WorldWideScience

Sample records for antenna array synthesis

  1. Synthesis of Antenna Arrays and Parasitic Antenna Arrays with Mutual Couplings

    Directory of Open Access Journals (Sweden)

    M. Thevenot

    2012-01-01

    Full Text Available A synthesis method to design multielement antennas with couplings is presented. The main objective is to perform a rigorous determination of the electromagnetic characteristics involved in the design, especially with arrays of moderate sizes. The aim is to conceive jointly and efficiently the antenna and the circuits to connect (feed distribution network, power amplifiers, reactive loads, etc.. The subsequent objective is to improve the understanding and capabilities of strongly coupled antennas. As a whole, the synthesis procedure is then applied to different antenna architectures in order to show its efficiency and versatility. A focus on some antenna concepts where the management of couplings is a key factor to improve the performances is presented. After describing the synthesis procedure, the first category of coupled multielement antenna studied concerns radiating arrays in linear or circular polarization. A design including couplings effects on an active array is also presented. Then, the method is applied to parasitic antenna arrays and a specific investigation on reflectarray antenna is performed as they can be considered as a particular case of parasitic arrays.

  2. Elliptical Antenna Array Synthesis Using Backtracking Search Optimisation Algorithm

    Directory of Open Access Journals (Sweden)

    Kerim Guney

    2016-04-01

    Full Text Available The design of the elliptical antenna arrays is relatively new research area in the antenna array community. Backtracking search optimisation algorithm (BSA is employed for the synthesis of elliptical antenna arrays having different number of array elements. For this aim, BSA is used to calculate the optimum angular position and amplitude values of the array elements. BSA is a population-based iterative evolutionary algorithm. The remarkable properties of BSA are that it has a good optimisation performance, simple implementation structure, and few control parameters. The results of BSA are compared with those of self-adaptive differential evolution algorithm, firefly algorithm, biogeography based optimisation algorithm, and genetic algorithm. The results show that BSA can reach better solutions than the compared optimisation algorithms. Iterative performances of BSA are also compared with those of bacterial foraging algorithm and differential search algorithm.

  3. Cuckoo search optimization for linear antenna arrays synthesis

    OpenAIRE

    Ahmed Haffane; Abdelhafid Hasni

    2013-01-01

    A recently developed metaheuristic optimization algorithm, the Cuckoo search algorithm, is used in this paper for the synthesis of symmetric uniformly spaced linear microstrip antennas array. Cuckoo search is based on the breeding strategy of Cuckoos augmented by a Levy flight behaviour found in the foraging habits of other species. This metaheuristic is tested on amplitude only pattern synthesis and amplitude and phase pattern synthesis. In both case, the ...

  4. Vector space representation of array antenna pattern synthesis problems

    DEFF Research Database (Denmark)

    Wu, Jian; Roederer, A.G

    1991-01-01

    Considering the difficulties of the nonlinear optimization methods for the array and array fed reflector antenna power pattern synthesis problems, a novel approach has been developed to present the problem in a geographical way, which makes it possible to derive efficient algorithms and to...... visualize the optimization process. The vector space approach described provides a very powerful representation of the array pattern synthesis problems. It is not only general, since many parameters are represented under one model, but also helps to visualize the problem. The proposed approach provides a...

  5. Cuckoo search optimization for linear antenna arrays synthesis

    Directory of Open Access Journals (Sweden)

    Ahmed Haffane

    2013-01-01

    Full Text Available A recently developed metaheuristic optimization algorithm, the Cuckoo search algorithm, is used in this paper for the synthesis of symmetric uniformly spaced linear microstrip antennas array. Cuckoo search is based on the breeding strategy of Cuckoos augmented by a Levy flight behaviour found in the foraging habits of other species. This metaheuristic is tested on amplitude only pattern synthesis and amplitude and phase pattern synthesis. In both case, the objective, is to determinate the optimal excitations element that produce a synthesized radiation pattern within given bounds specified by a pattern mask.

  6. Concentric Circular Antenna Array Synthesis Using Biogeography Based Optimization

    Directory of Open Access Journals (Sweden)

    Urvinder Singh

    2012-03-01

    Full Text Available Biogeography based optimization (BBO is a new stochastic force based on the science of biogeography. Biogeography is the schoolwork of geographical allotment of biological organisms. BBO utilizes migration operator to share information between the problem solutions. The problem solutions are known as habitats and sharing of features is called migration. In this paper, BBO algorithm is developed to optimize the current excitations of concentric circular antenna arrays (CCAA. Concentric Circular Antenna Array (CCAA has numerous attractive features that make it essential in mobile and communication applications. The goal of the optimization is to reduce the side lobe levels and the primary lobe beam width as much as possible. To confirm the capabilities of BBO, three different CCAA antennas of different sizes are taken. The results obtained by BBO are compared with the Real coded Genetic Algorithm (RGA, Craziness based Particle Swarm Optimization (CRPSO and Hybrid Evolutionary Programming (HEP.

  7. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo

    2014-09-01

    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  8. Powers synthesis of array antennas using the continuation method on far field phase distribution

    NARCIS (Netherlands)

    Castaldi, G.; Gerini, G.

    2002-01-01

    We present a technique, based on the continuation method, to face power synthesis problems for array antennas. By using the least squares method (LSM), the power synthesis problem reduces to the minimization of an objective functional, which represents the square of the distance between the required

  9. Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast fourier transforms of the array factor

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    2007-01-01

    A new and very fast low-sidelobe pattern synthesis method for planar array antennas with periodic element spacing is described. The basic idea of the method is that since the array factor is related to the element excitations through an inverse Fourier transform, the element excitations can be deriv

  10. Comparative Analysis of Linear and Nonlinear Pattern Synthesis of Hemispherical Antenna Array Using Adaptive Evolutionary Techniques

    Directory of Open Access Journals (Sweden)

    K. R. Subhashini

    2014-01-01

    synthesis is termed as the variation in the element excitation amplitude and nonlinear synthesis is process of variation in element angular position. Both ADE and AFA are a high-performance stochastic evolutionary algorithm used to solve N-dimensional problems. These methods are used to determine a set of parameters of antenna elements that provide the desired radiation pattern. The effectiveness of the algorithms for the design of conformal antenna array is shown by means of numerical results. Comparison with other methods is made whenever possible. The results reveal that nonlinear synthesis, aided by the discussed techniques, provides considerable enhancements compared to linear synthesis.

  11. Amplitude pattern synthesis for conformal array antennas using mean-field neural networks

    NARCIS (Netherlands)

    Castaldi, G.; Gerini, G.

    2001-01-01

    In this paper, we deal with the synthesis problem of conformai array antennas using a mean-field neural network. We applied a discrete version of mean-field neural network proposed by Vidyasagar [1], This technique is used to find the global minimum of the objective function, which represents the sq

  12. Synthesis of Circular Array Antenna for Sidelobe Level and Aperture Size Control Using Flower Pollination Algorithm

    Directory of Open Access Journals (Sweden)

    V. S. S. S. Chakravarthy Vedula

    2015-01-01

    Full Text Available Sidelobe level suppression is a major problem in circular array antenna (CAA synthesis. Many conventional numerical techniques are proposed to achieve this which are time consuming and often fail to handle multimodal problems. In this paper, a method of circular array synthesis using nature inspired flower pollination algorithm (FPA is proposed. The synthesis technique considered here adapts one and two degrees of freedom, namely, amplitude only and amplitude spacing. The effectiveness of the FPA is studied by comparing the results with genetic algorithm (GA and uniform circular array antenna (UCAA with uniform spacing. Also the effect of additional degree of freedom on the aperture size and the computational time is analyzed. A relative side lobe level (SLL of −25 dB is achieved using the algorithm under both no beam scanning (0° and beam scanning (15° conditions for 20 and 40 elements of CAA.

  13. Multiobjective Synthesis of Steerable UWB Circular Antenna Array considering Energy Patterns

    Directory of Open Access Journals (Sweden)

    Leopoldo A. Garza

    2015-01-01

    Full Text Available True-time delay antenna arrays have gained a prominent attention in ultrawideband (UWB applications such as directional communications and radar. This paper presents the design of steerable UWB circular array by using a multiobjective time-domain synthesis of energy pattern for circular antenna arrays. By this way we avoid individual beamforming for each frequency in UWB spectrum if the problem was addressed from the frequency domain. In order to obtain an energy pattern with low side lobe level and a desired main beam, the synthesis presented is performed by optimizing the true-time delays and amplitude coefficients for the antenna elements in a circular geometry. The method of Differential Evolution for Multiobjective Optimization (DEMO is used as the optimization algorithm in this work. This design of steerable UWB circular arrays considers the optimization of the true-time exciting delays and the amplitude coefficients across the antenna elements to operate with optimal performance in the whole azimuth plane (360°. A comparative analysis of the performance of the optimized design with the case of conventional progressive delay excitations is achieved. The provided results show a good performance for energy patterns and for their respective power patterns in the UWB spectrum.

  14. Design and synthesis of flexible switching 1 × 2 antenna array on Kapton substrate

    Science.gov (United States)

    Georges Rabobason, Yvon; Rigas, Grigorios; Swaisaenyakorn, Srijittar; Mirkhaydarov, Bobur; Ravelo, Blaise; Shkunov, Maxim; Young, Paul; Benjelloun, Nabil

    2016-06-01

    Flexible front- and back-end RF/analogue system antennas were recently emerged. However, little flexible antenna system design is available so far, in planar hybrid technology with surface mounted components. This paper describes the design feasibility of flexible switching 1 × 2 antenna array system. It acts as a switching antenna implemented in hexapole configuration. The system is comprised of a key element RF switch terminated by two identical patch antennas associated to half-wave elementary transmission lines (TLs). A detailed theory illustrating the global S-parameter model determination in function of the given RF-switch return and insertion losses is established. In difference to the conventional microwave circuit theory, the proposed equivalent S-parameter model is originally built with the non-standard optimized antenna load. Thus, the synthesis method of the terminal antenna input impedance and the output access line characteristic impedance is formulated in function of the specified return and optimal transmission losses. The design method and theoretical approach feasibility is verified with the demonstrator of flexible switching 1 × 2 antenna array printed on Kapton substrate. The circuit prototype is implemented in hybrid planar technology integrating patch antenna operating at about 6 GHz and a packaged GaAs RF switch associated to the RF/DC signal decoupling accessory mounted surface components. Simulations of the designed circuit transmission and isolation losses from 5.5 GHz to 7 GHz were carried out by using the commercial RF switch S-parameter touchstone model provided by the manufacturer. The simulated and measured return losses are compared and discussed. Then, the measured radiation patterns confirm the proposed switched antenna concept feasibility.

  15. Fast 3D Pattern Synthesis with Polarization and Dynamic Range Ratio Control for Conformal Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Massimiliano Comisso

    2014-01-01

    Full Text Available This paper proposes an iterative algorithm for the 3D synthesis of the electric far-field pattern of a conformal antenna array in the presence of requirements on both the polarization and the dynamic range ratio (DRR of the excitations. Thanks to the use of selectable weights, the algorithm allows a versatile control of the DRR and of the polarization in a given angular region and requires a low CPU time to provide the array excitations. Furthermore, a modified version of the algorithm is developed to enable the optimization of the polarization state by phase-only control. Numerical results are presented to verify the usefulness of the proposed approach for the joint pattern and polarization synthesis of conformal arrays with reduced or even unitary DRR.

  16. Analysis of Robustness for Convex Optimization Applied to Array Antenna Pattern Synthesis

    Directory of Open Access Journals (Sweden)

    R. Torrealba

    2008-01-01

    Full Text Available This study presents an analysis of the convex optimization applied to the synthesis of the radiation pattern for linear antenna arrays. This study emphasizes the application of the convex optimization for the array pattern synthesis considering the simultaneous elimination of several zones interferences, reduction of the level of power in two space zones densely populated by interferences, as well as the variation of these zones in terms of proximity-distance of the source of interest, variation of the size of the interferences zones and the number of zones within the radiation pattern. Simulation results are provided. These results define certain levels where the linear array could be exploited to achieve a maximum performance.

  17. Patterns Antennas Arrays Synthesis Based on Adaptive Particle Swarm Optimization and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Boufeldja Kadri

    2013-01-01

    Full Text Available In recent years, evolutionary optimization (EO techniques have attracted considerable attention in the design of electromagnetic systems of increasing complexity. This paper presents a comparison between two optimization algorithms for the synthesis of uniform linear and planar antennas arrays, the first one is an adaptive particle swarm optimization (APSO where the inertia weight and acceleration coefficient are adjusted dynamically according to feedback taken from particles best memories to overcome the limitations of the standard PSO which are: premature convergence, low searching accuracy and iterative inefficiency. The second method is the genetic algorithms (GA inspired from the processes of the evolution of the species and the natural genetics. The results show that the design of uniform linear and planar antennas arrays using APSO method provides a low side lobe level and achieve faster convergence speed to the optimum solution than those obtained by a GA.

  18. Bee swarm algorithm for synthesis of antenna arrays

    OpenAIRE

    Galan, A. Yu.; Sauleau, R.

    2009-01-01

    Paper describes basics of a particle swarm optimization (PSO) algorithm and presents results of a comparative study of its performance when applied with different boundary conditions. Approbation of the algorithm is done on a set of test functions and on a classical test problem of a linear array phase taper aimed at the side-lobe level suppression.

  19. Bee swarm algorithm for synthesis of antenna arrays

    OpenAIRE

    Galan, A. Yu.; Sauleau, R.; Nosich, A. I.; Boriskin, Artem V.

    2009-01-01

    Article describes basics of a particle swarm optimization (PSO) algorithm and presents results of a comparative study of its performance when applied with different boundary conditions. Approbation of the algorithm is done on a set of test functions and on a classical test problem of a linear array phase taper aimed at the side-lobe level suppression.

  20. Algorithm for the synthesis of linear antenna arrays with desired radiation pattern and integral amplitude coefficients

    Directory of Open Access Journals (Sweden)

    Sadchenko A. V.

    2015-06-01

    Full Text Available Ahe problem of technical implementation of phased array antennas (PAR with the required radiation pattern (RP is the complexity of the construction of the beamforming device that consists of a set of controlled attenuators and phase shifters. It is possible to simplify the technical implementation of PAR, if complex representation of coefficients of amplitude-phase distribution of the field along the lattice is approximated by real values in the synthesis stage. It is known that the amplitude distribution of the field in the aperture of the antenna array and the radiation pattern are associated with Fourier transform. Thus, the amplitude and phase coefficients are first calculated using the Fourier transform, and then processed according to the selected type of circuit realization of attenuators and phase shifters. The calculation of the inverse Fourier transform of the modified coefficients allows calculating the synthesized orientation function. This study aims to develop a search algorithm for amplitude and phase coefficients, taking into account the fact that integer-valued amplitudes and phases are technically easier to implement than real ones. Synthesis algorithm for equidistant linear array with a half-wavelength irradiators pitch (&l;/2 is as follows. From a given directivity function the discrete Fourier transform (DFT in the form of an array of complex numbers is found, the resulting array is then transformed into a set of attenuations for attenuators and phase shifts for phase shifters, while the amplitude coefficients are rounded off to integers, and phases are binarizated (0, ?. The practical value of this algorithm is particularly high when using controlled phase shifters and attenuators integrally. The work confirms the possibility of a thermoelectric converter of human body application for an electronic medical thermometer power supply.

  1. Phase-Only Planar Antenna Array Synthesis with Fuzzy Genetic Algorithms

    CERN Document Server

    Kadri, Boufeldja; Bendimerad, Fethi Tarik

    2010-01-01

    This paper describes a new method for the synthesis of planar antenna arrays using fuzzy genetic algorithms (FGAs) by optimizing phase excitation coefficients to best meet a desired radiation pattern. We present the application of a rigorous optimization technique based on fuzzy genetic algorithms (FGAs), the optimizing algorithm is obtained by adjusting control parameters of a standard version of genetic algorithm (SGAs) using a fuzzy controller (FLC) depending on the best individual fitness and the population diversity measurements (PDM). The presented optimization algorithms were previously checked on specific mathematical test function and show their superior capabilities with respect to the standard version (SGAs). A planar array with rectangular cells using a probe feed is considered. Included example using FGA demonstrates the good agreement between the desired and calculated radiation patterns than those obtained by a SGA.

  2. Imaging antenna arrays

    Science.gov (United States)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  3. Substrate integrated antennas and arrays

    CERN Document Server

    Cheng, Yu Jian

    2015-01-01

    Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book:Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologiesExamines theoretical and experimental results connected to electrical and mechanical performanceExp

  4. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  5. Antenna arrays a computational approach

    CERN Document Server

    Haupt, Randy L

    2010-01-01

    This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.

  6. Pattern Synthesis of Planar Nonuniform Circular Antenna Arrays Using a Chaotic Adaptive Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Huaning Wu

    2014-01-01

    Full Text Available A novel invasive weed optimization (IWO variant called chaotic adaptive invasive weed optimization (CAIWO is proposed and applied for the optimization of nonuniform circular antenna arrays. A chaotic search method has been combined into the modified IWO with adaptive dispersion, where the seeds produced by a weed are dispersed in the search space with standard deviation specified by the fitness value of the weed. To evaluate the performance of CAIWO, several representative benchmark functions are minimized using various optimization algorithms. Numerical results demonstrate that the proposed approach improves the performance of the algorithm significantly, in terms of both the convergence speed and exploration ability. Moreover, the scheme of CAIWO is employed to find out an optimal set of weights and antenna element separation to obtain a radiation pattern with maximum side-lobe level (SLL reduction with different numbers of antenna element under two cases with different purposes. The design results obtained by CAIWO have comfortably outperformed the published results obtained by other state-of-the-art metaheuristics in a statistically meaningful way.

  7. A distributed array antenna system

    Science.gov (United States)

    Shaw, R.; Kovitz, J.

    1986-01-01

    The Space Station communication system will use microwave frequency radio links to carry digitized information from sender to receiver. The ability of the antenna system to meet stringent requirements on coverage zones, multiple users, and reliability will play an important part in the overall multiple access communication system. This paper will describe the configuration of a multibeam conformal phased array antenna and the individual microwave integrated components incoporated into this antenna system.

  8. Vector synthesis problem of random geometry antenna differentiation conditions

    OpenAIRE

    Mishchenko, S. E.

    2007-01-01

    The problem definition of general random geometry continuous and discontinuous antenna vector synthesis is discussed. Conditions are formulated which allow presenting the initial antenna vector synthesis problem in the form of array of some scalar synthesis problems while locating the antenna in the free space and near the surface. On plane, cylinder and sphere examples antenna synthesis problems division possibilities of scalar problems are examined.

  9. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2001-01-01

    This book gives an introduction to the possibilities of radar technology based on active array antennas, giving examples of modern practical systems. There are many valuable lessons presented for designers of future high standard multifunction radar systems for military and civil applications. The book will appeal to graduate level engineers, researchers, and managers in the field of radar, aviation and space technology.

  10. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    Science.gov (United States)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.

    1992-04-01

    The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.

  11. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  12. Antenna Arrays for Tactical Communication Systems: A Comparative Study

    Directory of Open Access Journals (Sweden)

    L. Slama

    2011-12-01

    Full Text Available In this paper, we give a comparative study of several planar antenna concepts for reliable long range links in a tactical environment. The antenna elements are studied in terms of their electrical properties (bandwidth, reflection coefficient and radiation characteristics and construction (robustness and material consumption. First, we model single antenna elements to investigate if they meet the requirements. Second, we arrange the elements with the best features into 2x2 arrays. Computer simulations of the arrays are verified by measurements. Finally, we formulate recommendations for large array (8x8 or 16x16 elements synthesis to achieve the required properties.

  13. Synthesis of multiple shaped beam antenna patterns

    Science.gov (United States)

    Stutzman, W. L.; Coffey, E. L.

    1973-01-01

    Results are presented of research into the problem of finding an excitation of a given antenna such that the desired radiation pattern is approximated to within acceptable limits. This is to be done in such a fashion that boundary conditions involving hardware limitations may be inserted into the problem. The intended application is synthesis of multiple shaped beam antennas. Since this is perhaps the most difficult synthesis problem an antenna engineer is likely to encounter, the approach taken was to include as a by-product capability for synthesizing simpler patterns. The synthesis technique has been almost totally computerized. The class of antennas which may be synthesized with the computer program are those which may be represented as planar (continuous or discrete) current distributions. The technique is not limited in this sense and could indeed by extended to include, for example, the synthesis of conformal arrays or current distributions on the surface of reflectors. The antenna types which the program is set up to synthesize are: line source, rectangular aperture, circular aperture, linear array, rectangular array, and arbitrary planar array.

  14. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, and stands ready...

  15. Far-infrared imaging antenna arrays

    OpenAIRE

    Neikirk, Dean P.; Rutledge, David B.; Muha, Michael S.; Park, Hyeon; Yu, Chang-Xuan

    1982-01-01

    A far-infrared imaging antenna array has been demonstrated for the first time. The array is a line of evaporated silver bow-tie antennas on a fused-quartz substrate with bismuth-microbolometer detectors. The measured optical transfer function shows that the system is diffraction limited. This imaging array should find direct application in fusion plasma diagnostics. If the microbolometers can be replaced by more sensitive diode detectors, the array should also find application in radiometry a...

  16. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  17. Resonance spectra of diabolo optical antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Simpkins, Blake; Caldwell, Joshua D. [Naval Research Laboratory, 4555 Overlook Ave., SW Washington, DC 20375 (United States)

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  18. Numerical analysis of patch antenna as antenna array element

    OpenAIRE

    Kizimenko, V.; Bobkov, Y

    2009-01-01

    The patch antennas as antenna array element can be modeling by finite element method (programs Microwave Office, Ansoft HFSS and other). But this method need to use fast computer with memory large size. In this work the authors make an attempt to use thin wire integral equation method for patch antenna analysis. The results of modeling by proposed method are compared with the same of modeling by finite elements method and experimental results.

  19. Retrodirective Antenna Array Using High Frequency Offset

    Directory of Open Access Journals (Sweden)

    P. Sindler

    2012-12-01

    Full Text Available The paper deals with the design of a simple retrodirective antenna array exhibiting by high frequency offset between received and transmitted wave. Analysis of the beam pointing error using antenna array model developed in MATLAB is described. The frequencies of transmitted wave and received wave are chosen on the basis of this analysis. Then a suitable structure for further design is determined and particular blocks of complete retrodirective antenna array are briefly described and their measured parameters are presented. Relatively high frequency offset between received and transmitted wave makes it possible to use frequency filters for received and transmitted signal separation which led to significant reduction of the circuit complexity.

  20. Slot Coupled Patch Array Antenna Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is an antenna array whose beam is controlled digitally. The Phase 1 effort will assess the method needed to achieve the gain, bandwidth, and...

  1. A Review of the Four Dimension Antenna Arrays

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-wen; NIE Zai-ping

    2006-01-01

    The four dimensional (4D) antenna arrays introduce a fourth dimension, time, into conventional antenna arrays to offer greater flexibility in the design of high performance antenna arrays. This paper presents the tutorial on the study of 4D antenna arrays and the review of the recent research findings on 4D antenna arrays. Issues considered include the theory of 4D antenna arrays, different time modulation schemes, numerical simulation results, and some experimental results on their applications to low sidelobe designs. Throughout the discussion, some challenging issues on the study of 4D antenna arrays are highlighted.

  2. OPTIMAL DESIGN OF SMART ANTENNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    Gao Feng; Liu Qizhong; Shan Runhong; Zhang Hou

    2004-01-01

    This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.

  3. ANTENNAS ARRAY ADJUST WITH ADAPTIVE NEURONAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. Padrón

    2004-12-01

    Full Text Available In this work an array failure correction for Linear Antenna Array (LAA is presented. This is carried out by means ofan Adaptive Artificial Neural Network (AANN that adjusts the amplitude and phase at beamforming. Theappropriated corrections are given, when one, or two, or three elements have a failure in the antenna linear array.The AANN corrects the corresponding parameters in the radiation pattern obtained due to the failure, when weknow the coefficients of the array factor (AF. This yields a reduction of side lobe level and some interferencesdisappear.

  4. Imaging antenna array at 119 µm

    OpenAIRE

    Neikirk, Dean P.; Tong, Peter P.; Rutledge, David B.; Park, Hyeon; Young, Peter E.

    1982-01-01

    A focal-plane imaging antenna array has been demonstrated at 119 µm. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off fr...

  5. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  6. Shaped Beam Pattern Synthesis of Antenna Arrays Using Composite Differential Evolution with Eigenvector-Based Crossover Operator

    Directory of Open Access Journals (Sweden)

    Sotirios K. Goudos

    2015-01-01

    Full Text Available This paper addresses the problem of designing shaped beam patterns with arbitrary arrays subject to constraints. The constraints could include the sidelobe level suppression in specified angular intervals, the mainlobe halfpower beamwidth, and the predefined number of elements. In this paper, we propose a new Differential Evolution algorithm, which combines Composite DE with an eigenvector-based crossover operator (CODE-EIG. This operator utilizes eigenvectors of covariance matrix of individual solutions, which makes the crossover rotationally invariant. We apply this novel design method to shaped beam pattern synthesis for linear and conformal arrays. We compare this algorithm with other popular algorithms and DE variants. The results show CODE-EIG outperforms the other DE algorithms in terms of statistical results and convergence speed.

  7. Stochastic Beamforming via Compact Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The paper investigates the average beamforming (BF) gain of compact antenna arrays when statistical channel knowledge is available. The optimal excitation (precoding vector) and impedance termination that maximize the average BF gain are a compromise between the ones that maximize the array...... efficiency and the ones that maximize the array distributed directivity. Simulation results using a symmetric uniform circular array (UCA) operating in an indoor clustering environment are provided....

  8. Far-infrared imaging antenna arrays

    Science.gov (United States)

    Neikirk, D. P.; Rutledge, D. B.; Muha, M. S.; Park, H.; Yu, C.-X.

    1982-01-01

    A far-infrared monolithic imaging antenna array with diffraction-limited resolution has been demonstrated. The optical system is similar to an oil-immersion microscope, except that the position of the object and the image are interchanged. The array is a series of evaporated silver bow-tie antennas of 75 nm thick, spaced at 310 microns, on a fused-quartz substrate; the bow angle of 60 deg gives an impedance of 150 ohm to match to bismuth microbolometers. The measured responsivity of the array elements is 1-2 V/W at the relatively low bias of 1 mA. Previous measurements have shown that the bolometers are 1/f noise limited up to 100 kHz and that they have a frequency response of 5 MHz. The antenna array should be adequate for far-infrared plasma interferometer measurements.

  9. MULTI SEGMENT CIRCULAR FRACTAL REFLECT ARRAY ANTENNA

    Directory of Open Access Journals (Sweden)

    Bahareh Baghani BAJGIRAN

    2014-01-01

    Full Text Available in this paper with using novel fractal structure which is composed of multi segment circular fractal. A unit cell and then reflectarray antenna have been designed. The unit cell of reflect array has been designed in 4.4 GHz with 24*24*1 mm3 dimension. The reflectarray is consist of 400 (20* 20 elements that even element is placed in the locus has been calculated. Maximum gain of antenna is 12.9 dBi.

  10. The modelling of plane curvilinear dipole antenna arrays

    OpenAIRE

    Hoblyk, Viktor V.; Liske, O. M.; Yakovenko, Eugenia I.

    2005-01-01

    In this work the results of mathematical model design for printed dipole antenna arrays are presented. The arrays are feeding by curvilinear  transmission slotline. The investigation is important for the antenna arrays theory and useful for the design of antenna arrays with improved characteristics.

  11. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2014-12-15

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  12. Breadboard Signal Processor for Arraying DSN Antennas

    Science.gov (United States)

    Jongeling, Andre; Sigman, Elliott; Chandra, Kumar; Trinh, Joseph; Soriano, Melissa; Navarro, Robert; Rogstad, Stephen; Goodhart, Charles; Proctor, Robert; Jourdan, Michael; Rayhrer, Benno

    2008-01-01

    A recently developed breadboard version of an advanced signal processor for arraying many antennas in NASA s Deep Space Network (DSN) can accept inputs in a 500-MHz-wide frequency band from six antennas. The next breadboard version is expected to accept inputs from 16 antennas, and a following developed version is expected to be designed according to an architecture that will be scalable to accept inputs from as many as 400 antennas. These and similar signal processors could also be used for combining multiple wide-band signals in non-DSN applications, including very-long-baseline interferometry and telecommunications. This signal processor performs functions of a wide-band FX correlator and a beam-forming signal combiner. [The term "FX" signifies that the digital samples of two given signals are fast Fourier transformed (F), then the fast Fourier transforms of the two signals are multiplied (X) prior to accumulation.] In this processor, the signals from the various antennas are broken up into channels in the frequency domain (see figure). In each frequency channel, the data from each antenna are correlated against the data from each other antenna; this is done for all antenna baselines (that is, for all antenna pairs). The results of the correlations are used to obtain calibration data to align the antenna signals in both phase and delay. Data from the various antenna frequency channels are also combined and calibration corrections are applied. The frequency-domain data thus combined are then synthesized back to the time domain for passing on to a telemetry receiver

  13. Deployable Wide-Aperture Array Antennas

    Science.gov (United States)

    Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Chu, Andrew; Scully, Robert C.

    2005-01-01

    Inexpensive, lightweight array antennas on flexible substrates are under development to satisfy a need for large-aperture antennas that can be stored compactly during transport and deployed to full size in the field. Conceived for use aboard spacecraft, antennas of this type also have potential terrestrial uses . most likely, as means to extend the ranges of cellular telephones in rural settings. Several simple deployment mechanisms are envisioned. One example is shown in the figure, where the deployment mechanism, a springlike material contained in a sleeve around the perimeter of a flexible membrane, is based on a common automobile window shade. The array can be formed of antenna elements that are printed on small sections of semi-flexible laminates, or preferably, elements that are constructed of conducting fabric. Likewise, a distribution network connecting the elements can be created from conventional technologies such as lightweight, flexible coaxial cable and a surface mount power divider, or preferably, from elements formed from conductive fabrics. Conventional technologies may be stitched onto a supporting flexible membrane or contained within pockets that are stitched onto a flexible membrane. Components created from conductive fabrics may be attached by stitching conductive strips to a nonconductive membrane, embroidering conductive threads into a nonconductive membrane, or weaving predetermined patterns directly into the membrane. The deployable antenna may comprise multiple types of antenna elements. For example, thin profile antenna elements above a ground plane, both attached to the supporting flexible membrane, can be used to create a unidirectional boresight radiation pattern. Or, antenna elements without a ground plane, such as bow-tie dipoles, can be attached to the membrane to create a bidirectional array such as that shown in the figure. For either type of antenna element, the dual configuration, i.e., elements formed of slots in a conductive

  14. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    Paulides, M.M.; Bakker, J.F.; Zwamborn, A.P.M.; Rhoon, G.C. van

    2007-01-01

    Purpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: 1) patient positioning, 2) antenna ring radius, 3) number of antenna rings, 4) number of antennas per ring and 5) distance between antenna rings. Materials

  15. A head and neck hyperthermia applicator: Theoretical antenna array design

    NARCIS (Netherlands)

    M.M. Paulides (Margarethus); J.F. Bakker (Jurriaan); A.P.M. Zwamborn; G.C. van Rhoon (Gerard)

    2007-01-01

    textabstractPurpose: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: (1) patient positioning, (2) antenna ring radius, (3) number of antenna rings, (4) number of antennas per ring and (5) distance between antenna

  16. 天线上行组阵空间功率合成性能初步分析%Preliminary analysis of spatial power synthesis performance in antenna uplink array

    Institute of Scientific and Technical Information of China (English)

    郭劲松; 洪家财

    2015-01-01

    Antenna uplink array is one of the important applications of spatial power synthesis technology,which can im-prove the effective isotropic radiated power (EIRP) value of the far-field antenna greatly. The spatial power synthesis perfor-mance in the uplink array is conducted with theoretical analysis and simulation verification emphatically. The basic concepts, methods and principles,and the main advantages of the spatial power synthesis are introduced,then the theory of spatial power synthesis in the uplink array is deduced with formula,and analyzed briefly from the perspective of the antenna far-field pattern. The spatial power synthesis performance in the uplink array was simulated by Matlab software. The adjustment of the synthetic power was realized by changing the number of array element or adjusting the phase difference among antennas,and observing the changes of interference fringes. The simulation results prove that the feasibility of spatial power synthesis can be achieved by antenna uplink array in theory.%天线上行组阵是空间功率合成技术中的重要应用之一,将极大提高天线远场EIRP值.重点对上行组阵中空间功率合成的性能进行理论分析和仿真验证.首先介绍了空间功率合成的基本概念、方法原理、主要优点;然后对天线上行组阵空间功率合成的理论进行了公式推导,并从天线远场方向图的角度进行了简要分析;最后通过Matlab软件对天线上行组阵空间功率合成性能进行了仿真,通过改变阵元个数或者调整天线间相位差,观察干涉条纹变化,可实现合成功率改变.仿真在理论上验证了天线上行组阵实现空间功率合成的可行性.

  17. Terahertz Array Receivers with Integrated Antennas

    Science.gov (United States)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; Thomas, Bertrand; Mehdi, Imran

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  18. Interleaved Array Antennas for FMCW Radar Applications

    NARCIS (Netherlands)

    Lager, I.E.; Trampuz, C.; Simeoni, M.; Ligthart, L.P.

    2009-01-01

    An effective and robust strategy for concurrently designing the transmit and receive antennas of a frequency-modulated, continuos-wave radar is discussed. The aperture architecture is based on the use of non-periodic, interleaved sub-arrays. Deterministic element placement is employed for ensuring d

  19. Phased array antenna on a radial waveguide

    OpenAIRE

    Voronin, E. N.; Emel'chenkov, F. I.; Kotov, Yu. V.; Luk'yanov, A. S.

    2003-01-01

    Numerical and research results of investigation and optimization of the distributive system of the monopulse phased array antenna (PAA) with circular aperture based on the radial waveguide are presented. The research was carried out with decomposition technique using a one term approximation of the induced EMF.

  20. Utilization of antenna arrays in HF systems

    Directory of Open Access Journals (Sweden)

    Louis Bertel

    2009-06-01

    Full Text Available

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been proposed to increase the capacity of radio links by the use of antenna

    arrays at both the transmitter and receiver.

    The first part of this paper describes some novel experimental work carried out to examine the feasibility of applying

    MIMO techniques for communications within the HF radio band. A detailed correlation analysis of a variety

    of different antenna array configurations is presented. The second section of the paper also deals with HF

    MIMO communications, focusing on the problem from a modelling point of view. The third part presents a sensitivity

    analysis of different antenna array structures for HF direction finding applications. The results demonstrate

    that when modelling errors, heterogeneous antenna arrays are more robust in comparison to homogeneous structures


  1. A Two Element Plasma Antenna Array

    Directory of Open Access Journals (Sweden)

    F. Sadeghikia

    2013-10-01

    Full Text Available This theoretical study presents the characteristics of plasma monopole antennas in the VHF/UHF range using finite difference time domain (FDTD simulation. Results show that more broadband characteristics can be obtained by increasing the diameter of the plasma tube and that the minor lobes diminish in intensity as diameter increases. Furthermore, the nulls are replaced by low level radiation. Since the collision frequency, which is a function of gas pressure, represents the loss mechanism of plasma, decreasing its value increases the gain and radar cross section (RCS of the antenna. Theoretical modeling shows that at higher plasma frequencies with respect to the signal frequency, the gain and radar cross section of the plasma antenna are high enough and that the impedance curves are altered as the plasma frequency varies. Using these preliminary studies, mutual impedance and gain of a broadside array of two parallel side-by-side plasma elements is presented.

  2. Spatially resolving antenna arrays using frequency diversity.

    Science.gov (United States)

    Marks, Daniel L; Gollub, Jonah; Smith, David R

    2016-05-01

    Radio imaging devices and synthetic aperture radar typically use either mechanical scanning or phased arrays to illuminate a target with spatially varying radiation patterns. Mechanical scanning is unsuitable for many high-speed imaging applications, and phased arrays contain many active components and are technologically and cost prohibitive at millimeter and terahertz frequencies. We show that antennas deliberately designed to produce many different radiation patterns as the frequency is varied can reduce the number of active components necessary while still capturing high-quality images. This approach, called frequency-diversity imaging, can capture an entire two-dimensional image using only a single transmit and receive antenna with broadband illumination. We provide simple principles that ascertain whether a design is likely to achieve particular resolution specifications, and illustrate these principles with simulations. PMID:27140887

  3. Utilization of antenna arrays in HF systems.

    OpenAIRE

    Louis Bertel; Nasir M. Abbasi; Stuart M. Feeney; Sana Salous; Yvon Erhel; Hal J. Strangeways; E. Michael Warrington; Salil D. Gunashekar; Dominique Lemur; François Marie; Martial Oger

    2009-01-01

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been propos...

  4. Analysis of electrical performances of planar active phased array antennas with distorted array plane

    Institute of Scientific and Technical Information of China (English)

    Wang Congsi; Bao Hong; Zhang Fushun; Feng Xingang

    2009-01-01

    a planar phased array antenna with different distortions grades prove the validity of the model.Therefore,by the method,the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.

  5. Approximate Methods in the Analysis of Conformal Array Antennas

    NARCIS (Netherlands)

    Visser, H.J.; Gerini, G.

    2000-01-01

    Conformal array antennas are required whenever an antenna must be located on a vehicle, e.g. the skin of an aircraft, missile or superstructure of a ship. Conforming the array antenna to the existing structure avoids compromising aerodynamic or stealth characteristics, but at the cost of an increase

  6. Antenna arrays. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-04-01

    A bibliography containing 161 abstracts concerning the use of antenna arrays in the fields of radar, communications, radio astronomy, navigation, electronic countermeasures, and spacecraft is presented. Topics include design, antenna radiation patterns, mathematical models, and performance.

  7. 基于改进粒子群算法的共形阵列天线综合%Conformal Antenna Array Beam Pattern Synthesis Based on Improved Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    杨永建; 王晟达; 马健; 甘轶; 邓有为

    2012-01-01

    共形阵列天线的赋形方向图综合涉及大量的运算,成为现在研究的一大难点,目前对共形阵方向图综合的研究比较少,且所用算法存在理论复杂、耗时长的缺点.文中运用改进粒子群算法对圆环阵、圆柱阵方向图的综合进行了研究,仿真结果表明,改进粒子群算法能够较快地形成期望方向图,证明了该方法的有效性和实用性.%The shaped of conformal antenna array beam pattern synthesis is one of difficulties in array antennas beam pattern, because larger numbers of operation is needed. Presently, the research for conformal array antennabeam pattern synthesis is less, and the used arithmetic is complex in theoretics and need more times. Improved particle swarm optimization (PSO) to synthetize circu-larand columniform array beam pattern is used, the result of simulation shows the improved optimization can form desired beam pattern quickly, and proves the method is effective and practicability.

  8. Microstrip Antenna Arrays on Multilayer LCP Substrates

    Science.gov (United States)

    Thompson, Dane; Bairavasubramanian, Ramanan; Wang, Guoan; Kingsley, Nickolas D.; Papapolymerou, Ioannis; Tenteris, Emmanouil M.; DeJean, Gerald; Li, RonglLin

    2007-01-01

    A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below. LCPs were chosen over other flexible substrate materials because they have properties that are especially attractive for high-performance microwave applications. These properties include low permittivity, low loss tangent, low water-absorption coefficient, and low cost. By means of heat treatments, their coefficients of thermal expansion can be tailored to make them more amenable to integration into packages that include other materials. The nature of the flexibility of LCPs is such that large LCP sheets containing antenna arrays can be rolled up, then later easily unrolled and deployed. Figure 1 depicts a prototype three- LCP-layer package containing two four-element, dual-polarization microstrip-patch arrays: one for a frequency of 14 GHz, the other for a frequency of 35 GHz. The 35-GHz patches are embedded on top surface of the middle [15-mil (approx.0.13-mm)-thick] LCP layer; the 14- GHz patches are placed on the top surface of the upper [9-mil (approx. 0.23-mm)-thick] LCP layer. The particular choice of LCP layer thicknesses was made on the basis of extensive analysis of the effects of the

  9. Two-Dimensional Time-Domain Antenna Arrays for Optimum Steerable Energy Pattern with Low Side Lobes

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This document presents the synthesis of different two-dimensional time-domain antenna arrays for steerable energy patterns with side lobe levels. The research is focused on the uniform and nonuniform distributions of true-time exciting delays and positions of antenna elements. The uniform square array, random array, uniform concentric ring array, and rotated nonuniform concentric ring array geometries are particularly studied. These geometries are synthesized by using the well-known sequential quadratic programming. The synthesis regards the optimal true-time exciting delays and optimal positions of pulsed antenna elements. The results show the capabilities of the different antenna arrays to steer the beam in their energy pattern in time domain and how their performance is in frequency domain after the synthesis in time domain.

  10. A novel array antenna for MSAT applications

    Science.gov (United States)

    Bodnar, Donald G.; Rainer, B. Keith; Rahmat-Samii, Yahya

    1989-01-01

    The issue of reducing the cost of phased array vehicle antennas through the use of a lens feeding arrangement instead of phase shifters at each element is addressed. In particular, the economic viability of a mobile satellite system (MSAT) is largely dependent on the efficient use of the allocated scarce spectrum and orbit as well as the satellite power. the type of vehicle antenna used will play a critical role in achieving this efficiency. A standard design approach for an electronically steered array uses phase shifters at each element to provide beam steering. A method for reducing the required number of phase shifters by using an R-KR lens feed network is outlined. The authors briefly discuss the phase shifter approach to beam steering, examine various lens feed techniques, and describe the R-KR lens approach. The lens feed network architecture is examined, a computer model for simulation of the array is presented, and the results of analysis of a suggested design for the MSAT application are given. In addition, satellite acquisition and tracking considerations are investigated.

  11. Research in large adaptive antenna arrays

    Science.gov (United States)

    Berkowitz, R. S.; Dzekov, T.

    1976-01-01

    The feasibility of microwave holographic imaging of targets near the earth using a large random conformal array on the earth's surface and illumination by a CW source on a geostationary satellite is investigated. A geometrical formulation for the illuminator-target-array relationship is applied to the calculation of signal levels resulting from L-band illumination supplied by a satellite similar to ATS-6. The relations between direct and reflected signals are analyzed and the composite resultant signal seen at each antenna element is described. Processing techniques for developing directional beam formation as well as SNR enhancement are developed. The angular resolution and focusing characteristics of a large array covering an approximately circular area on the ground are determined. The necessary relations are developed between the achievable SNR and the size and number of elements in the array. Numerical results are presented for possible air traffic surveillance system. Finally, a simple phase correlation experiment is defined that can establish how large an array may be constructed.

