlation coefficient (ECC) did not exceed 0.248 in the entire operating band of the MIMO antenna part. The maximum measured gain of the MIMO antenna is 3.2 dBi with maximum efficiency of 81%.

  7. An Integrated 4-element Slot-Based MIMO and an UWB Sensing Antenna System for CR Platforms

    KAUST Repository

    Hussain, Rifaqat

    2017-12-08

    This paper presents a novel integrated antenna system for cognitive radio (CR) applications. The design consists of a compact 4- element reconfigurable annular slot based multiple-input-multiple-output (MIMO) antenna system integrated within an ultra-wide-band (UWB) sensing antenna. All the antenna elements are planar in structure and designed on a single substrate (RO-4350) with dimensions 60×120×1.5 mm3. The frequency reconfigurable slot based MIMO antenna system is tuned over a wide frequency band from 1.77 GHz to 2.51 GHz while the UWB sensing antenna is covering from 0.75~7.65 GHz The proposed antenna system is suitable for CR enabled wireless devices. The envelope correlation coefficient (ECC) did not exceed 0.248 in the entire operating band of the MIMO antenna part. The maximum measured gain of the MIMO antenna is 3.2 dBi with maximum efficiency of 81%.

  8. Optical Nano-antennae as Compact and Efficient Couplers from Free-space to Waveguide Modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir A.; Malureanu, Radu; Volkov, Valentyn

    2015-01-01

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Our efforts were concentrated on coupling between an optical fibre and a plasmonic slot waveguide. Such coupling is still an issue to be solved in order to advance the use...... of plasmonic waveguides for optical interconnects. During the talk, we will present our modelling optimisation, fabrication and measurement of the nano-antennae functionality. For the modelling part, we used CST Microwave studio for optimising the antenna geometry. Various antennae were modelled and fabricated....... The fabrication was based on electron beam lithography and lift-off processes. The measurements were performed with scattering scanning near-field microscope and allowed the retrieval of both amplitude and phase of the propagating plasmon. The obtained values agree very well with the theoretically predicted ones...

  9. Compact Range Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures electrical properties and characteristics of antenna systems and performs radar cross section (RCS) measurements of objects. These data are used...

  10. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  11. Adaptive Nulling in Hybrid Reflector Antennas

    Science.gov (United States)

    1992-09-01

    correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas

  12. Computer-Automated Evolution of Spacecraft X-Band Antennas

    Science.gov (United States)

    Lohn, Jason D.; Homby, Gregory S.; Linden, Derek S.

    2010-01-01

    A document discusses the use of computer- aided evolution in arriving at a design for X-band communication antennas for NASA s three Space Technology 5 (ST5) satellites, which were launched on March 22, 2006. Two evolutionary algorithms, incorporating different representations of the antenna design and different fitness functions, were used to automatically design and optimize an X-band antenna design. A set of antenna designs satisfying initial ST5 mission requirements was evolved by use these algorithms. The two best antennas - one from each evolutionary algorithm - were built. During flight-qualification testing of these antennas, the mission requirements were changed. After minimal changes in the evolutionary algorithms - mostly in the fitness functions - new antenna designs satisfying the changed mission requirements were evolved and within one month of this change, two new antennas were designed and prototypes of the antennas were built and tested. One of these newly evolved antennas was approved for deployment on the ST5 mission, and flight-qualified versions of this design were built and installed on the spacecraft. At the time of writing the document, these antennas were the first computer-evolved hardware in outer space.

  13. Porous textile antenna designs for improved wearability

    Science.gov (United States)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  14. All printed antenna based on silver nanoparticles for 1.8 GHz applications

    Science.gov (United States)

    Hassan, Arshad; Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2016-08-01

    In this paper, we propose a novel printed antenna for 1.8 GHz band applications. The proposed antenna is made of silver nanoparticle-based radiating element and 0.04-mm thin, transparent and flexible polyethylene terephthalate (PET) substrate. The proposed antenna is designed and simulated by finite-element-method-based high-frequency structure simulator (HFSS). We obtain reflection coefficient of -23 dB, gain of 2.72 dBi and efficiency of 93.33 %. The resonance frequency of the antenna is also verified through national instrument (NI) Multisim simulation on the proposed equivalent circuit. We realize the antenna in a single process by commercial Dimatix material inkjet printer (DMP-3000) at ambient condition and characterize it by using vector network analyzer and spectrum analyzer. The measured reflection coefficient and -10 dB bandwidth are -32.2 dB and 190.5 MHz, respectively, which shows good agreement with HFSS and NI Multisim results. The proposed compact and optimum antenna printed on thin, transparent and fully bendable PET substrate becomes very attractive since it can overcome the limits of cost and size. These results suggest that the proposed antenna is well suitable for electronic devices operating over 1.8 GHz band such as Telos-B and other wearable printed devices.

  15. Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial

    Directory of Open Access Journals (Sweden)

    Xin Mi Yang

    2015-12-01

    Full Text Available Design of bandwidth-enhanced circularly polarized (CP patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM. In particular, the embedded meander line (EML structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.

  16. A Compact MIMO Antenna with Inverted C-Shaped Ground Branches for Mobile Terminals

    Directory of Open Access Journals (Sweden)

    Zixian Yang

    2016-01-01

    Full Text Available A compact printed MIMO antenna for mobile terminals is presented. With two planar antenna elements, the −6 dB impedance bandwidth of 2.32 GHz (1.48–3.8 GHz is obtained, which covers GSM 1800/1900, UMTS, WLAN, Wimax, S-band, and most of LTE bands. Each antenna element with a small occupation of 15 × 20 mm2 consists of a driven strip and a shorted strip. Two inverted C-shaped ground branches are introduced between two elements to improve the isolation. The simulated results are studied and the measured results show that high isolation of more than 18 dB at the entire operating band is achieved. Meanwhile, the impedance performance is also improved by adding the branches. Furthermore, the measured radiation performances and envelope correlation coefficient also demonstrate that the proposed antenna could be a good candidate for mobile terminals.

  17. 47 CFR 74.641 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards... elevation planes. (2) New periscope antenna systems will be authorized upon a certification that the...

  18. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  19. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which ca...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  20. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].