  12. The Submillimeter Array Antennas and Receivers

    CERN Document Server

    Blundell, R

    2005-01-01

    The Submillimeter Array (SMA) was conceived at the Smithsonian Astrophysical Observatory in 1984 as a six element interferometer to operate in the major atmospheric windows from about 200 to 900 GHz. In 1996, the Academica Sinica Institute of Astronomy and Astrophysics of Taiwan joined the project and agreed to provide additional hardware to expand the interferometer to eight elements. All eight antennas are now operating at the observatory site on Mauna Kea, and astronomical observations have been made in the 230, 345, and 650 GHz bands. The SMA antennas have a diameter of 6 m, a surface accuracy of better than 25 micron rms, and can be reconfigured to provide spatial resolutions down to about 0.5" at 200 GHz and, eventually, 0.1" at 850 GHz. Coupling to the receiver package within each antenna is achieved via a beam waveguide, in a bent Nasmyth configuration, comprised of a flat tertiary mirror and two ellipsoidal mirrors that form a secondary pupil used for receiver calibration. An additional fixed mirror ...

  13. Biconical Ring Antenna Array for Wide Band Applications

    Directory of Open Access Journals (Sweden)

    C.SUBBA RAO

    2012-02-01

    Full Text Available Circular or ring arrays are conformal to the cylindrical surfaces unlike the linear arrays and can be mounted on moving objects. Biconical antenna is simple in construction and exhibits broad band characteristics. This antenna presents broad band radiation characteristics. In this paper circular or ring array of biconical antenna is proposed and its characteristics are analyzed for frequency band of 0.1 to 1GHz range. Radiation characteristicsof the array with excitation phase change are presented. Simulated results of the radiation characteristics of the circular array are analyzed.

  14. 基于DPSO算法的半球共形阵方向图综合%Hemispherical conformal antenna array beam pattern synthesis based on Dichotomy Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    马颖; 田维坚; 樊养余

    2013-01-01

    针对共形阵列天线方向图综合所需迭代次数大,且算法的收敛对初始值敏感问题,本文采用DPSO算法对半球共形阵赋形方向图综合进行了研究,通过对半球共球阵模型的建立,推导了所建模型的方向图函数.仿真结果表明,DPSO算法能够较快地综合半球共形阵的赋形方向图,是一种高效且实用的综合算法.%DPSO (Dichotomy Particle Swarm Optimization) algorithm was used to synthesize hemispherical conformal antenna array beam pattern,aimed at the accustomed algorithms of conformal array antenna beam pattern synthesis have a great iterative time and the constringency depending on the value of initialization.Based on the model of hemispherical conformal array,the beam pattern mathematic function of the array is put up.The result of simulation shows DPSO algorithm can form desired beam pattern quickly,and proves the method is effective and practicability.

  15. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    Science.gov (United States)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  16. Using Antenna Arrays to Motivate the Study of Sinusoids

    Science.gov (United States)

    Becker, J. P.

    2010-01-01

    Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…

  17. Silicon Micromachined Microlens Array for THz Antennas

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  18. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.

    Science.gov (United States)

    Aratani, Naoki; Kim, Dongho; Osuka, Atsuhiro

    2009-12-21

    The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of protein-embedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-meso-linked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Forster-type incoherent energy hopping model. In noncoordinating solvents such as CHCl(3), meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated

  19. State-of-the-art and trends of Ground-Penetrating Radar antenna arrays

    Science.gov (United States)

    Vescovo, Roberto; Pajewski, Lara; Tosti, Fabio

    2016-04-01

    The aim of this contribution is to offer an overview on the antenna arrays for GPR systems, current trends and open issues. Antennas are a critical hardware component of a radar system, dictating its performance in terms of capability to detect targets. Nevertheless, most of the research efforts in the Ground-Penetrating Radar (GPR) area focus on the use of this imaging technique in a plethora of different applications and on the improvement of modelling/inversion/processing techniques, whereas a limited number of studies deal with technological issues related to the design of novel systems, including the synthesis, optimisation and characterisation of advanced antennas. Even fewer are the research activities carried out to develop innovative antenna arrays. GPR antennas operate in a strongly demanding environment and should satisfy a number of requirements, somehow unique and very different than those of conventional radar antennas. The same applies to GPR antenna arrays. The first requirement is an ultra-wide frequency band: the radar has to transmit and receive short-duration time-domain waveforms, in the order of a few nanoseconds, the time-duration of the emitted pulses being a trade-off between the desired radar resolution and penetration depth. Furthermore, GPR antennas should have a linear phase characteristic over the whole operational frequency range, predictable polarisation and gain. Due to the fact that a subsurface imaging system is essentially a short-range radar, the coupling between transmitting and receiving antennas has to be low and short in time. GPR antennas should have quick ring-down characteristics, in order to prevent masking of targets and guarantee a good resolution. The radiation patterns should ensure minimal interference with unwanted objects, usually present in the complex operational environment; to this aim, antennas should provide high directivity and concentrate the electromagnetic energy into a narrow solid angle. As GPR

  20. Antenna-coupled TES bolometers for the Keck Array, Spider, and Polar-1

    CERN Document Server

    O'Brient, R; Ahmed, Z; Aikin, R W; Amiri, M; Benton, S; Bischoff, C; Bock, J J; Bonetti, J A; Brevik, J A; Burger, B; Davis, G; Day, P; Dowell, C D; Duband, L; Filippini, J P; Fliescher, S; Golwala, S R; Grayson, J; Halpern, M; Hasselfield, M; Hilton, G; Hristov, V V; Hui, H; Irwin, K; Kernasovskiy, S; Kovac, J M; Kuo, C L; Leitch, E; Lueker, M; Megerian, K; Moncelsi, L; Netterfield, C B; Nguyen, H T; Ogburn, R W; Pryke, C L; Reintsema, C; Ruhl, J E; Runyan, M C; Schwarz, R; Sheehy, C D; Staniszewski, Z; Sudiwala, R; Teply, G; Tolan, J E; Turner, A D; Tucker, R S; Vieregg, A; Wiebe, D V; Wilson, P; Wong, C L; Wu, W L K; Yoon, K W

    2012-01-01

    Between the BICEP2 and Keck Array experiments, we have deployed over 1500 dual polarized antenna coupled bolometers to map the Cosmic Microwave Background's polarization. We have been able to rapidly deploy these detectors because they are completely planar with an integrated phased-array antenna. Through our experience in these experiments, we have learned of several challenges with this technology- specifically the beam synthesis in the antenna- and in this paper we report on how we have modified our designs to mitigate these challenges. In particular, we discus differential steering errors between the polarization pairs' beam centroids due to microstrip cross talk and gradients of penetration depth in the niobium thin films of our millimeter wave circuits. We also discuss how we have suppressed side lobe response with a Gaussian taper of our antenna illumination pattern. These improvements will be used in Spider, Polar-1, and this season's retrofit of Keck Array.

  1. Adjustment and beam forming in circular antenna array with conformal and phase scanning

    OpenAIRE

    Bobkov, Y; Yurtsev, O.; Moiseev, A.; Moskalev, D.

    2009-01-01

    The circular antenna array, composed of M linear antenna sub-arrays, is considered in this work. Every linear antenna sub-array includes N active modules. The signals from active antenna array modules in receive mode are processed in digital form. It is described the of the antenna phase adjustment, which is necessary for this type of antenna. It is also considered the influence of different factors to antenna radiation plot.

  2. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    Science.gov (United States)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  3. Phased arrays for satellites and the TDRSS antennas

    Science.gov (United States)

    Imbriale, W. A.

    The design and performance of satellite phased-array systems are examined by considering several specific antennas built for spacecraft use. Particular consideration is given to: (1) the JARED (Jammer Reduction Antenna System) antenna, and adaptive phased array which can be used to null jammer signals while providing coverage to specific user areas; (2) the algorithm used in the JARED antenna; and (3) a technique that can be used to detect and locate jammers. The antennas used by the Tracking and Data Relay Satellite System (TDRSS) are then described. A significant aspect of the TDRSS is the multiple access antenna which is a 30-element phased array, providing a single steered beam on transmit and the ability to receive data from 20 simultaneous users. Also included on the TDRSS is a mesh deployable reflector and a C-band and K-band communications system.

  4. MIMO communications within the HF band using compact antenna arrays.

    OpenAIRE

    Gunashekar, S.D.; Warrington, E. M.; Feeney, S. M.; Salous, S.; Abbasi, N.M.

    2010-01-01

    Measurements have been made over a 255 km radio path between Durham and Leicester in the UK in order to investigate the potential applicability of multiple input multiple output (MIMO) techniques to communications within the HF band. This paper describes the results from experiments in which compact heterogeneous antenna arrays have been employed. The results of these experiments indicate that traditional spaced HF antenna arrays can be replaced by compact, active, heterogeneous arrays in ord...

  5. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  6. Beamformer for Cylindrical Conformal Array of Non-isotropic Antennas

    Directory of Open Access Journals (Sweden)

    ZOU, L.

    2011-02-01

    Full Text Available The principal objective of this investigation is to facilitate minimum variance distortionless response (MVDR beamforming technique for a cylindrical conformal array geometry. An array of directional radiating elements is postulated to cover a surface typical of the cylinder of an aircraft or missile. Borrowing the analysis of conformal array antennas, the authors first derive a deterministic expression that describes the beam pattern of arbitrary weighted cylindrical conformal array. Then, making use of the MVDR beamforming, we derive the beamformer for uniform linear array (ULA of directional antennas which are different from the traditional omnidirectional elements. Thus, the pattern of a directional element is synthesized by the antennas on the same ring array, and we design the MVDR beamformer, which uses MVDR beamforming for ULA of the synthesized pattern. To demonstrate the validity of the method, and cylinder arrays are constructed and experimental results agree well with theoretical expectations.

  7. Experiments with Compact Antenna Arrays for MIMO Radio Communications

    CERN Document Server

    Browne, D W; Fitz, M P; Rahmat-Samii, Y

    2005-01-01

    The problem tackled in this study is one of MIMO transceiver implementation in which we consider how to design and test compact antenna arrays that have the ability to preserve the native information bearing capacity of a MIMO channel. Mutual coupling in antenna arrays is known to degrade the performance of a MIMO system. However, no tests involving compact arrays have been performed using a MIMO transceiver architecture that is capable of measuring the effect of mutual coupling on system performance. In this study, two novel compact MIMO antenna arrays were designed and integrated into a wideband MIMO radio testbed. These arrays are extremely compact yet have acceptable mutual coupling and radiation efficiency and resonate in three wide frequency bands. A measurement campaign was executed in which MIMO channel sounding measurements were taken using the compact arrays and dipole arrays in a variety of indoor environments. The MIMO transceiver used for channel sounding is able to measure the effect of mutual c...

  8. Characterization of tapered slot antenna feeds and feed arrays

    Science.gov (United States)

    Kim, Young-Sik; Yngvesson, K. Sigfrid

    1990-01-01

    A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.

  9. Cooling System for a Ka Band Transmit Antenna Array

    OpenAIRE

    Döring, Björn

    2006-01-01

    Active antenna arrays working at higher frequencies result in higher packaging densities. The antenna array under consideration operates at about 30 GHz and will be installed in an aircraft. Commercially available power amplifiers at these frequencies have an efficiency of typically 20 %, which results in high amounts of dissipated heat for the required high radiated power. The dissipated power, up to 9.5 kW as a worst case for a 50 × 50 element array, has to be transfered from the antenna to...

  10. Array antennas design in dependence of element-phasing

    Science.gov (United States)

    Zichner, R.; Chandra, M.

    2009-05-01

    Array antennas are used in science as well as for commercial and military purposes. The used element antennas act in accordance to their desired uses, for example radars or stationer GPS satellites. Typical components are for example slotted waveguides, patches, yagi-antennas and helix-antennas. All these elements do stand out with their own characteristics based on their special applications. If these elements are formed into an array configuration, the effectiveness can be improved immensely. There is a relation between the array functions and the physical array properties like the element alignment (linear, planar, circular), distances between the elements and so on. Among the physical properties there are other attributes like phase or amplitude coefficients, which are of great significance. The aim of this study was to provide an insight into the problem of array design, as far as the antenna element phase is concerned. Along with this, array radiation characteristics effects are presented. With the help of the extracted cognitions beam forming behaviour can be shown and the array phase behaviour can be analysed. One of the main applications is to simulate the array characteristics, like the radiation characteristic or the gain, for displacements of the array feeding point. A software solution that simulates the phase shift of a given array pattern is sought to adjust the feeding point.

  11. Array antennas design in dependence of element-phasing

    Directory of Open Access Journals (Sweden)

    R. Zichner

    2009-05-01

    Full Text Available Array antennas are used in science as well as for commercial and military purposes. The used element antennas act in accordance to their desired uses, for example radars or stationer GPS satellites. Typical components are for example slotted waveguides, patches, yagi-antennas and helix-antennas. All these elements do stand out with their own characteristics based on their special applications. If these elements are formed into an array configuration, the effectiveness can be improved immensely. There is a relation between the array functions and the physical array properties like the element alignment (linear, planar, circular, distances between the elements and so on. Among the physical properties there are other attributes like phase or amplitude coefficients, which are of great significance. The aim of this study was to provide an insight into the problem of array design, as far as the antenna element phase is concerned. Along with this, array radiation characteristics effects are presented. With the help of the extracted cognitions beam forming behaviour can be shown and the array phase behaviour can be analysed. One of the main applications is to simulate the array characteristics, like the radiation characteristic or the gain, for displacements of the array feeding point. A software solution that simulates the phase shift of a given array pattern is sought to adjust the feeding point.

  12. Synthesis of Linear Array of Parallel Dipole Antennas with Minimum Standing Wave Ratio Using Simulated Annealing and Particle Swarm Optimization approach

    Directory of Open Access Journals (Sweden)

    Banani Basu

    2010-05-01

    Full Text Available In this paper, we propose a technique based on two evolutionary algorithms simulated annealing and particle swarm optimization to design a linear array of half wavelength long parallel dipole antennas that will generate a pencil beam in the horizontal plane with minimum standing wave ratio (SWR and fixed side lobe level (SLL. Dynamic range ratio of current amplitude distribution is kept at a fixed value. Two different methods have been proposed withdifferent inter-element spacing but with same current amplitude distribution. First one uses a fixed geometry and optimizes the excitation distribution on it. In the second case further reduction of SWR is done via optimization of interelement spacing while keeping the amplitude distribution same as before. Coupling effect between the elements is analyzed using induced EMF method and minimized interms of SWR. Numerical results obtained from SA are validated by comparing with results obtained using PSO.

  13. Linearly tapered slot antenna circular array for mobile communications

    Science.gov (United States)

    Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.

    1993-01-01

    The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.

  14. Array antenna diagnostics with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Meincke, Peter; Pivnenko, Sergey;

    2012-01-01

    The 3D reconstruction algorithm is applied to a slotted waveguide array measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. One slot of the array is covered by conductive tape and an error is present in the array excitation. Results show the accuracy obtainable by the 3D...

  15. An eigencurrent approach for the analysis of finite antenna arrays

    NARCIS (Netherlands)

    Bekers, D.J.; Eijndhoven, S.J.L. van; Tijhuis, A.G.

    2009-01-01

    An accurate description of typical finite-array behavior such as edge effects and array resonances is essential in the design of various types of antennas. The analysis approach proposed in this paper is essentially based on the concept of eigencurrents and is capable of describing finite-array beha

  16. Optical phased arrays with evanescently-coupled antennas

    Science.gov (United States)

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  17. Photonic spin-controlled multifunctional shared-aperture antenna array

    Science.gov (United States)

    Maguid, Elhanan; Yulevich, Igor; Veksler, Dekel; Kleiner, Vladimir; Brongersma, Mark L.; Hasman, Erez

    2016-06-01

    The shared-aperture phased antenna array developed in the field of radar applications is a promising approach for increased functionality in photonics. The alliance between the shared-aperture concepts and the geometric phase phenomenon arising from spin-orbit interaction provides a route to implement photonic spin-control multifunctional metasurfaces. We adopted a thinning technique within the shared-aperture synthesis and investigated interleaved sparse nanoantenna matrices and the spin-enabled asymmetric harmonic response to achieve helicity-controlled multiple structured wavefronts such as vortex beams carrying orbital angular momentum. We used multiplexed geometric phase profiles to simultaneously measure spectrum characteristics and the polarization state of light, enabling integrated on-chip spectropolarimetric analysis. The shared-aperture metasurface platform opens a pathway to novel types of nanophotonic functionality.

  18. Mathematical Simulating Model of Phased-Array Antenna in Multifunction Array Radar

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A mathematical simulating model of phased-array antenna in multifunction array radar has been approached in this paper, including the mathematical simulating model of plane phased-array pattern, the mathematical simulating model of directionality factor, the mathematical simulating model of array factor, the mathematical simulating model of array element factor and the mathematical simulating model of beam steering.

  19. Phased-array antennas for future communication and sensor systems

    NARCIS (Netherlands)

    Vliet, F.E. van

    1998-01-01

    Traditionally, phased-array antenna systems have been exclusively used in radar systems. The development of these antennas has gained much momentum by the availability of integrated microwave components. Their flexibility and performance is reason to expect a much wider application in the coming yea

  20. Antenna-Coupled TES Bolometer Arrays for CMB Polarimetry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and test transition edge sensor (TES) bolometer arrays for precision polarimetry of cosmic microwave background (CMB).  Verify that critical antenna...

  1. Linear antenna array optimization using flower pollination algorithm.

    Science.gov (United States)

    Saxena, Prerna; Kothari, Ashwin

    2016-01-01

    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance. PMID:27066339

  2. Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation

    CERN Document Server

    Semkin, V; Kyro, M; Kolmonen, V-M; Luxey, C; Ferrero, F; Devillers, F; Raisanen, A V

    2015-01-01

    In this paper, we study the influence of the radius of a cylindrical supporting structure on radiation properties of a conformal millimeter-wave antenna array. Bent antenna array structures on cylindrical surfaces may have important applications in future mobile devices. Small radii may be needed if the antenna is printed on the edges of mobile devices and in items which human beings are wearing, such as wrist watches, bracelets and rings. The antenna under study consists of four linear series-fed arrays of four patch elements and is operating at 58.8 GHz with linear polarization. The antenna array is fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due to its good plasticity properties and low losses. Results for both planar and conformal antenna arrays show rather good agreement between simulation and measurements. The results show that conformal antenna structures allow achieving large angular coverage and may allow beam-steering implementations if switches are used to select betw...

  3. SAR Experiments Using a Conformal Antenna Array Radar Demonstrator

    OpenAIRE

    Peter Knott; Thomas Bertuch; Helmut Wilden; Olaf Peters; Andreas R. Brenner; Ingo Walterscheid

    2012-01-01

    Conformal antenna arrays have been studied for several years but only few examples of applications in modern radar or communication systems may be found up to date due to technological difficulties. The objective of the “Electronic Radar with Conformal Array Antenna” (ERAKO) demonstrator system which has been developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR) is to demonstrate the feasibility of an active electronically scanned antenna for conformal i...

  4. Antenna-coupled bolometer arrays using transition-edgesensors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J.; Ade, Peter; Engargiola, Greg; Holzapfel,William; Lee,Adrian T.; O' Brient, Roger; Richards, Paul L.; Smith, Andy; Spieler, Helmuth; Tran, Huan

    2004-06-08

    We describe the development of an antenna-coupled bolometer array for use in a Cosmic Microwave Background polarization experiment. Prototype single pixels using double-slot dipole antennas and integrated microstrip band defining filters have been built and tested. Preliminary results of optical testing and simulations are presented. A bolometer array design based on this pixel will also be shown and future plans for application of the technology will be discussed.

  5. Antenna-coupled bolometer arrays using transition-edge sensors

    OpenAIRE

    Myers, Michael J.; Ade, Peter; Engargiola, Greg; Holzapfel, William; Lee, Adrian T.; O'Brient, Roger; Richards, Paul L.; Smith, Andy; Spieler, Helmuth; Tran, Huan

    2004-01-01

    We describe the development of an antenna-coupled bolometer array for use in a Cosmic Microwave Background polarization experiment. Prototype single pixels using double-slot dipole antennas and integrated microstrip band defining filters have been built and tested. Preliminary results of optical testing and simulations are presented. A bolometer array design based on this pixel will also be shown and future plans for application of the technology will be discussed.

  6. New submillimeter detectors and antenna arrays

    International Nuclear Information System (INIS)

    Preliminary investigation has been made into the use of SIS (superconductor--insulator--superconductor) diodes for possible roles in sub-millimeter imaging systems. That is, extremely low noise, millimeter wave detectors and mixers have recently been reported which depend on single-particle tunnelling between two superconducting films separated by a thin oxide layer. The combination of excellent low-frequency sensitivity and well-developed fabrication technology make the SIS mixers particularly attractive for the systems using antenna structures and arrays in millimeter and submillimeter regions. The SIS diodes of Nb-Nb2O5-Pb showed a strong video response to the radiation which could be differentiated from the regular Josephson effect since it was not affected by a magnetic field. In exploring the three-terminal devices for possible detector and source applications in submillimeter region, the authors first determined that millimeter and submillimeter radiation could be effectively coupled to and detected in high-frequency FETs. Video response was readily obtained at 800 GHz, and carcinotron radiation at 350 GHz was mixed with the 5th harmonic of a 70 GHz klystron, producing over 45 db signal-to-noise ratio in the intermediate frequency. Since FET can function as a three-terminal oscillator simultaneously detecting submillimeter radiation or optical beats, it has interesting possibility, such as self-oscillating mixers or subharmonic local oscillators. (Wakatsuki, Y.)

  7. Series-Fed Microstrip Array Antenna with Circular Polarization

    OpenAIRE

    Tuan-Yung Han

    2012-01-01

    This study proposes a novel 2 × 2 array antenna design with broadband and circularly-polarized (CP) operation. The proposed design uses a simple series-fed network to increase the CP bandwidth without requiring one-by-one adjustment of each array element or a complex feed network. Selecting the appropriate spacing between each array element allows the proposed array antenna to generate CP radiation with a low axial ratio. Experimental results based on a prototype show that this 2 × 2 microstr...

  8. Imaging antenna array at 119 microns. [for plasma diagnostics

    Science.gov (United States)

    Neikirk, N. P.; Tong, P. P.; Putledge, D. B.; Park, H.; Young, P. E.

    1982-01-01

    A focal-plane imaging antenna array has been demonstrated at 119 microns. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off frequency.

  9. Coupled-oscillator based active-array antennas

    CERN Document Server

    Pogorzelski, Ronald J

    2012-01-01

    Describing an innovative approach to phased-array control in antenna design This book explores in detail phased-array antennas that use coupled-oscillator arrays, an arrangement featuring a remarkably simple beam steering control system and a major reduction in complexity compared with traditional methods of phased-array control. It brings together in one convenient, self-contained volume the many salient research results obtained over the past ten to fifteen years in laboratories around the world, including the California Institute of Technology's Jet Propulsion Laboratory.

  10. Ladder Arrangement Method for Stealth Design of Vivaldi Antenna Array

    Directory of Open Access Journals (Sweden)

    XiaoXiang He

    2013-01-01

    Full Text Available A novel stealth design method for X-band Vivaldi antenna arrays is proposed in this paper by ladder arrangement along radiation direction. Two-element array, eight-element array, and 3 × 7-element array are investigated in this paper. S parameters, RCSs, and radiation patterns are studied, respectively. According to the ladder arrangement of Vivaldi antennas presented, 16.3 dBsm maximal RCS reduction is achieved with satisfied radiation performance. As simulated and measured, results demonstrate that the effectiveness of the presented low RCS design method is validated.

  11. Direction finding with an array of antennas having diverse polarizations

    Science.gov (United States)

    Ferrara, E. R., Jr.; Parks, T. M.

    1983-03-01

    The advantages of using diversely polarized antennas to determine bearings of multiple cochannel narrow-band signals are shown. Three bearing estimation algorithms - maximum likelihood (ML), adapted angular response (AAR), and Music (multiple signal classification) - are extended to handle antenna arrays with diverse polarizations; the maximum entropy method does not readily extend. The proposed algorithms are applicable to arbitrary antenna locations and directional characteristics and arbitrary noise correlations between the antenna outputs. The algorithms are compared on the basis of multiple signal resolution and bearing accuracy in the presence of noise. The Music algorithm exhibits superior performance at moderate to low signal-to-noise ratio (SNR).

  12. Antenna-coupled arrays of voltage-biased superconducting bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J.; Lee, Adrian T.; Richards, P.L.; Schwan, D.; Skidmore, J.T.; Smith, A.D.; Spieler, H.; Yoon, Jongsoo

    2001-07-23

    We report on the development of antenna-coupled Voltage-biased Superconducting Bolometers (VSBs) which use Transition-edge Sensors (TES). Antenna coupling can greatly simplify the fabrication of large multi-frequency bolometer arrays compared to horn-coupled techniques. This simplification can make it practical to implement 1000+ element arrays that fill the focal plane of mm/sub-mm wave telescopes. We have designed a prototype device with a double-slot dipole antenna, integrated band-defining filters, and a membrane-suspended bolometer. A test chip has been constructed and will be tested shortly.

  13. Antenna-coupled bolometer arrays using transition-edge sensors

    International Nuclear Information System (INIS)

    We are developing antenna-coupled Transition-Edge Sensor (TES) bolometer arrays for use in measurements of the CMB polarization. TES bolometers have many well-known advantages over conventional bolometers, such as increased speed, linearity, and the existence of readout multiplexers. Antenna-coupled bolometers use an on-chip planar antenna to couple light into the bolometer. The antenna directivity and polarization sensitivity, along with the potential for on-chip band defining filters and channelizing circuits, allow a significant increase in focal plane integration. This eliminates the bulky horns, quasioptical filters, dichroics, and polarizers which might otherwise be needed in a conventional bolometric system. This simplification will ease the construction of receivers with larger numbers of pixels. We report on the fabrication and optical testing of single antenna-coupled bolometer pixels with integrated band defining filters. We will also discuss current progress on fabrication of a bolometer array based on this design

  14. Miniaturization Smart Antenna Array Design for TD-SCDMA System

    Directory of Open Access Journals (Sweden)

    Hao Honggang

    2013-09-01

    Full Text Available In view of the development for TD-SCDMA communication system and combine with the miniaturization technology of smart antenna, by using balun feeding structure and consist of splitters and neural networks,  this paper  proposed a four units of dual polarized and a eight units of +45o/-45o polarized antenna array which on the basis of printed dipole antenna. The simulation results show that the isolation of dual-polarized unit between two ports is greater than -26dB, the isolation of 4-unit dual-polarized antenna array between dipole ports are less than -20dB and the 8-unit is less than -18dB. The polarization characteristics and isolation parameter of the proposed antenna has meets the demands of practical applications in the bands of TD-SCDMA communication system and its supplement bands.

  15. Series-Fed Microstrip Array Antenna with Circular Polarization

    Directory of Open Access Journals (Sweden)

    Tuan-Yung Han

    2012-01-01

    Full Text Available This study proposes a novel 2 × 2 array antenna design with broadband and circularly-polarized (CP operation. The proposed design uses a simple series-fed network to increase the CP bandwidth without requiring one-by-one adjustment of each array element or a complex feed network. Selecting the appropriate spacing between each array element allows the proposed array antenna to generate CP radiation with a low axial ratio. Experimental results based on a prototype show that this 2 × 2 microstrip array antenna achieves a wide 3 dB axial ratio bandwidth of more than 10%. Simulated data are also provided to confirm the measured results.

  16. Substrate Integrated Slot Array Antenna with Required Radiation Pattern Envelope

    Directory of Open Access Journals (Sweden)

    M. M. Zhou

    2016-01-01

    Full Text Available A substrate integrated slot array antenna with a prescribed radiation pattern is investigated in this paper. To meet the requirement of a certain standard radiation pattern envelope, the array configuration and the element excitation coefficient should be considered together. An efficient and systematic method is proposed to determine the element number and element weights in a planar array. After that, the geometrical dimension of the substrate integrated slot array can be synthesized. As an example, a K-band 16 × 22 slot array antenna based on the substrate integrated waveguide (SIW technology is designed, fabricated, and measured. Its radiation pattern can meet the class 3 antenna radiation pattern envelope of the European Telecommunications Standards Institute (ETSI standard pattern. Experimental results are in good agreement with simulated ones.

  17. Microstrip Yagi array antenna for mobile satellite vehicle application

    Science.gov (United States)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  18. Design of Non-Uniform Linear Antenna Arrays Using DolphChebyshev and Binomial Methods

    Directory of Open Access Journals (Sweden)

    Jean-François D. Essiben

    2015-08-01

    Full Text Available This paper explores the analytical methods of synthesizing linear antenna arrays. The synthesis employed is based on non-uniform methods. In particular, the Dolph-Chebyshev and binomial methods are used, so as to improve the directivity of the array and to reduce the level of the secondary lobes by adjusting the geometrical and electric parameters of the array. The radiation patterns, the directivity, and the array factors of the uniform and the non-uniform methods are presented. It is shown that the Chebyshev arrays have better directivity than binomial arrays for the same number of elements and separation distance, while binomial arrays have very low side lobes compared with Chebyshev and uniform excitation arrays. Finally, numerical results of both methods are analyzed and compared.

  19. Connected Spiral Antennas for Wideband Circularly Polarized Antenna Array, Experimental Investigations

    OpenAIRE

    Serhir, Mohammed; Guinvarc'H, Régis

    2013-01-01

    International audience A cavity backed array of 5 connected spiral antennas is presented. The circular polarization is generated using mono polarized spirals in an alternating configuration RHCP and LHCP. Due to the connection between spirals, the currents in the arms of one spiral flow into the arms of the adjacent spirals. The currents transmitted to the opposite polarized neighboring spiral radiate the same polarization. The proposed antenna array allows more than 500MHz bandwidth while...

  20. Antenna array geometry optimization for a passive coherent localisation system

    Science.gov (United States)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  1. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

    OpenAIRE

    H. Ja’afar; M. T. Ali; Dagang, A N; I. P. Ibrahim; N. A. Halili; H. M. Zali

    2016-01-01

    This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna) operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consist...

  2. A Flexible Phased-MIMO Array Antenna with Transmit Beamforming

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2012-01-01

    Full Text Available Although phased-array antennas have been widely employed in modern radars, the requirements of many emerging applications call for new more advanced array antennas. This paper proposes a flexible phased-array multiple-input multiple-output (MIMO array antenna with transmit beamforming. This approach divides the transmit antenna array into multiple subarrays that are allowed to overlap each subarray coherently transmits a distinct waveform, which is orthogonal to the waveforms transmitted by other subarrays, at a distinct transmit frequency. That is, a small frequency increment is employed in each subarray. Each subarray forms a directional beam and all beams may be steered to different directions. The subarrays jointly offer flexible operating modes such as MIMO array which offers spatial diversity gain, phased-array which offers coherent directional gain and frequency diverse array which provides range-dependent beampattern. The system performance is examined by analyzing the transmit-receive beampatterns. The proposed approach is validated by extensive numerical simulation results.

  3. Modern Design of Resonant Edge-Slot Array Antennas

    Science.gov (United States)

    Gosselin, R. B.

    2006-01-01

    Resonant edge-slot (slotted-waveguide) array antennas can now be designed very accurately following a modern computational approach like that followed for some other microwave components. This modern approach makes it possible to design superior antennas at lower cost than was previously possible. Heretofore, the physical and engineering knowledge of resonant edge-slot array antennas had remained immature since they were introduced during World War II. This is because despite their mechanical simplicity, high reliability, and potential for operation with high efficiency, the electromagnetic behavior of resonant edge-slot antennas is very complex. Because engineering design formulas and curves for such antennas are not available in the open literature, designers have been forced to implement iterative processes of fabricating and testing multiple prototypes to derive design databases, each unique for a specific combination of operating frequency and set of waveguide tube dimensions. The expensive, time-consuming nature of these processes has inhibited the use of resonant edge-slot antennas. The present modern approach reduces costs by making it unnecessary to build and test multiple prototypes. As an additional benefit, this approach affords a capability to design an array of slots having different dimensions to taper the antenna illumination to reduce the amplitudes of unwanted side lobes. The heart of the modern approach is the use of the latest commercially available microwave-design software, which implements finite-element models of electromagnetic fields in and around waveguides, antenna elements, and similar components. Instead of building and testing prototypes, one builds a database and constructs design curves from the results of computational simulations for sets of design parameters. The figure shows a resonant edge-slot antenna designed following this approach. Intended for use as part of a radiometer operating at a frequency of 10.7 GHz, this antenna

  4. Flexible 16 Antenna Array for Microwave Breast Cancer Detection.

    Science.gov (United States)

    Bahramiabarghouei, Hadi; Porter, Emily; Santorelli, Adam; Gosselin, Benoit; Popović, Milica; Rusch, Leslie A

    2015-10-01

    Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50-μm Kapton polyimide are designed, using a high-frequency structure simulator, to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2-4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching when in different positions with different curvature around the breast. Our miniaturized flexible antennas are 20 mm × 20 mm. Furthermore, two flexible conformal 4 × 4 ultrawideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system. By using a reflector for the arrays, the penetration of the propagated electromagnetic waves from the antennas into the breast can be improved by factors of 3.3 and 2.6, respectively.

  5. Flexible 16 Antenna Array for Microwave Breast Cancer Detection.

    Science.gov (United States)

    Bahramiabarghouei, Hadi; Porter, Emily; Santorelli, Adam; Gosselin, Benoit; Popović, Milica; Rusch, Leslie A

    2015-10-01

    Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50-μm Kapton polyimide are designed, using a high-frequency structure simulator, to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2-4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching when in different positions with different curvature around the breast. Our miniaturized flexible antennas are 20 mm × 20 mm. Furthermore, two flexible conformal 4 × 4 ultrawideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system. By using a reflector for the arrays, the penetration of the propagated electromagnetic waves from the antennas into the breast can be improved by factors of 3.3 and 2.6, respectively. PMID:26011862

  6. Microfabricated G-Band Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  7. Microfabricated Millimeter-Wave Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for an antenna technology platform that meets the requirements of high-performance materials, exacting dimensional tolerances, and...

  8. Null-steering techniques for application to large array antennas

    Science.gov (United States)

    Hockham, G. A.; Cho, C.; Parr, J. C.; Wolfson, R. I.

    A multimode waveguide can be employed to design an antenna which produces a beam for each propagating mode. A dual-beam waveguide slot array is particularly attractive. The antenna is compact, highly efficient, and has lower sidelobe-level performance than can be achieved with conventional monopulse techniques. Adaptive phase steering for jammer nulling is considered, taking into account a large phased array using a series feed system. The considered configuration was selected for computer simulation. A description is presented of a multiple beam antenna with independent steerable nulls. The multiple beam low-sidelobe antenna configuration has the ability to provide a radiation pattern with multiple and independently-located nulls, with minimal effect on the sidelobes of the unperturbed pattern.

  9. Applications of trimode waveguide feeds in adaptive virtual array antennas

    Science.gov (United States)

    Allahgholi Pour, Z.; Shafai, Lotfollah

    2015-03-01

    This paper presents the formation of an adaptive virtual array antenna in a symmetric parabolic reflector antenna illuminated by trimode circular waveguide feeds with different mode alignments. The modes of interest are the TE11, TE21, and TM01 type modes. The terms TE and TM stand for the transverse electric and transverse magnetic modes, respectively. By appropriately exciting these modes and varying the mode orientations inside the primary feed, the effective source of radiation is displaced on the reflector aperture, while the resulting secondary patterns remain axial. Different antenna parameters such as gain, cross polarization, and phase center locations are investigated. It is demonstrated that the extra third mode facilitates the formation of symmetric virtual array antennas with reasonable cross polarization discriminations at the diagonal plane.

  10. On the interference rejection capabilities of triangular antenna array for cellular base stations

    KAUST Repository

    Atat, Rachad

    2012-03-01

    In this paper, we present the performance analysis of the triangular antenna arrays in terms of the interference rejection capability. In this context, we derive an expression to calculate the spatial interference suppression coefficient for the triangular antenna array with variable number of antenna elements. The performance of the triangular antenna array has been compared with the circular antenna array with respect to interference suppression performance, steering beam pattern, beamwidth and directivity. Simulation results show that the triangular array with large number of elements produces a sharper beamwidth and better interference suppression performance than the circular antenna array. © 2012 IEEE.

  11. UNIFORMLY SPACED PLANAR ANTENNA ARRAY OPTIMIZATION USING CUCKOO SEARCH ALGORITHM

    Directory of Open Access Journals (Sweden)

    A.Sai Charan

    2014-05-01

    Full Text Available In this modern era a great deal of metamorphism is observed around us which eventuate due to some minute modifications and innovations in the area of Science and Technology. This paper deals with the application of a meta heuristic optimization algorithm namely the Cuckoo Search Algorithm in the design of an optimized planar antenna array which ensures high gain, directivity, suppression of side lobes, increased efficiency and improves other antenna parameters as well[1], [2] and [3].

  12. UNIFORMLY SPACED PLANAR ANTENNA ARRAY OPTIMIZATION USING CUCKOO SEARCH ALGORITHM

    OpenAIRE

    A.Sai Charan; Manasa, N. K.; N.V.S.N Sarma

    2014-01-01

    In this modern era a great deal of metamorphism is observed around us which eventuate due to some minute modifications and innovations in the area of Science and Technology. This paper deals with the application of a meta heuristic optimization algorithm namely the Cuckoo Search Algorithm in the design of an optimized planar antenna array which ensures high gain, directivity, suppression of side lobes, increased efficiency and improves other antenna parameters as well[1], [2] a...

  13. Thin conformal antenna array for microwave power conversions

    Science.gov (United States)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  14. A 20 GHz circularly polarized, fan beam slot array antenna

    Science.gov (United States)

    Weikle, D. C.

    1982-03-01

    An EHF waveguide slot array was developed for possible use as a receive-only paging antenna for ground mobile terminals. The design, fabrication, and measured performance of this antenna are presented. The antenna generates a circularly polarized fan beam that is narrow in azimuth and broad in elevation. When mechanically rotated in azimuth, it can receive a 20 GHz satellite transmission independent of mobile terminal direction. Azimuth plane sidelobe levels, which are typically <-40 dB from the main lobe, provide for discrimination against ground and airborne jammers.

  15. Analysis and design of low profile multiband multifunctional antenna arrays

    Science.gov (United States)

    Hunsicker, Walker F.

    Light-weight phased array antennas for aerospace and mobile applications require utilizing the same antenna aperture to provide multiple functions with dissimilar radiation pattern specifications (e.g., multiband operation for communications and tracking). Multi-functional antennas provide advantages over aggregate antenna clusters by reducing space requirements, and can aid in the optimal placement of all required apertures to provide adequate isolation between channels. Furthermore, the combination of antenna apertures into a common geometry mitigates co-site installation issues by addressing interference within the integrated radiator design itself as opposed to the extensive analysis which is required to configure multiple radiators in close proximity. The combination of multiple radiators into a single aperture can only be achieved with the proper selection of antenna topology and accompanying feed network design. This research proposes a new technique for the design of multiband arrays in which a common aperture is used. Highlighted by this method is the integration of a tri-band array comprised of an X-band (12 GHz) microstrip patch array on a superstrate above printed dual-band (1 and 2 GHz) slot loop antenna arrays in an octave-spaced lattice. The selection of a ground backing reflector is considered for improved gain and system packaging, but restricts the utility of the design principally due to the lambda/4 depth of the ground plane. Therefore, a novel multiband high impedance surfaces (HIS) is proposed to load the slot apertures for reduced height. The novel techniques proposed here will enable the design of a low profile and conformal single aperture supporting multi-band and multi-functional operations.

  16. The EoR Sensitivity of the 128 Antenna Murchison Widefield Array

    CERN Document Server

    Beardsley, A P; Morales, M F; Arcus, W; Barnes, D; Bernardi, G; Bowman, J D; Briggs, F H; Bunton, J D; Cappallo, R J; Corey, B E; Deshpande, A; deSouza, L; Emrich, D; Gaensler, B M; Goeke, R; Greenhill, L J; Herne, D; Hewitt, J N; Johnston-Hollit, M; Kaplan, D L; Kasper, J C; Kincaid, B B; Koenig, R; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Mitchell, D A; Morgan, E; Oberoi, D; Ord, S M; Pathikulangara, J; Prabu, T; Remillard, R A; Rogers, A E E; Roshi, A; Salah, J E; Sault, R J; Shankar, N Udaya; Srivani, K S; Stevens, J; Subrahmanyan, R; Tingay, S J; Wayth, R B; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wyithe, J S B

    2012-01-01

    Using the planned antenna locations of the 128 antenna buildout of the Murchison Widefield Array (MWA), we accurately calculate its sensitivity to the Epoch of Reionization (EoR) power spectrum of redshifted 21 cm emission. Our calculation takes into account synthesis rotation, chromatic and asymmetrical baseline effects, and excludes modes that will be contaminated by foreground subtraction. With one full season of observation on two fields (900 and 700 hours), the MWA will be capable of a 14$\\sigma$ detection of the EoR signal along with slope constraints.

  17. Microstrip Phased Array Antennas Printed on Inclined Planes

    Directory of Open Access Journals (Sweden)

    A. Papiernik

    1996-06-01

    Full Text Available This paper presents an analysis of the electromagnetic field radiated by micro-strip patch antennas printed on inclined surfaces. The theoretical approach allows to apply spatial rotations to each source. The computer simulation developed permits us to experiment different antenna structures and two original realisations are proposed: a 2-element array printed on two inclined planes and a 4-element array laid out on a pyramidal surface. In addition, it enables the choice of the phase applied to each radiator to produce a beam deflection function. A good accuracy is obtained between theoretical and experimental results. The aim of this study is to optimise the parameters of such antennas to achieve the desired radiation patterns, from printed phased arrays on conformal surfaces. We also present the theoretical behaviour of a octagonal pyramid.

  18. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  19. Analysis of Cylindrical Dipole Arrays for Smart Antenna Application

    Institute of Scientific and Technical Information of China (English)

    CAOXiangyu; GAOJun; K.M.Luk; LIANGChanghong

    2005-01-01

    A locally Conformal finite difference time domain (CFDTD) algorithm is studied and applied to model the radiation pattern of a linear dipole arrays mounted on a finite solid conducting cylinder. The numerical result shows that is in good agreement with the moment methods. Finally, the algorithm is applied to study smart antenna used in base station antenna. Several linear arrays mounted with uniform distribution on the cylinder are analyzed. The effects of the number of linear arrays on producing reasonably omnidirectional radiation pattern in the horizontal plane are investigated. It is shown that eight column dipole arrays may be a good choice for economical and practical considerations, and the omnidirection radiation characteristic can be better if the distance from the array axis to the cylinder surface is reduced.

  20. SAR Experiments Using a Conformal Antenna Array Radar Demonstrator

    Directory of Open Access Journals (Sweden)

    Peter Knott

    2012-01-01

    Full Text Available Conformal antenna arrays have been studied for several years but only few examples of applications in modern radar or communication systems may be found up to date due to technological difficulties. The objective of the “Electronic Radar with Conformal Array Antenna” (ERAKO demonstrator system which has been developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR is to demonstrate the feasibility of an active electronically scanned antenna for conformal integration into small and medium sized airborne platforms. For practical trials the antenna has been adapted for operation with the Phased Array Multifunctional Imaging Radar (PAMIR system developed at the institute. The antenna in combination with the PAMIR front-end needed to undergo a special calibration procedure for beam forming and imaging post-processing. The present paper describes the design and development of the conformal antenna array of the demonstrator system, its connection to the PAMIR system and results of recently conducted synthetic aperture radar (SAR experiments.

  1. State-of-the-art and trends of Ground-Penetrating Radar antenna arrays

    Science.gov (United States)

    Vescovo, Roberto; Pajewski, Lara; Tosti, Fabio

    2016-04-01

    The aim of this contribution is to offer an overview on the antenna arrays for GPR systems, current trends and open issues. Antennas are a critical hardware component of a radar system, dictating its performance in terms of capability to detect targets. Nevertheless, most of the research efforts in the Ground-Penetrating Radar (GPR) area focus on the use of this imaging technique in a plethora of different applications and on the improvement of modelling/inversion/processing techniques, whereas a limited number of studies deal with technological issues related to the design of novel systems, including the synthesis, optimisation and characterisation of advanced antennas. Even fewer are the research activities carried out to develop innovative antenna arrays. GPR antennas operate in a strongly demanding environment and should satisfy a number of requirements, somehow unique and very different than those of conventional radar antennas. The same applies to GPR antenna arrays. The first requirement is an ultra-wide frequency band: the radar has to transmit and receive short-duration time-domain waveforms, in the order of a few nanoseconds, the time-duration of the emitted pulses being a trade-off between the desired radar resolution and penetration depth. Furthermore, GPR antennas should have a linear phase characteristic over the whole operational frequency range, predictable polarisation and gain. Due to the fact that a subsurface imaging system is essentially a short-range radar, the coupling between transmitting and receiving antennas has to be low and short in time. GPR antennas should have quick ring-down characteristics, in order to prevent masking of targets and guarantee a good resolution. The radiation patterns should ensure minimal interference with unwanted objects, usually present in the complex operational environment; to this aim, antennas should provide high directivity and concentrate the electromagnetic energy into a narrow solid angle. As GPR

  2. An estimation of directivity characteristics of antenna elements in antenna array with counting of signal conjugate components

    OpenAIRE

    Kopiievska, V. S.; Slyusar, Vadym I.

    2011-01-01

    In this article a two-stage digital processing of N-OFDM signals test sources for measurement of directivity characteristics (DC) of antenna elements in digital antenna array (DAA) with counting of complex conjugate components are presented.

  3. Infinite Bandwidth : Long Slot Array Antenna

    NARCIS (Netherlands)

    Neto, A.; Lee, J.J.

    2005-01-01

    This work deals with the properties of a long slot array fed by an array of periodically located feeds spaced at a Nyquist interval. The study begins with the rigorous Green's function (GF) of a single long slot which was extended to an infinite array structure. After this, the input impedance prope

  4. Theoretical analysis of ion cyclotron range of frequency antenna array for HT-7U

    Institute of Scientific and Technical Information of China (English)

    Zhang Xin-Jun; Qin Cheng-Ming; Zhao Yan-Ping

    2005-01-01

    This paper considers the coupling analysis of phased antenna array designed to excite fast wave in the ion cyclotron range of frequency. The coupling of the antenna is calculated in slab geometry. The coupling code based on the variational principle gives the self-consistent current flowing in the antenna, this method has been extended so that it can be applied to a phased antenna array. As an example, this paper analyses the coupling prosperities of a 2×2phased antenna array. It gives the optimum geometry of antenna array. The fields excited at plasma surface are found to more or less correspond to the antenna current phasing.

  5. 2D Active Antenna Array Design for FD-MIMO System and Antenna Virtualization Techniques

    Directory of Open Access Journals (Sweden)

    Ioannis Tzanidis

    2015-01-01

    Full Text Available Full dimension MIMO (FD-MIMO is one of the key technologies presently studied in the 3GPP for the next generation long-term evolution advanced (LTE-A systems. By incorporating FD-MIMO into LTE/LTE-A systems, it is expected that system throughput will be drastically improved beyond what is possible in conventional LTE systems. This paper presets details on the 2D active antenna array design for FD-MIMO systems supporting 32 antenna elements. The FD-MIMO system allows for dynamic and adaptive precoding to be performed jointly across all antennas thus achieving more directional transmissions in the azimuth and elevation domains simultaneously, to a larger number of users. Finally, we discuss 2D antenna array port virtualization techniques for creating beams with wide coverage, necessary for broadcasting signals to all users within a sector, such as the CRS (Common Reference Signal.

  6. Two dimensional coupled oscillators array with rhombus structure and its application in active antenna array

    Institute of Scientific and Technical Information of China (English)

    ZHAI LongJun; JIANG YongHua; LIU LongHe

    2008-01-01

    Beam scanning and forming can be achieved by coupled oscillators array without phase shifter. Active antenna array based on coupled oscillators array has the virtue of low cost, high integration, and high efficiency. Traditional two dimensional coupled oscillators array has been arranged on rectangular lattices, and phase difference of adjacent elements is limited to [-90°, 90°]. Therefore, the beam scanning range is limited to [-30°, 30°] from normal for half wavelength element spacing. A new two dimensional coupled oscillators array with rhombus structure is presented. Phase control method and phase error of the array are also provided. Stability of the array is analyzed, and stable condition is given. When this coupled oscillators array with rhombus structure is used in active antenna array, theoretical results show that phase difference of adjacent elements reach the limit of [-180°,180°] along the horizontal and vertical directions. Therefore, it has wider beam scanning range than that of a rectangular lattice structure.

  7. Radiation Characteristics of Rectangular Patch Antennas with an Array of Pins

    Institute of Scientific and Technical Information of China (English)

    Myung-ki CHO; Tae-young KIM; Boo-gyoun KIM

    2010-01-01

    The patch antennas with an array of pins (pin array patch antennas) with excellent radiation characteristics are investigated for various substrate thicknesses.The radiation in the horizontal plane of a pin array patch antenna is very small campared to that of a conventional patch antenna.And the increase of forward radiation and the decrease of backward radiation of a pin array patch antenna are tained than these conventional one's.Also the half-power beamwidth of E-plane radiation pattern of a pin array patch antenna is narrower compared to that of the conventional so that the directivity is improved.

  8. Innovative Techniques for Antenna Synthesis in Modern Wireless Communication Systems

    OpenAIRE

    Leonardo, Lizzi

    2011-01-01

    This thesis deals with the study and development of innovative techniques for the synthesis of antennas able to fulfill the tight requirements of modern wireless communication systems. By exploiting the advantages given by the use of geometries based on spline and fractal shapes, the aim of the proposed synthesis techniques is the design of small Ultra-Wideband (UWB) and multi-band antennas. The synthesis of UWB antennas is carried out by means of two different approaches which consider the a...

  9. The compact linear antenna array system of the short-wave band consisting of "butterfly" radiators

    OpenAIRE

    Kudzin, Viktor P.; Lozovsky, V. N.; N.I. Shlyk

    2014-01-01

    The broadband linear antenna array system of vertical polarization for a short-wave band operation consisting of "butterfly" radiators is offered. Antenna system consists of two arrays located before each other. Array 1 operates in frequency band 4–8 MHz, array 2 – in band 8–16 MHz. Wire reflector serves for array 1 and the last serves as reflector for array 2. Advantage of antenna system is "planeness" of a design and absence of high-frequency insulators.

  10. A Fully Reconfigurable Polarimetric Phased Array Antenna Testbed

    Directory of Open Access Journals (Sweden)

    Sudantha Perera

    2014-01-01

    Full Text Available The configurable phased array demonstrator (CPAD is a low-cost, reconfigurable, small-scale testbed for the dual-polarized array antenna and radar prototype. It is based on the concept that individual transmit and receive (TR modules and radiating elements can be configured in different ways to study the impact of various array manifolds on radiation pattern performance. For example, CPAD is configured as (a a 4 × 4 planar array, (b a planar array with mirror configuration, and (c a circular array to support the multifunctional phased array radar (MPAR system risk reduction studies. System descriptions are given in detail, and measurements are made and results are analyzed.

  11. Flexible sixteen monopole antenna array for microwave breast cancer detection.

    Science.gov (United States)

    Bahrami, H; Porter, E; Santorelli, A; Gosselin, B; Popovic, M; Rusch, L A

    2014-01-01

    Radar based microwave imaging (MI) has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues over a wide frequency band has been made possible by ultra-wideband (UWB) techniques. In this paper, a flexible, compact monopole antenna on a 100 μm Kapton polyimide is designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues over the 2-5GHz frequency range. The antenna parameters are optimized to obtain a good impedance match over the required frequency range. The designed antenna size is 18mm × 18mm. Further, a flexible conformal 4×4 ultra-wideband antenna array, in a format similar to that of a bra, was developed for a radar-based breast cancer detection system.

  12. Generation of OAM Radio Waves Using Circular Vivaldi Antenna Array

    Directory of Open Access Journals (Sweden)

    Changjiang Deng

    2013-01-01

    Full Text Available This paper gives a feasible and simple solution of generating OAM-carrying radio beams. Eight Vivaldi antenna elements connect sequentially and fold into a hollow cylinder. The circular Vivaldi antenna array is fed with unit amplitude but with a successive phase difference from element to element. By changing the phase difference at the steps of 0, ±45°, ±90°, ±135°, and 180°, the OAM radio beam can be generated with mode numbers 0, ±1, ±2, ±3, and 4. Simulations show that the OAM states of ±2 and ±3 are the same as the traditional states, while the OAM states of 0, ±1, and 4 differ at the boresight. This phenomenon can be explained by the radiation pattern difference between Vivaldi antenna and tripole antenna. A solution of distinguishing OAM states is also proposed. The mode number of OAM can be distinguished with only 2 receivers.

  13. Flexible sixteen monopole antenna array for microwave breast cancer detection.

    Science.gov (United States)

    Bahrami, H; Porter, E; Santorelli, A; Gosselin, B; Popovic, M; Rusch, L A

    2014-01-01

    Radar based microwave imaging (MI) has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues over a wide frequency band has been made possible by ultra-wideband (UWB) techniques. In this paper, a flexible, compact monopole antenna on a 100 μm Kapton polyimide is designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues over the 2-5GHz frequency range. The antenna parameters are optimized to obtain a good impedance match over the required frequency range. The designed antenna size is 18mm × 18mm. Further, a flexible conformal 4×4 ultra-wideband antenna array, in a format similar to that of a bra, was developed for a radar-based breast cancer detection system. PMID:25570813

  14. Study of LCP based flexible patch antenna array

    KAUST Repository

    Ghaffar, Farhan A.

    2012-07-01

    Wrapping of a two element LCP based patch antenna array is studied in this work. For the first time, the designed array is bent in both E and H planes to observe the effect on the radiation and impedance performance of the antenna. The 38 GHz simulation results reveal better performance for H plane bending as compared to E plane bending. A 100 um thick substrate is used for the design which is best suited for flexible antenna applications. Gain variations of 1.1 dB and 1.4 dB are observed for the two orientations while a significantly increased impedance bandwidth of 3 % is obtained with H plane wrapping. The design is highly suitable for broadband micro-cellular backhaul applications. © 2012 IEEE.

  15. Antenna-coupled TES bolometer arrays for CMB polarimetry

    CERN Document Server

    Kuo, C L; Bonetti, J A; Brevik, J; Chattopadhyay, G; Day, P K; Golwala, S; Kenyon, M; Lange, A E; LeDuc, H G; Nguyen, H; Ogburn, R W; Orlando, A; Trangsrud, A; Turner, A; Wang, G; Zmuidzinas, J; 10.1117/12.788588

    2009-01-01

    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL...

  16. Antennas for Frequency Reconfigurable Phased Arrays

    NARCIS (Netherlands)

    Haider, S.N.

    2015-01-01

    Sensors such as phased array radars play a crucial role in public safety. They are unavoidable for surveillance, threat identification and post-disaster management. However, different scenarios impose immensely diverse requirements for these systems. Phased array systems occupy a large space. In add

  17. Comparison of an electrically-small planar antenna array with a conventional monopole array

    OpenAIRE

    Rogers, PR; Hilton, GS; Craddock, IJ; Fletcher, PN

    2002-01-01

    A new type of linear array is proposed which utilises annular slot antennas operating in the 'DC' mode. These conformal elements are electrically-small and have wire-monopole-like radiation patterns. A thorough analysis of this array's performance is provided, with a comparison against the performance of an equivalent wire monopole array given at each stage. It is shown that, overall, the characteristics of the conformal, electrically-small, annular-slot array are very similar to that of the ...

  18. Error Bounds in the Phased Array Antenna. A statistical Model

    NARCIS (Netherlands)

    Vellekoop, A.R.; Snoeij, P.; Koomen, P.J.

    1991-01-01

    Expressions are generated for the probabilistic analysis of phased-array antenna-pattern degradation subject to random errors in the excitation coefficients and angle measurement errors by means of a model based upon a statistical coefficient of variation model. The expressions are exercised and com

  19. Sunflower array antenna for multi-beam satellite applications

    NARCIS (Netherlands)

    Vigano, M.C.

    2011-01-01

    Saving space on board, reducing costs and improving the antenna performances are tasks of outmost importance in the field of satellite communication. In this work it is shown how a non-uniformly spaced, direct radiating array designed according to the so called ‘sunflower’ law is able to satisfy str

  20. CAD of waveguide array antennas based on "filter" concepts

    NARCIS (Netherlands)

    Visser, H.J.; Guglielmi, M.

    1999-01-01

    In this paper an alternative approach for the design of open-ended waveguide array antennas is presented. The approach is based on microwave filter concepts. The exploitation of this alternative viewpoint has been made possible by the availability of a very efficient computer-aided design (CAD) tool

  1. Ultrasensitive molecular absorption detection using metal slot antenna arrays.

    Science.gov (United States)

    Ahn, Kwang Jun; Bahk, Young-Mi; Kim, Dai-Sik; Kyoung, Jisoo; Rotermund, Fabian

    2015-07-27

    We theoretically study the transmission reduction of light passing through absorptive molecules embedded in a periodic metal slot array in a near infrared wavelength regime. From the analytically solved transmitted light, we present a simple relation given by the attenuation length of light at the resonance wavelength of the slot antennas with respect to the spectral width of the resonant transmission peak. This relation clearly explains that the control of the transmission reduction even with very low absorptive materials is possible. We investigate also the transmission reduction by absorptive molecules in a real metallic slot antenna array on a dielectric substrate and compare the results with finite difference time domain calculations. In numerical calculations, we demonstrate that the same amount of transmission reduction by a bulk absorptive material can be achieved only with one-hundredth thickness of the same material when it is embedded in an optimized Fano-resonant slot antenna array. Our relation presented in this study can contribute to label-free chemical and biological sensing as an efficient design and performance criterion for periodic slot antenna arrays. PMID:26367567

  2. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A program is proposed to research the applicability of a unique phased array technology, dubbed FlexScan, to S-band and Ku-band communications links between...

  3. Effects of Spatial Characteristics on Smart Antenna System with Uniform Linear Antenna Array

    Institute of Scientific and Technical Information of China (English)

    CAO Wei-feng; WANG Wen-bo

    2005-01-01

    The effect of the spatial characteristics of antenna array on smart antenna systems can not be neglected. In the paper, the relation between spatial correlation and inter-antenna distance, impinging angle, angle spread is first investigated. With the same beamforming algorithm, we simulate the performance of smart antenna system with different Angle Spread (AS) values on the conditions of ideal and real Angle of Arrival (AOA) estimation. The results show that with the ideal AOA estimation, the AOA is enough accurate to guarantee that the system only has little performance degradation even in the case of 20 degreee AS value while the real AOA estimation influenced by channel environment degrades the performance very obviously, up to about 7 dB.

  4. Analysis on Synthesis of Array Antenna Based on Genetic Algorithm and its Key Points%基于遗传算法的阵列天线综合及分析

    Institute of Scientific and Technical Information of China (English)

    张旺; 王黎莉; 伍洋

    2011-01-01

    With the development of technology,modern wireless communication systems raise higher demands on antennas.As traditional method can not handle array synthesis problems with multi-constrains.The genetic algorithm,which is a typical overall optimization tec%随着科技的进步,现代无线通信系统对天线提出了更高的要求,传统方法难以解决多约束条件下的阵列综合问题。遗传算法是一种典型的全局优化算法,通过将其与传统的谢昆诺夫法相结合,对一个给定方向图主瓣及零点位置的一维线阵进行了综合,得到了较优解。并针对综合过程中的各个关键环节进行了分析,指出了遗传算法应用于阵列天线综合时存在的一些问题。

  5. A Broadband Conformal Phased Array Antenna on Spherical Surface

    Directory of Open Access Journals (Sweden)

    Dan Sun

    2014-01-01

    Full Text Available A Ku-band wideband conformal array antenna with 13×19 elements is presented in the paper. The array has a spherical structure, and its element is a proximity-coupled stacked patches antenna with a cavity-backed ground plane. The stacked patches and the cavity produce multiple coupled resonances, which enhance the bandwidth of the element extremely. A simulated model with the reasonable dimensions is framed with the coupling analyses, and the effective simulated results and good computing efficiency are obtained simultaneously. The measured results of the center embedded element in the whole array show a bandwidth exceeding 40% VSWR<2, which is close to the simulated matching performance.

  6. Modeling and simulation of Microstrip patch array for smart antennas

    Directory of Open Access Journals (Sweden)

    K.Meena alias Jeyanthi

    2010-01-01

    Full Text Available The aim of the paper is two fold. One is to design and simulate an antenna array suitable for wireless applications and the other is the design of beamforming algorithm. In this paper, the first module presents the design of multiple microstrip rectangular patch elements suitable for beamforming technique in wireless applications in the range of 1.8 - 2.4 GHz. By designing 1x8 patch array, it is possible to achieve 15 dB gain and 58% more directivity compared to the conventional patches. The second module suggests a NLVFF-RLS algorithm for beamforming technique to concentrate the power in the desired direction and nullify the power in the interferer direction with HPBW of 13dB.The results are analyzed for the scanning sector of -60° to 60°. The modeling and simulation of antenna array is obtained using Agilent’s ADS. The beamforming algorithm is designed in Matlab.

  7. Synthesis of log-periodic antennas with prescribed geometry

    Science.gov (United States)

    Yatskevich, V. A.

    1985-09-01

    The synthesis of log-periodic dipole antennas for wideband shortwave or ultrashort-wave communication systems is shown, assuming a prescribed array geometry with the oscillator connected to the smallest dipole and with currents in or voltages across the dipoles predetermined for best approximation of the prescribed radiation pattern. The problem of synthesis reduces to calculation of the y-parameters of the connecting four-pole networks which will yield the prescribed amplitude-phase distribution. The procedure begins with synthesis of purely reactive and thus lossless four-pole networks for a fixed single frequency, preferably for the lower limit of the frequency range so that the frequency characteristics of those y-parameters can then be calculated directly without need for additional data, while the input impedance of the antenna is made purely resistive. A reactive feed system is synthesized next according to conventional methodology, which has been simplified for a series rather than parallel feed system. Minimum-phase four-pole networks are considered for physical realization of mathematically established frequency characteristics with reactive circuit elements.

  8. Antenna synthesis based on the ant colony optimization algorithm

    OpenAIRE

    Slyusar, V. I.; Ermolaev, S. Y.

    2009-01-01

    This report are described the versions and the synthesis results of new designs of electrically small antenna based on ant colony optimization algorithms. To study the parameters of the frame and non-loopback vibrators MMANA package was used. Geometric forms that were obtained might be used as contour lines of printed, slot antenna or as forming surface of the crystal dielectric resonator antenna. A constructive meta-heuristic search algorithm for optimization of the antennas form...

  9. Metallic post-array loaded cylindrical dielectric resonator antenna

    Directory of Open Access Journals (Sweden)

    Byeong-Yong Park

    2016-01-01

    Full Text Available An investigation of a novel cylindrical dielectric resonator antenna (DRA configuration has been carried out. It is shown that two resonances including the full- and half-cylindrical HE(11δ-like modes can coexist simultaneously at different frequencies by placing a metallic post array in the resonator. Moreover, compared with the conventional HE(11δ mode cylindrical DRA having the same size, the proposed antenna operates in lower frequency band and shows improved bandwidth. The experimental results including the return loss and the radiation patterns are demonstrated.

  10. Spatial frequency multiplier with active linearly tapered slot antenna array

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1994-01-01

    A frequency multiplier with active linearly tapered slot antennas (LTSA's) has been demonstrated at the second harmonic frequency. In each antenna element, a GaAs monolithic microwave integrated circuit (MMIC) distributed amplifier is integrated with two LTSA's. The multiplier has a very wide bandwidth and large dynamic range. The fundamental-to-second harmonic conversion efficiency is 8.1 percent. The spatially combined second harmonic signal is 50 dB above the noise level. The design is suitable for constructing a large array using monolithic integration techniques.

  11. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  12. 0.6-M Antennae for the Amiba Interferometry Array

    Science.gov (United States)

    Koch, P.; Raffin, P. A.; Proty Wu, J.-H.; et al.

    2006-10-01

    The Array for Microwave Background Anisotropy (AMiBA) is a hexapod telescope for astronomy. The fully steerable platform can accommodate up to 19 dishes. We present the design, simulation, manufacturing and performance verification for the 0.6m Cassegrain antennae. The primary and secondary mirrors are carbon fiber sandwich structures, manufactured by CoTec Inc., in Taichung, Taiwan. They are aluminium coated with a final surface rms of 20-30 and 10 μm, respectively. Simulated load conditions for the mirrors show maximum rms surface errors of less than 10 μm. The measured antenna beam pattern confirms the expected performance.

  13. MIMO Communication Using Single Feed Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama

    Multi-input-multi-output (MIMO) communication has emerged as a promis- ing technology for meeting the increasing demand on higher data rates. The technology exploits the spatial resource dimension by sending the datas- treams to different locations in the multi element array (MEA) domain while...

  14. Sunflower Array Antenna with Adjustable Density Taper

    NARCIS (Netherlands)

    Viganó, M.C.; Toso, G.; Caille, G.; Mangenot, C.; Lager, I.E.

    2009-01-01

    A deterministic procedure to design a nonperiodic planar array radiating a rotationally symmetric pencil beam pattern with an adjustable sidelobe level is proposed. The elements positions are derived by modifying the peculiar locations of the sunflower seeds in such a way that the corresponding spat

  15. Optically addressed ultra-wideband phased antenna array

    Science.gov (United States)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  16. Antenna array characterization via radio interferometry observation of astronomical sources

    CERN Document Server

    Colegate, T M; Hall, P J; Padhi, S K; Wayth, R B; de Vaate, J G Bij; Crosse, B; Emrich, D; Faulkner, A J; Hurley-Walker, N; Acedo, E de Lera; Juswardy, B; Razavi-Ghods, N; Tingay, S J; Williams, A

    2015-01-01

    We present an in-situ antenna characterization method and results for a "low-frequency" radio astronomy engineering prototype array, characterized over the 75-300 MHz frequency range. The presence of multiple cosmic radio sources, particularly the dominant Galactic noise, makes in-situ characterization at these frequencies challenging; however, it will be shown that high quality measurement is possible via radio interferometry techniques. This method is well-known in the radio astronomy community but seems less so in antenna measurement and wireless communications communities, although the measurement challenges involving multiple undesired sources in the antenna field-of-view bear some similarities. We discuss this approach and our results with the expectation that this principle may find greater application in related fields.

  17. Coplanar waveguide feeds for phased array antennas

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1992-08-01

    The design and performance of the following coplanar waveguide (CPW) microwave distribution networks for linear as well as circularly polarized microstrip patches and printed dipole arrays is presented: (1) CPW/microstrip line feed; (2) CPW/balanced stripline feed; (3) CPW/slotline feed; (4) grounded CPW (GCPW)/balanced coplanar stripline feed; and (5) CPW/slot coupled feed. Typical measured radiation patterns are presented, and their relative advantages and disadvantages are compared.

  18. DUAL POLARIZATION ANTENNA ARRAY WITH VERY LOW CROSS POLARIZATION AND LOW SIDE LOBES

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to an antenna array adapted to radiate or receive electromagnetic waves of one or two polarizations with very low cross polarization and low side lobes. An antenna array comprising many antenna elements, e.g. more than ten antenna elements, is provided in which...... formation of grating lobes are inhibited in selected directions of the radiation and cross polarization within the main lobe is suppressed at least 30 dB below the main lobe peak value. According to a preferred embodiment of the invention, the antenna elements of the antenna array comprise probe-fed patches...

  19. Delivering both sum and difference beam distributions to a planar monopulse antenna array

    Energy Technology Data Exchange (ETDEWEB)

    Strassner, II, Bernd H.

    2015-12-22

    A planar monopulse radar apparatus includes a planar distribution matrix coupled to a planar antenna array having a linear configuration of antenna elements. The planar distribution matrix is responsive to first and second pluralities of weights applied thereto for providing both sum and difference beam distributions across the antenna array.

  20. 60 GHz SIW Steerable Antenna Array in LTCC

    Institute of Scientific and Technical Information of China (English)

    Bahram Sanadgol; Sybille Holzwarth; Peter Uhlig; Alberto Milano; Raft Popovich

    2012-01-01

    In this paper, we present a 60 GHz substrate-integrated waveguide fed-steerable low-temperature cofired ceramics array. The antenna is suitable for transmitting and receiving on the 60 GHz wireless personal area network frequency band. The wireless system can be used for HDTV, high-data-rate networking up to 4.5 GBit/s, security and surveillance, and similar applications.

  1. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  2. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    Science.gov (United States)

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  3. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    Science.gov (United States)

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array. PMID:25430218

  4. Double Exchange Genetic Algorithm for the Synthesis of Linear Array

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Hua

    2012-01-01

    Full Text Available The development of Synthesis of Linear array put forward higher request for complex optimization solutions. This article improves the basic genetic algorithm according to the traditional genetic algorithm easily prematuring convergence and later evolution slow convergence shortcoming. And then, adopt double exchange operator in reproductive strategies and implement dynamic mutation rate in variation operations. Combined characteristics of guarantee to the population diversity based on fitness shared niche while iteration times exponential diminishing, this article creats niche double exchangegenetic algorithm, and applies in pattern synthesis of homogeneous linear array, and simulates multi-objective complex array problem. The result turns out much better in effectively preventing premature and improving the searching efficiency of genetic algorithm than original genetic algorithm and immune genetic algorithm, what will achieve the broad prospect in the antenna array comprehensive field.

  5. Flat Array Antennas for Ku-Band Mobile Satellite Terminals

    Directory of Open Access Journals (Sweden)

    Roberto Vincenti Gatti

    2009-01-01

    Full Text Available This work presents the advances in the development of two innovative flat array antennas for Ku-band mobile satellite terminals. The first antenna is specifically conceived for double-deck trains to allow a bi-directional high data rate satellite link. The available circular surface (diameter 80 cm integrates both a transmitting and a receiving section, operating in orthogonal linear polarizations. The TX frequency range is fully covered while the RX bandwidth is around 1 GHz arbitrarily allocated on the DVB range depending on requirements. The beam is steered in elevation through a phased array architecture not employing costly phase shifters, while the steering in azimuth is mechanical. Active BFNs allow excellent performance in terms of EIRP and G/T, maintaining extremely low profile. High antenna efficiency and low fabrication cost are ensured by the employment of innovative SIW (Substrate Integrated Waveguide structures. The second antenna, receiving-only, is designed for radio/video streaming services in mobile environment. Full DVB coverage is achieved thanks to cavity-backed patches operating in double linear polarization. Two independent broadband active BFNs allow simultaneous reception of both polarizations with full tracking capabilities and a squintless beam steering from 20∘ to 60∘ in elevation. A minimum gain of 20 dBi and G/T >−3 dB/∘K are achieved, while maintaining extremely compact size and flat profile. In the design of both antennas fabrication cost is considered as a driving factor, yet providing high performance with a flat profile and thus resulting in a great commercial potentiality.

  6. A Wideband End-Fire Conformal Vivaldi Antenna Array Mounted on a Dielectric Cone

    Directory of Open Access Journals (Sweden)

    Zengrui Li

    2016-01-01

    Full Text Available The characteristics of a novel antipodal Vivaldi antenna array mounted on a dielectric cone are presented. By employing antipodal Vivaldi antenna element, the antenna array shows ultrawide bandwidth and end-fire radiation characteristics. Our simulations show that the cone curvature has an obvious influence on the performance of the conformal antenna, in terms of both the bandwidth and the radiation patterns. The thickness and permittivity of the dielectric cone have an effect on the bandwidth of the conformal antenna. Measurement results of both single antenna and conformal antenna array show a good agreement with the simulated results. The measured conformal antenna can achieve a −10 dB S11 with bandwidth of 2.2–12 GHz and demonstrate a typical end-fire radiation beam. These findings provide useful guidelines and insights for the design of wideband end-fire antennas mounted on a dielectric cone.

  7. A Multi-band Photonic Phased Array Antenna for High-Date Rate Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  8. A Multi-Band Photonic Phased Array Antenna for High-Data Rate Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  9. Band width of micro strip antenna improved by using parasitic array

    Directory of Open Access Journals (Sweden)

    Ajay kumar

    2013-01-01

    Full Text Available In this paper we present the surface wave of microstrip antenna reduce by using parasitic array at the patch ,it is a wide band antenna and frequency range of this wide band antenna lie from 1.168GHz-3.854GHz.The proposed antenna is simulated by using IE3D simulated software. This antenna can be used in WiMax,Bluetooth and Wireless communication.

  10. Band width of micro strip antenna improved by using parasitic array

    OpenAIRE

    Ajay kumar; Srivastava, D. K.; Dwejendra Arya

    2013-01-01

    In this paper we present the surface wave of microstrip antenna reduce by using parasitic array at the patch ,it is a wide band antenna and frequency range of this wide band antenna lie from 1.168GHz-3.854GHz.The proposed antenna is simulated by using IE3D simulated software. This antenna can be used in WiMax,Bluetooth and Wireless communication.

  11. Reconfigurable Pico-cell Antenna Array for Indoor Coverage in GSM 900 Band

    Directory of Open Access Journals (Sweden)

    B. Ivsic

    2009-12-01

    Full Text Available This paper proposes a simple antenna array based on three stacked shorted patches aimed to be used as GSM (900 MHz indoor base station antenna. Three same linearly polarized stacked patches are set in three orthogonal planes in space forming pyramid-like structure. The antenna array can be used for nearly omnidirectional coverage as well as for covering three 120º sectors. The proposed array also offers the possibility of polarization diversity.

  12. New approaches to analysis and synthesis of reflector antennas

    Science.gov (United States)

    Galindo-Israel, V.; Mittra, R.

    1978-01-01

    Recently developed techniques are reviewed for analyzing and synthesizing single and dual antennas for high efficiency and wide angle scan. The problem of contour beam synthesis using superposition of pencil beams is also discussed.

  13. Synthesis of offset-fed Gregorian VSAT antennas

    OpenAIRE

    Dubrovka, Fedor F.; Dubrovka, Rostyslav F.; Kim, Oleksiy S.; Syrotyuk, V. H.; Khymych, H. P.

    2003-01-01

    The paper presents results of synthesis, design, development, manufacturing and testing prototypes of 1.2 m, 1.8 m and 2.4 m Gregorian shaped offset dual-reflector antennas with low crosspolar radiation for VSAT applications.

  14. Design of an inflatable, optically controlled and fed, phased array antenna

    Science.gov (United States)

    Kunath, Richard R.; Sharp, G. R.

    1991-09-01

    Initial studies on the antenna requirements of the Space Exploration Initiative (SEI) system architecture have indicated the need for large, lightweight antennas. This paper discusses the design of a modular, inflatable, optically controlled and fed phased array antenna suitable for SEI aplications. When high gain antennas are required for space applications, large aperture mesh or collapsible solid antenna reflectors are considered. However, these designs are generally not lightweight, and have complicated deployment mechanisms. Alternatively, the modular, inflatable antenna design discussed here is a lightweight, modular design that incorporates a simple deployment scheme, and after deployment, can be rigidized to enhance its structural integrity. Further, the design features the fiberoptic distribution of both RF and control signals to individual microwave integrated circuit/reflector modules in each of the inflatable, phased array antenna cells. The result of combining these two technologies is a modular, phased array antenna design that is both mechanically and electrically agile and robust.

  15. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    Science.gov (United States)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  16. SAR processing with stepped chirps and phased array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  17. Air shower measurements with the LOPES radio antenna array

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)], E-mail: andreas.haungs@ik.fzk.de; Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J. [Fachbereich Physik, Universitaet Wuppertal (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF, Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)] (and others)

    2009-06-01

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. Since radio waves suffer very little attenuation, radio measurements allow the detection of very distant or highly inclined showers. These waves can be recorded day and night, and provide a bolometric measure of the leptonic shower component. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. The LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the electric field strength which can be compared with predictions from detailed Monte-Carlo simulations. We report about the analysis of correlations present in the radio signals measured by the LOPES 30 antenna array. Additionally, LOPES operates antennas of a different type (LOPES{sup STAR}) which are optimized for an application at the Pierre Auger Observatory. Status, recent results of the data analysis and further perspectives of LOPES and the possible large scale application of this new detection technique are discussed.

  18. A Novel Receiver Architecture for DBF Antenna Array

    Institute of Scientific and Technical Information of China (English)

    ZHENG Sheng-hua; XU Da-zhuan; JIN Xue-ming

    2007-01-01

    The developments of the high speed analog to digital converters (ADC) and advanced digital signal processors (DSP) make the smart antenna with digital beamforming (DBF)a reality. In conventional M-elements array antenna system, each element has its own receiving channel and ADCs. In this paper, a novel smart antenna receiver with digital beamforming is proposed. The essential idea is to realize the digital beamforming receiver based on bandpass sampling of multiple distinct intermediate frequency (IF) signals. The proposed system reduces receiver hardware from M IF channels and 2M ADCs to one IF channel and one ADC using a heterodyne radio frequency (RF) circuitry and a multiple bandpass sampling digital receiver. In this scheme, the sampling rate of the ADC is much higher than the summation of the M times of the signal bandwidth. The local oscillator produces different local frequency for each RF channel.The receiver architecture is presented in detail, and the simulation of bandpass sampling of multiple signals and digital down conversion to baseband is given. The principle analysis and simulation results indicate the effectiveness of the new proposed receiver.

  19. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.

  20. A Large Aperture UWB Antenna Array for Real Beam Radar Imaging

    Directory of Open Access Journals (Sweden)

    Chao-Hsiang Liao

    2012-01-01

    Full Text Available The development of four-element ultra-wideband (UWB comb taper slot antenna array with 18 cm element spacing for real beam radar imaging is described. The four-element UWB array system with optimum element spacing is analyzed by energy pattern. A wideband double ridge horn antenna is used as the transmitting antenna, the developed large aperture UWB array is used as the receiving antenna. The transmitting antenna and the receiving antenna are combined with impulse time domain measurement system to achieve real beam radar imaging. The receiving impulse signals at various positions are processed by the time delay and sum algorithm. The examples of several aluminum cans have been verified in the resolution and compared with using the UWB array as a receive antenna and the double ridge horn as a transmit antenna in the test setup. The crossrange resolution of UWB antenna array is better than wideband double ridge horn antenna because the beam width of UWB array is narrower.

  1. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.

    Science.gov (United States)

    Clibbon, K L; McCowen, A; Hand, J W

    1993-09-01

    The use of interstitial microwave antenna array hyperthermia (IMAAH) as a treatment for cancer, in conjunction with radiation therapy and chemotherapy, has been investigated widely. The heating pattern produced by a coherently phased 915 MHz asymmetric antenna array displays the maximum power deposition in the array center. This paper investigates the effect of variable insertion depth between antennas of an array on the heating patterns produced. The "study" of this heating behavior demonstrates a similar effect to that of the variably phased arrays, showing a shift of the heating peak towards the periphery of the tumor, offering a more simple method for the clinical treatment of such tumors. PMID:8288284

  2. Antenna Array Structures Effect on Water-Filling Capacity of Indoor NLOS MIMO Channel

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-gang; L(U) Ying-hua; DU Juan; LI Yun-zhuang; WANG Xu-ying

    2005-01-01

    A 2-D Shooting and Bouncing Ray-tracing method (SBR) is used to analyze the different antenna array structure effect on the water-filling Capacity Complementary Cumulative Distribution Functions (CCDFS) of indoor Non-Line-of-Sight (NLOS) Multiple-Input Multiple-Output (MIMO) channel. The results have shown that in NLOS indoor environment different antenna array structures affect on the CCDFS differently. The CCDFS of MIMO systems with antenna spacing 5λ change slightly with antenna array structures and all approach the in independent and identically distribution (i.i.d.) rayleigh channel water-filling capacity. When antenna spacing decreased to 0.5λ, the capacities of MIMO systems drop also, and change with antenna array structures greatly. The results on outage water-filling capacity also show that there exist a fixed relationship that i.i.d. rayleigh channel capacity is larger than the capacity equipped with linear antenna array which is larger than the capacity equipped with rectangular antenna array and the capacity equipped with circular antenna array.

  3. Study of the Interaction User Head-Ultrawideband MIMO Antenna Array for Mobile Terminals

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Franek, Ondrej;

    2016-01-01

    aspects of the interaction are considered: 1) the influence of the user head on the antenna operation, and 2) the exposure of the human head tissue to antenna electromagnetic radiation. The first aspect is related to the degradation of the antenna performance in a proximity to the user which is evaluated......This paper presents a numerical study of the interaction between the user head and MIMO antenna array for mobile phones. The antenna array is composed of two identical antennas and covers the frequency ranges 698-990 MHz and 1710-5530 MHz with a good radiation efficiency in free space. The two...... by the reduction of the antenna radiation efficiency. The second aspect refers to the antenna operation effect on the human and the exposure of the user head is studied by Specific Absorption Ratio (SAR)....

  4. Phase-locked laser arrays through global antenna mutual coupling

    Science.gov (United States)

    Kao, Tsung-Yu; Reno, John L.; Hu, Qing

    2016-08-01

    Phase locking of an array of lasers is a highly effective method in beam shaping because it increases the output power and reduces the lasing threshold. Here, we show a conceptually novel phase-locking mechanism based on ‘antenna mutual coupling’ in which laser elements interact through far-field radiations with definite phase relations. This allows a long-range global coupling among the array elements to achieve a robust phase locking in two-dimensional laser arrays. The scheme is ideal for lasers with a deep subwavelength confined cavity, such as nanolasers, whose divergent beam patterns could be used to achieve a strong coupling among the elements in the array. We demonstrated experimentally such a scheme based on subwavelength short-cavity surface-emitting lasers at terahertz frequencies. More than 37 laser elements that span over ∼8 λo were phase locked to each other, and delivered up to 6.5 mW (in a pulsed operation) single-mode radiation at ∼3 THz, with a maximum 450 mW A–1 slope efficiency and a near-diffraction-limited beam divergence.

  5. The DESDynI Synthetic Aperture Radar Array-Fed Reflector Antenna

    Science.gov (United States)

    Chamberlain, Neil; Ghaemi, Hirad; Giersch, Louis; Harcke, Leif; Hodges, Richard; Hoffman, James; Johnson, William; Jordan, Rolando; Khayatian, Behrouz; Rosen, Paul; Sadowy, Gregory; Shaffer, Scott; Shen, Yuhsyen; Veilleux, Louise; Wu, Patrick

    2010-01-01

    DESDynI is a mission being developed by NASA with radar and lidar instruments for Earth-orbit remote sensing. This paper focuses on the design of a largeaperture antenna for the radar instrument. The antenna comprises a deployable reflector antenna and an active switched array of patch elements fed by transmit/ receive modules. The antenna and radar architecture facilitates a new mode of synthetic aperture radar imaging called 'SweepSAR'. A system-level description of the antenna is provided, along with predictions of antenna performance.

  6. Wideband Dual-Polarization Microstrip Patch Antenna Array for Airborne Ice Sounder

    DEFF Research Database (Denmark)

    Vazquez-Roy, Jose Luis; Krozer, Viktor; Dall, Jørgen

    2012-01-01

    We present the design and realization of an antenna array based on cavity-backed microstrip patch antenna elements, with a relative operating bandwidth exceeding 20% at a return-loss level better than 15 dB. The antenna array of four elements did not show any compromise in bandwidth. It exhibited...... sidelobe levels better than 15 dB, with a gain of around 12 dBi. Excellent agreement was achieved between measurements and predictions for the designs of both the single element and the array. This antenna is part of the European Space Agency's airborne polarimetric P-band terrestrial ice sounder....

  7. A Phased Array Antenna Signal Processing Structure, a Method and a Computer Program Product

    NARCIS (Netherlands)

    Vliet, F.E. van; Dijk, R. van

    2011-01-01

    The invention relates to a phased array antenna signal processing structure. The structure comprises a processor that includes a digital beam forming unit for generating partial beam data from digitized samples of a set of phased array antenna elements. The processor further comprises a set of input

  8. Design and Experiment of Multi-resolution Composite Digital Array Antenna

    Directory of Open Access Journals (Sweden)

    Tang Yue

    2016-06-01

    Full Text Available Because a sparse array has the advantages of a simplified structure and reduced cost in a radar system, radar technology based on the sparse array has gained widespread attention. To take advantage of the sparse array, in this paper, we designed a Multi-Resolution Composite digital Array antenna (MRCA, and then used it in single-target and multi-target detection experiments. Using the same number of array elements, our experimental results demonstrate that the MRCA can obtain a narrower main lobe and a lower side lobe, enhances the direction of the array antenna, and improves the angular resolution compared with the uniform linear array.

  9. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  10. Conformal Patch Antenna Arrays Design for Onboard Ship Deployment Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Stelios A. Mitilineos

    2013-01-01

    Full Text Available Conformal antennas and antenna arrays (arrays have become necessary for vehicular communications where a high degree of aerodynamic drag reduction is needed, like in avionics and ships. However, the necessity to conform to a predefined shape (e.g., of an aircraft’s nose directly affects antenna performance since it imposes strict constraints to the antenna array’s shape, element spacing, relative signal phase, and so forth. Thereupon, it is necessary to investigate counterintuitive and arbitrary antenna shapes in order to compensate for these constraints. Since there does not exist any available theoretical frame for designing and developing arbitrary-shape antennas in a straightforward manner, we have developed a platform combining a genetic algorithm-based design, optimization suite, and an electromagnetic simulator for designing patch antennas with a shape that is not a priori known (the genetic algorithm optimizes the shape of the patch antenna. The proposed platform is further enhanced by the ability to design and optimize antenna arrays and is intended to be used for the design of a series of antennas including conformal antennas for shipping applications. The flexibility and performance of the proposed platform are demonstrated herein via the design of a high-performance GPS patch antenna.

  11. A Stacked Microstrip Antenna Array with Fractal Patches

    Directory of Open Access Journals (Sweden)

    Xueyao Ren

    2014-01-01

    Full Text Available A novel microstrip antenna array, which utilizes Giuseppe Peano fractal shaped patches as its radiation elements and adopts a two-layer stacked structure for achieving both wideband and high-gain properties, is proposed. Parametric study estimates that the proposed antenna’s size can be arbitrarily adjusted by changing the fractal proportion while high aperture efficiency is maintained. Two prototypes with 2 × 2 and 4 × 4 fractal patches, respectively, on each layer are designed, fabricated, and measured. Both simulation and measurement results demonstrate that the proposed antenna possesses encouraging performances of wideband, high directivity, and high aperture efficiency simultaneously; for example, for the two prototypes, their S11<-10 dB impedance bandwidths are 23.49% and 18.49%, respectively; at the working frequency of 5.8 GHz, their directivities are 12.2 dBi and 18.2 dBi, and their corresponding aperture efficiencies are up to 91.0% and 90.5%, respectively.

  12. Human Respiration Localization Method Using UWB Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2015-01-01

    Full Text Available Human respiration is the basic vital sign in remote monitoring. There has been remarkable progress in this area, but some challenges still remain to obtain the angle-of-arrival (AOA and distinguish the individual signals. This paper presents a 2D noncontact human respiration localization method using Ultra-Wideband (UWB 1D linear antenna array. The imaging reconstruction based on beamforming is used to estimate the AOA of the human chest. The distance-slow time 2D matrix at the estimated AOA is processed to obtain the distance and respiration frequency of the vital sign. The proposed method can be used to isolate signals from individual targets when more than one human object is located in the surveillance space. The feasibility of the proposed method is demonstrated via the simulation and experiment results.

  13. Improvement on a 2 × 2 Elements High-Gain Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-01-01

    Full Text Available A novel antipodal Vivaldi antenna with tapering serrated structure at the edges is proposed. Compared with traditional Vivaldi antennas without serrated structure, the gain of the designed antenna is significantly improved in the desired frequency band (4.5–7.5 GHz. In addition, a 2 × 2 Vivaldi antenna array with an orthorhombic structure is designed and fabricated to achieve a circular polarization (CP characteristic. With this configuration, the 3 dB axial ratio bandwidth of the array reaches about 42% with respect to the center frequency of 6 GHz and a high gain is achieved as well. The novel Vivaldi antenna and CP antenna array both have ultrawide band (UWB and high-gain characteristics, which may be applied to the field of commercial communication, remote sensing, and so forth.

  14. Methods of Signal Processing for Adaptive Antenna Arrays

    CERN Document Server

    Titarenko, Larysa

    2013-01-01

    So far there does not exist any theory of adaptive spatial signal processing (ASSP) for signals with uncertain parameters. This monograph is devoted to the development of this theory, which is very important in connection with wide spreading of telecommunications and radio links in the modern society. This theory can be applied for the development of effective radio communications. In the book some original approaches are proposed targeting the development of effective algorithms of ASSP with not exactly known parameters. They include both probabilistic and deterministic approaches for synthesis of robust algorithms of ASSP. The solution of problems also can be reduced to the construction of some operators for the Banach space which is presented in the book.  “Methods of Signal Processing for Adaptive Antenna Arrays” targets professionals, students and PhD students in the area of telecommunications and should be useful for everybody connected with the new information technologies.

  15. Diffraction profile synthesis applied to offset dual reflector antennas

    Science.gov (United States)

    Henderson, R. I.

    1985-05-01

    During the last 15 years, in work carried out at a research center, the physical optics method has been applied directly to the synthesis process itself. It is pointed out that the results of this method, known as Diffraction Profile Synthesis (DPS), are Cassegrain antennas with efficiencies superior to those of any ray optics design. Thus, the reflectors generated by this process realize the theoretical maximum efficiency for any given size of antenna. Attention is given to the diffraction profile synthesis, the extension of DPS, spherical wave expansions, the application to offset reflectors, the main reflector focussed field, the near-field feed pattern, reflector perturbations, profile smoothing, high efficiency offset Gregorian, the offset Gregorian with Hansen distribution, and the low sidelobe elliptical antenna.

  16. Analysis of Circularly Polarized Hemispheroidal Dielectric Resonator Antenna Phased Arrays Using the Method of Auxiliary Sources

    OpenAIRE

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs are subsequently employed in a seven-element phased array. The array performance is analyzed with respect to scan loss and main beam directivity as a function of scan angle and frequency, and the influence of elem...

  17. Design and Implementation of Series Micro Strip Patch Antenna Array for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Priya Upadhyay

    2012-09-01

    Full Text Available Micro Strip Antenna Array has beenproposed with high efficiency for wirelesscommunication. Micro strip antenna arrays arewidely used in various applications like in wirelesscommunication system, satellite communication,Radar systems, Global positioning systems, RadioFrequency Identification (RFID, Worldwideinteroperability for microwave access (WiMax,Rectenna applications, Telemedicine applications,Medicinal applications of patch. In this articleseries micro strip square patch antenna array isdesigned due to its wide band and wide scanproperties which can give more information at highdata rate. The proposed antenna consist of astraight feeding micro strip line and squareradiating elements connected directly to the microstrip line at their corners without dividers andimpedance transformers in order to realize lowerfeeding line loss. In this paper, the model of microstrip series antenna array is designed and analyzedusing the HFSS Software. The parametric study ofthe antenna characteristics has been done to knowhow the micro strip series antenna array meets thewireless properties for geometric parameters. Thispaper micro strip series antenna array will bedesigned at 2.4 GHz (S- band frequency

  18. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  19. Graphene circular polarization analyzer based on spiral metal triangle antennas arrays.

    Science.gov (United States)

    Zhu, Bofeng; Ren, Guobin; Gao, Yixiao; Wu, Beilei; Wan, Chenglong; Jian, Shuisheng

    2015-09-21

    In this paper we propose a circular polarization analyzer based on spiral metal triangle antenna arrays deposited on graphene. Via the dipole antenna resonances, plasmons are excited on graphene surface and the wavefront can be tailed by arranging metal antennas into linetype, circular or spiral arrays. Especially, for spiral antenna arrays, the geometric phase effect can be cancelled by or superposed on the chirality carried within circular polarization incidence, producing spatially separated solid dot or donut shape fields at the center. Such a phenomenon enables the graphene based spiral metal triangle antennas arrays to achieve functionality as a circular polarization analyzer. Extinction ratio over 550 can be achieved and the working wavelength can be tuned by adjusting graphene Fermi level dynamically. The proposed analyzer may find applications in analyzing chiral molecules using different circularly polarized waves.

  20. Improvement on a 2 × 2 Elements High-Gain Circularly Polarized Antenna Array

    OpenAIRE

    Liu, C; Yan, A; Yu, C.; Xu, T.

    2015-01-01

    A novel antipodal Vivaldi antenna with tapering serrated structure at the edges is proposed. Compared with traditional Vivaldi antennas without serrated structure, the gain of the designed antenna is significantly improved in the desired frequency band (4.5–7.5 GHz). In addition, a 2 × 2 Vivaldi antenna array with an orthorhombic structure is designed and fabricated to achieve a circular polarization (CP) characteristic. With this configuration, the 3 dB axial ratio bandwidth of the array rea...

  1. Antenna-Aperture Synthesis for Hyperband SAR Antennas

    Science.gov (United States)

    Baum, C. E.

    This paper introduces an aperture synthesis procedure for producing a desired pulse shape, including the desired frequency spectrum of the pulse. This is accomplished by controlling the time-of-arrival of fields on the aperture plane, thereby synthesizing a delay as a function of radius for the arrival of a stop-function TEM-like wave on the aperture plane.

  2. Enhancing isolation of antenna arrays by simultaneously blocking and guiding magnetic field lines using magnetic metamaterials

    Science.gov (United States)

    Liu, Zhaotang; Wang, Jiafu; Qu, Shaobo; Zhang, Jieqiu; Ma, Hua; Xu, Zhuo; Zhang, Anxue

    2016-10-01

    In this article, we propose to enhance the isolation of antenna arrays by manipulating the near-field magnetic coupling between adjacent antennas using magnetic metamaterials (MMs). Due to the artificially designed negative or large permeability, MMs can concentrate or block the magnetic field lines where they are located, which allows us to tune the near-field magnetic coupling strengths between antennas. MMs can play a two-fold role in enhancing antenna isolation. On one hand, the magnetic fields can be blocked in gaps between adjacent antennas using MMs with negative permeability; on the other hand, the magnetic fields can be pulled towards the borders of the antenna array using MMs with large permeability. As an example, we demonstrated a four-element patch antenna array with split-ring resonators (SRR) integrated in the substrate. The measured results show that the isolation can be enhanced by more than 10 dB with the integration of SRRs, even if the gap between antennas is only about 0.082λ. This work provides an effective alternative to the design of high-isolation antenna arrays.

  3. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    Science.gov (United States)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly

  4. High-Directivity Antenna Array Based on Artificial Electromagnetic Metamaterials with Low Refractive Index

    Directory of Open Access Journals (Sweden)

    Zhigang Xiao

    2015-01-01

    Full Text Available Planar metamaterials (MTMs with low refractive index are proposed as a cover in a high-gain patch antenna array configuration. This MTMs array antenna has the following features: the number of array elements significantly decreases compared with the conventional array; the elements spacing is larger than a wave length by far; the feeding network is simpler. MTMs are made of two layers of periodic square metallic grids and placed above the feeding array. With the same aperture size, the directivity of MTMs-cover antenna array is higher than the conventional antenna array. The simulation results show that an array of 2 × 2 patch elements integrated with MTMs yields about 26 dB of directivity which is higher than that of conventional 8 × 8 patch array. Furthermore, on the condition of the same aperture size, an array patch with 4 × 4 elements integrated with the MTMs-cover has an equivalent gain compared with the conventional patch array with 16 × 16 array elements. Obviously, the former has a simpler feeding network and higher aperture efficiency. The experimental work has verified that the 2 × 2 array case and the measured results have good agreement with the simulation.

  5. The Mutual Interaction effects between Array Antenna Parameters and Receiving Signals Bandwidth

    Directory of Open Access Journals (Sweden)

    Shahad D. Sateaa

    2014-03-01

    Full Text Available The presence of a single complex adaptive weight in each element channel of an adaptive array antenna is sufficient for processing of narrowband signals. The ability of an adaptive array antenna to null interference deteriorates rapidly as the interference bandwidth increases. The performance of narrowband adaptive array antenna with LMCV Beamforming algorithm is examined. The interaction effects between received signal angle of arrival and array parameters like the interelement spacing and the number of array element and the received signal bandwidth were studied. The output Signal to Interference plus Noise Ratio (SINR and Interference to Noise Ratio (INR are used as performance parameters for evaluation of these effects. It is found that the amount of degradation in the output SINR is increased significantly with the increase of array interelement spacing, number of array elements and when the angle of arrival of received signals are closet to end fire.

  6. Mutual Coupling Effects Analysis in a Cross-Rhombic Antenna Array

    Directory of Open Access Journals (Sweden)

    Jorge Sosa-Pedroza

    2012-01-01

    Full Text Available We present an analysis of mutual coupling effects on radiation pattern and individual coupling in a conformal array of cross rhombic antennas. Analysis is made using both full-wave simulation and numerical approaches implemented in Matlab. The array consists of a truncated hexagonal pyramid, with a cross rhombic antenna in each pyramidal face, including the one on the top, having a 7-antennas-array. Results of radiation pattern and S11 parameters are presented, showing mutual coupling effects among the elements.

  7. Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model

    OpenAIRE

    Didouh, S.; Abri, M.; F. T. Bendimerad

    2012-01-01

    A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, ele...

  8. Mechanical Development of a Very Non-Standard Patch Array Antenna for Extreme Environments

    Science.gov (United States)

    Hughes, Richard; Chamberlain, Neil; Jakoboski, Julie; Petkov, Mihail

    2012-01-01

    This paper describes the mechanical development of patch antenna arrays for the Juno mission. The patch arrays are part of a six-frequency microwave radiometer instrument that will be used to measure thermal emissions from Jupiter. The very harsh environmental conditions in Jupiter orbit, as well as a demanding launch environment, resulted in a design that departs radically from conventional printed circuit patch antennas. The paper discusses the development and qualification of the Juno patch array antennas, with emphasis on the materials approach that was devised to mitigate the effects of electron charging in Jupiter orbit.

  9. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

    Directory of Open Access Journals (Sweden)

    H. Ja’afar

    2016-06-01

    Full Text Available This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consists of 12 commercial fluorescent tubes aligned in series containing a mixture of Argon gas and mercury vapor which upon electrification forms plasma columns. The plasma behaves as a conductor and acts as a reflector in radiation, in the condition where plasma frequency,ωp is higher than operating frequency. From this concepts, when all plasma elements are activated or switched to ON, the radiation signal from monopole antenna will trapped inside the plasma blanket and meanwhile when one or more plasma elements is deactivated (switched OFF, the radiation from monopole antenna will escape. This antenna has the capability to change its patterns with beam direction at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330° at frequency 2.4 GHz. The proposed antenna has been successfully fabricated and measured with conclusive results.

  10. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    Science.gov (United States)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  11. Low Average Sidelobe Slot Array Antennas for Radiometer Applications

    Science.gov (United States)

    Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.

    2012-01-01

    In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E

  12. DESIGN OF HYBRID COUPLER CONNECTED SQUARE ARRAY PATCH ANTENNA FOR Wi-Fi APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. Sahaya Anselin Nisha

    2012-01-01

    Full Text Available Microstrip patch antennas being popular because of light weight, low volume, thin profile configuration which can be made conformal. Wireless communication systems applications circular polarization antenna is placing vital role. In this study we introduce a new technique to produce circular polarization. Hybrid coupler is directly connected to microstrip antenna to get circular polarization. Also gain is further increased by introducing antenna array technique. Each square in array having length of 4.6mm patch is having thickness of 0.381mm and the dielectric material used FR4. The designed antenna having high gain of 6.26dB and directivity of 5.11dB at the resonant frequency of 3.7GHz. Simulation results shows that the designed antenna characteristic is suitable for Wi-Fi applications.

  13. Yagi-Uda optical antenna array collimated laser based on surface plasmons

    Science.gov (United States)

    Ma, Long; Lin, Jie; Ma, Yuan; Liu, Bin; Tan, Jiubin; Jin, Peng

    2016-06-01

    The divergence and directivity of a laser with a periodic Yagi-Uda optical antenna array modulated surface are investigated by finite element method. The nanoparticle optical antenna arrays are optimized to achieve the high directivity and the small divergence by using of Helmholtz's reciprocity theorem. When the nanoparticle antenna replaced by a Yagi-Uda antenna with same size, the directivity and the signal-to-noise ratio of the modulated laser beam are notably enhanced. The main reason is that the directors of the Yagi-Uda antennas induce more energy to propagate towards the antenna transmitting direction. The results can provide valuable guidelines in designing collimated laser, which can be widely applied in the field of biologic detection, spatial optical communication and optical measurement.

  14. Circular patch microstrip array antenna on NiCoAl ferrite substrate in C-band

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dheeraj, E-mail: kdheeraj_7@yahoo.co.i [Department Of Physics, Agra College, Agra 282005 (India); Pourush, P.K.S. [Department Of Physics, Agra College, Agra 282005 (India)

    2010-05-15

    The problem of a 4x4 circular disc array antenna (CDAA) printed on a uniaxially anisotropic ferrite (NiCoAl) substrate is treated. The effect of anisotropy on the resonant frequency of the antenna is investigated. Radiation and scattering characteristics of the antenna with normal magnetic bias field to the direction of wave propagation in the plane of ferrite are described. Calculated result for the radar cross section (RCS) of antenna presented, and it is shown that the peaks in the RCS can be moved with respect to angle of incidence by changing the magnetic bias field. This effect offers a way of minimizing the radar visibility of microstrip antennas and arrays. Results are obtained from cavity modal solutions for a circular patch antenna at its TM{sub 11} mode.

  15. A Polarization Reconfigurable Aperture-Coupled Microstrip Antenna and Its Binary Array for MIMO

    Science.gov (United States)

    Zhong, Lei; Hong, Jin-Song; Zhou, Hong-Cheng

    2016-03-01

    In the paper, a singly fed circular patch antenna with polarization diversity is proposed, and its binary array for MIMO application is explored as well. The air substrate and aperture-coupled feed structure are adopted to increase bandwidth and simplify the bias circuit of PIN diodes. By controlling the states of four PIN diodes on the patch, the proposed antenna can produce linear polarization (LP), left- or right-hand circular polarization (LHCP or RHCP). For each polarization sense, the antenna exhibits wide impedance bandwidth, high gain and low cross-polarization. Two antennas are orthogonally placed to form a binary array for MIMO application, which has high isolation and low envelope correlation. The antenna and its array have advantages of simple biasing network, easy fabrication and adjustment, which can be widely applied in wireless communication systems.

  16. Directional antenna array (DAA) for communications, control, and data link protection

    Science.gov (United States)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-06-01

    A next generation of Smart antennas with point-to-point communication and jam, spoof protection capability by verification of spatial position is offered. A directional antenna array (DAA) with narrow irradiation beam provides counter terrorism protection for communications, data link, control and GPS. Communications are "invisible" to guided missiles because of 20 dB smaller irradiation outside the beam and spatial separation. This solution can be implemented with current technology. Directional antennas have higher gain and can be multi-frequency or have wide frequency band in contrast to phase antenna arrays. This multi-directional antenna array provides a multi-functional communication network and simultaneously can be used for command control, data link and GPS.

  17. FAILURE CORRECTION OF LINEAR ARRAY ANTENNA WITH MULTIPLE NULL PLACEMENT USING CUCKOO SEARCH ALGORITHM

    OpenAIRE

    Muralidaran, R.; A. Vallavaraj; Hemant Patidar; Mahanti, G. K.

    2014-01-01

    The influence of evolutionary algorithms enhanced its scope of getting its existence in almost every complex optimization problems. In this paper, cuckoo search algorithm, an algorithm based on the brood parasite behavior along with Levy weights has been proposed for the radiation pattern correction of a linear array of isotropic antennas with uniform spacing when failed with more than one antenna element. Even though deterioration produced by the failure of antenna elements results in variou...

  18. Array Antennas Based Joint Beamforming for IEEE 802.11n Wi-Fi

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2015-09-01

    Full Text Available In order to achieve array gain and spatial diversity or multiplexing gain simultaneously, a novel joint beamforming based on MIMO and array antenna techniques, referred to as J-BF, is proposed for the LTE and Wifi downlink. Array gain is achieved from array antenna based beamforming, referred to as AA-BF. Spatial diversity and multiplexing gains are achieved from MIMO based beamforming, referred to as MIMO-BF. To implement J-BF, i.e., joint AA-BF and MIMO-BF, an access point (AP is equipped with separate array antennas. Before sending any data-frame in the J-BF mode, firstly, based on the estimated omni-directional CSI, the directional beam can be formed by the array antenna, and the array gain is achieved. Secondly, based on the estimated directional CSI, MIMO-BF is implemented to achieve the spatial diversity or multiplexing gain. More importantly, the J-BF algorithm maintains compatibility with 802.11n and there is not any change in terminals. Simulation results show that the proposed scheme can support the joint AA-BF and MIMO-BF effectively and provide much higher array gain or spatial gains than the traditional MIMO or array antenna respectively.

  19. Leaky-Wave Slot Array Antenna Fed by a Dual Reflector System

    NARCIS (Netherlands)

    Maci, S.; Ettorre, M.; Neto, A.; Gerini, G.

    2008-01-01

    A leaky-wave slot array antenna fed by a dual offset Gregorian reflector system is realized by pins in a parallel plate waveguide. The radiating part of the antenna is composed by parallel slots etched on one side of the same parallel plate waveguide. The dual offset Gregorian reflector system is fe

  20. Dual Polarization Stacked Microstrip Patch Antenna Array With Very Low Cross-Polarization

    DEFF Research Database (Denmark)

    Granholm, Johan; Woelders, Kim

    2001-01-01

    This paper describes the development and performance of a wideband dual linear polarization microstrip antenna array used in the Danish high-resolution airborne multifrequency polarimetric synthetic aperture radar, EMISAR. The antenna was designed for an operating frequency of 1.25 GHz±50 MHz...... and was built as an array of 8×2 probe-fed stacked microstrip patches. The feeding network is constructed in microstrip and is capable of handling 6 kW of peak input-power at an altitude of 45000 ft (unpressurized). The impedance bandwidth (return loss better than -14 dB) of the antenna is 10%, the isolation...... between the horizontal and the vertical ports of the array is 50 dB and the cross-polarization suppression is 40 dB. A new design principle for simultaneously achieving very low cross-polarization and low side lobes in dual linear polarization antenna arrays has been applied...

  1. Research on Motion Compensation for Airborne Forward Looking Synthetic Aperture Radar with Linear Array Antennas

    Directory of Open Access Journals (Sweden)

    Zhang Ying-jie

    2013-06-01

    Full Text Available Combined with Frequency-Modulated Continuous-Wave (FMCW technology, airborne forward-looking Synthetic Aperture Radar (SAR with linear array antennas can obtain the image in front of the aircraft and also have the advantages of FMCW radar such as small size and lightweight. Moreover, it is suitable to be installed on platform like helicopter and small unmanned aerial vehicle. Motion compensation for forward-looking SAR with linear array antennas is one of the key problems to obtain the image in front of the aircraft in practice. This paper analyses the influence of motion error in aircraft on echo model based on the geometry of forward looking SAR with linear array antennas, and proposes a motion compensation scheme. Moreover, the compensation scheme is applicable to an improved frequency scaling algorithm (FSA for FMCW forward looking SAR with linear array antennas. Finally, the compensation scheme is verified with the simulation.

  2. Design of a Compact Wideband Antenna Array for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2013-12-01

    Full Text Available In the paper, wideband antenna arrays aimed at microwave imaging applications and SAR applications operating at Ka band were designed. The antenna array feeding network is realized by a low-loss SIW technology. Moreover, we have replaced the large feed network comprised of various T and Y junctions by a simple broadband network of compact size to more reduce losses in the substrate integrated waveguide and also save space on the PCB. The designed power 8-way divider is complemented by a wideband substrate integrated waveguide to a grounded coplanar waveguide transition and directly connected to the antenna elements. The measured results of antenna array are consistent with our simulation. Obtained results of the developed array demonstrated improvement compared to previously developed binary feed networks with microstrip or SIW splitters.

  3. A Low Cost, Electronically Scanned Array (ESA) Antenna Technology for Aviation Hazard Detection and Avoidance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will investigate the feasibility of utilizing ThinKom's low cost electronically scanned array (ESA) antenna concepts to enable affordable...

  4. Highly Integrated, Reconfigurable, Large-Area, Flexible Radar Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Highly-integrated, reconfigurable radar antenna arrays fabricated on flexible substrates offer high functionality in a portable package that can be rolled up and...

  5. Slow and fast light in SOA-EA structures for phased-array antennas

    DEFF Research Database (Denmark)

    Sales, S.; Öhman, Filip; Bermejo, A.;

    We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage.......We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage....

  6. A Low-Profile Cavity-Backed Dual-Polarized Spiral Antenna Array

    OpenAIRE

    Serhir, Mohammed; Guinvarc'H, Régis

    2013-01-01

    International audience A low-profile cavity-backed dual-polarized printed spiral antenna array is presented. This spiral array is composed of four center-fed Archimedean spiral antennas printed on FR4 substrate backed by a low-profile cavity without absorbing material. The dual polarization is generated using monopolarized spirals in an alternating configuration right-hand circularly polarized (RHCP) and left-hand circularly polarized (LHCP). These spirals are connected allowing the curren...

  7. Short-wave band linear antenna array consisting of 'butterfly' radiators

    OpenAIRE

    Kudzin, Viktor P.; Lozovsky, V. N.; N.I. Shlyk

    2011-01-01

    The broadband linear antenna array of vertical polarisation for a short-wave band operation consisting of "butterfly" radiators is offered. The given radiator represents the modified flat wire antenna. The one-sided radiation pattern is provided by means of aperiodic reflector.The specific feature of the offered array is that the adjacent radiators are galvanic connected with each other. It provides improvement of radio engineering characteristics and obvious constructive and economic advanta...

  8. The Digital Motion Control System for the Submillimeter Array Antennas

    CERN Document Server

    Hunter, T R; Kimberk, R; Leiker, P S; Patel, N A; Blundell, R; Christensen, R D; Diven, A R; Maute, J; Plante, R J; Riddle, P; Young, K H

    2013-01-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter diameter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error functi...

  9. Beam-Steerable Microstrip-Fed Bow-Tie Antenna Array for Fifth Generation Cellular Communications

    OpenAIRE

    Ojaroudiparchin, Naser; Shen, Ming; Gert F. Pedersen

    2016-01-01

    The design and performance of mm-wave phased array antenna for 5G mobile broadband communication systems has been provided in this manuscript. The antenna is designed on a N9000 PTFE substrate with 0.787 mm thickness and 2.2 dielectric constant and 65×130 mm2 overall dimension. Eight elements of bow-tie antennas have been used at the top-edge region of mobile phone PCB. The antenna elements fed by microstrip lines are designed to operate at 17 GHz. The simulated results give good performances...

  10. Bi-Band Bow-Tie Antennas Array Design Using a Simple Equivalent Transmission Line Model

    Directory of Open Access Journals (Sweden)

    M. Abri

    2012-08-01

    Full Text Available In this paper we propose a simple equivalent and accurate transmission line model for bi-band bow-tie antennas array design over a band of frequencies for satellite communications. This model uses the resistance of a square element that appears at the edges of the antenna (radiating slots. To test this model, two antennas array were simulated and results were compared with those obtained by a rigorous method (moment’s method of the simulator ADS/Momentum. Using this transmission line approach the resonant frequency, return loss, VSWR, reflected phase, input impedance can be determined simultaneously. The results confirm the validity of the proposed model.

  11. Bi-Band Bow-Tie Antennas Array Design Using a Simple Equivalent Transmission Line Model

    OpenAIRE

    Abri, M.; H. Abri Badaoui; Dib, H; A.S.E. Gharnaout

    2012-01-01

    In this paper we propose a simple equivalent and accurate transmission line model for bi-band bow-tie antennas array design over a band of frequencies for satellite communications. This model uses the resistance of a square element that appears at the edges of the antenna (radiating slots). To test this model, two antennas array were simulated and results were compared with those obtained by a rigorous method (moment’s method) of the simulator ADS/Momentum. Using this transmission line appro...

  12. Measuring Phased-Array Antenna Beampatterns with High Dynamic Range for the Murchison Widefield Array using 137 MHz ORBCOMM Satellites

    CERN Document Server

    Neben, A R; Hewitt, J N; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Goeke, R; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    Detection of the fluctuations in 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the {\\it in situ} beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering), and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second reference dipole. We achieve beam measurements over 30 dB dynamic range in beam...

  13. Near-Field Focusing Dielectric Resonator Antenna Array for Fixed RFID Readers

    Directory of Open Access Journals (Sweden)

    Saber H. Zainud-Deen

    2012-11-01

    Full Text Available The design of a NF‐ focused DRA phased array antenna is implemented for fixed RFID reader applications at 5.8 GHz. The radiated field is focused in the near‐zone of the array aperture. Numerical investigations on the radiation characteristics of the NFfocused array as well as uniform phase array are presented to demonstrate its feasibility for RFID real applications.

  14. A method of measurement of directivity characteristics of antenna’s elements for digital antenna array in conditions of jammers

    OpenAIRE

    Slyusar, V. I.; Voloshko, S. V.

    2009-01-01

    A new two-stage digital processing of OFDM signals for measurement of directivity characteristics (DC) of antenna elements in digital antenna array (DAA) with test sources is described in this report.

  15. New method for the time calibration of an interferometric radio antenna array

    CERN Document Server

    Schröder, F G; Bähren, L; Blümer, J; Bozdog, H; Falcke, H; Haungs, A; Horneffer, A; Huege, T; Isar, P G; Krömer, O; Nehls, S; 10.1016/j.nima.2010.01.072

    2010-01-01

    Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect high-energy cosmic rays via the radio emission from atmospheric extensive air showers. LOPES is an array of dipole antennas placed within and triggered by the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology, Germany. The antennas are digitally combined to build a radio interferometer by forming a beam into the air shower arrival direction which allows measurements even at low signal-to-noise ratios in individual antennas. This technique requires a precise time calibration. A combination of several calibration steps is used to achieve the necessary timing accuracy of about 1 ns. The group delays of the setup are measured, the frequency dependence of these delays (dispersion) is corrected in the subsequent data analysis, and variations of the delays with time are monitored. We use a transmitting reference antenna, a beacon, which continuously emits sine waves at known frequencies. Variations of the relative del...

  16. Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network

    Science.gov (United States)

    Navarro, Robert

    2006-01-01

    The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..

  17. Single-element based ultra-wideband antenna array concepts for wireless high-precision 2-D local positioning

    Science.gov (United States)

    Gardill, M.; Fischer, G.; Weigel, R.; Koelpin, A.

    2013-07-01

    We generally categorize the approaches for ultra-wideband antenna array design, and consequently propose simplified concepts for antenna arrays for a high-precision, ultra-wideband FMCW radar 2-D local positioning system to obtain robustness against multi path interference, perform angle of arrival analysis, as well as instantaneous heading estimation. We focus on low-cost and mechanical robust, industrial-application ready antennas. The antenna arrays are optimized for operation in the 5 GHz to 8 GHz frequency range and are designed towards supporting full omnidirectional 360° as well as partial half-plane direction of arrival estimation. Two different concepts for vehicle- as well as wall-mounted antenna array systems are proposed and discussed. We propose a wideband unidirectional bow-tie antenna array element having 97% impedance and 37% pattern bandwidth and a robust vehicle mounted omnidirectional antenna element having more than 85% impedance and pattern bandwidth.

  18. Isolation Improvement of a Microstrip Patch Array Antenna for WCDMA Indoor Repeater Applications

    Directory of Open Access Journals (Sweden)

    Hongmin Lee

    2012-01-01

    Full Text Available This paper presents the isolation improvement techniques of a microstrip patch array antenna for the indoor wideband code division multiple access (WCDMA repeater applications. One approach is to construct the single-feed switchable feed network structure with an MS/NRI coupled-line coupler in order to reduce the mutual coupling level between antennas. Another approach is to insert the soft surface unit cells near the edges of the microstrip patch elements in order to reduce backward radiation waves. In order to further improve the isolation level, the server antenna and donor antenna are installedinorthogonal direction. The fabricated antenna exhibits a gain over 7 dBi and higher isolation level between server and donor antennas below −70 dB at WCDMA band.

  19. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  20. Research on novel multi-layer and multi-polarized slot-coupling planar antenna array

    Institute of Scientific and Technical Information of China (English)

    Zhang Hou; Wu Wenzhou; Wang Jian

    2009-01-01

    A novel multi-layer planar antenna array to achieve multi-polarized radiation is developed. U-shaped coupling slots are embedded in the ground plane to extend the bandwidth. The phase relation between adjacent elements in the radiation field is analyzed when adjacent elements are fed in opposite phase. Return loss and radiation pattern are measured for a 16-element antenna array at 12.5 GHz. The radiation pattern shows a good agreement with the calculated one in the shape of the main beam. The return-loss of the proposed antenna array is less than -20 dB in the 12.5 GHz frequency band (12.25-12.75 GHz). Because of two feed ports the antenna can transmit arbitrary elliptic polarized waves if the two feed ports have different amplitude and phase. The main factors such as element spacing, substrate medium and manufacturing imperfection are analyzed and the corresponding conclusions are presented.

  1. A Switchable 3D-Coverage Phased Array Antenna Package for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Zhang, Shuai;

    2016-01-01

    antennas have been compactly arranged along the edge region of the mobile phone PCB to form the antenna package. By switching the feeding to one of the sub arrays, the desired direction of coverage can be achieved. The proposed design has >10 dB gain in the upper spherical space, good directivity...... and efficiency, which is suitable for 5G mobile communications. In addition, the impact of user’s hand on the antenna performance has been investigated.......This manuscript proposes a new design of a millimeter-wave (mm-Wave) array antenna package with beam steering characteristic for the fifth generation (5G) mobile applications. In order to achieve a broad 3D scanning coverage of the space with high-gain beams, three identical sub arrays of patch...

  2. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    Science.gov (United States)

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  3. Theoretical power deposition of an interstitial microwave antenna array at various frequencies

    International Nuclear Information System (INIS)

    The theoretical pattern of specific absorption rate (SAR) has been calculated within an array of four interstitial antennas driven in phase at 300, 400, 500, 600, 700, 800, and 915 MHz. The antennas are constructed of 0.67mm OD coaxial cable inside a 2mm OD nylon catheter embedded in brain tissue. The SAR is calculated in the plane of symmetry of the dipole antenna along a diagonal transect from the array to an antenna. The array is a square of 3cm side length; for such spacing, coupling among antennas is small. For resonant antennas, all driving frequencies produced an SAR at the array center at least half of the maximum value. The frequencies 300 and 400 MHz produced the most uniform SAR patterns, with no point on the transect less than half the maximum value. However, the resonant halflength for these frequencies is 7.2cm or greater, too large for most tumors. For h=3cm (dipole length=tumor length=6cm) the 300 and 400 MHz frequencies produced small values of SAR away from the antennas. The greatest SAR at the array center occurred at 700 to 915 MHz; however, the SAR pattern was not uniform. Another way to heat a 6cm tumor is to use a monopole over a ground plane with h=6cm. For this antenna half-length, 500 and 600 MHz gave the greatest array center SAR. At these frequencies the pattern was more uniform than at 700 MHz, but less uniform than at 400 MHz

  4. Calculation of the self-consistent current distribution and coupling of an RF antenna array

    International Nuclear Information System (INIS)

    A self-consistent calculation of the antenna current distribution and fields in an axisymmetric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented. Several features distinguish this calculation from other codes presently available. 1. Variational form: The formulation of the self consistent antenna current problem in a variational form allows good convergence and stability of the algorithm. 2. Multiple straps: Allows modelling of (a) the current distribution across the width of the strap (by dividing it up into sub straps) (b) side limiters and septum (c) antenna cross-coupling. 3. Analytic calculation of the antenna field and calculation of the antenna self-consistent current distribution, (given the surface impedance matrix) gives rapid calculation. 4. Framed for parallel computation on several different parallel architectures (as well as serial) gives a large speed improvement to the user. Results are presented for both Alfven wave heating and current drive antenna arrays, showing the optimal coupling to be achieved for toroidal mode numbers 8< n<10 for typical ASDEX upgrade plasmas. Simulations of the ASDEX upgrade antenna show the importance of the current distribution across the antenna and of image currents flowing in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented. (orig.)

  5. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...

  6. Element failure correction for a large monopulse phased array antenna with active amplitude weighting

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    2007-01-01

    Recently a new method is introduced to synthesize low sidelobe patterns for planar array antennas with a periodic element arrangement. The method makes use of the property that for a planar array with periodic spacing of the elements, an inverse Fourier transform relationship exists between the arra

  7. Characteristics of block-periodic phased-array antennas with circular polarization of the radiated field

    Science.gov (United States)

    Likhoded, Iu. V.; Mironnikov, A. S.

    1990-02-01

    The paper presents results of a numerical investigation of the directivity characteristics of a block-periodic waveguide phased-array antenna with circular polarization of the radiated field. The advantages of this array from the viewpoint of maximining the ellipticity coefficent of the radiated field in the scanning sector are pointed out.

  8. PHASIM, a sophisticated phased array antenna software simulator implemented in MATLAB 5.2

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    1999-01-01

    A sophisticated phased array simulator software package for the design and analysis of planar phased array antennas is presented. This simulator is coded in MATLAB version 5.2. Using MATLAB, numerical engineering problems can be solved in a fraction of time of time required by programs coded in FORT

  9. Integrated filtering in reconfigurable planar phased-array antennas with spurious harmonic suppression

    NARCIS (Netherlands)

    Cifola, L.; Gerini, G.; Monni, S.; Berg, S. van den; Water, F. van de

    2013-01-01

    In the present work, the possibility to integrate filtering functionalities in a phased-array antenna at radiating element level is investigated. The filtenna concept has been applied to an X-band phased array of slot-fed patches. An effective strategy for the suppression of spurious harmonics, base

  10. Analysis of Circularly Polarized Hemispheroidal Dielectric Resonator Antenna Phased Arrays Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs are subsequen...... are subsequently employed in a seven-element phased array. The array performance is analyzed with respect to scan loss and main beam directivity as a function of scan angle and frequency, and the influence of element separation is investigated....

  11. High-gain textile antenna array system for off-body communication

    OpenAIRE

    Dries Vande Ginste; Hendrik Rogier; Luigi Vallozzi; Maria Lucia Scarpello

    2012-01-01

    A novel high-gain textile antenna array system, fully integrated into a rescue-worker’s vest and operating in the Industrial, Scientific, and Medical wireless band (2.4–2.4835 GHz), is presented. The system comprises an array consisting of four tip-truncated equilateral triangular microstrip patch antennas (ETMPAs), a power divider, line stretchers, and coaxial cables. The array is vertically positioned on the human torso to produce a narrow beam in elevation, as such reducing fading and allo...

  12. Wideband Circularly Polarized SIW Antenna Array That Uses Sequential Rotation Feeding

    Directory of Open Access Journals (Sweden)

    Fang-Fang Fan

    2014-01-01

    Full Text Available A wideband right-handed circularly polarized (CP substrate integrated waveguide- (SIW- based diamond ring-slot antenna array at the X-band is presented in this study. The array consists of four elements that exhibit wideband impedance matching characteristics and good radiation performance. The array also employs a sequential rotation feeding method to achieve the wideband axial ratio (AR bandwidth. The feeding network is based on the SIW power divider with a delay line related to sequential rotation feeding. To validate our design, an antenna array is fabricated and measured. The measured impedance and AR bandwidths are 19.2% (VSWR<2 and 14.1% (AR<3 dB, respectively. Moreover, the antenna has a stable CP peak gain of more than 12 dBic from 10.1 GHz to 10.7 GHz.

  13. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    B. F. Zong

    2016-04-01

    Full Text Available In this paper, a broadband circularly polarized (CP microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL based sequential rotation (SR feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a 2×2 antenna array comprising sequentially rotated coupled stacked CP antenna elements is designed, fabricated and measured. Both the simulated and measured results indicate that the performances of the antenna element are further enhanced when the SR network is used. The antenna array exhibits the VSWR less than 1.8 dB from 4 GHz to 7 GHz and the 3 dB axial ratio (AR from 4.4 GHz to 6.8 GHz. Also, high peak gain of 13.7 dBic is obtained. Besides, the normalized radiation patterns at the operating frequencies are symmetrical and the side lobe levels are low at φ=0º and φ=90º.

  14. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    Science.gov (United States)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  15. Dual Polarization Multi-Frequency Antenna Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative approaches for broadband multi-function antennas that conserve vehicle weight and reduce drag are welcome solutions for all airborne platforms including...

  16. Wideband Circularly Polarized SIW Antenna Array That Uses Sequential Rotation Feeding

    OpenAIRE

    Fang-Fang Fan; Ze-Hong Yan; Wei Wang

    2014-01-01

    A wideband right-handed circularly polarized (CP) substrate integrated waveguide- (SIW-) based diamond ring-slot antenna array at the X-band is presented in this study. The array consists of four elements that exhibit wideband impedance matching characteristics and good radiation performance. The array also employs a sequential rotation feeding method to achieve the wideband axial ratio (AR) bandwidth. The feeding network is based on the SIW power divider with a delay line related to sequenti...

  17. Advanced optimization algorithms for sensor arrays and multi-antenna communications

    OpenAIRE

    Abrudan, Traian

    2008-01-01

    Optimization problems arise frequently in sensor array and multi-channel signal processing applications. Often, optimization needs to be performed subject to a matrix constraint. In particular, unitary matrices play a crucial role in communications and sensor array signal processing. They are involved in almost all modern multi-antenna transceiver techniques, as well as sensor array applications in biomedicine, machine learning and vision, astronomy and radars. In this thesis, algorithms...

  18. Directions of arrival estimation with planar antenna arrays in the presence of mutual coupling

    Science.gov (United States)

    Akkar, Salem; Harabi, Ferid; Gharsallah, Ali

    2013-06-01

    Directions of arrival (DoAs) estimation of multiple sources using an antenna array is a challenging topic in wireless communication. The DoAs estimation accuracy depends not only on the selected technique and algorithm, but also on the geometrical configuration of the antenna array used during the estimation. In this article the robustness of common planar antenna arrays against unaccounted mutual coupling is examined and their DoAs estimation capabilities are compared and analysed through computer simulations using the well-known MUltiple SIgnal Classification (MUSIC) algorithm. Our analysis is based on an electromagnetic concept to calculate an approximation of the impedance matrices that define the mutual coupling matrix (MCM). Furthermore, a CRB analysis is presented and used as an asymptotic performance benchmark of the studied antenna arrays. The impact of the studied antenna arrays geometry on the MCM structure is also investigated. Simulation results show that the UCCA has more robustness against unaccounted mutual coupling and performs better results than both UCA and URA geometries. The performed simulations confirm also that, although the UCCA achieves better performance under complicated scenarios, the URA shows better asymptotic (CRB) behaviour which promises more accuracy on DoAs estimation.

  19. Design of a Two-Element Antenna Array Using Substrate Integrated Waveguide Technique

    Directory of Open Access Journals (Sweden)

    Kheireddine Sellal

    2011-01-01

    Full Text Available The design of a two-element antenna array using the substrate integrated waveguide (SIW technique and operating at 10 GHz is presented. The proposed antenna array consists of two SIW phase shifter sections with two SIW slot antennas. The phase shifting is achieved by changing the position of two inductive posts inserted inside each element of the array. Numerical simulations and experimental measurements have been carried out for three differential phases between the two antenna array elements, namely, 0°, 22.5°, and 67.5°. A prototype for each differential phase has been fabricated and measured. Results have shown a fairly good agreement between theory and experiments. In fact, a reflection coefficient of better than 20 dB has been achieved around 10 GHZ. The E-plane radiation pattern has shown a beam scan between 5° and 18° and demonstrated the feasibility of designing an SIW antenna phased array.

  20. Novel Compact Mushroom-Type EBG Structure for Electromagnetic Coupling Reduction of Microstrip Antenna array

    Science.gov (United States)

    Hu, Lizhong; Wang, Guangming; Liang, Jiangang; Zhang, Chenxin

    2015-03-01

    A novel compact electromagnetic bandgap (EBG) structure consisting of two turns complementary spiral resonator (CSR) and conventional mushroom EBG (CM-EBG) structure is introduced to suppress the mutual coupling in antenna arrays for multiple-input and multiple-output (MIMO) applications. Eigenmode calculation is used to investigate the proposed CSR-loaded mushroom-type EBG (MT-EBG), which proved to exhibit bandgap property and a miniaturization of 48.9% is realized compared with the CM-EBG. By inserting the proposed EBG structure between two E-plane coupled microstrip antennas, a mutual coupling reduction of 8.13 dB has been achieved numerically and experimentally. Moreover, the EBG-loaded antenna has better far-field radiation patterns compared with the reference antenna. Thus, this novel EBG structure with advantages of compactness and high decoupling efficiency opens an avenue to new types of antennas with super performances.

  1. BER Performance Evaluation of two Types of Antenna Array-Based Receivers in a Multipath Channel

    Directory of Open Access Journals (Sweden)

    Rim Haddad

    2010-11-01

    Full Text Available Smart antennasystems have received much attention in the last few years because they can increasesystem capacity by dynamically tuning out interference while focusing on the intended user.In this paper, we focused our research on the performance of two kinds of smart antenna receivers. Ananalytical model is proposed for evaluating the BER performance using a closed-form expression. Also,for the adaptive array, a simple way to account the multi-access interference can be exploited to evaluatethe average probability of error when the users are randomly distributed within an angular sector.The proposed model confirms the benefits of adaptive antennas in reducing the overall interference level(intercell/intracell and to find an accurate approximation of the error probability.In the two kinds of receivers, we assessed the impact of smart antenna systems and we considered thecase of conventional single antenna receiver model as reference (single user/single antenna.

  2. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  3. OUT PERFORMANCE OF CUCKOO SEARCH ALGORITHM AMONG NATURE INSPIRED ALGORITHMS IN PLANAR ANTENNA ARRAYS

    Directory of Open Access Journals (Sweden)

    A.Sai Charan

    2014-07-01

    Full Text Available In this modern era a great deal of metamorphism is observed around us which eventuate due to some minute modifications and innovations in the area of Science and Technology. This paper deals with the application of a meta heuristic optimization algorithm namely the Cuckoo Search Algorithm in the design of an optimized planar antenna array which ensures high gain ,directivity, suppression of side lobes, increased efficiency and improves other antenna parameters

  4. Out Performance Of Cuckoo Search Algorithm Among Nature Inspired Algorithms in Planar Antenna Arrays

    OpenAIRE

    A.Sai Charan; Manasa, N. K.; N.V.S.N Sarma

    2014-01-01

    In this modern era a great deal of metamorphism is observed around us which eventuate due to some minute modifications and innovations in the area of Science and Technology. This paper deals with the application of a meta heuristic optimization algori thm namely the Cuckoo Search Algorithm in the desig n of an optimized planar antenna array which ensures high gain ,directivity, suppression of side lobes, increased efficiency and improves other antenna par ameters...

  5. Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array--Low Frequency Demonstrator

    OpenAIRE

    Bowman, Judd D.; Barnes, David G.; Briggs, Frank H.; Corey, Brian E.; Lynch, Merv J.; Bhat, N. D. Ramesh; Cappallo, Roger J.; Doeleman, Sheperd S.; Fanous, Brian J.; Herne, David; Hewitt, Jacqueline N.; Johnston, Chris; Kasper, Justin C.; Kocz, Jonathon; Kratzenberg, Eric

    2006-01-01

    Experiments were performed with prototype antenna tiles for the Mileura Widefield Array--Low Frequency Demonstrator (MWA-LFD) to better understand the widefield, wideband properties of their design and to characterize the radio frequency interference (RFI) between 80 and 300 MHz at the site in Western Australia. Observations acquired during the six month deployment confirmed the predicted sensitivity of the antennas, sky-noise dominated system temperatures, and phase-coherent interferometric ...

  6. Dual Circularly Polarized Omnidirectional Antenna with Slot Array on Coaxial Cylinder

    OpenAIRE

    Bin Zhou; Junping Geng; Zhe Li; Wenzhi Wang; Xianling Liang; Ronghong Jin

    2015-01-01

    A dual circularly polarized (CP) omnidirectional antenna based on slot array in coaxial cylinder structure is presented in this paper. It is constructed by perpendicular slot pairs around and along the axis of the coaxial cylinder to realize the omnidirectional CP property, and two ports are assigned in its two sides as left hand circularly polarized (LHCP) port and right hand circularly polarized (RHCP) port, respectively. The proposed antenna achieves a bandwidth of 16.4% ranging from 5.05 ...

  7. An Efficient ICT Method for Analysis of Co-planar Dipole Antenna Arrays of Arbitrary Lengths

    OpenAIRE

    Imoro, Adam Icarus; Aoki, Ippo; Inagaki, Naoki; Kikuma, Nobuyoshi; キクマ, ノブヨシ; 菊間, 信良

    1998-01-01

    A more judicious choice of trial functions to implement the Improved Circuit Theory (ICT) application to multi-element antennas is achieved. These new trial functions, based on Tai's modified variational implementation for single element antennas, leads to an ICT implementation applicable to much longer co-planar dipole arrays. The accuracy of the generalized impedance formulas is in good agreement with the method of moments. Moreover, all these generalized formulas including the radiation pa...

  8. Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications

    Science.gov (United States)

    Vollbracht, D.

    2015-11-01

    The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation

  9. A 28 GHz FR-4 Compatible Phased Array Antenna for 5G Mobile Phone Applications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    The design of a 28 GHz phased array antenna for future fifth generation (5G) mobile-phone applications has been presented in this paper. The proposed antenna can be implemented using low cost FR-4 substrates, while maintaining good performance in terms of gain and efficiency. This is achieved by ...... the gains are higher than 13 dB. In addition, the simulated and measured results show that the antenna has the S11 response less than -10 dB in the frequency range of 27 to 29 GHz....

  10. Cross-polarization and sidelobe suppression in dual linear polarization antenna arrays

    DEFF Research Database (Denmark)

    Woelders, Kim; Granholm, Johan

    1997-01-01

    In recent years, there has been an increasing interest in dual linear polarization antennas for various purposes, e.g. polarimetric synthetic aperture radar (SAR) imaging. A key design goal for dual polarization antennas is to obtain a high cross-polarization suppression. When using standard...... techniques for improving the cross-polarization suppression in dual linear polarization antenna arrays undesired sidelobes appear. This paper describes the properties of some known cross-polarization suppression methods and presents a new method for obtaining high cross-polarization suppression...

  11. Novel Sequential Rotated 2x2 Array Notched Circular Patch Antenna

    Directory of Open Access Journals (Sweden)

    M L S N S Lakshmi

    2015-11-01

    Full Text Available This article presents a novel high gain rotated circular patch antenna operating at S-band. Circular patches are arranged with probe feeding in a particular order to get circular polarization. By employing sequential rotation technique, the proposed antenna is giving an impedance bandwidth of more than 40% (return loss less than -10 dB and 3dB axial ratio bandwidth of 15% in the operating band with peak gain around 13 dB. Array antenna is fabricated on RT-duroid substrate and the measured results are showing good agreement with the simulation results.

  12. Parallel-fed planar dipole antenna arrays for low-observable platforms

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on determination of scattering of parallel-fed planar dipole arrays in terms of reflection and transmission coefficients at different levels of the array system. In aerospace vehicles, the phased arrays are often in planar configuration. The radar cross section (RCS) of the vehicle is mainly due to its structure and the antennas mounted over it. There can be situation when the signatures due to antennas dominate over the structural RCS of the platform. This necessitates the study towards the reduction and control of antenna/ array RCS. The planar dipole array is considered as a stacked linear dipole array. A systematic, step-by-step approach is used to determine the RCS pattern including the finite dimensions of dipole antenna elements. The mutual impedance between the dipole elements for planar configuration is determined. The scattering till second-level of couplers in parallel feed network is taken into account. The phase shifters are modelled as delay line. All the couplers in the feed n...

  13. Receiving Properties of Thin-Film Slot Antenna Arrays for 28-THz-CO2 Laser Radiation

    Science.gov (United States)

    Uchida, Takashi; Abe, Yasuhiko; Hashimoto, Shoji; Yasuoka, Yoshizumi

    The receiving properties of fabricated parasitic slot antenna arrays on ZnS dielectric substrates for 28-THz-CO2 laser radiation were investigated. When the CO2 laser beam was irradiated on the antennas directly (from the air-side), the E-plane antenna patterns of the parasitic slot antenna arrays became increasing sharper as the number of slots in the array increased from 1to 7. On the other hand, the H-plane antenna patterns did not change with the number of slots because the slot antennas were not arrayed in the H-plane. It was found that the antenna theory based on the transmission line model was applicable at 28 THz. When the CO2 laser beam was irradiated through the substrate (from the substrate-side), rippled antenna patterns were observed due to multiple reflection in the substrate because the thickness of the substrate was much longer than the dielectric wavelength of the CO2 laser. It was also found that the antenna receiving properties were affected by the thickness of the substrate. Furthermore, as expected from the theory, the power gain of the 7-parasitic slot antenna array improved by approximately 7 dB compared to that of the single-slot antenna at 28 THz.

  14. Proximity fed gap-coupled half E-shaped microstrip antenna array

    Indian Academy of Sciences (India)

    Amit A Deshmukh; K P Ray

    2015-02-01

    Broadband gap-coupled array configuration of proximity fed rectangular microstrip antenna with half E-shaped microstrip antennas are proposed. The rectangular slot in half E-shaped patch reduces the orthogonal TM01 mode resonance frequency of equivalent rectangular patch and along with TM10 modes of fed and parasitic rectangular patches, yields broader bandwidth of more than 470 MHz (> 45%). An improvement in radiation pattern and gain characteristics over the bandwidth is obtained by gap-coupling half E-shaped patches along all the edges of proximity fed rectangular patch, which yields bandwidth of nearly 510 MHz (∼49%). Further to enhance the gain, a gap-coupled 3 × 3 array configuration of half E-shaped patches with proximity fed rectangular microstrip antenna is proposed. The gap-coupled array configuration yields bandwidth of more than 530 MHz (>50%) with broadside radiation pattern and peak gain of 11 dBi.

  15. Precise calibration of a GNSS antenna array for adaptive beamforming applications.

    Science.gov (United States)

    Daneshmand, Saeed; Sokhandan, Negin; Zaeri-Amirani, Mohammad; Lachapelle, Gérard

    2014-05-30

    The use of global navigation satellite system (GNSS) antenna arrays for applications such as interference counter-measure, attitude determination and signal-to-noise ratio (SNR) enhancement is attracting significant attention. However, precise antenna array calibration remains a major challenge. This paper proposes a new method for calibrating a GNSS antenna array using live signals and an inertial measurement unit (IMU). Moreover, a second method that employs the calibration results for the estimation of steering vectors is also proposed. These two methods are applied to the receiver in two modes, namely calibration and operation. In the calibration mode, a two-stage optimization for precise calibration is used; in the first stage, constant uncertainties are estimated while in the second stage, the dependency of each antenna element gain and phase patterns to the received signal direction of arrival (DOA) is considered for refined calibration. In the operation mode, a low-complexity iterative and fast-converging method is applied to estimate the satellite signal steering vectors using the calibration results. This makes the technique suitable for real-time applications employing a precisely calibrated antenna array. The proposed calibration method is applied to GPS signals to verify its applicability and assess its performance. Furthermore, the data set is used to evaluate the proposed iterative method in the receiver operation mode for two different applications, namely attitude determination and SNR enhancement.

  16. Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model

    Directory of Open Access Journals (Sweden)

    S. Didouh

    2012-01-01

    Full Text Available A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, electrical, and technological characteristics of the antennas arrays. The proposed transmission line model showed its interest in the design of different multilayered bow-tie antennas and predicted the correct resonance frequency for different applications in telecommunications. To validate the proposed transmission line model, the simulation results obtained are compared with those obtained by the method of moments. The results of simulations are presented and discussed. Using this transmission line approach, the resonant frequency, input impedance, and return loss can be determined simultaneously. The paper reports several simulation results that confirm the validity of the developed model. The obtained results are then presented and discussed.

  17. Precise Calibration of a GNSS Antenna Array for Adaptive Beamforming Applications

    Directory of Open Access Journals (Sweden)

    Saeed Daneshmand

    2014-05-01

    Full Text Available The use of global navigation satellite system (GNSS antenna arrays for applications such as interference counter-measure, attitude determination and signal-to-noise ratio (SNR enhancement is attracting significant attention. However, precise antenna array calibration remains a major challenge. This paper proposes a new method for calibrating a GNSS antenna array using live signals and an inertial measurement unit (IMU. Moreover, a second method that employs the calibration results for the estimation of steering vectors is also proposed. These two methods are applied to the receiver in two modes, namely calibration and operation. In the calibration mode, a two-stage optimization for precise calibration is used; in the first stage, constant uncertainties are estimated while in the second stage, the dependency of each antenna element gain and phase patterns to the received signal direction of arrival (DOA is considered for refined calibration. In the operation mode, a low-complexity iterative and fast-converging method is applied to estimate the satellite signal steering vectors using the calibration results. This makes the technique suitable for real-time applications employing a precisely calibrated antenna array. The proposed calibration method is applied to GPS signals to verify its applicability and assess its performance. Furthermore, the data set is used to evaluate the proposed iterative method in the receiver operation mode for two different applications, namely attitude determination and SNR enhancement.

  18. Switched-beam array of dielectric rod antenna with RF-MEMS switch for millimeter-wave applications

    Science.gov (United States)

    Rousstia, M. W.; Reniers, A. C. F.; Herben, M. H. A. J.

    2015-03-01

    A conformal dielectric rod antenna array with operating frequency of 11.2 GHz is investigated, designed, and measured. This antenna array is combined with a single pole double throw radio frequency microelectromechanical systems (RF-MEMS) switch to realize switched-beam performance. Moreover, this antenna array exhibits uniform radiation performance for different scan angles with no grating lobes. The characterization and measurement of the antenna system have been performed. The measured radiation pattern of the antenna in the anechoic chamber is in good agreement with the simulated antenna pattern. The measured antenna with the RF-MEMS switch has 13.5 dBi realized gain, -15 dB sidelobe level, 22° half-power beamwidth, and 7.3% (fractional) bandwidth (or 800 MHz) at 11.2 GHz.

  19. Wave front engineering from an array of thin aperture antennas.

    Science.gov (United States)

    Kang, Ming; Feng, Tianhua; Wang, Hui-Tian; Li, Jensen

    2012-07-01

    We propose an ultra-thin metamaterial constructed by an ensemble of the same type of anisotropic aperture antennas with phase discontinuity for wave front manipulation across the metamaterial. A circularly polarized light is completely converted to the cross-polarized light which can either be bent or focused tightly near the diffraction limit. It depends on a precise control of the optical-axis profile of the antennas on a subwavelength scale, in which the rotation angle of the optical axis has a simple linear relationship to the phase discontinuity. Such an approach enables effective wave front engineering within a subwavelength scale.

  20. Optically Controlled Reconfigurable Antenna Array Based on E-Shaped Elements

    Directory of Open Access Journals (Sweden)

    Arismar Cerqueira Sodré Junior

    2014-01-01

    Full Text Available This work presents the development of optically controlled reconfigurable antenna arrays. They are based on two patch elements with E-shaped slots, a printed probe, and a photoconductive switch made from an intrinsic silicon die. Numerical simulations and experiments have been shown to be in agreement, and both demonstrate that the frequency response of the antenna arrays can be efficiently reconfigured over two different frequency ISM bands, namely, 2.4 and 5 GHz. A measured gain of 12.5 dBi has been obtained through the use of two radiating elements printed in a low-cost substrate and a dihedral corner reflector.

  1. Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

    OpenAIRE

    Li-Ming Si; Yong Liu; Yongjun Huang; Weiren Zhu

    2014-01-01

    A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking applications at Ka-band. The monopulse antenna array is designed with a microstrip with 2×32 slots, a waveguide cavity, and a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency bandwidth. The 2×32 slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using t...

  2. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    OpenAIRE

    Zong, B. F.; Wang, G. M.; Zeng, H Y; Wang, Y.W.; Wang, D

    2016-01-01

    In this paper, a broadband circularly polarized (CP) microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL) based sequential rotation (SR) feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a ...

  3. Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    CERN Document Server

    Hum, Sean Victor

    2013-01-01

    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.

  4. Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    to form a linear phased array in the edge region (top-side) on a mobile phone PCB. The simulated results show that the antenna has the reflection coefficient (S11) less than -10 dB in the frequency range of 27.4 to 28.6 GHz. The proposed phased array antenna has good gain, efficiency, and 3D beam steering...

  5. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    International Nuclear Information System (INIS)

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA

  6. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    Science.gov (United States)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.; Shinohara, S.

    2015-12-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA.

  7. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging

    OpenAIRE

    Pang, Yong; Yu, Baiying; Daniel B Vigneron; Zhang, Xiaoliang

    2014-01-01

    Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional ...

  8. Two-Element Tapered Slot Antenna Array for Terahertz Resonant Tunneling Diode Oscillators

    Directory of Open Access Journals (Sweden)

    Jianxiong Li

    2014-01-01

    Full Text Available Two-element tapered slot antenna (TSA array for terahertz (THz resonant tunneling diode (RTD oscillators is proposed in this paper. The proposed TSA array has the advantages of both the high directivity and high gain at the horizontal direction and hence can facilitate the horizontal communication between the RTD oscillators and other integrated circuit chips. A MIM (metal-insulator-metal stub with a T-shaped slot is used to reduce the mutual coupling between the TSA elements. The validity and feasibility of the proposed TSA array have been simulated and analyzed by the ANSYS/ANSOFT’s High Frequency Structure Simulator (HFSS. Detailed modeling approaches and theoretical analysis of the proposed TSA array have been fully addressed. The simulation results show that the mutual coupling between the TSA elements is reduced below −40 dB. Furthermore, at 500 GHz, the directivity, the gain, and the half power beam width (HPBW at the E-plane of the proposed TSA array are 12.18 dB, 13.09 dB, and 61°, respectively. The proposed analytical method and achieved performance are very promising for the antenna array integrated with the RTD oscillators at the THz frequency and could pave the way to the design of the THz antenna array for the RTD oscillators.

  9. Tracking antenna architectures based on an integrated mixer microstrip patch array

    International Nuclear Information System (INIS)

    The object of this work is to design, develop and characterize both theoretically and experimentally a compact integrated mixer microstrip patch antenna which exhibits a low level of cross-polarization. Modelling of this antenna using various CAD techniques and supporting measurements has led to a clearer understanding of its operation and the optimization of its design. The attractiveness of such a frequency scaleable design lies in the inherent simplicity and ease with which it can be used to produce an intermediate frequency (IF) signal with minimum circuit complexity and low cross-polar levels. The operation of the integrated mixer antenna circuit is exploited under the phenomenon of injection locking for its potential for direct phase modulation and detection. It leads to new vistas of study such as IF phase-shifterless beam steering. Here the desired phased shift is derived through injection locking and achieved solely by the DC bias control, thus eliminating the need for phase shifters and feed networks. A self-tracking integrated mixer array has also been described which uses an in-band pilot carrier signal for self-calibration. By minor alteration of the integrated antenna topology, a minimum complexity variant of a heterodyne retrodirective array has then been realized. These tracking antenna architectures minimize the problems of cost, complexity and size limitations associated with conventional phased arrays. These are designed for emerging commercial applications and are resolutions of some trade-offs that balance performance, cost and reliability. Theoretical and experimental results are presented to show their performances and, in addition, the practical requirements relevant to these are also addressed. The results indicate that these tracking antenna architectures based on an integrated mixer microstrip patch array could form a synergistic link with other emerging technologies and can be to some extent embodied in future phased array designs

  10. Design of Multilevel Sequential Rotation Feeding Networks Used for Circularly Polarized Microstrip Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Aixin Chen

    2012-01-01

    Full Text Available Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array element and adopting appropriate level of sequential rotation series-parallel feeding structures as feeding networks, microstrip arrays can generate excellent circular polarization (CP over a relatively wide frequency band. They can find wide applications in phased array radar and satellite communication systems.

  11. THACO, a Test Facility for Characterizing the Noise Performance of Active Antenna Arrays

    CERN Document Server

    Woestenburg, E E M; Ruiter, M; Ivashina, M V; Witvers, R H

    2011-01-01

    This paper discusses an outdoor test facility for the noise characterization of active antenna arrays, using measurement results of array noise temperatures in the order of 50 K for a number of small aperture arrays. The measurement results are obtained by a Y-factor method with hot and a cold noise sources, with an absorber at room temperature as the hot load and the cold sky as the cold load. The effect of shielding the arrays by the test facility, with respect to noise and RFI from the environment, will also be discussed.

  12. New method for the time calibration of an interferometric radio antenna array

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.G., E-mail: frank.schroeder@kit.ed [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Asch, T. [Karlsruhe Institute of Technology (KIT), Institut fuer Prozessdatenverarbeitung und Elektronik, 76021 Karlsruhe (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics, 6525 ED Nijmegen (Netherlands); Bluemer, J. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik, 76021 Karlsruhe (Germany); Bozdog, H. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Falcke, H. [Radboud University Nijmegen, Department of Astrophysics, 6525 ED Nijmegen (Netherlands); ASTRON, 7990 AA Dwingeloo (Netherlands); Haungs, A. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Horneffer, A. [Radboud University Nijmegen, Department of Astrophysics, 6525 ED Nijmegen (Netherlands); Huege, T.; Isar, P.G. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany); Kroemer, O. [Karlsruhe Institute of Technology (KIT), Institut fuer Prozessdatenverarbeitung und Elektronik, 76021 Karlsruhe (Germany); Nehls, S. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik, 76021 Karlsruhe (Germany)

    2010-04-11

    Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect high-energy cosmic rays via the radio emission from atmospheric extensive air showers. LOPES is an array of dipole antennas placed within and triggered by the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology, Germany. The antennas are digitally combined to build a radio interferometer by forming a beam into the air shower arrival direction which allows measurements even at low signal-to-noise ratios in individual antennas. This technique requires a precise time calibration. A combination of several calibration steps is used to achieve the necessary timing accuracy of about 1 ns. The group delays of the setup are measured, the frequency dependence of these delays (dispersion) is corrected in the subsequent data analysis, and variations of the delays with time are monitored. We use a transmitting reference antenna, a beacon, which continuously emits sine waves at known frequencies. Variations of the relative delays between the antennas can be detected and corrected for at each recorded event by measuring the phases at the beacon frequencies.

  13. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    CERN Document Server

    D'Addario, Larry R

    2016-01-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. For $N$ antennas, the cost and power consumption of cross-correlation are proportional to $N^2$ and dominate at sufficiently large $N$. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals ($N$=32 antennas with 2 opposite-polarization signals per antenna). When $N$ is larger, the input data are buffered in an on-chip memory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulat...

  14. Research on X band extended cosecant squared b eam synthesis of micro-strip antenna arrays using genetic algorithm%X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究∗

    Institute of Scientific and Technical Information of China (English)

    张金玲; 万文钢; 郑占奇; 甘曦; 朱兴宇

    2015-01-01

    提出了一种改进型自适应遗传算法,该算法用logistic函数拟合交叉概率和变异概率,以赌轮盘选择和精英保留相结合的方式,在全局寻找最优解.与经典遗传算法相比,改进型自适应遗传算法可以大大提高算法的求解质量.本文基于改进的自适应遗传算法研究设计了−3 dB范围为0◦—12◦,−10 dB波束宽度为65◦,波束覆盖为65◦,天线频带范围为8.5—9.8 GHz,中心频率为9.05 GHz的X波段微带余割平方扩展波束天线阵.研究结果表明改进型自适应遗传算法对方向图的拟合程度具有较大提高,适应度值可以从0.07以下提升到0.09以上.%Synthesis of desired radiation patterns without an optimization algorithm is usually time consuming and inefficient. To achieve a desired radiation pattern such as cosecant squared beam and contoured beam, different evolutionary algorithms such as genetic algorithm (GA), particle swarm optimization algorithm, and invasive weed optimization algorithm have been used to find the excitation of radiation elements. Adaptive genetic algorithm (AGA) optimizer is a robust, stochastic search method, modeled on the principles and concepts of natural selection and evolution. As an optimizer, the powerful heuristic of the AGA is effective for solving complex and related problems. An improved AGA is proposed, in allusion to the characteristics of optimizing designs of antenna arrays which have many parameters and complicated structures. This algorithm constructs an adjustble formula to produce the crossover rate and mutation rate based on a logistic curve equation. In the way of combining roulette wheel selection and elitist strategy, this algorithm searches for the optimal solution in the global space, and is compared with the classical GA; the improved AGA has a better performance in seeking the solution. Taking the mutual coupling between the elements into account, we design the X band extended cosecant squared beam

  15. Self-Steering Antenna Arrays for Distributed Picosatellite Networks

    OpenAIRE

    Murakami, Blaine; Ohta, Aaron; Tamamoto, Michael; Shiroma, Grant; Miyamoto, Ryan; Shiroma, Wayne

    2003-01-01

    The potential for using self-steering arrays for secure crosslinks in picosatellite networks is investigated. The principle of operation and methods of characterization of these so-called retrodirective arrays is reviewed, and examples developed by our group are presented. New challenges for the space environment are identified, specifically the development of two-dimensional, circularly polarized retrodirective arrays optimized for size and power consumption.

  16. Application of Novel Printed Dipole Antenna to Design Broadband Planar Phased Array

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2014-01-01

    Full Text Available A broadband planar phased array consisting of 22 linear printed dipole antennas (PDA is presented in this paper. The element is designed by a coax probe feeding mechanism with a ground plate configuration. The PDA with two arms placed on both sides of a substrate is realized. The inner conductor of the coaxial cable is connected to the PDA’s upper arm, and the outer conductor is connected to the PDA’s lower arm, so it eliminates the balun. The impedance bandwidth of the PDA array can be improved by increasing mutual coupling effect between the adjacent array elements. A dielectric layer, which is integrated on the surface of the antenna, is designed and fabricated to improve the impedance bandwidth and to shield the array. The measured results indicate the active VSWR is less than 3 over the frequency range of 4–20 GHz.

  17. The application of taylor weighting, digital phase shifters, and digital attenuators to phased-array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.

    2008-03-01

    Application of Taylor weighting (taper) to an antenna aperture can achieve low peak sidelobes, but combining the Taylor weighting with quantized attenuators and phase shifters at each radiating element will impact the performance of a phased-array antenna. An examination of array performance is undertaken from the simple point of view of the characteristics of the array factor. Design rules and guidelines for determining the Taylor-weighting parameters, the number of bits required for the digital phase shifter, and the dynamic range and number of bits required for the digital attenuator are developed. For a radar application, when each element is fed directly from a transmit/receive module, the total power radiated by the array will be reduced as a result of the taper. Consequently, the issue of whether to apply the taper on both transmit and receive configurations, or only on the receive configuration is examined with respect to two-way sidelobe performance.

  18. Single-feed superconducting circularly polarized microstrip array antenna for direct-to-home receiving system

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.I.; Ehata, K.; Ohshima, S. [Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510 (Japan)

    2000-07-01

    Single-feed circularly polarized microstrip patch and patch array antennas for 'direct-to-home' receiving system at around 12 GHz are studied by theoretical analysis and experiments. A full-wave microwave circuit simulator (Em), based on the method of moments and capable of handling the microwave surface impedance, has been used in the theoretical analysis of the antennas. Antennas have been fabricated from both normal conductor (gold) and YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) superconductor for comparison. Measured results on resonant frequency (f{sub r}), return loss, gain, bandwidth, and axial ratio are presented. The antennas are found to show a very low axial ratio and a moderate bandwidth. In the comparison of gain, the superconducting antennas showed a remarkable improvement over their gold counterparts. The receiving power of a four-element array fabricated from a single-side YBCO thin film on (100) MgO single crystal substrate is found to be 1.8 dB higher than that of a gold array with identical configuration and both measured at 77 K. (author)

  19. The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array

    Science.gov (United States)

    Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.

    1994-01-01

    The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were

  20. Novel microstrip antenna array for anti-jam satellite navigation system

    OpenAIRE

    Martynyuk, Sergiy Ye.; Vasylenko, Dmytro O.; Dubrovka, Fedor F.; Laush, Anatolii G.

    2015-01-01

    We present results of theoretical and experimental investigations of a novel dual band right hand circularly polarized microstrip antenna array with adaptive space-time processing capability for terminal of GPS/GLONASS/GALILEO satellite navigation systems. The array structure is composed from 10 microstrip radiators excited independently via separate coaxial input ports. Two central radiating elements for two frequency bands (L1 and L2) have got circular shapes with slits and are stacked to p...

  1. Design of Multilevel Sequential Rotation Feeding Networks Used for Circularly Polarized Microstrip Antenna Arrays

    OpenAIRE

    Aixin Chen; Chuo Yang; Zhizhang (David) Chen; Yanjun Zhang; Yingyi He

    2012-01-01

    Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array e...

  2. Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour

    OpenAIRE

    Gopi Ram; Durbadal Mandal; Rajib Kar; Sakti Prasad Ghoshal

    2013-01-01

    A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenn...

  3. Two-Element Tapered Slot Antenna Array for Terahertz Resonant Tunneling Diode Oscillators

    OpenAIRE

    Jianxiong Li; Yunxiang Li; Weiguang Shi; Haolin Jiang; Luhong Mao

    2014-01-01

    Two-element tapered slot antenna (TSA) array for terahertz (THz) resonant tunneling diode (RTD) oscillators is proposed in this paper. The proposed TSA array has the advantages of both the high directivity and high gain at the horizontal direction and hence can facilitate the horizontal communication between the RTD oscillators and other integrated circuit chips. A MIM (metal-insulator-metal) stub with a T-shaped slot is used to reduce the mutual coupling between the TSA elements. The validit...

  4. Signal processing in antenna arrays when using "supersolution" algorithm

    OpenAIRE

    Gabriel'yan, Dmitriy D.; Zvezdina, Marina Yu.; Zvezdina, Yulia A.; Labunko, Oleg S.

    2005-01-01

    The algorithm of constructing of weight coefficients that guarantees receiving the source signal getting into the main maximum of directive pattern and suppressing other sources signals is investigated. Basing on the analytic form of the inverse covariance matrix for signals the estimations of the possible meanings of the signal/noise relation depending on the parameters of antenna system and signals (number and step of radiator displacement, receiving signals covariance degree) are found. Th...

  5. Covariance analysis and phase ambiguity resolution for a linear interferometer antenna array

    Science.gov (United States)

    Johnson, James Andrew

    This thesis explores the application of mathematical techniques for estimating the angle of arrival (AOA) using a receiving platform having a linear interferometer antenna array. It addresses the estimation accuracy of interferometer phase measurements of a signal with superposed Gaussian noise from multiple antenna baselines, and provides a method for resolving the modulo two-pi problem inherent to many phase measurement systems. The study extends prior theoretical work (Hanna, C., 1983) by laying a mathematical foundation to complement his geometrical approach, provides a robust method of performance prediction for such a system. Key elements include estimation accuracy of a signal parameter with additive noise; the design of the linear antenna array element spacings and the relationship to Diophantine equations; and the application of the Cramer-Rao lower bound on variance of parameter estimation. It is hoped that the work presented here will serve as a practical guide for research scientists and engineers.

  6. A Novel T-Fed 4-Element Quasi-Lumped Resonator Antenna Array

    Directory of Open Access Journals (Sweden)

    S.S. Olokede

    2014-06-01

    Full Text Available In this paper, electrically small corporately T-fed quasi-lumped element resonator antenna array is investigated. The radiating element, a quasi-lumped element resonator is excited by a novel semi hybrid ring-like T-shaped corporate feed network. The characteristics losses due to Ohmic and discontinuities along the feed line which invariably constitutes complex feed structures are mitigated at the instance of the proposed antenna. Technique to implement the compact array with the intent to enhance the gain is presented. The operation dynamics of the feed along with its theoretical explanation is also reported. Findings indicates that the measured gain is 10.97 dBi for antenna of an estate area of about 0.677λ_0 × 1.257λ_0 sq. mm. Valuable insight to the optimum design in terms of compactness, good gain, and ease of fabrication is documented.

  7. Correction of polarization error in scanned array weather radar antennas

    NARCIS (Netherlands)

    Pang, C.; Hoogeboom, P.; Russchenberg, H.; Wang, T.; Dong, J.; Wang, X.

    2014-01-01

    In this paper, the polarization error correction of dual-polarized planar scanned array weather radar in alternately transmitting and simultaneously receiving (ATSR) mode is analyzed. A method based on point correction and a method taking the complete array patterns into account are discussed. To an

  8. Circular antenna array pattern analysis using radial basis function neural network

    International Nuclear Information System (INIS)

    A method is proposed to design circular antenna array for the given gain and beam width using Artificial Neural Networks. In optimizing circular arrays, the parameters to be controlled are excitation of the elements, their separation, lengths and the circle radius. This paper deals about finding the parameters of radiation pattern of given uniform circular antenna array. Initially, the network is trained with a set of input-output data pairs. The trained network is used for testing. The training data set is generated from MATLAB simulation with number of elements N=5, 10, 15 and 20 elements of uniform circular array, respectively, distributed over a given circle, assuming 20 training cases. The number of input nodes, hidden nodes and output nodes are 20, 20 and 1, respectively. Predicted values of the neural network are compared with those of MATLAB simulation results and are found to be in agreement. This work establishes the application of Radial Basis Function Neural Network (RBFNN) for circular array pattern optimization. RBFNN is able to predict the output values with 97% of accuracy. This work proves that RBFNN can be used for circular antenna array design.

  9. PHASED ARRAY ANTENNA AND BEAMFORMING SUBSYTEMS IN PHASEDARRAY RADAR

    Directory of Open Access Journals (Sweden)

    Dr A. Jhansi rani,

    2010-05-01

    Full Text Available Phased array radars are essential for the future missions like Reusable Launch Vehicle (RLV, human space mission, and space debris tracking. The capabilities of Phased Array Radar include multipletarget long range tracking in skin mode, elimination of mechanical errors and instantaneous beam positioning capability. This paper presents the design of a transmitter/receiver Digital Beam former (DBF based on the mathematical model of a far-field plane wave incident on a sensor array. Simulations of a DBF transmitter and receiver are performed to control the power pattern of a 4-element linear array. For the sensor array, two spatial filters were constructed with different pattern requirements to demonstrate theoperation of the Digital Beam Forming.

  10. Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

    Directory of Open Access Journals (Sweden)

    Li-Ming Si

    2014-01-01

    Full Text Available A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking applications at Ka-band. The monopulse antenna array is designed with a microstrip with 2×32 slots, a waveguide cavity, and a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency bandwidth. The 2×32 slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using the standard printed circuit board (PCB process with dimensions of 230 mm  ×  10 mm. The proposed monopulse antenna array not only maintains the advantages of the traditional waveguide slot antenna array, but also has the characteristics of wide bandwidth, high consistence, easy of fabrication, and low cost. From the measured results, it exhibits good monopulse characteristics, including the following: the maximum gains of sum pattern are greater than 24 dB, the 3 dB beamwidth of sum pattern is about 2.2 degrees, the sidelobe levels of the sum pattern are less than −18 dB, and the null depths of the difference pattern are less than −25 dB within the operating bandwidth between 33.65 GHz and 34.35 GHz for VSWR ≤ 2.

  11. Ring resonator-based broadband photonic beam former for phased array antennas

    NARCIS (Netherlands)

    Zhuang, Leimeng

    2010-01-01

    This thesis presents the principles and a demonstration of optical ring resonator (ORR)-based broadband photonic beam former for phased array antennas. In Chapter 1 an introduction of RF photonics is given. The SMART and BPB projects are summarized, which are aimed for the development of ORR-based b

  12. Ring resonator-based integrated photonic beam former for phased array antennas

    NARCIS (Netherlands)

    Zhuang, Leimeng; Marpaung, David; Burla, Maurizio; Khan, Reza; Roeloffzen, Chris

    2011-01-01

    In this article we introduce one of the microwave photonics techniques being researched in our group, namely integrated photonic beam former for phased array antennas. The photonic beam former operates with true time delays achieved by means of integrated optical ring resonator filters. Compared to

  13. Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz

    Energy Technology Data Exchange (ETDEWEB)

    Bonzon, C., E-mail: bonzonc@phys.ethz.ch; Benea Chelmus, I. C.; Ohtani, K.; Geiser, M.; Beck, M.; Faist, J. [Institute for Quantum Electronics, ETH-Zürich, CH-8093 Zürich (Switzerland)

    2014-04-21

    Our work presents a slot and a patch array antenna at the front facet of a 4.7 THz quantum cascade laser as extractor, decreasing the facet reflectivity down to 2.6%. The resulting output power increases by a factor 2 and the slope efficiency by a factor 4. The simulated and the measured far-fields are in good agreement.

  14. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    Klooster, van 't J.W.; Roeloffzen, C.G.H.; Meijerink, A.; Zhuang, L.; Marpaung, D.A.I.; Etten, van W.C.; Heideman, R.G.; Leinse, A.; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  15. Optically or electronically steerable mm-wave phased antennas array based on semiconductor structure

    OpenAIRE

    Rogov, V. Ya.; Grinev, A. Yu.; Zaikin, A. E.

    1999-01-01

    This paper presents results of the complex researches of Phased Array Antennas (PAAs) for the MMW-band’s short-wave subband based on the nontraditional approach to designing the antenna’s aperture when using multilayer semiconductor structures with optically or electronically steerable electrophysical parameters.

  16. Antenna-coupled TES Bolometer Arrays for BICEP2/Keck and SPIDER

    CERN Document Server

    Orlando, A; Amiri, M; Bock, J J; Bonetti, J A; Brevik, J A; Burger, B; Chattopadthyay, G; Day, P K; Filippini, J P; Golwala, S R; Halpern, M; Hasselfield, M; Hilton, G C; Irwin, K D; Kenyon, M; Kovac, J M; Kuo, C L; Lange, A E; LeDuc, H G; Llombart, N; Nguyen, H T; Ogburn, R W; Reintsema, C D; Runyan, M C; Staniszewski, Z; Sudiwala, R; Teply, G; Trangsrud, A R; Turner, A D; Wilson, P

    2010-01-01

    BICEP2/Keck and SPIDER are cosmic microwave background (CMB) polarimeters targeting the B-mode polarization induced by primordial gravitational waves from inflation. They will be using planar arrays of polarization sensitive antenna-coupled TES bolometers, operating at frequencies between 90 GHz and 220 GHz. At 150 GHz each array consists of 64 polarimeters and four of these arrays are assembled together to make a focal plane, for a total of 256 dual-polarization elements (512 TES sensors). The detector arrays are integrated with a time-domain SQUID multiplexer developed at NIST and read out using the multi-channels electronics (MCE) developed at the University of British Columbia. Following our progress in improving detector parameters uniformity across the arrays and fabrication yield, our main effort has focused on improving detector arrays optical and noise performances, in order to produce science grade focal planes achieving target sensitivities. We report on changes in detector design implemented to op...

  17. 1x2 Array of U-Slotted Rectangular Patch Antennas for HighSpeed LTE Mobile Networks

    Science.gov (United States)

    Daud, P.; H, Sri.; Mahmudin, D.; Estu, T. T.; Fathnan, A. A.; Wijayanto, Y. N.; Armi, N.

    2016-01-01

    Microstrip antenna is a shaped thin board of antenna and capable for working at high frequencies. Microstrip antenna has a pattern strip shape in a various form, one of which is a rectangular shape. Microstrip antennas have some shortcomings which have narrow bandwidth and small gain, to cover the shortfall, the antenna is made using an array to increase the gain and u - slot to widen the bandwidth. In this paper will discuss the results of the antenna simulation using Ansoft HFSS software applications and their compliance with specifications designed antenna. In this issues we analysis the results of the design and simulation microstrip antenna at a frequency of 2.6 - 2.7 GHz for LTE applications

  18. GA BASED SYNTHESIS OF SATELLITE-BORNE MULTI-BEAM PLANAR ARRAY WITH ARBITRARY GEOMETRY

    Institute of Scientific and Technical Information of China (English)

    Jin Jun; Wang Huali; Zhu Wenming; Liu Yunzhi

    2006-01-01

    A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program and to speed up computation. This approach uses two crossover operators that can overcome premature convergence and the dependence of convergence on initial population. Simulation results show that this method is capable of synthesizing complex pattern shapes of planar arrays with arbitrary geometry and can realize good sidelobe suppression at the same time.

  19. Planar array antenna with director on indium phosphide substrate for 300GHz wireless link

    Science.gov (United States)

    Kanaya, Haruichi; Oda, Tomoki; Iizasa, Naoto; Kato, Kazutoshi

    2016-02-01

    This paper presents a design and fabrication of 1 x 4 one-sided directional slot array antenna with director metal layer on indium phosphide (InP) substrate for 300 GHz wireless link. The floating metal and polyimide dielectric layer are stacked on InP. Antenna is designed on the top metal layer. By optimizing the length of the bottom floating metal layer, one-sided directional radiation can be realized. The branched coplanar wave guide (CPW) transmission line is connected to each antenna element with the same electrical length. The size of the 1 x 4 array antenna is 2,550 µm x 1,217 µm x 18 µm. In order to enhance the gain of forward direction, director metal layer is placed over 83 µm from top metal layer. Simulated realized gain in peak direction of our antenna is 9.23 dBi. The measured center frequency is almost the same as that of the simulation results.

  20. Deployable reflector antenna performance optimization using automated surface correction and array-feed compensation

    Science.gov (United States)

    Schroeder, Lyle C.; Bailey, M. C.; Mitchell, John L.

    1992-01-01

    Methods for increasing the electromagnetic (EM) performance of reflectors with rough surfaces were tested and evaluated. First, one quadrant of the 15-meter hoop-column antenna was retrofitted with computer-driven and controlled motors to allow automated adjustment of the reflector surface. The surface errors, measured with metric photogrammetry, were used in a previously verified computer code to calculate control motor adjustments. With this system, a rough antenna surface (rms of approximately 0.180 inch) was corrected in two iterations to approximately the structural surface smoothness limit of 0.060 inch rms. The antenna pattern and gain improved significantly as a result of these surface adjustments. The EM performance was evaluated with a computer program for distorted reflector antennas which had been previously verified with experimental data. Next, the effects of the surface distortions were compensated for in computer simulations by superimposing excitation from an array feed to maximize antenna performance relative to an undistorted reflector. Results showed that a 61-element array could produce EM performance improvements equal to surface adjustments. When both mechanical surface adjustment and feed compensation techniques were applied, the equivalent operating frequency increased from approximately 6 to 18 GHz.

  1. Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour

    Directory of Open Access Journals (Sweden)

    Gopi Ram

    2013-01-01

    Full Text Available A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA, particle swarm optimization (PSO, and differential evolution (DE applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL and same or less first null beam width (FNBW, keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL and first null beam width (FNBW have been achieved by the proposed collective animal behaviour (CAB algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB.

  2. Coherent Sources Direction Finding and Polarization Estimation with Various Compositions of Spatially Spread Polarized Antenna Arrays

    CERN Document Server

    Yuan, Xin

    2014-01-01

    Various compositions of sparsely polarized antenna arrays are proposed in this paper to estimate the direction-of-arrivals (DOAs) and polarizations of multiple coherent sources. These polarized antenna arrays are composed of one of the following five sparsely-spread sub-array geometries: 1) four spatially-spread dipoles with three orthogonal orientations, 2) four spatially-spread loops with three orthogonal orientations, 3) three spatially-spread dipoles and three spatially-spread loops with orthogonal orientations, 4) three collocated dipole-loop pairs with orthogonal orientations, and 5) a collocated dipole-triad and a collocated loop-triad. All the dipoles/loops/pairs/triads in each sub-array can also be sparsely spaced with the inter-antenna spacing far larger than a half-wavelength. Only one dimensional spatial-smoothing is used in the proposed algorithm to derive the two-dimensional DOAs and polarizations of multiple cross-correlated signals. From the simulation results, the sparse array composed of dip...

  3. 3D Pattern Synthesis of Time-Modulated Conformal Arrays with a Multiobjective Optimization Approach

    Directory of Open Access Journals (Sweden)

    Wentao Li

    2014-01-01

    Full Text Available This paper addresses the synthesis of the three-dimensional (3D radiation patterns of the time-modulated conformal arrays. Due to the nature of periodic time modulation, harmonic radiation patterns are generated at the multiples of the modulation frequency in time-modulated arrays. Thus, the optimization goal of the time-modulated conformal array includes the optimization of the sidelobe level at the operating frequency and the sideband levels (SBLs at the harmonic frequency, and the design can be regarded as a multiobjective problem. The multiobjective particle swarm optimization (MOPSO is applied to optimize the switch-on instants and pulse durations of the time-modulated conformal array. To significantly reduce the optimization variables, the modified Bernstein polynomial is employed in the synthesis process. Furthermore, dual polarized patch antenna is designed as radiator to achieve low cross-polarization level during the beam scanning. A 12 × 13 (156-element conical conformal microstrip array is simulated to demonstrate the proposed synthesis mechanism, and good results reveal the promising ability of the proposed algorithm in solving the synthesis of the time-modulated conformal arrays problem.

  4. Zero-bias microwave detectors based on array of nanorectifiers coupled with a dipole antenna

    Science.gov (United States)

    Kasjoo, Shahrir R.; Singh, Arun K.; Mat Isa, Siti S.; Ramli, Muhammad M.; Mohamad Isa, Muammar; Ahmad, Norhawati; Mohd Nor, Nurul I.; Khalid, Nazuhusna; Song, Ai Min

    2016-04-01

    We report on zero-bias microwave detection using a large array of unipolar nanodevices, known as the self-switching diodes (SSDs). The large array was realized in a single lithography step without the need of interconnection layers, hence allowing for a simple and low-cost fabrication process. The SSD array was coupled with a narrowband dipole antenna with a resonant frequency of 890 MHz, to form a simple rectenna (rectifying antenna). The extrinsic voltage responsivity and noise-equivalent-power (NEP) of the rectenna were ∼70 V/W and ∼0.18 nW/Hz1/2, respectively, measured in the far-field region at unbiased condition. Nevertheless, the estimated intrinsic voltage responsivity can achieve up to ∼5 kV/W with NEP of ∼2.6 pW/Hz1/2.

  5. Investigations on antenna array calibration algorithms for direction-of-arrival estimation

    Science.gov (United States)

    Eberhardt, Michael; Eschlwech, Philipp; Biebl, Erwin

    2016-09-01

    Direction-of-arrival (DOA) estimation algorithms deliver very precise results based on good and extensive antenna array calibration. The better the array manifold including all disturbances is known, the better the DOA estimation result. A simplification or ideally an omission of the calibration procedure has been a long pursued goal in the history of array signal processing. This paper investigates the practicability of some well known calibration algorithms and gives a deeper insight into existing obstacles. Further analysis on the validity of the common used data model is presented. A new effect in modeling errors is revealed and simulation results substantiate this theory.

  6. Reconfigurable antenna pattern verification

    Science.gov (United States)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  7. A Compact Monopulse Radial Line Slot Array Antenna at Millimeter Wavelengths

    Science.gov (United States)

    You, Lizhi; Dou, W. B.

    2007-10-01

    This paper describes the design and performance of a radial line slot array antenna (RLSA) which generates sum or difference far field patterns. The antenna consists of rectangular waveguide to radial line transition, radial line and slot arrays etched on the upper plate of the radial line. A novel rectangular waveguide to radial line transition is designed to build up the dominate TEM mode in radial line to excite the slot arrays which are arranged in concentric rings on the upper plate of the radial line. The antenna radiates linear polarization at Ka band. Monopulse operation is obtained by a sum and difference network which is a compact eight-port comparator consisting of coplanar magic tees. The sum and difference network is waveguide structure whose loss is less than that of microstrip structure at millimeter wave lengths. The monopulse performances can be used in monopulse tracking and anti-collision application etc. Genetic algorithm (GA) is applied to optimize the parameters of the transition and antenna to obtain good performances.

  8. Design of a stacked array antenna system integrated with low temperature co-fired ceramics (LTCC)

    Science.gov (United States)

    Ji, Taeksoo; Yoon, Hargsoon; Jose, K. A.; Varadan, Vijay K.

    2005-05-01

    In this paper, we presents a 4×4 stacked phased array antenna system operating at 15GHz, which can be used for commercial as well as military applications including low earth orbiting (LEO) satellites communications and airborne defense system. The phased array antenna consists of 4 subarrays having 4 tapered slot antennas, phase shifters, power dividers, and high voltage controllers. Each component is constructed on low temperature co-fired ceramics (LTCC) that is a multilayer electronic packaging technology and has a unique ability to integrate passive components such as resistors, capacitors and inductors in to a monolithic package. The phase shifter we have developed herein using barium strontium titanate (BST) thin films shows continuous phase shifts of 0°~90° at 15GHz when DC bias voltages are applied up to 300 V between the ground and signal line. By controlling the voltages independently applied to each phase shifters, the beam shape and direction radiated from the array antenna can be changed and steered.

  9. Beam Switching Cylindrical Array Antenna System for Communication

    Directory of Open Access Journals (Sweden)

    V. C. Misra

    1998-10-01

    Full Text Available The beam switching cylindrical array, which is a unique system, has been designed and developed to cover 360° in azimuth plane by generating 16 beams with specified elevation coverage.In this design, the concept of fast aperture selection (4 x 4 in microseconds from the total cylindrical array has been realised successfully to meet the requirement of point-to-multipoint communication. The components of the array, viz., radiating elements, powder dividers, switches, etc., are designed in printed circuit type, and hence, objectives of lightweight and ease of reproducibility are achieved. The lightweight of the array makes it accessible for easy mounting at a specified height for achieving longer communication range. Finally, a low-loss radome is incorporated to protect the array from environmental conditions. The various parameters, viz., return loss, gain, and switched-beam radiation patterns were measured over a bandwidth of 300 MHz in L- band and typical measured results are presented in this paper.

  10. Narrowband direction of arrival estimation for antenna arrays

    CERN Document Server

    Foutz, Jeffrey

    2008-01-01

    This book provides an introduction to narrowband array signal processing, classical and subspace-based direction of arrival (DOA) estimation with an extensive discussion on adaptive direction of arrival algorithms. The book begins with a presentation of the basic theory, equations, and data models of narrowband arrays. It then discusses basic beamforming methods and describes how they relate to DOA estimation. Several of the most common classical and subspace-based direction of arrival methods are discussed. The book concludes with an introduction to subspace tracking and shows how subspace tr

  11. X-band printed phased array antennas using high-performance CNT/ion gel/Ag transistors

    Science.gov (United States)

    Grubb, Peter M.; Bidoky, Fazel; Mahajan, Ankit; Subbaraman, Harish; Li, Wentao; Frisbie, Daniel; Chen, Ray T.

    2016-05-01

    This paper reports a fully printed phased array antenna developed on a 125 micron thick flexible Kapton substrate. Switching for the phase delay lines is accomplished using printed carbon nanotube transistors with ion gel dielectric layers. Design of each element of the phased array antenna is reported, including a low loss constant impedance power divider, a phase shifter network, and patch antenna design. Steering of an X-band PAA operating at 10GHz from 0 degrees to 22.15 degrees is experimentally demonstrated. In order to completely package the array with electrical interconnects, a single substrate interconnect scheme is also investigated.

  12. Certain investigations on the reduction of side lobe level of an uniform linear antenna array using biogeography based optimization technique with sinusoidal migration model and simplified-BBO

    Indian Academy of Sciences (India)

    T S Jeyali Laseetha; R Sukanesh

    2014-02-01

    In this paper, we propose biogeography based optimization technique, with linear and sinusoidal migration models and simplified biogeography based optimization (S-BBO), for uniformly spaced linear antenna array synthesis to maximize the reduction of side lobe level (SLL). This paper explores biogeography theory. It generalizes two migration models in BBO namely, linear migration model and sinusoidal migration model. The performance of SLL reduction in ULA is investigated. Our performance study shows that among the two, sinusoidal migration model is a promising candidate for optimization. In our work, simplified – BBO algorithmis also deployed. This determines an optimum set value for amplitude excitations of antenna array elements that generate a radiation pattern with maximum side lobe level reduction. Our detailed investigation also shows that sinusoidal migration model of BBO performs better compared to the other evolutionary algorithms discussed in this paper.

  13. SUB-DOMAIN MOM FORMULATION FOR CIRCULAR AND NON-CIRCULAR LOOP ANTENNA ARRAYS

    Directory of Open Access Journals (Sweden)

    TOMÁŠ PÁLENÍK

    2011-05-01

    Full Text Available The method of moments (MoM analysis of thin-wire loop antenna arrays with multiple elements is presented in this paper. The proposed formulation provides simple algorithmic implementation that canbe applied to circular loop arrays as well as more generally shaped arrays using the Pocklington’s integral equation with simplified kernel for arbitrary shaped wires in combination with a superquadriccurve representation. This analysis leads to knowledge of the current distribution, input impedance and other electromagnetic properties of both uniform and non-uniform loop arrays. Numerical results areincluded to exhibit good agreement with various relevant references and simulation software. The data for large square and rectangular loop arrays are presented for the first time in literature.

  14. Assessment of Measurement Distortions in GNSS Antenna Array Space-Time Processing

    Directory of Open Access Journals (Sweden)

    Thyagaraja Marathe

    2016-01-01

    Full Text Available Antenna array processing techniques are studied in GNSS as effective tools to mitigate interference in spatial and spatiotemporal domains. However, without specific considerations, the array processing results in biases and distortions in the cross-ambiguity function (CAF of the ranging codes. In space-time processing (STP the CAF misshaping can happen due to the combined effect of space-time processing and the unintentional signal attenuation by filtering. This paper focuses on characterizing these degradations for different controlled signal scenarios and for live data from an antenna array. The antenna array simulation method introduced in this paper enables one to perform accurate analyses in the field of STP. The effects of relative placement of the interference source with respect to the desired signal direction are shown using overall measurement errors and profile of the signal strength. Analyses of contributions from each source of distortion are conducted individually and collectively. Effects of distortions on GNSS pseudorange errors and position errors are compared for blind, semi-distortionless, and distortionless beamforming methods. The results from characterization can be useful for designing low distortion filters that are especially important for high accuracy GNSS applications in challenging environments.

  15. A Compact Two-Level Sequentially Rotated Circularly Polarized Antenna Array for C-Band Applications

    Directory of Open Access Journals (Sweden)

    Stefano Maddio

    2015-01-01

    Full Text Available A compact circular polarized antenna array with a convenient gain/bandwidth/dimension trade-off is proposed for applications in the C-band. The design is based on the recursive application of the sequential phase architecture, resulting in a 4 × 4 array of closely packed identical antennas. The 16 antenna elements are disc-based patches operating in modal degeneration, tuned to exhibit a broad while imperfect polarization. Exploiting the compact dimension of the patches and a space-filling design for the feeding network, the entire array is designed to minimize the occupied area. A prototype of the proposed array is fabricated with standard photoetching procedure in a single-layer via less printed board of overall area 80 × 80 mm2. Adequate left-hand polarization is observed over a wide bandwidth, demonstrating a convenient trade-off between bandwidth and axial ratio. Satisfying experimental results validate the proposed design, with a peak gain of 12.6 dB at 6.7 GHz maintained within 3 dB for 1 GHz, a very wide 10 dB return loss bandwidth of 3 GHz, and a 4 dB axial ratio bandwidth of 1.82 GHz, meaning 31% of fractional bandwidth.

  16. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure.

    Science.gov (United States)

    Balzovsky, E V; Buyanov, Yu I; Koshelev, V I; Nekrasov, E S

    2016-03-01

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from -40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well. PMID:27036799

  17. High-Gain Textile Antenna Array System for Off-Body Communication

    Directory of Open Access Journals (Sweden)

    Maria Lucia Scarpello

    2012-01-01

    Full Text Available A novel high-gain textile antenna array system, fully integrated into a rescue-worker’s vest and operating in the Industrial, Scientific, and Medical wireless band (2.4–2.4835 GHz, is presented. The system comprises an array consisting of four tip-truncated equilateral triangular microstrip patch antennas (ETMPAs, a power divider, line stretchers, and coaxial cables. The array is vertically positioned on the human torso to produce a narrow beam in elevation, as such reducing fading and allowing to steer the maximum gain in a small angular sector centered around the broadside direction. To allow simple low-cost beam steering, we specifically minimize mutual coupling by using a relative large distance between the patches and by selecting the ETMPA element as the most suited topology from three potential patch geometries. Moreover, we investigate the stability of return loss and mutual coupling characteristics under different relative humidity conditions, when bending the array, when placing the system on-body, and when covering it by different textile layers. Reflection coefficient and gain patterns are simulated and measured for the antenna system in free space and placed on the human body.

  18. CONSTRICTED PARTICLE SWARM OPTIMIZATION FOR DESIGN OF COLLINEAR ARRAY OF UNEQUAL LENGTH DIPOLE ANTENNAS

    Directory of Open Access Journals (Sweden)

    Banani Basu

    2010-06-01

    Full Text Available A method based on constricted Particle Swarm Optimization (CPSO algorithm to design a non-uniformly spaced collinear array of thin dipole antennas of unequal height is proposed. This paper presents a method for computing the appropriate excitation and geometry of individual array elements to generate a pencil beam in the vertical plane with minimum Standing Wave Ratio (SWR and fixed Side Lobe Level (SLL. Coupling effect between any two collinear center-fed thin dipole antennas having sinusoidal current distributions is analyzed using induced EMF method and minimized in terms of SWR. DRR of excitation distribution is fixed at a lower value for further mitigation of the coupling effect. Phase distribution for all the elements is kept at zero degree for broadside array. Optimization results show the effectiveness of the algorithm for the design of the array. Moreover method seems very conducive for estimating the mutual impedance between any two collinear center-fed thin dipole antennas having sinusoidal current distributions.

  19. First results of the Standalone Antenna Array of the CODALEMA Radio Detection Experiment

    CERN Document Server

    A, Belletoile

    2011-01-01

    CODALEMA is one of the pioneer experiments dedicated to the recent field of cosmic ray radio detection. It is located at the radio observatory of Nancay (France). The detector setup combined until recently a ground particle detector and an array of active dipole antennas covering a total area of 0.25 km^2. The experiment is now going through a major upgrade with the deployment around the existing apparatus of a Standalone Antenna Array, which consists of 60 standalone new generation radio-detection stations and which will cover an area of 1.5 km^2 (33 stations deployed over the spring of 2011 and 27 stations to be deployed in late 2011). This new setup is intended to tackle the remaining unknowns of extensive air shower radio detection so as to make this technique a reliable and mature tool for Ultra High Energy Cosmic Ray (UHECR) physics. The latest results from the original CODALEMA array are discussed together with the first results of the Standalone Antenna Array.

  20. Enhancing resolution properties of array antennas via field extrapolation: application to MIMO systems

    Science.gov (United States)

    Reggiannini, Ruggero

    2015-12-01

    This paper is concerned with spatial properties of linear arrays of antennas spaced less than half wavelength. Possible applications are in multiple-input multiple-output (MIMO) wireless links for the purpose of increasing the spatial multiplexing gain in a scattering environment, as well as in other areas such as sonar and radar. With reference to a receiving array, we show that knowledge of the received field can be extrapolated beyond the actual array size by exploiting the finiteness of the interval of real directions from which the field components impinge on the array. This property permits to increase the performance of the array in terms of angular resolution. A simple signal processing technique is proposed allowing formation of a set of beams capable to cover uniformly the entire horizon with an angular resolution better than that achievable by a classical uniform-weighing half-wavelength-spaced linear array. Results are also applicable to active arrays. As the above approach leads to arrays operating in super-directive regime, we discuss all related critical aspects, such as sensitivity to external and internal noises and to array imperfections, and bandwidth, so as to identify the basic design criteria ensuring the array feasibility.

  1. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  2. A Multibeam Dual-Band Orthogonal Linearly Polarized Antenna Array for Satellite Communication on the Move

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2015-01-01

    Full Text Available The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom.

  3. Dual Circularly Polarized Omnidirectional Antenna with Slot Array on Coaxial Cylinder

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    2015-01-01

    Full Text Available A dual circularly polarized (CP omnidirectional antenna based on slot array in coaxial cylinder structure is presented in this paper. It is constructed by perpendicular slot pairs around and along the axis of the coaxial cylinder to realize the omnidirectional CP property, and two ports are assigned in its two sides as left hand circularly polarized (LHCP port and right hand circularly polarized (RHCP port, respectively. The proposed antenna achieves a bandwidth of 16.4% ranging from 5.05 to 5.95 GHz with an isolation higher than 15 dB between the two CP ports, and the return loss (RL is higher than 10 dB within the bandwidth in both of the two ports. From the measured results, the average axial ratio (AR of the proposed antenna in omnidirectional plane is lower than 1.5 dB.

  4. Performance Analysis of Blind Beamforming Algorithms in Adaptive Antenna Array in Rayleigh Fading Channel Model

    International Nuclear Information System (INIS)

    In this paper, we analyze the performance of adaptive blind algorithms – i.e. Kaiser Constant Modulus Algorithm (KCMA), Hamming CMA (HAMCMA) – with CMA in a wireless cellular communication system using digital modulation technique. These blind algorithms are used in digital signal processor of adaptive antenna to make it smart and change weights of the antenna array system dynamically. The simulation results revealed that KCMA and HAMCMA provide minimum mean square error (MSE) with 1.247 dB and 1.077 dB antenna gain enhancement, 75% reduction in bit error rate (BER) respectively over that of CMA. Therefore, KCMA and HAMCMA algorithms give a cost effective solution for a communication system

  5. A planar array antenna for TV broadcasting communications

    Science.gov (United States)

    Cucci, A.; de Luca, A.

    The L-Sat planar array for satellite direct TV broadcasting is described. Still in the design stage, the array is intended for broadcasting on the X-band, within the 0.98 x 2.3 deg elliptical beam, sidelobe below -30 dB, circular polarization with low cross-polarization WARC requirements. The results of an analysis of the effects produced by the contour profile on the radiation pattern are presented. Further work has proceeded on a circuit model of a slot in a single subarray, the coupling of mutual slots, and the phase and amplitude behhavior of the coupled feeding and radiating waveguides. Finally, simulations have been performed of the thermally induced deformations, with attention given to warping and a tilted half-plane.

  6. The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia.

    Science.gov (United States)

    James, B J; Strohbehn, J W; Mechling, J A; Trembly, B S

    1989-01-01

    Interstitial microwave antenna array hyperthermia (IMAAH) is presently used clinically in the treatment of cancer. This paper presents the theoretical specific absorption rate (SAR) patterns of 915 MHz microwave antenna arrays for varying insertion depths. The antennas were oriented in a 2 x 2 cm square array. Insertion depth, defined as distance from skin to antenna tip, ranged from 5.9 to 17.6 cm. Two different antenna configurations were considered. In the first the antenna had a distal section a quarter-wavelength long (resonant case), while the second had a distal section approximately 13% longer than a quarter-wavelength (non-resonant case). SAR patterns were calculated from theoretical expressions, and displayed as lines of constant SAR normalized to the maximum SAR value in the array. The results show that regions of concentrated power deposition or 'hotspots' occurred in the centre of the array and moved in a complex but predictable fashion as insertion depth was varied. For insertion depths shorter than a resonant half-wavelength, there occurred one hotspot distal to the antenna junctions. As insertion depth was increased beyond a resonant half-wavelength, the hotspot moved proximal to the antenna junctions and eventually split in two. For depths very much longer than a resonant half-wavelength a hotspot centred about the antenna junction dominated the SAR pattern. For the resonant case the maximum SAR was often along the central axis of the array, while for the non-resonant case the maximum SAR was at the antennas with a local maximum on the central axis. PMID:2592787

  7. Single and dual-Gregorian reflector antenna shaped beam far-field synthesis

    Science.gov (United States)

    Mehler, M. J.

    The direct far-field G.O. synthesis of shaped beam reflector antennas has recently been treated by Mehler, Tun and Adatia (1986). These authors use a synthesis technique which exploits complex coordinates and which is based on a method originally considered by Norris and Westcott (1976). They describe the synthesis of single reflector antennas which radiate both elliptical beams and European coverage patterns. Here this technique is extended to consider a class of dual reflector antennas which possess shaped main reflectors and conic subreflectors. An example is given of a Gregorian duel reflector antenna which radiates a cross-polar field significantly smaller than that radiated by single shaped reflector antennas. In addition, the behavior of the radiation pattern as a function of the reflector diameter is investigated.

  8. Leaky-Wave Slot Array Antenna Fed by a Pin-Made Planar Dual Offset Gregorian Reflector System

    NARCIS (Netherlands)

    Ettorre, M.; Neto, A.; Gerini, G.; Maci, S.

    2008-01-01

    This work proposes a leaky-wave slot array antenna fed by a dual offset Gregorian reflector system realized by pins in a parallel plate waveguide. The radiating part of the antenna is composed by parallel slots etched on one side of the same parallel plate waveguide. The dual offset Gregorian reflec

  9. Performance Analysis of Corporate Feed Rectangular Patch Element and Circular Patch Element 4x2 Microstrip Array Antennas

    Directory of Open Access Journals (Sweden)

    Md. Tanvir Ishtaique-ul Huque

    2011-08-01

    Full Text Available This paper present simple, slim, low cost and high gain circular patch and rectangular patch microstrip array antenna, with the details steps of design process, operate in X-band(8 GHz to 12 GHz and it provides a mean to choose the effective one based on the performance analysis of both of these array antennas. The method of analysis, design and development of these array antennas are explained completely here and analyses are carried out for 4x2 arrays. The simulation has been performed by using commercially available antenna simulator, SONNET version V12.56, to compute the current distribution, return loss response and radiation pattern. The proposed antennas are designed by using Taconic TLY-5 dielectric substrate with permittivity, er = 2.2 and height, h =1.588 mm. In all cases we get return losses in the range -4.96 dB to -25.21 dB at frequencies around 10 GHz. The gain of these antennas as simulated are found above 6 dB and side lobe label is maintained lower than main lobe. Operating frequency of these antennas is 10 GHz so these antennas are suitable for X-band application.

  10. An L-Band, Circularly Polarised, Dual-Feed, Cavity-Backed Annular Slot Antenna For Phased-Array Applications

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2006-01-01

    The results of a parametric study for the development of an L-band, circularly polarised, dual-feed, cavity-backed annular slot antenna is presented. The study included detailed numerical simulations and measurements on a prototype with different ground planes, to assess the antenna’s applicability...... as an element in a small phased array antenna....

  11. Highly tunable ultra-narrow-resonances with optical nano-antenna phased arrays in the infrared

    CERN Document Server

    Li, Shi-Qiang; Guo, Peijun; Buchholz, D Bruce; Qiu, Ziwei; Ketterson, John B; Ocola, Leonidas E; Sakoda, Kazuaki; Chang, Robert P H

    2014-01-01

    We report our recent development in pursuing high Quality-Factor (high-Q factor) plasmonic resonances, with vertically aligned two dimensional (2-D) periodic nanorod arrays. The 2-D vertically aligned nano-antenna array can have high-Q resonances varying arbitrarily from near infrared to terahertz regime, as the antenna resonances of the nanorod are highly tunable through material properties, the length of the nanorod, and the orthogonal polarization direction with respect to the lattice surface,. The high-Q in combination with the small optical mode volume gives a very high Purcell factor, which could potentially be applied to various enhanced nonlinear photonics or optoelectronic devices. The 'hot spots' around the nanorods can be easily harvested as no index-matching is necessary. The resonances maintain their high-Q factor with the change of the environmental refractive index, which is of great interest for molecular sensing.

  12. Dynamic Optimal CCI Weight Channel Pre-evaluative Assignment in Adaptive Array Antenna System

    Institute of Scientific and Technical Information of China (English)

    MENG Weixiao; ZHANG Naitong

    2001-01-01

    Dynamic Channel Assignment (DCA)together with Adaptive Array Antenna (AAA) takes an important part in cellular mobile communication system. In this paper, a conception of co-channel in terference (CCI) quantification is advanced in multicell 8-element circular adaptive array antenna system.Normalized CCI weight relational expression, which is concerned in distance and look angle difference is sublimed from experiential sampling, induction and non-linear fitting. Then an algorithm of optimal CCI weight channel pre-evaluation is proposed as a solution of dynamic channel assignment. The least sum of weight value before assignment is used to pre-evaluate the performance of all the channels. Based on an approached practical cellular model, a series of systemclassed simulations are accomplished. Simulation resuits show that this algorithm is quite effective: system capacity is increased greatly; traffic block probabilities are decreased remarkably; nice channel quality is maintained; the reliability of DCA is enhanced; the higher frequency utilization efficiency is also obtained.

  13. Design and performance of acoustic planar array antenna for Doppler sodar

    Directory of Open Access Journals (Sweden)

    A.Kamalakumari

    2012-09-01

    Full Text Available The remote probing of the thermal structure and the wind velocity in the lower atmosphere requires highly directive antennas, which should have a half-power beam width of about ±10° (3-dB points, a 90°-sidelobe suppression of at least 40 dB, little volume reverberation, low wind sensitivity, and be made of weatherproofmaterial. In this paper, various off-axis planar antennas have been built and acoustically evaluated the design aspects, measured results and field patterns of an 8x8 acoustic planar array antennas are described. Tweeter elements are arranged in a planar geometry and are capable of transmitting vertical polarization when placed nearly horizontal, are appropriate for the sodar applications. The performance of 8x8 planar antennas are tested experimentally for the frequencies from 1.8KHz to 4KHz at elevation angles ranging between 0 to 180°.The experimental results, as well as the measured beam widths and field patterns of this antennas, are presented.

  14. Design and Application of Wuhan Ionospheric Oblique Backscattering Sounding System with the Addition of an Antenna Array (WIOBSS-AA)

    Science.gov (United States)

    Cui, Xiao; Chen, Gang; Wang, Jin; Song, Huan; Gong, Wanlin

    2016-01-01

    The Wuhan Ionospheric Oblique Backscattering Sounding System with the addition of an antenna array (WIOBSS-AA) is the newest member of the WIOBSS family. It is a multi-channel radio system using phased-array antenna technology. The transmitting part of this radio system applies an array composed of five log-periodic antennas to form five beams that span an area to the northwest of the radar site. The hardware and the antenna array of the first multi-channel ionosonde in the WIOBSS family are introduced in detail in this paper. An ionospheric detection experiment was carried out in Chongyang, Hubei province, China on 16 March 2015 to examine the performance of WIOBSS-AA. The radio system demonstrated its ability to obtain ionospheric electron density information over a wide area. The observations indicate that during the experiment, the monitored large-area ionospheric F2-layer was calm and electron density increased with decreasing latitude. PMID:27314360

  15. Design and Application of Wuhan Ionospheric Oblique Backscattering Sounding System with the Addition of an Antenna Array (WIOBSS-AA).

    Science.gov (United States)

    Cui, Xiao; Chen, Gang; Wang, Jin; Song, Huan; Gong, Wanlin

    2016-01-01

    The Wuhan Ionospheric Oblique Backscattering Sounding System with the addition of an antenna array (WIOBSS-AA) is the newest member of the WIOBSS family. It is a multi-channel radio system using phased-array antenna technology. The transmitting part of this radio system applies an array composed of five log-periodic antennas to form five beams that span an area to the northwest of the radar site. The hardware and the antenna array of the first multi-channel ionosonde in the WIOBSS family are introduced in detail in this paper. An ionospheric detection experiment was carried out in Chongyang, Hubei province, China on 16 March 2015 to examine the performance of WIOBSS-AA. The radio system demonstrated its ability to obtain ionospheric electron density information over a wide area. The observations indicate that during the experiment, the monitored large-area ionospheric F2-layer was calm and electron density increased with decreasing latitude. PMID:27314360

  16. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    Science.gov (United States)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  17. A Novel Miniaturized Dual Slant-Polarized UWB Antenna Array with Excellent Pattern Symmetry Property for MIMO Applications

    Directory of Open Access Journals (Sweden)

    Zhi Zeng

    2015-01-01

    Full Text Available A novel miniaturized 1 × 10 uniform linear dual slant-polarized UWB antenna array for MIMO base station is presented. The antenna array operates in the frequency band from 1710 to 2690 MHz with a 17.3–18.7 dBi gain in a size of 105 × 1100 × 37 mm. The array element is composed of two single-polarized dipoles evolved from bow-tie antenna with slots on them, which miniaturize the size of the antenna. The 10 array elements are fed through an air dielectric strip-line power splitter. Two parameters, the beam tracking and the beam squint, are presented to quantitatively describe the pattern symmetry property of the antenna. The simulated and measured radiation performances are studied and compared. The results show that the pattern symmetry property of the single antenna element has been improved about 24% compared with the former study, and the antenna array also provides excellent pattern symmetry property.

  18. Generation of OAM Radio Waves with Three Polarizations Using Circular Horn Antenna Array

    OpenAIRE

    2015-01-01

    This paper provides an effective solution of generating OAM-carrying radio beams with all three polarizations: the linear, the left-hand circular, and the right-hand circular polarizations. Through reasonable configuration of phased antenna array using elements with three polarizations, the OAM radio waves with three polarizations for different states can be generated. The vectors of electric fields with different OAM states for all three polarizations are presented and analyzed in detail. Th...

  19. Simulation of Airborne Antenna Array Layout Problems Using Parallel Higher-Order MoM

    OpenAIRE

    Zhongchao Lin; Yu Zhang; Shugang Jiang; Xunwang Zhao; Jingyan Mo

    2014-01-01

    The parallel higher-order Method of Moments based on message passing interface (MPI) has been successfully used to analyze the changes in radiation patterns of a microstrip patch array antenna mounted on different positions of an airplane. The block-partitioned scheme for the large dense MoM matrix and a block-cyclic matrix distribution scheme are designed to achieve excellent load balance and high parallel efficiency. Numerical results demonstrate that the rigorous parallel Method of Moments...

  20. Measured Sensitivity of the First Mark II Phased Array Feed on an ASKAP Antenna

    CERN Document Server

    Chippendale, A P; Beresford, R J; Hampson, G A; Macleod, A; Shaw, R D; Brothers, M L; Cantrall, C; Forsyth, A R; Hay, S G; Leach, M

    2015-01-01

    This paper presents the measured sensitivity of CSIRO's first Mk. II phased array feed (PAF) on an ASKAP antenna. The Mk. II achieves a minimum system-temperature-over-efficiency $T_\\mathrm{sys}/\\eta$ of 78 K at 1.23 GHz and is 95 K or better from 835 MHz to 1.8 GHz. This PAF was designed for the Australian SKA Pathfinder telescope to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array (SKA).

  1. Controlling gradient phase distributions in a model of active antenna array with locally coupled elements

    Science.gov (United States)

    Mishagin, K. G.; Shalfeev, V. D.

    2006-12-01

    The regime of synchronization with a certain gradient phase distribution and the possibility of controlling such distribution in a linear array of oscillators coupled by phase-locked loops (PLLs) have been theoretically studied. It is shown that a constant phase progression can be controlled by manipulating collective dynamics, with oscillator eigenfrequencies and coupling coefficients being the control parameters. The proposed principle of control, based on the nonlinear dynamics of PLL-coupled oscillators, can be used in solving the problems of phasing and controlled beam scanning in antenna arrays operating in different frequency bands.

  2. Optimizing Concentric Circular Antenna Arrays for High-Altitude Platforms Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasser Albagory

    2014-04-01

    Full Text Available Wireless Sensor Networks (WSN has gained interest in many applications and it becomes important to improve its performance. Antennas and communication performance are most important issues of WSN. In this paper, an adaptive concentric circular array (CCA is proposed to improve the link between the sink and sensor nodes. This technique is applied to the new High – Altitude Platform (HAP Wireless Sensor Network (WSN. The proposed array technique is applied for two coverage scenarios; a wider coverage cell of 30 km radius and a smaller cell of 8 km radius. The feasibility of the link is discussed where it shows the possibility of communications between the HAP sink station and sensor nodes located on the ground. The proposed CCA array is optimized using a modified Dolph-Chebyshev feeding function. A comparison with conventional antenna models in literature shows that the link performance in terms of bit energy to noise power spectral density ratio can be improved by up to 11.37 dB for cells of 8 km radius and 16.8 dB in the case of 30 km radius cells that make the link at 2.4 GHz feasible and realizable compared to using conventional antenna techniques.

  3. Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array

    Science.gov (United States)

    Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor

    2010-01-01

    A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.

  4. Parameterizing Quasiperiodicity: Generalized Poisson Summation and Its Application to Modified-Fibonacci Antenna Arrays

    CERN Document Server

    Galdi, V; Pierro, V; Pinto, I M; Felsen, L B; Galdi, Vincenzo; Castaldi, Giuseppe; Pierro, Vincenzo; Pinto, Innocenzo M.; Felsen, Leopold B.

    2005-01-01

    The fairly recent discovery of "quasicrystals", whose X-ray diffraction patterns reveal certain peculiar features which do not conform with spatial periodicity, has motivated studies of the wave-dynamical implications of "aperiodic order". Within the context of the radiation properties of antenna arrays, an instructive novel (canonical) example of wave interactions with quasiperiodic order is illustrated here for one-dimensional (1-D) array configurations based on the "modified-Fibonacci" sequence, with utilization of a two-scale generalization of the standard Poisson summation formula for periodic arrays. This allows for a "quasi-Floquet" analytic parameterization of the radiated field, which provides instructive insights into some of the basic wave mechanisms associated with quasiperiodic order, highlighting similarities and differences with the periodic case. Examples are shown for quasiperiodic infinite and spatially-truncated arrays, with brief discussion of computational issues and potential application...

  5. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    Science.gov (United States)

    D’Addario, Larry R.; Wang, Douglas

    2016-03-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlation are proportional to N2 and dominate at sufficiently large N. Here, we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope’s bandwidth (the so-called “FX” structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with two opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chip memory and the CMACs are reused as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the ICs size and power consumption. It is intended for fabrication in a 32nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76-3.3pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N=4096. The system-level energy efficiency, including board-level I/O, power supplies, and controls, is expected to be 5-7pJ per CMAC operation. Existing correlators for the JVLA (N=32) and ALMA (N=64) telescopes achieve about 5000pJ and 1000pJ, respectively using application-specific ICs (ASICs) in older technologies. To our knowledge, the largest-N existing correlator is LEDA at N=256; it

  6. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    Science.gov (United States)

    D'Addario, Larry R.; Wang, Douglas

    2016-01-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlationare proportional to N2 and dominate at sufficiently large N. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope's bandwidth (the so-called "FX" structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with 2 opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chipmemory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the IC's size and power consumption. It isintended for fabrication in a 32 nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76 to 3.3 pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N = 4096. The system-level energy efficiency, including board-levelI/O, power supplies, and controls, is expected to be 5 to 7 pJ per CMAC operation. Existing correlators for the JVLA (N = 32) and ALMA (N = 64) telescopes achieve about 5000 pJ and 1000 pJ respectively usingapplication-specific ICs in older technologies. To our knowledge, the largest-N existing correlator is LEDA atN = 256; it

  7. A phased array antenna with a broadly steerable beam based on a low-loss metasurface lens

    Science.gov (United States)

    Liu, Yahong; Jin, Xueyu; Zhou, Xin; Luo, Yang; Song, Kun; Huang, Lvhongzi; Zhao, Xiaopeng

    2016-10-01

    A new concept for a gradient phase discontinuity metasurface lens integrated with a phased array antenna possessing a broadly steerable beam is presented in this paper. The metasurface lens is composed of a metallic H-shaped pattern and the metallic square split ring can achieve complete 360° transmission phase coverage at 30° phase intervals. The metasurface can refract an incident plane wave to an angle at will by varying the lattice constant. We demonstrate that the beam steering range of the phased array antenna is between 12° and 85° when the metasurface lens with a refracting electromagnetic wave is employed at 45°. Interestingly, the proposed array antenna has a much higher gain than a conventional phased array antenna at low elevation angles. It is expected that the proposed array antenna will have potential applications in wireless and satellite communications. Furthermore, the proposed array antenna is fabricated easily and is also low in cost due to its microstrip technology.

  8. Exact synthesis of offset multi-reflector antennas using dynamic and kinematic ray tracing

    Science.gov (United States)

    Kildal, P.-S.

    The equations and stepwise procedure of a new synthesis-by-ray tracing method is presented. The usefulness of the technique is demonstrated by synthesizing an offset dual-reflector antenna with low cross-polarization and an offset Gregorian dual-reflector feed for the spherical reflector antenna of the radio telescope in Arecibo. The synthesis method can be extended to synthesize contoured beams.

  9. Conical Conformal Antenna Array Pattern Synthesis Based on Adaptive Algorithm%基于自适应算法的锥面共形天线阵列方向图综合

    Institute of Scientific and Technical Information of China (English)

    胡志慧; 姜永华; 凌祥

    2014-01-01

    以弹载共形相控阵雷达导引头天线为应用背景,将共形天线技术与自适应阵列处理技术相结合,通过欧拉坐标变换,建立了基于有向阵元的锥面共形天线阵列方向图模型,应用了一种基于最大信噪比准则的自适应算法对锥面天线阵列进行了方向图综合。该算法通过对副瓣区域干扰信号的迭代得到一组最优复加权矢量,仿真结果表明该算法可以在三维空间实现对主波束指向以及副瓣电平的控制。%Based on the application of seeker conformal phased array,the technique of conformal array and adaptive theory is used,the conical conformal directional element array is modeled by euler coordinate transformation,a adaptive algorithm based on the formulation of maximum signal-to-noise ration is used to synthesize the conical array pattern. A optimal complex weighted excitation is achieved by the interaction of interfering signals in sidelobe region,the simulation result shows that the mainlobe direction and the sidelobe level can be controlled in the 3D region.

  10. Low-Cost Planar MM-Wave Phased Array Antenna for Use in Mobile Satellite (MSAT) Platforms

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    , dielectric constant, and loss tangent of 0.8 mm, 4.3, and 0.025, respectively. The antenna exhibits good performance in terms of impedance- matching, gain and efficiency characteristics, even though it is designed using high loss substrate with compact dimension (Wsub×Lsub=55×55 mm2). The antenna has more...... than 23 dB realized gain and -0.8 dB radiation efficiency when its beam is tilted to 0o elevation. The center frequency of the designed array can be controlled by adjusting the values of the antenna parameters. Compared with the previous designs, the proposed planar phased array has the advantages...

  11. A Novel Structure of Slot-Antenna Array for Producing Large-Area Planar Surface-Wave Plasmas

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhaoquan; LIU Minghai; ZHOU Peiqin; CHEN Wei; LAN Chaohui; HU Xiwei

    2008-01-01

    The principle of surface wave plasma discharge in a rectangular cavity is introduced and the distribution of the electromagnetic field within a rectangular waveguide is analysed. A novel structure of a slot antenna array is presented. In comparison with the traditional slotantenna, it is shown that the designed slot antenna array can excite effectively the surface wave coupling into the chamber, and generate a stable large-area high-density plasma. These results are useful for exploring the optimized design of the slot-antenna for surface wave plasmas.

  12. Design of On-Chip N-Fold Orbital Angular Momentum Multicasting Using V-Shaped Antenna Array

    Science.gov (United States)

    Du, Jing; Wang, Jian

    2015-01-01

    We design a V-shaped antenna array to realize on-chip multicasting from a single Gaussian beam to four orbital angular momentum (OAM) beams. A pattern search assisted iterative (PSI) algorithm is used to design an optimized continuous phase pattern which is further discretized to generate collinearly superimposed multiple OAM beams. Replacing the designed discrete phase pattern with corresponding V-shaped antennas, on-chip N-fold OAM multicasting is achieved. The designed on-chip 4-fold OAM multicasting exploiting V-shaped antenna array shows favorable operation performance with low crosstalk less than -15 dB. PMID:25951325

  13. Design and Development of Broadband Inverted E-shaped Patch Microstrip Array Antenna For 3G Wireless Network

    Directory of Open Access Journals (Sweden)

    Norbahiah Misran

    2008-01-01

    Full Text Available Microstrip patch antenna has been received tremendous attention since the last two decades and now it becomes a major component in the development of Smart Antenna System for Third-Generation Wireless Network proposed by the ITU-R under the banner of IMT-2000. Smart antenna consists of an array of antennas associated with it a base-band hardware and control unit (inclusive of the software algorithm that have the capability to change its radiation pattern according to the direction of the user. This paper describes the design and development of broadband Inverted E-shaped patch microstrip array antennas for 3G wireless network. The antenna was designed for the IMT-2000 operating frequency range of 1.885–2.200GHz and was built as an array of 4x4 inverted E-shaped patches. The beamforming feed network comprises of commercial variable attenuators (KAT1D04SA002, variable phase shifters (KPH35OSC000, and the corporate 16-ways Wilkinson power divider which was developed in-house. The antenna successfully achieves the bandwidth of 16.14% (at VSWR: 1.5 with respect to the center frequency of 2.045 GHz. The antenna is capable of scanning with the maximum scanning angle of ±30º and ±25º in azimuth and elevation respectively.

  14. Radio Frequency Optics Design of the 12-Meter Antenna for the Array-Based Deep Space Network

    Science.gov (United States)

    Imbriale, W. A.

    2005-02-01

    Development of very large arrays of small antennas has been proposed as a way to increase the downlink capability of the NASA Deep Space Network (DSN) by two or three orders of magnitude, thereby enabling greatly increased science data from currently configured missions or enabling new mission concepts. The current concept is for an array of 400 x 12-meter antennas at each of three longitudes. The DSN array will utilize radio astronomy sources for phase calibration and will have wide bandwidth correlation processing for this purpose. JPL currently is building a 3-element interferometer composed of 6-meter antennas to prove the performance and cost of the DSN array. This article describes the radio frequency (RF) design of the 12-meter reflector that will use the same feed and electronics as the 6-meter antenna. The 6-meter antenna utilized Gregorian optics to enable tests with a low-frequency prime focus feed without removing the subreflector. However, for the 12-meter antenna, maximum gain divided by noise temperature (G/T) is the overriding requirement, and a trade-off study demonstrated that Cassegrain optics is far superior to Gregorian optics for maximum G/T. Hence, the 12-meter antenna utilizes Cassegrain optics.

  15. An LTCC Based Compact SIW Antenna Array Feed Network for a Passive Imaging Radiometer

    KAUST Repository

    Abuzaid, Hattan

    2013-02-05

    Passive millimeter-wave (PMMW) imaging is a technique that allows the detection of inherent millimeter-wave radiation emitted by bodies. Since different bodies with varying properties emit unequal power intensities, a contrast can be established to detect their presence. The advantage of this imaging scheme over other techniques, such as optical and infrared imaging, is its ability to operate under all weather conditions. This is because the relatively long wavelengths of millimeter-waves, as compared to visible light, penetrate through clouds, fog, and sandstorms. The core of a PMMW camera is an antenna, which receives the electromagnetic radiation from a scene. Because PMMW systems require high gains to operate, large antenna arrays are typically employed. This mandatory increase of antenna elements is associated with a large feeding network. Therefore, PMMW cameras usually have a big profile. In this work, two enabling technologies, namely, Substrate integrated Waveguide (SIW) and Low Temperature Co-fired Ceramic (LTCC), are coupled with an innovative design to miniaturize the passive front-end. The two technologies synergize very well with the shielded characteristics of SIW and the high density multilayer integration of LTCC. The proposed design involves a novel multilayer power divider, which is incorporated in a folded feed network structure by moving between layers. The end result is an efficient feeding network, which footprint is least affected by an increase in array size. This is because the addition of more elements is accommodated by a vertical expansion rather than a lateral one. To characterize the feed network, an antenna array has been designed and integrated through efficient transitions.The complete structure has been simulated and fabricated. The results demonstrate an excellent performance, manifesting in a gain of 20 dBi and a bandwidth of more than 11.4% at 35 GHz. These values satisfy the general requirements of a PMMW system.

  16. Phased Array-Fed Reflector (PAFR) Antenna Architectures for Space-Based Sensors

    Science.gov (United States)

    Cooley, Michael E.

    2014-01-01

    Communication link and target ranges for satellite communications (SATCOM) and space-based sensors (e.g. radars) vary from approximately 1000 km (for LEO satellites) to 35,800 km (for GEO satellites). At these long ranges, large antenna gains are required and legacy payloads have usually employed large reflectors with single beams that are either fixed or mechanically steered. For many applications, there are inherent limitations that are associated with the use of these legacy antennas/payloads. Hybrid antenna designs using Phased Array Fed Reflectors (PAFRs) provide a compromise between reflectors and Direct Radiating phased Arrays (DRAs). PAFRs provide many of the performance benefits of DRAs while utilizing much smaller, lower cost (feed) arrays. The primary limitation associated with hybrid PAFR architectures is electronic scan range; approximately +/-5 to +/- 10 degrees is typical, but this range depends on many factors. For LEO applications, the earth FOV is approximately +/-55 degrees which is well beyond the range of electronic scanning for PAFRs. However, for some LEO missions, limited scanning is sufficient or the CONOPS and space vehicle designs can be developed to incorporate a combination mechanical slewing and electronic scanning. In this paper, we review, compare and contrast various PAFR architectures with a focus on their general applicability to space missions. We compare the RF performance of various PAFR architectures and describe key hardware design and implementation trades. Space-based PAFR designs are highly multi-disciplinary and we briefly address key hardware engineering design areas. Finally, we briefly describe two PAFR antenna architectures that have been developed at Northrop Grumman.

  17. Analytical synthesis technique for linear uniform‐amplitude sparse arrays

    NARCIS (Netherlands)

    Caratelli, D.; Viganó, M.C.

    2011-01-01

    A novel analytical approach to the synthesis of linear sparse arrays with uniform‐amplitude excitation is presented and thoroughly discussed in this paper. The proposed technique, based on the auxiliary array factor concept, is aimed at the deterministic determination of the optimal array element de

  18. Antenna-coupled TES bolometers used in BICEP2, Keck array, and SPIDER

    CERN Document Server

    Ade, P A R; Amiri, M; Barkats, D; Benton, S J; Bischoff, C A; Bock, J J; Bonetti, J A; Brevik, J A; Buder, I; Bullock, E; Chattopadhyay, G; Davis, G; Day, P K; Dowell, C D; Duband, L; Filippini, J P; Fliescher, S; Golwala, S R; Halpern, M; Hasselfield, M; Hildebrandt, S R; Hilton, G C; Hristov, V; Hui, H; Irwin, K D; Jones, W C; Karkare, K S; Kaufman, J P; Keating, B G; Kefeli, S; Kernasovskiy, S A; Kovac, J M; Kuo, C L; Leduc, H G; Leitch, E M; Llombart, N; Lueker, M; Mason, P; Megerian, K; Moncelsi, L; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Orlando, A; Pryke, C; Rahlin, A S; Reintsema, C D; Richter, S; Runyan, M C; Schwarz, R; Sheehy, C D; Staniszewski, Z K; Sudiwala, R V; Teply, G P; Tolan, J E; Trangsrud, A; Tucker, R S; Turner, A D; Vieregg, A G; Weber, A; Wiebe, D V; Wilson, P; Wong, C L; Yoon, K W; Zmuidzinas, J

    2015-01-01

    We have developed antenna-coupled transition-edge sensor (TES) bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including BICEP2, Keck Array, and the balloon borne SPIDER. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%-30% bandwidth at 95, 150, or 220~GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typically ~0.5%, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET~300 uKrts. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of ~9 uKrts, as measured directly from CMB...

  19. Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2016-01-01

    Full Text Available A circularly polarized (CP Microstrip Yagi array antenna (MSYA is designed in order to achieve high front-to-back ratio R(F/B and high gain over wide range in the forward radiation space. A Wilkinson power divider owning two output ways with the same magnitude and different phase is used to feed the antenna. Parametric studies are carried out to investigate the effects of some key geometrical sizes on the antenna’s performance. A prototype of the antenna is fabricated, and good agreement between the measured results and the numerical simulations is observed. The overlap bandwidth of VSWR ≤ 1.5 and AR ≤ 3 dB is about 11%. The steering angle (α between the peak gain direction and the broadside can achieve 35°, R(F/B reaches 19 dB, and the gain at the front point (G0 is only 4.3 dB lower than the maximum gain (Gm. The antenna has a wide beamwidth CP radiation pattern over wide spatial range including 0° ≤ θ ≤ 90° in vertical plane and −35° ≤ φ ≤ 55° in horizontal plane.

  20. Design and analysis of an electronically steerable microstrip patch and a novel Coplanar Waveguide (CPW) fed slot antenna array

    Science.gov (United States)

    Aldossary, Hamad

    Conformal Phased Array Antennas (CPAAs) are very attractive for their high gain, low profile, and beam scanning ability while being conformal to their mounting surface. Among them are microstrip patch phased arrays and wideband slot phased arrays which are of particular significance. In this work, first the study, design, and implementation of a conformal microstrip patch phased array is presented which consists of a high gain beam scanning array implemented using microstrip delay lines controlled using GaAs SPDT switches. Then the study and design of a wideband Coplanar Waveguide (CPW)-fed slot phased array antenna is presented. In both cases the array beam scanning properties are elucidated by incorporating the measured delay line scattering parameters inside Ansys Designer simulation models and then computing and presenting their full-wave radiation characteristics.

  1. Theoretical study of two-element array of equilateral triangular patch microstrip antenna on ferrite substrate

    Indian Academy of Sciences (India)

    K K Verma; K R Soni

    2005-09-01

    The radiation characteristics of a two-element array of equilateral triangular patch microstrip antenna on a ferrite substrate are studied theoretically by considering the presence of bias magnetic field in the direction of propagation of electromagnetic waves. It is found that the natural modes of propagation in the direction of magnetic field are left- and right-circularly polarized waves and these modes have different propagation constants. In loss-less isotropic warm plasma, this array antenna geometry excites both electromagnetic (EM) and electroacoustic plasma (P) waves in addition to a nonradiating surface wave. In the absence of an external magnetic field, the EM- and P-waves can be decoupled into two independent modes, the electroacoustic mode is longitudinal while the electromagnetic mode is transverse. The far-zone EM-mode and P-mode radiation fields are derived using vector wave function techniques and pattern multiplication approaches. The results are obtained in both plasma medium and free space. Some important antenna parameters such as radiation conductance, directivity and quality factor are plotted for different values of plasma-to-source frequency.

  2. Microwave reconstruction method using a circular antenna array cooperating with an internal transmitter

    Science.gov (United States)

    Zhou, Huiyuan; Narayanan, Ram M.; Balasingham, Ilangko

    2016-05-01

    This paper addresses the detection and imaging of a small tumor underneath the inner surface of the human intestine. The proposed system consists of an around-body antenna array cooperating with a capsule carrying a radio frequency (RF) transmitter located within the human body. This paper presents a modified Levenberg-Marquardt algorithm to reconstruct the dielectric profile with this new system architecture. Each antenna around the body acts both as a transmitter and a receiver for the remaining array elements. In addition, each antenna also acts as a receiver for the capsule transmitter inside the body to collect additional data which cannot be obtained from the conventional system. In this paper, the synthetic data are collected from biological objects, which are simulated for the circular phantoms using CST studio software. For the imaging part, the Levenberg-Marquardt algorithm, which is a kind of Newton inversion method, is chosen to reconstruct the dielectric profile of the objects. The imaging process involves a two-part innovation. The first part is the use of a dual mesh method which builds a dense mesh grid around in the region around the transmitter and a coarse mesh for the remaining area. The second part is the modification of the Levenberg-Marquardt method to use the additional data collected from the inside transmitter. The results show that the new system with the new imaging algorithm can obtain high resolution images even for small tumors.

  3. Phased array antenna matching: Simulation and optimization of a planar phased array of circular waveguide elements

    Science.gov (United States)

    Dudgeon, J. E.

    1972-01-01

    A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.

  4. Modeling and optimization of the antenna system with focal plane array for the new generation radio telescopes with wide field of view

    CERN Document Server

    Iupikov, O

    2016-01-01

    The model of the reflector antenna system with focal plane array, low-noise amplifier and beamformer is developed in the work. The beamformer strategy is suggested to reduce the receiving sensitivity ripple inside field of view of the telescope, while the sensitivity itself drops slightly (less than 10%). The system APERTIF (which is currently under development in Netherlands Institute For Radioastronomy, ASTRON) has been analyzed using developed model, and numerical results are presented. The obtained numerical results have been verified experimentally in anechoic chamber as well as on one of the dishes of the Westerbork Synthesis Radio Telescope (all measurements have been done in ASTRON).

  5. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    Science.gov (United States)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  6. An Evaluation Method of Small-scale Array Beam of Phased Array Antenna%一种相控阵天线小面阵波束评估方法

    Institute of Scientific and Technical Information of China (English)

    王海; 韩国栋; 张领飞; 武伟

    2016-01-01

    The synthesis of large scale phased array antenna is a difficulty in phased array antenna field. An evaluation method of combining physical test with theoretical derivation is introduced to evaluate the radiation performance of large⁃scale array by analyzing the pattern characteristics of small⁃scale arrays.This paper selects the suitable small⁃scale array,analyzes the pattern specifications of array elements,and obtains the pattern characteristics of small⁃scale array by using simulation and test method. The radiation mode of large⁃scale array is analyzed by using theoretical derivation method to obtain hardily its radiation characteristics. The hardware require⁃ment and test solution for small⁃scale array test are proposed.The test verification is performed with prototype.%大规模相控阵天线的综合问题是相控阵天线领域的技术难点,引入了一种实物测试与理论推导相结合的评估方法,通过分析小型阵列的方向图特性以评估大型阵列辐射性能。选取合适的小面阵规模,对阵中单元的方向图指标进行分析,通过仿真和测试的方法得到小型阵列的方向图特性,并借此通过理论推导的方法对大型阵列的辐射模式进行分析,快速便捷地得出其辐射特性。提出了小面阵试验应具备的硬件条件及测试方法,通过实物样机进行了测试验证。

  7. Development of an array-antenna GPR system (SAR-GPR)

    Science.gov (United States)

    Sato, Motoyuki; Feng, Xuan; Kobayashi, Takao; Zhou, Zheng-Shu; Savelyev, Timofei G.; Fujiwara, Jun

    2005-06-01

    SAR-GPR is a sensor system composed of a GPR and a metal detector for landmine detection. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. This system combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30cm, composed from 6 Vivaldi antennas and 3 vector network analyzers. The weight of the system is less than 30kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan, and some results on this test are reported.

  8. Parabolic antennas, and circular slot arrays, for the generation of Non-Diffracting Beams of Microwaves

    CERN Document Server

    Zamboni-Rached, Michel

    2014-01-01

    We propose in detail Antennas for generating Non-Diffracting Beams of Microwaves, for instance with frequencies of the order of 10 GHz, obtaining fair results even when having recourse to realistic apertures endowed with reasonable diameters. Our first proposal refers mainly to sets of suitable annular slits, having in mind various possible applications, including remote sensing. Our second proposal --which constitutes one of the main aims of this paper-- refers to the alternative, rather simple, use of a Parabolic Reflector, illuminated by a spherical wave source located on the paraboloid axis but slightly displaced with respect to the Focus of the Paraboloid. Such a parabolic reflector yields "extended focus" (non-diffracting) beams. [OCIS codes: 999.9999; 070.7545; 050.1120; 280.0280; 050.1755; 070.0070; 200.0200. Keywords: Non-Diffracting Waves; Microwaves; Remote sensing; Annular Arrays; Bessel beams; Extended focus; Reflecting paraboloids; Parabolic reflectors; Parabolic antennas].

  9. Design Concepts For A Long Pulse Upgrade For The DIII-D Fast Wave Antenna Array

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Philip Michael [ORNL; Baity Jr, F Wallace [ORNL; Caughman, John B [ORNL; Goulding, Richard Howell [ORNL; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Greenough, Nevell [Princeton Plasma Physics Laboratory (PPPL); Nagy, Alex [Princeton Plasma Physics Laboratory (PPPL); Pinsker, R. [General Atomics; Rasmussen, David A [ORNL

    2009-01-01

    A goal in the 5-year plan for the fast wave program on DIII-D is to couple a total of 3.6 MW of RF power into a long pulse, H-mode plasma for central electron heating. The present short-pulse 285/300 antenna array would need to be replaced with one capable of at least 1.2 MW, 10 s operation at 60 MHz into an H-mode (low resistive loading) plasma condition. The primary design under consideration uses a poloidally-segmented strap (3 sections) for reduced strap voltage near the plasma/Faraday screen region. Internal capacitance makes the antenna structure self-resonant at 60 MHz, strongly reducing peak E-fields in the vacuum coax and feed throughs.

  10. Joint Angle and Delay Estimation (JADE) in Antenna Array CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The estimate of signals parameters is very important in wireless communications. In this paper, we combine subspace-based blind channel estimation algorithm with the extension of the JADE-WSF algorithm to jointly estimate the Angles-of-Arrival (AOAs) and delays of multipath signals arriving at an antenna array in Code Division Multiple Access (CDMA) systems. Our approach uses a collection of estimates of a consistent chip-sample of space-time vector channel. The channel estimates are assumed to have constant path AOA and delay over a finite number of symbols. Unlike the traditional MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithms for the estimation of signals parameters, the proposed method can work when the number of paths exceeds the number of antennas. The Cramer-Rao Bound (CRB) and simulations are provided.

  11. Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array--Low Frequency Demonstrator

    CERN Document Server

    Bowman, J D; Briggs, F H; Corey, B E; Lynch, M J; Bhat, N D R; Cappallo, R J; Doeleman, S S; Fanous, B J; Herne, D; Hewitt, J N; Johnston, C; Kasper, J C; Kocz, J; Kratzenberg, E; Lonsdale, C J; Morales, M F; Oberoi, D; Salah, J E; Stansby, B; Stevens, J; Torr, G; Wayth, R; Webster, R L; Wyithe, J S B; Bowman, Judd D.; Barnes, David G.; Briggs, Frank H.; Corey, Brian E.; Lynch, Merv J.; Cappallo, Roger J.; Doeleman, Sheperd S.; Fanous, Brian J.; Herne, David; Hewitt, Jacqueline N.; Johnston, Chris; Kasper, Justin C.; Kocz, Jonathon; Kratzenberg, Eric; Lonsdale, Colin J.; Morales, Miguel F.; Oberoi, Divya; Salah, Joseph E.; Stansby, Bruce; Stevens, Jamie; Torr, Glen; Wayth, Randall; Webster, Rachel L.

    2006-01-01

    Experiments were performed with prototype antenna tiles for the Mileura Widefield Array--Low Frequency Demonstrator (MWA-LFD) to better understand the widefield, wideband properties of their design and to characterize the radio frequency interference (RFI) between 80 and 300 MHz at the site in Western Australia. Observations acquired during the six month deployment confirmed the predicted sensitivity of the antennas, sky-noise dominated system temperatures, and phase-coherent interferometric measurements. The radio spectrum is remarkably free of strong terrestrial signals, with the exception of two narrow frequency bands allocated to satellite downlinks and rare bursts due to ground-based transmissions being scattered from aircraft and meteor trails. Results indicate the potential of the MWA-LFD to make significant achievements in its three key science objectives: epoch of reionziation science, heliospheric science, and radio transient detection.

  12. Shaping and resizing of multifed slot radiators used in conformal microwave antenna arrays for hyperthermia treatment of large superficial diseases.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Juang, Titania; De Luca, Valeria; Rangarao, Sneha; Neumann, Daniel; Martins, Carlos Daniel; Craciunescu, Oana; Stauffer, Paul R

    2009-01-01

    It has been recently shown that chestwall recurrence of breast cancer and many other superficial diseases can be successfully treated with the combination of radiation, chemotherapy and hyperthermia. Conformal microwave antenna array for hyperthermia treatment of large area superficial diseases can significantly increase patient comfort while at the same time facilitate treatment of larger and more irregularly shaped disease. A large number of small efficient antennas is preferable for improved control of heating, as the disease can be more accurately contoured and the lower power requirement correlates with system reliability, linearity and reduced cost. Thus, starting from the initially proposed square slot antennas, we investigated new designs for multi-fed slot antennas of several shapes that maximize slot perimeter while reducing radiating area, thus increasing antenna efficiency. Simulations were performed with commercial electromagnetic simulation software packages (Ansoft HFSS) to demonstrate that the antenna size reduction method is effective for several dual concentric conductor (DCC) aperture shapes and operating frequencies. The theoretical simulations allowed the development of a set of design rules for multi-fed DCC slot antennas that facilitate conformal heat treatments of irregular size and shape disease with large multi-element arrays. Independently on the shape, it is shown that the perimeter of 10cm at 915 MHz delivers optimal radiation pattern and efficiency. While the maximum radiation is obtained for a circular pattern the rectangular shape is the one that feels more efficiently the array space.

  13. Shaping and resizing of multifed slot radiators used in conformal microwave antenna arrays for hyperthermia treatment of large superficial diseases.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Juang, Titania; De Luca, Valeria; Rangarao, Sneha; Neumann, Daniel; Martins, Carlos Daniel; Craciunescu, Oana; Stauffer, Paul R

    2009-01-01

    It has been recently shown that chestwall recurrence of breast cancer and many other superficial diseases can be successfully treated with the combination of radiation, chemotherapy and hyperthermia. Conformal microwave antenna array for hyperthermia treatment of large area superficial diseases can significantly increase patient comfort while at the same time facilitate treatment of larger and more irregularly shaped disease. A large number of small efficient antennas is preferable for improved control of heating, as the disease can be more accurately contoured and the lower power requirement correlates with system reliability, linearity and reduced cost. Thus, starting from the initially proposed square slot antennas, we investigated new designs for multi-fed slot antennas of several shapes that maximize slot perimeter while reducing radiating area, thus increasing antenna efficiency. Simulations were performed with commercial electromagnetic simulation software packages (Ansoft HFSS) to demonstrate that the antenna size reduction method is effective for several dual concentric conductor (DCC) aperture shapes and operating frequencies. The theoretical simulations allowed the development of a set of design rules for multi-fed DCC slot antennas that facilitate conformal heat treatments of irregular size and shape disease with large multi-element arrays. Independently on the shape, it is shown that the perimeter of 10cm at 915 MHz delivers optimal radiation pattern and efficiency. While the maximum radiation is obtained for a circular pattern the rectangular shape is the one that feels more efficiently the array space. PMID:24352575

  14. Equivalent Joint Space-Time Multiuser Detection for Uplink ISI-Corrupted Multicarrier CDMA Systems with Arbitrary Antenna Arrays

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The multicarrier code division multiple access (MC-CDMA) systems without cyclic prefix (CP) hold a finespectral efficiency though they are unavoidably corrupted by the intersymbol interference (ISI) over the finite impulseresponse (FIR) channel. We call MC-CDMA systems without CP the ISI-corrupted MC-CDMA systems in some sense.Considering the fact that combining antenna arrays with so-called ISI-corrupted MC-CDMA systems is advantageous insuppressing cochannel interference in cellular communication systems, this paper investigates ISI-corrupted MC-CDMAsystems with base station antenna arrays. Joint space-time multiuser detection (MUD) schemes for DS-CDMA systemswith antenna arrays have drawn much attention recently. Based upon them, we can derive the equivalent joint spatial-temporal MUD scheme for ISI-corrupted MC-CDMA systems with antenna arrays. In order to achieve this goal, anequivalent space-time estimation method of uplink vector channel is first derived for the ISI-corrupted MC-CDMA systemwith the arbitrary antenna array over frequency-selective fading channels. Then, based on the estimated equivalent space-time channel, an equivalent joint space-time multiuser detector is constructed. Computer simulations illustrate that ouralgorithm is more robust against noise and can well mitigate multiple access interference (MAI) in multiuser scenarios.

  15. NEW LSCM BLIND MULTIUSER DETECTION ALGORITHM FOR ANTENNA ARRAY CDMA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two blind multiuser detection algorithms for antenna array in Code Division Multiple Access (CDMA) system which apply the linearly constrained condition to the Least Squares Constant Modulus Algorithm (LSCMA) are proposed in this paper. One is the Linearly Constrained LSCMA (LC-LSCMA), the other is the Preprocessing LC-LSCMA (PLC-LSCMA). The two algorithms are compared with the conventional LSCMA. The results show that the two algorithms proposed in this paper are superior to the conventional LSCMA and the best one is PLC-LSCMA.

  16. Development of uncooled antenna-coupled microbolometer arrays for explosive detection and identification

    Science.gov (United States)

    Simoens, F.; Arnaud, A.; Castelein, P.; Goudon, V.; Imperinetti, P.; Lalanne Dera, J.; Meilhan, J.; Ouvier Buffet, J. L.; Pocas, S.; Maillou, T.; Hairault, L.; Gellie, P.; Barbieri, S.; Sirtori, C.

    2010-10-01

    Uncooled antenna-coupled microbolometer focal plane arrays have been specifically tailored for optimum performance in the 1-5 Terahertz range. A prototyping batch of 160 × 120 pixel chips has been designed and then processed above 8" silicon substrates. An actively illuminated system has been experimentally tested where Quantum Cascade Lasers (QCLs) are associated with the room-temperature operating 2D sensor. Whereas explosives samples were introduced in the THz beam optical path, the profile of the modified beam has been sensed by a unique pixel translated via an X-Y stage. These represent the first demonstration essays of explosive identification using our system.

  17. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    Science.gov (United States)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  18. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves

    Science.gov (United States)

    Rivera-Lavado, Alejandro; García-Muñoz, Luis-Enrique; Generalov, Andrey; Lioubtchenko, Dmitri; Abdalmalak, Kerlos-Atia; Llorente-Romano, Sergio; García-Lampérez, Alejandro; Segovia-Vargas, Daniel; Räisänen, Antti V.

    2016-09-01

    In this manuscript, the use of dielectric rod waveguide (DRW) antennas in the millimeter and sub-millimeter wave range is presented as a solution for covering two issues: getting more radiated power and filling a technological gap problem in the terahertz band, namely a fully electronic beam steering. A 4x4 element array working at 100 GHz fed by a rectangular waveguide is manufactured and measured for showing its capabilities. This topology can be used as a cost-affordable alternative to dielectric lenses in photomixer-based terahertz sources.

  19. A COMBINED FULL-WAVE BCG-FFT METHOD FOR RADIATION OF MICROSTRIP ANTENNA ARRAYS

    Institute of Scientific and Technical Information of China (English)

    Zhang Hou; Peng Hongli; Liu Qizhong; Yin Yingzeng; Gong Shuxi

    2001-01-01

    A method of combining BiConjugate Gradient(BCG) with Fast Fourier Transform(FFT) to analyze the radiation of microstrip antenna arrays is presented, where the spatially discrete BCG-FFT for analyzing microstrip structure is used and the del operators on Green's functions are transferred from the singular kernel to the expansion and testing functions. The resultant equations are solved by using BCG method in which the matrix-vector product is evaluated efficiently with FFT. The calculated patterns are in good agreement with the measured data.

  20. Spatial-frequency-phase-time modulation of radio pulses in transmitting phased-array antennas

    OpenAIRE

    Gomozov, V. I.

    1995-01-01

    The work in this area was started by V.I. Gomozov and V.I. Zamyatin in 1978. Similar papers of foreign authors were published for the first time in 1988-1991. It is shown that in comparison with traditional spatial-phase modulation the proposed reciprocally matched spatial-frequency-phase-time modulation of radio pulses in the channels of transmitting Phased Array Antennas (PAA) has the following principal merits: duration of microwave radiation Focused Radio Pulse (FRP) is determined by the ...

  1. The electronic switching spherical array antenna for the Earth Radiation Budget Spacecraft

    Science.gov (United States)

    Kudrna, K.; Hockensmith, R. P.

    1983-01-01

    The ESSA is a microprocessor-controlled antenna for low orbiting spacecraft for telemetry and command relay through the Tracking and Data Relay Satellite System (TDRSS). The array is a hemispherical shape covered with disk radiating elements. A group of radiating elements are continuously selected by the microprocessor controller to form a beam in the direction of a TDRS. A radial switching power divider uses PIN diodes to select the desired radiating elements. The antenna gain is a function of the size of the hemispherical dome. A 30-inch diameter dome is presently being built for the Earth Radiation Budget Spacecraft (ERBS). Gain of this antenna over a hemisphere is 14 dBi and polarization is lefthand circular. There are 145 radiating elements with 12 being used at one time to form a beam. The ESSA subsystem weights 74 pounds and power consumption is 20 watts. RF power handling capability is 30 watts. The S-Band radiating elements have a 10 percent bandwidth that allows simultaneous transmission and reception.

  2. FAILURE CORRECTION OF LINEAR ARRAY ANTENNA WITH MULTIPLE NULL PLACEMENT USING CUCKOO SEARCH ALGORITHM

    Directory of Open Access Journals (Sweden)

    R. Muralidaran

    2014-03-01

    Full Text Available The influence of evolutionary algorithms enhanced its scope of getting its existence in almost every complex optimization problems. In this paper, cuckoo search algorithm, an algorithm based on the brood parasite behavior along with Levy weights has been proposed for the radiation pattern correction of a linear array of isotropic antennas with uniform spacing when failed with more than one antenna element. Even though deterioration produced by the failure of antenna elements results in various undesirable effects, consideration in this paper is given to the correction of side lobe level and null placement at two places. Various articles in the past have already shown that the idea to correct the radiation pattern is to alter the amplitude weights of the remaining unfailed elements, instead of replacing the faulty elements. This approach is made use of modifying the current excitations of unfailed elements using cuckoo search algorithm such that the resulting radiation pattern is similar to the unfailed original pattern in terms of side lobe level and null placement at two places. Examples shown in this paper demonstrate the effectiveness of this algorithm in achieving the desired objectives.

  3. RF MEMS Phase Shifters and their Application in Phase Array Antennas

    Science.gov (United States)

    Scardelletti, Maximilian; Ponchak, George E.; Zaman, Afroz J.; Lee, Richard Q.

    2005-01-01

    Electronically scanned arrays are required for space based radars that are capable of tracking multiple robots, rovers, or other assets simultaneously and for beam-hopping communication systems between the various assets. ^Traditionally, these phased array antennas used GaAs Monolithic Microwave Integrated Circuit (MMIC) phase shifters, power amplifiers, and low noise amplifiers to amplify and steer the beam, but the development of RF MEMS switches over the past ten years has enabled system designers to consider replacing the GaAs MMIC phase shifters with RF Micro-Electro Mechanical System (MEMS) phase shifters. In this paper, the implication of replacing the relatively high loss GaAs MMICs with low loss MEMS phase shifters is investigated.

  4. Terahertz Coded Aperture Mask using a Vanadium Dioxide Bowtie Antenna Array

    CERN Document Server

    Nadri, Souheil; Kittiwatanakul, Lin; Arsenovic, Alex; Lu, Jiwei; Wolf, Stu; Weikle, Robert M

    2015-01-01

    Terahertz imaging systems have received substantial attention from the scientific community for their use in astronomy, spectroscopy, plasma diagnostics and security. One approach to designing such systems is to use focal plane arrays. Although the principle of these systems is straightforward, realizing practical architectures has proven deceptively difficult. A different approach to imaging consists of spatially encoding the incoming flux of electromagnetic energy prior to detection using a reconfigurable mask. This technique is referred to as coded aperture or Hadamard imaging. This paper details the design, fabrication and testing of a prototype coded aperture mask operating at WR 1.5 (500 to 750 GHz) that uses the switching properties of vanadium dioxide (VO2). The reconfigurable mask consists of bowtie antennas with vanadium dioxide VO2 elements at the feed points. From the symmetry, a unit cell of the array can be represented by an equivalent waveguide whose dimensions limit the maximum operating frequ...

  5. Design and Implementation of a Beam Forming Network for a Phased Array Antenna

    Directory of Open Access Journals (Sweden)

    S. Devimeena

    2015-03-01

    Full Text Available This dissertation presents a beam forming network (BFN for phased array antenna-based on coherently radiating periodic structure (CORPS. The elements of CORPS are selected in such a way to obtain broad band characteristics, good return loss and good isolation between the radiating elements. These elements were arranged in such a way that the BFN naturally produces Gaussian amplitude. This methodology reduces the complexity of the conventional phased array design making it more flexible and minimizing the loss of energy inside the structure. A phase shifter design is proposed for the CORPS. The entire BFN’s sub-blocks have been designed for the frequency band of 5.925 GHz to 6.425 GHz, which find applications in communication satellite, fixed wireless systems.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.46-52, DOI:http://dx.doi.org/10.14429/dsj.65.6940

  6. FPGA-Based Communications Receivers for Smart Antenna Array Embedded Systems

    Directory of Open Access Journals (Sweden)

    James Millar

    2006-10-01

    Full Text Available Field-programmable gate arrays (FPGAs are drawing ever increasing interest from designers of embedded wireless communications systems. They outpace digital signal processors (DSPs, through hardware execution of a wide range of parallelizable communications transceiver algorithms, at a fraction of the design and implementation effort and cost required for application-specific integrated circuits (ASICs. In our study, we employ an Altera Stratix FPGA development board, along with the DSP Builder software tool which acts as a high-level interface to the powerful Quartus II environment. We compare single- and multibranch FPGA-based receiver designs in terms of error rate performance and power consumption. We exploit FPGA operational flexibility and algorithm parallelism to design eigenmode-monitoring receivers that can adapt to variations in wireless channel statistics, for high-performing, inexpensive, smart antenna array embedded systems.

  7. FPGA-Based Communications Receivers for Smart Antenna Array Embedded Systems

    Directory of Open Access Journals (Sweden)

    Millar James

    2006-01-01

    Full Text Available Field-programmable gate arrays (FPGAs are drawing ever increasing interest from designers of embedded wireless communications systems. They outpace digital signal processors (DSPs, through hardware execution of a wide range of parallelizable communications transceiver algorithms, at a fraction of the design and implementation effort and cost required for application-specific integrated circuits (ASICs. In our study, we employ an Altera Stratix FPGA development board, along with the DSP Builder software tool which acts as a high-level interface to the powerful Quartus II environment. We compare single- and multibranch FPGA-based receiver designs in terms of error rate performance and power consumption. We exploit FPGA operational flexibility and algorithm parallelism to design eigenmode-monitoring receivers that can adapt to variations in wireless channel statistics, for high-performing, inexpensive, smart antenna array embedded systems.

  8. Thermal imaging of plasma with a phased array antenna in QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kishore, E-mail: mishra@triam.kyushu-u.ac.jp; Nagata, K.; Akimoto, R.; Banerjee, S. [IGSES, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Idei, H.; Zushi, H.; Hanada, K.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Onchi, T.; Kuzmin, A. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, M. K. [Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011 (Japan)

    2014-11-15

    A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversion region and its position is successfully reconstructed using phase array technique which is done in post processing.

  9. Leaky-Wave Slot Array Antenna Fed by a Pin-Made Planar Dual Offset Gregorian Reflector System

    OpenAIRE

    M. Ettorre; Neto, A.; Gerini, G.; Maci, S.

    2008-01-01

    This work proposes a leaky-wave slot array antenna fed by a dual offset Gregorian reflector system realized by pins in a parallel plate waveguide. The radiating part of the antenna is composed by parallel slots etched on one side of the same parallel plate waveguide. The dual offset Gregorian reflector system is fed by an arrangement constituted by two vias and a grid, also constituted by pins. A prototype of the antenna has been designed, manufactured and successfully tested. The low profile...

  10. Constant Envelope Precoding for Power-Efficient Downlink Wireless Communication in Multi-User MIMO Systems Using Large Antenna Arrays

    CERN Document Server

    Mohammed, Saif Khan

    2011-01-01

    We consider downlink cellular multi-user communication between a base station (BS) having N antennas and M single-antenna users, i.e., an N X M Gaussian Broadcast Channel (GBC). Under an average only total transmit power constraint (APC), large antenna arrays at the BS (having tens to a few hundred antennas) have been recently shown to achieve remarkable multi-user interference (MUI) suppression with simple precoding techniques. However, building large arrays in practice, would require cheap/power-efficient Radio-Frequency(RF) electronic components. The type of transmitted signal that facilitates the use of most power-efficient RF components is a constant envelope (CE) signal. Under certain mild channel conditions (including i.i.d. fading), we analytically show that, even under the stringent per-antenna CE transmission constraint (compared to APC), MUI suppression can still be achieved with large antenna arrays. Our analysis also reveals that, with a fixed M and increasing N, the total transmitted power can b...

  11. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  12. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  13. Substrate-guided wave true-time delay network for phased array antenna steering

    Science.gov (United States)

    Fu, Zhenhai

    2000-11-01

    Military and civilian wireless communication systems require compact phased array antenna systems with high performance. Unlike narrow-bandwidth phase shifters or bulky and lossy metallic time delay lines, photonic true- time delay lines open the possibility of high-performance antenna systems, while at the same time meeting the stringent weight and size requirements. Substrate-guided wave true-time delay lines, which have many advantages over other proposed structures, are proposed herein. The system structures of one-dimensional and two-dimensional antenna arrays based on the proposed true-time delay modules, along with the corresponding signal distribution methods for both transmit and receive modes were proposed and discussed. To demonstrate the generation and detection of microwave- encoded optical signal sources for the optically controlled antenna array, up to 50 GHz microwave signals with greater than 20 dB signal-to-noise ratios were generated by the optical heterodyning of two lasers with slightly different wavelengths at 786 nm or 1550 nm, demodulated by an ultra-fast photodetector, and then measured by a spectrum analyzer. The diffraction efficiencies of volume holographic gratings recorded on DuPont photopolymer for S-wave, P- wave, and random wave under different wavelengths were investigated in detail. The shrinkage effect of the holographic grating was compensated for by a proposed method shown herein. A simple method was also used to equalize the fanout beams to within +/-5%. Based on the above fabrication techniques, up to 7-bit TTD modules working at 850 nm and 1550 nm, which have the most number of bits and the highest packing density ever reported, were fabricated and packaged. The delay steps of the fabricated delay modules were experimentally confirmed using an original setup based on a femto-second laser, a high-speed photodetector, and the equivalent time sampling technique. The bandwidth of the delay module is experimentally confirmed to

  14. A Tutorial on Optical Feeding of Millimeter-Wave Phased Array Antennas for Communication Applications

    Directory of Open Access Journals (Sweden)

    Ivan Aldaya

    2015-01-01

    Full Text Available Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.

  15. Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Zalkovskij, Maksim;

    2015-01-01

    antenna array. The carrier multiplication is probed by the frequency shift of the resonance of the antenna array due to the change of the local refractive index of the substrate. Experimental results and simulations show that the carrier density in silicon increases by over seven orders of magnitude in......We report on the observation of ultrafast impact ionization and carrier generation in high resistivity silicon induced by intense subpicosecond terahertz transients. Local terahertz peak electric fields of several MV cm−1 are obtained by field enhancement in the near field of a resonant metallic...

  16. 24-GHz LTCC Fractal Antenna Array SoP With Integrated Fresnel Lens

    KAUST Repository

    Ghaffar, Farhan Abdul

    2012-09-30

    A novel 24-GHz mixed low-temperature co-fired ceramic (LTCC) tape based system-on-package (SoP) is presented, which incorporates a fractal antenna array with an integrated grooved Fresnel lens. The four-element fractal array employs a relatively low dielectric constant substrate (CT707, εr = 6.4), whereas the lens has been realized on a high-dielectric-constant superstrate (CT765, εr = 68.7 ). The two (substrate and superstrate) are integrated through four corner posts to realize the required air gap (focal distance). The fractal array alone provides a measured gain of 8.9 dBi. Simulations predict that integration of this array with the lens increases the gain by 6 dB. Measurements reveal that the design is susceptible to LTCC fabrication tolerances. In addition to high gain, the SoP provides a bandwidth of 8%. The high performance and compact size (24 × 24 × 4.8 mm3 ) of the design makes it highly suitable for emerging wireless applications such as automotive radar front end.

  17. Smart antennas

    CERN Document Server

    Godara, Lal Chand

    2004-01-01

    INTRODUCTION Antenna GainPhased Array AntennaPower Pattern Beam Steering Degree of Freedom Optimal AntennaAdaptive AntennaSmart AntennaSummary NARROWBAND PROCESSINGSignal Model Conventional BeamformerNull Steering BeamformerOptimal BeamformerOptimization Using Reference SignalBeam Space Processing Effect of ErrorsNotation and AbbreviationsReferencesADAPTIVE PROCESSINGSample Matrix Inversion AlgorithmUnconstrained Least Mean Squares AlgorithmNormalized Least Mean Squares AlgorithmConstrained

  18. Computationally Efficient Blind Code Synchronization for Asynchronous DS-CDMA Systems with Adaptive Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Chia-Chang Hu

    2005-04-01

    Full Text Available A novel space-time adaptive near-far robust code-synchronization array detector for asynchronous DS-CDMA systems is developed in this paper. There are the same basic requirements that are needed by the conventional matched filter of an asynchronous DS-CDMA system. For the real-time applicability, a computationally efficient architecture of the proposed detector is developed that is based on the concept of the multistage Wiener filter (MWF of Goldstein and Reed. This multistage technique results in a self-synchronizing detection criterion that requires no inversion or eigendecomposition of a covariance matrix. As a consequence, this detector achieves a complexity that is only a linear function of the size of antenna array (J, the rank of the MWF (M, the system processing gain (N, and the number of samples in a chip interval (S, that is, 𝒪(JMNS. The complexity of the equivalent detector based on the minimum mean-squared error (MMSE or the subspace-based eigenstructure analysis is a function of 𝒪((JNS3. Moreover, this multistage scheme provides a rapid adaptive convergence under limited observation-data support. Simulations are conducted to evaluate the performance and convergence behavior of the proposed detector with the size of the J-element antenna array, the amount of the L-sample support, and the rank of the M-stage MWF. The performance advantage of the proposed detector over other DS-CDMA detectors is investigated as well.

  19. Theoretical study of 2 × 2 element planar array of equilateral triangular patch microstrip antenna in plasma medium

    Indian Academy of Sciences (India)

    K K Verma; K R Soni

    2005-01-01

    The radiation properties of 2 × 2 element planar array of equilateral triangular patch microstrip antenna in plasma medium are studied. The array factor and far-zone EM-mode and P-mode radiation fields of the array geometry are derived using vector wave function techniques and pattern multiplication approaches. The total field patterns and various characteristics of pattern such as half power beam width (HPBW), first null beam width (FNBW) and direction of maximum radiation are computed for two different values of progressive phase excitation difference between the elements. The results of this array geometry are obtained both in plasma medium and in free space and compared with those of single element equilateral triangular patch microstrip antenna.

  20. Effects of Antenna Beam Chromaticity on Redshifted 21~cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    CERN Document Server

    Thyagarajan, Nithyanandan; DeBoer, David; Bowman, Judd; Ewall-Wice, Aaron; Neben, Abraham; Patra, Nipanjana

    2016-01-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21~cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a framework to set cosmologica...

  1. Demonstration of a micromachined planar distribution network in gap waveguide technology for a linear slot array antenna at 100 GHz

    Science.gov (United States)

    Rahiminejad, S.; Zaman, A. U.; Haasl, S.; Kildal, P.-S.; Enoksson, P.

    2016-07-01

    The need for high frequency antennas is rapidly increasing with the development of new wireless rate communication technology. Planar antennas have an attractive form factor, but they require a distribution network. Microstrip technology is most commonly used at low frequency but suffers from large dielectric and ohmic losses at higher frequencies and particularly above 100 GHz. Substrate-integrated waveguides also suffer from dielectric losses. In addition, standard rectangular waveguide interfaces are inconvenient due to the four flange screws that must be tightly fastened to the antenna to avoid leakage. The current paper presents a planar slot array antenna that does not suffer from any of these problems. The distribution network is realized by micromachining using low-loss gap waveguide technology, and it can be connected to a standard rectangular waveguide flange without using any screws or additional packaging. To realize the antenna at these frequencies, it was fabricated with micromachining, which offers the required high precision, and a low-cost fabrication method. The antenna was micromachined with DRIE in two parts, one silicon-on-insulator plate and one Si plate, which were both covered with Au to achieve conductivity. The input reflection coefficient was measured to be below 10 dB over a 15.5% bandwidth, and the antenna gain was measured to be 10.4 dBi, both of which are in agreement with simulations.

  2. Optical antenna arrays of carbon nanotubes and their fabrication on polyimide and transparent conducting oxides for direct device integration

    Science.gov (United States)

    Wang, Y.; Kempa, K.; Kimball, B.; Ren, Z. F.

    2005-11-01

    Vertically-aligned carbon nanotubes/nanofibers grown on various substrates by a direct-current plasma-enhanced chemical vapor deposition method have been shown experimentally to function as classical low-loss dipole antenna arrays at optical frequencies. Two fundamental antenna effects, e.g., the polarization effect and length matching effect, directly observed on large-scale CNT arrays in visible frequency range, hold them promising for industry-level fabrication of devices including linear/beam-splitting polarizers, solar energy converters, THz demodulators, etc., some of which will, however, require or prefer a flexible and/or transparent conducting substrate to be compatible for multi-level integration and low-cost manufacturing process. A low-energy dark discharge fabrication technique is therefore devised which successfully yields CNT antennas directly on polyimide films and transparent conducting oxides (ITO, ZnO) with the absence of a buffer layer.

  3. System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications

    Science.gov (United States)

    Windyka, John A.; Zablocki, Ed G.

    1997-01-01

    This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.

  4. 毫米波微带天线阵列设计%Design of a millimeter wave microstrip antenna array

    Institute of Scientific and Technical Information of China (English)

    于慧娟

    2016-01-01

    A circular aperture millimeter wave series and parallel fed microstrip antenna array was proposed. The antenna was designed with rectangular microstrip patch which was fed by slot-coupled to increase the bandwidth. A series-fed microstrip antenna array was selected in order to use the antenna aperture area effectively and decrease the net complexity. At the same time, according to design of the circular aperture millimeter wave micro-strip antenna array, the part array was series and parallel fed to increase the bandwidth of the microstrip antenna. Results show that the bandwidth of the antenna is about 5%. The simulation result of the antenna’s gain is better than 30.6 dBi in working band. The beam width is about 4.0°×3.5° and the side lobe level is lower than –13 dB. Multi beam and phased array functions can be realized with the antenna array and the net.%设计了一个圆口径串并联混合馈电的毫米波微带天线阵列。该天线采用矩形微带工字型缝隙贴片耦合馈电的方法展宽带宽。为了有效利用天线口径面积,减小网络复杂度,选取串联微带天线阵列形式。同时为了展宽带宽,根据设计的圆形口径阵列,将部分子阵采用串并联混合馈电的形式,得到带宽为5%的毫米波微带天线阵列。仿真表明,该天线在工作频带内增益大于30.6 dBi,波束宽度为4.0°×3.5°,副瓣电平低于–13 dB。该天线阵面与网络配合,可以实现多波束或相控阵的功能。

  5. Nature-inspired Cuckoo Search Algorithm for Side Lobe Suppression in a Symmetric Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    K. N. Abdul Rani

    2012-09-01

    Full Text Available In this paper, we proposed a newly modified cuckoo search (MCS algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL and/or nulls control. The basic cuckoo search (CS algorithm is primarily based on the natural obligate brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior of some birds and fruit flies. The CS metaheuristic approach is straightforward and capable of solving effectively general N-dimensional, linear and nonlinear optimization problems. The array geometry synthesis is first formulated as an optimization problem with the goal of SLL suppression and/or null prescribed placement in certain directions, and then solved by the newly MCS algorithm for the optimum element or isotropic radiator locations in the azimuth-plane or xy-plane. The study also focuses on the four internal parameters of MCS algorithm specifically on their implicit effects in the array synthesis. The optimal inter-element spacing solutions obtained by the MCS-optimizer are validated through comparisons with the standard CS-optimizer and the conventional array within the uniform and the Dolph-Chebyshev envelope patterns using MATLABTM. Finally, we also compared the fine-tuned MCS algorithm with two popular evolutionary algorithm (EA techniques include particle swarm optimization (PSO and genetic algorithms (GA.

  6. Radio Channel Sounding Using a Circular Horn Antenna Array in the Horizontal Plane in the 2.3 GHz Band

    DEFF Research Database (Denmark)

    Yamamoto, Atsushi; Sakata, Tsutomu; Ogawa, Koichi;

    2012-01-01

    This paper presents results from an outdoor radio propagation experiment at 2.35 GHz using a channel sounder and a spherical horn antenna array. The propagation test was performed in Aalborg city in Denmark. Comparing the ray-tracing results and the results obtained with the proposed method...

  7. Multi-wavelength integrated optical beamformer based on Wavelength division multiplexing for 2-D phased array antennas

    NARCIS (Netherlands)

    Burla, Maurizio; Marpaung, David; Zhuang, Leimeng; Khan, Muhannad Rezaul; Leinse, Arne; Beeker, Willem; Hoekman, Marcel; Heideman, René; Roeloffzen, Chris

    2014-01-01

    A novel, hardware-compressive architecture for broadband and continuously tunable integrated optical truetime- delay beamformers for phased array antennas is proposed and experimentally demonstrated. The novel idea consists in employing the frequency-periodic response of optical ring resonator (ORR)

  8. Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers.

    Science.gov (United States)

    Simoens, François; Meilhan, Jérôme

    2014-03-28

    The development of terahertz (THz) applications is slowed down by the availability of affordable, easy-to-use and highly sensitive detectors. CEA-Leti took up this challenge by tailoring the mature infrared (IR) bolometer technology for optimized THz sensing. The key feature of these detectors relies on the separation between electromagnetic absorption and the thermometer. For each pixel, specific structures of antennas and a resonant quarter-wavelength cavity couple efficiently the THz radiation on a broadband range, while a central silicon microbridge bolometer resistance is read out by a complementary metal oxide semiconductor circuit. 320×240 pixel arrays have been designed and manufactured: a better than 30 pW power direct detection threshold per pixel has been demonstrated in the 2-4 THz range. Such performance is expected on the whole THz range by proper tailoring of the antennas while keeping the technological stack largely unchanged. This paper gives an overview of the developed bolometer-based technology. First, it describes the technology and reports the latest performance characterizations. Then imaging demonstrations are presented, such as real-time reflectance imaging of a large surface of hidden objects and THz time-domain spectroscopy beam two-dimensional profiling. Finally, perspectives of camera integration for scientific and industrial applications are discussed. PMID:24567477

  9. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    Science.gov (United States)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  10. An Improved Chaos Genetic Algorithm for T-Shaped MIMO Radar Antenna Array Optimization

    Directory of Open Access Journals (Sweden)

    Xin Fu

    2014-01-01

    Full Text Available In view of the fact that the traditional genetic algorithm easily falls into local optimum in the late iterations, an improved chaos genetic algorithm employed chaos theory and genetic algorithm is presented to optimize the low side-lobe for T-shaped MIMO radar antenna array. The novel two-dimension Cat chaotic map has been put forward to produce its initial population, improving the diversity of individuals. The improved Tent map is presented for groups of individuals of a generation with chaos disturbance. Improved chaotic genetic algorithm optimization model is established. The algorithm presented in this paper not only improved the search precision, but also avoids effectively the problem of local convergence and prematurity. For MIMO radar, the improved chaos genetic algorithm proposed in this paper obtains lower side-lobe level through optimizing the exciting current amplitude. Simulation results show that the algorithm is feasible and effective. Its performance is superior to the traditional genetic algorithm.

  11. Conformal antenna array for ultra-wideband direction-of-arrival estimation

    NARCIS (Netherlands)

    Liberal, I.; Caratelli, D.; Yarovoy, A.

    2011-01-01

    The design and full-wave analysis of an antenna system for ultra-wideband radio direction finding applications is presented. The elliptical dipole antenna is selected as antenna element due to its robust circuital and radiation properties. The influence of the conformal deformation on the antenna pe

  12. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    Science.gov (United States)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  13. Triple Band Parasitic Array Antenna for C-X-Ku-Band Application Using Out-of-Phase Coupling Approach

    Directory of Open Access Journals (Sweden)

    Anubhuti Khare

    2014-01-01

    Full Text Available Triple band parasitic array antenna for C-X-Ku-band application is presented. The proposed antenna is designed using the concept of parasitic array and out-of-phase coupling approach. The objects of research are to optimize total inductance of geometry by using out-of-phase inductance approach. The out of phase inductance of geometry consists of using two U-patches novel director on the left side of geometry, appropriate dimension of ground plan, and gap coupling between parasitic and active patches. The dimension of the ground plan geometry is 0.5λ mil × 0.5154λ mil. The usable impedance bandwidth of design antenna is “5.8 GHz to 18 GHz” (102% impedance bandwidth and gain enhancement is up to 11.8 dBi. The proposed antenna can be used for X-Ku band and C-band applications. Both simulated and measured results are presented, which are in good agreement. The proposed antenna was fabricated with a thin copper layer printed on a thin lossy FR4 substrate for low-cost production.

  14. Performance Analysis of Anti-Interference Wireless Packet Networks for LEO Micro-Satellite with Adaptive Nulling Antenna Array

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-tao; HAN Fang-jing; WAN Jian-wei

    2006-01-01

    Information integrity is key to successful operations in intricacy environments in the future, especially when strong interferences exist. This paper presents the design of a novel wireless packet network receiver system for Low Earth Orbit (LEO) micro-satellites with adaptive nulling antenna arrays. It uses three types of interference suppression in cascade: namely spread spectrum, adaptive array nulling, and transform domain filtering. This paper proposes a pilot channel-aided method in order to make full advantage of this arrangement, and analyzes its throughput and delay performance using the Markov chain model. Our results show that this method can achieve excellent delay and throughput performance: When the number of array antenna is 8, its throughput increase relative to the standard Slot-ALOHA protocol is 125 %.

  15. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements.

    Science.gov (United States)

    Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong

    2016-09-01

    A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results. PMID:27607946

  16. Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array

    Institute of Scientific and Technical Information of China (English)

    LAN Chao-Hui; HU Xi-Wei; LIU Ming-Hai

    2009-01-01

    The spontaneous outspread of surface-wave plasma (SWP) towards the edge of large-scale quartz window is studied using a time-stepping seff-consistent model. The performances of three different types of slot-antenna arrays are compared,and the electron density distributions for each array at different stages are presented.The results show that slotting along both x and y directions can be helpful to the outspread and can thus enhance the uniformity of SWP.Meanwhile,when we use such an array,the absorption rate of input microwave power can reach more than 83%.

  17. 共形天线分析综合方法研究进展%Development of the Method of Analysis and Synthesis for Conformal Antenna

    Institute of Scientific and Technical Information of China (English)

    刘元柱; 肖绍球; 唐明春; 王秉中

    2011-01-01

    共形天线阵列技术是天线技术发展的重要方向,在军民用雷达与通信系统中具有广阔的应用前景,其分析与综合问题是天线领域研究的热点与难点课题。本文对共形天线分析综合方法的发展进行了详细总结,并展望了未来共形天线研究的发展趋势。%The technology of conformal antenna array is of significant importance in antenna investi- gation, and has wide potential application in military/civil radars and communication systems, while its a- nalysis and synthesis are witnessing difficulties in such hot research. In this paper, the methods of analy- sis and synthesis for conformal antenna are detailed summarized, and the outlook of developing trend of conformal antenna in the future is also forecasted.

  18. Diamond dipole active antenna

    OpenAIRE

    Bubnov, I. N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  19. Direction Finding Using Multiple Sum and Difference Patterns in 4D Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Quanjiang Zhu

    2014-01-01

    Full Text Available Traditional monopulse systems used for direction finding usually face the contradiction between high angle precision and wide angle-searching field, and a compromise has to be made. In this paper, the time modulation technique in four-dimensional (4D antenna array is introduced into the conventional phase-comparison monopulse to form a novel direction-finding system, in which both high angle resolution and wide field-of-view are realized. The full 4D array is divided into two subarrays and the differential evolution (DE algorithm is used to optimize the time sequence of each subarray to generate multibeams at the center frequency and low sidebands. Then the multibeams of the two subarrays are phase-compared with each other and multiple pairs of sum-difference beams are formed at different sidebands and point to different spatial angles. The proposed direction-finding system covers a large field-of-view of up to ±60° and simultaneously maintains the advantages of monopulse systems, such as high angle precision and low computation complexity. Theoretical analysis and experimental results validate the effectiveness of the proposed system.

  20. A multi-static ground-penetrating radar with an array of resistively loaded vee dipole antennas for landmine detection

    Science.gov (United States)

    Kim, Kangwook; Gurbuz, Ali C.; Scott, Waymond R., Jr.; McClellan, James H.

    2005-06-01

    A multi-static ground-penetrating radar (GPR) has been developed to investigate the potential of multi-static inversion algorithms. The GPR consists of a linear array of six resistively-loaded vee dipoles (RVDs), a network analyzer, and a microwave switch matrix all under computer control. The antennas in the array are spaced 12cm apart so the spacing between the transmitter and the receiver pairs in the measurements are from 12cm to 96cm in 12cm increments. The size of the array is suitable for the landmine problem and scaled measurements of the buried structure problem. The RVD is chosen as an array element because it is very "clean" in that it has very little self clutter and a very low radar cross section to lessen the reflections between the ground and the antenna. The shape and the loading profile of the antenna are designed to decrease the reflection at the drive point of the antenna while increasing the forward gain. The antenna and balun are made in a module, which is mechanically reliable without significant performance degradation. The multi-static GPR operation is demonstrated on targets buried in clean sand and targets buried under the ground covered by rocks. The responses of the targets are measured by each transmitter-receiver pair. A synthetic aperture, multi-static GPR imaging algorithm is extended from conventional monostatic back-projection techniques and used to process the data. Initial images obtained from the multi-static data are clearer than those obtained from bistatic data.

  1. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging.

    Science.gov (United States)

    Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-02-01

    Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla. PMID:24649430

  2. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  3. Ultra-Wideband Vivaldi Antenna Array for High Resolution Subsurface Imaging

    Science.gov (United States)

    Yedlin, M. J.; Cresp, A.; Pichot, C.; Aliferis, I.; Dauvignac, J.; Fortino, N.; Gaffet, S.

    2008-05-01

    Use of ultra-wideband electromagnetic waves to image the subsurface yields enhanced resolution, provided sources, antennas and recording equipment can be developed and calibrated over the complete bandwidth of interest. We present a demonstration of the latest microwave transmission and recording technology to obtain high-resolution images. Our transmitter and receiver electronics are embodied in the vector network analyzer (PNA series) from Agilent, an eight-port vector network analyzer that records amplitude and phase. The analyzer is connected through a microwave multiplexer and microwave switch to an 8 element, balanced, antipodal Vivaldi antenna array, which can transmit or receive data over a bandwidth from 1.3 to 20 GHz. The bandwidth of the integrated system is determined by the bandwidth of the microwave switch, from DC to 18GHz, which interfaces the multiplexer to the PNA. The capabilities of a microwave multiplexer are employed to collect multi-channel data, by using one channel for transmission and reception on all 8 channels. The demonstration of this integrated system will be focussed on scattering from a single conducting cylinder as well as two cylinders, a dielectric and conducting cylinder, spaced at different intervals. The increased bandwidth, over that obtained in conventional GPR recording will result in pulses that have little ringing, allowing the detection of deeper reflections and eliminating any post-processing distortions that arise from deconvolving the traditional oscillatory waveform. Although the demonstration will be presented in the GHz bandwidth, suitable for imaging over a length scale to 1m, this integrated system will scale to lower bandwidths and can operate from 100 MHz to 3 GHz, with a resultant penetration depth of 10 to 20 m depending on the subsurface properties. Given the electronic constraints of the switch and the PNA, this scaling is simply achieved by enlarging the Vivaldi antenna dimensions. The advantage of using

  4. Beam-Steerable Microstrip-Fed Bow-Tie Antenna Array for Fifth Generation Cellular Communications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert Frølund

    2016-01-01

    of bow-tie antennas have been used at the top-edge region of mobile phone PCB. The antenna elements fed by microstrip lines are designed to operate at 17 GHz. The simulated results give good performances in terms of different antenna parameters. In addition, an investigation on the distance between...

  5. Effects of the Number of Active Receiver Channels on the Sensitivity of a Reflector Antenna System with a Multi-Beam Wideband Phased Array Feed

    CERN Document Server

    Iupikov, O

    2016-01-01

    A method for accurate modeling of a reflector antenna system with a wideband phased array feed is presented and used to study the effects of the number of active antenna elements and associated receiving channels on the receiving sensitivity of the antenna system. Numerical results are shown for a practical design named APERTIF that is currently under developed at The Netherlands Institute for Radio Astronomy (ASTRON).

  6. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Martins, Carlos D; Stauffer, Paul R

    2009-02-23

    The use of conformal antenna array in the treatment of superficial diseases can significantly increase patient comfort while enhancing the local control of large treatment area with irregular shapes. Originally a regular square multi-fed slot antenna (Dual Concentric Conductor - DCC) was proposed as basic unit cell of the array. The square DCC works well when the outline of the treatment area is rectangular such as in the main chest or back area but is not suitable to outline diseases spreading along the armpit and neck area. In addition as the area of the patch increases, the overall power density decreases affecting the efficiency and thus the ability to deliver the necessary thermal dose with medium power amplifier (antennas is preferable as the disease is more accurately contoured and the lower power requirement for the amplifiers correlates with system reliability, durability, linearity and overall reduced cost. For such reason we developed a set of design rules for multi-fed slot antennas with irregular contours and we implemented a design that reduce the area while increasing the perimeter of the slot, thus increasing the antenna efficiency and the power density. The simulation performed with several commercial packages (Ansoft HFSS, Imst Empire, SemcadX and CST Microwave Studio) show that the size reducing method can be applied to several shapes and for different frequencies. The SAR measurements of several DCCs are performed using an in-house high resolution scanning system with tumor equivalent liquid phantom both at 915 MHz for superficial hyperthermia systems in US) and 433 MHz (Europe). The experimental results are compared with the expected theoretical predictions and both simulated and measured patterns of single antennas of various size and shapes are then summed in various combinations using Matlab to show possible treatment irregular contours of complex diseases. The local control is expected to significantly improve while maintaining the patient

  7. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Martins, Carlos D; Stauffer, Paul R

    2009-02-23

    The use of conformal antenna array in the treatment of superficial diseases can significantly increase patient comfort while enhancing the local control of large treatment area with irregular shapes. Originally a regular square multi-fed slot antenna (Dual Concentric Conductor - DCC) was proposed as basic unit cell of the array. The square DCC works well when the outline of the treatment area is rectangular such as in the main chest or back area but is not suitable to outline diseases spreading along the armpit and neck area. In addition as the area of the patch increases, the overall power density decreases affecting the efficiency and thus the ability to deliver the necessary thermal dose with medium power amplifier (antennas is preferable as the disease is more accurately contoured and the lower power requirement for the amplifiers correlates with system reliability, durability, linearity and overall reduced cost. For such reason we developed a set of design rules for multi-fed slot antennas with irregular contours and we implemented a design that reduce the area while increasing the perimeter of the slot, thus increasing the antenna efficiency and the power density. The simulation performed with several commercial packages (Ansoft HFSS, Imst Empire, SemcadX and CST Microwave Studio) show that the size reducing method can be applied to several shapes and for different frequencies. The SAR measurements of several DCCs are performed using an in-house high resolution scanning system with tumor equivalent liquid phantom both at 915 MHz for superficial hyperthermia systems in US) and 433 MHz (Europe). The experimental results are compared with the expected theoretical predictions and both simulated and measured patterns of single antennas of various size and shapes are then summed in various combinations using Matlab to show possible treatment irregular contours of complex diseases. The local control is expected to significantly improve while maintaining the patient

  8. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    Science.gov (United States)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  9. Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    Science.gov (United States)

    Mukai, Ryan (Inventor); Vilnrotter, Victor A. (Inventor)

    2011-01-01

    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.

  10. Colloidal Synthesis of Nanopatch Antennas for Applications in Plasmonics and Nanophotonics.

    Science.gov (United States)

    Hoang, Thang B; Huang, Jiani; Mikkelsen, Maiken H

    2016-05-28

    We present a method for colloidal synthesis of silver nanocubes and the use of these in combination with a smooth gold film, to fabricate plasmonic nanoscale patch antennas. This includes a detailed procedure for the fabrication of thin films with a well-controlled thickness over macroscopic areas using layer-by-layer deposition of polyelectrolyte polymers, namely poly(allylamine) hydrochloride (PAH) and polystyrene sulfonate (PSS). These polyelectrolyte spacer layers serve as a dielectric gap in between silver nanocubes and a gold film. By controlling the size of the nanocubes or the gap thickness, the plasmon resonance can be tuned from about 500 nm to 700 nm. Next, we demonstrate how to incorporate organic sulfo-cyanine5 carboxylic acid (Cy5) dye molecules into the dielectric polymer gap region of the nanopatch antennas. Finally, we show greatly enhanced fluorescence of the Cy5 dyes by spectrally matching the plasmon resonance with the excitation energy and the Cy5 absorption peak. The method presented here enables the fabrication of plasmonic nanopatch antennas with well-controlled dimensions utilizing colloidal synthesis and a layer-by-layer dip-coating process with the potential for low cost and large-scale production. These nanopatch antennas hold great promise for practical applications, for example in sensing, ultrafast optoelectronic devices and for high-efficiency photodetectors.

  11. Colloidal Synthesis of Nanopatch Antennas for Applications in Plasmonics and Nanophotonics

    Science.gov (United States)

    Hoang, Thang B.; Huang, Jiani; Mikkelsen, Maiken H.

    2016-01-01

    We present a method for colloidal synthesis of silver nanocubes and the use of these in combination with a smooth gold film, to fabricate plasmonic nanoscale patch antennas. This includes a detailed procedure for the fabrication of thin films with a well-controlled thickness over macroscopic areas using layer-by-layer deposition of polyelectrolyte polymers, namely poly(allylamine) hydrochloride (PAH) and polystyrene sulfonate (PSS). These polyelectrolyte spacer layers serve as a dielectric gap in between silver nanocubes and a gold film. By controlling the size of the nanocubes or the gap thickness, the plasmon resonance can be tuned from about 500 nm to 700 nm. Next, we demonstrate how to incorporate organic sulfo-cyanine5 carboxylic acid (Cy5) dye molecules into the dielectric polymer gap region of the nanopatch antennas. Finally, we show greatly enhanced fluorescence of the Cy5 dyes by spectrally matching the plasmon resonance with the excitation energy and the Cy5 absorption peak. The method presented here enables the fabrication of plasmonic nanopatch antennas with well-controlled dimensions utilizing colloidal synthesis and a layer-by-layer dip-coating process with the potential for low cost and large-scale production. These nanopatch antennas hold great promise for practical applications, for example in sensing, ultrafast optoelectronic devices and for high-efficiency photodetectors. PMID:27285421

  12. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    Science.gov (United States)

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss synthetic aperture radar has been designed. PMID:27411185

  13. Optimization of the Coupling of High-Frequency Horn Antenna Array to the ESA PLANCK Submillimeter-Wave Telescope

    CERN Document Server

    Yurchenko, V; Lamarre, J M; Yurchenko, Vladimir; Murphy, John Anthony; Lamarre, Jean-Michel

    2002-01-01

    We study the electromagnetic coupling of the array of Gaussian and multi-moded horn antennas to the dual-reflector submillimeter-wave telescope on the ESA PLANCK Surveyor designed for measuring the temperature anisotropies and polarization characteristics of the cosmic microwave background. In this paper, we present the results of our analysis concerning the measurement of polarization with tilted off-axis dual-reflector Gregorian telescope and the propagation of multi-moded beams through such a system.

  14. Optimization of the Coupling of High-Frequency Horn Antenna Array to the ESA PLANCK Submillimeter-Wave Telescope

    OpenAIRE

    Yurchenko, Vladimir; Murphy, John Anthony; Lamarre, Jean-Michel

    2002-01-01

    We study the electromagnetic coupling of the array of Gaussian and multi-moded horn antennas to the dual-reflector submillimeter-wave telescope on the ESA PLANCK Surveyor designed for measuring the temperature anisotropies and polarization characteristics of the cosmic microwave background. In this paper, we present the results of our analysis concerning the measurement of polarization with tilted off-axis dual-reflector Gregorian telescope and the propagation of multi-moded beams through suc...

  15. A methodological proposal for the development of an HPC-based antenna array scheduler

    Science.gov (United States)

    Bonvallet, Roberto; Hoffstadt, Arturo; Herrera, Diego; López, Daniela; Gregorio, Rodrigo; Almuna, Manuel; Hiriart, Rafael; Solar, Mauricio

    2010-07-01

    As new astronomy projects choose interferometry to improve angular resolution and to minimize costs, preparing and optimizing schedules for an antenna array becomes an increasingly critical task. This problem shares similarities with the job-shop problem, which is known to be a NP-hard problem, making a complete approach infeasible. In the case of ALMA, 18000 projects per season are expected, and the best schedule must be found in the order of minutes. The problem imposes severe difficulties: the large domain of observation projects to be taken into account; a complex objective function, composed of several abstract, environmental, and hardware constraints; the number of restrictions imposed and the dynamic nature of the problem, as weather is an ever-changing variable. A solution can benefit from the use of High-Performance Computing for the final implementation to be deployed, but also for the development process. Our research group proposes the use of both metaheuristic search and statistical learning algorithms, in order to create schedules in a reasonable time. How these techniques will be applied is yet to be determined as part of the ongoing research. Several algorithms need to be implemented, tested and evaluated by the team. This work presents the methodology proposed to lead the development of the scheduler. The basic functionality is encapsulated into software components implemented on parallel architectures. These components expose a domain-level interface to the researchers, enabling then to develop early prototypes for evaluating and comparing their proposed techniques.

  16. Optical phase-locked loop signal sources for phased-array communications antennas

    Science.gov (United States)

    Langley, Lloyd N.; Edge, Colin; Wale, Michael J.; Gliese, Ulrik B.; Seeds, Alwyn J.; Walton, Channing; Wright, James G.; Coryell, Louis A.

    1997-10-01

    A coherent, optical heterodyne approach to signal generation and beamforming is particularly advantageous in multi-beam mobile phased arrays. Use of optical technology allows an optimum distribution of weight and power to be achieved between the antenna face and central electronics, together with an efficient implementation of the beamforming function and a modular design approach in which the basic building blocks are frequency-independent. Systems of this type employ a pair of optical carriers with a difference frequency equal to the required microwave signal. Phased- locking is necessary in order to achieve sufficiently low phase noise in the radio communication link. Optical phase locked loops (OPLLs) have been shown to be potential candidates for this application, yet work still needs to be done to bring them from the laboratory to field demonstrations. This paper describes the construction of a laser-diode OPLL subsystem for evaluation in a proof-of- concept beamforming system. This involves optimization of the loop design, development of single-frequency laser diodes with the correct linewidth, modulation and tuning characteristics and integration into a micro-optic assembly with custom wideband electronics.

  17. Joint Azimuth and Elevation Angle Estimation Using Incomplete Data Generated by a Faculty Antenna Array

    Directory of Open Access Journals (Sweden)

    Yerriswamy T

    2013-01-01

    Full Text Available In this study, we extend the "Fault Tolerant Matrix Pencil Method for Direction of Arrival Estimation(DOA" proposed by the authors [1] to joint estimation of Azimuth and Elevation Angles from a datagenerated by Uniform Planar Antenna array (UPA, where at random locations a few of the elements dueto failure are missing. Joint Azimuth and Elevation Angles estimation is generally known as TwodimensionalDOA estimation. In the proposed technique, the observed incomplete data is imputed firstusing the Matrix Completion (MC algorithm and later the 2D angles are jointly estimated using the Twodimensional Matrix Pencil Method (2D-MP. The resulting algorithm is robust in terms of failure ofelements, is computationally efficient as it does not forms a correlation matrix and the angles are estimatedusing only a single snapshot. It is shown that the algorithm is able to estimate the DOAs when we have afraction of the observed data. The numerical simulation results are provided to see the performance of themethod for various incomplete data sizes and Signal-to-Noise Ratio (SNR.

  18. Joint Azimuth and Elevation Angle Estimation Using Incomplete Data Generated by a Faculty Antenna Array

    Directory of Open Access Journals (Sweden)

    Yerriswamy T

    2012-12-01

    Full Text Available In this study, we extend the "Fault Tolerant Matrix Pencil Method for Direction of Arrival Estimation (DOA" proposed by the authors [1] to joint estimation of Azimuth and Elevation Angles from a data generated by Uniform Planar Antenna array (UPA, where at random locations a few of the elements due to failure are missing. Joint Azimuth and Elevation Angles estimation is generally known as Twodimensional DOA estimation. In the proposed technique, the observed incomplete data is imputed first using the Matrix Completion (MC algorithm and later the 2D angles are jointly estimated using the Two dimensional Matrix Pencil Method (2D-MP. The resulting algorithm is robust in terms of failure of elements, is computationally efficient as it does not forms a correlation matrix and the angles are estimated using only a single snapshot. It is shown that the algorithm is able to estimate the DOAs when we have a fraction of the observed data. The numerical simulation results are provided to see the performance of the method for various incomplete data sizes and Signal-to-Noise Ratio (SNR.

  19. Hybrid Differential Evolution with Biogeography-Based Optimization for Design of a Reconfigurable Antenna Array with Discrete Phase Shifters

    Directory of Open Access Journals (Sweden)

    Xiangtao Li

    2011-01-01

    Full Text Available Multibeam antenna arrays have important applications in communications and radar. This paper presents a new method of designing a reconfigurable antenna with quantized phase excitations using a new hybrid algorithm, called DE/BBO. The reconfigurable design problem is to find the element excitation that will result in a sector pattern main beam with low sidelobes with additional requirement that the same excitation amplitudes applied to the array with zero-phase should be in a high directivity, low sidelobe pencil-shaped main beam. In order to reduce the effect of mutual coupling between the antenna-array elements, the dynamic range ratio is minimized. Additionally, compared with the continuous realization and subsequent quantization, experimental results indicate that the performance of the discrete realization of the phase excitation value can be improved. In order to test the performances of hybrid differential evolution with biogeography-based optimization, the results of some state-of-art algorithms are considered, for the purposed of comparison. Experiment results indicate the better performance of the DE/BBO.

  20. Research on the technologies of conformal phased array antenna%共形相控阵天线的技术研究

    Institute of Scientific and Technical Information of China (English)

    伏浩; 李小浩; 李会莲

    2014-01-01

    Phased array antenna technology has been applied widely and developed rapidly in the fields of radar, communication, electronic warfare and navigation. Conformal phased array antenna technology is the focus of development of the phased array antenna. The development of foreign countries about conformal phased array antenna is introduced, the antenna array and pattern integration and beam forming of conformal phased array antenna are briefly discussed in this paper.%相控阵天线技术在雷达、通信、电子战、导航等领域获得了广泛应用和高速发展,共形相控阵天线是相控阵天线发展的重点之一。文章介绍了共形相控阵天线国外发展现状,进而探讨了共形相控阵的天线阵型,方向图综合及波束形成技术体制等关键技术。

  1. Estimating movement and survival rates of a small saltwater fish using autonomous antenna receiver arrays and passive integrated transponder tags

    Science.gov (United States)

    Rudershausen, Paul J.; Buckel, Jeffery A.; Dubreuil, Todd; O'Donnell, Matthew J.; Hightower, Joseph E.; Poland, Steven J.; Letcher, Benjamin H.

    2014-01-01

    We evaluated the performance of small (12.5 mm long) passive integrated transponder (PIT) tags and custom detection antennas for obtaining fine-scale movement and demographic data of mummichog Fundulus heteroclitus in a salt marsh creek. Apparent survival and detection probability were estimated using a Cormack Jolly Seber (CJS) model fitted to detection data collected by an array of 3 vertical antennas from November 2010 to March 2011 and by a single horizontal antenna from April to August 2011. Movement of mummichogs was monitored during the period when the array of vertical antennas was used. Antenna performance was examined in situ using tags placed in wooden dowels (drones) and in live mummichogs. Of the 44 tagged fish, 42 were resighted over the 9 mo monitoring period. The in situ detection probabilities of the drone and live mummichogs were high (~80-100%) when the ambient water depth was less than ~0.8 m. Upstream and downstream movement of mummichogs was related to hourly water depth and direction of tidal current in a way that maximized time periods over which mummichogs utilized the intertidal vegetated marsh. Apparent survival was lower during periods of colder water temperatures in December 2010 and early January 2011 (median estimate of daily apparent survival = 0.979) than during other periods of the study (median estimate of daily apparent survival = 0.992). During late fall and winter, temperature had a positive effect on the CJS detection probability of a tagged mummichog, likely due to greater fish activity over warmer periods. During the spring and summer, this pattern reversed possibly due to mummichogs having reduced activity during the hottest periods. This study demonstrates the utility of PIT tags and continuously operating autonomous detection systems for tracking fish at fine temporal scales, and improving estimates of demographic parameters in salt marsh creeks that are difficult or impractical to sample with active fishing gear.

  2. Highly-Integrated, Reconfigurable, Large-Area, Flexible Radar Antenna Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reconfigurable antennas are attractive for remote sensing, surveillance and communications, since they enable changes in operating frequency and / or radiation...

  3. Development of Wideband, Dual Polarized L-Band Array Antenna for Digital Beam forming SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Using analytical methods to conceptualization L-band antenna structures that offer potentials of wideband operation. Perform extensive computer simulations on these...

  4. Conformal array design on arbitrary polygon surface with transformation optics

    Science.gov (United States)

    Deng, Li; Wu, Yongle; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang

    2016-06-01

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  5. Conformal array design on arbitrary polygon surface with transformation optics

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-06-01

    Full Text Available A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  6. Designing Adaptive Linear Array Antenna to Achieve Pattern Steering Optimization by Phase-Amplitude Perturbations Using Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    HSUChaohsing; CHENTsongyi; PanJengshyang

    2005-01-01

    In this paper, a phase-amplitude perturbation method of an adaptive array factor based on the genetic algorithm is proposed. The design for an optimal beam pattern of an adaptive antenna is able to not only suppress interference by placing nulls at the directions of the interfering sources but also provide a maximized main lobe in the direction of the desired signal, i.e., to maximizethe Signal interference ratio (SIR). In order to achieve this goal, a kind of new convergent skill called the two-way convergent method for genetic algorithms is proposed. The phase-amplitude perturbation method is applied to realize the optimal beam pattern of an adaptively linear array antenna. The Genetic algorithms are applied to find the optimal phase-amplitude weighting vector of adaptive array factor. An optimal beam pattern of linear array is derived by phase-amplitude perturbations using a genetic algorithm. Computer simulation result is given to demonstrate the effectiveness of the proposed method.

  7. Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana

    2016-07-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc-1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.

  8. Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana

    2016-07-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc‑1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.

  9. Conformal Array Antenna Modelling within EUCLID CEPA-1 / Modern Radar Technology

    NARCIS (Netherlands)

    Visser, H.; Gerini, G.; Zaragoza, B.M.; Hond, F. de; Bertuch, Th.; S”ntgerath, W.; Knott, P.; Gniss, H.; Schmid, O.; Winterfeld, Chr. von; Paul, D.L.; Craddock, I.; Economou, D.P.; Kaklamani, D.I.; Kyriakou, G.; Sahalos, J.N.; Uzunoglu, N.K.; Backhouse, P.; Fletcher, P.; Watkins, C.D.; Vitiello, R.; D'Elia, U.F.

    2000-01-01

    The mounting of antennas on military platforms, land-, sea- and air-based is a well-known problem due to the conflict it generates between platform and sensor interests. Most visibly this situation arises in aircraft where platform interests gain the highest priority and lead to sub-optimum antennas

  10. Leaky-Wave Slot Array Antenna Fed by a Dual Reflector System

    NARCIS (Netherlands)

    Ettorre, M.; Neto, A.; Gerini, G.; Maci, S.

    2008-01-01

    Planar leaky-wave antennas (LWAs) have received much attention in the recent years [1] for applications in the millimeter-wave ranges. In particular the compatibility with printed circuit board technology (PCB) and the low profile are the strongest features of these antennas. Mono dimensional planar

  11. Design of an electric power system with incorporation of a phased array antenna for OLFAR

    NARCIS (Netherlands)

    Klein, J.M.; Budianu, A.; Bentum, M.J.; Engelen, S.; Verhoeven, C.J.M.

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project is investigating the feasibility of an orbiting low frequency radio telescope. The radio telescope is formed using a swarm of nano-satellites equipped with astronomical antennas, conceivably orbiting the Moon or the second Lagra

  12. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    Science.gov (United States)

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  13. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging

    Science.gov (United States)

    Simoens, F.; Meilhan, J.; Gidon, S.; Lasfargues, G.; Lalanne Dera, J.; Ouvrier-Buffet, J. L.; Pocas, S.; Rabaud, W.; Guellec, F.; Dupont, B.; Martin, S.; Simon, A. C.

    2013-09-01

    CEA-Leti has developed a monolithic large focal plane array bolometric technology optimized for 2D real-time imaging in the terahertz range. Each pixel consists in a silicon microbolometer coupled to specific antennas and a resonant quarter-wavelength cavity. First prototypes of imaging arrays have been designed and manufactured for optimized sensing in the 1-3.5THz range where THz quantum cascade lasers are delivering high optical power. NEP in the order of 1 pW/sqrt(Hz) has been assessed at 2.5 THz. This paper reports the steps of this development, starting from the pixel level, to an array associated monolithically to its CMOS ROIC and finally a stand-alone camera. For each step, modeling, technological prototyping and experimental characterizations are presented.

  14. The mathematical model of antenna and antenna-radome system

    OpenAIRE

    Knyazeva, L. V.; Artishev, A. I.

    2003-01-01

    Methods, algorithms and programs for calculation by computer of the characteristics of the antenna and the antenna-radome system (ARS) are developed. The type of antenna considered is the phased antenna array (PAA) or the cophase antenna with a mechanical beam control (an antenna array - AA). Radome shape is spherical, quasi-conic or flattened ellipsoid. Radome shell is multilayer ( N≥1), same-thickness, or special profile. Errors in the manufacture of the antenna are taken into account. Prog...

  15. 相控阵天线阵面测试平台软件设计%Software Design of Phased Array Antenna Array Testing Platform

    Institute of Scientific and Technical Information of China (English)

    万东成; 章国宝

    2016-01-01

    In modern large phased array radar,the number of transmitter and receiver components in the antenna is large. The system test is very cumbersome.In order to simplify the testing process and improve the efficiency of manual test,in the array front and TR components testing process,combining with computer software & hardware technologies,data processing technology,automatic test technology,by means of network communication,a set of antenna array surface general test plat-form is designed in this paper.%现代大型相控阵雷达中,天线内的发射和接收(TR)组件数目庞大,系统测试工作十分繁琐,为简化测试过程,提高测试效率,在阵面以及TR组件测试过程中,综合运用计算机软硬件技术、数据处理技术、自动测试技术,采用网络通信手段,设计了一套天线阵面通用测试平台。

  16. 星载SAR天线阵面形变分析与补偿方法%Analysis and compensation of spaceborne SAR antenna array deformation

    Institute of Scientific and Technical Information of China (English)

    曾祥能; 何峰; 张永顺; 董臻

    2012-01-01

    The beam output of deformed Spaceborne SAR antenna array and the deformation error compensation are studied. Considering the flexible antenna array which may be adopted in the future Spacebome SAR, a closed loop system for measuring and controlling of Spaceborne SAR antenna array' a deformation is proposed, and the steering vector model of deformed antenna array is presented. It was found that the mild deformation affect the beam' s sidelobe output more than the beam' s main-lobe. Then, the compensated weights were solved by the least square method, which can approximate the deformed antenna array outputs to the original antenna array outputs at most. Next, the deformed antenna array measuring precise demand was worked out. The validity of this method is verified by simulation.%研究了星载SAR天线阵面形变对波束输出的影响及形变补偿方法.针对未来星载SAR将采用的柔性阵面,提出了一种用于星载SAR天线的空间形变实时测量与控制的闭环系统,建立了阵面形变下阵列流形误差模型,得出小幅度形变主要影响波束的旁瓣输出,通过求解补偿形变权值的最小二乘解,使阵列形变补偿后波束输出与期望波束输出最佳逼近,并给出用于阵列误差补偿的阵列形变测量精度要求.仿真结果验证了本文方法结论的正确性与有效性.

  17. The Hydrogen Epoch of Reionization Array (HERA). Improvement of the antenna response with a matching network and scientific impacts

    CERN Document Server

    Fagnoni, Nicolas

    2016-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a new powerful radio-telescope, dedicated to the study of the early universe. Its main goal is to characterise the period of the universe where the first galaxies and stars started to form, by studying the evolution of the 21-cm emission signal from neutral hydrogen, during the Epoch of Reionization. In this article, we present an electromagnetic and electrical co-simulation of the antenna performed with CST. We focus our analysis on the characterisation of the chromatic effects caused by the antenna, in particular multiple reflections of the received signal between the feed and the dish. These reflections can have an important impact on the scientific results, and it is crucial to keep them as low as possible. Therefore, we are currently developing a matching circuit which aims to improve the impedance matching between the feed and the front end.

  18. Analysis of a Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Multipath Rician Fading Channels

    Directory of Open Access Journals (Sweden)

    Kim Yong-Seok

    2005-01-01

    Full Text Available We present the BER analysis of antenna array (AA receiver in reverse-link asynchronous multipath Rician channels and analyze the performance of an improved AA system which applies a reverse-link synchronous transmission technique (RLSTT in order to effectively make a better estimation of covariance matrices at a beamformer-RAKE receiver. In this work, we provide a comprehensive analysis of user capacity which reflects several important factors such as the ratio of the specular component power to the Rayleigh fading power, the shape of multipath intensity profile, and the number of antennas. Theoretical analysis demonstrates that for the case of a strong specular path's power or for a high decay factor, the employment of RLSTT along with AA has the potential of improving the achievable capacity by an order of magnitude.

  19. Effect of two different superstrate layers on bismuth titanate (BiT) array antennas.

    Science.gov (United States)

    Wee, F H; Malek, F; Al-Amani, A U; Ghani, Farid

    2014-01-15

    The microwave industry has shown increasing interest in electronic ceramic material (ECM) due to its advantages, such as light weight, low cost, low loss, and high dielectric strength. In this paper, simple antennas covered by superstrate layers for 2.30 GHz to 2.50 GHz are proposed. The antennas are compact and have the capability of producing high performance in terms of gain, directivity, and radiation efficiency. Bismuth titanate with high dielectric constant of 21, was utilized as the ECM, while the superstrate layers chosen included a split ring resonator and dielectric material. The superstrate layers were designed for some improvement in the performance of directivity, gain, and return loss. The proposed antennas were simulated and fabricated. The results obtained were small antennas that possess high gain and high directivity with 360°, omni-directional signal transmission that resonant types of conventional dipole antenna cannot achieve. The gain of the antenna with the superstrate layer was enhanced by about 1 dBi over the antenna without a superstrate layer at 2.40 GHz.

  20. Potential Benefits of Dynamic Beam Synthesis to Mobile Satellite Communication, Using the Inmarsat 4 Antenna Architecture as a Test Example

    Directory of Open Access Journals (Sweden)

    R. F. E. Guy

    2009-01-01

    Full Text Available Present mobile satellite communication systems use large antennas to provide multiple high-gain beams. Each beam covers a fixed geographic cell on the earth. Spatial frequency reuse is provided by synthesising beams with low-power levels over all cells operating at the same frequency. The performance needs for future systems are steadily increasing, leading to higher-gain requirements, which are met by using larger antennas with narrower beams. So the antenna pointing errors become a significant loss factor. An alternative approach is to abandon the use of fixed beams and dynamically synthesise the beams to optimise the antenna performance in real time. This both increases user gain and lowers cofrequency interference whilst also reducing the effects of pointing errors. Simulations, using the Inmarsat 4 antenna architecture as a test example, show that the spatial isolation performance can be significantly improved by using Dynamic Beam Synthesis.